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Abstract

The use of weakly-dispersive models to compute the propagation of nonlinear
ocean surface waves in the coastal environment is reviewed. Models which are
fully two-dimensional in horizontal coordinates are discussed first, and vari-
ous approximations involved in various models are developed and compared.
Available tests of the accuracy of model predictions are also reviewed. At-
tempts to incorporate realistic effects including wave breaking, shoreline runup
and wave-current interaction into model schemes are discussed. Subsequently,
models for one-directional and weakly-two-directional propagation are briefly
reviewed. Finally, frequency-domain formulations are reviewed. In all cases,
the primary concentration is on aspects of model development related to the
computation of realistic waves in the ocean environment.

1 Introduction

Water waves in shallow water (characterized by depths which are small
compared to a wavelength) deviate more severely from the basic assump-
tions of linear wave theory than do waves in deeper water. Waves in
shallow water are modified rapidly over distances comparable to a wave-
length, due to weak frequency dispersion and, as a result, nearly resonant
interaction between sets of three Fourier harmonics. These resonant in-
teractions lead to a strong transfer of energy from fundamental to higher
harmonic components as waves approach shore over natural beaches,



leading to waves having relatively narrow crests and broad troughs. In
addition, the rapid transfer of energy from low to high frequencies is
manifested in front-to-back asymmetry of the wave profile as the wave
pitches towards the shore. Finally, difference interactions lead to a rapid
growth in low-frequency energy as well, leading to shore-normal surf beat
or longshore propagating edge wave and leaky mode components.

Linear theory does not give us much of a route to describing the com-
plexity of wave motion in the final stages of shoaling or in the surf zone.
For this reason, a body of theory and computational techniques has de-
veloped over the years that is specifically aimed at describing the regime
where frequency dispersion effects are small and nonlinearity takes on
an equal or more important role. The first steps in the study of these
phenomena were made by Airy [1], who obtained the Nonlinear Shallow
Water (NSW) equations governing nondispersive, nonlinear wave propa-
gation, and by Boussinesq [2] and Korteweg and deVries [3], who provided
models incorporating the leading order effect of frequency dispersion in
the long wave approximation. This body of work has played a central
role in the evolution of the mathematical physics of waves that exhibit
a balance between nonlinear and dispersion effects. In particular, the
Korteweg-deVries (KdV) equation has been proposed as the principle
model equation for a wide range of physical phenomena, and has gener-
ated a vast body of literature related to its exact solution for arbitrary
initial conditions by means of the Inverse Scattering Transform [4] [5].
Many textbook treatments of this basic aspect of the theory for waves in
an infinite or periodic domain now exist [6] [7].

In the open coastal environment, the physical distance traversed by
a surface wind wave propagating from the point where it begins to be
significantly affected by the bottom until it reaches shore is often no more
than several wavelengths. Thus, the problem of computing the evolution
of waves through domains with significant inhomogeneities (occuring over
length scales which are not terribly long compared to a wavelength) is
of central importance. The problem of rapid wave evolution in a varying
domain is different from the more academic problem of evolution over
long distance in a uniform domain, and remains more a problem for
numerical analysis. It is this aspect of the theory for weakly-dispersive
long waves that is primarily reviewed here.

The modern birth of the study of nonlinear wave propagation over
an uneven bottom took place in the late 1960’s [8] [9] [10]. Peregrine [9]



provided the derivation of a Boussinesq-type model using depth-averaged
velocity as the dependent variable, and provided the first numerical
calculations of the phenomenon of nonlinear wave shoaling and evolu-
tion. Development of these techniques continued through the 1970’s and
80’s [11] [12] [13], but awaited the development of both theoretical tech-
niques for extending the range of applicability of the models (through
improved linear dispersion properties), as well as the development and
availability of computers capable of making model computations on a
more routine basis. Both of these hurdles have been crossed, and there
has been a resulting explosion of interest in shallow water wave models
in the past ten years.

In this review, we first concentrate on the development of the Boussi-
nesq model framework, and review recent advances which have extended
the applicability of these models over much of the range of depths where
waves feel the bottom. Efforts to extend the Boussinesq model approach
to cover wave breaking, shoreline runup and wave-current interaction are
also reviewed. Recent results in the area of reduced-dimension, forward-
propagation models are also considered, and we finish with a discusson
of spectral approaches to wave computations.

2 Governing equations and scaling funda-
mentals

We concentrate here on a review of the development of models for the
propagation of waves through a homogeneous inviscid fluid with density
p. We employ a Cartesian coordinate system with z oriented upward and
with the z,y plane lying in the plane of the still water free surface. The
fluid is bounded below by a surface I, = z + h(z,y,t) = 0 and above
by a surface Fy = z — n(z,y,t) = 0. Time dependence in the surface is
an obvious manifestation of wave motion. We allow for time dependence
in the bottom bounding surface to allow for the possibility of tsunami
genesis through earthquake motions and other shifts in bottom geometry.

In section 2.4, we will introduce scaling assumptions that make a
strong distinction between the relative size of horizontal and vertical
motions. For now, we retain a more general formulation. Introducing a
velocity vector w given by

w= (u(x;2,t),v(x;2,t), w(x; 2,1)), (1)
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where x = (z,y) is the position vector in the horizontal propagation
space, we may write the governing equations as

1 .
u; +u - Viu + ;Vap +g91. = 0, (3)
where V3 denotes a gradient in three dimensions. We will often make

a distinction between horizontal and vertical velocity components. We
define the horizontal velocity

u = (u(x,2,t),v(x,2,1)) (4)

and denote a gradient in horizontal coordinates by V. Kinematic con-
straints on the bounding upper and lower surfaces lead to the conditions

n+u-Vn=w; z=n(x,t) (5)

and

hi +u-Vh=—w; z = —h(x,t) (6)

Finally, we ignore dynamic interaction with an overlying air layer and
simply specify that pressure be constant on the upper bounding surface,

p=0; z = n(x,1). (7)

2.1 Irrotational flow

The formulation above is completely adequate for the general problem
of inviscid, incompressible flow. Several of the formulations considered
below will rest only on the formulation above, without recourse to further
assumptions. However, due to the implications of Kelvin’s theorem for
inviscid, barotropic fluids, waves are often assumed to fall into the cat-
egory of irrotational flows; i.e., flows having no vorticity or circulation.
In this case, stronger conditions may be imposed on the formulation of
the wave motion problem. For the case of irrotational motion,

V3 ww=10 (8]
we may introduce a velocity potential ¢(x, z,t) such that
u = V3. (9)
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Subsequent use of (9) in (2) then gives
Vi =0, (10)

which is Laplace’s equation for the velocity potential. This result is
supplemented by the first integral of the Euler equation (3), known as
Bernoulli’s equation,

