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ABSTRACT

Detailed laboratory measurements were made of the [ree sutface clevations
and velocities for the case of regular waves spilling on a 1:35 impermeable slope.
The velocity profiles were measured at several vertical lines in the cross-shore di-
rection to include the shoaling region seaward of breaking, the break point, the
transition region, and the inner surf zone. Each vertical line included measuring
points at a [raction of the grain height above the rough, fixed bottom. A log-
arithimic layer was found to exist in the bottom boundary layer for most of the
phases over a wave period seaward of the break point and in the surl zone. A
regression analysis was used at each phase Lo estimate the shear velocily and bot-
tem roughness from the phase-averaged horizontal velocities in the lower portion
of the bottom boundary layer. The bottom friction factor was estimated [rom a
quadratic [riction equation based on the estimated shear velocity and measured
horizontal velocity above the bottom boundary layer. The quadratic [riction equa-
tion with the fitted [riction factor was shown to predict the temporal variation of
the bottom shear stress within a factor of two. The bottom roughness estimated
from the grain size assuming rough turbulent flow was shown to agree qualita-
tively with the measured values. The cross-shore variation of the friction [actor
estimated from a semi-theoretical formula developed for non-breaking waves was

shown to agree within a factor of two of the measured values.

The data were used Lo investigate the processes of wave generated turbu-

lence. An order of magnitude analysis of the turbulent kinetic energy transport

XXX
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equation indicated an approximate local equilibrium of turbulence for shallow wa-
ter waves in the surf zone. Estimates were found for common surf zone turbulence
parameters. The calibrated values were used to show that the eddy viscosity varies
gradually over depth and is nearly time-invariant and that the local equilibrium
of turbulence is a reasonable approximation for spilling waves in the inner surf

zZone.

The data were also used to evaluate the capabilities and limitations of
a Itime—dependent, one-dimensional numerical model. The model predicted the
cross-shore variation of the wave profile reasonably well. The computed depth-
averaged horizontal velocity represented the vertical profile of the measured hori-
zontal velocity below the wave trough level reasonably well except in the transition
region. The computed vertical velocity estimated [rom the continuily equation
represented the measured vertical velocity at least qualitatively except under the
wave crest. fhe temporal variation ol the bottom shear stress was predicted
poorly, because errors in the computed horizontal velocity were maguified in the
computed bottom shear stress and because the [riction factor is not really constant

as assumed in the model.



Chapter 1

INTRODUCTION

More than half of the population of the United States lives within 50 miles
of the coastlines (Holman et al. 1990). The coastal regions are especially important
for our quality of life. Most of the American coastline is suffering from erosion
(Holman et al. 1990) and will continue to erode with the increasing rise in sea

level.

A goal of coastal research is to develop numerical models for predicting
sediment transport. A primary simplification is to consider either along-shore or
cross-shore coastal evolution. Cross-shore beach profile models are appropriate
over time scales of hours to days, typical of the duration of storms. Hedegaard,
et al. (1992) presented six cross-shore coastal models, most of which rely on the
time-averaged momentum and energy equations for predicting the wave height
and setup (Battjes and Janssen 1978). The comparisons of these models with
large scale laboratory data indicated the deficiencies of these models with respect
to the low frequency and swash motions. The study also indicated the importance

of the vertical velocities near the break point for the bar formation.

An advance towards predictive sediment transport modeling would be to
develop a time-dependent numerical model for the surf and swash zone which could

predict the temporal variations of the fluid velocities, shear stress and turbulent



intensity. These predicted hydrodynamics could then be used to drive a sediment
transport model. The numerical model would require the implementation of a
turbulence model for the surf zone and proper specification of the conditions at
the bottom boundary layer. However, our understanding of wave breaking and
bottom boundary layer processes is limited (Holman et al. 1990). In particular,
few studies have been made of the bottom boundary layer inside the surf zone. For
this dissertation, an experiment was conducted in a laboratory flume to determine
proper length and velocity scales for the turbulent flow in a surf zone and to
estimate the temporal variation of the bottom shear stress under breaking waves.
It is within the context of the development of a two-dimensional cross-shore, time-

dependent numerical model that the results from this experiment are presented.

1.1 Literature Review

Several reviews have been made of coastal hydrodynamics and sediment
transport processes. Peregrine (1983) gave a qualitative review of the dynamics
of wave breaking. The review focused on the transition of the organized motion
to a turbulent bore, relying on visualization techniques, observations of surf zone
waves and numerical simulations. Battjes (1988) reviewed the modeling of sev-
eral kinds of fluid motions in the surf zone. The review focused on short-term,
time-averaged fluid dynamics, but excluded sediment transport processes and mor-
phological evolution. The review of Kobayashi (1988) focused on the cross-shore
hydrodynamics of incident wind waves and low frequency motions as well as the
cross-shore sediment transport and resulting beach profile evolution. Horikawa
(1981) and Komar and Holman (1986) reviewed coastal sediment processes. Al-
though our understanding of nearshore hydrodynamics and coastal processes has
improved over the last several decades, all of the above reviews indicated that our

understanding of the interactions of the fluid motions and coastal morphology is



far from complete.

Field measurements of wave generated turbulence are limited. Thornton
(1979) measured the fluid motions under a variety of wave types. The turbulent
component was extracted by correlating the velocity records with the free surface
measurements. With this method, he found little difference among the wave types
with respect to the turbulent intensity as a percent of the wave induced velocity.
Flick and George (1990) measured fluid motions of surf zone waves on a natural
beach using hot film anemometers. The turbulence intensity was estimated using
Taylor’s hypothesis of frozen turbulence. They concluded that the length scale
of surf zone turbulence is on the order of the bore height, or equivalently, the
local depth. The resolution of the measurements was not sufficient to indicate
whether the velocity scales were dependent on the local shallow water wave speed.
George et al. (1994) increased the spatial resolution of the previous study and
in their analysis suggested a velocity scaling based on a bore dissipation model
(Thornton and Guza 1983). Both papers cited the difficulty of using hot film
probes due to breakage under harsh field conditions. It is also important to note
the inherent difficulty in extracting the turbulent signal, in particular, for random,

multi-directional waves.

In addition to the use of hot film anemometry, considerable progress has
been made with laboratory measurements of fluid motions with improved tech-
niques such as laser Doppler velocimetry (LDV) (e.g., Adrian 1983) and parti-
cle image velocimetry (PIV) (e.g., Adrian 1991). Flick et al. (1981) measured
fluid motions of spilling and plunging waves in a laboratory flume using hot film
anemometers. They reported on the intensity of the turbulence due to wave break-
ing with respect to the organized wave motion. Also, they noted the difference in

the turbulence intensity between plunging and spilling breakers in the transition
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zone, that is, from the break point to the quasi-steady bore region of the inner
surf zone (Svendsen et al. 1978). Stive (1980) studied the internal velocity fields of
spilling and plunging breakers using laser Doppler velocimetry. The results qual-
itatively supported the turbulent mixing layer model of Peregrine and Svendsen
(1978). Battjes and Sakai (1981) presented the velocity field in a spilling breaker
generated by a steady current over a submerged hydrofoil. The flow field behind
the breaker was compared to a turbulent wake. Nadaoka and Kondoh (1982),
Nadaoka et al. (1989), and Okayasu et al. (1986) have also shown the structure
of the turbulent flow field under breaking waves in the surf zone. Hattori and
Aono (1985) studied the turbulent structure of a spilling wave using a split-type
hot film velocimeter to measure the horizontal and vertical velocities simultane-
ously. The break point was stabilized by a composite slope, where the broken

wave propagated onto a flat section of beach.

Sakai et al. (1982) presented the distribution of turbulence for spilling waves
and (nearly) plunging waves. They indicated that as the wave type changed from
spilling to plunging, the offshore turbulent intensity would decrease relative to
the onshore turbulent intensity. Ting and Kirby (1994) measured the fluid mo-
tions under spilling and plunging breakers. They indicated a seaward correlation
between the mean flow and turbulence for a spilling breaker and a landward cor-
relation for a plunging breaker. They suggested that the change in beach profile
for storm waves (typically spilling breakers) and swell waves (typically plunging
breakers) could result from the different correlations of the mean flow and turbu-
lence of these waves. Nadaoka et al. (1988) discussed the existence of obliquely
descending eddies. They suggested that these highly turbulent, intermittent ed-
dies may hit the bottom and induce sediment suspension. Using flow visualization,
Sakai et al. (1986) also showed an obliquely descending eddy and discussed the

vortex formation in a plunging breaker. Sakai et al. (1984) and Okayasu et al.



(1988) have shown the distribution of the time-averaged Reynolds stress in the
surf zone. Recently, Lin and Rockwell (1994) used PIV techniques to show the
instantaneous structure of a spilling wave formed by a uniform current over a

submerged hydrofoil.

It is important to note the difficulty in separating the turbulent and wave-
induced velocities. In the field, waves are inherently random and multi-directional
which precludes the use of ensemble averaging. Methods based on Taylor’s hy-
pothesis applied to oscillatory flow (e.g., George et al. 1994; Flick and George
1992) are subject to the selective rejection of data during flow reversal which may
bias the results (George et al. 1994). Defining the turbulent signal as those which
are incoherent with the free surface oscillation (e.g., Thornton 1979; Hattori and
Aono 1985) may bias the results since large eddies may affect the free surface pro-
file (Nadaoka et al. 1989). Frequency filters (e.g., Nadaoka and Kondoh 1982) are
limited since there is no clear cutoff between the organized wave motion and the
turbulent intensity, that is, the frequency of the wave motion is on the same order
of turbulent intensity of the large-scale vortices. Moving averages (e.g., Battjes
and Sakai 1981; Sakai et al. 1982) are essentially limited for the same reason, and
the results are subject to the choice of the averaging interval. Ensemble-averaging
or phase-averaging is a less subjective technique; however, it includes irregular
breaking of monochromatic waves as turbulence and smears the effects of large
vortices in the turbulent signal. Although considered the best defined way to sep-
arate the organized and turbulent motions (Svendsen 1987), the phase-averaging
technique can not be extended to field measurements of random, multi-directional

waves.

In contrast to the turbulence due to breaking waves in the surf zone, more

studies on bottom boundary layer flows due to currents and non-breaking waves



have been made in the field and laboratory, and theories to describe these flows
have been applied more successfully. Grant et al. (1983) and Grant et al. (1984)
presented near bottom velocity measurements for wind driven currents and wind
wave oscillations over the Northern California continental shelf. They estimated
the mean bottom shear stress and bottom roughness by a logarithmic fit of the
current velocities measured near the bottom. They indicated the importance
of the wave-current interactions in determining the mean bottom shear stress
and roughness felt by the current outside the bottom boundary layer. Similarly,
Huntley and Hazen (1988) measured near bottom velocities on the Nova Scotia
continental shelf and confirmed the importance of the wave-current interactions
in determining the mean bottom shear stress. Madsen et al. (1993) measured the
near bottom velocities on the North Carolina inner shelf during an extreme storm
event and estimated the bottom shear stress, bottom roughness, and equivalent
Nikuradse sand grain roughness. The importance of bottom shear stress estimates

for sediment transport modeling can be seen, for example, in Hanes and Bowen

(1985) and Trowbridge and Young (1989).

Grant and Madsen (1986) reviewed the present understanding of the bot-
tom boundary layer for wind-driven flow over the continental shelf. In their review,
they discussed separately the wave bottom boundary layer and the wave-current
bottom boundary layer. For purely sinusoidal flow, Jonsson (1966) related the
maximum horizontal fluid velocity outside the bottom boundary layer to the max-
imum bottom shear stress through a semi-empirical wave friction factor. In his
formulation, he neglected the phase shift between the shear stress and the veloc-
ity outside the boundary layer. Kamphius (1975) determined an empirical wave
friction factor diagram with a number of tests measuring the bottom shear stress
directly in an oscillating water tunnel. Trowbridge and Madsen (1984a) used a

time-dependent eddy viscosity to model the wave friction factor, and their results



agreed well with the measurements of Jonsson and Carlsen (1976). Trowbridge
and Madsen (1984b) showed the importance of a time-varying eddy viscosity for
time-averaged second-order phenomena such as mass transport. Recently, Mad-
sen (1994) developed a spectral model for combined wave and current flows in the

bottom boundary layer.

Laboratory measurements of the near bottom velocities have been made
for several flow conditions. Jonsson and Carlsen (1976) measured the near bottom
velocity in an oscillating water tunnel using a micro-propeller. The bottom shear
stress was estimated by a logarithmic fit of the velocities measured in the bottom
boundary layer. The bottom roughness, wave friction factor and boundary layer
thickness were also estimated. Bakker and van Doorn (1978) measured the near
bottom velocity using laser-Doppler velocimetry in a wave flume with a current
superimposed. Roughness elements were added to obtain a turbulent boundary
layer at the bottom. Sleath (1987) measured the near bottom velocities in an
oscillating water tunnel for several rough bed conditions. The friction factor was
estimated by integration of the velocity deficit in the bottom boundary layer. The
bottom roughness was estimated from the grain size. Jensen et al. (1989) measured
the turbulent boundary layer flow in an oscillatory water tunnel for smooth and
rough bottoms at large Reynolds numbers. In the smooth bed case, the bottom
shear stress was measured directly using a flush mounted hot film probe. For the
rough bed cases, the bottom shear stress was estimated by a logarithmic fit of the
bottom velocities. Klopman (1994) made detailed measurements of the velocity
profiles under combined wave-current motion. Simons et al. (1992) measured the
bottom shear stress directly for the case of waves and currents crossing at right
angles. Simons et al. (1994) made similar measurements using random waves.
In all cases of the works cited above, the waves were non-breaking. Diegaard et

al. (1992) presented measurements of the temporal variation of the bottom shear



stress measured directly by a hot film probe on a smooth bed under non-breaking

and breaking waves.

1.2 Outline of Dissertation

The dissertation is organized as follows. Chapter 2 discusses the formula-
tion of the two-dimensional, time-dependent numerical model for predicting the
wave transformation and velocity profiles in the surf zone. The formulation in-
cludes an analysis of the turbulent kinetic energy transport equation and the im-
plementation of a simple turbulence model based on the mixing length concept.
Development of the numerical solution of the two-dimensional model is beyond

the scope of this dissertation.

Chapter 3 discusses the experimental setup and procedures. The design of
the experiment includes a bottom roughness provided by natural sand grains to
increase the thickness of the bottom boundary layer. For the first time, velocity
measurements are made at a fraction of the grain height above the bottom so
that estimates can be made of the temporal variation of the bottom shear stress
and bottom roughness under breaking waves. Additional velocity measurements
are made in the bottom boundary layer at locations offset by a small horizontal
distance from each measuring line to check the variability of the measurements
due to irregularities of the bottom and to check the reliability of the method to
estimate the bottom shear stress and bottom roughness. Only one set of spilling
breakers are used for this experiment; and although the importance of plunging
versus spilling breakers has been noted in the literature, it is not of primary
interest here. The extent of a vertical measuring line is from inside the bottom
boundary layer to just above trough level. Measurements from trough level to

wave crest with the aerated roller region are not possible at present.



Chapter 4 discusses the reduction of the data. Regular waves are used so
that the turbulent signal can be extracted by phase-averaging. The usefulness
of other methods such as frequency filters, running averages, correlation meth-
ods, and methods based on the frozen turbulence assumption are inferred from
the literature. A rigorous comparison of these methods would require data sets
which include several types of wave breaking, monochromatic and random waves
with normal incidence, and multi-directional waves. This chapter presents the
temporal variation of the phase-averaged free surface elevations and statistics and
the phase-averaged velocities and turbulent stresses. The higher order statistics
of skewness and kurtosis are discussed briefly in connection with a conditional

sampling technique to analyze large eddies.

Chapter 5 discusses the bottom boundary layer analysis and the estimates
of the bottom shear stress and bottom roughness. The logarithmic profile is shown
to exist for the bottom boundary layers seaward of breaking and inside the surf
zone. The bottom shear velocity and bottom roughness are estimated using a log-
arithmic fit of the measuring points in the bottom portion of the boundary layer.
The estimates of the bottom shear velocity are used to evaluate the extension of
simple theories developed for non-breaking waves in predicting the temporal and
spatial variations of the bottom shear stress and bottom roughness under breaking

waves.

Chapter 6 discusses the wave generated turbulence in relation to the as-
sumption of a local equilibrium of turbulence for wave breaking. This assumption
of the local production of turbulence being equal to the local dissipation is often
applied to simple surf zone models. The relations between the eddy viscosity, the
turbulence scales, the turbulent kinematic energy, the shear stress, and the ver-

tical gradient of the horizontal velocity are discussed. Two empirical coefficients
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are introduced, and the temporal and spatial variations of these coefficients are
determined. The validity of the local equilibrium assumption is evaluated using

the calibrated coeflicients for the present data.

In Chapter 7, the governing equations of Chapter 2 are further simplified
by integrating over depth (Kobayashi et al. 1987) to yield a one-dimensional, time-
dependent model for which a numerical solution has been developed (Kobayashi
and Wurjanto 1992; Kobayashi and Poff 1994). Comparisons are made between
the data and the numerical model, and an evaluation is made of the model’s
sensitivity to three input specifications. The three input specifications of interest
are the empirical friction factor, the location of the seaward boundary of the
model, and the specification of the input time series at the seaward boundary.
The ability of the model to predict the measured velocity profile is discussed. The
vertical velocity profile estimated using the continuity equation together with the

computed depth-averaged velocity is compared to the data. The limitations of the
numerical model in predicting the temporal variation of the bottom shear stress

is discussed.

Chapter 8 summarizes the dissertation and discusses the applicability of
the results. The chapter concludes with suggestions on further extensions of this

work.

The results of Chapter 6 appear in Cox et al. (1994b), and the results of
Chapter 5 and Chapter 7 appear in Cox et al. (1994c).



Chapter 2

VERTICALLY TWO-DIMENSIONAL MODEL IN
SHALLOW WATER

Numerical modeling of the fluid flow in the nearshore region is complicated
by the turbulence associated with wave breaking. Simulations by direct solution
of the Navier-Stokes equations have been made for breaking waves in two dimen-
sions (e.g., Sakai et al. 1986; Petit et al. 1994), but these models are limited by
computational intensity to only a few waves. Schéffer et al. (1992) introduced the
concept of surface rollers to a two-dimensional Boussinesq model and obtained
reasonable agreement in predicting the free surface elevations in the surf zone.
However, their semi-empirical model is based on potential flow theory and will
not predict the turbulent flow field outside the roller region. Recently, Wei et al.
(1995) adopted an eddy viscosity concept to a time-dependent Boussinesq model
and found reasonable agreement for the free surface elevations of random waves
measured in a laboratory flume. Alternatively, a numerical model based on the

two-dimensional continuity and Reynolds equations is proposed in the following.

2.1 Continuity and Reynolds Equations

A two-dimensional, time-dependent model is formulated here to solve the
free surface elevations and velocity profiles in the surf zone. The two dimen-

sions are in the cross-shore plane. The two-dimensional continuity and Reynolds

11
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equations are given as (e.g., Tennekes and Lumley 1972)

auj-

a; = 0 (2.1)
Bu,- 8'&,‘ . ! 3;‘? _ 1 671-3-
ot b dz;  p Oz ~ 9o + p O (2:2)

where use is made of the repeated indices, ¢ = 1,2; { 1s time; z; is the onshore
directed horizontal coordinate; z, is the vertical coordinate, positive upward with
x, = 0 at the still water level (SWL); wu; is the horizontal velocity; u, is the
vertical velocity; p is the fluid density, assumed constant; p is the pressure; g is
the gravitational acceleration; é;; is the Kronecker delta; and 7;; is the sum of
turbulent and viscous stresses. The viscous stresses are neglected in the following.
Reynolds averaging has been used for the turbulent stresses in Eq 2.2, and it is
noted that that the time scale of the turbulent motion in the surf zone may be
of the same order as the wave motion. The lack of a clear cut-off is discussed in
Chapter 4 with respect to the method used to separate the turbulence from the

wave motion.

The turbulent shear stresses, 7;;, may be expressed as (e.g., Rodi 1980)
Ou; . Ou; 2 _
4 = — 4+ = | — kb 2.3
v (@) e s
in which vy is the turbulent eddy viscosity; and k is the turbulent kinetic energy
per unit mass given by

1 ‘
k= —5(1’11 + 722 + T33) (2.4)
For an idealized two-dimensional turbulent flow, dus/dx3 = 0 so that Eq 2.3 yields
2
T3=T31=0; T3=732=0; 733 = —g."k (2.5)

where z3 is the horizontal coordinate normal to z;. Eq 2.4 reduces to

3
= _E(TH + 732). (2.6)
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2.2 Turbulence Model

The turbulence model is introduced here, and details are presented in Chap-
ter 6. The transport equation of the turbulent kinetic energy, k, is normally

written as (e.g., ASCE 1988)

ok _8k B Ou;  Ou;\ Ou; 0 (v, Ok
o T ¥pg = (axj * 3&:;) 9z; | Oa; (a_k' a_xj) -

L 3/2
c;':f"‘( )e (2.7)

where o} is an empirical constant associated with the diffusion of k. The turbulent

eddy viscosity, v;, may be expressed as
v =Cy*"tVk (2.8)

in which £ is the turbulent mixing length, and Cy is an empirical coefficient.
Typical values of Cy and oy for steady turbulent flow are Cy =~ 0.08 and oy =2 1.0
(Launder and Spalding 1972). The value of Cy is determined in Chapter 6 for
the unsteady motion of non-breaking and breaking waves under the assumption

of the approximate local equilibrium of turbulence.

The mixing length ¢ in Eq 2.8 may be specified simply as

k(z2 —z) for zp < (?gh/m + zb)
=1 (2.9)
Cih for zo > (Eh/n + z;,)

where k is the Karmén constant (x =~ 0.4); z is the bottom elevation; h is
the instantaneous water depth; and C¢ is an empirical coefficient related to the
eddy size. C, is written with an overbar to show that it is time-invariant and to
differentiate it from C; used later. The coefficient for the unsteady flow, C, and

the time-averaged value, Cy, will also be determined in Chapter 6.
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To simplify Eqs 2.1 and 2.2 with Eqs 2.3, 2.8, 2.7, and 2.9, the dimensionless
variables are introduced following Kobayashi and Wurjanto (1992):

P T J Uq ’ Ug

e ts o = u (2.10)

T =g BT g M= TraE =g

’ P ' y ' k ' 14 T/gH, .
sl s by Wi i I s sy e AL, TN
P=gH, T BT, gH, o’ ajve ° - H, Wil

where the primes indicate dimension!ess quantities, 7; and H, are the characteris-
tic wave period and height of the shallow water waves, and ¢ is the ratio between
the horizontal and vertical length scales. The order of magnitude of k, £, and v,
is estimated such that the normalized variables k', ¢, and v, are of O(1) or less

as shown in Chapter 6.

In the following, the standard notations of z; = z, z; = 2, u; = u, and
uy = w are used. Substitution of Eqs 2.10 and 2.11 into Eqs 2.1 and 2.2 yields the
normalized continuity equation and the momentum equations which are simplified
assuming o2 > 1. The exact continuity equation is

ou'  ouw'
— 4+ —=0. 2.12
dz’ h 0z (1)

The approximate horizontal momentum equation is expressed as .

du’ ou’ ,0u’ a f ., . 2 or'
5;“}1&%4‘105;:—@(?4'?0__)"'5; (2.13)
with
e v;—g-:—; I ‘ (2.14)
and
v = CMe K (2.15)

where 7’ is the normalized shear stress. The approximate vertical momentum

equation is given as
a y DR
- ! s W i 2.16
0 .6z’(p+z+3a) (%.16)
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The normalized free surface is located at z’ = ' where ' = n/H,, and the

kinematic free surface boundary condition is given as

on' on’'
'(-9%-1—112’5% —w = at 2’ =79 (2.17)

The conditions of zero normal and tangential stresses at the free surface for o >>

1 can be shown to be

2K
P+ T = 0 &&=y (2.18)
!
= v:g%; = § ste's=y. (2.19)
The kinematic bottom boundary condition is specified as
6 !
= u'-a-z% at 2 =2, (2.20)

and the no-slip bottom boundary condition is specified as
w=0 atZ =z (2.21)
It is noted that use of Eq 2.21 reduces Eq 2.20 to

w =0 at2 =z, (2.22)

Integration of Eq 2.16 with respect to 2’ and applying the boundary con-

dition Eq 2.18 yields the pressure p’ in the form

/
s Prdiittey (2:23)
3o
Substituting Eq 2.23 into Eq 2.13 simplifies the &’-momentum equation to
ou'  ,0u ,o0u Oy ] or'
dz' = 07

(2.24)

sttt T e

For the turbulent kinetic energy transport equation, substituting Eqs 2.10
and 2.11 into Eq 2.7 under the assumption of o >> 1 gives

N AN A N X AN
1 sl e a8 o - bt ) Rt ol _ S 2'25
e (615’ gy T az’) "7 T oz (crk az’) @ g (22)
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where the first and third terms on the right-hand-side are the production and dis-
sipation terms, respectively. Eq 2.25 indicates that the production and dissipation

of k' are dominant under the assumption of ¢? > 1.

Considering the empirical nature of Eq 2.25 with the coeflicients o, and
Cy as well as the uncertainty of the free surface boundary condition of &’ even for
steady turbulent flow (Rodi 1980), Eq 2.25 may be simplified further by neglecting
the terms of the order 6™, and the resulting equation is expressed in dimensional

form as
TO0u ~ cjf"*‘_l”ﬂi
p 0z L
which implies the local equilibrium of turbulence. Substitution of 7/p = 1,du/0z

and Eq 2.8 into Eq 2.26 yields

(2.26)

k= (p\/C_d) (2.27)
and
ou
Vg = £ 5—— (2.28)

In Chapter 6, Eq 2.27 is used with these assumptions to determine the
appropriate value of Cy. Eq 2.28 corresponds to the standard mixing length
model (ASCE 1988) and is used with Eq 2.8 to determine Cy and C; in Eq 2.9.
The degree of the local equilibrium of turbulence is assessed using Eq 2.26 with
the calibrated coefficients Cy and C;. The one-dimensional model derived by
integrating Eqs 2.12 and 2.24 from the bottom to the free surface is summarized
in Chapter 7, and comparisons are made with the data. The following chapter

discusses the experimental setup and procedure.



Chapter 3

LABORATORY EXPERIMENT

Previous experimental studies of the turbulence due to wave breaking (e.g.,
Stive 1980; Okayasu et al. 1986; Nadaoka et al. 1989) and of the bottom boundary
layer under oscillatory flow conditions (e.g., Jonsson and Carlsen 1976; Jensen el
al. 1989) were cited in Chapter 1. It was also mentioned that with the exception
of Deigaard et al. (1992), there are no measurements of the bottom shear stress
under breaking waves. In this chapter, the experimental setup and procedure
to measure the detailed structure of the bottom boundary layer under breaking

waves is presented. This experiment is also described in Okayasu and Cox (1995).

3.1 Experimental Apparatus

This section is divided into subsections to discuss separately the experi-
mental apparatus, including the wave flume, the physical bottom roughness, the

wave gages, the laser-Doppler velocimeter, and the data acquisition system.

