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Abstract

The structure of turbulence in a spilling breaker has been studied experi-
mentally based on the transport equation for turbulent kinetic energy (the k-
equation). We study turbulence transport in the evolving flow from the breaking
point to the inner surf zone in the region below trough level and above the bot-
tom boundary layer. The study shows that turbulence transport processes are
similar in the outer and inner surf zones. It is found that diffusive transport
plays the most important role in the distribution of turbulence, while advection
is important mainly near the surface. It is also found that although turbulence
production below trough level amounts to only a small portion of the wave en-
ergy loss, the production term is not small compared to the dissipation term and
the major terms in the k-equation and thus it cannot be neglected. The mixing
length is estimated based on the measured rates of vertical advance of the tur-
bulent front, and comparisons of turbulence production and energy dissipation.
The results are similar to those found in previous studies . It is shown that
the length scale and velocity scale of the large eddies are subject to turbulence
transport processes, therefore their distributions cannot be prescribed in an easy
way. The relative values of the components of the Reynolds stress tensor are
examined. The results of analysis supports the notion that surf-zone turbulence
created by spilling and plunging breakers differ primarily in the method of en-
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ergy transfer from organized wave-induced motion to turbulent motion, and the
constraints imposed by the mean flow and the solid bottom on the large-scale

turbulence.

1. Introduction

Wave breaking plays an important role in sediment transport and beach
profile change. In the surf zone, turbulence generated by broken waves causes
wide-spread and intense sediment suspension. Turbulence carries sediment away
from the bed, making it available for transport by waves and wave-induced cur-
rents. Prediction of sediment transport requires modeling of the distributions of
fluid velocities and suspended sediment concentrations. The transport equation

for suspended sediment is given by

P = _6u:,»c' + wf@ (1)
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In Eq. 1, the tilde is an operator to take an ensemble average, z; (j = 1,2,3; 21 =
z,z9 = y,x3 = z) are the coordinates of a Cartesian frame with 2z extending
positive upward from the undisturbed water surface, @; (7 = 1,2,3; %, = 4,1z =

v, 13 = W) are the components of the ensemble-averaged water particle velocity,

,.

; and ¢’ are the fluctuating

¢ 18 the ensemble-averaged sediment concentration, u
parts of velocity components and sediment concentration, and wy is the sediment
fall velocity. The ensemble-averaged velocity #; is the organized wave-induced
velocity which includes both the undertow and the orbital wave motion; it may
be found by solving the momentum equations. In regular waves, periodic motion

allows the ensemble-averaged velocities to be obtained by phase-averaging the

measured velocities over successive waves.
Eq. 1 can be solved only if the turbulent transport 1@;’ can be determined

in some way. In direct analogy to turbulent momentum transport, turbulent
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mass transport is often assumed to be related to the gradient of the transported
quantity, 1.e.

=2 @
where D is the turbulent diffusion coefficient. In the eddy-diffusivity concept,
the turbulent diffusion coefficient is proportional to a velocity scale and a length
scale, i.e.

D =Wk (3)

where [ is the length scale of the large eddies, and k is the turbulent kinetic

energy defined by

U (4)
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In the one-equation model [ is specified and k is found by solving the energy
equation for the turbulence (the k-equation). For high Reynolds numbers, the

k-equation can be written

ok  Ouik @ tl-== . % 1o 3.
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where p' is the fluctuating part of pressure, p is the density, v is the kinematic

viscosity, k' is the instantaneous value of k given by

B = %u;ui (6)

and Sjj;, s;j are the mean rate of strain and fluctuating rate of strain respectively

1 (0w; 04 1 (0u, Ouj
Sij = 2 (33:3; L 3:1:,') ’ %ij = 2 (33:1' + Ox; (7)

Eq. 5 states that the local time rate change of turbulent kinetic energy is due

to convection by mean flow, diffusive transport by pressure and turbulent fluc-
tuations, turbulent energy production, and viscous dissipation. The relative
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importance of these terms are important in turbulence modeling and must be

determined.

Many researchers have studied turbulence in breaking waves before, with
the main effort centered on laboratory experiments. Some of the more de-
tailed studies include Stive (1980), Nadaoka and Kondoh (1982), Stive and
Wind (1982), Sakai et al. (1982, 1984), Hattori and Aono (1985), Nadaoka
(1986), Mizuguchi (1986), Okayasu et al. (1986) and Nadaoka et al. (1989).
So far, the velocity field in the surf zone has been relatively well studied, but
the dynamics of turbulence has not. To date, turbulence transport in the surf
zone has not been studied in a systematic manner. For example, it is believed
that the main part of turbulence production takes place above the trough level,
and spreading of turbulent energy is due to convection (Peregrine and Svendsen,
1978). Because of this, production below the trough level is often neglected in
turbulence modeling. It is thought that only a small portion of the wave en-
ergy loss is dissipated below the trough level (Svendsen, 1987a). There are also
much ambiguity in the determination of the length and velocity scales of surf-
zone turbulence. The difficulty arises because the dynamical role of individual
transport processes such as advection, diffusion, production and dissipation are
poorly understood. In order to model turbulent flows we must first understand
the turbulence transport processes.

Recently, Ting and Kirby (1994) have studied the characteristics of undertow
and turbulence in spilling versus plunging breakers. They found that turbulent
kinetic energy is transported seaward under a spilling breaker and landward un-
der a plunging breaker below the trough level. They concluded that turbulence
transport processes are different in spilling and plunging breakers, and suggested
that further work on this topic is warranted. Since the transport equations for
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suspended sediment and turbulent kinetic energy are coupled, a thorough un-
derstanding of turbulence transport would be important for developing working
models of coastal processes. The dynamics of turbulence in a strong plunging
breaker has been studied by Ting and Kirby (1995) based on the transport equa-
tion for turbulent kinetic energy. They found that turbulence transport under a
strong plunging breaker is dominated by large-scale motions that can be related
to the wave characteristics. It was also found that advective and diffusive trans-
port of turbulence are important, thus they cannot be neglected in turbulence

modeling.

This present study deals with the dynamics of surf-zone turbulence created
by a spilling breaker on a plane beach. Experiments were conducted in a two-
dimensional wave tank where water particle velocities were measured using a
fibre-optic laser-Doppler anemometer and surface elevations were measured us-
ing a capacitance wave gage; the measurements were obtained at several stations
inside and outside the surf zone. Based on the measured data, we study the pro-
cess of turbulence transport in the evolving flow within the surf zone. We first
present the experimental results and discuss how the organized wave-induced
motion (mean flow) and the turbulent velocity fluctuations transport turbulent
kinetic energy; then, we investigate the relative importance of the terms in the
k-equation. In order to give an overall picture of the dynamical role of turbu-
lence in spilling breakers, earlier published results are discussed and the question
of how the dynamics of turbulence differs between spilling and plunging breakers

is explained.