1
S+t g+ 5IVsgl? = O(0) (11)

which relates the pressure field to the velocity field. Evaluating (11) at
the free surface and introducing the constraint (7) leads to a dynamic
free surface boundary condition

1
gn + ¢ + §|V3¢|2 =0, (12)

where the Bernoulli constant is absorbed under the assumption that the
free surface coincides with the level surface z = 0 when no wave activity
or current field is present. Finally, the kinematic boundary conditions
are given by

m+Ve-Vn=¢, ; z=1 (13)
Vé-Vh=—¢, ; z=—h. (14)

2.2 Variational formulation

The existence of a Lagrangian for irrotational free surface flows was in-
troduced originally by Luke [14], who showed that the Lagrangian was
given by the integral of fluid pressure over the depth; i.e.,

L(x,t) = / ; p(x, 2, t)dz. (15)
Using Bernoulli’s equation (11) above, we may recast £ in the form
L9 1 Loy, P [" 2 2
LR d) e §pgh, —pf_h drdz — [Epgn -+ 5/_!&[(V¢) + (¢.)°]d=z| . (16)

Luke’s principle then states that the integral of £ over all horizontal
space and time is then stationary with respect to variations in 7 and ¢

5 fx l L(x,t;n, ¢)dxdt = 0, (17)
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where we neglect the influence of lateral boundaries on the specification
of the problem. It may be shown [14] that this formulation is equivalent
to the boundary value problem specified by equations (10 - 14). An
examination of (16) shows that the first term is trivial, as it does not
depend on a dynamic variable. The last term in brackets consists of the
sum of the potential energy per unit area in the horizontal plane V and
the kinetic energy per unit area in the horizontal plane 7. We denote the
sum of these two energies as the total energy H(x,t¢). The Lagrangian
(16) is fully equivalent to the usual Lagrangian from classical mechanics,

L=T-V. (18)

This result may be established by use of Green’s first identity and Laplace’s
equation applied to the kinetic energy integral in (16). Following Miles [15],
we may integrate the second term in (16) by parts once and obtain the
relation

[ =5 [ gt~ et €)= dx,z=mt), (19

where the first term integrates to the boundaries in time in (17) and
hence has no dynamic significance. The Lagrangian may then be written
as

L= p€n. —H. (20)

This result may be further identified as the Legendre transform [16], with
‘H denoting the Hamiltonian, n the canonical coordinate, and p€ the con-
jugate momentum. Proof that the surface wave problem for irrotational
motion is a Hamiltonian system was provided originally by Zakharov [17].

2.3 Computational approaches using the full equa-
tions

Given the full boundary value problem for fluid motion, it is possible
to construct numerical solutions for the full three-dimensional problem.
This approach has been pursued by a number of authors, principally
using a technique known as the Volume of Fluid (VOF method). This
method has been applied to both shoaling waves and breaking waves
with some success [18]. Alternately, for the irrotational problem, several
approaches exist which reduce the dimensionality of the problem being
studied by one. Two such approaches are reviewed here.
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2.3.1 Hamiltonian canonical evolution equations

The existence of a Hamiltonian for an irrotational flow with a free surface
provides an immediate path to developing evolution equations for wave
motion, in the form of the canonical equations for the evolution in time
of the coordinate and conjugate momentum,

- %(n,f) (21)
b —i—?(m&), (22)

where the derivatives are functional derivatives with respect to the de-
pendent variables. Following Miles [15], (21) and (22) may be written
as

B = —Vf-?u+C(l + V- V) (23)
& = —gm—5VE VE+ S0+ Vg Vi), (24)

where ( = ¢.(x,z = 5,1) is the vertical velocity at the surface. Equations
(23) and (24) can be solved if an associated solution of Laplace’s equation
is used to obtain the vertical velocity. Examples of successful direct
approaches using this problem formulation may be found in [19], [20].
These approaches often utilize methods such as Fourier transforms to
obtain solutions to Laplace’s equation efficiently. They are thus usually
restricted to periodic domains and are difficult to apply to the general
coastal wave propagation problem.

Alternately, Radder [21] has suggested an approach in which the
Hamiltonian evolution equations are written in terms of 5 and the stream
function at the free surface,which is evaluated after conformally mapping
the fluid domain into a strip. Due to the transformation method utilized,
the method is not immediately applicable to wave propagation in two
horizontal directions. Otta & Dingemans [22] show a method for com-
puting solutions of Radder’s model utilizing sinc-series to discretize the
remaining Fourier integral. They further use a check on the approach
to singularity of the Jacobian of the transformation from physical to
mapped space as a test for breaking, and modify the surface and stream
function evolution subsequent to the break point to model the effect of
wave breaking, with reasonable success.



Use of Hamilton’s principle to construct evolution equations in the
long wave setting usually proceeds along slightly different lines, and we
defer a discussion of this aspect until Section 4.

2.3.2 Boundary integral equations.

An alternate approach to the inviscid irrotational flow problem results
from the fact that Laplace’s equation for the fluid interior may be con-
verted to an integral equation on the surface bounding the fluid domain.
Denoting the boundary by I', which is either a closed contour in the case
of flow in one horizontal coordinate and z, or a closed surface in the fully
three-dimensional case, we may write an equation for the value of the
potential at a point on the boundary surface as

Ha) = [ [bn(@)Cl@,2) - §(@)Cu(, 2] dl(2),  (26)

where (7 is the free-space Green function and where subscript n denotes a
derivative in the direction of the outward normal vector. Several different
approaches exist for solving (25) together with the surface boundary con-
ditions. Grilli and coworkers [23] [24] use the dynamic surface boundary
condition (12) together with a kinematic condition

Dz =Vi¢p; D()=()e+ Vs- Vi) (26)

to step the solution forward in time and update the position of the bound-
ary, after which (25) is used to update the velocity field. Applications
of this model have been limited to date to two-dimensional problems in
the vertical plane. Grilli et al [25] have compared numerical calcula-
tions of solitary waves shoaling on a plane beach to laboratory data, and
have found that the model predicts the actual wave motion to within the
accuracy of the available data.

Several researchers have implemented similar approaches using this
modelling technique [26] [27] [28] [29]. Fully three-dimensional applica-
tions of the technique are typically based on panel methods [30] [31] and
are still relatively scarce.

2.4 Scaling of dimensional variables

Development of approximate formulations for long wave motion in a layer
of water usually rests on the identification of two scaling parameters; a
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water depth to wavelength ratio (denoted here by 1), and a wave height to
water depth ratio (denoted here by €). An alternate nonlinear parameter
can be obtained by multiplying p and € to obtain the ratio of wave height
to wave length, the so-called wave steepness.