3.1.1 Wave Flume

The experiment was conducted in August and September, 1993, in the Pre-
cision Wave Tank located in the Ocean Engineering Laboratory at the University

of Delaware. The flume was 33 m long, 0.6 m wide and 1.5 m deep. The side walls

17
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were glass for the length of the flume except near the wavemaker. The horizontal
bottom section and the side walls near the wavemaker were constructed of ma-
rine plywood. The impermeable 1:35 bottom slope was constructed of Corian™,
a smooth material used commercially for kitchen countertops. A hydraulically
actuated piston wavemaker with a 1 m stroke was located at the far end of the
flume and was controlled by an IBM 286 PC. Several movable instrument car-
riages spanned the top of the flume on which wave gages and the laser-Doppler
velocimeter lens were mounted. The flume was filled with tap water, and the
water depth in the constant depth section was 0.4 m. The water temperature was

23" C.

3.1.2 Bottom Roughness

A physical bottom roughness was added to the impermeable 1:35 slope to
increase the boundary layer roughness and boundary layer thickness. The bottom
roughness was prepared using natural sand from Rehobeth Beach, Delaware. The
sand was washed to remove any dirt and organic material, dried, and then sieved
in the diameter range 0.71-1.41 mm. The sieved sands were remixed such that
the median grain diameter was dsop = 1.0 mm. A thin layer of sand was glued
onto Plexiglas™ sheets using epoxy resin. After drying, loose or poorly adhered
grains were removed with a wire brush. Each sheet was then inspected for large
irregularities in the bottom roughness. The 1.2 m long by 0.6 m wide Plexiglas
sheets were mounted over the entire Corian slope using a double-sided transfer
tape, and the gaps between adjoining sheets were less than the median grain

diameter.

Figure 3.1 is a photograph of the bottom roughness taken at a low magni-

fication (x6) and shows the typical irregularities in the distribution of the sand
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Figure 3.1: Photograph of Bottom Roughness at Low Magnification (courtesy
of William Cox).

grains on the Plexiglas. The thickness of the physical roughness above the Plexi-
glas is essentially the height of one sand grain with median diameter dso = 1.0 mm.
Figure 3.2 is a photograph of the bottom roughness taken with a scanning electron
microscope at a high magnification (x20) and shows the variation in the shapes

of the individual grains.

3.1.3 Wave Gages

Six capacitance type wave gages were used simultaneously to measure the
free surface elevations of both non-breaking and breaking waves. It is noted that,
in principle, capacitance wave gages cannot be used to measure the free surface
elevation of a turbulent bore due to aeration (Ting and Kirby 1994). However,
the air content of the most densely entrained laboratory wave is approximately 2

to 4% (Stive 1980). For the spilling breakers in this experiment, the air content



Figure 3.2: Photograph of Bottom Roughness at High Magnification (courtesy
of William Cox).
was likely to be less. Therefore, the estimates of the free surface fluctuations
for the breaking waves measured by the capacitance wave gages are sufficiently
accurate for the requirements of this experiment. The gages were calibrated at the
beginning and end of each day, and the gain in the calibration curves was linear
for all gages with little offset due to voltage drift. The phase-averaged free surface
elevation and standard deviation envelope presented in Chapter 4 will show that

the repeatability of the wave form was excellent seaward of breaking.

3.1.4 Laser-Doppler Velocimeter

The velocities were measured in the cross-shore, z-z plane using laser-
Doppler velocimetry (LDV) which is a well established technique for fluid mea-
surements (e.g., Adrian 1983). A Dantec fiber-optic LDV was powered by a Lexel
Model 95 argon-ion laser. The LDV was operated in backscatter mode with the
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laser powered at 0.8 W, drawing a current of 18.5 A. A pair of Dantec Type 57N10
and Type 57N25 burst spectrum analyzers (BSAs) with Type 55N12 frequency
shifters were used for processing the backscatter signal. This system was used
to reduce the noise which is typical from measuring near a solid boundary. The
operating mode was set such that when a particle passed through the measuring
volume, both the arrival time and the velocities were recorded. Since the par-
ticle arrival time is irregular, the sampling intervals of the velocity time series
were irregular. The conversion to a time series with a regular sampling interval is

discussed in Section 3.3.3.

3.1.5 Data Acquisition

Two data acquisition systems were used with the synchronization provided
by an external trigger. The wave gage sighals were recorded on an IBM 386
PC with a MetraByte DAS-16F data acquisition board which was used with a
sampling rate of 100 Hz. The velocity signals from the BSAs were recorded on a
Zenith 486 PC running the BURSTware software (Dantec Electronik 1991). The
ef'felctive sampling rate ranged between 1,400 and 1,700 samples per second. The
data files were collected on the hard disk of the 486 PC and were later transferred
by FTP/PC software to a Unix-based workstation for postprocessing.
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3.2 Experimental Setup

This section discusses the experimental setup, including the cross-shore
placement of the measuring lines, the measuring point locations for a given mea-

suring line, and the positioning of the laser-Doppler optics.

- 3.2.1 Measuring Line Locations

Figure 3.3 shows a schematic setup of the experiment with the location of
the six wave gages and the six measuring lines. Wave gages 1 to 3 were located
near the wavemaker with a spacing of 0.7 m between gages 1 and 2 and a spacing
of 0.3 m between gages 2 and 3. Wave gage 1 was about one wavelength from the
wavemaker. Wave gage 6 was located in the surf zone at & = 8.4 m, where z is
the horizontal coordinate shown in Figure 3.3. Gages 1 to 3 were used collectively
for synchronization and, in a separate study, to analyze the reflection and long
wave components in the flume. Wave gage 4 was located at measuring line 2,
which was the start of wave breaking defined as the onset of aeration in the tip of
the wave crest. Gages 4 and 6 were used to check the variability of breaking and
broken waves in the flume. Wave gage 5 was located above the measuring volume
of the laser-Doppler which is indicated in Figure 3.3 by the circle and cross-hair.
When the measuring volume was at measuring line 2, wave gage 4 was moved to

measuring line 1.

The two cross-shore components of velocity were measured along six verti-
cal measuring lines which are denoted L1, L2, ..., L6 for brevity. The horizontal
spacing of the measuring lines was on the order of 1 m, and their cross-shore posi-
tion can be characterized as follows: L1 is seaward of breaking; L2 is at the break

point, defined as the onset of aeration in the tip of the wave crest; L3 is in the
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Figure 3.3: Experimental Setup.

transition region where the wave form goes from organized motion to a turbulent .
bore; and L4, L5, and L6 are in the inner surf zone where the saw-toothed wave
shape is a well-developed turbulent bore. The horizontal locations and still water
depths of the measuring lines are listed in Table 3.1 where = is the horizontal
coordinate, positive onshore with z = 0 m at the first measuring line; and d is the
depth below the still water level. The distance from L1 to the still water shore

line is 9.8 m.

For each measuring line, there were approximately twenty measuring points
between the rough bottom and the wave trough level. The vertical spacing of
the measuring points was on the order of 1 cm except near the pottom where
measurements were made on the order of a fraction of the grain he.ight. For each
of the measuring lines L1 to L5, eight additional measuring points were taken near
the bottom. These points were offset 2 cm in the z-direction to check the estimates
of the location of the theoretical bottom discussed in Chapter 5. The coordinates
of the measuring points are given in Table 3.2 where the vertical coordinate from

the bottom, zm, is defined in Section 3.3.2 and discussed in detail in Chapter 5.
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Table 3.1: Horizontal Locations and Still Water Depths for L1 to L6.

Line | =z d
No. | (em) (cm)
L1 0 28.00
L2 | 240 21.14
L3 | 360 17.71
L4 | 480 14.29
L5 | 600 10.86
L6 | 720 7.43
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Table 3.2: Measuring Point Coordinates with Respect to z, for L1 to L6.

T (C10)
L1 L2 L3 L4 L5 L6
[0.0 m] | [2.4 m] | [3.6 m] | [4.8 m] | [6.0 m] | [7.2 m]

0.13 0.13 0.13 0.13 0.13 |0.13
0.15 0.15 0.15 0.15 0.15 |0.15
0.17 0.17 0.17 0.17 0.17 | 0.17
0.20 0.20 0.20 0.20 0.20 | 0.20
0.25 0.25 0.25 0.25 0.25 |0.25
0.30 0.30 0.30 0.30 0.30 | 0.30
0.40 0.40 0.40 0.40 0.40 | 0.40
0.60 0.60 0.60 0.60 0.60 | 0.60
9 0.80 0.80 0.80 0.80 0.80 | 0.80
10 | 1.10 1.10 1.10 1.10 | 1.10 | 1.10
11| 1.60 1.60 1.60 1.60 1.60 1.60 ‘
12 | 2.10 2.10 2.10 2.10 2.10 | 2.10
13| 3.10 3.10 3.10 3.10 3.10 | 3.10
14| 4.10 4.10 4.10 4.10 4.10 | 4.10
15| 6.10 6.10 6.10 6.10 5.10 |5.10
16 | 8.10 8.10 8.10 8.10 6.10 | 6.10
17 | 12.10 | 12.10 |10.10 | 10.10 7.10 | 17.10
18 | 16.10 16.10 | 12.10 | 12.10 8.10 |8.10
19 | 20.10 | 18.10 14.10 | 13.10 9.10 —
20 | 24.10 |20.10 |16.10 | 14.10 | 10.10 e
21 [26.10 [22.10 |17.10 |15.10 |11.10 —
22 | 28.10 |24.10 |18.10 — 12.10 —
23| 0.13- | 0.13~ | 013~ | 0.137 | 0.137 —_
24| 015~ | 015~ | 015~ | 0.15" | 0.157 ==
PR 01F | 0dT | BXr | 0.1 | 001 —
961 -0:20 020" 1020~ 020|020 —
27| 0.3+ | 0.13t | 0.25- | 0.13* | 0.13* =
28 | 0.15* | 0.15% | 0.30~ | 0.15% | 0.15F —
29 | 0.17+ | 0.17t | 0.60- | 0.17* | 0.17F o
30 | 0.20* | 0.20% | 1.00- | 0.20* | 0.20* —

00 —1 S| = OB

Note: Horizontal measuring line location, z,,, given in brackets. For offset mea-
suring line values with () superscript, 25, = z;» —2 cm, and with (+) superscript,
2t =2m4+2cm.



26

3.2.2 Positioning of Laser-Doppler Optics

The lens of the laser-Doppler velocimeter was rotated in the z-z and y-z
planes so that the measuring volume could be positioned just above the bottom
roughness. The lens was rotated 45° in the z-z plane as shown in Figure 3.4.
This figure shows the velocity vector measured by the shifted and unshifted green
beams, a;, and the blue beams, a;. The measured instantaneous horizontal and

vertical velocities, u,, and w,,, are given by

U = % (az + a1) (3.1)
1
w,, = E (az — a;) (3.2)

Estimating the velocity based on this rotated coordinate system required that the
ay and ay velocity time series have the same sampling interval. Converting from
time series with irregularly sampled data to time series with a constant sampling

interval is discussed in Section 3.3.3.

In measuring at a fraction of a grain height from the bottom, considerable
care was taken to avoid interference of bottom grains with the path of the laser
beams. In the experimental work of Klopman (1994), a slightly curved false bot-
tom was installed in the flume so that the middle portion of the bottom roughness
was approximately 2 mm higher than the sides. For the present experiment, the
sheets of the bottom roughness were mounted flat on the existing impermeable
slope. To avoid interference with the path of the laser, the lens had to be rotated
in the y-z plane as shown in Figure 3.5. The angle of rotation was ¢ ~ 3° where
cos 3° = 0.9986. No correction was made for the rotation and a systematic error

of less that 1% was introduced.
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Figure 3.4: Lens Rotation in z-z Plane.
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Figure 3.5: Lens Rotation in y-z Plane.
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3.3 Procedure

The flow field was mapped by repositioning the measuring volume and
repeating the waves. Before starting the measurements, waves were generated
for approximately 30 minutes to eliminate transitional effects associated with the
start of the wavemaker in still water. Monochromatic waves were generated and
were characterized as spilling breakers. The wave period was 2.2 s, and the wave
height was 17.10 cm at breaking. The free surface elevations at the six gages and
the two velocity components at each measuring point were measured for 50 waves.
Measurements proceeded from the bottom of the water column to the top, and

the eight additional points near the bottom were taken at the end of the run.

3.3.1 Number of Waves

It was decided at the start of the experiment that the number of waves for
each measuring point would be N,, = 50 waves. This number was chosen based on
previous experience (Okayasu, personal communication) and is sirﬁilar to other
values in the literature for studies which used phase-averaging to separate the
turbulent and wave induced velocities for waves breaking on plane slopes. Stive
(1980) used a minimum of 20 waves, Nadaoka et al. (1989) used a minimum of
45 waves, and Okayasu et al. (1988) used 100 waves. Recently, Ting and Kirby
(1994) used 102 waves and reported that the phase-averaged statistics of mean
and variance were fairly stable for IV,, > 40. For measurements of the bottom
boundary layer in oscillating water tunnels, Jensen et al. (1988) used between 50
and 80 cycles, and Sleath (1987) used 200 cycles for a rough bottom with sand.
Sleath (1987) reported no improvement in the statistics (presumably mean and

variance) for the number of cycles greater than approximately 50.
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3.3.2 Vertical Coordinates

Two vertical coordinated are used in this dissertation. The first coordinate
is the z coordinate defined in Chapter 2 with z = 0 at the still water level. The
second coordinate is z,, defined with respect to the bottom with z,, = 0 at the top
of the Plexiglas sheet. During the experiment, the measuring volume of the laser-
Doppler was lowered to the roughness layer until a signal could not be acquired
due to partial obstruction of the laser beams. From this position, the measuring
volume was raised 0.03 cm to take the first measurement, and the subsequent
measurements were taken at 0.05, 0.07, 0.10 cm, etc. For the bottom boundary
layer analysis in Chapter 5, it was convenient to have a positive displacement
distance, and a constant value of 0.1 cm was added to the recorded elevations to
give the measuring elevations 0.13, 0.15, 0.17, 0.2, etc. as they appear in Table 3.2.
The choice of adding 0.1 cm was arbitrary aﬁd does not affect the calculations of
the bottom roughness. However, the estimation of the displacement distance is

not trivial; and this point is addressed in Chapter 5.

3.3.3 Resampling the Measured Velocities

Eqs 3.1 and 3.2 essentially required the velocity time series of a; and a3 to
be resampled with a constant sampling interval. Several methods were considered

and are discussed in the following.

The first method considered is that used, for example, by the BURSTware
software (Dantec Electronik 1991). The resampled velocity is simply the velocity
corresponding to the measured velocity value immediately preceding the interval.
This is analogous to using a frequency tracker. This method, however, does not

use all of the measured values.
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A second method is to fit a cubic spline through the data and compute the
resampled velocity from the spline function. This method was considered since
all the measured points would be used to compute the spline function. There are
several cubic spline algorithms available: for example, the set of FORTRAN sub-
routines of the IMSL libraries (Visual Numerics 1991). Several IMSL subroutines
were tested including CSIEZ, the basic cubic spline interpolant using the “not-
a-knot” criterion; BSLSQ, combining a least-squares fit using splines with fixed
knots; and BSVLS, combining a least-squares fit using splines with free knots.
Both BSLSQ and BSVLS were tested with cubic and higher order splines. The
idea for using a least-squares fit with splines is that it would weight heavier those
intervals for which the number of measured velocities was greater. However, none
of the cubic spline subroutines were reliable for the following reason. If a strict tol-
erance were set for the subroutine, the spline function would return an unrealistic
_ spiked signal as it tried to fit the curve through densely sampled data. When the
subroutine tolerance was set loose enough to avoid these spikes, then the spline
function did not represent the higher frequency fluctuations in the measured sig-
nal, that is, the spline function appeared to smooth the data. As a result, the

spline methods were abandoned in favor of the next method.

The resampling method adopted here is “bin-averaging.” For this method,
the time axis is divided into bins, and the resampled velocity is the average of all
the measured velocities in that bin. If there are no measured data in that bin,
the interval is considered to have a “signal dropout”. This is analogous to the
signal dropouts for frequency trackers. The choice of bin width is subjective, so
several bin widths were used to check the sensitivity. One velocity time series was
taken from a measuring point below trough level at L4 in the inner surf zone.
The effective sampling of this time series was approximately 1,500 Hz. This time

series was resampled four times with the sampling rates of 200 Hz, 100 Hz, 50 Hz
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and 20 Hz. The spectra were computed for each resampled time series. Almost
no difference could be detected in the energy levels below 10 Hz for the spectra
corresponding to the 200 Hz, 100 Hz and 50 Hz sampling rates. The sampling
rate of 100 Hz was selected since it corresponded to the sampling rate of the wave

gage data and would facilitate the data analysis.

The free surface elevations and velocity time series were synchronized to
the first zero-upcrossing of wave gage 1. The records were truncated to include 50
waves. The following chapter discusses the phase-averaging procedure to separate

the turbulent and wave motions.
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Chapter 4

PHASE-AVERAGED DATA

The difficulty in separating the turbulent and wave motions was noted
in Chapter 1. The methods available to extract the turbulent signal include
those based on Taylor’s hypothesis of frozen turbulence (e.g., George et al. 1994),
correlation with the free surface (e.g., Thornton 1979), frequency filters (e.g.,
Nadaoka and Kondoh 1982), moving averages (e.g., Battjes and Sakai 1981), and
‘phase-averaging (e.g., Stive 1980). The phase-averaging method is adopted for

this data set, and the method is explained in detail in this chapter.

This section is organized as follows. Section 4.1 presents the statistical
moments of mean, variance, skewness and kurtosis, and other definitions. Defini-
tions of the free surface and velocity statistics are presented separately since the
velocity records contain signal dropouts which are not included in the calculations.
Section 4.2 presents the phase-averaged free surface elevations and statistics. Sec-
tion 4.3 presents the fluid velocities. Section 4.4 presents the turbulent stresses
and dropout rates. Section 4.5 presents a comparison of the Froude-scaled, time-
averaged horizontal turbulent intensity for the present data with data from the
literature. Section 4.6 presents the skewness and kurtosis in connection with a

conditional sampling technique for large eddies.
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4.1 Statistical Moments

From Chapter 3, there are three time series of interest: Nm(z,t), the mea-
sured free surface elevation at a given z sampled at a rate of At = 0.01 S;
Um(,z,t), the measured horizontal velocity at a given z and 2 averaged over
the interval of At = 0.01 s; and wy,(z, 2,t), the measured vertical velocity at a
given z and z averaged over the interval of At = 0.01 s. In the following, time is

indicated by the discrete time level, ¢;,, as
tin=tij+(n—=1)T for n=1,2,...,N, (4.1)

with

ti=(—1)At for j=1,2,...,J (4.2)
where T' = 2.2 s is the wave period, N,, = 50 is the humber of waves, At = 0.01 s
is the sampling interval, and J = T'/At = 220 is the number of data points or
phases per wave. The phase-averaged free surface elevation is indicated by the

subscript @ and is given as

I :
Na(Z,t) = =— Y fm(z,tn) for j=1,2,...,J. (4.3)
Nw n=1

The variance of the free surface elevation, afl,, is given as

1
Ug(m,tj) =

Ny
N 1 > (@, tjn) = na(2,t5)] for j=1,2,...,J (4.4)
w n=1

and its square root, o, is the standard deviation. It is noted that (Ny — 1) is

used for an unbiased estimate of the variance (e.g., Press et al. 1989).

The signal dropouts as defined in Chapter 3 are excluded in the phase-
averaging of the measured horizontal and vertical velocities. The dropout rate,
Rn(z,z,1;), expressed as a percent, is given as

N'(m:z:ti)

o) = 1~ 22280 15
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where N;(z, z,t;) is the number of data points of u,, and w,, excluding the signal
dropout at a given phase and at a given (z,z) location. The criterion of 5 <
N; < 50 at a given phase, t¢;, was adopted. If there were fewer than 5 out of 50
velocity measurements at a given phase, the phase-averaged velocity was written
as zero. For the data presented herein, the condition N; < 5 occurred only after
the passing of the wave crest when the measuring volume was out of the water.
These zero recordings are included in the time averaging of quantities related to

measured velocities for which the z-elevations were above trough level as explained

later.
The phase-averaged horizontal and vertical velocities, u, and w,, are given
as
I &
el 2,15) Zum i 8skin) for §=1,2500 9 (4.6)
..'.' n=l1
1 &
Wa(,2,85) = — Y Wm(2,2,5n) for j=1,2,...,J. (4.7)
NJ n=1

The horizontal and vertical velocity variances, o2 and o2, are given as

N

o2(z,z,t;) = 1 z [ua(z, 2, t50) — ua(z,z,t;)]> for j=1,2,...,J (4.8)
Nj s n=1

ol (z,2,1;) (2,2, tin) — wa(2,2,8;)) for j=1,2,...,J. (49)

The turbulent normal stresses may be assumed to be equal to —poZ and —po2,
in the horizontal and vertical directions, where p is the fluid density. The phase-
averaged covariance of the measured horizontal and vertical velocities, oy, is

given as

CualZ2yti) 1 z::l [um (2, 2, tin) — wa(2, 2, 15)] [wm(z, 2, tin) — wa(w, 2,1;)]

for 3= 1,200 (4.10)
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The turbulent shear stress may be assumed to be equal to —po,,. The correlation

coefficient, vy, is given as

Tl @, 8 .
uw z,1;) = f =1,4,...,4dJ. i
Yowlz; 2, 4;) Y ey or: f= 1,2 J (4.11)

The correlation coefficient is dimensionless and in the range —1 < 7, < 1 where

Yuw = 0 indicates no correlation between u,, and w,,.

Additionally, the following symbols and notation are used for the phase-
averaged quantities j = 1,2,...,J, that is, in the range 0 < ¢t; < T'. An overbar
indicates the mean or time average over one wave period of a phase-averaged

quantity. For example, the wave setup or setdown, 7, is given

— 1
() = = ) Na(, ;). (4.12)
J i=1 ;
In computing the time-averages for the phase-averaged velocities, the zero record-
ings for those z-elevations for which the measuring volume was exposed to air
above the wave trough level are included in the time-averaged quantities. It is

noted that the signal dropouts due to air entrainment or the irregular arrival time

of the seeding particles are excluded from the phase-averaging.

The subscripts min and maz indicate the minimum and maximum values
with respect to ; of a phase-averaged quantity. For example, the trough and crest

elevations, [a]min and [9g]mas, are given as

[nﬂ(m)]m:’n = min ["?B(xa t.f) [ p=12 .0 ‘]] (413)

() as = mmnxngloity) [ =120 (4.14)

For completeness, the higher order statistical moments are presented. The

phase-averaged skewness of the horizontal and vertical velocity, {, and (,, are
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given as (Press et al. 1989)
N; 1 ) 18
o) = 3 [t (st
Nj n=1 Tu
for =1,2,...,J (4.15)
Ni r 3
) . 1 J wm((fﬂ,Z,tjn) '—wa((i:!z:tj)
Cw(m’z, tj) B NJ n=1 L Ow

for j=1,2,+:+5d: [4.16)

The phase-averaged kurtosis of the horizontal and vertical velocity, £, and &y,
are given as

sl = {%% [um((a:,z,tjn):ua((m,z,tj)r} -3

n=1 g

for 3= 1,200  (417)
N; TG T y 4
ku(z,2,t) = {"leZ[wm((x’z’im) wn((z’z't’)] }—3
j

n=1 Ow
for 1= 1,20, 1(4.18)
where the —3 term in Eqs 4.17 and 4.18 gives £, = 0 and &, = 0 for a normal
distribution (Press et al. 1989). It is emphasized that these higher moments are
less stable statistics, particularly for the small number of 5 < N; < 50; and their

results should be interpreted with caution.

For all figures which show the temporal variation over the wave period,
the phases are aligned with the zero-upcrossing of the free surface elevation at
t = (T/4) = 0.55 s to facilitate comparisons of a given phase among the six

measuring lines.

4.2 Free Surface Elevations

Figure 4.1 shows the temporal variation of the phase-averaged free surface

elevations, 1., and the standard deviation envelope, 7, & 0y, for L1 to L6. For
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L1, seaward of breaking, the standard deviation envelope is small, indicating re-
peatability of the wave form. At this location, the wave shape has a sharpened
peak and flattened trough. For L2, the wave shape pitches forward, and there is
a slight variation in the standard deviation envelope due to irregularities of wave
breaking. For this spilling breaker, breaking is defined as the onset of aeration in
the tip of the wave crest. For L3, the wave is in transition from organized wave
motion to a turbulent bore. Here the value of o, is largest. In the inner surf zone
for L4, L5, and L6, the wave shape is a well-developed turbulent bore. The values

of o, are largest near the front face and top of the bore.

Figure 4.2 shows the cross-shore variation of the mean water level, 7q,
the free surface clevation maximum, [fa)maz, and minimum, [7a]min, the wave
height H = [7ja)maz — [a)min, and the mean of the standard deviation, @, for
L1 to L6 where z is the horizontal distance, positive onshore. The wave height
and wave setdown increase until breaking after which the wave height decreases
and the mean water level increases after breaking as has been observed by many

researchers.

Figure 4.3 shows a detail of the cross-shore variation of free surface statis-
tics, including the maximum and minimum of the standard deviations, [o) -
and [0,]min. Both of these quantities are largest in the transition region for L3. It
is interesting to note the cross-shore variation of [0y]mes because it could be used
to better quantify the transition region of the surf zone (e.g., Nairn et al. 1990
and references therein). Table 4.1 lists the free surface statistics where d is the

depth below the still water level (SWL).
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Table 4.1: Phase-Averaged Free Surface Statistics for L1 to L6.

Line xZ d H ﬁ; [qa] min [na] max G_n [o'??]mt'ﬂ [UT.'] maxr
No. | (em) (em) (em) | (cm) (cm) (em) | (em)  (cm) (cm)

L1 0 28.00 13.22|-0.30 -3.88 9.34 | 0.10 0.05 0.22
L2 | 240 21.14 17.10 | -0.44 -3.60 13.50 | 0.14 0.06 0.98
L3 | 360 17.71 12.71 | -0.05 -2.82 9.89 | 0.41 0.19 2.06
L4 | 480 14.29 8.24| 0.20 -2.33 5.91 | 0.38 0.17 1.37
L5 | 600 10.86 7.08 | 0.75 -1.60 5.48 | 0.28 0.15 1.03
L6 | 720 7.43 5.05| 1.13 -0.82 4.23 1 0.22 0.11 0.92
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4.3 TFluid Velocities

In this section, the fluid velocities of two representative measuring lines
are shown in detail: L2 at breaking where there appears to be little effect of
turbulence on the flow and L4 in the inner surf zone where the turbulent bore is

well established.

Figure 4.4 shows the temporal variations of the phase-averaged velocities,
U, and w,, and the free surface elevation, n,, and the standard deviation envelope,
Na & 0y for L2. The horizontal velocity is fairly uniform vertically in the interior;
and there are interesting variations in the bottom boundary layer, inc.lﬁding the
overshoot in the range 0.45 < t < 0.8 s. The vertical velocity under the steep
front of the breaking wave is large and approximately the same magnitude as the
horizontal velocity at ¢ ~ 0.6 s. The same quantities shown in Figure 4.4 for L2
are shown in Figure 4.5 for L4, but the scale of the vertical axis and the velocity
vectors in these two figures are not the same. In general, the pattern of the phase-
averaged velocities looks similar before and after breaking. The presence of a

bottom boundary is also apparent in the surf zone.

