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Abstract

We investigate the parameterization of the vertical structure of horizontal velocity
in a family of weakly nonlinear, weakly dispersive (Boussinesq) models developed by
Nwogu. That model contains a free parameter which specifies the depth about which
the assumed quadratic velocity profiles are expanded, with most standard formula-
tions recovered by particular choices of this free parameter. Nwogu chose to optimize
this model by selecting the parameter to best fit the linear dispersion relation. Here
we test the model by applying it to the nonlinear case of shoaling of regular (cnoidal)
waves. A new dataset documenting the vertical dependence of horizontal velocity is
presented and is used to evaluate the range of values of the free parameter for which
the model gives good results. We show that the Boussinesq model optimized for the
best linear dispersion relation also gives the best approximation to the local vertical
structure in this strongly nonlinear case.

1 Introduction

Much of the current research on the evolution of surface gravity waves in the nearshore
environment is based on models of the Boussinesq type. These models assume low-
order expansions of the dependent variables in the vertical direction, and by use of the



assumptions of weak nonlinearity and weak dispersiveness, are able to parameterize the
variation of the flow field in the vertical direction in terms of purely horizontal measures.
This reduction of a three-dimensional problem to a two-dimensional problem provides
the computational efficiency which has been an important factor in the success of the
approach.

The Boussinesq equations that are now considered to be the “standard” form are
due to Peregrine [5]. These equations were obtained by integrating the Euler equations
over the depth of the fluid and assuming weak nonlinearity and weak dispersiveness.
The equations are able to describe the nonlinear refraction and diffraction of irregular,
multi-dimensional waves in shallow water. Madsen and Mei [2] obtained the same set of
equations by using perturbation expansions. There are various forms of the Boussinesq
equations, all having lower order polynomial expansions in the vertical direction, and
differing primarily in the selection of the dependent variables. McCowan [3] describes
the practical range of the various forms of the Boussinesq equations. Nwogu (4] derived
an alternative form of the equations using velocity at an arbitrary distance from the still
water level as the velocity variable. By selection of specific values of the relative depth
about which to make the polynomial expansion, one can recover most of the previously
investigated forms of the equations. For the “best” choice of the expansion depth, these
equations have excellent linear dispersion characteristics and are applicable for waves
propagating in relatively deep water.

In this work, we document the parameterization of Nwogu’s Boussinesq model for
the vertical structure of horizontal velocity in regular (cnoidal) shoaling waves, as a
function of the free parameter. These predictions are then compared with a new dataset
of measured values from our laboratory. We discuss the evolution of the velocity field
across the shoaling region, and its implications for the perturbation expansions employed
by all Boussinesq models.

2 The Boussinesq Model

The Boussinesq models are long-wave models, based on perturbations of the shallow water
equations. A simultaneous expansion in small nonlinearity (e = wave amplitude / depth)
and small dispersion (u? = (depth/horizontal scale)?) is performed. If € and p? are not of
the same order, further simplifications are possible, leading to the linear long-wave and
Airy theory at the two extremes. Boussinesq models are characterized by the assumption
that € and pu? are both small and of the same order. They share this assumption with the
KdV and regularized long-wave theories, but generalize these theories by not assuming
unidirectional propagation.

The Boussinesq model investigated here is the formulation of Nwogu [4]. Nwogu
chooses an arbitrary relative depth (o« = z,/h, where h is the local still-water thickness
of the fluid) about which to perform the series expansions of the vertical structure of



the dependent variables. The dependent variables of the 2-D model are then assumed
to be equal to the values of the 3-D solution at that relative depth, and are denoted
with a subscript a. The vertical variation of the vertical velocity is assumed to be linear,
consequently the vertical variation of the horizontal velocity components is assumed to
quadratic. The reader is referred to [4] for the derivation of the equations.