Following [32], we use a reference wavenumber kg to scale horizontal
distances z, y, a reference water depth hg to scale the vertical coordinate z
and local depth h(z,y), and amplitude a to scale the surface displacement
7. We then introduce the parameters § = a/ho and p? = (koho)?. Based
on these, we choose a scale of (ko(gho)'/?)~" for time t and 8ho(gho)"/?/p
for velocity potential ¢. Introducing these scales into the boundary value
problem for inviscid, irrotational motion leads to the problem

br + ;¢2V2¢' =0 —h <z< 8y (27)
¢. + u2Vh-Vé =0; z=—h (28)
5 .
n+ it 5[(Ve) + F(ﬁf’z)z] =0; z = & (29)
1
M+ 6V Vn— “—Qqﬁz =0; z=by. (30)

We develop an equation expressing volume flux conservation by integrat-
ing (27) over z from —h to én and using (28) and (30) to obtain

&1,
m+V-M=0; M= ” Vdz. (31)
—=h
In the following, we use (31) to obtain expressions for mass conservation,
while a momentum equation is obtained using the Bernoulli equation
(29). Choice of representative length and time scales for the propagation
of irregular waves in a variable-depth region is problematic, since waves
satisfying some scaling argument or restriction in one portion of the do-
main are almost certain to violate these conditions in another portion
of the domain. We proceed here with a standard construction of the di-
mensionless formulation. We will address the effect of violating the basic
scaling assumptions as a separate issue later.

2.5 An aside on nomenclature

Approximate models for wave propagation are obtained through a num-
ber of routes, and confusion may arise if there is not a precise under-
standing of how the name of a result is tied to the method for obtaining
that result. The rules followed below are thus outlined here.



Most of the models discussed below are related to a description of the
flow field based on a series solution of Laplace’s equation retaining terms
to O(u*), which gives a vertical distribution of horizontal velocity (at
least over a flat bottom) that is quadratic in z or some related vertical
coordinate. The corresponding vertical distribution of vertical velocity is
linear in z. A quick check of the approximate expressions for the velocity
potential used below shows that the expression for the fluid vorticity
is identically zero to O(p*), and thus the flow fields are irrotational to
the order of the approximation. We will refer to any model based on
a potential as a starting point, or on an assumption of the form of the
internal kinematics that would correspond to the use of a potential, as a
Boussinesg-type, or in short, a Boussinesq model. Since the specification
of canonical variables in the Hamiltonian formulation uses a velocity
potential, approximate models obtained using this approach fall in this
category as well.

In contrast, there are a number of models that assume a prior: that
the fluid moves in vertical columns which remain vertical and are at most
stretched by up and down motion of the surface. This assumption has
been used in a number of models, including models based on approxima-
tion of the governing Euler equations (Serre [33], Su & Gardner [34]) or
satisfaction of global mass, momentum and energy constraints (Green &
Naghdi [35]). These models are variously referred to as Serre equations
or GN equations, and we will show below that they are in fact the same,
at least at the leading order of approximation used in constructing them.

Finally, we will make a distinction between fully-nonlinear and weakly-
nonlinear models. We will refer to a model as being fully-nonlinear if the
known information about the internal flow field is used to satisfy the
surface boundary conditions imposed at the free surface, with the only
truncation allowed being used to maintain consistency in the ordering
with respect to the parameter p®. In this context, the usual Airy or
Nonlinear Shallow Water (NSW) equations would be the appropriate
fully-nonlinear equations in the limit 4* — 0. Any model which invokes
a further restriction on nonlinearity by fixing a relation between the pa-
rameters § and p? in a regime where p? < 1 will be referred to as being
weakly-nonlinear.
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3 Derivation of Boussinesq equations

The basic problem of water wave propagation is two-dimensional in the
horizontal coordinates x = (z,y), and we will start with models that
provide a full treatment of arbitrary motions in this coordinate system.

The central goals in the derivation of an approximate wave propaga-
tion model in free surface hydrodynamics are to:

1. obtain an approximation for the dependence of the solution on the
vertical coordinate z.

2. eliminate the cross-space z in favour of a model in the propagation
space x, ¥, 1.

In the case of Boussinesq models, the representation of the vertical de-
pendence of the solution as a low-order polynomial leads to a recursion
relation in which higher order coefficients in the series are determined
by the spatial variation of the lowest order coefficient. The choice of
this coefficient then specifies the dependent variable. This choice is non-
unique, and thus there will be a family of models satisfying a given set
of scaling restrictions, rather than one fixed, unique Boussinesq model.
Mathematicians have typically played down the importance of the dis-
tinctions between the members of this family, tending to lump them
together as representations of a given asymptotic regime. However, as
will be seen below, the various forms of the model equations can have sig-
nificantly different properties (particularly in terms of linear dispersion
characteristics) when applied in water depths which are large relative to
the asymptotic range of validity. For this reason, modellers are quite
interested in the differences in behaviour of the various members of the
asymptotically-equivalent family. Witting [36] pointed out that it is
possible to construct weakly-dispersive models that are characterized by
dispersion relations having the form of rational polynomial or Padé ap-
proximants, and that are numerically far more accurate as the depth be-
comes relatively large. We illustrate the consistant construction of such
a model below, following an approach developed by Nwogu [37]. Other
means for obtaining models with extended accuracy in their dispersion
relations include direct manipulation of highest-order (dispersive) terms
in an existing set of governing equations [38] [39], or the use of an al-
ternate vertical shape function in order to introduce correct dispersion
properties at some reference frequency [40] [41].
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The derivation of the Boussinesq equations illustrated here proceeds
by obtaining an approximate solution to the Laplace equation in the fluid
interior and then using the resulting information in the dynamic surface
boundary condition (29) and the depth integrated continuity equation
(31). As pointed out by Mei [32], the resulting derivation does not require
any a priori assumption about the size of ¢; all information provided by
(29) and (31) can be retained. The resulting fully-nonlinear equations
will depend on the level of accuracy retained in the approximation of ¢.
Weakly-nonlinear Boussinesq equations are then obtained by invoking
the restriction § = O(p?).