2. Experimental equipment and procedures

The measurements from which the present results are derived were partly
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used in a previous study (Ting and Kirby, 1994). To prevent duplication of the
description of details just a brief account of the experimental equipment and

procedure is given below.

The experiments were conducted in a two-dimensional wave tank in the
Ocean Engineering Laboratory at University of Delaware. The wave tank was
40m long, 0.6 m wide and 1.0m deep. Cnoidal waves were generated in a water
depth of 0.4m by a bulkhead wave generator. The wave height was 12.5cm in
the constant-depth section, and the wave period was 2.0s. The ratio of deep-
water wave height Hy to deep-water wavelength Ly was 0.020 based on linear
shoaling. The waves broke in the form of a spilling breaker on a 1 on 35 sloped

false bottom built of marine plywood.

A schematic diagram of the experimental arrangement and the coordinate
system is shown in Fig. 1. The following notations are used in this paper: ( =
instantaneous water surface elevation, ( = mean water surface elevation, d =
local still water depth, h = d + { = local mean water depth, and the subscript
b denotes the breaking point. The latter is defined as the location where air

bubbles begin to be entrained in the wave crest.

Water surface elevations and velocities were measured at eight locations
along the centerline of the wave tank (six of these locations were inside the
surf zone); their exact locations and water depths are given in Table 1. The
horizontal distance covered by the measuring section within the surf zone was
3.06 m, extending from d = 18.5cm near the breaking point to d = 9.7cm
in the inner surf zone. Water particle velocities were measured using a fibre-
optic laser-Doppler anemometer (LDA). Velocity measurements were conducted
mainly in the region below trough level and above the bottom boundary layer.
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Unfortunately, the blue line of the laser did not have sufficient power therefore
horizontal and vertical components of water-particle velocity were measured
using the green line of the laser by conducting the same experiment twice. Data
were acquired using an IBM PS/2 Model 30286 computer equipped with a
MetraByte DASH-16(F) data acquisition board. The sampling frequency was
100 Hz for each channel and the sampling time was 204.8s. The wave gage and
the fibre-optic probe were mounted on an instrument carriage which could slide
along the top of the tank on two rails. The probe was submerged in water during

experiment.

The organized wave-induced velocity was obtained by phase-averaging the
instantaneous velocity over one hundred and two successive waves; the deviations
from the phase average were considered to be turbulent velocity fluctuations.
Visual observations showed that the foam was confined to a region near the
crest of the broken waves, but air bubbles were entrained and transported to the
bottom by sporadic, three-dimensional vortices descending obliquely downward.
When air bubbles passed through the probe volume of the LDA signal drop-out
occurred and the Doppler frequency was held at the last measured value. This
resulted in spurious signals which were partly recorded as turbulence. In order
to minimize the influence of aeration on the velocity measurements, data that
were obtained during signal drop-out were not used in data analysis. It was
shown in Ting and Kirby (1994) that we have sampled sufficient realizations
to obtain stable wave and turbulence statistics. For the detailed experimental

procedure the interested reader is referred to Ting and Kirby (1994).



3. Results and discussions

3.1. Turbulence transport

Fig. 2 plots the phase-averaged water surface elevations at several stations
in the surf zone. The temporal variations of quantities in this figure, and others
to follow, are synchronized with the motion of the wave plate to show the phase
relationship between different measuring points. Previous studies have shown
that the height of the broken waves remains an approximate fixed proportion of
the mean water depth in the inner surf zone (see Svendsen et al., 1978). This
observation is used here to distinguish the outer surf zone from the inner surf
zone. It is seen in Fig. 2 that the wave height to water depth ratio H/h is slowing
decreasing and the shape of the broken wave is almost constant shoreward of
(z — zp)/hy = 7.462. Hence, this station may be considered to be the starting

point of the inner surf zone.

Fig. 3 presents the results for (z — zy)/hy = 4.397, h/hy = 0.879. Local
wave height is 12.04 cm, wave set-up is 0.59 cm, mean water depth is 17.49 cm,
and wave height to water depth ratio is 0.688. Phase-averaged horizontal and
vertical velocities are plotted in Figs. 3a and 3b. All velocities are normalized
by the wave celerity C' = \/gh. Trough level is located at (z — ()/h =~ —0.20.
Since the water surface elevation in the surf zone varies considerably from wave
to wave, the trough level is defined as the highest point where the probe is
submerged over the entire data run. The velocities presented in this paper are
for the region below trough level and above the bottom boundary layer. Phase-
averaged turbulent velocities are presented in Figs. 3c and 3d. In the outer surf
zone the flow is evolving and turbulence is weak (cf. Figs. 4c and 4d). It is
inferred from the temporal variations of turbulent velocities that the dissipation
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rate is slow in the spilling breaker and thus turbulent energy does not die out
between breakers but is more uniform in time. It may be observed that turbulent
velocities are highest in the crest portion of the wave near the surface, but the
peak gradually shifts to the trough portion of the wave as the distance from
the surface increases. This trend is more distinct in the inner surf zone and has
been observed in previous studies. It indicates that turbulent kinetic energy is
generated in the wave crest and spread to the bottom, and the vertical mixing
is slow. It is seen that the u' component generally has more energy than the w'

component, which is to be expected.

Transport of turbulent kinetic energy by mean flow are presented in Figs. 3e
and 3f. Because the transverse velocity component was not measured, turbu-
lent kinetic energy is estimated by k = (1.33/2) (‘;ﬁ + 1;&) after Stive and
Wind (1982) and Svendsen (1987a). This assumes that the turbulent velocities
resemble that in a plane wake, which has not been proven. However, Svend-
sen (1987a) has shown that the ratio k/ (F + ;E) does not vary greatly for a
number of different shear flows hence the errors associated with this estimation
is expected to be small. Fig. 3e shows that transport of turbulent kinetic energy
by mean flow is predominantly seawards near the bottom. This phenomenon
is observed in the outer surf zone as well as the inner surf zone (water particle
velocities were not measured in the swash zone). The implications for coastal
sediment transport were discussed in Ting and Kirby (1994). Transport of tur-
bulent kinetic energy by turbulent velocity fluctuations are presented in Figs. 3g
and 3h. Only the v'* and w'® components are shown since we did not measure

w' and w' simultaneously. It is seen that w'® is negative, which indicates that

turbulence is spread downward by turbulence.