Measurements were made at approximately twenty points at each measur-
ing line. To be concise in the next several figures, five representative measuring
point elevations are chosen for L2 and L4. The elevations are denoted by (a) to
(e), where point (a) is at or slightly below trough level, (b) and (c) are in the
interior, (d) is near the top of the bottom boundary layer, and (e) is inside the
bottom boundary layer. Figure 4.6 shows the (z, z) coordinates of these represen-
tative measuring points. The wave trough level and the bottom are indicated by
light solid lines. Table 4.2 lists the representative measuring point locations. The
coordinate z,, is the vertical coordinate with respect to the bottom as defined in

Chapter 3 and discussed in detail in Chapter 5.
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Figure 4.7 shows the temporal variation of the phase-averaged horizontal
velocity, u,, with the standard deviation envelope, u, *+ o,, at the five vertical
elevations for L2. The small envelope for elevations L2a to L2d shows that the
flow field is repeatable and that little turbulence is transported from the surf zone
or from the bottom boundary layer. There is an increase in o, for L2e in the
bottom boundary layer as the flow begins to decelerate at t = 0.7 s. Figure 4.8
shows the temporal variation of the phase-averaged vertical velocities, w,, with
the standard deviation envelope, w, + oy, for the five vertical elevations for L2.

The values of o, in this figure are similar to o, in Figure 4.7.

The same horizontal velocity quantities of Figure 4.7 for L2 are plotted in
Figure 4.9 for L4. There is an overall increase in o, due to wave breaking. The
value of o, is largest for L4a near trough level and decreases below the still water
level. For L4a, the curve of u, is fairly smooth over the wave period, suggesting
that phase-averaging over 50 waves may be sufficient to provide stable estimates
of the mean and variance. For L4a, the maximum of o, occurs near ¢t 2~ 0.9 s. For
L4b, the maximum of O’u. occurs slightly later near ¢ ~ 1.2 s. For L4c and L4d, o,
is fairly uniform across the wave period, suggesting that most of the turbulence
generated by wave breaking is dissipated and the remainder is distributed over the
entire period before reaching the bottom boundary layer. However, the turbulence
level at L4e inside the surf zone is larger than that at L2e, indicating the presence

of turbulence generated by wave breaking in the bottom boundary layer.

The same vertical velocity quantities of Figure 4.8 for L2 are shown in
Figure 4.10 for L4. The value of o, relative to w, is larger than that for the
horizontal velocity in Figure 4.9. The turbulent component is of the same order
of magnitude as the phase-averaged velocity. For Lde in the bottom boundary

layer, o, is small since the component of the vertical fluctuations is probably
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limited by the solid boundary.

Figure 4.11 shows the cross-shore and vertical variations of the mean, min-
imum and maximum of the phase-averaged horizontal velocity, %,, [ta)min, and
[a)maz, for L1 to L6. Trough level is indicated by a light solid line. Except in the
bottom boundary layer, [ug|min and [tg|mqz are fairly constant below the trough
level for all six measuring lines. Figure 4.12 shows the cross-shore and vertical
variations of the mean, minimum and maximum of the phase-averaged vertical
velocity, Wg, [Wa)min, and [Wa]maz, for L1 to L6. The values of [wa]min and [wa]maz
increase approximately linearly from the bottom and are smaller than [t4]min and
[a)maz near trough level. Figure 4.13 shows the detail of %, and W, from Fig-
ures 4.11 and 4.12. The mean vertical velocity, W,, is nearly zero for L1 and L2
but nonzero in the surf zone probably because of the circulation induced by the

undertow, Ug.
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Figure 4.6: Representative Measuring Point Locations for L2 and L4.

Table 4.2: Vertical Coordinates of Representative Measuring Points for L2 and
L4.

L2 at =240 cm | L4 at =480 cm
z (em)  2Zp (em) | 2 (em) 2, (cm)

-5.04 16.10 | -2.19 12.10
-13.04 8.10 | -6.19 8.10
-17.04 6.10 | -10.19 4.10
-20.04 1.10 | -13.19 1.10
-20.94 0.20 | -14.09 0.20

O Lo T
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Vertical Elevations for L2.
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4.4 'Turbulent Stresses

Figure 4.14 shows the temporal variations of the phase-averaged horizontal
velocity variance, o2, vertical velocity variance, o2, and velocity covariance, oy
for the five vertical elevations for L2. As stated in Section 4.1, the horizontal and
vertical turbulent stresses may be estimated as —po? and —po?, and the turbulent
shear stress may be estimated as —poy,,. Like Figures 4.7 and 4.8 showing u, + o,
and w, + o, Figure 4.14 shows almost no turbulence in the interior; and the

turbulence seems to be confined to the bottom boundary layer.

The same quantities of Figure 4.14 for L2 are shown in Figure 4.15 for L4.
This figure shows the downward decrease in turbulence generated by wave break-
ing. Also, the peak of the turbulence shifts downward. For L4a, the magnitude of
the horizontal variance is larger than the vertical variances over most of the wave
period except at ¢ =~ 0.6 s where they are approximately equal. Figure 4.5 showed
that the phase-averaged vertical velocity is as large as the horizontal velocity at
t ~ 0.6 just below trough level. For Ldc, o2 and o? are approximately the same
at each phase, and the turbulence seems to be more isotropic even though the
phase-average vertical velocity is much less than the horizontal velocity at this
elevation. For Lde, o2 is large than o2 since the vertical fluctuations may be

limited by the solid boundary.

Figure 4.16 shows the temporal variations of the correlation coefficient, vy,
for the five vertical elevations for L2. For L2a to L2d interpretation of these curves
is difficult because of the high noise in comparison to the low turbulence level.
In the bottom boundary layer, however, the curve for L2e shows more clearly the
variation of 7., due to the oscillatory boundary layer. Similar to Figure 4.16
for L2, Figure 4.17 shows the variation of 7, for L4. In this figure, yu, < 0

for most of the wave period of L4a, L4b, and L4c indicating a positive shear
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stress due to wave breaking. For Lde in the bottom boundary layer, .., is noisy;
but the oscillatory trend is similar to L2e. It is noted that the 95% confidence
intervals for the correlation coefficients are shown in Figures 4.16 and 4.17 and
are computed following Bendat and Piersol (1986). The 95% confidence interval

for the estimated 7, may be written

’Yﬂw(l - 26) < Yuw S 'Tuw(]- + 25), (419)

where
|’Yuw|\/ Nd

and N; is the number of degrees of freedom for the covariance calculation which

(4.20)

is related to the number of waves in the ensemble average and the dropout rate
given as
Ry
Ni=2 (Nw - -2—) (4.21)

where N,, = 50 waves and Ry is the dropout rate expressed as a percent.

Figure 4.18 shows the temporal variations of the dropout rate, Ry, for
the five vertical elevations for L2. The dropout rate is the highest when the flow
reverses and the velocities are near zero. At this point, there are fewer seeding
particles moving through the measuring volume over a fixed time, increasing the
likelihood of a dropout. In any case, the dropout rate was less than 30% even in
the most extreme case. There is no significant vertical variation in Ry except in
the bottom boundary layer where the flow is turbulent and Ry is reduced. In this
case, the turbulent fluctuations increase the likelihood of seeding particles passing
through the measuring volume even at those phases where the phase-averaged
velocities are near zero. Figure 4.19 shows the dropout rate for L4 at the five
vertical locations. The dropouts here are due to air entrainment associated with
the breaking process. In general, the dropout rate pattern follows that of the

velocity variances in Figure 4.15 with the dropout rate decreasing downward as
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well as the phase shift in the peak dropout rate. In the bottom boundary layer for
Lde, the dropout rate seems to be affected more by the flow reversal than aeration

since curves L2e and Lde are similar.

Figure 4.20 shows the cross-shore and vertical variations of the mean, min-
imum and maximum horizontal velocity variances, 02, [02]in, and [02]mas, for
L1 to L6. These values are multiplied by 0.01 cm?/s* in Figures 4.20 to 4.23 for
convenience. The largest value of [02] 4, in Figure 4.20 occurs for L4. Similarly,
Figure 4.21 shows the cross-shore and vertical variations of the mean, minimum
and maximum vertical velocity variances, 02, [02]min, and [02]maz, for L1 to L6.
In both of these figures, the region seaward of breaking appears to be affected very
little by turbulence. Figure 4.22 shows the cross-shore and vertical variations of
the time-averaged mean, minimum and maximum values of the horizontal and
vertical velocity covariance, Guw, [Cuw]min, and [uw|maz, for L1 to L6. Figure 4.23
shows the detail of the cross-shore variations of 02, 02, and @y, from the preceding
three figures. Comparison of o2 and o2, for L3 to L6 shows that they are about
the same magnitude below trough level and decay linearly downward except in
the lower portion of the water column where o2 remains approximately constant

over depth and o2 tends to zero near the bottom.

Figure 4.24 shows the cross-shore and vertical variations of the mean corre-
lation coefficient, 7.y, for L1 to L6. The values above trough level are not plotted
since 7., is undefined when the measuring volume is out of the water. For L1 and
L2, ¥uw is near zero in the upper two thirds of the measured water column and
is negative in the lower portion. It is slightly positive in the bottom boundary
layer. For L3 to L6, Juy is negative in general, except in the bottom boundary
layer where it is slightly positive. In general, the negative correlation coefficient

indicates a positive shear stress.
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Figure 4.25 shows the cross-shore and vertical variations of the mean dropout
rate, Ry for L1 to L6. For L3, the vertical variation Ry is similar to [02] ez in
Figure 4.20 and [02 )42 in Figure 4.21. For L4, the dropout rate does not increase
in proportion to the level of turbulence; and for L5 and L6, the vertical variation
is not similar at all. This is particularly true in the lower portion of the water
column. In this region, the air bubbles entrained by the initial breaking process
have surfaced, and the bubbles generated by the bore do not penetrate downward
as far. Consequently, the dropout rate or aeration does not give a clear indication

of turbulence in the inner surf zone for spilling waves.
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Figure 4.18: Temporal Variations of Phase-Averaged Dropout Rate, Ry, for
Five Vertical Elevations for L2.
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Figure 4.19: Temporal Variations of Phase-Averaged Dropout Rate, Ry, for
Five Vertical Elevations for L4.
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Figure 4.20: Cross-Shore Variations of Mean, Minimum and Maximum of
Horizontal Velocity Variance with 02 (—); [0Z]min (——); and
[Ui]max (—'-'—') for L1 to L6.
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Figure 4.25: Cross-Shore Variations of Mean Dropout Rate, Ry, for L1 to L6.
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4.5 Comparison with Published Data

In this section, a comparison is made of the Froude-scaled, time-averaged
horizontal turbulent intensity for the present data with data from the literature.
Figure 4.26 compares the vertical variation of the Froude-scaled, time-averaged
horizontal turbulent intensity, 7,/ \/gfﬁ, where h is the mean water depth. Com-
parisons are made among the present measurements for L3 to L6, the data of
George et al. (1994), Stive (1980), and Nadaoka and Kondoh (1982). The data of
George et al. (1994) are from their Figure 8a and are for the natural surf zone,
including random waves of both plunging and spilling type. The frozen turbulence
assumption was used to extract the turbulent signal. The middle curve of George
et al. (1994) indicates the mean value in several vertical bins, and the envelope
is this mean 41 standard deviation plus the uncertainty in the data reduction.
The data of Nadaoka and Kondoh (1982) are from their Figure 7 and are for Case
1, spilling waves on a 1:20 slope. Only the measuring lines inside the surf zone,
i.e. P1 to P5, are shown in Figure 4.26. A frequency filter was used to extract
the turbulent signal. It is noted that these data are plotted in Figure 4.26 using
the still water depth, d, rather than the mean water depth, 2. The data of Stive
(1980) are also taken from Figure 8a of George et al. (1994) and are presumably
for Test 1, spilling waves on a 1:40 slope. The data plotted in Figure 4.26 in-
clude the measuring lines in the transition region as well as the inner surf zone.

Phase-averaging was used to extract the turbulent signal.

Only the data of George et al. (1994) are for random, multi-directional
waves measured in the field. The other three data sets are for normally incident,
regular waves measured in the laboratory. The comparison of the present data set
with that of Stive (1980) shows that the phase averaging method gives consistent

results for laboratory waves of similar type. The comparison with Nadaoka and
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Figure 4.26: Comparison of Vertical Variation of Froude-Scaled Horizontal Tur-
bulence Intensity with George et al. (1994) (—); Stive (1980)
(o —--); Nadaoka and Kondoh (1982) (+ - - - -); Present Data L3 to
L6 (x —).

Kondoh (1982) indicates that the frequency filter may underestimate the turbulent
signal as noted by other researchers (e.g., George et al. 1994). Nevertheless, it
would be useful to have a relation between the turbulent signals from the two
methods since phase averaging cannot be used for random waves in a natural surf
zone. Interpretation of the data of George et al. (1994) is difficult, because of the

method used to extract the turbulent signal, and because the waves were random

and multi-directional. More work is necessary in this area.
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4.6 Conditional Sampling for Large Eddies

A conditional sampling technique was used by Nadaoka et al. (1988) to
relate sediment suspension in the surf zone and obliquely descending eddies, both
of which are characterized by intermittent events. The motivation for their study
was that sediment suspension due to spilling waves in the inner surf zone or bore
region (L4 to L6 in the present study) might be affected less by the vertical
diffusion or advection of wave generated turbulence and influenced predominantly
by obliquely descending eddies left in the wake of the passing bore. A conditional
sampling technique is applied here to remove the waves with the highest turbulence
levels, and statistics of mean, variance, skewness and kurtosis are recomputed.
Comparisons are made between the statistics computed for the total record and
for the partial record with the large turbulent events removed. The figures are
plotted as a function of depth and time, and the patterns in the reduction of
the statistics are consistent with the idea of obliquely descending eddies. It is
noted that this section does not treat the statistics rigorously since the confidence
intervals and sensitivity are not reported. This section is included simply to add

to the limited knowledge of the turbulent flow in the surf zone.

To illustrate the intermittent events, Figure 4.27 shows the temporal varia-
tion of the instantaneous measured horizontal and vertical velocities, u,, and w,,,
for a portion of the wave record in the range 37.4 < t < 50.6 s in the surf zone
below trough level for L4b. The wave period is ' = 2.2 s. The solid vertical lines
are the signal dropouts, occurring in the u,, and w,, signals simultaneously. The
dashed lines in the figure are the phase-averaged horizontal and vertical velocities,
u, and w,, superposed at each wave period to show in some sense the definition
of turbulence adopted in this dissertation. The turbulent signal is the difference

between the solid and dashed lines. In general, this definition is reasonable; but
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at the 22nd wave in the range 46.2 s < t < 48.4 s, there is a large component
included in the turbulent signal which may be due to organized motions such as
an obliquely descending eddy. These large deviations are of interest in this section

and are termed intermittent events since they do not occur for each wave period.

The conditional sampling technique adopted here is subject to an intuitive
but reasonable critical level of turbulence in both the w,, and w,, records as
explained in the following. The instantaneous turbulent velocity components of

the measured horizontal and vertical velocity signals, v’ and w’, are given as

u(z,2,t) = um(x,2,t) —uslz,z2,t) (4.22)

w'(z,2,t) = wa(2,2,t)—wz,2,1) (4.23)

where the phase averaged velocities computed for the range 0 < ¢ < 2.2 s are
repeated over the 50 waves and the primes indicate turbulent fluctuations rather
than normalized quantities as in Chapter 2. This turbulent signal at a given (z, )
location is divided into N,, = 50 segments starting with the phase of the zero-
upcrossing from the free surface signal. This was done to minimize an intermittent
event spanning two segments. The part of the first wave truncated before the first
zero-upcrossing was added to the last wave to make 50 complete segments. The

segmented turbulent signals at a given (z, z) location are written

[W'(t;)l, and [w'()], (4.24)

where t; is the discrete time over one segment, t; = (j — 1)At for j = 1,2,...,J
with J = 220 points per segment; and n is the counter for each segment, n =
1,2,...,N, with N, = 50 segments. The number of points in a segment excluding
the dropouts at a given (z, z) location is [N(z, 2)], forn = 1,2, ..., N,. The mean

horizontal and vertical turbulent velocities for each segment, [?} and [T:F] p
n mn
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excluding the dropouts, are given as

B | WL

W] = [N—];[u’(tj)]n forn=1,2,..., Ny (4.25)
N L N,

[w']ﬂ = W g[w’(tj)]n forn=1,2,...,N,. (4.26)

The standard deviation of the horizontal and vertical turbulent velocities for each

segment, (o], and [0y],, are given as
(V] 1/2
1 Y A W
lowl, = Yag—7 2 (W), — [«
[N]n —_ ; ( J [ ]n)
forn=12,...,N (4.27)

. (v, o 1/2
ol = { m—~12([w'<tj>ln—[wf]n)}

j=1

ot R 12 vy Vg (4.28)

The mean standard deviation of the horizontal and vertical turbulent velocities

over all 50 segments, [o], and [ow],,, at a given (z,z) location are given as
— 1 &2
[O’u!]n = 'j—\?"- Z [O'uf]n (429)

W n=1

lowl, = 7 2 lowl,- (4.30)

Win=1
Using the above definition, a critical turbulence level for the horizontal and vertical

turbulent velocities at a given (z, z) location may be taken as

(au‘)crit = acrm (431)

(Gw')m‘it == acr[aw']n, (4.32)
where a., is a sensitivity parameter selected to be in the range 1.0 < a., < 1.5.

The condition for which a segment is assumed to contain an intermittent

event is based on the standard deviation of the turbulent velocity of that segment
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which exceeds the following critical turbulence level set for all the segments at

that given (z, z) location,
[ow], > (Ou)err and [ow], > (Ou)eis forn=1,2,...,Np (4.33)

In this way, the conditional sampling method accounts for the spatial variations

in the turbulence level.

Using Eq 4.33, the velocity record at a given location is divided into two
groﬁps with the first consisting of intermittent events and the second consisting
of the remaining segments. Table 4.3 lists the number of intermittent events,
[Nielave, averaged over each measuring line in the surf zone for the range 1.0 <
e < 1.5. The number of intermittent events is fairly constant for a given a.,
for L4 to L6 where the bore is well established. For L3 where the wave is in
transition, [Nie|ave is consistently lower for a given a.. with the exception of o, =
1.0. The table indicates the sensitivity of the conditional sampling to the critical
turbulence level and also indicates that there is no clear threshold which might
separate the two groups. The lack of a clear threshold is probably because of the
limitations of the point measurement technique and the nature of the descending
eddy instead of the limited number of segments. If the intermittent events are
due to obliquely descending eddies shed with the passing of a bore, and if these
eddies are distributed randomly in the y-direction across the wave, then the eddy
may not pass directly through the measuring volume. Another technique such as
particle image velocimetry (Adrian 1991) could be applied to study the turbulent

flow field in connection to intermittent events or obliquely descending eddies.

Despite the limitations of the point measurement technique, the relatively
small number of waves, and the subjectivity of the condjtional sampling method,
the phase-averaged quantities are recomputed for the conditionally samples waves.

Following Eqs 4.6 to 4.9 and Eqgs 4.15 to 4.18, the mean, variance; skewness and
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Table 4.3: Mean Number of Intermittent Events for Given a.,.

[Nie]ave

Line Qlep

No. [ 1.0 1.1 12 13 14 15
L3 | 142 76 42 20 09 06
L4 (142 91 52 31 21 1.6
L5 (141 86 56 39 21 1.2
L6 |14.0 94 6.2 45 2.7 1.2

kurtosis are computed for the second group of waves consisting of those segments
whose turbulence level was below the critical value. These quantities are denoted
with a hat. The statistics of the first group of waves, those segments whose
turbulence level exceeded the critical value, were not computed since the sample
size was small. Repeating the caveat from Section 4.1, the skewness and kurtosis

are less stable statistics, and their results should be interpreted with caution.

For the following figures, the value of o, = 1.1 was selected since it gave a
reasonable number of intermittent events as listed in Table 4.3. Assuming an eddy
size of 10 cm in the 60 cm wide tank, this would give a cross-tank “eddy density”
of about 17%. For observations fixed in the z-z plane, one would expect about
8 or 9 waves out of 50 to contain intermittent events. The effect of conditional
sampling for this choice of a., for the four lines listed in Table 4.3 removes about
nine waves with the highest turbulence levels. As a result, the choice of a., = 1.1

may be reasonable qualitatively.

Figure 4.28 shows the vertical variations of the phase-averaged horizontal
and vertical velocities without conditional sampling, v, and w,, and with con-

ditional sampling, %, and w,, at six phases for L4. The free surface elevation
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and bottom location are marked by a light solid line. The effect of conditional
sampling on u, and w, is small except for a slight change in u, at t = 27'/6 near

upper portion of the measured water column.

Figure 4.29 shows the vertical variations of the horizontal and vertical ve-
locity variances without conditional sampling, o and o2, and with conditional
sampling, 62 and 62, at six phases for L4. The variances are noticeably reduced
with conditional sampling. The pattern for both the horizontal and vertical vari-
ances is a reduction in the variance over a fixed portion of the water column at
a given phase. At ¢t = 2T'/6, the variance is reduced only in the upper portion of
the water column; at t = 37'/6 and t = 4T'/6, the variance is reduced mostly in
the middle; and at ¢ = 57'/6, the vertical variance is reduced near the bottom. At
t =0 and t = T'/6, the variance is unchanged. This pattern is consistent with the
idea of an obliquely descending eddy. The conditional sampling shows that a fair
amount of turbulent energy is contained in a few number of waves passing a given

point in the surf zone where the bore is well established for a spilling breaker.

Figure 4.30 shows the vertical variation of the horizontal and vertical ve-
locity skewness without conditional sampling, ¢, and (,,, and with conditional
sampling, {. and (,, at six phases for L4. To reduce the noise in this and the
following figure, the quantities shown are the average of the value at the given
phase and the two nearest points. For example, the horizontal velocity skewness

without conditional sampling at six phases is given as
O ; . . .
Cult = nT/6] = ¢ [Coo=2 4 (o=t 4 (19 4 ¢RI+t 4 (22 (4.34)

where n = 0,1,...,5 and j = 37 corresponding approximately to 7'/6 for J =
220 phases per wave period. Qualitatively, it is interesting to note the sign of
the skewness for only those curves without conditional sampling. The horizontal

velocity skewness is generally positive everywhere except at ¢t = 0 and t = T/6
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near the free surface where the sign is negative and for all phases near the bottom
where the skewness is noisy. For the vertical velocity skewness, the signs are
reversed. With the conditional sampling, the skewness is reduced in a pattern

similar to the variance in Figure 4.29 although it is less pronounced.

Figure 4.31 shows the vertical variations of the horizontal and vertical ve-
locity kurtosis without conditional sampling, %, and £,, and with conditional
sampling, %, and £, at six phases for L4. Again, this figure shows a fair amount
of noise even with the 5-point smoothing given in Eq 4.34. The physical interpre-
tation of the kurtosis is that it amplifies extreme events. A record of suspended
sediment concentrations near the bottom in the surf zone is characterized by a
spiked and intermittent signal (e.g., Beach and Sternberg 1988). This signal would
have a large value of kurtosis compared to the wave record taken directly above.
It is thought that obliquely descending eddies would increase the kurtosis of the
turbulent signal since they are intermittent events of high intensity. Comparing
the two curves with and without conditional sampling for both the horizontal and
vertical kurtosis, it can be seen that there is a general reduction in the kurtosis
with the removal of the conditionally sampled waves following the pattern of the

previous two figures.

Although it is no surprise that removing the largest deviations from the
record reduces these statistics, it is interesting to see that the pattern of the reduc-
tion seems consistent with the idea of obliquely descending eddies. This analysis
also indicates limitations in discerning three-dimensional eddies from point mea-

surements.
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Figure 4.27: Temporal Variations of Measured Horizontal Velocity, u,, (—),
and Phase-Averaged Horizontal Velocity, u, (— —), (Top Two Pan-
els); Temporal Variations of Measured Vertical Velocity, w, (—),
and Phase-Averaged Vertical Velocity, w, (——), (Bottom Two
Panels), for Six Wave Periods for L4b.
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Figure 4.28: Vertical Variations of Phase-Averaged Horizontal Velocity without

Conditional Sampling, u, (—), and with Conditional Sampling,
i, (—=), (Top); Vertical Variations of Phase-Averaged Vertical
Velocity without Conditional Sampling, w, (—), and with Con-
ditional Sampling, W, (— =), (Bottom), at Six Phases for L4.
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Figure 4.29: Vertical Variations of Phase-Averaged Horizontal Velocity Vari-

ance without Conditional Sampling, o2 (—), and with Condi-
tional Sampling, 2 (——), (Top); Vertical Variations of Phase-
Averaged Vertical Velocity Variance without Conditional Sam-
pling, 02 (—), and with Conditional Sampling, % (——), (Bot-
tom), at Six Phases for L4.
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Figure 4.30: Vertical Variations of Phase-Averaged Horizontal Velocity Skew-

ness without Conditional Sampling, (. (
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Chapter 5

BOTTOM BOUNDARY LAYER ANALYSIS

A general introduction to boundary layer theory in the context of coastal
processes was given in the literature review in Chapter 1, and the importance
of estimating the bottom shear stress for sediment transport models was noted.
In this chapter, the temporal variations of the bottom shear stress under break-
ing waves are estimated using the phase-averaged horizontal velocities presented
in Chapter 4. The focus of this chapter is to show the applicability of models
developed under non-breaking waves in predicting the shear stress and bottom

roughness in the surf zone.

In studying the bottom boundary layer, several quantities are of interest
including estimates of the bottom shear stress, the bottom roughness, and the
thickness of the boundary layer. Several methods have been used to estimate the
bottom shear stress. Direct measurements by means of a flush mounted hot film
probe have been used for oscillatory flows over a...smooth bottom (Le.g., Jensen et
al. 1989; Deigaard et al. 1992) and by means of a shear plate for flows over a
rough bottom (e.g., Kamphius 1975; Simons et al. 1992, 1994). A second method
to estimate the bottom shear stress involves integrating the velocity deficit in
the bottom boundary layer (e.g., Sleath 1987). However, this method neglects the
nonlinear advection terms. This assumption may be valid for flow in an oscillating

water tunnel, but is likely to be incorrect for measurements under breaking waves.

83



84

Also, this method is more difficult to apply for surf zone measurements since the
shear stress is not zero above the bottom boundary layer. Further, this method
does not give an estimate of the bottom roughness. A third method involves a
logarithmic fit of the measured velocities in the bottom boundary layer and has
been applied to flows measured over the continental shelf (e.g., Grant et al. 1983)
and oscillating water tunnel experiments (e.g., Jonsson and Carlsen 1976; Jensen
et al. 1989). The logarithmic fit method also gives an estimate of the bottom

roughness which can be related to the Nikuradse equivalent sand roughness.