3.1 Approximate expressions for the velocity po-
tential

The Boussinesq-type equations may be obtained by introducing a series
expansion for ¢ of the form

o0

b(x,2,t) = Y (h+ 2)"u(x,1). (32)
n=0
An expression for ¢ which retains terms to O(p?) and satisfies the bottom
boundary condition is given by
h+ z)?
6= do(x,1) — w2k + VR - Vo - 28X g2, 1 0), (3
where ¢g is the value of the velocity potential at z = —h. Various forms
of the evolution equations are obtained by replacing ¢o by the value of
the potential at any level in the water column, or by the integral over
the depth. Any choice will lead to a set of model equations with the
same level of asymptotic approximation but with numerically different
dispersion properties, as discussed below. As a first example, we will
use a depth-averaged value of the potential and a related depth-averaged
velocity, following Wu [42] and Mei [32]. We define the depth-averaged
potential according to

Box,t) =57 [ 9,2, 1)d, (34)
where H = (h + 6n) is the total local water depth. Using (33) in (34)
gives

¢ = o — p* (th - Vo + i2V2<if’{)) - (35)

6
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This expression is then used in (33) to obtain an expression for ¢ in terms

of ¢:
¢ = fi_5+%i(ﬂw2(h+z))Vh-chJ—I-%Q(Hz—S(h+z)2)V2q5+O(p4). (36)

Alternately, following Wei et al [43] and Chen & Liu [44], we denote
¢ as the value of ¢ at a reference elevation z = z,(x), or

Btz o, 4 0ut).  (30)

This expression is then used in (33) to obtain an expression for ¢ in terms

of ¢u:

b= Gt 120 = 2)V - (W) + 57 — )V + O(").  (38)

P = g — ,uz(h, 4+ 24)Vh- Vg — p.g

3.2 Model based on depth-integrated potential or
~ velocity

3.2.1 Two-equation model for 5 and ¢

Whu [42] was one of the first to point out that a two-equation model for 7
and the chosen dependent variable representing the potential appeared to
be a good candidate for computational work, since it reduces the number
of equations and dependent variables by one compared to a formulation
involving n and a horizontal velocity vector. Wu formulated a model in
the standard Boussinesq approximation, including the effects of applied
surface pressure and moving bottom. We illustrate the derivation of his
model here and provide a fully-nonlinear version as an intermediate step.

Using (35) in (31) to obtain an expression for volume flux M gives
M = H [V@ + u? {%(VH —2Vh)Vh-Vé
+%H(2VH ~ 3R V)] + 0ut). (39)

The expression goes to zero identically as the total depth H goes to zero,
which serves as a natural shoreline boundary condition. The correspond-
ing form of the Bernoulli equation (29) is

0+ b + g(v& V) — p’H [%D(Vh V) + Ig—JD(V%)
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6

where the operator D() = (); 46V ¢- V(). The usual Boussinesq approx-
imation is recovered by retaining terms of O(é, p*) which gives the set of
equations

+=r— [HX(V?$)* = BH(Vh - V§)V?$ — 3(Vh- V)| = O(u'), (40)

M = HV¢ — u*Vh {gv - (hV$) — gv%‘s} +O(8%, 6p, 1) (41)
and |
: Sor o 2 | h 7 h? 27 2 ¢,.2 4
N+t (VO VE) = |5V - (W) — = V26| = O(8, 6%, ). (42)

Equations (41) and (42) are identical to the results given by Wu [42] after
neglecting pressure forcing and bottom motion.

3.2.2 Three-equation model for  and U@

A model based on the depth-averaged horizontal velocity is obtained
next. The velocity T is defined by
L pom

u = — 2 4
u am Véd (43)

2 2 B
V¢ + %(VH —2Vh)(Vh-V¢) + %—(ZVH —3Vh)V% + O(u?).

Using (43) in the expression (39) for the mass flux gives
M = Hu + O(), (44)

which in fact is accurate to all orders in p. The corresponding momentum
equation is obtained by taking the gradient of the Bernoulli equation (40),
which gives

2
T + 8(T- V)a+ Vi — % [(VH —2Vh)Vh -],

H H? ]

2
—% [H(2VH — 3Vh)V -1, — p?V [?D“(Vh ) + 5-D(V 1)

+§g—2\7 [HQ(V -1)2 —3H(Vh-u)(V - 1) — 3(Vh-u)?

—H@VH —3Vh) - 6(V-°) — 3(VH — 2Vh) - u(Vh - ﬁ)] = O(u"), (45)
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where D*() = (), + 6u- V() = D() + O(s?).

The weakly nonlinear Boussinesq approximation is obtained by ne-
glecting terms of O(§p?) or higher in (45), giving (44) for the mass flux
and

u, +6(u- V)u+ Vg — p? lI—LV(V- (hay)) — %iV(V—“u})] = O(6p*, u*)

2
(46)
for the momentum equations. Equation (46) was given originally by
Peregrine [9]. Retaining full nonlinear effects but restricting to constant
still water depth h = hg reduces (45) to

2
W, + 8(T- V)T + Vi + % (1*v*a),

2
+u2V —~§H2"ﬁ— Vi + LAV @) — HT(V ; ﬁ)tl

3 = O(u*), (47)

given by Mei [32].

3.3 Model based on potential or velocity at a fixed
elevation

3.3.1 Two-equation model for 5 and ¢,

Now, we derive a two-equation model for n and ¢, following Wei et al
[43]. Using (38), the expression for

M in (31) becomes

M = H lV¢u+u2{V lzﬂv-(thsa)ﬁév%a]

(h —&7) (k= hén + (61)*)
2 6

V(V - (hV ¢q))

V2V¢QH (48)

The corresponding form of the Bernoulli equation (29) becomes

1 btk 580+ 1[50 = )V - (V) + 5(22 = (60)) V]
(

+ 852 Va [V2a¥ - (h4) + (2 = S)V(V - (7))
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Vo [raV2V 0 + 52 - (0))V(V60)|
+ % V. (thSﬂ)F + 6V + (hV ¢ ) Ve + %(5?})2(V2¢ﬂ)2} = 0. (49)

Weakly-nonlinear Boussinesq equations are obtained by neglecting
terms of O(6u?). The modified expression for volume flux M is

2
M = HVé,+p? {!‘aV lzaV (hV ¢o) + igf‘ivzqﬁal

K

v (- (90 - £ (50

and the Bernoulli equation reduces to
o L i
n+ ‘?Sort - §(v¢0)2 + ,[.*.2 [Zav ) (théat) o é‘zinﬁéat] = 0. (51)

Equations (50) and (51) were given in [44]. These results are equivalent
to the two-equation model (41) - (42) of Wu [42] to within rearrangements
of dispersive terms.

