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Abstract

In this paper, we investigate effects of a weak and slowly varying random
topography on interfacial long wave propagation near the critical depth level,
where the cubic nonlinearity is comparable to the quadratic nonlinearity. The
evolution equation is derived from the Euler equations for two fluid layers. This
equation is completely integrable and can be transformed into the modified
KdV equation. Hirota’s method is used to find two-soliton and soliton-shock-
like solutions. For a steady wave propagating over a random topography with
zero-mean Gaussian distribution, all its moments satisfy the same diffusion
equation. The randomness of the topography causes an averaged solitary wave
to deform into a spreading Gaussian wavepacket with its height decreasing and
width increasing at the same rate determined by the correlation function of the
topography. The front of an averaged shock wave also increases at the same
rate. Asymptotic behaviours of an averaged two-solitary wave and solitary-
shock wave are also discussed and the results are generalized to an averaged

N-solitary wave and N-solitary-shock wave.

1 Introduction

Nonlinear wave propagations in randomly inhomogeneous media or under random
excitation have attracted much attention in the last decade, because of their wide
range of applications. However, due to nonlinearity, it is in general impossible to
obtain closed equations for the mean field or its higher-order moments directly from a
nonlinear stochastic wave equation. Tremendous computational demand also prevents
one from performing direct numerical analysis of nonlinear stochastic wave equations,
except for very simple cases. Thus, hypotheses or approximate methods have to be

used to close the equations for moments of the wave field. This renders the study



of exactly solvable nonlinear stochastic wave equations very important, because not
only equations of this type are analytically tractable but also their solutions can be
used to verify the applicability and accuracy of various hypotheses and approximate
methods adopted to derive the closed equations.

It is well known that the Korteweg-de Vires (KdV) equation is the prototype equa-
tion describing the evolution of nonlinear waves propagating in a dispersive medium,
whereas the Burgers equation is the simplest equation governing the propagation of
nonlinear waves with dissipation. Both equations are exactly solvable (by the inverse
scattering transform and Hopf-Cole transformation, respectively) and admit steady-
wave solutions such as solitary wave and shock wave [1]. It is of great interest to
study how these steady waves deform when they propagate in randomly inhomoge-
neous media or under stochastic excitation.

Although there have been several studies of the KdV equation and Burgers equa-
tion under external random forcing (e.g. see [2]-[8]), the study of the KdV equation
and Burgers equation with random coefficients, which appear as the governing equa-
tions for the propagation of solitary waves and shock waves in random media or over
randomly varying boundaries, has just started recently. Wadati [9] studied the defor-
mation of a soliton propagating in nonlinear lattices with random mass distribution.
Under the Gaussian white noise assumption, he showed that an averaged soliton de-
forms into a spreading Gaussian wavepacket with decreasing height and increasing
width proportional to the square root of the distance of propagation. Applying Wa-
dati’s analysis to shallow-water waves, Ono [10] investigated the effect of a weak and
gentle random topography on the propagation of a surface solitary wave. Assuming
that the topography is a Gaussian white noise process, he confirmed that the soliton
diffusion phenomenon found by Wadati also exists in shallow-water waves. Ono also

examined the effect of randomness on the propagation of a Burgers shock wave by



studying wave propagation in a duct with varying cross-section and found that the
front of an averaged Burgers shock wave also diffuses in proportional to the square
root of the distance of propagation under the assumption that the small variation of
the cross-section is a Gaussian white noise process.

In parametric regime where the cubic nonlinearity and the quadratic nonlinearity
are comparable, the governing equation for the propagation of interfacial long waves
in two-layer fluids or internal long waves in a continuously stratified fluid over a
flat bottom is a combined KdV and modified KdV equation with negative cubic
nonlinearity. This evolution equation admits a family of solitary-wave solutions and
a shock-like solution [11, 12, 13]. However, the effects of a random topography on the
propagation of these internal solitary waves and shock wave have not been studied.
Moreover, it is not clear if a random topography has different effect on cubic nonlinear
waves than on quadratic nonlinear waves. Therefore, it is the objective of this paper
to investigate the effect of a random topography on the propagation of interfacial
waves and internal waves, in which the cubic nonlinearity is significant. Since the
governing equations for the propagation of weakly nonlinear, long internal waves and
corresponding interfacial waves in the same setting are equivalent under a rescaling
(in fact, internal waves include interfacial waves as a limited case), for simplicity,
we shall study the random effect on the propagation of interfacial waves only in
this paper. However, the conclusions drawn on interfacial waves are also applied to
internal waves.