For application to wave shoaling in a narrow wave tank, we may assume the flow to
be one-dimensional, for which the equations reduce to
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These equations are in dimensional form and accurate to O(e, u?), and hence allow weak
nonlinearity and weak dispersion.
The expression for the horizontal velocities as a function of z is
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The free parameter of the model is @ = z,/h. In the following, it is more convenient to
use . 5
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which can be chosen to select the different forms of Boussinesq equations, as discussed

below.

The dispersion relation of the linear one-dimensional model is
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where C is the phase speed, w the frequency, k the wavenumber, and where & is defined

above.

Four choices of the free parameter were chosen for comparison with the laboratory data

e Depth-averaged
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This corresponds to the depth-averaged case derived by Peregrine [5], and is the
mostly commonly utilized form of the equations. The dispersion relation for this
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e Still-water

&=0 (9)
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This results from the expansion of the vertical structure about the values at the
still-water level. The dispersion relation is

C? = gh [1 = %(kh)z] . (11)

e Bottom .
o = —5 (12)

Zo _
. (13)

This results from the expansion of the variables about the values at the bottom.
The dispersion relation is
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e Best-linear-fit
a ~ —0.390 (15)
b4
5 —-0.53 (16)

This is the value derived by Nwogu as providing the best fit to the exact linear
dispersion relation of Airy theory, as discussed below. The dispersion relation is
best understood by its graphical representation in Fig. 1.

The phase speeds resulting from these four choices of & are presented in Fig. 1, along
with the exact dispersion relation from Airy theory:

tanh kh

2 _
G =g kh

(17)

3 Laboratory Experiments

3.1 Configuration

The experiments for this project were conducted at the Ocean Engineering Laboratory,
University of Delaware. The laboratory houses a precision wave tank (33 m long with

4



Dispersion Relations for Various Choices of Expansion Depth
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Figure 1: Comparison of the phase speeds for various forms of the Boussinesq equations
relative to the Airy theory.

0.6 m by 0.76 m cross-section). Waves were generated by a hydraulically actuated wave
maker at one end of the tank. The wavemaker is capable of creating sinusoidal, cnoidal
and solitary waves, as well as random sea state. A moving instrument mounted on the
rail facilitates measuring waves along the length of the tank. An adjustable beach is
installed at the far end of the tank. A corion false bottom was installed to create the
slope. An IBM PS/2 model 30 286 computer was used to send impulses to the wavemaker
and a feedback system consisting of a linear variable differential transformer was used
to minimize the difference between the desired position of the wave plate and the actual
position. The control signal for the wave generator was developed using the numerical
scheme by Goring [1].

A Dantec fiber optic laser system, powered by a 4 W argon-ion Lexel laser was used to
measure the horizontal component of velocity. This Laser Doppler Anemometer (LDA)
is a backscatter, four-beam laser system, with a transmitter and frequency tracker. The
fiber optic laser probe used was 14 mm with focal length of 50 mm and beam spacing of
8 mm.

The water surface elevation was measured using capacitance wave gauges mounted
on an instrument carriage along the top of the tank on two rails.

A second IBM PS/2 model 30 286 installed with a MetraByte DASH-16F data ac-
quisition board was used to collect the data using the STREAMER software. The two
computers were linked so that all the data could be taken by one computer.
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Measurement Locations

Wavemaker * * *
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Still Water Level
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Beach Slope = 1:34.66

Figure 2: The experimental set-up (not to scale). At each measuring location measure-
ments were made of wave height and of wave velocity at 7-11 levels in the vertical.

Parameter | Station 1 | Station 2 | Station 3 | Station 4
z (m) -2.19 6.58 7.19 7.44
h (cm) 40.0 21.0 19.2 18.5
Nmag (CI11) 9.7 13.0 13.8 14.5
Nmin (cm) —2.4 -3.0 —-2.9 -3.0

Table 1: Beach geometry and Wave amplitude parameters at the measuring stations. x
is the distance in m from the toe of the beach, h is the still-water depth in cm at each
station, and 7 is the deviation in cm from the still-water depth.