Fig. 4 presents the results for (z — xp)/hy = 7.462, h/hy, = 0.809. Local
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wave height is 8.865 cm, wave set-up is 0.76 cm, mean water depth is 0.161m,
and wave height to wave depth ratio is 0.551. Phase-averaged horizontal and
vertical velocities are plotted in Figs. 4a and 4b. Trough level is located at (z —
()/h =~ —0.20. Phase-averaged turbulent velocities are plotted in Figs. 4c and
4d. These plots give evidence for existence of coherent structures in the spilling
breaker. Nadaoka et al. (1989) have observed that wave breaking produces
horizontal vortices in the spanwise direction, which then break down through the
formation of vortices extending obliquely downward. These obliquely descending
vortices are identifiable for only a short time, and similar but not identical
vortices occur repeatedly in successive breakers. Since the LDA measures fluid
velocities at only one point in space at a time, and the measured velocities
are phase-averaged over many waves, they cannot provide detailed information
on the spatial structure of the vortices and their evolution in time. However,
the close resemblence of turbulent velocity fluctuations at different elevations
indicates that there must be a high degree of organization in the turbulent
motion, and the phase shift indicates that turbulent motion spreads slowly into
the ambient flow. The rate of vertical advance of the turbulent front can be
estimated from the time delay of the observed increase in turbulent velocity
with depth. From Fig. 4d, the rate is about 0.4C from the time delay between
the increase in turbulent velocity at (z — ()/h = —0.2957 and —0.4820, 0.4C
from (z — €)/h = —0.4820 and—0.6683 and 0.3C from (z — ()/h = —0.6683
and —0.8857. This time delay is partly caused by advective transport in a
shear flow with mean velocity gradient 04/dz. From Fig. 4a, we estimate that
the effect of shearing should not exceed 0.05C. The modified velocity of 0.25-
0.35C is still considerably larger than the measured turbulent fluctuations. It is

found that the variation of mixing rate over depth is small, whereas turbulent
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velocity fluctuations decrease with distance from the surface. These observations
suggest that the calculated turbulent diffusion coefficient could be too low at
some depth if the length scale is held fixed and the velocity scale is taken to
be the r.m.s. turbulent velocity fluctuations. Previously, Deigaard et al. (1986)
have calculated distribution of turbulent kinetic energy in the inner surf zone
by solving the linearized k-equation. They estimated the turbulent diffusion
coefficient using Eq. 3 with [ = 0.07h. Svendsen (1987a,b) pointed out that the
calculated turbulent energy and its variation over depth were significantly larger
than the measured values derived from Stive and Wind’s measurements. Tada
et al. (1990) included the vertical convection term in the k-equation but found
that the effect of this on the vertical distribution of turbulent kinetic energy was
small. However, they found that multiplying the production term by 0.3 and
the dissipation term by 0.5 gave results that compared well with experiment.
The reduction in the production by a factor of 0.3 was already proposed in the
closure of Deigaard et al. (1987). The sensitivity of their model to variations in
the production and length scale is given in Deigaard et al. (1991), which also
contains a comparison between measured and simulated vertical distributions of

turbulence.

The major weakness of the one-equation model is that the specification of
length-scale distribution is rather arbitrary. In simple flows such as mixing
layers, jets and wakes, the mixing length [ can be assumed constant across the
shear layer and proportional to the local layer width é. For example, the value
of 1/§ is 0.07 in plane mixing layer, 0.09 in plane jet and 0.16 in plane wake
(Rodi, 1984). Svendsen (1987a,b) proposed ! ~ 0.2-0.3h in breaking waves
based on comparisons of computed and measured undertow velocity profiles. A
more direct determination of [ is to measure the rate of spreading of turbulence
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patches. The time for turbulence to spread throughout the water column is (see

Ting and Kirby, 1995)
2

This must be equal to the observed mixing time

(9)

where i is the velocity for vertical advance of turbulent front. Equating ¢ with
tm and after using Eq. 3, we obtain

l U
-~ 04— 10
h vk 40)

From Figs. 4c and 4d we find that vk ~ 0.12C under the wave crest. Since @ lies
in the range of 0.25C' to 0.35C, Eq. 10 yields | ~ h. This is too large. However,
the coefficient of 0.4 in Eq. 8 is for “fully mixed” condition. We expect that
the turbulent front will not take that much time to reach the bottom. Keeping
this in mind, the length scale of [ ~ 0.2-0.3h proposed by Svendsen (1987a,b) is
more realistic. It appears that the length scale in breaking waves is somewhat

larger than those in simple shear flows.

Transport of turbulent kinetic energy by mean flow and turbulent veloc-
ity fluctuations are shown in Figs. 4e-4h. Transport of turbulent energy by
advection is upwards under the wave front and downwards under the back
face of the wave. Transport of turbulent energy by turbulent fluctuations is
equal to w/k in the horizontal direction and w'k' in the vertical direction, where
F = %(u'z +v'2 +w'?) is the instantaneous value of turbulent kinetic energy. We

have measured u'> and w'® only, but the other components may be expected to

behave in a similar manner. It is seen that u'® is positive and w'® is negative.
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Hence, turbulent kinetic energy is transported shoreward by turbulent fluctua-
tions while spreading downward. These measurements are consistent with visual

observations of large-scale motions in breaking waves.

Fig. 5 presents the experimental results for (z — z3)/hy = 10.528, h/hy =
0.744. Local wave height is 8.223 cm, wave set-up is 1.05 cm, mean water depth
is 14.8 cm, and wave height to water depth ratio is 0.556. Comparing Fig. 5
to Fig. 3, it is seen that the structure of turbulence has many similarities in
the outer and inner surf zones. This is different from plunging breakers where
the structure of turbulence changes considerably from the outer surf zone to
the inner surf zone (see Ting and Kirby, 1995). For the spilling breaker, wave
breaking is confined to a region near the wave crest and the rate of energy
transfer from wave to turbulence is relatively slow. Because of this, the size of
the largest eddies is still smaller than the local water depth and thus the effect
of the solid bottom on the eddy motion is small. These conditions allow the
turbulent flow to evolve slowly under its own evolutionary tendencies. The rate
of energy supply to turbulent motion is important in determining the turbulence
structure because turbulent diffusion and dissipation are passive processes that
can only proceed at a rate dictated by the behaviour of the large eddies. The
rate of energy supply to the large eddies is of order U? /I, where [ and U are the
length scale and velocity scale of the large eddies. The rate of energy supply
is much higher in plunging breakers than in spilling breakers and consequently
plunging breakers have large length and velocity scales. It could be argued that
spilling and plunging breakers differ primarily in the method of energy supply to
the turbulent motion, and the effects of the mean flow and the solid boundary

on the large-scale turbulence; this will be discussed more fully later.