This chapter is organized as follows. Section 5.1 gives a definition of the
theoretical bottom location and describes the measuring point locations near the
bottom. Section 5.2 discusses the theoretical background of the logarithmic veloc-
ity region. Section 5.3 discusses the logarithmic fit using the least-squares method
and presents the estimates of the temporal variation of the bottom shear velocity
and bottom roughness. Section 5.4 discusses the sensitivity of the estimates to the
bottom displacement. Section 5.5 discusses the near bottom shear stress estimates
by the measurements of the horizontal and vertical velocity covariance in compar-
ison to the bottom shear stress estimates by the least-squares method. Section 5.6
discusses the estimates of the bottom shear velocity and bottom foughness with
the eight additional measuring points. These points were taken at a horizontal
offset of Az = £2 cm, and the results of this section indicate the sensitivity of the
estimates to irregularities in the rough bottom. Section 5.7 discusses the thickness
of the wave boundary layer since velocity measurements just outside the bound-
ary layer are used in the next section. Section 5.8 discusses the bottom friction
and compares the estimates of the shear velocity from the least-squares method
to estimates using the velocity outside the bottom boundary layer. This section

also discusses the bottom roughness estimates.



85

5.1 Bottom Definition

This section discusses the bottom definition and the location of the mea-

suring points near the bottom.

Figure 5.1 shows a schematic detail of the bottom boundary layer with
the bottom roughness. There are two vertical coordinates as mentioned in Sec-
tion 3.3.2, where the vertical coordinate, z, is defined with z = 0 at the still water
level (SWL) and the vertical coordinate, 2, is defined with respect to the bottom
roughness with z, = 0 at the top of the Plexiglas sheet. The relation between

the two vertical coordinates is given as
Zm=2z+d (5.1)

where d is the depth below the SWL to the Plexiglas. The theoretical bottom

location of zero horizontal velocity with respect to the z axis, z = z, is given as
Zp =d*-|-20—d (52)

where 2o is the bottom roughness height and d. is the displacement distance as

explained in the next section.

Figure 5.1 also shows schematically the roughness elements composed of
sand grains with a median diameter dso = 1 mm. The median roughness height is
. indicated by a light dashed line, and the theoretical bottom location is indicated
by a light solid line. The measuring points are indicated by the solid circles and
indicate that the first measuring point from the bottom is a fraction of the grain

height above the median roughness height.

Figure 5.2 shows a schematic for the measuring points locations well inside
the bottom boundary layer for a given measuring line. The main measuring line

for which the measuring points extend from the bottom to the wave trough level
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is indicated by Az®. Eight additional measuring points were taken at two offset
measuring lines denoted Az~ and Az~, where the horizontal offset distance is
—92 ¢m and 42 cm, respectively. Only four measuring points were taken in each
offset measuring line. This system of eight points with two offset measuring lines
was used for L1, L2, L4, and L5. For L3, all of the eight additional points were
in the same measuring line at Az~. For L6, no additional measuring points were
included. The eight additional measuring lines will be used in Section 5.6 to show

the sensitivity of the results to irregularities in the bottom roughness.
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Figure 5.1:

Detail of Bottom Boundary Layer with Bottom Roughness (not to
scale).
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Figure 5.2:

Measuring Point Locations Well Inside Bottom Boundary Layer (not
to scale).
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5.2 Logarithmic Velocity Region

The theoretical derivation of the logarithmic velocity region is presented
here following Yaglom (1979). The assumptions used to derive the equation for

the logarithmic velocity region are emphasized.

The case considered is for a steady turbulent wall flow without a pressure
gradient. The coordinate system is similar to that used throughout this disserta-
tion: x is the horizontal coordinate, positive in the direction of the flow; and z,, is
the vertical coordinate, positive upward with z, = 0 at the bottom. The dimen-
sional parameters for the case of a smooth bottom are the kinematic viscosity, v,

a vertical length scale, §, and a velocity scale which is taken as the shear velocity,

w=(2) " 5.3)

and p is the fluid density and 7 is the bottom shear stress. The bottom shear

U., Where

stress for the case of a smooth bottom is given by

0
™= pva—} (5.4)

m
where u = u(z,) is the mean horizontal velocity and will be taken as the phase-

averaged horizontal velocity u = uq later.

There are two independent length scales: a viscous length scale, 8, = v/u.,
and the external length scale, §, which will be the boundary layer thickness. A

dimensional analysis for the mean flow velocity gives
G Zm
m =i iq’ "_"1 _'_) 5-5
u(zm) = w.d (22, 2 (55)

and for the velocity gradient

du(zm) _ s (“*Zm Eﬂ) (5.6)
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where ® and ¢ are universal functions related by

0P oL
¢(r1,m2) = " G 3 L (5.7)

with 7y = (Uszm/V) = 2m /6y and 72 = 2z /6.

Considering only fully developed turbulent flows implies both

Re = % >> 1 (5.8)
and
S @
Re,= 22 =2 >>1 (5.9)
v by

where Re is the Reynolds number, u; is the free stream velocity, and Re, is the
shear Reynolds number. It can be argued from Eq 5.9 that near the wall the
influence of the length scale § is small so that Eqs 5.5 and 5.6 give

u(zm) = O (u,.zm)

v
oy L 0 (5.10)
ou UuZm
o wd(*22)
where :
1
q’(’f’]) :L é(;?)'d?"l. (511)

This is Prandt!’s universal law of the wall. A second argument can be made that

away from the wall, the influence of the viscosity is small so that Eqs 5.5 and 5.6

give
up — u(zm) = u.®y (z_;;_)
Zm 2> Oy (5.12)
du Zm
zm% = t.d (7)
where

B (ry) = fr : ?ilfzi)drz. (5.13)
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This is Karman’s velocity defect law.

Assuming an overlap region where both Eqs 5.10 and 5.12 are valid yields

a logarithmic solution given by (Yaglom 1979)

U zm) =ty [Aln (qum) + B] (5.14)
Uy — U(Zm) = U [~—Aln (%ﬁl) + BIJ (5.15)

where A, B, and B, are constants. The thickness of this logarithmic layer for
which Eqs 5.14 and 5.15 are valid is not precisely defined; however, it is estimated
to be z, =~ 0.16 or roughly 10% of the boundary layer thickness. The inverse of

A is the Karmaén constant
1
A
and the value of k = 0.40 is used in this dissertation. The variability of the

=k~04 ' (5.16)

Kérmén constant is discussed in Yaglom (1979).

Yaglom (1979) considers next the flow over a rough boundary with a mean
roughness height, h,, where h, is much larger than the viscous length scale 6, =
(v/uy). It is assumed that the roughness height is much less than the boundary
layer thickness, h, << 6, and that Karman’s velocity defect law still applies within
the boundary layer but away from the wall. Near the wall, the effects of the wall

roughness can be included to modify the logarithmic solution as

by =201 (""—’”) ; (5.17)

K 20

where zg is the roughness height which includes the effects of the wall roughness

such as the roughness size, shape, and distribution.

Yaglom (1979) includes the vertical shift of the coordinate origin so that
Eq 5.17 becomes

u(zm) = i (zm — d‘) for z;, > (di + 20) (5.18)

K Zo
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where d, is the displacement distance. Jackson (1981) gives a physical interpre-
tation to d., indicating that it is “the level at which the mean drag on the surface
appears to act.” The displacement distance is discussed again in Section 5.4. The

least-squares method used to solve Eq 5.18 is discussed in the following section.
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5.3 Least-Squares Method to Estimate Bottom Shear Velocity and

Bottom Roughness

The logarithmic profile was derived in the previous section assuming a
steady flow. In the following, it is assumed that a logarithmic profile near the
bottom could exist at each phase over o 1e wave period and that u in Eq 5.18 can
be replaced by the phase-averaged horizontal velocity, u,, so that the logarithmic

velocity for a rough bottom can be expressed,

Us

mo d*
Ue(2m) = —In (z—_) for 2, 2 (du + z0) (5.19)
K Zp
where k£ ~ 0.4 is the Karman constant. This equation can be rewritten as

10(2m — du) = —ttq + In(z0) (5.20)

Ed

and can be reduced to the linear equation

Yi= X4 fori=1,2,...,8 (5.21)
where
Xi=[us)i and Yi=In[(zm); —d.] (5.22)
with
B =&«/u. and o =In(zp) (5.23)

The index 7 refers to the measuring point elevation starting from the lowest point
at 1 = 1; and the number of points used for the logarithmic fit is taken as n = 4,
5, or 6 as discussed below. The measuring point elevations were listed in Table 3.2

in Chapter 3.

The shear velocity, u,, and bottom roughness, zo, will be computed at each
measuring line at a given phase using the least-squares procedure based on Eq 5.21.

This procedure will be applied in two ways denoted Method A and Method B.
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Method A uses only the horizontal velocity measurements at the main measuring
line, Az°. The values for u. and zo are computed three times at a given phase for
n =4, 5, and 6. The best fit among n = 4, 5, and 6 is decided by the square of
the correlation coefficient, and only one value for u, and z is selected at a given
phase. This is made clear in the context of the figures in this section. Method
B is applied at L1, L2, L4 and L5 where eight additional measuring points were
made. For Method B, only four bottom points are used so that n = 4. The values
for u, and zp are computed three times at a given phase using the three lines at
Az° Az~, and Azt. The best fit is determined by the square of the correlation
coefficient, and only one value for u, and 2o is selected. It is noted that the phase
shift due to the horizontal offset is neglected for Method B. Method A* for L3 is
the same at Method A except that the offset line Az~ is used. Only the figures for
Method A are presented in this section, and the results of Method B are presented
separately in Section 5.6. The purpose of Method A with a variable n is to give
the best estimate of 1, and zo for the limited number of data points available for
the logarithmic fit. The purpose of Method B is to show the variability of the

least-squares method due to irregularities in the bottom roughness.

In was noted in the previous section that the logarithmic velocity layer
holds up to approximately 10% of the boundary layer thickness. Since the bound-
ary layer thickness is approximately 1 cm for this experiment as will be shown in
Section 5.7, the thickness of the logarithmic velocity layer is approximately 0.1 cm.

The measuring point elevations in the bottom boundary layer are approximately

(zm)i=e — ds = 0.22 cm (2m)i=3 — dx =~ 0.09 cm
(2m )i=s — da 22 0.17 cm (2m)i=2 — dx ~ 0.07 cm
(2m)i=4 — ds = 0.12 cm (2m)i=1 — du =2 0.05 cm

for this experiment so that the use of n = 4, 5, or 6 is slightly above the 10%
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guideline.

The least-squares method based on Eq 5.21 is summarized here where Ben-

jamin and Cornell (1970) is used as a reference. The sample means are defined

as
. 1 kL _ 1 T ;
—;;Xi : Y_;‘;},-. (5.24)
The sample variances are defined as
2 _ 1 \2 2 _ 1 ¢ 72
So==2%—-X) ; == 1%-¥), (5.25)

g1 =]
where 1/n is used rather than 1/(n — 1) for the sample. The sample covariance is

defined as

1& _— -
So = =3 (Xi = D)% - 7). (5.26)
i=1
The sample correlation coefficient is defined as
Sey
T =55 (5.27)

where 7., = 1.0 indicates that the points are collinear. The expected or mean

values of B and « are denoted by a hat and are estimated by

B_ % . Yy Sy

==t e=7-%. (5.28)

For small n, the t-distribution with (n — 2) degrees of freedom is recommended by

Benjamin and Cornell (1970) to estimate the 95% confidence intervals of a and S

a=atxe(n)Sa : (5.29)
B = B +¢(n)Ss, (5.30)

where ¢ = 4.3, 3.2 and 2.8 for n = 4, 5 and 6, respectively. The variances S} and
5% included in Egs 5.29 and 5.30 are estimated as
2 2 )2
52 : 5k = e ll + Lt ] (5.31)

B~ ng2 n S2
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with
n

(n—2)
where S? is an estimate of the average of the squared residuals based on the linear

5% = (1 —~2,)52 (5.32)

y?

regression using Eq 5.21.

The shear velocity and bottom roughness are estimated at each phase for

which the square of the correlation coefficient, 2, exceeds a critical value, [v2, Jerit,

733; > ['ng]crit- (533)

The critical value adopted herein is [42,)erie = 0.95. The sensitivity of the results
to this choice are discussed in Section 5.4. The number of phases for which Eq 5.33
holds is denoted by N,. As mentioned previously, u. and zg are computed three
times at a given phase for the location Az° and using n = 4, 5, and 6 for Method
A. Only one set of values of u. and zo corresponding to the n value with the
highest 72, value will be used at a given phase. This value of 72, at a given phase
is denoted [72,Jmaz- The mean of the highest correlation coefficients at phases
exceeding the critical value is m. This is an average over particular phases
of the wave and is not a time-average in the strict sense. Similarly for Method
B, u. and zp are computed three times at a given phase for n = 4 and at the
three locations Az, Az~, and Az*. Only one set of values is used at a given
phase; and the definitions of NV, [v2,)maz, and m for Method B are similar
to Method A except that the chosen values of u, and 2o correspond to the highest
correlation coefficient at a given Az. These definitions will be made clear in the

context of the figures.

Figures 5.3 to 5.8 show the results of the least-squares method for L1 to L6
using Method A and an adopted d.. The choice of d, is discussed in Section 5.4.
The top panel of Figure 5.3 shows the vertical variation of the phase-averaged

horizontal velocity in the bottom boundary layer at 22 phases. The vertical axis
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is a logarithmic scale and indicates the alignment of the bottom n points. The
phases are aligned with the free surface elevations in Figure 4.1, for example, the

wave front appears around ¢ = 0.6 s for L1.

The second panel of Figure 5.3 shows the temporal variation of 92, in the
range 0.5 < 'ﬁy < 1.0 for the three n values. The thin horizontal line indicates
[v2,)crit = 0.95. The curves indicate that the logarithmic profiles are well estab-
lished for several phases in both the onshore and offshore directions for L1 and
that the least-squares fit method is not applicable for the phases where the flow

reverses.

The third and fourth panels of Figure 5.3 show the temporal variations of
the fitted shear velocity, u., and bottom roughness, zp, for the three n values.
Comparing with the second panel, it is apparent that only those phases satisfying
'ﬁy > ['yf:y]mt are plotted. The temporal variation of u, is smooth and nonsinu-
soidal, consistent with the top panel. The sensitivity of u, and zp to n is small
at a given phase. The bottom roughness z is small but increases systematically

before the flow reversal.

Figures 5.4 to 5.8 show results similar to Figure 5.3 but, in general, have
fewer estimates of u, and z for which Eq 5.33 holds. Hence, all of the figures for

L1 to L6 are shown for completeness.

Figures 5.9 to 5.14 show the values selected at a given phase based on the
maximum correlation coefficient. The top panel of Figure 5.9 shows the temporal
variation of the maximum correlation coefficient squared, [v2,]mas, of the three
curves from the second panel of Figure 5.3. The maximum correlation coefficient
squared is plotted in the range 0.95 < ['ﬁy]mw < 1.00 and shows that for many
of the phases, [Y2,Jmaz > 0.99.
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The second panel of Figure 5.9 shows the corresponding n value. There is
no clear correlation between the n values and phases for L1 to L6, and the method
of choosing w. and z based on the maximum 7?2, values seems reasonable without

adding bias.

The third panel shows the value of u, selected at each phase from Fig-
ure 5.3 and the 95% confidence intervals calculated using Eq 5.30 where § = &/u..
The confidence interval decreases as [y2,Jmaz and n increase as may be seen from

Eqgs 5.30 to 5.32.

The fourth panel shows the value of zg selected at each phase and the
95% confidence limits calculated using Eq 5.29 where @ = In(zp). The bottom
roughness is fairly constant over most of the phases but increases unrealistically

before the flow reversal.

The figures in this section show that the temporal variations of the bot-
tom shear velocity and bottom roughness can be estimated with a reasonable
confidence interval both seaward of breaking and inside the surf zone using the
logarithmic fit of the horizontal velocities measured well inside in the bottom

boundary layer except for the phases of flow reversal.
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Figure 5.11: Temporal Variations of Maximum Correlation Coeflicient Squared,

[2,)maz (®), (Top); Corresponding n Value (e) (Second); Shear
Velocity, u. (o) with 95% Confidence Interval (——) for adopted
d. = 0.10 cm, (Third); and Bottom Roughness, zo, same notation
as above, (Bottom); for L3, Method A.
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Velocity, us () with 95% Confidence Interval (—) for adopted

d. = 0.08 cm, (Third); and Bottom Roughness, zo, same notation
as above, (Bottom); for L4, Method A.
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Figure 5.13: Temporal Variations of Maximum Correlation Coefficient Squared,

[2,)maz (®), (Top); Corresponding n Value (e) (Second); Shear
Velocity, u. (o) with 95% Confidence Interval (——) for adopted
d. = 0.10 cm, (Third); and Bottom Roughness, zo, same notation
as above, (Bottom); for L5, Method A.
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Figure 5.14: Temporal Variations of Maximum Correlation Coefficient Squared,
[v2,Jmaz (), (Top); Corresponding n Value (o) (Second); Shear
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d, = 0.06 cm, (Third); and Bottom Roughness, z, same notation
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5.4 Sensitivity to Bottom Displacement

This section discusses the sensitivity of the shear velocity, ., and the bot-
tom roughness, zp, to the displacement height, d., introduced in the logarithmic
profile given by Eq 5.18. The method used to choose d. is based on the square of

the correlation coeflicient, 'yf:y, introduced in Eq 5.27.

The displacement height, d., for a given grain size may be estimated fol-
lowing Jackson (1981) as
d, ~ 0.7h, (5.34)

where h, is the length scale of the roughness element. The mean roughness height
can be assumed to be the median grain diameter so that k, = dso = 0.1 cm, and

this gives d, ~ .07 cm.

The value of d,. depends on the setup of the laser-Doppler measuring vol-
Iume above the rough bottom and must be determined separately for each main
measuring line and for each of the offset measuring lines using the eight additional
measuring points. The procedure to determine the best d, is based on the square
of the correlation coefficient, 'yﬁy, and is outlined below. Tables 5.1 to 5.3 indicate

the choice of d. and the sensitivity to [y2 Jerit-

Following the guideline of Jackson (1981) and the uncertainty in positioning
the lalser, the displacement height was varied in the range 0.06 < d. < 0.10 cm and
the least-squares method as described in Section 5.3 was applied with each value
of d.. The critical value of q@y introduced in Eq 5.33 was varied as [y2 ]t =
0.95, 0.975, and 0.99 for each d.. The number of phases, N,, out of 220 for
which 72, > ['Yiy];rih aﬁd the corresponding mean value, m, were computed
for a given d, and [y2,Jorit. These values are given in Tables 5.1 to 5.3. For

[»ygy],:,“ = 0.99, the value of N, is small for several locations. Therefore, the
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seventh and eighth columns of Tables 5.1 to 5.3 are not used for this critical value
in determining d.. For the third through sixth columns for [y2,]c-i: = 0.95 and
0.975, the highest values of N, and m at each d, are indicated by boxes. In
most cases, the adopted value of d, is simply the d, value corresponding to the
row with the majority of highest numbers, that is, either 3 out of 4 or 4 out of 4
highest numbers. In the cases of L1 Az™*, L4 Az® L5 Az~, and L5 Az™, there
was no row with a majority of highest numbers; and in these cases, the middle

value d, = 0.08 cm was adopted.

Following Figures 5.9 to 5.14 in the previous section, Figures 5.15 to 5.20
show the temporal variations of the shear velocity and bottom roughness for the
adopted d, including the 95% confidence intervals. Figures 5.15 to 5.20 also
show the temporal variations of u. and z, for d. shifted by 0.02 cm from the
adopted value. In most cases, the shear velocity for the shifted d, are within the
95% confidence interval of the adopted d.. The bottom roughness estimates are
more sensitive to the choice of d, and are not always within the 95% confidence
interval of the adopted d,. Similar results were obtained for Method B and are

not presented for brevity.

Similar to Figure 5.17 for L3 using Method A, Figure 5.21 shows the com-
puted shear velocity and bottom roughness for L3 using Method A* based on the
offset line Az~ as explained in Section 5.3. Since Method A* is essentially the
same as Method A, comparison of Figures 5.17 and 5.21 gives additional confi-

dence in the repeatability of the measurements and the analysis method.
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Table 5.1: Sensitivity to [y2 ] and Selection of d. for L1 and L2.

Line d* [F)’gy]crit = 0.95 ['ng]crit = 0.975 [’Y:.,%y]m‘ff = 0.99

No. (cm) | NNy ['7a~z:y]max N, ['Tgy]mar Ny [’ng]max

L10] | [177] [.987L][][146]  .9915 | 100 9959

L1 09 | 175 .9866 | 139 9926 | 103 9963
n=4,56| .08 | 174 9857 | 134 103 9962
Az® 07 | 168  .9859 | 132 9930 | 98 9962
06 | 160  .9868 | 132 9924 | 96 9959
L.10] [|161] |.9876]|[|134] [.9922]] 103 .9952

L1 09 | 155  .9855 | 126 9908 | 80 9945
n=4 08 | 148  .9840 | 121 9890 | 54 9949
Az~ 07 | 144 9823 | 114 9875 | 48 9945
06 | 141 9806 | 107 . .9864 | 38 9948
10 [[143] 9817 [ 99 9899 | 57 9945

L1 09 | 142 .9832 | [105 9903 | 65 9947
n=4 143 9833 | 103 69 19949
Azt 07 | 142 [.9835]| 104 9908 | 65 9952
.06 | 141 [.9835]| 104 9905 | 68 9947

[10][T112] [.9730]| [50] [.9865]| 18 9946
L2 09 | 103  .9720 | 46 9850 | 12 9942
n=4,5,6 | .08 97 9721 | 40 9848 | 10 9937
Az° .07 98 9710 | 36 9844 | 8 9936
06 | 108  .9687 | 36 9832 | 6 .9940
[.10]||173] [|.9768]| 96 |.9858]| 29 .9934
L2 09 | 171 9753 | [97]  .9839 | 20 9941

n=4 08 | 166  .9743 | 85 9838 | 13 .9958
Az~ 07 | 159 9736 | T4 9838 | 16 .9943
06 | 155  .9727| 66 9841 | 15 9946
[.10] | |164] [.9894]||149] 9923 | 104 9962
L2 09 | 160  .9901 | 146 110 19961
n=4 08 | 159  .9893 | 141 9924 | 104 .9960

Dz 07 159 9880 | 132 9926 | 103 9953
.06 160 9866 | 129 9919 | 88 9955
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Table 5.2: Sensitivity to ['ﬁy]ﬂu and Selection of d, for L3 and L4.

Line du | [W2)erit = 0.95 | [2,Jerir = 0.975 [ [72,]erie = 0.99
No. (em) | N, ['ng]mar- N, [’Tgy]mnr N, [’Tgy]max

[.10] [ [167] [.9851][[139] [.9893]| 69 9952

L3 | .09 | 166  .9838 | 129 9892 | 69 9945

n=456| .08 | 164  .9826 | 121 9891 | 63 9947
Az® 07 | 163 9812 | 116 9887 | 55 9951
06 | 163  .9796 | 107 9891 | 54 19949

[.10]| 141 [.9753]| [73] [.9854]| 22 19935

.8 .09 9735 | 69 .9845 | 19 .9937

n=456| .08 | 140  .9725| 61 9846 | 18 9937
Az~ 07 | 136 9719 | 58 9846 | 17 9941
06 | 129 9720 | 54 9849 | 15 .9949

20 [ 79 9736 | [39]  .9869 | 18 9944

L4 | .09 9728 | 34 .9891 | 18 9941

n=4,5,6 6 .9739 | 33 15 9946
Az® 07 | 74 9743| 33 9888 | 14 19949
06 | 72 [9744]| 35 9872 | 14 .9946

10 | 125 9770 | 72 9870 | 32 19931

L4 | .09 | 134 9777 | 82 9872 | 36 9935

n=4 08 | 146  .9770 | 89 9872 | 38 .9943
Az~ 07 |[149]  .o777 | [90 9879 | 39 .9952
[06]| 147 [.9790]| [90] [.9886]| 40 .9957

10 | 58 9744 | 27 9882 | 10 9947

L4 | .09 | 64 9746 | 32 9872 | 14 19939

n=4 08 | 67  .9749 9875 | 17 9933
Azt 07 | [69 9748 | 33 9883 | 17 .9932
[.o6]| [69] [.9753]| 33 [.9887]| 14 9941
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Table 5.3: Sensitivity to [fﬁy]mt and Selection of d, for L5 and L6.

Line d,,. [’ygy]c,-gg =0.95 [")'gy]cﬂ't = 0.975 [’Yzy]cfgz = 0.99
No. (em) | N, [fyf;y]m,, N,y [’Tf’;y]max N, [’ng]max
L.10] [{166] [.9860][[135] [.9913]] 86 .9953

L5 09 | 162  .9847 | 128 9903 | 75 9951
n=4,56 | .08 | 157  .9836 | 123 9890 | 63 .9948
Az 07 | 152 9827 | 113 9886 | 54 9946
06 | 150  .9813 | 110 9875 | 49 9941

10 | 145 9826 | 105 9891 | 52 9954

L5 09 |[149 9829 | [113 9887 | 55 19953
n=4 148 9830 | 111  .9894 | 57 9952
Az~ 07 | 142 110  .9897 | 61 9949
.06 | 141 9838 | 108 [.9899]| 62 9946

10 | [128]  .9821 | [90] 9898 | 53 9945

L5 09 | 122 9832 | 89  .9909 | 57 9953
n= 117 9839 | 85 61 .9952
Azt 07 | 109 9853 | 85  .9914 | 56 9957
.06 | 106 [.9854]| 83  .9914 | 52 9961

A0 53 9720 26 9825 | 5 9922

L6 09 | 66 9721 30 9848 | 7 19930
n=4,5,6 | .08 70 9739 | 37  .9848 | 8 9931
Az® 07 | 74 9746 | 39 9854 | 9 9939
1.06]| [75] |.9756]| [41] [.9855]| 11 .9938
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Figure 5.15: Temporal Variations of Shear Velocity, u, for Adopted d. = 0.10
cm (o) with 95% Confidence Interval (—) and . for d. = 0.08 cm
(+), (Top); and Bottom Roughness, zp, same notation as above,
(Bottom); for L1, Method A.
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Figure 5.16: Temporal Variations of Shear Velocity, u, for Adopted d. = 0.10
cm (o) with 95% Confidence Interval (—) and u, for d. = 0.08 cm
(+), (Top); and Bottom Roughness, zo, same notation as above,
(Bottom); for L2, Method A.
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Figure 5.17: Temporal Variations of Shear Velocity, u. for Adopted d. = 0.10
cm (o) with 95% Confidence Interval (—) and u, for d, = 0.08 cm
(+), (Top); and Bottom Roughness, zo, same notation as above,
(Bottom); for L3, Method A.
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Figure 5.18: Temporal Variations of Shear Velocity, u. for Adopted d. = 0.08
cm (o) with 95% Confidence Interval (—) and u, for d. = 0.10 cm
(+), (Top); and Bottom Roughness, zp, same notation as above,
(Bottom); for L4, Method A.
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Figure 5.19: Temporal Variations of Shear Velocity, u. for Adopted dx = 0.10
cm () with 95% Confidence Interval (—) and u, for d, = 0.08 cm
(4), (Top); and Bottom Roughness, zo, same notation as above,
(Bottom); for L5, Method A.
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Figure 5.20: Temporal Variations of Shear Velocity, u, for Adopted d, = 0.06
cm () with 95% Confidence Interval (—) and u, for d, = 0.08 cm
(+), (Top); and Bottom Roughness, z,, same notation as above,
(Bottom); for L6, Method A.
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Figure 5.21: Temporal Variations of Shear Velocity, ux for Adopted d, = 0.10
cm () with 95% Confidence Interval (—) and u, for d. = 0.08 cm
(+), (Top); and Bottom Roughness, 2o, same notation as above,
(Bottom); for L3, Method A™.
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5.5 Near-Bottom Shear Stress Estimates by Turbulent Velocity Co-

variance Measurements

In this section the shear stress estimates from the turbulent horizontal and
vertical velocity covariance measurements near the bottom are presented. Com-
parisons are made to the bottom shear stress estimates based on the logarithmic

velocity procedure from Section 5.3.