Because the LDA is a single-point measuring device, we required a highly repeatable
waveform for the generation of our vertical profiles. Although solitary waves would have
been ideal, the waiting time between measurements (for the water in the wave tank to
become calm) was prohibitive. We have had excellent success with the repeatability of
cnoidal waves after an initial spin-up period, and these were used for all the experiments
discussed here.

Two different wave conditions, a plunging breaker of period 5 s and a spilling breaker
of period 2 s, were chosen. Four different positions (stations) along the length of the tank
were chosen to make measurements for each of the above conditions. The first position
was in the flat bottom region and the other three positions were along the slope in the
shoaling (pre-breaking) region. At each of these four stations, between 7 and 11 positions
were chosen in the vertical where velocity measurements were taken. The parameters are
presented in Table 1.



The slope of the tank was held constant at 1:34.66 for all the experiments. The
distance from the wavemaker to the slope was 11.85 m. The still water depth in the
constant-depth region of the wave tank was 0.4 m for all the experiments. The Doppler
frequency range used was 33 to 333 KHz for all cases. The wave height, for all waves,
was 0.12 m. In the case of plunging breaker, data were collected at a sampling rate of
128 Hz and for the case of the spilling breaker, the sampling rate was 256 Hz. In both
the cases approximately 50 waves were collected for each point, and the results were
ensemble-averaged. The cnoidal waves were allowed half an hour to stabilize before data
were taken. This ensured a steady-state condition in the wave tank.

The velocity measurements were conducted using the 8 mm probe, which was placed
on a stand so that it could be moved vertically. The crossing point of the beams was
several centimeters into the wave tank. The wall effects did not interfere with the mea-
surements because the measurements were taken outside the lateral boundary layer.

3.2 Summary of Data

We generated a cnoidal wave that resulted in a spilling breaker by choosing a 2 s period
and a flat-bottom amplitude of 0.12 m. A wave resulting in a plunging breaker was
generated by choosing a 5 s period with the same 0.12 m amplitude. The evolution of
the wave height for the two cases is shown in Fig. 3.

The raw data (both height and horizontal velocity) for the 2 s wave consisted of time
series for 132 s (corresponding to 66 waves), while the total sampling time for the 5 s
wave was 265 s (corresponding to 53 wave periods).

For analysis, the data was ensemble-averaged and low-pass filtered (with a 10 Hz
cutoff). To demonstrate the data reproducibility, a sample raw data set superimposed
on the ensemble averaged, low-pass filtered horizontal velocity is shown in Fig. 4.

The data at each depth were aligned by matching the peaks of the water surface
elevation. An example of the ensemble-averaged horizontal velocity is shown at the
different depths (figure 5). We calculated the maximum and minimum velocities of the
ensemble-averaged data and fit cubic polynomial curves to these data using the least-
squares method. To improve the behavior of the fitted curves near the bottom, we forced
the curves to have no vertical derivative at the bottom. This is approximately consistent
with a no stress boundary condition at the bottom. Since the bottom is not exactly
flat, this is not exact — “no stress” implies no normal derivative instead of no vertical
derivative — but the error is negligible for the 1:34.66 slope geometry used here.

The least-squares fit provides the coefficients for analytical expressions for u(z) for
each measuring location and wave type. The equation is of the form

Cubic polynomials were chosen to obtain from the data an indication of the change in
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Figure 3: The evolution of the 2 s wave and 5 s wave
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Figure 4: A sample raw data set superimposed on the ensemble-averaged data set. The
period of this wave is 2 5. The dashed lines denote the ensemble-averaged data set and
the solid line denotes the raw data.
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Figure 5: The vertical and temporal structure of the ensemble-averaged velocity in the
shoaling region for a sample data set. Curve 1 is near the bottom, curve 9 is near the
crest. Horizontal lines indicate that the measuring volume was out of the water during
that portion of the wave cycle.
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maximum and minimum horizontal velocities as a function of z for shoaling region
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Figure 6: The vertical structure of the ensemble-averaged maximum and minimum ve-
locities at station 2 in the shoaling region for the 2 s (spilling) wave.

z of u,,. Quadratic curves also fit the data well, but correspond to exactly the same
truncation as the Boussinesq model itself, and provide no indication of the errors in that
model. This will be further discussed in the following section.