From Figs. 5a and 5d, we estimate that the rate of vertical diffusion is about
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0.15-0.25C. It is seen that the rate of vertical mixing decreases shoreward.
Considering that the source of energy for the large eddies is the available kinetic
and potential energy released by wave breaking, we should expect that the length
and velocity scales of the large eddies, and the mixing rate, will decrease with

the wave height, that is, shoreward.

Further inshore, the broken waves have developed into a turbulent bore.
Fig. 6 presents the experimental results for (z — z3)/hy = 13.618, h/hy = 0.668.
Local wave height is 7.52cm, wave set-up is 1.29 cm, mean water depth is
13.3cm, and wave height to water depth ratio is 0.565. Fig. 7 presents the
experimental results for (z — z3)/hy = 16.709, h/hy = 0.563. Local wave height
is 6.32 cm, wave set-up is 1.34 cm, mean water depth is 11.2 cm, and wave height
to water depth ratio is 0.564. The rate of vertical diffusion is about 0.1-0.2C,
and decreases slightly with depth. Comparing Fig. 6 to Fig. 7, it is seen that the
fluid kinematics and the turbulence transport at these two stations have sim-
ilar distributions, which suggests that some state of dynamical equilibrium is
established in the inner surf zone. In the ideal situation where self-preservation
exists, the structure of turbulence and the kinematic relations would remain
similar at different stations if nondimensionalized with local length and veloc-
ity scales. In addition, the length and velocity scales will be functions of =
alone. Since the equations of motion permit self-preservation only in special
cases, it is likely that turbulent flows in the inner surf zone are only approxi-
mately self-preserving, so that the scaling laws vary slowly in the z direction.
The normalized results presented in Figs. 6 and 7 indicate that the local water
depth h and the phase velocity \/gh relate to the length scale and velocity scale
of turbulence in important way. This is to be expected since surf-zone turbu-
lence originates from instabilities of waves therefore the dynamics of turbulence
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should be related to the wave characteristics. However, the relation is probably
far more complicated. For instance, it was found in a strong plunging breaker
(Ting and Kirby, 1995) that /g(H + h) provides a better estimate of the phase
velocity and presumably the velocity scale, which suggests that the wave height
is also an important length scale. To establish the scaling laws, it is necessary to
investigate the structure of turbulence systematically for a wide range of wave

conditions.

Our study indicates that there is a significant difference between spilling
and plunging breakers also long after the breaking starts. It was shown in Ting
and Kirby (1994) that turbulent kinetic energy is transported seaward by the
mean flow under a spilling breaker and landward under a plunging breaker. This
phenomenon is related to the time scales of wave motion and large-eddy motion,
which are in turn related to the rate of energy transfer from wave to turbulence;
for a detailed discussion of this aspect of surf-zone turbulence the interested
reader is referred to Ting and Kirby (1994). It will be shown in this paper
that the structures of turbulence in spilling and plunging breakers are indeed
different. The simplest index of structure is the relative values of the components
of the Reynolds stress tensor. In a two-dimensional surf zone the important
Reynolds stresses are ;ﬁ, w? and v Fig. 8 plots the vertical distributions
of F/F at different stations in the surf zone. Research in turbulent shear
flows has shown that the relative values of the components of turbulent velocity
fluctuations depend on the nature of turbulent flows and are similar for all flows
of a single family. For example, the value of w_’z'/-u_’i is 0.71 in plane jet, 0.77
in plane wake and 0.51 in the outer region of boundary layer (Townsend, 1976).
Hence, the difference between the two groups of free turbulent flows is much

less than that between the boundary-free shear flow and the wall-bounded shear
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flow; this is related to the effect of the flow boundaries on the turbulent motion.
The profile of F/F is presented in Fig. 8a for the spilling breaker case. It
is seen that the ratio w—'i/ﬁ varies considerably across the surf zone but its
variation over depth is small everywhere. Velocity measurements and visual
observations indicate that turbulent energy is generated in the crest region and
spread downward by moderate-scale eddies. The descending eddies are subject
to straining by a strong shear flow (see Fig. 7a). Indeed, in comparing the
mean flows in spilling and plunging breakers (Ting and Kirby, 1994) it was
found that horizontal velocities are virtually constant below trough level and
above the bottom boundary layer in the plunging breaker, whereas large velocity
gradients exist in the spilling breaker. Because of large strain rates (see Fig. 15)
and slow spreading of turbulence in the spilling breaker, we should expect that
pressure-velocity interactions will allow efficient energy transfer between velocity
components thus maintain good ratio of F/F For comparison, Fig. 8b plots
the distribution of W/F in a plunging breaker (Ting and Kirby, 1995); this
result has not been presented before. It is seen that the value of p/ u'? decreases
markedly with distance from the surface. This is because the variation of u'? over
depth is very small, whereas w'? decreases rapidly downward. The latter suggests
that the inhomogeneity of turbulence is caused by the presence of the solid
bottom. In the plunging breaker, turbulent motion is dominated by large vortex-
like eddies with large length and velocity scales. Because of this, turbulent
diffusion is much faster. The large eddies quickly run into the bottom therefore
vertical motion is restricted. In addition, we may expect that straining of large
eddies should be less effective under the plunging breaker because the time scale
of vertical mixing is much smaller than the characteristic time of the mean

flow. These results indicate that the structural differences between spilling and
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plunging breakers are related to the method of energy transfer from the organized
wave-induced motion to the turbulent motion, and the effects of the mean flow

and the solid boundary on the large eddies.