Helfrich, Melville & Miles [13] have derived the evolution equation for interfacial
waves propagating over a finite but slowly varying topography. However, their equa-
tion cannot pass the Painlevé PDE test (see [14]), i.e. the equation is not completely
integrable. Consequently, when it is used to study the effect of a random topography

on wave propagation, the resulting stochastic equation is analytically intractable. To



make the problem analytically tractable, the topography is assumed to be weak and
slowly varying in this paper. When the resulting evolution equation is used to study
the effect of randomness, the topography is further assumed to be a stationary Gaus-
sian process with an arbitrary correlation function, which includes the Gaussian white
noise used in Wadati and Ono’s papers [9, 10] as a special case. In addition to aver-
aged steady waves such as solitary wave and shock-like wave, we also investigate the
evolution of an averaged two-solitary wave and an averaged solitary-shock wave, and
extend the results to an averaged N-solitary wave and an averaged N-solitary-shock

wave.

2 Derivation of the evolution equation

We consider interfacial waves propagating along the interface of two fluid layers.
Cartesian coordinates are employed with the Z-axis along the still interface and Z-
axis pointing vertically upwards. The disturbed interface is denoted by Z = (%, ).
The densities of the upper and lower layers are p* and p~ (p~ > p*), respectively
(hereafter superscripts + and — are used to identify quantities in the upper and lower
layers, respectively). The upper and lower layers are bounded by Z = H* (the rigid-lid
assumption is adopted to approximate the free surface) and z = H~ (&), respectively.

The fluids in both layers are assumed to be inviscid and incompressible. The

dimensionless governing equations and boundary conditions for flows in the upper

and lower layers are

+ +
% + a‘;‘; =0, (2.1a)
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ptpt —p p " +n=0 on z=e¢n, (2.1e)
=0 on z=HY (2.1f)

- _dH~ -
s i on z=-H (z), (2.1g)

where signs are vertically ordered; u* and w* are the dimensionless velocity compo-
nents in the horizontal and vertical direction respectively, and p* is the dimensionless
hydrodynamic pressure. The dimensionless variables are related to the dimensional

variables (denoted by a tilde) by:

- i i \
i=lor, F=hez, f= C—i’)-t, H* = hoH?,
= aon, uE = %ui’, ot = Mwi, a (2.2)
ho J0
s - ap
it =pop*, =" —pt)ghe, P"= h—of:ﬁpop*p*,

where ¢ is the gravitational acceleration; lp and ho are the characteristic wavelength
and depth, respectively; po is the characteristic density; ag and cq are the characteristic
amplitude and phase velocity of linear long waves, respectively. The parameters € and

p? appearing in (2.1) are defined as
€ = ao/ho, #2 = (hf}/lo)za (2.3)

which measure nonlinearity and dispersion respectively.

We are interested in weakly nonlinear and dispersive waves, in which nonlinear and
dispersion effects balance each other, leading to the formation of permanent waves,
such as solitary waves. Under the Boussinesq assumption, i.e. O(e) = O(p?) < 1, the
nonlinear term in the evolution equation (e.g. see equation (2.14) in Chen & Liu’s pa-
per [15]) is quadratic and its coefficient is proportional to D_; = p‘/(h‘)z—l-p*‘/(h"')z,
which vanishes at the critical depth level defined as h*/h~ = (p*/p~)'/%. When

D_, = O(e), the coefficient of the nonlinear term is so small that the balance between
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the nonlinearity and dispersion becomes impossible under the Boussinesq assumption.
However, in the parametric regime where O(¢) = O(y), the balance between these two
effects is still possible. In this situation, the cubic nonlinearity becomes comparable
to the quadratic nonlinearity and must be taken into consideration.