Assuming a constant shear stress layer in the logarithmic region (e.g., Ya-
glom 1979), the covariance of the turbulent horizontal and vertical velocities may

be related to the bottom shear stress by

— NS

p

where oy, is the turbulent velocity covariance measured in the logarithmic ve-

L (5.35)

locity region. Figures 5.22 to 5.27 show the temporal variations of the velocity
covariance, —0yy, at thé bottom four measuring points for L1 to L6. These fig-
ures are plotted using a combination of solid lines and symbols where the lines
are plotted using the data at all of the 220 phases and the symbols are plotted at
every fifth phase for clarity. There is a significant amount of noise in all of the
figures, particularly for L3 to L6 in the surf zone. It is noted that the magnitude
of 0w is much smaller near the bottom, oy, ~ 10 cm?/s?, than below trough level
under the breaking wave, oy, ~ 100 cm?/s? as shown in Figure 4.15. Measure-
ment errors are larger when measuring the smaller quantity, especially the small
vertical velocity near the rough bottom. Also, it was noted in Chapter 3 that a
pair of burst spectrum analyzers were used to reduce the noise due to reflection
from the solid boundary. However, it is unlikely that the BSAs could eliminate
the problem completely. For these reasons, the measurements of —oy,, near the
bottom are interpreted with caution. Nevertheless, Figures 5.22 to 5.27 show that

the variation of —0oy,, at a given phase for the four measuring point elevations is
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small, suggesting that the assumption of a constant stress layer might be valid in
the logarithmic velocity region. It is important to note that Grant and Madsen
(1986) indicated that the approximation of the logarithmic velocity region is valid

to a greater extent than the approximation of a constant stress layer.

The bottom shear stress for the oscillatory flow is related to the shear

velocity by
b
— =|u,| u. 5.36
. | ] (5.36)

where u, is the shear velocity and was estimated from the logarithmic fit using
the least-squares method in Section 5.3. Figures 5.22 to 5.27 compare the bottom
shear stress following Eqs 5.36 and 5.35 for L1 to L6. The bottom shear stress
estimates from the shear velocity follow from Figures 5.9 to 5.14 of Section 5.3.
The bottom shear stress estimated from the turbulent velocity covariance is taken
as the average of the velocity covariances at the bottom four points shown in Fig-
ures 5.22 to 5.27 and is denoted by —[0yw)ave. In general, the bottom shear stress
estimates from the velocity covariance are much less than the bottom shear stress
estimates from the least-squares method. Sleath (1987) also indicated difficulty
in measuring the covariance near a rough bed using a laser-Doppler velocimeter,
even in the absence of wave breaking. Considering the noise and unknown confi-
dence interval of the covariance measurements, the bottom shear stress estimated
using Eq 5.35 is unreliable in the immediate vicinity of the bottom. The bottom

shear stress estimated using Eq 5.36 are used in the following analysis.
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Figure 5.22: Temporal Variations of Measured Bottom Shear Stress, —oy,, at
Bottom Four Elevations with z,, = 0.13 (—e), 2z, = 0.15 (—o),
Zm = 0.17 (—+), 2m = 0.20 cm (——x) for L1. '
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-Figure 5.23: Temporal Variations of Measured Bottom Shear Stress, —oyw, at
Bottom Four Elevations with z, = 0.13 (—e), 2z, = 0.15 (—o),
Zm = 0.17 (—+), zm = 0.20 cm (——x) for L2.
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Figure 5.24: Temporal Variations of Measured Bottom Shear Stress, —0uw, at

Bottom Four Elevations with z, = 0.13 (—e), zm = 0.15 (—o0),
= 0.17 (—+), 2m = 0.20 cm (—x) for L3.
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Figure 5.25: Temporal Variations of Measured Bottom Shear Stress, —ouw, at
Bottorn Four Elevations with z,, = 0.13 (—s), zm = 0.15 (—o0),

= 0.17 (—+), 2m = 0.20 cm (——x) for L4.
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Figure 5.26: Temporal Variations of Measured Bottom Shear Stress, —o., at
Bottom Four Elevations with z,, = 0.13 (—e), 2,, = 0.15 (—o),
Zm = 0.17 (—+), 2 = 0.20 cm (——x) for LS.
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Flgure 5.27: Temporal Variations of Measured Bottom Shear Stress, —oyy, at
Bottom Four Elevations with 2z, = 0.13 (—e), z,, = 0.15 (—o0),
=0.17 (—+), 2m = 0.20 cm (——x) for L6.
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Figure 5.28: Temporal Variations of Bottom Shear Stress, |u.| u. () with 95%
Confidence Interval (——), and Shear Stress Averaged for 0.13 <

zm < 0.20 cm, —[0ywlave (—), for L1.
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Figure 5.29: Temporal Variations of Bottom Shear Stress, | u.| u, (o) with 95%
Confidence Interval (—), and Shear Stress Averaged for 0.13 <
Zm < 0.20 cm, —[0uw)ave (—), for L2.
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Figure 5.80: Temporal Variations of Bottom Shear Stress, |u.| u. (o) with 95%
Confidence Interval (—), and Shear Stress Averaged for 0.13 <
Zm < 0.20 cm, —[0uw]ave (—), for L3.
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Figure 5.31: Temporal Variations of Bottom Shear Stress, |u.| u. () with 95%
Confidence Interval (——), and Shear Stress Averaged for 0.13 <

Zm < 0.20 cm, —[ouw)ave (—), for L4.
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Figure 5.32: Temporal Variations of Bottom Shear Stress, |u.| u. (o) with 95%
Confidence Interval (——), and Shear Stress Averaged for 0.13 <
Zm < 0.20 cm, —[0yw)ave (—), for LS.
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Figure 5.33: Temporal Variations of Bottom Shear Stress, | y| we (0) with 95%
' Confidence Interval (—), and Shear Stress Averaged for 0.13 <

zm < 0.20 cm, —[0yw)ave (—), for L6.
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5.6 Estimates of Shear Velocity and Bottom Roughness with Addi-
tional Eight Measuring Points

This section discusses the estimates of the shear velocity and bottom rough-
ness using the eight additional measuring points of the two offset lines. The least-
squares method applied to these points is denoted Method B and was described
in Section 5.3. Method B is applied to L1, L2, L4, and L5. There were no ad-
ditional measuring points at L6. For L3, the eight additional measuring points
were in a single offset measuring line, and the results were shown in Figure 5.21

of Section 5.4.

Figures 5.34 to 5.37 show the results of Method B and can be compared
to Figures 5.9, 5.10, 5.12 and 5.13 of Method A. The top panel of Figure 5.34
shows the temporal variation of the maximum correlation coefficient squared,
.['Tgy]maz, for the three lines at a given phase. The maximum correlation coefficient
squared is plotted in the range 0.95 < [y2,]maz < 1.00 and for many of the phases,
[¥2ylmaz > 0.99. The second panel shows the corresponding Az value from which

the estimates of u, and zp were selected at a given phase.

The third panel shows the value of u, selected at each phase and its 95%
confidence interval. The fourth panel shows the value of zp selected at each phase

and its 95% confidence interval.

It is noted that the estimate of zy for L4 shown in Figure 5.36 contains
larger uncertainties. For the remaining lines, L1, L2, and L5, Method B shows
that the least-squares method gives results consistent with Method A and are

affected little by the local irregularities in the bottom roughness.
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5.7 Boundary Layer Thickness

This section discusses the thickness of the boundary layer. The vertical
variations of the horizontal velocity, turbulent kinetic energy, and shear stress
estimated from the velocity covariance are shown near the bottom for the range

0 < 2, < 2.1 cm to infer the boundary layer thickness.

The horizontal velocity profile near the bottom is smooth and continuous,
and there is no sharp transition to indicate the exact thickness of the boundary
layer. The thickness of the boundary layer depends on the definition. Grant and
Madsen (1979) defined the boundary layer thickness, 6, as twice the boundary

length scale given as

bom =2= 2%&4, (5.37)

where gy is the boundary layer thickness with the subscript GM indicating that
it is the definition of Grant and Madsen (1979), £ is the boundary layer length
scale, |U.ey| is the shear velocity including the effects of waves and currents, & is
the Kidrman constant (x =~ 0.4), and w is the wave frequency. The shear velocity
in Eq 5.37 is related to the maximum bottom shear stress as

i
| Ynosl = (—l ""”"“'”l) , (5.38)

P
where |7y mqz| is the maximum bottom shear stress due to the combined effects of

waves and currents

Trowbridge and Madsen (1984a) defined the boundary layer length scale

in terms of the absolute value of the time-averaged shear velocity, |u./|, to be

g = Klud (5.39)
w
W].lel'e ;
[w] = |2 (5.40)
P
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Assuming the boundary layer thickness to be twice the boundary length scale

would give L
K| U

(5.41)

orm =2

where the subscript 7'M indicates that the definition of the boundary layer thick-
ness follows from Trowbridge and Madsen (1984a).

Table 5.4 lists the boundary layer thickness following Eqgs 5.37 and 5.41.
It is noted that |u.| indicated in the table is not a time-average over all of the
phases. The third column indicates the number of phases, N,, used to compute
m The mean boundary layer thickness for the 11 estimates in Table 5.4 using

Eqs 5.37 and 5.41, respectively, is

5GM = 1.08 cm (.22) (5.4—2)
érm = 0.62 cm (.10) (5.43)

where the standard deviation is indicated in parentheses. These estimates will be

assessed in comparison to the vertical variation of the hydrodynamic quantities.

The time-averaged horizontal velocity, %, is separated from the phase-

averaged velocity, u, to yield the oscillatory component, ,, given by
g = Ug — g (5.44)

Similarly, the Reynolds stress estimates and turbulent kinetic energy are separated

as

G- 8 e |

(5.45)

™ [ %
= |4

and

o]
o

-k, (5.46)

where 7/p = —0y, and k = (3/4)(0? + 02) as explained in Section 6.1
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Table 5.4: Estimates of Bottom Boundary Layer Thickness for L1 to L6.

Line Method |u.}mm deMm |u.| Srm
No. (em/s) (ecm) | (cm/s) (cm)
Ll A |n=456 Az® 177 3.68 1.03| 2.57 0.72
B | n=4 AzO—+ | 187 492 1.38| 2.39 0.67
L2 A |[n=456 Az° 112 442 124 171 048
B |n=4 Az%* | 190 455 1.27| 2.21 0.62
L3 A |n=4,56 Az’ 167 3.13 0.88| 2.08 0.58
A* | n=4,5,6 Az~ 141 3.08 0.86| 1.87 0.52
L4 A |n=4,56 Az’ 76 3.00 0.84| 2.00 0.56
B | n=4 Az%t | 168 4.66 1.31 3.06 0.86
L5 A |n=456 Az° 166 3.03 085 1.97 0.55
B | n=4 Az%+ | 189 466 1.31| 2.21 0.62
L6 A |n=456 Az’ 75 341 0.96| 2.20 0.62

Figures 5.38 to 5.43 show the vertical variations of the oscillatory horizontal
velocity, @4, for the range 0 < 2z, < 2.1 cm at eleven phases for L1 to L6. The
figures also show the time-averaged horizontal vélocity, or undertow, %, for the
same range. The oscillatory velocities do not vary much outside the bottom
boundary layer where both estimates given by Eqs 5.42 and 5.43 seem to be
reasonable. The undertow profiles are fa.irly smooth and continuous across the
boundary layer. The modeling of the undertow profiles is beyond the scope of this
dissertation, but this data set could be used in developing the bottom boundary

conditions for undertow models (e.g., Stive and De Vriend 1994).

Figures 5.44 to 5.49 show the vertical variations of the oscillatory shear
stress, 7/p, for the range 0 < 2z, < 2.1 cm at eleven phases for L1 to L6. The
figures also show the time-averaged shear stress, 7/p, for the same range. The

reliability of the Reynolds stress measurements in the immediate vicinity of the
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rough bottom was discussed in Section 5.5. The measurements presented in Fig-
ures 5.44 to 5.49 are at a sufficient distance from the bottom and are expected
to be less contaminated by the reflection at the boundary. These measurements
should be acceptable at least qualitatively. Figures 5.44 and 5.45 for L1 and L2
show that the oscillatory shear stresses approach zero at the upper portion of the
bottom boundary layer where the thickness is about 1 cm in a manner similar
to the bottom boundary layer for purely oscillatory flow. Figures 5.46 to 5.49
for L3 to L6 show large variations without clear trends in 7/p near the bottom
under breaking waves. It is difficult to delineate the bottom boundary in these
figures. The time-averaged shear stress does not seem to have a linear variation
with depth near the bottom as assumed in analytical solutions for undertow (e.g.,

Svendsen et al. 1987).

Figures 5.50 to 5.55 show the vertical variations of the oscillatory turbulent
kinetic energy, k, for the range 0 < z, < 2.1 cm at eleven phases for L1 to L6.
The figures also show the time-averaged turbulent kinetic energy, k, for the same
range. Figures 5.50 and 5.51 for L1 and L2 show that the turbulent kinetic
energy is confined mainly to the bottom boundary layer outside the surf zone.
The magnitudes of the oscillatory and mean components are similar outside the
surf zone. Figures 5.52 to 5.55 for L3 to L6 show that the turbulent kinetic
energy is larger in the surf zone and that it varies vertically across the bottom
boundary layer whose thickness is difficult to identify. The magnitude of the
mean component is larger than the oscillatory component in the surf zone. The
vertical variations of the shear stress and turbulent kinetic energy are without
a clear separation of the bottom boundary layer, suggesting that the turbulence

generated by wave breaking reaches the bottom boundary layer.
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Figure 5.38: Vertical Variations of Oscillatory Component of Horizontal Veloc-
ity, 4, (e), at Eleven Phases (Left), and Time-Averaged Horizontal
Velocity, U, (e), (Right) for L1. '
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Figure 5.39: Vertical Variations of Oscillatory Component of Horizontal Veloc-
ity, 4, (o), at Eleven Phases (Left), and Time-Averaged Horizontal

Velocity, %, (), (Right) for L2.
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Figure 5.40: Vertical Variations of Oscillat.ory Corhponent of Horizontal Veloc-
ity, U, (e), at Eleven Phases (Left), and Time- Averaged Horizontal
Velocity, @, (e), (Right) for L3.
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Figure 5.41: Vertical Variations of Oscillatory Component of Horizontal Veloc-
ity, u, (®), at Eleven Phases (Left), and Time-Averaged Horizontal
Velocity, @, (e), (Right) for L4.
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Figure 5.46: Vertical Variations of Oscillatory Component of Shear Stress, 7/p
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Figure 5.47: Vertical Variations of Oscillatory Component of Shear Stress, 7/p
(e —), at Eleven Phases (Left), and Time-Averaged Shear Stress,
7/p (¢ —), (Right) for L4.
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Figure 5.50: Vertical Variations of Oscillatory Component of TKE, k(e —), at
Eleven Phases (Left), and Time-Averaged TKE, k (¢ —), (Right)
for L1.
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5.8 Bottom Friction Factor and Bottom Roughness

This section discusses the bottom friction factor and bottom roughness.
The purpose of this section is to determine to what extent boundary layer the-
ories developed for sinusoidal flows under non-breaking waves are applicable to
boundary layers under breaking waves. The first subsection introduces the theory
and makes preliminary comparisons based on linear wave theory with the data.
The second subsection discusses the predictions of the temporal variation of the

bottom shear stress.

5.8.1 Wave Friction Factor Based on Linear Wave Theory

Following Jonsson (1966) and Jonsson and Carlsen (1976), the temporal

variation of the bottom shear stress for sinusoidal flow is given by
(l) =p lw) w = %pwabz | sinwt| sinwt (5.47)

or in terms of the shear velocity

Uy = |/ %Ub sin wt _ (5.48)

where f, is the wave friction factor. The near-bottom orbital velocity, Uy, may

be estimated by linear wave theory and is given by
Hw
U= ——=
*~ 2sinh kh

where H is the local wave height; % is the local mean water depth including

(5.49)

wave setup or setdown, & = d + 7;; and k is the local wave number from the
linear dispersion relation, w? = gktanh k&, in which w is the angular frequency,
w =27 /T and T is the wave period. The friction factor is a function of the wave

Reynolds number, RE, and the relative roughness, Ay/ks, expressed as

Jo=fu (@, %) (5.50)



149

Table 5.5: Wave Friction Factor Parameters for L1 to L6

Line| d % kR Kk H A U RE=U"’VAb

No. | (em) (em) (cm) (em)  (cm)  (cm/s) (x107%)

L1 |28.00 -0.30 27.70 0.499 13.22 12.71 36.30 4.9
L2 |21.14 -0.44 20.70 0.427 17.10 19.42 55.47 11.4

L3 |17.71 -0.05 17.66 0.393 12.71 15.77 45.04 7.5
L4 | 14.29 0.20 1448 0.354 824 11.40 32.55 3.9
~ L5 |10.86 0.75 11.61 0.316 7.08 11.02 31.49 3.7
L6 743 1.13 856 0.270 5.05 9.23 26.37 2.6

where A; is the excursion amplitude,

H

H= g

(5.51)

and k; is the Nikuradse sand roughness. The Nikuradse sand roughness is given
by
ks =302 (5.52)

for fully turbulent flow. It is noted that k; has been related to the grain diameter
(e.g., Kamphuis 1975; Sleath 1987) and may be written as

ks = 2 dso (5.53)

Table 5.5 lists the parameters for the wave friction for L1 to L6 where the wave

period is T' = 2.2 s.

The bottom roughness, zo, estimated from the least-squares fit of the log-
arithmic velocity region can be used to estimate k,. Figure 5.56 shows the cross-
shore variation of the mean bottom roughness, zg, for L1 to L6 following Fig-
ures 5.9 to 5.14 for Method A, Figure 5.21 for Method A*, and Figures 5.34
to 5.37 for Method B. It is noted that the mean is not a time average in the strict
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Figure 5.56: Cross-shore Variation of Bottom Roughness. Mean Bottom Rough-
ness Zp for Method A (e) and Method B and A* (o). Estimated
2o = dso/30 (— —) and 2o = 2d50/30 (---).

sense since not all of the phases were included. The use of %E.is based on the
fact that the estimated 2z, showed large variations at phases of flow reversal as
discussed in Section 5.3. The lines indicate a bottom roughness computed from
the grain size assuming fully turbulent flow, where zo = ds0/30 is the dashed line
and 29 = 2ds0/30 is the dash-dotted line. The data point at 14 marked by an
open circle corresponds to the large bottom roughness variations in Figure 5.36
and should be discarded. Although the remaining points show some scatter, two
points can be made. As a first approximation, the bottom roughness can be
considered constant across the surf zone. The simple relation of zy = 2ds0/30
gives a reasonable approximation of the bottom roughness. Second, the bottom
roughness in the surf zone appears to increase slightly with increasing distance

shoreward although more data sets would be required to ascertain this trend.
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Table 5.6: Relative Roughness and Wave Friction Factor from Linear Theory for

L1 to L6.
k5=30a_?.'6 k3=30(%/2) ks=30(276) ks=2d5g
Line £ Ab/ks fw Ab/ks fw Ab/ks fw Ab/ks fw
No. (cm) (cm) (cm)
L1 A [.0074 | 57.2 .028 | 114.8 .021 28.6 .039 | 63.5 .026
B |.0072 58.8 .027 | 117.7 .020 29.4 .038
‘L2 A |.0016 | 404.6 .013 | 809.3 .010 | 208.9 .016 97.1 .022
B |[.0051 | 126.9 .020 [ 259.0 .015 64.1 .026
L3 A |.0046 | 114.3 .021 | 228.5 .016 56.5 .028 | 78.8 .024
A* | .0027 | 194.7 .017 | 404.3 .013 99.2 .022
L4 A |.0054 70.3 .025 | 140.7 .019 352 .035| 57.0 .028
B | .0181 21.0 .045 41.7 .032 10.5 .068
L5 A |.0063 58.3 .028 | 114.8 .021 28.9 .038 | 55.1 .028
B |.0095 38.7 .033 78.2 .024 19.3 .048
L6 A |.0093 33.1 .036 65.5 .026 16.5 .052 | 46.2 .031

Table 5.6 lists the mean bottom roughness, Zp, shown in Figure 5.56 for
L1 to L6. The third column lists the relative roughness, A;/k,, using the mean
bottom roughness, Zg, assuming fully turbulent flow. The ninth column lists the

relative roughness estimate based on ks = 2 dso.

Figure 5.57 shows the relative roughness, A;/k; with k; = 30%5 in Table 5.6
verses the Reynolds number RE in Table 5.5. This figure is made following Jons-
son (1966) and indicates three regimes: laminar, transitional, and rough turbulent.
All points are in the rough turbulent regime except for L2A and L3A*. It is noted
that turbulence generated by wave breaking is not accounted for in Figure 5.57.

A semi-theoretical expression for the wave friction factor was derived by

Jonsson (1966) assuming fully rough turbulent flow to relate the friction factor to
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Figure 5.57: Relative Roughness Verses Reynolds Number Following Jonsson
(1966) for Method A (e) and Method B (o).

the relative roughness. This expression is given as

Ay
4\/1.—w+10g 4\/E log( )—0.08 (5.54)

where log denotes the base 10 logarithm and the constant —0.08 was determined
empirically. The fourth column of Table 5.6 lists f,, calculated using Eq 5.54 and
the relative roughness from the third column. The sensitivity of the computed
friction factor to the relative roughness is listed in the sixth and eight columns
where k; is estimated k, = 30(Z5/2) and k; = 30(2%), respectively. Table 5.6
indicates that the friction factor based on Zg = 2 dso mostly falls within the values
of the friction factor based on zo = 0.5%; and zy = 2% which may be a realistic

range considering the scatter of zo at different phases.
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5.8.2 Friction Factor Based on Quadratic Friction Equation

The temporal variation of the bottom shear stress may be expressed using
the velocity measured just above the bottom boundary layer in the quadratic form

(e.g., Grant and Madsen 1979)
1
n(t) = Eﬂfw | we| ue (5.55)

where u; is the time-varying velocity immediately outside the bottom boundary
layer. Eq 5.55 neglects the phase shift between the bottom shear stress and the
velocity immediately outside the boundary layer. The bottom shear stress and

the shear velocity, u., are related by

75(t) = p | U] ux (5.56)

The friction factor, f,, which is assumed constant, may be estimated by
a least-squares fit using Eqs 5.55 and 5.56 together with the measured temporal

variations of uy(t) and u.(t). This procedure can be shown to yield

_ 2;;1 (™ u*)j (] ws ub)j

fw 4
157 (us);

(5.57)

where u, is the shear velocity presented in Figures 5.9 to 5.14 for Method A,
Figure 5.21 for Method A*, and Figures 5.34 to 5.37 for Method B; J is the number
of phases over the wave period as indicated in the third column of Table 5.4; and
up is the velocity just above the boundary layer. The friction factor, f,, may be
regarded as the measured friction factor based on the quadratic friction equation,

Eq 5.55.

Table 5.7 lists the fitted friction factors for L1 to L6 following Eq 5.57.
The second column lists the friction factor computed with u; at 2z, = 1.6 cm. A

sensitivity analysis indicated that f,, varied by less than 3% when computed with
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Table 5.7: Friction Factors Fitted using Shear Velocity and Near Bottom Veloc-
ity for L1 to L6

Line = %= Yid
No. . & Fo €
L1 A |[.025 12.89|.018 21.09
B |.024 11.80(.018 17.02
L2 A |[.014 3.96|.014 2.78
B |.016 10.49|.013 12.88
L3 A |.017 295|.016 2.85
A*|.014 0.57].013 1.71
L4 A |[.016 3.41|.018 4.17
B |.046 30.85 | .053 37.47
L5 A |.026 2.86|.027 4.00
B |.040 9.90|.042 11.89
L6 A |.028 7.47|.031 7.68

up at 2y, = 1.1 and 2.1 cm. The third column indicates the least-squared error, €?,

for the least-squares fit. It is noted that L4, Method B, has a large error and should
be discarded. This is consistent with the discussion of the bottom roughness in
the previous subsection and shown in Figure 5.56. Collectively, Methods A, A¥,

and B yield consistent values of f,.

Comparisons will be made with a depth-integrated, time-dependent nu-
merical model in Chapter 7. The numerical model includes bottom friction in a
form similar to Eq 5.55 except that the depth-averaged velocity is used instead of
the velocity above the bottom boundary layer. For comparisons with this model,
the least-squares fit using Eq 5.57 was repeated with w; replaced by an approxi-
mate mid-depth velocity, um:4. The mid-depth elevations are given in Chapter 7.
The fourth column of Table 5.7 shows the fitted friction factor using the approx-

imate mid-depth velocity, and the fifth column shows the least-squared error. As
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expected, L4, Method B, has a large error and should be discarded.

The fitted friction factors in the second column of Table 5.7 and the relative
roughness in the third column of Table 5.6 are plotted in Figure 5.58. The data of
Jonsson and Carlsen (1976) and Sleath (1987) are included, and it is noted that
both data sets were obtained using an oscillating water tunnel with rough bottoms.
The data of Jonsson and Carlsen (1976) were reduced by a logarithmic fit, and
the data of Sleath (1987) were reduced by the momentum integral method. The
solid curve is Eq 5.54 from Jonsson (1966), and the dashed curve is the equation

of Kamphius (1975) given by

3 Ay
4ﬂ_+log4m g( ) 0.35 | (5.58)

where the coefficients 3/4 and —0.35 were determined empirically. Figure 5.58
shows that the data lie near the two curves with the scatter expected from previous
studies where the review paper by Soulsby et al. (1993) is given as an additional

reference.

Figure 5.59 compares the cross-shore variation of the friction factor com-
puted using linear wave theory in Section 5.8.1 and using the least-squares fit in
this subsection. In the figure, the friction factors estimated for Method A are
indicated with solid circles, and the friction factors estimated for Method B are
indicated with open circles. The circles with the vertical lines indicating the un-
certainty of the measured bottom roughness are for the friction factors estimated
using linear wave theory from Table 5.6. The center data point is from the fourth
column with k; = 30%5, and the minimum and maximum indicated by the line are
from the sixth column with k, = 30 (Z5/2) and eighth column with k, = 30(27%),
respectively. The circles without the vertical lines are for the estimates from the
least-squares fit in Eq 5.57 and are listed in the second column of Table 5.7. The
data of L4, Method B, are excluded from this figure. Although the figure contains
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Figure 5.58: Friction Factor Verses Relative Roughness with Method A (e),
Method B (o), Jonsson and Carlsen (1976) (), Sleath (1987) (%),
Jonsson (1966) (—), and Kamphius (1975) (— —).

some scatter, several points can be made. First, comparisons of the data between
Method A and Method B show a reasonable consistency and indicate that the
results were not contaminated by irregularities in the bottom roughness or un-
certainties in determining the position of the laser-Doppler measuring volume.
Second, as a first approximation, the friction factor may be assumed constant

across the surf zone. Third, Jonsson’s equation, Eq 5.54, based on linear wave
theory (circles with the lines) gives a fairly good estimate of the measured wave
friction factor based on the quadratic friction equation, Eq 5.55, although Eq 5.54

appears to slightly overpredict the measured value in the inner surf zone.
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Figure 5.59: Cross-shore Variation of Friction Factor with f,, from Table 5.6
with Method A (e —) and Method B (0 —); and with f,, from
Table 5.7 with Method A (e) and Method B (o).