3.3.2 Three equation model based on n and u,

We further introduce a horizontal velocity u, as u, = V¢|,,. Retaining
terms to O(p?) and to all orders in & gives a fully nonlinear version of
the model with volume flux

M = [ugt 52 {[522 — S0 — hén + (n))] V(9 o)
1
+ et 50— 0)] V(7 (hua) }| + 00 (52)
and momentum equation
Uy + 6(Uy - Vg + Vi + p* Vi + 8p*Va = O(u?), (53)
where

Vio= SAV(Yua) + 2V(V - (b))
~V [%(5?})2V ‘Ugy + 09V - (hum‘.)]
Vs = V [(za — 1) (ug - V)(V - (huy)) + %[zﬁ‘; = (81)*)(ua - V)(V - ua)

+%v (V- (hua) + 67V - ua)?] . (54)
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The weakly-nonlinear Boussinesq equations of Nwogu are recovered
by neglecting terms of O(u*, §4?), yielding the expressions

hz2  Rh? ’

M = Hu, + {( s B ) V(- ua) + (r + ”'7) (V- (huan}
(55)

and

-
o +H6(Ua-V)us+Vn4p? {%V(V ‘Uag) + 24 V[V (huat)]} = 0(6p%, u*).
(56)
The fully nonlinear models derived here all have mass flux M — 0 at
the shoreline, where H — 0. This result is expected on physical grounds
and appears in the nonlinear shallow water equations and in Boussinesq
models where the depth-averaged velocity is the dependent variable. This
condition is not automatically satisfied by Nwogu’s or any weakly nonlin-
ear Boussinesq model based on a velocity other than the depth-averaged
value, making the application of these models problematic at the shore-
line. All fully-nonlinear variations of any of the possible model systems
should recover this condition correctly.

3.4 Choice of z, and linearized dispersion relations

As the limitation to relatively shallow water p? < 1 is the primary
factor affecting applicability of the Boussinesq models, it is important
to understand the impact that the choice of dependent variables has on
the implied linear dispersion relation associated with each model. To
investigate this, we consider linearized forms of the model based on the
depth-averaged potential (41)-(42) and the potential chosen at a fixed
depth z,, (50)-(51). For the case of one-dimensional propagation in water
of constant depth h = hg, the former may be written as

= 5l =
qst + n— ,{"Jg(iﬁmt = 0 (58)

and has the associated dispersion relation

c = (59)



where ¢ is the phase speed normalized by the nondispersive phase speed

Vgh. Chen & Liu’s model (50), (51) is written in 1-D, linearized form as
. 1

Nt + Paze + !‘2(0’ T §)‘?5axm:z =0 (60)

ﬁﬁat i/ e Nzafpaa‘:xt = 0 (61)

and has the corresponding dispersion relation

< - 1_(a+%)a‘u'2

i 1 — ap?

(62)
In (60)-(62), « is given by
1 fa A% . =,
«=5(%) +% (63)

The appearance of the free parameter « in (62) gives the z, model
described here (or any other extended-accuracy Boussinesq model) the
ability to predict accurate phase speeds over a wide range of water depths.
For example, the choice @ = —1/3 (corresponding to z, = (1/v/3—1)h =
—0.423h) reproduces the relation (59) based on the depth-averaged ve-
locity. As shown originally by Witting [36], a better result is obtained
by forcing the approximate formula to coincide with the (2,2) Padé ap-
proximant, given by the choice @ = —2/5 (which, in turn, corresponds
to zo = (1/v/5 —1)h = —0.553h). Finally, Nwogu [37] pointed out that
more accurate results can be obtained at intermediate depth by choos-
ing a such that some measure of error is minimized. Nwogu chose to
minimize the mean square error between (62) and the exact result

2 tanh p (64)
7
over the range 0 < w?h/g < m, and obtained the result
a=-0.39; z,=—0.53h. (65)

The dispersion relations resulting from use of the depth-averaged velocity,
the Padé approximant and Nwogu’s choice of e are compared to the exact
result in Figure 1. Further refinements have been suggested by Chen &
Liu [44], who minimized the mean square error in a combination of the
phase and group velocities and obtained a slightly different value of a.
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Figure 1: Dependence of linear phase speed ¢ on dimensionless relative
depth p. Solid line, linear theory (64). Dashed line, Boussinesq equa-
tions based on depth-averaged velocity (59). Dash-dot line, Boussinesq
equations with & = —2/5 in (62). Dotted line, Boussinesq equations with
a = —0.39 in (62).

4 Boussinesq approximations: Hamiltonian
formulations

As an alternative to the standard derivation outlined above, several au-
thors have provided derivations of weakly-nonlinear Boussinesq equa-
tions based on the Hamiltonian and resulting canonical evolution equa-
tions. These results are reviewed here in the simplified context of two-
dimensional propagation in water of constant depth h. A detailed review
of existing variable depth formulations may be found in Dingemans [45].

Most of the work on Boussinesq approximations through Hamiltonian
formulations follows along lines laid out by Broer and associates [46] [47] [48].
The Hamiltonian may be written as the sum of kinetic and potential en-
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ergy contributions

H=T+V. (66)
Introducing the non-dimensionalization of section 2.4 and normalizing H
by pga?/2, we get (in dimensionless form)

T = //x/j: [v¢-v¢+ﬁ—2(¢z)2 dzdx (67)

¥ = //xqzdx. (68)

The difficulty in deriving the canonical evolution equations lies in speci-
fying the canonical momentum £(x,t) in terms of the velocity potential
¢(x,z =1,t). Broer and most subsequent researchers have proceeded by
splitting the kinetic energy integral into an integral from the bottom to
the mean water level plus an integral from the mean water level to #:

T=T+T, (69)

where

o=/ ]h [w-vwﬁwz)"] dzdx (70)

& = //xf:” lV¢.v¢+%(¢z)2] dzdx
= B / /x 1V Vl_gdx + 0642, 6%) (71)

by virtue of the fact that ¢, = O(y?) at leading order, and where we
introduce a Taylor expansion about z = 0 and retain terms appropriate
to a weakly-nonlinear formulation. (Note that this approach appears to
eliminate the possibility of obtaining a fully-nonlinear formulation, as
given in section 3). Subsequent development depends on the assumption
that the value of the potential at the surface may be represented in terms
of the value at the still water level z = 0. Letting &o(x,1) = ¢(x,2 = 0,1),
we may use Green’s identity together with Laplace’s equation and the
bottom boundary condition to replace (70) by

To = % f fx €o(¢:)z=0dxX. (72)

It is illustrative to consider the implications of the solution to the full
linear problem in the development of the weakly-dispersive approxima-
tion here. For waves propagating in constant depth in two dimensions,
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the full solution to the problem in an unbounded domain may be written
(in dimensional form)

) cocshk h+z) oilkx—w(k)t)
$(x, 2,1 " i 2/] coshkh ™ .

where k = |k| is the magnitude of the wavenumber vector and £o is the
Fourier transform of the potential at the still water level. The linearized
kinetic energy may then be written as [45] [50]

1 ix
To= g3 / /k 1éo|2k tanh khdk. (74)

Alternately, using Parseval’s theorem, we can write (74) in terms of an
integral over space, as

T = 12 [ [ V& Ru(VEo)) dx, (75)

where Ry is a real, positive-definite operator with a Fourier transform (or
symbol) given by

~  tanhkh

YT kb

For the case of weak dispersion (kh < 1) we can introduce the approxi-
mation

(76)

tanh kh
kh
which corresponds to an operator R of the form

s e %(khﬁ +O(kR) + ... (77)

R=1+4 %fﬁv?, (78)

which is not a positive-definite approximation to the full integro-differential
operator by virtue of the fact that (77) takes on negative values at large
kh. The central problem in developing the Boussinesq approximation is
then to obtain a replacement for R of suitable form, so as to maintain
positive-definiteness as well as to obtain relatively accurate dispersive
properties.