We shall derive the evolution equation for weakly nonlinear and dispersive interfa-
cial waves propagating near the critical depth level over a weak and gentle topography.

More specifically, we assume that
Doy=p /(Y - /(W) =0, c=op, withp<l,  (24)
where a = O(1) is a constant, and H~ can be expressed as
H™ =h~ + p*B(p’z), (2.5)

where h~ is a constant and B = O(1) is a function of slow variable X = p?z. p is
used as the basic perturbation parameter.
To derive a single evolution equation for the interfacial displacement, we introduce

the following transformation:

E=z/C —1t, X =ps, Z (2.6a)

I
N

where C' is given by
-1/2
C = (p*/h* +p7/h7) ; (2.6b)

and h* = H* = constant is used for convenience. Note that C is the leading order of
the local linear-long-wave speed and ¢ = O(1) is the characteristic coordinate moving
at the speed of C' to the right.

In terms of the new coordinates (£, X, Z), equations and boundary conditions

(2.1) can be rewritten as

1 ou*  ,0ut  Ouw®
EB—E‘F# “5}“4'“5“2-“——0, (2.7a)
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ptpt —p"p +n=0 on Z=en, (2.7e)
wF=0 en Z=ht, (2.71)
-_ _,a,-4B 2
w™=—p'uT = on Z =—h" —u*B, (2.7g)

where (2.5) has been used.
A solution to the governing equations and boundary conditions (2.7) is sought in

the following series forms:
G(é': X: Z; ou) = GO(§: X: Z) o .U'Gl(fﬁ X) Z) 4 “2G2(§: Xs Z) + O(ius): (288.)

(€, X; 1) = no(&, X) + pnu (€, X) + p*ma(€, X) + O(1?), (2.8b)

where G = {u*,w®, p*}. Substituting (2.8) into (2.7) and expanding the interfacial
boundary conditions (2.7d) and (2.7e) at Z = 0 and the bottom boundary condition
(2.7g) at Z = —h~, we obtain a sequence of initial-boundary-value problems by
collecting coefficients of ™. Carrying out the perturbation analysis to the second
order (n = 2), we find out that the compatability condition of the second-order

problem requires o and 7; to satisfy the following evolution equation (for details see

[14]):
oo 3aC a2 4 o2 Dy e p~ BC 0o
ax * 2x P2 e ~ ¥ P3¢ Yoo T oy oe
3ozC Onom
Dy gt =0, (2.9)
where Dy, D_; and D_; are defined as
Du(X) = p~(h ) 4+ (F)™ B (n=1,-2,-3).  (210)
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Because D_; = O(e), the last term involving n; in (2.9) can be dropped and we
obtain the evolution equation, including both quadratic and cubic nonlinearity, for

waves propagating over a weak and gentle topography near the critical depth level:

dno  3e ong € ony . D19%n0 , p~BC Ono
ax t 4#20‘0 “2oE poD 3¢ T 6C 963 2(h-)? €

0. (2.11)

Note that if O(¢) = O(u?) and D_, = O(1), the cubic nonlinear term in (2.11)
becomes higher order and can be neglected; the resulting equation is the evolution
equation for weakly nonlinear and dispersive interfacial waves propagating over a
weak and slowly varying topography far away from the critical layer (cf. (3.27) in
[15]). We remark that both (2.11) and equation (2.7) in Helfrich et al’s paper [13]

recover the same equation when the bottom is flat.

3 Analytical solutions

It is straightforward to show that (2.11) passes the Painlevé PDE test without requir-
ing any constraints on its coefficients (see [14, 15]). Therefore, (2.11) is a completely
integrable equation, i.e. it can be solved by the inverse scattering transform. More-

over, (2.11) can be transformed into a constant-coefficient equation

ou ou? o’  Pu

§+639 #2394_393—0’ (3.1)
through the following transformation:
8= 5] [6 = CQW(X)] y T = C]_CgX, Tlo = C4U, (32&)
X
W(X) = f B(X')dX’, (3.2b)
0
where ¢;(i = 1,2,3,4) are constants given by
- 2 D
¢ = C|D_,| “ AL 3 ¢D, =2 (3.2¢)