The determination of turbulent velocity correlations is the main problem
in turbulence modeling. These correlations appear in the Reynolds stress ten-
sor in the momentum equations and the triple-velocity tensor in the Reynolds-
stress transport equations. Reynolds stresses have been studied by Stive and
Wind (1982), Sakai et al. (1984), Nadaoka (1986) and Okayasu (1988), amongst
others. Stive and Wind (1982) studied the depth and time-averaged momen-
tum equations in a spilling breaker and found that the turbulent contribution
to the radiation stress in the surf zone is weak. Sakai et al. (1984) studied the
time variations of Reynolds stresses over one wave period in spilling and plung-
ing breakers. They compared the magnitude of the terms in the z-momentum
equation, and found that the Reynolds stress terms are small compared to the
local acceleration and the convective terms. In Sakai et al. (1984), turbulent
velocity fluctuations were obtained by filtering away the low frequencies from
the measured signals. Since most of the turbulent energy is associated with the
large-scale motions, it is likely that part of the turbulence has been omitted
from their results. Okayasu et al. (1988) obtained the time-mean eddy viscosity
from the time-mean Reynolds stress u'w' and the vertical gradient of undertow
in spilling and plunging breakers. They found that Reynolds stress and eddy
viscosity decrease with distance from the surface. It would be interesting to
study the correlation coefficient between u' and w' in spilling versus plunging
breakers. In most turbulent shear flows the value of —uw'/ ({f’i@)% is about
0.4, and this value varies only little across any flow and also little from flow to
flow. From physical reasoning we expect that the correlation between u' and w'
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should be better in spilling breakers due to more effective straining of eddies by

the mean flow.

The velocities u and w were not measured simultaneously when we conducted
the experiments at University of Delaware. A 1 on 35 sloped false bottom was
later installed in the two-dimensional wave tank at Texas A&M University. This
slope was built for an experimental study of surf-zone turbulence in irregular
waves (Sultan and Ting, 1993). In this tank we have repeated some experi-
ments for the spilling breaker case. We measured u and w simultaneously in
the inner surf zone using a two-component laser-Doppler anemometer. Typical
examples of the temporal variations of the turbulent kinetic energy k and the
corresponding correlation coefficient between u' and w' are shown in Figs. 9a
and 9b. The value of u'w'/ (;fé;;ﬁ )% varies between 0 and -0.5. The correlation
coefficient is around -0.4 at the turbulent front and decreases as the turbulence
decays. Considering that the Reynolds stress terms are most important during
period of high turbulence intensity, these results provide some support for the
use of a correlation coefficient of -0.4 between u’ and w' in the spilling breaker
case. Fig. 9c plots the variation of W/(WW)% with depth. The correlation
coefficient varies between -0.1 and -0.3 with the best correlation between u' and
w' found at some distance below the trough level.

Fig. 10 plots the temporal variations of the correlation coefficient between
u'? and ' in the inner surf zone; similar results are found in the outer surf
zone. This correlation represents the transport of turbulent kinetic energy by
the horizontal component of turbulent velocity fluctuations. It is seen that the
correlation coefficient is mostly positive, and its temporal variation over a wave
period is similar to that of the turbulent velocity fluctuations (Figs. 7c and 7d).
Good correlation between u'> and u' is found where turbulence intensity is high;
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the correlation coefficient there is between 0.3 and 0.5. Also, the correlation
is generally better at some distance below the trough level. The results are
consistent with slow spreading of turbulence from the surface by moderate-scale
eddies. As the eddies evolve vortex stretching tends to maintain good correla-
tion between u'* and u'. The temporal variations of the correlation coefficient
between w'* and w' are plotted in Fig. 11. The results are similar except that
the correlation coefficient is mostly negative which means that turbulent energy

is transported downward by turbulent velocity fluctuations.

Velocity spectra in a laboratory surf zone have been studied by Hattori
and Aono (1985). In that study, wave breaking was initiated at the edge of
a horizontal shelf by a 1 on 20 slope in front. They found that the slopes of
the velocity spectra at high frequencies were approximately -3, whereas fully
developed turbulent flows should have a slope of -5/3. This discrepancy may be
a consequence of their experimental arrangement, that the shelf has hindered
the wave breaking process thus turbulence cannot attain a fully developed state.
Similar situation was observed in the outer surf zone in this present study.
It can be shown that the structure of turbulence in a laboratory surf zone is
independent of viscosity. Therefore, Froude scaling should apply for the large-
scale turbulent motion as well as the wave motion. In addition, viscous transport
of turbulent energy can be neglected. Fig. 12 plots the velocity spectra of wave
and turbulence, and of turbulence alone for (z — z})/hy = 16.709. The velocity
spectra are presented for (z—C)/h = —0.3875 (Figs. 12a and 12b) and (2—()/h =
—0.8339 (Figs 12c and 12d); trough level is located at (2 — {)/h &~ —0.25.
Fig. 12 shows that most of the turbulent energy is associated with the large-
scale motions in the wave frequency range. The slopes of the velocity spectra at
high frequencies are closely approximated by a -5/3 slope, corresponding to that
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for the inertial subrange. This implies that the turbulent Reynolds number is
very large. The turbulent Reynolds number is defined as Ul/v. The magnitude
of turbulent Reynolds number necessary for an inertial subrange to exist is of
the order of 10° (Tennekes and Lumley, 1972). At high Reynolds numbers there
is a large difference in the sizes of the large eddies of turbulence production
and the small eddies of energy dissipation so that the large-scale structure of
turbulence is independent of fluid viscosity. Furthermore, it may be observed
that the velocity spectra of the horizontal and vertical components coincide at
frequencies higher than 2 Hz. This local isotropy does not exist if the Reynolds
number is not large enough. This is because the large eddies have preferred
directions due to the strain rate of the mean flow, and eddies of smaller size are
subject to the strain rate of large eddies. However, if the Reynolds number is
very high there is little direct interaction between small eddies and large eddies

so that the small-scale structure of turbulence is very nearly isotropic.

3.2. Turbulence transport equation

Eq. 5 is analyzed to determine the relative importance of the individual
turbulence transport terms. The local time rate of change of turbulent kinetic
energy Ok /0t, and the convection terms Otik/Oz and 0wk /dz are found from the
phase-averaged velocities. The pressure fluctuations and the fluctuating rate of
strain cannot be measured. Therefore, turbulence transport by pressure fluctu-
ations is not studied; dissipation is studied based on the classical relation given
by Eq. 12. Transport of turbulent energy by turbulent velocity fluctuations is
given by 'k /0z in the horizontal direction and ow'k! /0z in the vertical direc-
tion. We have measured the components %8;'3 /0z and %81;':5 /0z only. These
experimental data, although incomplete, can still provide important insights
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into the nature of turbulent diffusion. We have to assume that the correlation
coefficient between u' and w' is equal to 0.4 in order to estimate turbulence
production. For example, the major production term u'w' O /0z is estimated by
0.4(;;5;;5)%611 /0z. The other production terms are found in a similar manner.
On the basis of Fig. 9b we expect that the error associated with this estimation
will not exceed +20% in the production phase. The error will be larger in the
decay phase but turbulence production there is small anyway. Partial deriva-
tives in z and ¢ are calculated using central finite difference method. We have
used the transformation 8/8z = —C~'0/8t to calculate the partial derivatives
in z. This assumes that the wave is of permanent form, which is substantially
accurate since the time scale of change in the wave shape is much larger than the
sampling time interval of 0.01s. Finally, the spatial and temporal derivatives

are low-pass filtered at 10 Hz to reduce measurement noise.