Observations were made up to near the top of the water column, but the data above
the still water line were not used in the analysis. The poor quality of the data above the
still water line was due to the loss of the leading and trailing edges of the signal when
the water surface broke either of the laser beams, and the inability of the electronics
to rapidly reaquire the signal after this disruption. The vertical structure of a typical
ensemble-averaged dataset is presented in Figure 6, along with the cubic polynomial least
squares fit. In this case, the LDA was unable to provide usable data in the top ~ 15% of
the water column, but the remaining data is accurate for the bulk of the water column,

and provides adequate resolution of the large-scale vertical distribution of horizontal
velocity.
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4 Discussion

As noted previously, the (generalized) Boussinesq approximation for u(z) is given by

o2 8

U =1u,+ (E“ — E) Ugze + (2a — 2)(PUa)sz- (19)

It is important to note that this equation does not contain the nonlinear parameter,

€, (nor does it enter at higher orders in the expansion, which is strictly in terms of

u?). This suggests that nonlinearity may not directly contribute to modification of the

vertical structure of horizontal velocity, and therefore that adjusting the free parameter

to optimize the kinematics of the linear problem is the correct approach even for problems
with nonlinearity.

Evaluation of this function requires knowledge of both u, and u,.,. For a given z,,

u, was obtained from the fitted curves. The values of u,., are not available directly from

the measured data and must be approximated. Since the flow fields are non-divergent

and (before breaking) irrotational, the horizontal velocity obeys Laplace’s equation, so

that
Upy = —Upz (20)

and the value of u,,, can be obtained directly from the cubic expression for the vertical
dependence. This makes it clear why a quadratic polynomial fit would be inappropriate
here — the value of v, (and hence w,,,) would be independent of &. While the Boussinesq
approximation would still show a dependence on « in that case, it would not be based
on the correct local kinematics.

Using station 2 of the 2 s (spilling) case, Figure 7 shows the Boussinesq approximations
of the vertical profile of horizontal velocity for several values of &w. In order to make the
small differences stand out more clearly for intermediate values of &, the velocities scaled
by the curve-fitted velocity at each depth are presented in Figure 8.

Under the crest of each wave, the RMS difference between the Boussinesq approxi-
mation of u(z) and the fitted curve for u(z) were computed as a function of & (using 20
values of « to fill in the curves). The results for the 2 s (spilling) wave are presented in
Figure 9 for the 5 s (plunging) wave are presented in Figure 10. Recall that station 1
is on the flat bottom, several m before the beginning of the bottom slope. For the 2 s
wave, the nonlinearity and dispersion are approximately balanced at this location, while
the 5 s wave has significantly more nonlinearity than dispersion. The two curves show
a remarkably common structure, with minimal errors occurring between o = —0.33 and
a = —0.43 in all cases — very close to Nwogu’s “optimal” value of @ = —0.39 for the
linear case. There is some indication that the optimal value of « increases slightly across
the shoaling zone for the 2 s wave (from —0.39 to —0.43), but there is no evidence of such
a shift in the results for the 5 s wave.

This result is a bit surprising, since it is not at all clear a prior: that optimizing
the linear dispersion relation would give the correct vertical structure of the horizontal
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maximum horizontal velocities as a function of z for shoaling region

0.6 max n/h i
0.4} -
Position 2
0.2 il
O uuuuuuuuuuuuu se s e st s s s s s s snsnnsnnunsnsnfe/enn s ses s s s ss e neannen s s
S _ga} )
0.4+ .
-0.61 =
T=2s,h=22.1cm
0.8} T sqrt(g/h0)=9.9045 -
H/h0=.300
-1 1 1 I 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Non-dimensional horizontal velocity (u/sqrt(gh))