4 DD 2T 2 ® T 32uD;’ T 4D,
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Equation (3.1) is a combined KdV and modified KdV equation with negative cubic
nonlinearity. Similar equations with different coefficients were obtained by Kakutani
& Yamasaki and Miles [11, 12]. They showed that this kind of equations admits
a family of solitary-wave solutions and a shock-like solution. We could obtain these
solutions by transforming (3.1) into either one of the equations they studied. However,
we prefer to seek for all possible bounded traveling-wave solutions of (3.1) first and
then find the solitary-wave and shock-wave solutions.

Substituting u(¢) = u(# — wr) (w is a constant) into (3.1) and integrating the

resulting equation once, we have
u’ = 2u® — 6u® 4+ wu + A, (3.3)

where / = d/d¢ and A is the constant of integration. Equation (3.3) can be recast
into
¥, ¥ =2x>— Px+Q, (3.4)
with
x=u—1, P=6-w, Q=-4+w+A (3.5)
Carrying out analysis on the phase plane (x,?), we first look for periodic solutions
(close orbits) which can be expressed in terms of elliptic functions. Then, by letting
the modulus go to 1, we obtain solitary-wave solutions and shock-wave solutions,
which correspond to homoclinic and heteroclinic trajectories, respectively. By further
imposing u — 0 as ¢ — 400, we obtain a family of solitary-wave solutions and a
shock-wave solution, which are given as follows.

The family of solitary-wave solutions is given by
u(0,m;A) = 20 [L+vVI—Neosh2p] ™, 9 =X (0—47) +¢°, (3.6)

where A € (0,1) is the family parameter and ¢° is a phase constant. Note that

contrary to the Boussinesq solitary wave, when A is close to 1, the width of the
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solitary wave given by (3.6) actually increases as its height increases, which has an

upper bound 2 as A — 1~ (see figure 1). The shock-wave solution is given by
u(8,7) = 1 — tanh(8 — 47 + ¢°). (3.7)

Since (3.1) is invariant under transformation u — 2 — u, from (3.7), we have u =
1 + tanh(8 — 47+ 9°), which is the shock-wave solution satisfying u — 0 as § — —oo.
For definiteness, we assume that u — 0 as § — +o00. Note that the shock wave travels

faster than any solitary wave given by (3.6).

2.0

350999
1.6
1.2 |
S
>
e
=08
0.4
0.0
-10 -5 0 5 10

Figure 1: Different profiles of the solitary wave given by (3.6) for different A\ values

at =10

The two-soliton solution was not given in Kakutani & Yamasaki and Miles’ pa-
pers. Here we use Hirota’s method, a more straightforward approach than the inverse
scattering transform, to find the two-soliton solution of (3.1). Carrying out rather

tedious but straightforward manipulation, we find that u(, ) given by the following

expression:
8. J
u(r,0; A1, X)) = 5 In IR (3.8a)
(M = A2)®

(A1 + A2)?
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E; =exp(—2%i), vi=\(0—4\7) +¢?, (i=1,2), (3.8¢)

where A, A2 € (0,1](A1r # Ag; without loss of generality, we assume Ay > A;) are
parameters and 7,7 are phase constants, is a solution of (3.1). Expression (3.8)
can be further simplified; however, the result depends on whether A\; = 1.

(a) When 0 < A\; < A; < 1, expression (3.8) can be simplified as

u(,7) = (A} — A3) { [\ coth(hy + 61) — Az tanh(ts + 63)] "
— [\ coth(3y — &) — Az tanh(3h, — 62)] '}, (3.9)
where
Si=n((142)/(1- ), (i=1,2). (3.10)
Expanding (3.9) as 7 — o0, keeping ¥, and ), fixed respectively, we obtain

2\ 5 22
14 A cosh2(iy +A) 1+ Agcosh2(p, — A)’

u as T — —oo, (3.11a)

203 @ 223
1+ Aacosh2(ipy —A) 1+ Agcosh2(¢hy + A)’

as T = +00,  (3.11b)

U

with
Naj = 1—/\.‘2, (1'—_—- 1,2), (3.11(:)

A = Ln[(s + A2)/ (M = M), (3.11d)

which represents the superposition of two solitary waves at infinity. Therefore, (3.9)
with A1, A2 € (0, 1) is the two-soliton solution of (3.1). From the asymptotic expression
(3.11), one can see that after collision, two solitary waves undergo phase shifts but do
not change their amplitudes and speeds; the taller solitary wave moves forward by an
amount § = 2A/);, whereas the short one moves backward by an amount § = 2A/A,.