Some typical results are presented in Figs. 13-14. In these figures, the
solid line is 9k/0t, the dashed line is —(0uk/0z + Owk/0z), the dotted line is
- %3;5/33:, and the dashdot line is —%61}3[63. The turbulence transport terms
are nondimensionalized by C?T~!, where T is the wave period. The results for
(. —xp)/hy = 4.397 are plotted in Figs. 13a and 13b for (z —()/h = —0.3194 and
(z — {)/h = —0.7194, respectively; trough level is located at (z — {)/h & —0.2.
We believe that the large fluctuations in 0k/0t around ¢/T = 0.2 in Fig. 13a
is produced by convection of turbulence structure past the probe as turbulent
energy spreads downward. Large eddies are formed around the wave front; these
eddies produce bursts of turbulence as they are convected past the probe. The
procedure of phase averaging smooths out the fluctuation of 9k/dt caused by the
passage of eddies but will not remove the fluctuation entirely. This is because
the eddies in successive breakers are not completely random in space and time.
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We observed that the fluctuation of dk/dt is more pronounced in the plunging
breaker case (see Ting and Kirby, 1995) than in the spilling breaker, which

suggests that large-scale eddy motions are more organized in strong breakers.

The measured data show that turbulent energy is removed by the upward
current under the wave front; the energy removed is replaced by horizontal
advection and turbulent diffusion. It is found that the term —%3;5/ Oz is van-
ishingly small everywhere. This term is the major part of —Ou'k! |8z, which
represents the gradient transport of k by the horizontal component of turbulent
velocity fluctuations. On the contrary the term —%6;'_5/32, which is part of
—Ow'k' |9z, is much larger, reflecting the importance of vertical diffusion. The
results for (z — {)/h = —0.7194 are plotted in Fig. 13b. It is seen that the
fluctuation of 9k/dt has decreased and the advection term has become small.
Visual observations indicate that the vortex-like eddies degenerate into small-
scale turbulence as they convect downward. This process destroys the organized
nature of large-eddy motions. Therefore, the fluctuation of 0k/9t can be found

not only in the phase around the wave crest but is more uniform in time.

The results for (z — z3)/hy = 16.709 are presented in Figs 14a and 14b;
trough level is located at (z — ()/h =~ —0.25. These results are similar to those
from the outer surf zone. It is seen that advection is important near the surface,
and the temporal variation of 0k/0t shows increasing disorder with distance
from the surface. It may be observed in Fig. 14a that 0k/0t is composed of
a slow modulation in time, and quasi-periodic fluctuations. We believe that
the slow variation in 0k/0t is associated with the main turbulent motion which
contains most of the turbulent kinetic energy, while the large fluctuations are
caused by convection of large eddies past the probe. Townsend (1976) describes
the main turbulent motion as structures which are larger than the small eddies
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of local isotropy but small compared with the scale of inhomogeneity of the
flow. Hence, the main turbulent motion is transported by the mean flow and
the large eddies. In breaking waves, the large eddies are formed by the folding of
the free surface, and have sizes comparable with the local wave height. Nadaoka
et al. (1989) observed that the large eddies are initially two-dimensional, but
break down into three-dimensional vortices descending obliquely downward. It is
conjectured that the large eddies become unstable and degenerate into moderate-
scale structure of the main turbulent motion. The quasi-periodicity in 0k/0t
indicates that these large eddies are generated at regular interval and the process

occurs repeatedly in an orderly fashion in successive breakers.

Our experiments suggest that the temporal variation of turbulent energy
and its vertical distribution are determined primarily by turbulent diffusion.
On the other hand, advection is only of second order importance, except near
the surface. Therefore, it is important to correctly model the diffusion terms
in order to appropriately predict the distribution of turbulent energy in spilling
breakers. This conclusion is based on data obtained below trough level and well
away from the bed.

The determination of the diffusion coefficient in the k-equation remains a
difficult problem. Using Eq. 8 and the measured rate of vertical advance of
turbulent front we estimate that D is of order 0.1h+/gh. As discussed earlier this
result is for “fully mixed” condition. The actual value of D will likely be much
smaller than this. Based on comparisons of computed and measured undertow
velocity profiles Svendsen et al. (1987) estimated that the eddy viscosity v is in
the range 0.01-0.02h\/gh. These results put the Schmidt number oy = 14/D in
the range 0.1-1.0. For comparison, o; is about 0.9 in near-wall flows, and 0.5
in plane jets and mixing layers (Rodi, 1984). It is not clear whether a constant
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value of D can be used below trough level. We expect that vortex stretching
reduces the eddy size with distance from the surface, while dissipation destroys
the small eddies and thus effectively increases the eddy size and the mixing
length. The importance of transport of length scale may be seen by comparing
the time scale of turbulent diffusion with the characteristic time of straining
and the dissipation time scale. From the vertical advance of turbulent front the
time scale of mixing is estimated to be of the order of one wave period. The
characteristic time of straining is inversely proportional to the strain rate of the
mean flow. As an example, Fig. 15 plots the temporal variation of the strain rate
Yz = O )Oz+0w/0x for different elevations at (z—=zp)/hy = 16.709. Comparing
Fig. 15 with Fig. 7, it is seen that high turbulence intensity is associated with
high strain rate, thus turbulent diffusion and vortex stretching are related. It
can be concluded from Fig. 15 that the characteristic time of straining is much
shorter than the wave period of 2.0s, therefore effect of vortex stretching is
important. The decay time of the large eddies is proportional to /U, where
U and [ should be of the order of the r.m.s. turbulent velocity and the local
wave height, respectively. Taking U = 0.05C from Fig. 7c, and | ~ H = 0.56h,
the turbulence decay time is between 1 to 2s thus effect of dissipation is also
important. This analysis indicates that transport processes could be important

in the determination of length scale in a spilling breaker.