5.8.3 Temporal Variation of Bottom Shear Stress Estimates

This subsection discusses how well the quadratic friction equation, Eq 5.55,
predicts the measured temporal variation of the bottom shear stress. Figures 5.60
to 5.70 show the measured bottom shear stress estimates, 7,/p = |u.|u., described
in Section 5.3, and are indicated in the figures by the solid circles with the 95%
confidence intervals. The bottom shear stress estimates indicated by the solid
curve are computed using the quadratic friction equation, Eq 5.55, together with
the fitted friction factor in the second column of Table 5.7 and the measured
horizontal velocity at z, = 1.6 cm above the boundary layer. The envelope is

computed using the values of 2f, and f,,/2 in the quadratic friction equation.

The measured bottom shear stresses for Method A and Method B are

plotted in separate figures on the same page. Comparisons of Method A and
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Method B show that the temporal variations of the shear stresses are fairly similar
at each measuring line within the confidence intervals of about two, indicating that
the bottom shear stress based on the logarithmic velocity profile was not affected
by irregularities in the bottom. An exception is at L4, where results for Method

B were not reliable.

Comparisons of the measured bottom shear stress indicated by solid circles
with light vertical lines and the bottom shear stress estimated using Eq 5.55 with
constant friction factor show that the temporal variation of the bottom shear
stress in the surf zone can be estimated using the measured velocity above the
bottom boundary to within a factor of two. The phase shift between 7,(t) and

up(1) neglected in Eq 5.55 appears to be negligible in these figures.

Estimating the temporal variation of the bottom shear stress using Eq 5.55
requires the prediction of the temporal variation of the horizontal velocity just
above the bottom boundary layer, uy(t), which is far from sinusoidal. A numerical
model will be presented in the Chapter 7 and its ability in predicting the temporal

variation of the bottom shear stress is discussed.
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Figure 5.60: Temporal Variation of 7,. Computed from u, (e) with 95% Confi-
dence Limits (—). Using Fitted fo, (—), fuw/2 (= =), 2 fu (-
), for L1, Method A.
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Figure 5.61: Temporal Variation of 7,. Computed from u,. () with 95% Confi-
dence Limits (—). Using Fitted f, (—), fu/2 (——), 2 fu (-
), for L1, Method B.
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5.62: Temporal Variation of 7,. Computed from u. (o) with 95% Confi-
dence Limits (—). Using Fitted f, (—), fw/2 (——), 2 fuw (-
—), for L2, Method A.
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5.63: Temporal Variation of 7,. Computed from u, (o) with 95% Confi-
dence Limits (—). Using Fitted f, (—), fu/2 (—-), 2 fu (-
), for L2, Method B.
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Figure 5.64: Temporal Variation of 7,. Computed from u, (o) with 95% Confi-
dence Limits (—). Using Fitted fo, (—), fuw/2 (— =), 2 fu (--
-), for L3, Method A.
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Figure 5.65: Temporal Variation of 7,. Computed from u, (o) with 95% Confi-
dence Limits (—). Using Fitted f, (—), fu/2 (——); 2 fu (-
—), for L3, Method A*.
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Figure 5.66: Temporal Variation of 7,. Computed from u. () with 95% Confi-
dence Limits (—). Using Fitted f, (—), fu/2 (— =), 2 fu (-
—), for L4, Method A.
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Figure 5.67: Temporal Variation of 7,. Computed from u., (o) with 95% Confi-
dence Limits (—). Using Fitted f,, (—), fw/2 (= =), 2 fu (-
-), for L4, Method B.
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Figure 5.68: Temporal Variation of 7. Computed from u. () with 95% Confi-
dence Limits (—). Using Fitted fy, (—), fu/2 (——), 2 fu (-
), for L5, Method A.
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Figure 5.69: Temporal Variation of 7,. Computed from u, (e) with 95% Confi-
dence Limits (—). Using Fitted f,, (—), fu/2 (— =), 2 fu (-
-), for L5, Method B.
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Figure 5.70: Temporal Variation of 7,. Computed from u. () with 95% Confi-
dence Limits (—). Using Fitted fy, (—), fu/2 (=), 2 fu (-
), for L6, Method A.



Chapter 6

WAVE GENERATED TURBULENCE

This chapter discusses the turbulence generated by wave breaking. In Sec-
tion 6.1, the estimate of the turbulent kinetic energy from measurements in two-
dimensions is considered. In Section 6.2, the assumption of an approximate local
equilibrium of turbulence is reviewed from Chapter 2. It is noted that in this
section, several equations are repeated from Chapter 2 for convenience. In Sec-
tion 6.3, the dissipation coefficient, Cy, from the transport equation of turbulent
kinetic energy is estimated from the data. In Section 6.4, the temporal variation
of the mixing length coefficient, C¢, is computed, and a time-averaged mixing
length coefficient, Cy, is estimated. Additionally, the vertical and temporal varia-
tions of the eddy viscosity are presented using the calibrated values of C; and Cq.
In Section 6.5, the assumption of an approximate local equilibrium of turbulence
is assessed using the calibrated coefficients. Most of the findings of this chapter

appear in Cox et al. (1994a).

165
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6.1 Approximation of Turbulent Kinetic Energy from Measurements

in Two Dimensions

Recalling from Chapter 2, the dimensional turbulent shear stresses may be

written in tensor notation as (e.g., Rodi 1980)

Bu‘; 6u3- 2
T — + 5 | — =ké;; 6.1
TJ P [vf- (dxj i 3.’1.',') 3 Jl ( )
where use is made of the repeated indices, = 1, 2, 3; 7; is the turbulent stress;
0;; is the Kronecker delta; v is the kinematic viscosity; p is the fluid density; and

k is the turbulent kinetic energy. The turbulent kinetic energy, k, is defined in

terms of the normal stresses as

|
k= _5.; (711 + T2z + 733) - (6-2)

Assuming that Reynolds averaging is the same as the phase averaging used here,

the normal stresses may be expressed in terms of the measured variances
Ti = —poy 5 Ta = —pos, ; Tz = —poL, (6.3)
and the phase-averaged quantities from the previous chapters may be expressed
D= § U=t § =W (6.4)

It is noted that o2 was not measured for this experiment. From Eq 6.1, the normal

stresses may be written as

- P 9 T
T = p -tha—: - §k (6.5)
[ Bug 2 ]
= |G e |
T22 p ' y‘@xg 3"5— (6 6)
[ a‘ua 2 y
T3z = p _2Vt3_x3 — gk- = (67)

Using the continuity equation, the sum of the normal stresses is given as

11 + T2 + Taz = —2pk (6.8)
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Including the definitions from Eq 6.3, the standard definition of k is given as

k=5 (0402 +0?). (6.9)

SR

For an idealized two-dimensional turbulent flow, dus/dz3 = 0 so that Eq 6.7 yields

2

T33 — -—gpk (610)
Using 733 = —po?, Eq 6.10 becomes
2
8. Py 6.11
o, 3k (6.11)
This reduces Eq 6.9 to
3 3
k= _g(m +m) = ¢ (o2 +02). (6.12)
The use of Eq 6.11 results in
gd 1
L B 6.13
2k 3 (6.13)

corresponding to homogeneous isotropic turbulence. For steady turbulent flow, the
ratios of the normal stresses to the turbulent kinetic energy have been tabulated

by Svendsen (1987) and are given in Table 6.1. This table indicates that

2
0.21 < ;—k < % (6.14)

so that o? may be overestimated slightly for this dissertation. It is desirable to

measure this quantity directly in future experiments.

Having measured o2 and ¢? directly, it is of interest to determine whether
the ratio of vertical to horizontal variance is constant over a wave period. This

relation may be expressed as

s =00’ (6.15)
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where Cy,(z, z) is an empirical constant and assumed to be independent of time.

Using the least-squares method to solve for C,, it can be shown that

N CANCHT
- 1}‘7 i(03);

1=1 (O‘E)?

(6.16)

where J = 220 is the number of phases.

Figure 6.1 shows the cross-shore variation of C,, for L1 to L6. The values
lie in the range 0.06 < C,, < 0.86 whereas the range for the types of flows listed
in Table 6.1 is 0.16 < C,, < 1.00. It is noted that for L1 and L2 above the bottom
boundary layer, the values of o2 and ¢? are nearly zero. For L3 to L6, Cy, is
fairly constant over depth until the lower portion of the water column where it

decreases linearly to a small value because of the presence of the bottom.

Figure 6.2 shows the temporal variations of C,02? and o2 for the five rep-
resentative vertical elevations for L2. The representative elevations were shown
in Figure 4.6 and listed in Table 4.2. The lower curves for L2e show that it is
appropriate to assume that C, is constant over a wave period in the boundary
layer outside the surf zone. Figure 6.3 shows the temporal variations of C\,0?2 and
o2 for the five vertical elevations for L4. This figure also shows that C,, can be
considered constant over a wave period at a given z and z location for spilling
waves in the surf zone. The values for scaling the turbulent stresses in the surf
zone, gH, /o, are given in the captions for completeness and are discussed in the

next section.
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Table 6.1: Steady Turbulent Flow Tabulated by Svendsen (1987).

ol o2 o? ol
2k 2%k o? 2k
Plane wake 042 0.32 0.76 0.26
Plane mixing layer 0.467 0.267 0.57 0.267
Boundary layer
inner region 0.62 0.10 0.16 0.28
outer region 0.45 0.23 0.51 0.32
Plane jet 042 030 0.71 0.29
Open channel
midstream 0.58 0.20 03¢ 0.22
near bottom 062 0.17 0.27 0.21
Homogeneous

isotropic turbulence 0.33 0.33 1.00 0.33
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Figure 6.1: Cross-Shore Variation of C,, for L1 to L6.
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6.2 Approximate Local Equilibrium of Turbulence

Recalling from Chapter 2, the transport equation of turbulent kinetic en-
ergy, k, may be written as (e.g., ASCE 1988)

X _ 3/2
%—i— ¥ uj% =n (g% 4 gz") g—; + a% (:: gi) Cj*"‘%, (6.17)
where use is made of the repeated indices, 1 = 1,2; { is time, 2, = z is the
onshore directed horizontal coordinate; z; = z is the vertical coordinate, positive
upward with z = 0 at the still water level (SWL); u; = u and uy = w are the
horizontal and vertical velocities; and oy, is an empirical constant associated with

the diffusion of k. The turbulent eddy viscosity, v;, may be expressed as a product

of the turbulent length scale, £;, and a turbulent velocity scale, typically v/, (e.g.,
ASCE 1988)
v, = LVk. (6.18)

The turbulent length scale may be written as 4; = Cd" £ so that Eq 6.18 may be
expressed (e.g., ASCE 1988)
ik, (6.19)

where £ is the turbulent mixing length, and C; is an empirical coefficient. The
typical values of Cy and oy for steady turbulent flow are Cy ~ 0.08 and o ~ 1.0
(Launder and Spalding 1972). The value of Cy is determined in the next section
for non-breaking and breaking waves under the assumption of an approximate

local equilibrium of turbulence.

The equation for the dissipation rate of k£ might be used to estimate the tur-
bulence length scale (k-e model) but this equation is more empirical than Eq 6.17

and gives only slightly better results for the case of bed shear stress calculations
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outside the surf zone (Fredsge and Deigaard 1992). Alternatively, the mixing
length ¢ in Eq 6.19 may be specified simply as
k(z —z) forz < (Eh/n - zb)
b= (6.20)
Cih for z > (Ceh/x + 2,)
where « is the Karman constant (x =~ 0.4); z, is the bottom elevation; % is
the instantaneous water depth; and C; is an empirical coefficient related to the
eddy size. Cy is written with an overbar to show that it is time-invariant and to
differentiate it from C; used later. Eq 6.20 is similar to that used by Deigaard
et al. (1986) for their analysis of suspended sediment in the surf zone. Their
formulation was in terms of the turbulent length scale in which use was made of
C; ~ 0(0.1) and the mean water depth, A, instead of the instantaneous depth, h.
The use of k& should be more appropriate in the swash zone in light of the limited
field data of Flick and George (1990). Svendsen (1987) suggested a larger C¢ by a
factor of 2 to 3 for his qualitative analysis of surf zone turbulence. The coefficient
for the unsteady flow, C; , and the time-averaged value, Cy, will be determined in

Section 6.4.

The dimensionless variables are introduced following Kobayashi and Wur-

janto (1992):

t T z U w
. ;e et wbee B fu
Tr, i :-r";-\/.g"-ﬁ{'a"=| . Hr, v gHT = H"’/Tf ( )
Y p P M ' k /= ¢ _ LvgH,r (6.22)

“wE “TENL T CTENE CT

where the primes indicate dimensionless quantities, 7 and H, are the characteris-
tic wave period and height of the shallow water waves, and o is the ratio between
the horizontal and vertical length scales. The order of magnitude of k, £, and v, is
estimated such that the resulting normalized quantities k', £, and v; are of order

unity or less.
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Substitution of Igs 6.21 and 6.22 into Eq 6.17 under the assumption of
o? > 1 yields

ak' ok’ ok’ ou' a (v, Ok k312
| (Pt el bl / i =1 ¥ 1 34
’ (8t’+u83:’+w6z’) "ot 53’( ) &g

O 0z'

(6.23)

where the first and third terms on the right-hand-side are the production and
dissipation terms, respectively. For their analysis of suspended sediment in the
surf zone, Deigaard et al. (1986) used Eq 6.23 in which the advection terms were
neglected and the production of k' was estimated empirically. Eq 6.23 indicates
that the production and dissipation of k' are dominant under the assumption of
o? > 1. This is qualitatively consistent with the findings of Svendsen (1987) who
concluded that only a very small portion of the energy loss in the breaker (2-6%

for the cases considered) was dissipated below trough level.

Considering the empirical nature of Eq 6.23 with the coefficients o, and
- Cy as well as the uncertainty of the free surface boundary condition of k¥’ even for
steady turbulent flow (Rodi 1980), Eq 6.23 may be simplified further by neglecting
the terms of the order =, and the resulting equation is expressed in dimensional

form as
7O puak”
plz~ ¢ ¢
which implies the local equilibrium of turbulence. Substitution of 7/p = 1,0u/dz

and Eq 6.19 into Eq 6.24 yields

(6.24)

7]
k= 6.25
pV/Cy (6.25)
and
0
v =L a—z (6.26)

With these assumptions, Eq 6.25 is used to determine the appropriate value of Cy
in Section 6.3. Eq 6.26 corresponds to the standard mixing length model (ASCE
1988) and is used with Eq 6.19 to determine C; and C; in Eq 6.20 in Section 6.4.
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The degree of the local equilibrium of turbulence is assessed using Eq 6.24 with

the calibrated coefficients Cy and Cy in Section 6.5.

The normalization parameters for the turbulent quantities, &, £ and 14, in
Eq 6.22 are given in Table 6.2 with the range of values for the measured data.
The range is found by taking the minimum and maximum values for the phase-
averaged quantities between the trough level and the bottom boundary layer which
is defined as 1 cm above the impermeable bottom and consistent with the results
in Section 5.7. The ranges given in parentheses are for the bottom boundary layer.
Table 6.2 shows that k/(gH. /o), £/(H./\/7), and v;/(H,*/T;) are indeed of the
order unity for L3 to L6 in the surf zone. These quantities are less than unity for

L1 and L2 outside the surf zone.

For completeness, the normalization parameters for the steady and turbu-
lent quantities for L1 to L6 are given in Table 6.3 where H, is the local wave
height, T is the wave périod T, = 2.2 s, and o is the ratio of the horizontal length
scales to vertical length scales as defined in Eq 6.22.
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Table 6.2: Range of k, £ and »;, and Normalization Quantities for L1 to L6.

Line k gH. /o / H,/\/o vy H.2/T,

No. (em?/s?) (em?/s?) (cm) (cm) (em?/s) (ecm?/s)

L1 0.2-2.8 684 | 0.60 — 1.20 3.04 | 0.11 - 0.61 79.4
(0.3 - 18.8) (0.01 - 0.40) (0.00 - 0.27)

L2 0.4 -3.8 1007 | 0.60 - 1.91 4.19 | 0.17 - 1.03 132.9
(0.4 - 35.9) (0.01 — 0.40) (0.01 - 0.28)

L3 14.4 - 297 645 | 0.60 - 3.23 2.89 | 0.65- 18.4 73.4
(4.9 - 45.6) (0.01 - 0.40) (0.01 - 0.76)

L4 | 20.7 - 559 337 | 0.61 —4.26 1.68 | 0.81 — 34.8 30.9
(6.8 — 65.7) (0.02 - 0.41) (0.01 - 0.68)

L5 17.4 - 206 268 | 0.60 — 2.64 1.39 | 0.97 - 12.9 22.8
(4.1 - 35.6) (0.01 - 0.40) (0.01 - 0.60)

L6 13.9 - 179 162 | 0.61 — 2.00 0.91 | 0.81 -11.1 11.6
(4.4 - 76.7) (0.02 - 0.41) (0.02 - 0.83)

Table 6.3: Normalization Parameters for Steady and Turbulent Quantities for

L1 to L6.

; Hy H> gH, H.
Line | H, gH, T: T o = -
No. | (em) (em/s) (em/s) (cm?/s) (em?/s?)  (em)
L1 |13.22 1139 6.01 79.4 18.95 684 3.04
L2 |17.10 129.5 7.77  132.9 16.66 1007 4.19
L3 |12.71 111.7 5.78 73.4 19.33 645 2.89
L4 8.24 89.9 3.75 30.9 24.00 337 1.68
L5 7.08 83.3 3.22 22.8 25.90 268 1.39
L6 5.05 70.4 2.30 11.6 30.66 162 0.91
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6.3 Estimation of Dissipation Coefficient

To calibrate the dissipation coefficient, Cy, a least-squares error method is
used similar to that used to find C,, in Section 6.1. Making use of Eq 6.25 with
|7]/p = |oww| and assuming that Cj is a function of z and z only, the least-squares
equation can be shown to be

VCa= Z"’_ljgu}fslf (6.27)

.? 17
where 7 = 220 is the number of phases.

Figure 6.4 shows the cross-shore variation of Cy for L1 to L6 using Eq 6.27.
The vertical variation of Cy is distinctly different for the three regions: L1 and
L2 seaward of breaking, L3 in the transition region, and L4 to L6 in the inner
surf zone. For L1 and L2, Cy; =~ 0.06 in the bottom boundary layer whereas
Caq = 0.08 has been used for oscillatory flows (e.g., Deigaard et al. 1991). For
L3, the magnitude of Cy is small over the water column. For L4 to L6, there is
considerable scatter in Cy, but it does not appear to vary with depth except in

the lower portion where it decreases to a small value.

Figure 6.4 shows the cross-shore variation of Cy in detail for L4 to L6. An
average value of the dissipation coefficient, [Cylave, Was computed for L4 to L6
using only those measuring point elevations for which Cy did not appear to vary

with depth. The average value for L4 to L6 is given by
[Calave =~ 0.053 (0.020) (6.28)

where the standard deviation is given in parentheses. Figure 6.5 shows the mea-
suring point elevations used to estimate [Cylae and are indicated with a solid
circle. The thick vertical line indicates [Cylave = 0.053 and is plotted over the
range of depths for which C; did not appear to vary with depth. The thin dashed

lines are this average & one standard deviation.
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Figure 6.6 shows the temporal variations of \/Cyzk and |o,| for the five
vertical elevations for L2. Like C,, in Figure 6.2, the lower curve shows that it
is appropriate to assume that Cy is constant over a wave period in the boundary
layer outside the surf zone. Figure 6.7 shows the temporal variations of v/Cyk and
|oww| for the five vertical elevations for L4. This figure shows that Cjy is relatively

constant over a wave period in the surf zone as well.
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6.4 Estimation of Mixing Length and Eddy Viscosity

The mixing length, ¢, and the eddy viscosity, v;, are estimated in this
section using Eqs 6.19 and 6.26 and the calibrated coefficient, Cy. The vertical
gradient of the horizontal velocity, du/dz, in Eq 6.26 is computed using IMSL
subroutines DCSIEZ and DDERIV without smoothing (Visual Numerics 1991).
The subroutine DCSIEZ computes the value of the cubic spline interpolant for the
given data. The subroutine DDERIV computes the first derivative of the data
using the cubic spline from the subroutine DCSIEZ. Double precision is used for
both subroutines. It is restated that for the Reynolds averaging assumed here,

WU,

Figure 6.8 and 6.9 show the vertical variations of the horizontal velocity, u,
and the vertical derivative, 0u/0z, at eleven phases for L1 and L4. The direction
of the light line connected to each data point indicates the tangent computed at
that point and the length of the line is related to the magnitude of the derivative

at that point. The tangent lines are drawn by connecting two points

Ou

azAz, z + Az] (6.29)

[u(z,2,t), 2] and [u(z,z,t)+

where Az is an arbitrary scalar with Az = 2.0 and 1.0 for the upper panels of
Figures 6.8 and 6.9, respectively, and Az = 0.2 for the lower panels of both figures.
The two light horizontal lines in the lower right corner of the top panel indicate
the range 0 < z,, < 2.0 cm which is plotted on an expanded scale in the bottom

panel.

Both the upper and lower panels of Figure 6.8 show that the velocity pro-
file is fairly smooth and continuous and that the derivatives can be estimated
reasonably well outside the surf zone. Figure 6.9 for L4 in the surf zone shows in

the upper panel that the velocity profiles are less smooth and that the derivatives
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contain more noise than for L1 shown in Figure 6.8. Similarly in the bottom
boundary layer shown in the lower panel, the derivatives contain more noise than
for L1. Similar results were obtained for L2, L3, L5 and L6 and are not shown for

brevity.

Eqs 6.26 and 6.19 with the calibrated values of C; are used to determine
C¢ in Eq 6.20. For this procedure, an error term is computed for a range of C
values by summing the absolute value of the difference of Eqs 6.26 and 6.19 over

the water column at each of the 220 phases. The error term is given as

I —_—
Err(j %Z'“ o j=1,2,...,220 (6.30)
where
du
2
a=1£ 5 (6.31)
and
b= Ci 'tk (6.32)

and the index ¢ refers to points in the vertical measuring line. The error term,
Err, is dimensionless and Err = 1.0 corresponds to a relative error of 100%. The
quantity in Eq 6.32 was used to normalize the error esltima.te since the quantity
in Eq 6.31 is likely to contain more noise due to the derivative on the horizontal
velocity. The ranges of C; were 0.01 < C; <0.20 for L1 and L2 and 0.05 < C¢ <
0.45 for L3 to L6. The value of C; that gave the least error in Eq 6.30 was adopted
at that phase.

Figures 6.10 to 6.15 show the temporal variations of the error estimates
and the adopted value of C; at each of the 220 phases for L1 to L6. It is noted
that the C; values for which the error term exceeds unity, i.e. Err > 1.0, are
marked with a plus in the figures are not used to compute C;. These figures show

the amount of scatter expected for the calibrated C; and indicates that there is
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a slight variation over the wave period. The time-average values, C;, are listed
in Table 6.4 where the standard deviations are given in parentheses. The overall

values for the three regimes are

0.04 (0.03) outside the surf zone
Ce>~ ¢ 0.12 (0.07) in the transition region (6.33)
0.18 (0.09) for the inner surf zone

where the value for outside the surf zone is the average of L1 and L2 from Table 6.4,
the value in the transition zone is simply L3 from Table 6.4, and the value for the
inner surf zone is the average of L4, L5 and L6. The corresponding averages of

the standard deviations are given in parentheses.

Table 6.4: Time-Averaged Mixing Length Coefficient for L1 to L6.

Line

No. C

L1 [0.032 (0.021)
L2 |0.055 (0.041)
L3 [0.117 (0.065)
L4 [0.211 (0.105)
L5 |0.162 (0.081)
L6 |0.172 (0.089)

The next two figures show how well the relation

Ou

faz

~ Cy 'k (6.34)

used to determine C; is satisfied. Figure 6.16 shows the vertical variations of
£|0u/dz| and C‘}M\/E at 11 phases for L1. The light vertical lines in the upper
panel indicate the extent of the water column at the given phase. The two light

horizontal lines in the lower left corner of the top panel indicate the range 0 <
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Zm < 2.0 cm which is plotted on an expanded scale in the bottom panel. The
agreement is fair considering that k is a small quantity in the boundary layer
seaward of breaking. Figure 6.16 also shows reasonable agreement in the middle
portion of the water column, but there is some disagreement under the wave crest
at t ~ 0.8 s. Figure 6.17 shows that Eq 6.34 is satisfied reasonably well below
trough level for L4 except near the surface roller at ¢ ~ 0.6-0.8 s. It is noted
that the scale in the upper panel of Figure 6.17 is an order of magnitude larger
than the scale in the upper panel of Figure 6.16. The lower panel of Figure 6.17
shows that Eq 6.34 is reasonably well satisfied in the bottom boundary layer for
L4, and it is noted that the scale in this panel is the same as the lower panel of
Figure 6.16. The figures for L2, L3, L5 and L6 were similar and are omitted for
brevity.

Figures 6.18 and 6.19 show the vertical and temporal variations of the eddy
viscosity, vy, given in Eq 6.19 computed using the calibrated vallues of Cy and C;
for L1 and L4, respectively. The light vertical lines in the upper figure indicate
the extent of the water column at the given phase. The two light horizontal lines
in the lower left corner of the top panel indicate the range 0 < z,, < 2.0 cm which
is plotted on an expanded scale in the bottom panel. The figures show that v; at
a given phase increases gradually from the bottom until about the middle of the
water column where it is more or less constant over depth. Also, it is reasonable
to assume that v, is time-invariant except near trough level with the passing of the
bore. It is noted that the scales in both the upper and lower panels of Figure 6.19
are an order of magnitude larger than the scales in Figure 6.18. The figures for

L2, L3, L5 and L6 were similar and are omitted for brevity.
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Figure 6.19: Vertical Variations of Eddy Viscosity, »;, at 11 Phases for L4 (Top)

with Detail of Bottom Boundary Layer (Bottom).
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6.5 Assessment of Local Equilibrium of Turbulence Approximation

In this section, the approximation of the local equilibrium of turbulence 1s

assessed using the calibrated coeflicients.

Figures 6.20 to 6.25 show the temporal variations of the dissipation term,
C3/4(k*?/¢), and the production term, (r/p)(Ou/dz), using the calibrated coef-
ficients, Cy and C}, for L1 to L6. The units for the contours in these figures are
cm?/s®. Superposed on these contours is the phase-averaged free surface displace-
ment, 7,, and standard deviation envelope, 7, & 0,. It is noted that a smoothing

procedure was applied to the contours and is described below.