(b) When Ay =1 and 0 < Ay < 1, expression (3.8) can be simplify as

1 -2
coth 1y — Ap tanh by

u(0,7) =1+ A; tanh 4, — (3.12)
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The asymptotic expansion of this solution as 7 — oo is given by

2\
~ 1 —tanh 26 : - ;
u ~ 1 — tanh (¢; + 2)+1+Acgcosh2(¢vg—62)’ as T — —o00, (3.13a)
2)2
u ~ 1 — tanh (¢, — 26,) — as T — +00, (3.13b)

1 + Ae2 cosh 2(3p + 63)’

which represents the superposition of a shock wave and a solitary wave. Therefore,
(3.12) is the solitary-shock-wave solution describing the interaction between a shock
wave and a solitary wave (see figure 2). From (3.13) and figure 2, one can see that
after the shock wave surpasses the solitary wave, the solitary wave reverses its polarity
and gains a backward shift 26,/),, whereas the shock wave obtains a forward shift
4485. Accidentally, the interaction between a shock wave and a solitary wave can also
be viewed as the interaction among three shock waves, because the solitary wave can

be rewritten as the sum of two shock waves:

2\2

= T oz, = M2 ([l —tenh (o — &) - [ —tenh (2 + &)} (314)

u

This may explain the double phase shift in the shock wave in (3.13).

On substitution of transformation (3.2) into (3.6) and (3.7), we obtain a family
of interfacial solitary waves, which are concave when D_, < 0 and convex when
D_, > 0, and an interfacial non-dissipative jump (D-2 < 0) or bore (D_; > 0)
propagating over an arbitrary weak and gentle topography near the critical depth
level. Note that the mass and energy of a non-dissipative bore or jump is infinite.
Thus, the bore or jump solution cannot be uniformly valid over the entire domain
—o00 < £ < oo; however, it may represents a useful approximation in some limited
interval (see [12, 16]). When D_; = 0, we have only trivial solution 7o = 0 which
vanishes at infinity. The corresponding two-soliton solution and bore-soliton (or jump-
soliton) solutions to equation (2.11) can also be obtained by substituting (3.2) into

(3.9) and (3.12), respectively.
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Figure 2: Interaction between a shock wave and a solitary wave in equation (3.1).
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From transformation (3.2), one can see that the existence of a weak and gentle
topography only affects the phase velocity of a solitary wave or a shock wave in the

moving coordinates (¢, X, Z), which is given by

V== 2(h-)? 8u?D_3’

0<A<1). (3.15)

According to this expression, the effect of the topography cannot only change the
magnitude of the phase velocity but also change its direction. Therefore, in the
moving frame, under different circumstances, a solitary wave (or a shock wave) can
remain still or bounce forward and backward; two solitary waves (or a shock wave
and a solitary wave) can collide against each other; a small solitary wave can catch
up with a large one (or a shock wave) after both have reversed their directions. These

phenomena cannot exist if the bottom is flat.

4 Over random topography

In the previous section, we have showed that a weak and gentle deterministic topog-
raphy affects only the phase velocity of a solitary wave or a shock wave, but not their
shapes. In this section, we shall investigate the effect of a weak and gentle random
topography on interfacial wave propagation.