The major terms of turbulence production are presented in Fig. 16 for the
outer surf zone and Fig. 17 for the inner surf zone. The production terms
are relatively small in the outer surf zone. The term u'w'dii/dz (dashed line)
represents energy removed from the mean flow by the work of Reynolds shear
stress against the mean velocity gradient 01 /9z. In many shear flows this term
accounts for most of the turbulence production whereas the term w'w' 0/ da is
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considerably smaller. The production term caused by normal-stress difference

—(u'? - w’2)3ﬁ/3x is generally small since it is the difference between u'*> and

w'? that determines the contribution to turbulence production. In the outer surf

zone all the production terms are small and it is not clear which term dominates.

The production terms are considerably larger in the inner surf zone (Fig. 17).
The term u'w' O /0z is the only major production term; the relative contribu-
tions of the other terms are small. It is interesting to see that the value of
u'w! 0u/0z is quite large, but this has no effect on 0k/0t. This suggests that
the dissipation rate is also high so that production is roughly balanced by dis-
sipation. In most shear flows production and dissipation are of the same order
of magnitude even if they do not balance. Similar results are found at other
elevations. It is found that although turbulence production below trough level
amounts to only a small portion of wave energy loss, the leading production
term is of the same order of magnitude as the major transport terms. Hence,
we cannot neglect turbulence production below trough level since this would
exaggerate the effect of dissipation. It must be realized that it is the difference
between production and dissipation that contributes to the rate of change of

turbulent kinetic energy.

We did not measure the dissipation rate because the fluctuating rate of strain
si; cannot be measured reliably. In pure shear flows where the only nonvanishing
velocity component is @ in the z direction, Taylor hypothesis may be used to

compute the turbulent velocity gradient from the local time derivative, that is

0 . Q

provided that # > u'. This condition is not satisfied in surf-zone turbulence
since the turbulent velocity fluctuations created by the large eddies are not small

25



compared to the organized wave-induced velocities. The small eddies of energy
dissipation are transported by the mean flow and the large eddies. Furthermore,
turbulence is spread downward by obliquely descending vortices thus convective
transport of small-scale turbulence is substantially three-dimensional under a
spilling breaker. Because of this, it would be very difficult to determine the
convection velocity unambiguously for this wave condition. Svendsen (1987a)
modeled the dissipation rate e through the classical relation

E = —@k%

] (12)
where Cp =~ 0.09 is an empirical constant (see, Launder and Spalding 1972).
For the length scale he used [ = 0.2h for the spilling breaker case in Stive and
Wind (1982). Svendsen (1987a) then computed the wave energy loss from the
wave decay and assumed that all this loss was converted into turbulent energy. In

this way, he estimated that only 2-5% of the total turbulent energy production

is dissipated below trough level.

It would be interesting to estimate the turbulence production below trough
level and compare it with the wave energy loss. The production rate averaged
over one wave period is plotted in Fig. 18 for different stations in the surf zone.
Turbulence production is estimated by 0.4(?@)%35./69: since /w9792 is the
only major production term in the inner surf zone. It is seen that the production
rate decreases with distance from the surface, but the variation over depth is
small. In the inner surf zone, the production rate remains similar at different
stations. Turbulent energy production below trough level is found from Fig. 18
by numerically integrating the production rate from the bottom to the trough
level, i.e.

04 & [T (uw)583/0z

= — dtd 13
Production T /—df(} (C2/T) 2 (13)
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where z = (; is the trough level. It is found that in the inner surf zone 3-6% of
the total turbulent energy production occurs below trough level. The produc-
tion is likely overestimated because of using a constant correlation coefficient of
0.4. The dissipation is also estimated using Eq. 12 with [ = 0.1h. The results
are plotted in Fig. 19. Comparing Fig. 19 with Fig. 18, the dissipation rate is
larger than the production rate, which should be the case since there is diffusion
of turbulent energy down through the trough level. The total energy dissipation
below trough level is 7-10% of the wave energy loss. If we use [ = 0.2h the dissi-
pation rate will be similar to the value found by Svendsen (1987a). However, the
dissipation rate would be smaller than the production rate which is in contradic-
tion with the finding that surface-generated turbulence is convected downward
and dissipated below trough level. This result suggests that the mixing length

should be somewhat less than 0.2h for the spilling breaker case.

4. Conclusions

The structure of turbulence in a spilling breaker has been studied experi-
mentally. The study has focused on the region below trough level and above the
bottom boundary layer. The area studied covers the outer surf zone through the
inner surf zone. The objective of the study is to understand the individual tur-
bulence transport processes to provide a scientific basis for modeling surf-zone
turbulence. The following main conclusions can be drawn from this investiga-

tion:

1. Turbulence structure in a spilling breaker is tied in a direct way to the
breaking wave characteristics. It is suggested that the length and velocity
scales of the large eddies are determined by the rate of energy transfer from
the organized wave-induced motion to the turbulent motion, and the size of
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the surface roller. Spilling breakers differ from plunigng breakers primarily
in the way in which energy is supplied to the turbulence, and the effects of
the mean flow and the solid bottom on the large-scale turbulence. It can
be shown that the important parameters are the wave period, the length
and velocity scales of the large eddies, and the local water depth. These
parameters govern the way in which turbulent energy is transported by mean
flow and turbulent fluctuations, and thus the temporal and spatial variations

of turbulence intensity.

. The surface roller is confined to a region near the crest of the wave in a
spilling breaker. The size of the largest eddies is small compared to the
local water depth and the r.m.s. turbulent velocity is small compared to
the local wave celerity. The time scales of vertical diffusion and energy
dissipation are comparable to the wave period. Surface-generated turbulence
is spread slowly downward by turbulent diffusion. The temporal variation
of turbulent kinetic energy at a fixed point is related to the vertical advance

of the turbulent front.

. The mixing length is estimated from the measured rates of vertical advance of
turbulent front. The mixing length is also found by balancing production and
dissipation below trough level. The results are consistent with the findings

in previous studies. It is suggested that [ is in the range 0.1-0.2h.

. The structure of turbulence and the kinematic relations remain similar at
different stations in the inner surf zone. Transformation of wave and turbu-

lence characteristics across the surf zone is gradual.

. The correlation coefficient between u' and w' varies during one wave cycle.
A correlation coefficient of about -0.4 is found where the turbulence intensity
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is high. The best correlation between u’ and w' is found at some distance

below the trough level.