Figures 6.20 and 6.21 for L1 and L2 show that both the dissipation and
production terms are small in the absence of wave breaking. Figures 6.22 for L3
shows that the local equilibrium of turbulence approximation is not valid in the

‘transition region and that the magnitude of the production term under the wave
crest is larger than the dissipation term. Figures 6.23 to 6.25 for L4, L5 and L6
show that the productionland dissipation terms are roughly of the same magnitude
under the wave crest and that the local equilibrium of turbulence approximation

may be a reasonable assumption for spilling waves in the inner surf zone.

Smoothing was used for the contour figures in this section since the contour
lines of the unsmoothed values were difficult to discern in black and white. Since
the temporal resolution was much greater than the vertical resolution, approxi-
mately 220 points in ¢ by 20 points in 2, the smoothing was applied first by a
running average in time and then by an average in both space and time. The
first running average was a seven point scheme where the value at a given phase

was the average of that value with the three nearest points on each side. This is
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expressed as
1
(@j)em = —(aj-3 + @j2 + ajo1 + aj + aj41 + aj42 + ¢j43) (6.35)

where (a;)sm is the resulting smoothed value at the jth phase and all of the coeffi-
cients on the right-hand-side of Eq 6.35 are unity. The second running average in
z and 1 was similar to Eq 6.35 except that five points were used in two dimensions

with weighted coefficients given by

i: B %1
15 551
151351 (6.36)
15 551
11 111

The effect of this smoothing verses the unsmoothed data can be seen by com-
paring Figures 6.23 and 6.26. Figure 6.26 shows the temporal variation of the
dissipation term Cﬁ"‘(k3f2/€) and the production term (7/p)(0u/0z) for L4 simi-
lar to Figures 6.23 except that Figures 6.26 is plotted without smoothing. For the
upper panel of Figures 6.26, the contour lines can be seen easily. For the lower
panel, it is difficult to distinguish the contour lines. A comparison of Figures 6.23
and 6.26 indicates that the smoothing procedure retains the essential information
of the unsmoothed data. Comparisons between the smoothed and unsmoothed
figures for the other measuring lines as well as for the figures discussed below were

similar to those of Figures 6.23 and 6.26 and are omitted for brevity.

Figures 6.27 to 6.32 each show the temporal variations of two additional
terms of the dimensional equivalent of Eq 6.23 for L1 to L6. The terms shown in

the upper and lower panels are

ok ak
wo— and e (6.37)
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where the contours are in units of cm?/s”. For both the upper and lower panels of
Figures 6.27 to 6.32, the two-step smoothing procedure was applied as described
above. It is noted that the term u(0k/0z) in the dimensional equivalent of Eq 6.23
could not be computed for this data set. Also, the diffusion term

2 (-”i Qf‘-) (6.38)

a Jkaz

was estimated, but the results had large uncertainties, especially for L3 to L6 in

the surf zone, due to the two derivatives in z.

The upper panels of Figures 6.27 and 6.28 for L1 and L2 indicate that the
magnitude of w(dk/0z) is small outside the surf zone. The lower panels of these
two figures show that there is considerable noise in the 9k/0t term, even outside
the surf zone where the turbulent kinetic energy is small. The problem of noise
can also be inferred from Figure 4.15 which shows the temporal variations of o7
and o2 at the five representative measuring point elevations for L4. The upper
panel of Figures 6.29 for L3 in the transition region shows that the advection term
w(0k/0z) under the wave crest is larger than the dissipation term and of the same

magnitude as the production term in Figure 6.22.

Comparing the production and dissipation terms in Figure 6.23 with the
advection term, w(0k/dz), in Figure 6.30 for L4 shows that the magnitude of
the advection term is less than the production and dissipation terms under the
wave crest near trough level for ¢ ~ 0.8 s. The advection term is larger in the
middle of the water column with the passing of the wave crest at ¢t ~ 1.0 s. The
upper panels of Figures 6.31 and 6.32 for L5 and L6 also show that the advection
term may be of the same magnitude as the production and dissipation terms for
some of the phases. As a whole, the figures indicate that the local equilibrium of

turbulence is a reasonable assumption for spilling waves in the inner surf zone.
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Figure 6.20: Contour Plot of Temporal Variation of Dissipation Term,
C3/*(k*/2/£) (Top) and Production Term, (1/p)(0u/dz) (Bottom)
using Calibrated Cy and C; for L1. Contours in units of cm? /53.
Free Surface Elevation, 5, (——), Standard Deviation Envelope,
Na £ 05 (—=-—) and Depth Below SWL, z = —d (—).
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Figure 6.21: Contour Plot of Temporal Variation of Dissipation Term,
02;4(1031'2/3) (Top) and Production Term, (7/p)(0u/0z) (Bottom)
using Calibrated Cy and C; for L2. Contours in units of cm?/s”.
Free Surface Elevation, 5, (——), Standard Deviation Envelope,
Ne & 0, (=--) and Depth Below SWL, z = —d (—).
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Figure 6.22: Contour Plot of Temporal Variation of Dissipation Term,
C3/*(k3/2/£) (Top) and Production Term, (7/p)(du/dz) (Bottom)
using Calibrated Cy and C; for L3. Contours in units of cm? /53.
Free Surface Elevation, 5, (— —), Standard Deviation Envelope,
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Figure 6.23: Contour Plot of Temporal Variation of Dissipation Term,
C34(k3/2/0) (Top) and Production Term, (7/p)(du/dz) (Bottom)
using Calibrated Cy and C; for L4. Contours in units of cm?/ s°.
Free Surface Elevation, 7, (——), Standard Deviation Envelope,
Na £ 0y (=--) and Depth Below SWL, z = —d (—).
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Figure 6.24: Contour Plot of Temporal Variation of Dissipation Term,
CH4 (k312 /1) (Top) and Production Term, (7/p)(8u/dz) (Bottom)
using Calibrated Cy and Cy for L5. Contours in units of cm?/s”.
Free Surface Elevation, n, (——), Standard Deviation Envelope,

Na & 0, (=-=) and Depth Below SWL, z = —d (—).



203

0.0 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22

Figure 6.25: Contour Plot of Temporal Variation of Dissipation Term,
C3*(k3/2/4) (Top) and Production Term, (7/p)(du/dz) (Bottom)
using Calibrated Cy and C; for L6. Contours in units of cm?/ 5 .
Free Surface Elevation, 7, (——), Standard Deviation Envelope,
e & 0 (=-=) and Depth Below SWL, z = —d (—).



204

z (cm)

Figure 6.26: Contour Plot of Temporal Variation of Dissipation Term,
C3/*(k*/2/£) (Top) and Production Term, (7/p)(du/dz) (Bottom)
using Calibrated Cy and C; for L6. Without Smoothing. Con-
tours in units of cm?/s°. Free Surface Elevation, 7, (——), Stan-
dard Deviation Envelope, 7, + 0, (---) and Depth Below SWL,
z = —d (—).
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Figure 6.27: Contour Plot of Temporal Variation of w(0k/0z) (Top) and dk/0t
(Bottomg with 7, (— =) and 5, £ 0, (—-=) for L1. Contours in units
of cm?/s”.
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Figure 6.28: Contour Plot of Temporal Variation of w(dk/dz) (Top) and 0k/0t
(Bottomg with 7, (— =) and 5, 0, (=-~) for L2. Contours in units
of cm?/s”.
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Figure 6.31: Contour Plot of Temporal Variation of w(dk/8z) (Top) and 9k/0t
(Bottomg with 7, (— —) and 9, + 0, (—-—) for L5. Contours in units
of cm?/s”.
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Chapter 7

COMPARISONS WITH ONE-DIMENSIONAL MODEL

In this chapter, comparisons are made at the six measuring lines between
the measured and computed free surface elevations, between the measured hori-
zontal velocity profile and the computed depth-averaged horizontal velocity, and
between the measured vertical velocity and the verticla,l velocity estimated from the
computed horizontal velocity gradient together with the continuity equation. This
chapter is organized as follows. Section 7.1 briefly describes the one-dimensional
numerical model. Section 7.2 gives the input specifications and methodology for
the comparisons. Section 7.3 discusses the transitional effects due to the initial
condition of no wave action in the numerical model. Section 7.4 compares the
phase-averaged free surface elevations and standard deviations. Section 7.5 com-
pares the horizontal and vertical velocities. Section 7.6 compares the measured
bottom shear stress from Chapter 5 with the shear stress estimated from the com-

puted depth-averaged horizontal velocity. Section 7.7 summarizes this chapter.

7.1 Description of One-Dimensional Numerical Model

The one-dimensional numerical model, discussed in Chapter 2, is summa-
rized in this section. Kobayashi et al. (1989) developed a numerical model based

on the shallow water wave equations including the effects of bottom friction. This

211



212

is probably the simplest one-dimensional, time-dependent model for predicting the
nonlinear wave characteristics in the surf and swash zones in a unified manner.
Kobayashi and Wurjanto (1992) showed that their extended model could predict
available field data on shoreline oscillations fairly well, provided that the incident
wave train including the low frequency motion is known. Cox et al. (1994b) modi-
fied the seaward boundary to allow input of the measured free surface, eliminating
the uncertainty associated with the separation of incident and reflected waves us-
ing linear theory. They compared the computed free surface oscillations with
laboratory measurements of prototype scale in the surf and swash zone and found
good agreement. Further, they highlighted the importance of time-domain models
over conventional time-averaged models in estimating the swash zone dynamics

_for predictive sediment transport models.

The two-dimensional coordinate system is defined as follows: z is the hor-
izontal coordinate, positive landward with z = 0 at the seaward boundary (SB)
of the computational domain; z is the vertical coordinate, positive upward with
z = 0 at the still water level (SWL). The instantaneous free surface is located
at z = 7, and the instantaneous depth is denoted by h. The seabed is located
at z = n — h, and the local angle of the bed slope is #. Assuming the vertical
pressure distribution to be approximately hydrostatic, the governing equations for
mass and z-momentum integrated from the fixed seabed to the free surface may

be expressed as (Kobayashi et al. 1989)

oh 0

E-Fa—x(hU) =0 (1.1}
2 9 hry=—gp21 1 5
&(hU)—l- 3m(hU )= —g¢ 9 » (7.2)

where t is time, U is the depth-averaged horizontal velocity, 7; is the bottom shear

stress, p is the fluid density which is assumed constant, and g is the gravitational
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acceleration. The bottom shear stress may be expressed as
1
n,:éprUW (7.3)

where f is the constant bottom friction factor. The following dimensionless vari-

ables are introduced:

t T U z 7
tn": s (6 :'= e ! e = fz i T ."= £l 7‘4
ol v Al Al e S
' iap . g ctanf ~ , 1 =T, gH,
9 (21T) { 3 6 (27)1;2 ’ f ) gaf y O Hr (75)

where T, and H, are the reference wave period and wave height, 6’ is the nor-
malized gradient of the slope, £ is the surf similarity parameter for the uniform
slope considered hereafter, f’ is the normalized friction factor, and o is the ratio of
the horizontal and vertical length scales where o >> 1 is assumed in the model.

Primes indicate dimensionless variables.

Substitution of (7.4) and (7.5) into (7.1) and (7.2) yields

g . 8 o

%(hfv') + —6%(h’U’2 + %hﬂ) =—0'K — f UV’ (7.7)
which are solved numerically in the time domain to obtain the variations of A’
and U’ with respect to t' and z’ for given ¢', f’, and initial and boundary condi-
tions. For the computations, the computer program RBREAK2 (Kobayashi and
Poff 1994) is used which incorporated the modification of the seaward boundary

condition (Cox et al. 1994b).

7.2 Input Specifications and Reflected Waves

Six cases were used to evaluate the capabilities and limitations of the nu-

merical model. Three options were of interest: specification of the bottom friction
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factor, the location of the seaward boundary, and the specification of the input
time series at the seaward boundary. T'wo values of the friction factor were used.
For Cases 1, 2, 3 and 4, f = 0.015 which corresponds to the calibration of the nu-
merical model with runup data on a gently sloping natural beach (Raubenheimer
et al. 1995). For Cases 5 and 6, f = 0.05 which corresponds to previous compar-
isons with laboratory data (e.g., Cox et al. 1994b). Two locations were used for
the seaward boundary. For Cases 1, 2 and 5, the seaward boundary was at L1
which was seaward of the break point. For Cases 3, 4, and 6, the seaward bound-
ary was at L3 which was well inside the surf zone. Last, two conditions were used
on the seaward boundary which is denoted by IWAVE following Kobayashi and
Poff (1994). For Cases 1 and 3, IWAVE=2 which indicates that the incident wave
train was specified as the input time series.. For Cases 2, 4, 5 and 6, IWAVE=3
which indicates that the total free surface oscillation, i.e., incident plus reflected
wave trains, was specified as the input time series. It is noted that the input
time series corresponds to the measured free surface oscillations. These six cases
are listed in Table 7.1 where SB denotes the location of the seaward boundary,
IWAVE is the condition of the input time series at the seaward boundary, H, is

the reference wave height, and T is the reference wave period.

Table 7.1: Six Cases for Three Computational Options.

Case | f SB IWAVE H, (em) T, (s)
1 10015 L1 2 13.22 2.2
2 0.015 L1 3 13.22 2.2
3 10.015 L3 2 12.71 2.2
4 0.015 L3 3 1271 2.2
5 10.050 L1 3 13.22 2.2
6 |0.050 L3 3 12.71 2.2

Figures 7.1 and 7.2 show the temporal variation of the input time series
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at L1 for Cases 1, 2 and 5, and at L3 for Cases 3, 4 and 6, respectively. The
time axis is normalized by the reference wave period, T, = 2.2 s, to indicate that
the number of waves for the computations was 300. These input time series were
constructed from the measured free surface elevations by repeating the measured
time series containing 50 waves six times to give a total of 300 waves. The com-
puted free surface elevations and depth-averaged velocity were stored at the nodes
corresponding to the wave gage locations for direct comparison with the measure-
ments. In addition, the depth-averaged velocity was stored at the two adjacent
nodes at each wave gage so that the vertical velocity could be computed by the
continuity equation as described later. The storage rate of the computations was
consistent with the 100 Hz sampling rate of the data. The runup time series and
other statistics were also stored for each case. To eliminate the transitional ef-
fects associated with the start of the model based on the initial condition of zero
wave action in the computation domain, the computation was started at time
t' = —250, and the stored time series were truncated for —250 < ¢’ < 0. The
remaining 50 waves were phase-averaged for comparison with the measurements

in the same way as the data analyses in Chapter 4.

The input time series shown in Figures 7.1 and 7.2 are made from the
measured free surfaces elevations at L1 and L3 and include both the incident and
reflected wave trains. For Cases 1 and 3, however, the seaward boundary condition
was IWAVE=2 which assumes that only the incident time series is specified. For
these cases, it was assumed that the reflection from the 1:35 slope was small so
that the total (measured) time series was approximately the same as the assumed
incident time series. Hence, the same time series were used for IWNAVE=2 and
IWAVE=3, and no attempt was made to separate the incident and reflected waves
from the measured time series (e.g., Cox 1989) since tHe error of the separation

method was likely to be about the same order of magnitude as the reflection
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coefficient. The computed reflected time series is discussed at the end of this
section. It is noted that the entire input time series are shown in Figures 7.1
and 7.2 and that to plot each data point is beyond the resolution of most laser
printers. Hence, Figures 7.1 and 7.2 may appear non-periodic over 50 waves.
Nevertheless, Figure 7.1 shows that there is almost no variation in the wave crests
of the input wave trains seaward of the break point; and Figure 7.2 shows that
there is considerable variation in the wave crests of the input wave trains due to

wave breaking.

The input and output quantities of the numerical model are typically nor-
malized quantities, but the comparisons with the measurements are dimensional
to be consistent with the previous chapters. For Cases 1, 2 and 5 with the seaward
boundary at L1, the reference wave height was H, = 13.22 cm. For Cases 3, 4 and
6, with the seaward boundary at L3, the reference wave height was H, = 12.71 cm,
as listed in Table 7.1 in this section. The cross-shore variation of the measured

wave heights were listed in Table 4.1.

Comparisons are made with the vertical velocity estimated from the com-

puted depth-averaged horizontal velocity, U, with the continuity equation

ow 6u_

*a—z— + a—m = (J, (7.8)

where u and w are the depth-varying horizontal and vertical velocities. Assuming

that
ou OU
the approximate vertical velocity is estimated using Eq 7.8
#m QU oUu
W=- : Edz = “**a-m—zm, (?10)

in which 2, is the distance from the bottom where w = 0 due to the no-slip

boundary condition. The notation W is used to indicate the vertical velocity
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calculated from the depth-averaged velocity U which is independent of z. The
horizontal derivative in Eq 7.10 is approximated by a 3-point, central difference

of the computed velocities stored at the adjacent nodes as follows

%gzﬁﬁ(fl Ui+ BU; 4+ C Uiyy) (7.11)
where the subscript ¢ indicates the node corresponding the wave gage position;
A= -1, B=0,and C =1 are constants; and Az = 4.00 cm is the constant
node spacing used in the computations. The estimated derivative using Eq 7.11
has a truncation error of O(Az?®) (Fletcher 1991). At the seaward boundary,
Eq 7.11 is not applicable; and the derivative is approximated by a 3-point, one-

sided difference given by

ou 1

where the subscript 2 = 1 is the first node at the seaward boundary, and A = —3,
B =4, and C = —1 are constants. The estimated derivative using Eq 7.12 has a
truncation error of O(Az?) (Fletcher 1991). It is noted that there is no smoothing
of the derivatives estimated by Eqs 7.11 and 7.12 in the computation of Eq 7.10.

Table 7.2 lists the computed reflection coefficient for the six cases. The
reflection coefficient, r, is defined for regular waves as (e.g., Kobayashi and Poff

1994)

[T?m ref!]ma..r - [nm rcﬂ]min
= : : 7.13
r i (7.13)

where [Nm refilmaz and [9m refi)min are the maximum and minimum values of the

dimensional reflected wave time series at the seaward boundary and H, is the
reference wave height at the seaward boundary. Table 7.2 indicates that the
reflection is small for Cases 1, 2, and 5. The computed reflection coefficient
for Cases 3, 4, and 6 with the seaward boundary at L3 are larger because the

superposition of incident and reflected waves assumed in the numerical model
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may be less accurate inside the surf zone. A rigorous assessment of the capability
of this numerical model in predicting the reflected time series is beyond the scope

of this dissertation.

Table 7.2: Computed Reflection Coefficient for Six Cases.

Case r

0.014
0.015
0.034
0.051
0.013
0.026

Sy U e LD B
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Figure 7.1: Input Time Series at L1 for Cases 1, 2, and 5.
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Figure 7.2: Input Time Series at L3 for Cases 3, 4, and 6.
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7.3 Transitional Effects

Although the runup was not measured in this experiment, the computed
runup elevations above the SWL, Z,, are plotted in this section to illustrate the
transitional effects on the computed time series. Since the slope is mild, the
the transitional effects are amplified in the runup time series. Also, the model’s
sensitivity to the input options, i.e., the friction factor, irregularities in the input
signal due to the location of the seaward boundary, and the specification of the
seaward boundary condition can be assessed qualitatively using the runup time
series. Figures 7.3 to 7.8 show the computed shoreline elevations above the still
water level, Z, in the range —250 < t' < 50, where ¢’ = —250 is the start of the
computation, for Cases 1 to 6. It is noted that the computed runup is defined
at the location of the instantaneous water depth §, = 5.0 mm where &, is the
physical water depth related to the height of a wire runup meter to measure the

water line oscillations on a slope (e.g, Cox 1989).

Figure 7.3 for Case 1 with IWAVE=2 shows that the duration of the tran-
sition region is short, approximately —250 < ¢’ < —200. The variation of the
runup crests for —200 < #' is about 2% of the incident wave height, and the
variation of the maximum runup to minimum rundown height (termed swash
height hereafter) is approximately 5% of the incident wave height. Figure 7.4
for Case 2 with IWAVE=3 shows a much longer transition region, approximately
—250 < t' < —50. The variation of the runup crests and swash heights for

—50 < #', however, is about the same as Case 1.

Figure 7.5 for Case 3 with the seaward boundary at L3 inside the surf zone
shows a much larger variability in the runup crests due to the larger variation in
the input time series. The transition region is approximately —250 < ¢’ < —200,

similar to Case 1. There is a much higher variation in the runup crest, about 12%
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of the incident wave height. Figure 7.6 for Case 4 also with the seaward boundary
at L3 but with IWAVE=3 shows a transition region of about —250 < ' < —150.
There is also a large variation in the runup crests, about 17% of the incident wave

height.

Figure 7.7 for Case 5 with f = 0.05 shows the effect of increasing the
friction factor when compared to Figure 7.4 for Case 2. Figure 7.7 shows that the
transition region is substantially reduced by the increase in the friction factor and
that the variation of the runup crest is somewhat reduced. Figure 7.8 for Case 6
with f = 0.05 and the seaward boundary at L3 shows the same effect of increasing

the friction factor when compared to Figure 7.6 for Case 4.

It is noted that the runup is more sensitive to the effects of the input
options, particularly the friction factor. The differences between the measured
“and computed free surface elevations at the six measuring lines is less as will
be shown in Section 7.4. From this section it is concluded that truncating the
computed time series for —250 < ' < 0 eliminates the transitional effects on the

computed time series for the six cases considered.
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Figure 7.4: Runup Time Series for Case 2: f = 0.015, SB at L1, IWAVE=3.
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Figure 7.6: Runup Time Series for Case 4: f = 0.015, SB at L3, IWAVE=3.
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Figure 7.7: Runup Time Series for Case 5: f = 0.05, SB at L1, IWAVE=3.
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Figure 7.8: Runup Time Series for Case 6: f = 0.05, SB at L3, IWAVE=3.
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7.4 Free Surface Comparisons

In this section, comparisons are made of the measured and computed free
surface elevations to evaluate the model’s capability in predicting the wave profile
across the surf zone. In Section 7.4.1, measured and computed comparisons are
made with the instantaneous free surface elevations for the last 10 of 50 waves for
the six cases. In Section 7.4.2, comparisons are made of the phase-averaged free
surface elevations to show the predictive capability of the model and to show the

model’s sensitivity to the three input options.

7.4.1 Instantaneous Free Surface Comparisons

Figures 7.9 to 7.14 show the temporal variations of the measured and com-
puted instantaneous free surface elevations, qm. and 7., for the last 10 waves for
Cases 1 to 6 where the m subscript denotes measured values and the ¢ subscript
denotes computed values. Figure 7.9 for Case 1 with IWAVE=2 shows an initial
discrepancy between the measured free surface elevation specified as the incident
wave train as input and the total computed free surface elevation at L1. This
small discrepancy results mostly from an overestimation of the setdown at the
seaward boundary. Comparisons at L2 show that the model does not correctly
predict the shape of the wave profile at the onset of breaking. It also does not
predict the irregularity of wave breaking at L3 in the transition region. For L4 to
L6 in the inner surf zone, the model does predict the saw-tooth profile and phases

reasonably well.

Figure 7.10 for Case 2 with IWAVE=3 shows no discrepancy in the mea-
sured and computed free surface elevations at L1, because the measured free sur-

face elevation specified as input is the total free surface elevation. The variations
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the wave profiles across the surf zone for L2 to L6 are similar to Figure 7.9 for

Case 1.

Figure 7.11 for Case 3 with IWAVE=2 shows the discrepancy at the scaward
boundary at L3 similar to Figure 7.9 for Case 1. As expected, the wave profiles
are predicted more accurately in the surf zone since the model has been initiated
after breaking. Also, there is less error in the phase than with Case 1 and Case 2
where the seaward boundary was at L1. Figure 7.12 for Case 4 with IWAVE=3
shows the exact match at the seaward boundary at L3 as in Figure 7.10 for L1.

The free surface profiles are well predicted and similar to Figure 7.11.

Figure 7.13 for Case 5 with f = 0.05 is similar to Figure 7.10 for Case 2
with f = 0.015. Direct comparisons are made of the phase-averaged free surface
elevations for Cases 2 and 5 in the next section to show that computed free surface
elevations are not sensitive to the friction factor in this range. Last, Figure 7.14
for Case 6 with f = 0.05 is similar to Figure 7.12 for Case 4 with f = 0.015.
As a result, the bottom friction factor in the range of 0.015 < f < 0.05 yields

essentially the same free surface elevations at the measuring lines L1 to L6.
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7.4.2 Phase-Averaged Free Surface Comparisons

Figures 7.15 to 7.24 are comparisons of the measured phase-averaged free
surface elevations, 7,, the computed phase-averaged free surface elevations, 1.,
the standard deviation of the measured phase-averaged free surface elevations, a,,
and the standard deviation of the computed phase-averaged free surface elevations,
0y, for the six cases considered. In these figures, the phases have been adjusted
so that the zero-upcrossing of the free surface elevation at each of the measuring

lines is at ¢t = T, /4 to be consistent with the earlier chapters.

Figure 7.15 shows the temporal variations of 1, and 7,. for Case 1 with
IWAVE=2 and Case 2 with IWAVE=3 for L1 to L6. At L1 there is the slight
discrepancy between 7, and n,. for Case 1 resulting from an overestimation of the
setdown of the seaward boundary. Similar to Figures 7.9 and 7.10, Figure 7.15
_shows that the model does not predict the wave profile at the onset of breaking
at L2 or in the transition region at L3. In the inner surf zone, however, the bore
profile is predicted reasonably well, but there is some error in the predicted phase.

There is a small difference in the phases between Case 1 and Case 2.

Figure 7.16 shows the temporal variations of ¢, and ¢, for Case 1 and
Case 2 for L1 to L6. At L1, all three curves show that the standard deviation is
small. As noted in Chapter 4, o, increases with the onset of wave breaking at
L2 and is concentrated near the wave tip of the wave crest where the aeration
starts. At L3, o0, is maximum and is fairly confined to the bore region. Across
the inner surf zone from L4 to L6, o,) decreases. For the computed cases, o, does
not follow these trends. The small deviation specified at the seaward boundary
becomes concentrated on the wave front and does not vary much across the surf

zone from L2 to L6.
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Figure 7.17 shows the temporal variations of 5, and 7,. for Case 2 with
f =0.015 and Case 5 with f = 0.05. The similarity of the two computed curves
shows that the computed free surface elevations are not sensitive to the friction
factor in this range. Figure 7.18 shows the temporal variations of ¢, and o, for

Case 2 and Case 5 and also indicates that the results are not sensitive to f.

Figure 7.19 shows the temporal variations of 5, and 7, for Case 3 with
IWAVE=2 and Case 4 with IWAVE=3 for L3 to L6. The improved agreement
between 7, and 7, is expected since the model is initiated inside the surf zone.
The saw-tooth wave profile is well predicted and there is less discrepancy in the
phases between the measured and computed curves. Similar to Figure 7.15, there

is a small difference in the phases of the wave fronts between Case 3 and Case 4.

Figure 7.20 shows the temporal variations of o, and o, for Case 3 and
Case 4. At L3, all three curves show that the standard deviation is large due
to wave breaking. Similar to Figures 7.16 and 7.18 for the computed cases, this
variation becomes concentrated on the wave front at L4 and does not decrease

much across the surf zone from L4 to L6.

Figure 7.21 for 7, and 5,. and Figure 7.22 for 0, and o, show that the
computed results for Case 4 and Case 6 are not sensitive to f, similar to Figure 7.17
and Figure 7.18 for Case 2 and Case 5. Figure 7.22 shows a somewhat greater
sensitivity of o, to f, but the difference of o, for Case 4 and Case 6 is small

compared to the incident wave height.