We now return to nondimensional variables and evaluate (70) directly
and compare to the results obtained above. Choosing z, = 0 as the
reference level in (38), we retain terms to O(p*) in ¢ and obtain the
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results (neglecting bottom slope)

2
Bx,25,t) = &o—u(hz+5)V%
D 1 1
Ll (ﬂh“ — B+ 2+ (b + z)'*) VIV, (79)
Also note that ¢ = ¢(z = 5) = & + O(6i?), so that & may be replaced
by ¢ in the Hamiltonian for the lowest order Boussinesq model. Using
(79) in (72) then gives

g o / ] V¢ - (RRVE)dx, (80)
where 3 .
R=1+;ﬁ%v2; R=1- (81)

in agreement with the first two terms in the expansion (77). Combining
(68), (71) and (80) gives the expression

M= ] / V¢ - (6n+ hR)Védx. (82)
X
Use of (21) and (22) then yields the canonical evolution equations
2 P? a2 T
ne = —V-[HV{]-p'FVVY, (83)
)
& = SVE-VE-u, (81)

The problems imposed by the non-positive definiteness of the operator
(81) and resulting Hamiltonian (82) may be seen by examining the dis-
persion relation for the linearized version of (83)-(84), given by

2 _ 4 1o

¢’ =1—=p (85)

3

Note that ¢ takes on imaginary values for values of u = kh > /3, indi-
cating the instability of short wave solutions to the problem. This is a
large value of g by the standards originally applied to Boussinesq-type
models but falls well within the range of accurate prediction capabil-
ity of models with extended accuracy. In addition, since short waves
on the scale of 2Az are certain to arise in numerical calculations, the
present model may not be used as the basis for numerical calculations
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unless heavy short-wave damping is artificially imposed. This damping,
in turn, makes the replication of steep nonlinear wave features impossible
in a practical sense.

It is thus necessary to alter (82) in such a way that short wave in-
stabilities are avoided. From an ad-hoc point of view, this end may be
achieved simply by replacing the operator R by another having a more
suitable symbol, and hence a well behaved linear dispersion relation; for
example, the choice

. 1—(a+1/3)u? 1+ (a+1/3)R*V?
R, = 1 2 ) R, = 372
— ap 14 ah®*V

(86)

reproduces the extended dispersion relation of Nwogu’s model (62) and
gives the modified evolution equations

(14 p2aV¥n = =V - [HVE] — p*(a + %)hBVzvgﬁ + O0(6p®, p*) (87)

together with (84). Most authors take the additional step of replacing
(82) with a quadratic form, thus guaranteeing positive-definiteness. For
example, Mooiman [50] introduces the quadratic form

H = / fx [H(GVE)? + 7] dx, (88)

which corresponds to the canonical evolution equations
n=—V- (G (HG(VY)) (89)
b= 5 (G(VE) ~ 1, (90)

where G* is defined such that G*G = R, to the required order of ap-
proximation. Mooiman makes the choice

G=G.=L;'L,; L,=1- ﬁ%fﬁv?. (91)

Requiring G to reproduce the leading order Taylor series behaviour of
R; in (81) leads to the condition

b—a=1 (92)
and a resulting linear dispersion relation
; 14 2u%\?
C2 = G?' = (—+!§-%) i (93)
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Based on comparisons with the exact dispersion relation, Mooiman sug-
gested the choice of parameters b = 1.9,a = 0.9. However, as shown in
Figure 2, it is not clear that this is the best choice over a range of values
of 4 = kh appropriate to the intermediate depth problem.

Values closer to b = 1.7,a = 0.7 would seem to provide a better fit. It
is also clear that models that reproduce the Padé form of the dispersion
relation provide a more accurate representation of the dispersion relation
over this same range.
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Figure 2: Squared linear phase speed for model equations relative to
squared phase speed for exact relation (64). Solid line, Padé approximant
(62) with @ = —2/5. Dashed line, Mooiman model (93) with b = 1.9.
Dash-dot line, Mooiman model (93) with b = 1.8. Dotted line, Mooiman
model (93) with b= 1.7.

Additional derivations of weakly-nonlinear Boussinesq models have
been provided by Van der Veen & Wubs [51] and Yoon & Liu [52]. In
particular, the model of Van der Veen & Wubs reproduces the Padé form
of the linear dispersion relation and may thus be expected to predict re-
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sults with comparable accuracy to those of the Nwogu or other extended
weakly-nonlinear model equations.

5 Serre equations

An independent line of approach to the derivation of evolution equations
has been pursued by several authors starting with Serre [33]. In this
approach, a model for the internal flow field is adopted in which the
horizontal velocity is assumed to be uniform over depth and the vertical
velocity varies linearly from the bottom to the free surface. Models are
then developed by obtaining appropriate integrals over depth of the Euler
equations and applying surface boundary conditions. The dependent
velocity variable is thus the depth-averaged velocity @, which coincides
with the local horizontal velocity over the entire water column. To date,
applications of the resulting approach have been limited to one horizontal
dimension (taken to be z). Extensive details on model derivations may
be found in Dingemans [45].

Note that the assumed form of the kinematics in these models implies
that the computed flow field is rotational. For motion in the z,z plane,
we have vorticity w = dw/dx = O(u?), and thus vorticity enters the flow
field description at the same order as the leading order dispersive terms.

Serre-type models are derived assuming a particular relation between
scaling parameters 6 and p. For the case where the usual weakly-nonlinear
Boussinesq approximation is employed (6§ = O(p?)), Dingemans [45]
shows that the derivation reproduces the equations of Peregrine [9] writ-
ten in terms of depth-averaged velocity. Serre [33] and Su & Gardner [34]
employed the relation 6 = O(y), which leads to the retention of some non-
linear effects in dispersive terms in the resulting model equations. For
the case of a horizontal bottom, Serre and Su & Gardner obtained the
set of equations [54]

e+ (Hu)e = 0 (94)
1
wy + dutiy + 1y + %,u?ﬂxl"‘ + gp;zHFz = (95)
where u is the a-component of @ and
I'= H(6(u2 — uttpy) — Ugi)- (96)
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These equations are fully equivalent to the model equations (44) and
(45), which are derived with the assumption that the horizontal velocity
profile has a quadratic variation over the depth. It is apparent that
this variation does not influence the resulting governing equation when
depth-averaged velocity is chosen as the dependent variable.