6. Turbulent flow is well developed in the inner surf zone. The velocity spectra
reveals an inertial subrange with -5/3 slope. Most of the turbulent energy
is in the wave frequency range. The structure of turbulence is virtually

independent of fluid viscosity.

7. Transport of turbulent energy by mean flow is important mainly near the
surface. The local time rate of change of turbulent kinetic energy does
not correlate well with either advection or production. This suggests that
diffusion plays the most important role in turbulence transport. It is shown
that vortex stretching and dissipation can change the size of the large eddies,
thus the distributions of length scale may not be specified without solving

the transport equation.

8. Turbulence production below trough level amounts to only a small portion
of the wave energy loss. However, the major production term is of the same
order of magnitude as the local time rate of change of turbulent kinetic
energy, thus production cannot be neglected. The fact that 0k/0t and tur-
bulence production are poorly correlated suggests that production is roughly
balanced by energy dissipation, since it is their difference which contributes

to the rate of change of turbulent energy.
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Wayve conditions (the subscripts 0, A and b denote deep water, horizontal

section and breaking point)

H{] (m) H}l (m) Hb (m) f & (S) HO/LD Iy (IIl) db (1’1’1)
0.127 0.125 0.163 2.0 0.020 | 6.400 | 0.196

Locations of measurements and water depths inside the surf zone

z (m) | 6.665 | 7.275 | 7.885 | 8.495 | 9.110 | 9.725
d (m) | 0.185 | 0.169 | 0.152 | 0.137 | 0.119 | 0.097
h (m) | 0.192 | 0.175 | 0.161 | 0.148 | 0.133 | 0.112

Table 1. Experimental conditions.
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Fig. 1. Experimental arrangement.

Fig. 2. Phase-averaged surface elevations. (a) (z — z3)/hy = 4.397, (b) (z —
zp)/hy = 7.462, (c) (z — xp)/hy = 10.528, (d) (z — zp)/hy = 13.618.

Fig. 3. Experimental results at (z — z3)/hy = 4.397, h/hy = 0.879; (z — {)/h =
—0.2623 (—), —0.4909 (——), —0.7194 (—.), —0.9080 (- - -).

Fig. 4. Experimental results at (z — x3)/hy = 7.462, h/hy = 0.809; (z — Z)/h =
—0.2957 (—), —0.4820 (——), —0.6683 (—.), —0.8857 (- --).

Fig. 5. Experimental results at (z — zp)/hy = 10.528, h/hy = 0.744; (2 — () /h =
—0.2736 (—), —0.4764 (——), —0.6791 (—.), —0.8142 (---).

Fig. 6. Experimental results at (z — z})/hy = 13.618, h/hy = 0.668; (2 —()/h =
—0.3226 (—), —0.4729 (——), —0.6233 (—.), —0.8489 (- --).

Fig. 7. Experimental results at (z — z)/hy = 16.709, h/hy = 0.563; (z — ()/h =
—0.3875 (—), —0.4768 (——), —0.6554 (—.), —0.8339 (- --).

Fig. 8. Variation of w'?/u/? with depth. (a) spilling breaker; h/hy = 0.879 (O),
0.809 (0), 0.744 (A), 0.668 (v7), 0.563 (e). (b) plunging breaker; h/hy =
0.929 (O), 0.857 (a), 0.773 (A), 0.675 (), 0.584 (e).

Fig. 9. Phase-averaged turbulent kinetic energy (a) and correlation coefficient
between u' and w' (b) at (z—()/h = —0.4585, h/hy = 0.710. (c) Variation
of uw'w'/(u'? w"z)% with depth.

Fig. 10. Cross-correlation coefficient between u' and u'” at (z — zp)/hp = 16.709,
h/hy = 0.563. (a) (z — C)/h = —0.3875, (b) (z — {)/h = —0.4768, (c)
(z —C)/h = —0.6554, (d) (z — )/h = —0.8339.

Fig. 11. Cross-correlation coefficient between w' and w'? at (z— zp)/hy = 16.709,
h/hy = 0.563. (a) (z — )/h = —0.3875, (b) (2 — {)/h = —0.4768, (c)
(z = C)/h = —0.6554; (d) ( — {)/h = —0.8339.

Fig. 12. Velocity spectra at (z — x3)/hy = 16.709, h/hy = 0.563. (a) and (b)
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(z — €)/h = —0.3875; (c) and (d) (z — {)/h = —0.8339. Solid lines
are for instantaneous velocities. Dashed lines are for turbulent velocity
fluctuations.

Comparison of turbulence transport with local time rate of change of
turbulent kinetic energy at (z — xp)/hy = 4.397, h/hy = 0.879; Ok /0t (—
), —(dik/dz + diwk/dz) (——), —10u’/dz (---), —10w'®/0z (-.). (a)
(z—¢)/h = —0.3194, (b) (z — {)/h = —0.7194.

Comparison of turbulence transport with local time rate of change of
turbulent kientic energy at (z — z3)/hy = 16.709, h/hy = 0.563; (0k)/0t

(—), —(diik/dz + Oibk/dz) (——), 10u [z (---), 10w®/8z (=.). (a)
(z—C)/h = —0.3875. (b) (z — C)/h = —0.7446.

Phase-averaged strain rate v,, at (z —ap)/hy = 16.709, h/hy = 0.563. (a)
(z—C)/h = —0.3875, (b) (2 — {)/h = —0.4768, (¢) (z — ()/h = —0.6554,
(d) (z — ¢)/h = —0.7446.

Comparison of turbulence production with local time rate of change of
turbulent kinetic energy at (z — z3)/hy = 4.397, (z — ()/h = —0.3194;

k)0t (—), 0.4(u*w?)}40i/0z (——), 0.4(u w'?) 18w /0z (---), —(u' —
w?)0i/0z (~.).
Comparison of turbulence production with local time rate of change of
turbulent kinetic energy at (z — xp)/hy = 16.709, (z — ()/h = —0.3875;
Ok /0t (—), 0.4(u*w'?)50/0z (——), 0.4(u w?)}0w/z (), —(u'? —
w'?)9i/0z (-.).

Variation of time-averaged production rate with depth; h/hy = 0.879
(O), 0.809 (v), 0.744 (A), 0.668 (), 0.563 (e).

Variation of time-averaged dissipation rate with depth; h/h, = 0.879
(O), 0.809 (0), 0.744 (A), 0.668 (v7), 0.563 (e). Dissipation is normalized
by C?/T.
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