We assume that B(X) is a stationary Gaussian stochastic process with zero mean

(B(X)) = 0 and with an arbitrary correlation function:
Ra(Y) = (B(X)B(X +Y)), (4.1)

where the angle brackets ( ) denotes the ensemble average. Then, W(X) given by

(3.2b) is also a Gaussian stochastic process with zero mean and variance given by
¥
o2, (X) = (W¥(X)) =2 jﬂ (X — Y)Rp(Y)dY. (4.2)

15



4.1 Steady waves

Let u;(0 —wr) be a steady-wave solution of (3.1). Then, according to the transforma-
tion (3.2), a steady incident interfacial wave propagating over a random topography

can be written as
no(€, X) = cqui(c1(é — eaW — wes X)) = Uy (€ — oW —wes X), (4.3)

which can be regarded as a nonlinear transformation of the Gaussian process W (X).
By definition, the mth (m is an integer) moment of the interfacial displacement is

given by

(no' (€, X)) f U (€ — cow — wes X) L exp( wz)dw
o (& 1(§—c2 3 \/—2—

+oo U (3 =,
'/ \/2;020' 20w “ (44)

where

p=§—weX. (4.5)

It is easy to verify that (n{'(p, X)) given by (4.4) satisfies the following diffusion

equation

O(ng' ¢y, 2 9% (ng
W) = Sopy S, (4.)

with the initial condition given by

(ng' (p,0)) = U"(p) = 5 (€, 0)le=»p, (4.7)

where / denotes the first derivative of a function with respect to its argument. Note
that the variable diffusion coefficient in equation (4.6) depends on the correlation
function Rp(Y) (see (4.2)). Therefore, the randomness of the topography causes all
the moments of a steady incident wave to diffuse and their shapes vary as the wave

propagates downstream. The fact that all the moments of the interfacial displacement

16



for a steady wave satisfy the same linear diffusion equation (although the original
equation is a nonlinear evolution equation with random coefficients) hinges on two
important factors: W(X) linearly depends on B(X) and B(X) is assumed to be a
Gaussian process. It has nothing to do with the specific form of the nonlinear function
Ui(s), which is used only to provide the initial condition at X = 0 for the diffusion
equation (see (4.7)).

In terms of the moving coordinates (¢, X, Z), we find that the first three moments

satisfy the following equation

A(no) | 3e ang) € Amy) , D1 () 5, 5 0% mo)
ox T3aCPr — @l toc o — 2 W a0 (49
where
36 ! 62 ! D ()
—weslU! + m(:UD_Q(UE) - JL?c,n!)_s(sz) + E—CLUI =0

has been used. From (4.8), it is evident that the randomness gives rise to the dissi-
pation term appearing on the right-hand side of the equation. Comparing the exact
mean-field equation (4.8) with the approximate mean-field equation derived from an
approximate method (such as the mean field method [17]) can shed lights on the
applicability and accuracy of the approximate method.

From (4.4), we also find

[ e x0nae = [ ome)s = [ (e, 0)de, (49)

assuming that the integrals exist. Therefore, for a solitary wave propagating over a
random topography, although (ng*) will spread out as X increases, its integral over
the entire domain, [*2°(n")d¢, is a constant. Furthermore, the invariant [ (nf')d¢
is independent of the correlation function Rg(X) and its value can be determined by

the incident solitary wave.

The asymptotic behavior of (nf*(¢, X)) given by (4.4) as X — +oo depends on

i/



the initial condition, i.e. the incident wave. We now discuss the asymptotic behaviour
of the mean value of a solitary wave and a shock wave as X — +4o0.
Through the Fourier transform, the solitary-wave solution (3.6) can be rewritten

as

-0

+oo  (bk rk ,
uy(60,7) = f (9/\) csch (2)\) exp[—ik(0 — 42?7)]dk, (4.10)
where b = cosh™ (1/4/1 — A?). Using the following identities (see [9])

(exp [iaW (X)]) = exp [~ Ea(W(X))] = exp(—a’a}y/2), (4.11)
where a is an arbitrary constant, we obtain

(no(€, X)) = ca (ug (e1[€ — eaW(X)], c1e3 X))

= [ s o (;i) cagh (gf\“) exp [—ikes(€ — N2es X)] (explikercaW (X)))dk

+oo
=iy f_ sin (;i) csch (;i) exp [—zkcl £ — 4N X) — kchcgcrfvﬂ] dk. (4.12)

Under the assumption that ow(X) — +o00 as X — 400, the asymptotic expansion

of the above integral as X — +o0 is given by

C4 — 44X X)?
e, ) 2o [ ez, )
One can check that
[t x0ae = [ inote xde = [T mle, 00 =22 (414)

Therefore, far away in the downstream (X becomes sufficiently large), an averaged
solitary wave evolves into a spreading Gaussian wavepacket, whose height decreases
as o (X) and whose width increases as ow(X) around é = 4A\?c3X. Note that the
velocity of the Gaussian packet is equal to the velocity of the incident solitary wave.