Figure 7: Several Boussinesq estimates of the vertical structure of horizontal velocity
at station 2 in the shoaling region for the 2 s (spilling) wave. The curves are based on
(across the top from left to right): still-water, cubic fit to data, depth-averaged, Nwognu,
and bottom.
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Scaled Velocity with Depth for various alpha
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Figure 8: Velocities scaled by the curve-fitted velocity for several values of & for station
2 of the 2 s (spilling) wave. The solid curve is for the depth-averaged case (& = —1/3);
the dot-dash curve for Nwogu’s best-fit case (& = —0.390); the tightly dotted curve for
the expansion about the bottom velocity (& = —1/2; and the widely dotted curve for the
expansion about the velocity at the still-water level (& = 0).
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Error of Boussinesq Kinematics vs Alpha for 2 s wave
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Figure 9: RMS error in fitting u(z) as a function of & at stations 1-4 progressing through
the shoaling zone for the 2-second (spilling) wave.

Error of Boussinesq Kinematics vs Alpha for 5 s wave
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Figure 10: RMS error in fitting u(z) as a function of & at stations 1-4 progressing through
the shoaling zone for the 5-second (plunging) wave.
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Variation in Nonlinearity and Dispersion across Shoaling Zone
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Figure 11: Estimates of the nonlinearity (€¢) and dispersion (¢?) as a function of position
in the shoaling zone for the 2 s (spilling) and 5 s (plunging) waves. All values are defined
under the wave crest.

velocity. The lack of explicit dependence on nonlinearity is less surprising, since the
expression for the vertical structure of horizontal velocity does not depend on € at any
order, The result is also fortuitous, since it means that we do not need to trade off
accuracy in the linear dispersion relation for accuracy in kinematics in choosing the
expansion depth.

Since the Boussinesq family of models is based on the assumptions that nonlinearity
and dispersion are both weak and of comparable magnitude, it is of interest to examine
the validity of these assumptions across the shoaling zone. We define the maximum
nonlinearity and dispersion using local measures as:

€= — (21)
and
i = (kh)? = (i"f) B2 (22)

where u,, is evaluated as u,, as discussed previously, and all values are evaluated under
the wave crest.

The evolution of the nonlinear parameter, €, and the dispersion parameter, u?, across-
ing the shoaling zone are presented in Figure 11. The relative importance of these two
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Variation in Ursell Number across Shoaling Zone
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Figure 12: Ratio of the nonlinearity (¢) to the dispersion (u?) as a function of position in
the shoaling zone for the 2 s (spilling) and 5 s (plunging) waves. All values are defined
under the wave crest.

perturbations to the shallow water equations changes significantly as the wave shoals.
The Ursell number (e/p?) is shown for the two wave cases in Figure 12. Both the spilling
and plunging wave cases are characterized by greater dispersion than nonlinearity in the
flat-bottom region (station 1). As the wave shoals, this ordering is reversed in both
cases, with a strong dominance of nonlinearity in both cases. The wave breaks within
0.40 m (1/10 of a wavelength) of the last station, so these results capture most of the
pre-breaking wave transformations.

5 Summary

For the important test case of shoaling regular (cnoidal) waves, we have shown that (1)
the local kinematic balance determining the vertical structure of horizontal velocity is
best described by the Boussinesq models optimized for the linear dispersion relation;
and (2) this result is not modified by the significant increase in nonlinearity as the wave
shoals.

Based on local definitions of the dispersive and nonlinear parameters, we see that the
assumption of weak dispersiveness in the Boussinesq model actually improves slightly
across the shoaling zone, while the assumption of weak nonlinearity becomes less accurate.
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These observations suggest that improvements in the treatment of the nonlinear terms
(such as the fully nonlinear Boussinesq model of [6]) are more important than further
improvements in the treatment of dispersive terms in this region.

Although these results do not negate the known weaknesses of Boussinesq models in
modelling strongly shoaling waves, they do show that the general philosophy of optimizing
the linear dispersion relation is a reasonable and effective one for regular shoaling waves.
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