The final comparisons in this section are for Case 2 and Case 4 to show the
effect of the location of the seaward boundary on the computed wave profile. For
Case 2, the model is initiated at L1 seaward of breaking; and for Case 4, the model
is initiated at L3 in the surf zone. Figure 7.23 shows that both cases predict the
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wave profile well in the inner surf zone for L4 to L6. As expected, the discrepancy
in the phase is larger for Case 2. Figure 7.24 shows that the variability specified
at the seaward boundary is propagated through the model domain at the wave

front with little change across the surf zone.
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Figure 7.15: Temporal Variations of Phase-Averaged Free Surface Elevation:
Measured, 7,(—), and Computed, 7,., with Case 1 (——) and
Case 2 (---) for L1 to L6.
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Figure 7.17: Temporal Variations of Phase-Averaged Free Surface Elevation:
Measured, 7,(—), and Computed, 7n,., with Case 2 (— —) and
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Figure 7.19: Temporal Variations of Phase-Averaged Free Surface Elevation:
Measured, 7,(——), and Computed, 7., with Case 3 (— —) and
Case 4 (—--) for L3 to L6.
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Figure 7.20: Temporal Variations of Standard Deviation of Phase- Averaged Free
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Figure 7.21: Temporal Variations of Phase—lAvera.ged Free Surface Elevation:
Measured, 7,(—), and Computed, 7,., with Case 4 (— —) and
Case 6 (—--) for L3 to L6.
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Figure 7.22: Temporal Variations of Standard Deviation of Phase- Averaged Free
Surface Elevation: Measured, o,(—), and Computed, o,,, with
Case 4 (——) and Case 6 (—--) for L3 to L6.
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Figure 7.23: Temporal Variations of Phase-Averaged Free Surface Elevation:
Measured, 7,(—), and Computed, 74, with Case 2 (— —) for L1
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Figure 7.24: Temporal Variations of Standard Deviation of Phase-Averaged Free
Surface Elevation: Measured, o,(—), and Computed, oy, with
Case 2 (— —) for L3 to L6 and Case 4 (~--) for L3 to L6.
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7.5 Velocity Comparisons

Comparisons are made in this section of the phase-averaged measured hori-
zontal and vertical velocities, u, and w,, and the phase-averaged computed depth-
averaged horizontal velocity, U,, and the phase-averaged computed vertical veloc-
ity, W,, estimated from Eq 7.10. As with the free surface elevations of the previous
section, the first 250 computed waves are truncated, and the phase averages are
made with the last 50 waves. Since the computed free surface elevations were
shown to be insensitive to the friction factor and since IWAVE=3 uses the mea-
sured time series as input without neglecting the reflected waves, only two cases
with f = 0.015 and IWAVE=3 are shown in this section. These cases are Case 2
with the seaward boundary at L1 and Case 4 with the seaward boundary at L3.

The comparisons are made with two figures at each measuring line. In the
first figure, the vertical variations of the velocities are shown at six phases. The
approximate mid-depth elevation below trough level, z,;4, mentioned briefly in
Section 5.8.2 is indicated with an open circle. It is noted that z,,;s is defined with
respect to the z-axis, positive upward with z = 0 at the SWL. The horizontal
velocity scale in the upper panel is three times larger than the vertical velocity
scale in the lower panel. In the second figure, the temporal variations of the
velocities are plotted at the mid-depth location indicated from the previous figure
with the open circles indicating the temporal location of the six phases from that
figure. The mid-depth elevations, z = zp;q, are listed in Table 7.3 where d is the

depth below the SWL.

Figure 7.25 shows the vertical variations of u, and U, in the top panel and
w, and W, in the lower panel for six phases for Case 2 at L1. The measured
and computed free surface elevations, 7, and 7,., from Figure 7.15 are also shown

at the six phases. The computed depth-averaged horizontal velocity gives a good
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Table 7.3: Mid-Depth Locations for Comparison of Measured and Computed
Velocities for L1 to L6.

Line d Zmid
No. | (em)  (cm)

L1 | 28.00 -16.00
L2 |21.14 -13.14
L3 |17.71  -9.71
L4 |14.29 -6.29
L5 | 10.86 -5.86
L6 743 -3.43

approximation of the measured horizontal velocity except in the bottom boundary
layer for the six phases shown. The profile of the measured vertical velocity at
the seaward boundary varies linearly with depth to a zero bottom velocity. The
computed vertical velocity estimated from the continuity equation gives a good
approximation of the measured profile at L1. Figure 7.26 shows the temporal
variations of the horizontal and vertical velocities at the mid-depth location. There
is exact agreement of 1, and 7,. and good agreement between u, and U, and

between w, and W, over the wave period.

At L2, Figure 7.27 shows good agreement between u, and U, at five of the
six phases plotted and a large discrepancy at ¢t = 27'/6. From Figure 7.28 it can
be seen that this discrepancy is related to the poor prediction of the wave profile
at breaking. The agreement between w, and W, in Figure 7.27 is good at four of
the six phases with a very large discrepancy at ¢ = T'/6 and a smaller discrepancy
with the incorrect sign at ¢ = 27'/6. Both discrepancies are related to the spatial
derivatives on U used in Eq 7.10. From Figure 7.28, it can be seen that the large
discrepancy at ¢ = T'/6 is related to the steepness of the wave front and that the
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sign error in the discrepancy at ¢ = 27'/6 is related to the small, high-frequency
oscillations on the back of the computed wave crest. The numerical high-frequency

oscillations are amplified in the spatial derivatives on U.

At L3, Figures 7.29 and 7.30 show results similar to L2 and reflect the
inability of the model to correctly predict the wave profile in the transition region.
At L4, Figures 7.31 and 7.32 show that the agreement between u, and U, improves
in the inner surf zone. It is interesting to note that u, is fairly constant over depth
for the six phases except above trough level for ¢ = 27'/6 and below the mid-depth
elevation for ¢ = 37'/6 where the measured profile is presumably affected by the
undertow. The profile of the measured vertical velocity, which is small relative
to the horizontal velocity, does not vary linearly as at L1, possibly due to eddies
generated by wave breaking. The computed vertical velocities can not reproduce

the measured profile well in the inner surf zone.

At L5 and L6, the discrepancy in the phases between the measured and
computed wave profiles leads to the poor prediction of the measured velocities at
the six phases in Figures 7.33 and 7.35. Figures 7.34 and 7.36, however, show
that aside from the phase discrepancy, the measured horizontal velocity at the
mid-depth location is reasonably well predicted. The oscillations on the back of

the wave crest lead to poor agreement of the vertical velocity.

Figures 7.37 to 7.44 show the comparisons for Case 4 where the model
is initiated at L3 inside the surf zone. Figure 7.37 shows that the measured
horizontal profile is predicted fairly well at five of the six phases. At ¢t = 27/6,
the model overpredicts the horizontal velocity. A possible explanation is that
at the crest of a breaking wave, the depth-averaged velocity may overpredict the
local horizontal velocity below trough level because of the large horizontal velocity

above the wave trough. It is noted that there may be some ambiguity in the upper
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panel in &istinguishing between U, at ¢ = 2T/6 and U, at t = 37'/6. Reading
from left to right, U, ~ 58 cm/s at ¢t = 27°/6 is first, and U, ~ 0 cm/s at t = 3T'/6
is second. In the lower panel, the vertical velocity profile is also not well predicted
at t = 2T'/6. Figure 7.38 shows a reasonable agreement among the velocities at
the mid-depth elevation at the seaward boundary although the agreement is not

as good as Case 2 shown in Figure 7.26.

At L4 to L6 in the inner surf zone, Figures 7.39, 7.41, and 7.43 show that
the measured horizontal velocity profile is represented fairy well by the computed
horizontal velocity at most of the phases except near the wave crest. Figures 7.40,
7.42, and 7.44 show that the phase errors in the predicted quantities are small but
that U, overpredicts u, at the mid-depth elevation. As in Case 2, the computed
vertical velocities can not reproduce well the measured profile in the surf zone for
Figures 7.39, 7.41, and 7.43. Also, Figures 7.40 and 7.42 show that the spatial
derivatives on U, give poor estimates of the vertical velocity at the steep wave
front and on the back of the wave crest due to the small numerical oscillations.
At L6, however, Figure 7.44 shows good agreement between the measured and
computed vertical velocity, indicating that the numerical model tends to recover

inside the surf zone.
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Six Phases for Case 2 at L2.
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Figure 7.28: Temporal Variations of Free Surface Elevation: Measured, 7,(—),
and Computed, 7,.(— —e), (Top); Horizontal Velocity: Measured,
uo(—), and Computed, U,(— —o), (Middle); and Vertical Veloc-
ity: Measured, w,(—), and Computed, W,(— —o), (Bottom); at
z = —13.14 cm for Case 2 at L2.
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Figure 7.30: Temporal Variations of Free Surface Elevation: Measured, n,(—),
and Computed, 7,.(— —e), (Top); Horizontal Velocity: Measured,
uq(—), and Computed, U,(— —0), (Middle); and Vertical Veloc-
ity: Measured, w,(—), and Computed, W,(— —0), (Bottom); at
z = —9.71 cm for Case 2 at L3.
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Figure 7.31: Vertical Variations of Horizontal Velocity: Measured, uy(—),
and Computed, U,(——o), (Top); Vertical Velocity: Measured,
W, (—), and Computed, W,(— —o), (Bottom); and Free Surface
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Figure 7.32: Temporal Variations of Free Surface Elevation: Measured, 77,(—),
and Computed, 7,.(— —e), (Top); Horizontal Velocity: Measured,
Uy (—), and Computed, U,(— —o), (Middle); and Vertical Veloc-
ity: Measured, w,(——), and Computed, W,(— —o), (Bottom); at
z = —6.29 cm for Case 2 at L4.
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and Computed, U,(— —o0), (Top); Vertical Velocity: Measured,
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Figure 7.34: Temporal Variations of Free Surface Elevation: Measured, n,(—),
and Computed, 7,.(— —e), (Top); Horizontal Velocity: Measured,
Uq(——), and Computed, U,(— —o), (Middle); and Vertical Veloc-
ity: Measured, w,(—), and Computed, W,(— —0), (Bottom); at
z = —5.86 cm for Case 2 at L5.
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Figure 7.35: Vertical Variations of Horizontal Velocity: Measured, u,(—),
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Figure 7.36: Temporal Variations of Free Surface Elevation: Measured, 7,(—),
and Computed, 7,.(— —s), (Top); Horizontal Velocity: Measured,
uy(—), and Computed, U,(— —o), (Middle); and Vertical Veloc-
ity: Measured, w,(——), and Computed, W,(— —o), (Bottom); at
z = —3.43 cm for Case 2 at L6.
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Elevation: Measured, n,(——), and Computed, 7..(e), (Both); at
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Figure 7.38: Temporal Variations of Free Surface Elevation: Measured, 7,(—),
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z = —9.71 cm for Case 4 at L3.
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Figure 7.40: Temporal Variations of Free Surface Elevation: Measured, 7,(—),
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and Computed, U,(— —o), (Top); Vertical Velocity: Measured,
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Figure 7.43: Vertical Variations of Horizontal Velocity: Measured, uq(—),
and Computed, U,(— —0), (Top); Vertical Velocity: Measured,
we(—), and Computed, W,(— —o), (Bottom); and Free Surface
Elevation: Measured, n,(——), and Computed, 7.c(e), (Both); at
Six Phases for Case 4 at L6.



269

5 T T T T T T T T T T

4r Case4, L6

Nas Nac (Cm)

Figure 7.44: Temporal Variations of Free Surface Elevation: Measured, 7,(—),
and Computed, 7,.(— —e), (Top); Horizontal Velocity: Measured,
tq(—), and Computed, U,(— —o), (Middle); and Vertical Veloc-
ity: Measured, w,(—), and Computed, W,(— —o), (Bottom); at
z = —3.43 cm for Case 4 at L6.
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7.6 Bottom Shear Stress Comparisons

Comparisons are made in this section of the temporal variation of the
bottom shear stress, 7,. In Chapter 5, the bottom shear stress was estimated
by a least-squares fit of the phase-averaged horizontal velocity in the logarithm;c
layer of the lower portion of the bottom boundary layer. An empirical friction
factor was used to relate the estimated bottom shear stress and the horizontal
velocity just outside the boundary layer. The quadratic friction equation was
shown to predict the temporal variation of the bottom shear stress within a factor
of two. A friction factor was also fitted based on the horizontal velocity at an
approximate mid-depth elevation. In this section, the phase-averaged computed
depth-averaged horizontal velocity, U,, is used to predict the bottom shear stress
from Equation 7.3 with the assumed friction factor, f. Table 7.4 lists the friction
factors used in the figures in this section where the friction factors are denoted as
follows: f,, is estimated from u, at z,, = 1.6 cm above the bottom, just outside the
boundary layer; fin:q is estimated from u, at z = z,,;9 below the wave trough level
as listed in Table 7.3 for each measuring line; and f is the friction factor used
for the computations. Table 7.4 shows that the friction factors fitted from the
measured velocities vary across the surf zone and that the friction factor for the
computations is assumed constant across the surf zone. It is noted that f,, >~ finid

except at L1 outside the surf zone.

Figure 7.45 shows the temporal variation of 7, for Case 2 at L1 and is
similar to Figure 5.60. The three curves using the quadratic friction equation
with fu, fmia, and f predict the estimated shear stress reasonably at the seaward

boundary.

Figures 7.46 and 7.47 show that the temporal variation of the bottom shear

stress is not well predicted by the computed depth-averaged velocity, particularly
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Table 7.4: Friction Factors for Measured and Computed Bottom Shear Stress
Estimates for L1 to L6.

Line | Measured | Computed

No. fw fmid f

L1 |0.025 0.018 | 0.015, 0.05
L2 |0.014 0.014 | 0.015

L3 |0.017 0.016 | 0.015

L4 |0.016 0.018 | 0.015

L5 |0.026 0.027 | 0.015

L6 | 0.028 0.031 | 0.015

near the wave crest. This is expected since the errors in the predicted horizon-
tal velocity are squared in computing the bottom shear stress. This emphasizes
the accuracy necessary for hydrodynamics models used as input for predictive

‘ sediment transport models.

Figures 7.48, 7.49 and 7.50 for the inner surf zone also show the that the
model can predict only qualitatively the temporal variation of the bottom shear
stress. Figures 7.51 to 7.54 for Case 4 show that the model does not predict
7, well in the surf zone. The poor agreement is due to the amplification of the
error in the predicted velocity and to the assumption of a constant friction factor.
Figure 7.55 shows the temporal variation of 7, for Case 5 with f = 0.05 at L1. This
figure shows the sensitivity of the computed bottom shear stress to f. Comparing
Figures 7.45 and 7.55, f = 0.015 gives better agreement than f = 0.05 for this
set of laboratory data. It is encouraging to note that f = 0.015 was the value
calibrated by Raubenheimer et al. (1995) using runup data on a gently sloping

natural beach.
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Figure 7.45: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (e) with 95% Confidence Limits (——); Fitted
Curves with f, (—) and fni¢ (--=); and Computed from U,
(= —) for Case 2 at L1.
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Figure 7.46: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (o) with 95% Confidence Limits (—); Fitted
Curves with f,, (—) and fmia (---); and Computed from U,
(= =) for Case 2 at L2.
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Figure 7.47: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (e) with 95% Confidence Limits (——); Fitted
Curves with f, (—) and fmig (=-=); and Computed from U,
(= =) for Case 2 at L3.

20 T U Ll T LI 1 T T 1 T T 1 L] L I 1 1 i 1 T T L

10

n/p (cm’/s”)

L

=10

-15

in

Figure 7.48: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (e) with 95% Confidence Limits (—); Fitted
Curves with f, (—) and fnia (---); and Computed from U,
(= =) for Case 2 at L4.
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Figure 7.49: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (o) with 95% Confidence Limits (—); Fitted
Curves with f, (—) and fni¢ (--=); and Computed from U,
(= —) for Case 2 at L5.
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Figure 7.50: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (o) with 95% Confidence Limits (—); Fitted
Curves with f, (—) and fnid (=-=); and Computed from U,
(= =) for Case 2 at L6.
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Figure 7.51: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (o) with 95% Confidence Limits (—); Fitted
Curves with f,, (—) and fmia (=-=); and Computed from U,
(= =) for Case 4 at L3.
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Figure 7.52: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (o) with 95% Confidence Limits (—); Fitted
Curves with f, (—) and fpi (=-=); and Computed from U,
(= =) for Case 4 at L4.
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Figure 7.53: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity (e) with 95% Confidence Limits (—); Fitted
Curves with f, (—) and fni (--=); and Computed from U,
(= =) for Case 4 at L5.
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Figure 7.54: Temporal Variation of Bottom Shear Stress, 7,: Estimated from
Shear Velocity () with 95% Confidence Limits (—); Fitted
Curves with f, (—) and fmi4 (--=); and Computed from U,
(= =) for Case 4-at L6.
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Figure 7.55: Temporal Variation of Bottom Shear Stress, 7: Estimated from
Shear Velocity (o) with 95% Confidence Limits (—); Fitted
Curves with f, (—) and fmia (---); and Computed from U,
(= =) for Case 5 at L1.
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7.7 Summary of Comparisons with One-Dimensional Numerical Model

In this chapter, the one-dimensional numerical model is used to predict the
nonlinear wave characteristics in the surf zone. Six cases were used to evaluate -
the model’s sensitivity to the specification of three options: the bottom friction
factor, the location of the seaward boundary, and the specification of the input

time series at the seaward boundary.

Transition effects due to the initiation of the model with no wave action in
the computational domain were examined for the six cases. The runup time series
was used since the effects were amplified at the shoreline. It was found that the
duration of the transition effects varied with input options and that truncating the

first 250 waves was sufficient to eliminate these effects for the six cases considered.

The model was shown to predict reasonably well the wave profile in the
inner surf zone even for the cases in which the model was initiated outside the
break point. There was some discrepancy in the predicted phase of the wave front,
and the model could not predict the variation of the wave profile in the transition
region. For the cases where the model was initiated inside the surf zone, the wave
profiles were well predicted across the inner surf zone, and there was less phase
error. Comparisons of the phase-averaged free surface elevations showed that the
model was fairly insensitive to the assumed friction factor. Comparisons of the
standard deviations of the free surface elevations showed that variations specified
in the input time series were confined to the front of the computed wave crest and

did not vary much across the surf zone.

Comparisons of the horizontal velocities showed that the computed depth-
averaged velocity represented the measured profile below trough level fairly well.

At the break point and the transition region, the horizontal velocities were not well
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predicted under the wave crest since the model does not account for the vertical
velocity variation which is expected to be large above the trough level at the break
point and in the transition region. In the inner surf zone, the model predicted
the measured profiles fairly well, except for the phases where the measured profile

were presumably affected by the undertow current.

The computed vertical velocity estimated from the continuity equation
represented the measured vertical velocities at least qualitatively over most of the
phases. However, the spatial derivatives on U gave poor estimates of the vertical
velocity at the steep wave front and on the back of the wave crest due to the small

high-frequency numerical oscillations.

The computed bottom shear stress, 7, = 1p f|U|U, with the constant
bottom friction factor, f = 0.015, predicted the measured bottom shear stress
only qualitatively because the error of the computed velocity is amplified and
because the friction factor is not really constant across the surf zone and may
vary with time. The assumption of 7, = 1p f |U|U is acceptable for computing 7
and U which are not sensitive to 7, in the region of the velocity measurements.

However, this assumption is not accurate to predict the bottom shear stress.

The limitation of the one-dimensional numerical model indicates the neces-
sity of a two-dimensional numerical model for predicting surf zone hydrodynamics

and resulting sediment transport.






Chapter 8

SUMMARY AND CONCLUSIONS

This dissertation was developed with two concurrent themes. . The first
theme was to asses the applicability of theories developed for non-breaking waves
and steady flows using measurements made of surf zone waves in a laboratory.
The second theme was to analyze the data to provide useful empirical coefficients
for nearshore hydrodynamic modeling. In the study of the bottom boundary
layer, the first point was to show whether boundary layer theories developed for
oscillatory flows can be applied for the boundary layer under breaking waves. The
second point was to estimate the wave friction factor and bottom roughness in
the surf zone. In the study of wave generated turbulence, the first point was
to show whether the approximation of the local equilibrium of turbulence is a
reasonable assumption for breaking waves. The second point was to estimate the
mixing length coefficients and dissipation coeﬂiclients. Both of these themes were
presented in the context of numerical modeling since it is desirable to have a

time-dependent numerical model that can predict the nearshore hydrodynamics.

8.1 Summary

Chapter 1 surveyed some of the literature for boundary layer theories re-

lated to coastal dynamics and for wave generated turbulence. The review indicated

280
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that much work has been done for wave and current boundary layers outside of
the surf zone. There have been very few studies, however, of the boundary layer
inside the surf zone; and there is no indication to what extent the theories de-
veloped under steady currents and non-breaking waves can be applied to the surf
zone. For the case of wave generated turbulence, the review indicated that there
have been many recent studies of the turbulent and wave motions inside the surf
zone, resulting in some qualitative understanding. However, turbulence due to

wave breaking is still a poorly understood subject.

Chapter 2 discussed the formulation of a two-dimensional, time-dependent
numerical model for predicting the wave transformation and velocity profiles in
the surf zone. The formulation included an analysis of the turbulent kinetic energy
transport equation and the implementation of a simple turbulence model based on
the mixing length concept. The intent of this chapter was to provide a theoretical

context in which the experiments were performed.

Chapter 3 discussed the details of the experiment. The setup of the experi-
ment included adding a physical bottom roughness layer to increase the boundary
layer roughness and thickness. Using a two-component laser-Doppler velocime-
ter, velocity measurements were made at a fraction of the grain height above the
bottom so that estimates could be made of the temporal variation of the bottom
shear stress and bottom roughness under breaking waves. Several measuring lines
were made in the cross-shore direction to include one vertical line seaward of the
break point, one line at the breakpoint, one line in the transition region, and
three lines in the inner surf zone. Additional velocity measurements were made
in the bottom boundary layer to check the variability of the measurements due to
irregularities of the bottom and to check the reliability of the method to estimate

the bottom shear stress and bottom roughness.
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Chapter 4 discussed the reduction of the data. Regular waves were used
so that the turbulent signal could be extracted by phase-averaging. The temporal
variation of the phase-averaged free surface elevations and statistics as well as
the phase-averaged velocities and turbulent stresses were presented in a way that
would be useful in evaluating cross-shore hydrodynamic models. The higher order
statistics of skewness and kurtosis were discussed briefly in connection with a

conditional sampling technique in the hope of detecting large eddies.

Chapter 5 discussed the bottom boundary layer analysis and the estimates
of the bottom shear stress and bottom roughness. The logarithmic profile was
shown to exist for the bottom boundary layers outside and inside the surf zone.
The bottom shear velocity and bottom roughness were estimated using a logarith-
mic fit of the measured velocities in the bottom portion of the boundary layer.
The confidence intervals and sensitivity of the estimates to irregularities in the

bottom roughness were reported.

Chapter 6 discussed the wave generated turbulence in relation to the as-
sumption of a local equilibrium of turbulence for wave breaking. Two empirical
coefficients were involved in the simple turbulence mociel, and the temporal and
spatial variations of these coefficients were determined. The validity of the lo-
cal equilibrium assumption was evaluated using the calibrated coefficients and

measured turbulent quantities.

In Chapter 7, comparisons were made between the measured data and a
one-dimensional, time-dependent numerical model. The model’s sensitivity to
three input options was discussed. The limitations of the numerical model in

predicting the temporal variation of the bottom shear stress were also discussed.



8.2 Conclusions

The main conclusions of this dissertation are as follows:

1. The experiment was successful in obtaining high quality data of the free
surface elevations and fluid velocities outside and inside the surf zone, including
detailed measurements of the bottom boundary layer. This data will be use-
ful in evaluating cross-shore hydrodynamic models for the undertow and bottom

bouﬁdary layer.

2. A logarithmic layer was found to exist in the bottom boundary layer for
most of the phases over a wave period seaward of the break point and in the surf

zone.

3. The least-squares method applied at each phase yielded estimates of the
shear velocity and bottom roughness. This method was shown to give consistent

results that were not affected by the local irregularities in the bottom roughness.

4. As a first approximation, the bottom roughness may be considered
constant across the surf zone, and a simple relation based on the median grain
diameter gives a reasonable approximation of the bottom roughness. As a second
approximation, the bottom roughness appears to increase slightly with increasing
distance shoreward in the surf zone. These conclusions are based on the fixed bed

experiments and may not be valid for movable beds.

5. As a first approximation, the friction factor may be assumed constant
across the surf zone if the detail of the bottom shear stress variation is not neces-

sary.

6. As a second approximation, the friction factor varies across the surf zone.

Jonsson’s equation, based on linear wave theory, gives a fairly good estimate of
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the measured wave friction factor base on the quadratic friction equation, but it

appears to slightly overpredict the measured value in the inner surf zone

7. For the wave generated turbulence, the approximate local equilibrium

of turbulence for spilling waves was shown to be a reasonable assumption.

8. Two coefficients of practical importance, the mixing length coefficient
and the turbulent dissipation coefficient, were calibrated. The mixing length co-
efficient was shown to have a small temporal variation and that the assumption
of a time-invariant mixing length coefficient was reasonable. The value of this co-
efficient was significantly different under non-breaking and breaking waves. The
dissipation coefficient was shown to have significant vertical and cross-shore vari-
ations but a crude estimate was made which could be applied over much of the

inner surf zone.

9. The calibrated coefficients were used to show that the eddy viscosity
varied gradually over depth and was nearly time-invariant except near trough level

with the passing of the turbulent bore.

10. In evaluating the numerical model, the model predicted the cross-shore
variation of the wave profile reasonably well. The computed depth-averaged hori-
zontal velocity represented the vertical profile of the measured horizontal velocity

below the wave trough level reasonably well except in the transition region.

11. The computed vertical velocity estimated from the continuity equation
represented the measured vertical velocity at least qualitatively except under the
wave crest. The temporal variation of the bottom shear stress was predicted
poorly because errors in the computed horizontal velocity were magnified in the
computed bottom shear stress and because the friction factor is not really constant

as assumed in the model.
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8.3 Suggestions for Future Work

There are several considerations for future work. As was mentioned previ-
ously, this experiment considered only spilling waves. The importance of plunging
versus spilling waves has been noted, and it would be interesting to study the ef-
fects of plunging waves on the bottom boundary layer. In addition, it would be
of interest to focus more on the transition region, since this is one of the more

difficult regions of the surf zone to model.

This experiment was conducted using a fixed bed. It would be of interest

to study the bottom boundary layer with loose sand.

This experiment used only regular waves, and it would be useful to study
the effects of irregular waves on the turbulent structure in the surf zone as well as
the bottom boundary layer. Further, these waves were of normal incidence, and

it would be of interest to study the turbulence induced by multi-directional waves

in order to relate the findings of laboratory measurements with field observations.

The implementation of the simple turbulence model in a two-dimensional,
time-dependent numerical model seems feasible. Such a model would be useful in
providing the detailed hydrodynamics in the surf and swash zone for input to a

model of cross-shore sediment transport.
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