For a shock wave propagating over the same random topography, the mean value

of the shock wave is given by

(no(€, X)) = c4 { \/%T/ tanh [c; (€ — cow — 4¢3 X)) exp (— i;) dw}
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{1 - —/ tanh [c1 (6 = V2cows — 403X)] exp(—s® )ds} (4.15)

For large X, the asymptotic expansion of (4.15) is

(no(€, X)) ~ <4 {1 — [ /7 W exp(—s?)da - f_:,_ exp(~sz)ds] }

200w

—4cs X
= cqerfc (éﬁﬁ) , as X — 400, (4.16)

where erfc is the complementary error function defined as

2 o .
erfc(z) =1 — ﬁ/ﬂ exp(—s*)ds. (4.17)

Thus, the randomness of the topography causes the front of an averaged shock wave
to increase proportionally to ow, coincident with its effect on the width of an averaged
solitary wave. This phenomenon may be called the diffusion of a shock wave.

We remark that when B(X) is Gaussian white noise with strength D, i.e. Rp(Y) =
2D4(Y), ofy = 2DX and the asymptotic behaviours of an averaged solitary wave and
an averaged shock wave we just obtained are the same as those given by Ono [10] for
an averaged surface solitary wave and an averaged Burgers shock wave, despite the

fact that these waves appear in different physical situations.

4.2 Unsteady waves

The mean values of a two-solitary wave (3.9) and a solitary-shock wave (3.12) are
given by

2

5 )dw, (4.18)

+oco

(mo(€, X)) = ea [

20'W

00

1
ug (¢1(€ — ), ¢ics X)) —p=——=0xp (—
2rod

where uy(0,7) is given by (3.9) and (3.12), respectively. Recall that as 7 — 400,
(3.9) becomes the sum of two single solitary waves, whereas (3.12) becomes the sum

of a single solitary wave and a shock wave (see (3.11b) and (3.13b)). Therefore, the

19



asymptotic expansion of an averaged two-solitary wave can be expressed as the sum
of two averaged single solitary waves as X — +o00, whereas the asymptotic expansion
of an averaged solitary-shock wave is the sum of an averaged single solitary wave
and an averaged shock wave as X — +4o00. Since the asymptotic expressions of an
averaged single solitary wave and an averaged shock wave have been given by (4.13)

and (4.16), one can readily obtain the asymptotic form of an averaged two-solitary

wave:
(€ — AXFes X + 6F)?
(mo(€, X)) ~ \/;mew Zb exp[ 2dol, , as X — 400, (4.19)
where

b = cosh™ 1(1/‘\{1 — /\2 6+ = ‘l,bo )/(Alcl), (5; = (wg + A)/()\zcl), (420)

and the asymptotic form of an averaged solitary-shock wave:

Sy CgX 5?
(no(€, X)) ~ cqerfec (‘S jﬁgi )

—4Me X 4 61)2
- \/z bacs exp [_(E 22.:23;;2 id , as X = +oo, (4.21)
=W

where

8§t = (Y = 28)/cr, &F = (Y3 + 2)/(Nac)- (4.22)