Equations (94)-(96) have an exact solitary wave solution, given by

n = cosh™? [%(::: — ct)] (97)
_ =
u = E: (98)

with K = (36/4(1 + 6))/% and ¢ = 1/(1 + §)*/* and where the nonlin-
ear parameter ¢ describes the ratio of wave height over water depth. In
comparison, K for the solitary wave solution of the KdV equation (132)
is given by K = 36/4. The Serre solution produces solitary wave crests
which are quite broad relative to either exact solutions or to solutions
based on the weakly or fully-nonlinear Boussinesq models of the previous
section. In Figure 3, we show a comparison of solitary waves based on
the accurate numerical solution of Tanaka [53] (solid lines), the weakly
nonlinear KdV solution (dashed line), a numerical solution of the fully
nonlinear Boussinesq equations (52) - (53) [55] (dash-dot line), and the
present solution of the Serre equation (dotted line). The figure shows
that the fully-nonlinear Boussinesq model provides a highly accurate re-
production of the exact solitary wave shape up to very high wave heights.
In contrast, the wave crest predicted by Serre equations is quite broad
and becomes broader as height increases, relative to any other solution
technique.

Seabra-Santos et al [54] have provided a variable-depth form of the
Serre equations given by

e+ (Hu), = 0 (99)
1
H(u; + duu,) + H?(%(l +¥)+ %T‘) = Hh,(1+X+ §F) (100)
with
¥ = —ha(ug + buuy) — Shyu?. (101)

Finally, we note that the linearized dispersion relation correspond-
ing to the models described here is the relation (59), which requires
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Figure 3: Comparison of solitary wave shapes for wave heights § =
0.4,0.6,0.8. Solid line - Tanaka’s solution. Dashed line - KdV soli-
tary wave solution. Dash-dot line - numerical solution of fully nonlinear
Boussinesq equations (52) - (53). Dotted line - Serre equation solution

(97) - (98)

improvement before the models can be used to model waves in inter-
mediate depths. Steps in this direction, leading to a corrected equation
which retains depth-average velocity, have been made [66] but are largely
undocumented to date. However, it is apparent that the fully-nonlinear
Boussinesq model (52)-(53) provides such a correction and does an ex-
cellent job of predicting the form of solitary wave crests.

6 Green-Naghdi (GN) equations

The final method for obtaining approximate governing equations consid-
ered here is the method of Green & Naghdi [56] [35]. In this approach, an
assumption is made about the kinematic properties of the velocity field,
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after which conservation laws governing the coeflicients of the velocity
field are derived. The original approach to the problem [56] used the
theory of directed fluid sheets or Cosserat surfaces. Green & Naghdi [35]
provide a parallel derivation of their approximate equations based on the
explicit conservation laws for inviscid fluid flow. These equations are
now commonly referred to as Green-Naghdi or GN equations. In this
formulation, the method takes on something of the flavour of a Galerkin
approximation of the full problem, using the assumed form of the velocity
field as the shape function. The resulting models are fully nonlinear, as
no scaling assumptions are made about the relative height to depth ratio
and all boundary data are evaluated at the instantaneous free surface.

The original GN model uses the same kinematic assumption as the
Serre model; a linear variation of vertical velocity over depth and a depth-
uniform horizontal velocity. The equations of Green & Naghdi can be
written in the present notation following Miles & Salmon [57]; see also [58]

n+V-(Ha) = 0 (102)
U +6u-vVu+Vy = —p?A, (103)
where ]
B 2n? 104
A SHV(H D*n) (104)

for uniform depth and

A= é {V [HD 2y — b)] + (V2)D*2n — h) + (VR)D*(2h — )}

(105)
for variable depth, where D() = () + @ - V() and where we retain the
notation U for the uniform-over-depth horizontal velocity. As is the case
with the Serre equations, (102)-(103) represents a system having non-
zero vorticity. Miles & Salmon [57] consider the vorticity and show that
a potential vorticity may be derived and is conserved by the system
for any motion starting from rest. Calculations for upstream-advancing
solitons generated by ships moving at transcritical speed have been made
by Ertekin et al [58]. There has been very little direct comparison to
data for this particular model system.

Owing to the similarity in the assumed velocity profiles, one would
suspect that the Serre and GN models should bear a striking resemblance.
To investigate this, we may rewrite (102) as

Dy = —Hu, (106)



for the case of constant depth and propagation in one dimension. The
expression for D?n then becomes (in 1-D)

D?*p = H[6(u2 — utpy) — up) =T (107)

where I is defined in (96). Expanding the one-dimensional version of
(103) then gives (95) identically, proving the equivalence of the models.
Based on this correspondence, we may write a two-dimensional version
of I as

I'=H{s(V-u)?—a - V(V-0)] -V -uf (108)

thus extending the Serre equations to two horizontal dimensions.

As is the case with the other weakly dispersive models described here,
the leading order GN model needs to be extended to include more ac-
curate linear dispersion effects before it can be applied to intermediate
depth propagation. Shields & Webster [59] [60] have provided a frame-
work for such an extension. They proceed by writing the velocity field
(in the present notation) as

u(x,z,1) = i W.(x,1)s", (109)

n=0

where K is a finite integer corresponding to the level of the resulting
model, and where s is the vertical position in a mapped coordinate sys-
tem which places the bottom at s = —1 and the water surface at s = 1.
Equations are then found which govern the evolution of the W,, and
which satisfy mass conservation and the kinematic surface boundary con-
dition. The Euler equations are satisfied in an approximate sense, using
a weak variational formulation in which the basis functions of (109) are
used as weighting functions. The resulting system consists of K equa-
tions for the amplitudes of the velocity field together with an equation
governing the change in thickness of the water column. Further details
may also be found in Demirbilek & Webster [61]. To date, these theories
have only been implemented for one horizontal direction.

Shields & Webster [59] have shown calculations of solitary waves and
regular cnoidal waves for GN models up to level three, and have shown
that convergence towards numerically exact results for wave shape and
wave speed is more rapid than for corresponding perturbation series.
Calculations of waves shoaling in variable depth are also provided by
Shields [62], who shows good agreement between wave height evolution
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and wave shape for shoaling periodic waves, in comparison to laboratory
data [63]. Additional example calculations are provided by Demirbilek
& Webster [64]. Webster & Wehausen [65] have also applied the method
to the problem of resonant Bragg reflection of surface waves by undular
bed features.