To see how a two-solitary wave evolves into two Gaussian packets (according to
(4.19)) and a solitary-shock wave evolves into a Gaussian packet and a diffusing shock
wave (according to (4.21)), we numerically evaluate the integral (4.18). The numerical
results presented below are obtained under the assumption that B(X) is the Gaussian
white noise with strength D = ¢3/(cic3). Figures 3 and 4 show the evolution of an
averaged two-solitary wave and an averaged solitary-shock wave, respectively. The
phase constants have been chosen as ) = 42 = 0 for the two-solitary wave and the

solitary-shock wave so that the corresponding incident wave is symmetric with respect
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to £ = 0 and anti-symmetric with respect to no/cs = 1, respectively (see figures 3(a)
and 4(a)). From figure 3, one can see that as the two-solitary wave propagates
downstream, the averaged wave indeed evolves into two Gaussian packets with each
own height decreasing and width increasing proportionally to X'/2. Figure 4 shows
that as X increases, the averaged shock wave evolves into a diffusing shock wave with
its front increasing as X'/2, followed by a spreading Gaussian packet, which decays
as X/? and will disappear as X — +o00. To verify the asymptotic expansions (4.19)
and (4.21), we compare the exact averaged two-solitary wave and solitary-shock wave
given by (4.18) with the asymptotic expression given by (4.19) at X = 50 (see figure 5)
and the asymptotic expression given by (4.21) at X = 25 (see figure 6), respectively.
In both cases the agreement is excellent. In fact, the agreement is so good that we
have to magnify the ordinate to see the difference between the exact mean value
and its asymptotic prediction in figure 5; otherwise, they are indistinguishable as in
figure 6.

Using the fact that N solitary waveé will separate from one and other as X — +o0
(see [18]), we can extend the conclusions drawn on an averaged two-solitary wave and
an averaged solitary-shock wave to an averaged N-solitary wave and an averaged N-
solitary-shock wave, respectively. We remark that if oy ~ X'*# with 3 > 0 as X —
+o00 for some Gaussian process B(X), the final state of an averaged N-solitary wave
is one large Gaussian packet instead of N Gaussian packets propagating at various
speeds. The reason is that each constituent Gaussian packet is mutually separated
by the distance of order X, whereas the width of each packet is proportional to X**#,
which exceeds the separation distances. The overlapping among each packet tends
to form one large Gaussian packet (cf. [3]). Therefore, the statistical characteristic
of the topography essentially affects the evolution of the mean value of an N-solitary

wave. If there is a shock wave component in the incident wave, the final state of the
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Figure 3: Evolution of an averaged two-solitary wave (X, = ¢;coX and Ay = 2Ag =

0.8).
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averaged wave field is one diffusing shock wave whose front increases as ow, because
the Gaussian packets, traveling far behind, decay rapidly as X becomes sufficiently

large.

5 Concluding remarks

We have studied the effect of a weak and gentle topography on interfacial long wave
propagation near the critical depth level, where the cubic nonlinearity is comparable
to the quadratic nonlinearity. The evolution equation, derived from the Euler equa-
tions, is completely integrable and can be transformed to a deterministic combined
KdV and modified KdV equation. This allows us to investigate the effect of a random
topography on wave propagation analytically.

While a weak and slowly varying deterministic topogra.phir only affects the phase
velocity of a steady incident wave but not its shape, the effect of a random topogra-
phy with Gaussian characteristic will cause an averaged steady wave to diffuse. An
averaged solitary wave deforms into a spreading Gaussian wavepacket, whose height
decreases and whose width increases proportionally to ow, which can be determined
from the correlation function of the topography (see (4.2)); the front of an averaged
shock wave also increases as ow. For Gaussian white noise, o ~ X'/? and the
asymptotic behaviours of an averaged interfacial solitary wave and shock wave are
the same as those of an averaged surface solitary wave and Burgers shock wave (see
[10]) respectively, despite the fact that these waves appear in different physical situ-
ations. The spreading rate ow substantially affects the asymptotic behaviour of an
averaged N-solitary wave. If o ~ X'*# with 8 > 0, then an averaged N-solitary wave
evolves into one wide Gaussian packet far away downstream. On the other hand, if

o ~ X' with 8 < 0, we have N spreading Gaussian packets moving away from
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one and other instead. If there is a shock wave component in the incident wave, the
final state of the averaged wave field is a diffusing shock wave. Finally, we remark
that these conclusions are also applied to those internal long waves in which the cubic
nonlinearity and quadratic nonlinearity are comparable propagating over a weak and

gentle random topography in a continuously stratified fluid.
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