7 Model performance

The testing of existing modelling schemes has been fragmentary, espe-
cially with regard to model intercomparisons relative to single data sets
or more exact calculations. The principal exception to this is provided by
Dingemans [66], who has provided a comparison of calculations of nine
models to a single laboratory data set. The main issues to be addressed
in testing of the models include accuracy of intermediate depth linear
propagation (including dispersion, shoaling, refraction and diffraction),
and reproduction of nonlinear wave features during the final stages of
shoaling and wave breaking. In addition, the question of whether ex-
tended Boussinesq models give accurate predictions of nonlinear features
in intermediate water depths is of some importance, and has not been ad-
equately addressed to date. An outline of available results and significant
findings is provided here.

7.1 Intermediate depth propagation

Several experiments have been performed which provide accurate data
sets for intermediate depth waves propagating over bathymetry. The
data set of Berkhoff et al [67], for wave focusing over a submerged shoal,
has been extensively used to test the performance of parabolic model
schemes [68]. A schematic of the bottom geometry is shown in Figure
4. Kirby and Dalrymple [69] showed that the experimental results are
significantly affected by nonlinearity, and that parabolic model schemes
that account for the leading order, self-interaction effect in Stokes wave
theory are capable of reproducing the focusing behaviour (including the
effect of nonlinear defocussing) observed in the experiment. In addition,
waves in the experiment propagate from a relatively deep region, where
kh ~ 2, to much shallower depths. This experiment is thus ideal for
testing the intermediate depth shoaling and nonlinear properties of the
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extended Boussinesq schemes developed above. Wei and Kirby [70] per-
formed such a comparison using the weakly-nonlinear Nwogu equations.
Their published results were inaccurate, due to problems with the inci-
dent wave boundary condition as well as a misinterpretation of whether
the model had reached an asymptotic steady periodicity. Corrected re-
sults for a comparison of measured and computed wave heights for the
measurement transects shown in Figure 4 are shown in Figure 5. The
results show close agreement with data, with prediction accuracy similar
to that available using large-angle parabolic model schemes [68]. These
results are not changed in any significant way when the fully nonlinear
formulation is used. Similar results using a model based on Hamilton’s
principal have been shown by Mooiman [71].
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Figure 4: Geometry of submerged shoal experiment of Berkhoff et al [67]
including measurement transects (from [70]).

7.2 Solitary waves on a plane beach
Waves close to the break point can often have height to depth ratios larger

than one during their rapid unsteady evolution, and thus the restrictions
of a weakly nonlinear theory are dramatically violated during the final
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Figure 5: Comparison of measured (circles) and computed crest-to-
trough wave heights for submerged shoal experiment [67][70].

stages of shoaling. The problem of wave evolution close to breaking thus
provides an excellent test of the relative accuracy of weakly-nonlinear and
fully-nonlinear versions of the Boussinesq models. Wei et al [43] have
studied the shoaling of solitary waves up to the break point, and have
compared results from the weakly-nonlinear model (55) - (56) and the
fully-nonlinear model (52) - (53) to results obtained using an accurate
boundary integral solution [24]. The solitary wave test is a good choice
for performing model comparisons, since the wave can be started inside
the model domain and there are no initial transients or other features
in the solution resulting from boundary treatments, which can cloud an
evaluation of the basic models.

Wei et al considered solitary waves of three initial heights, each shoal-
ing over 4 different beach slopes. Results showed that weakly-nonlinear
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Figure 6: Comparison between boundary integral model (solid lines),
weakly nonlinear Boussinesq model (dashed lines) and fully nonlinear
Boussinesq model (dash-dot lines) of shoaling rates H/h for solitary
waves with § = (A) 0.20, (B) 0.40, (C) 0.60 in (a),(b),(d) and 6§ = (A)
0.30, (B) 0.45, (C) 0.60 in (c); shoaling on a slope: (a) 1:100; (b) 1:35; (c)
1:15; (d) 1:8. Circle symbols denote locations of the breaking point for
which the wave has a vertical tangent on the front face in the boundary
integral computations. (From [43]).
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Boussinesq calculation consistantly showed an overprediction of wave
height as waves approached the break point, together with overly narrow
and curved crests (and resulting high horizontal velocities.) In contrast,
the fully-nonlinear model equations provided an accurate prediction of
wave height evolution (see Figure 6) as well as accurate reproduction of
wave shape and magnitude of maximum horizontal velocities. The pre-
dicted point where horizontal velocity at the wave crest coincides with
the crest translational speed, which would be an indication of limiting
wave height from a physical point of view, agreed closely with the pre-
dicted point of the onset of breaking in the boundary integral calcula-
tions. Overall, the significance of the additional nonlinear effects in the
final stages of shoaling was quite clear.

7.3 Additional model intercomparisons

Dingemans [66] has provided a comparison between the predictions of
seven weakly dispersive wave models, a boundary integral model, a fully-
dispersive model based on canonical Hamiltonian evolution equations,
and a laboratory data set. The lab experiment considered the shoaling
of an initially sinusoidal regular wave over a bar with sloping sides. The
bar height occupied 75% of the water depth at the crest. Waves shoaled
significantly over the bar and broke over the bar crest in one of the three
cases studied. The strongly deformed waves then propagated back into
relatively deep water on the lee side of the bar, and the waves decomposed
into a fundamental and free higher harmonics with only weak nonlinear
interactions. The experimental data thus provides a strong test of the
linear dispersive characteristics of the models as well as their ability to
reproduce strong nonlinear distortions during the shoaling process. Tests
with breaking were not a primary focus of the comparison study. For a
case with moderately long initial waves (2s period in 0.8m of water), the
study showed fairly conclusively that the primary consideration affecting
model performance was the accuracy of the model dispersive properties,
with the retention of higher order nonlinear effects being a distinguishing
feature only after correction of the dispersive properties. In this instance,
the best model performance in the group of long wave models was found
in an undocumented Serre model with corrected dispersive properties due
to Barthélemy & Guiborg of LEGI-IMG (see [66] for details of model
formulation). This conclusion unfortunately did not survive to the next
case studied, which used a shorter but steeper incident wave. In this
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instance, the weakly-nonlinear Boussinesq models of Madsen et al [39]
and Mooiman [50] outperformed the Serre model with corrected linear
dispersion. This result was unexpected but may be another indication
of the Serre-type model tending to deviate from accurate solutions as
steepness increases, as indicated in the solitary wave comparison above.

8 Additional physical effects

The models described to this point represent the propagation of waves
seaward of the surf zone, in the range where friction is negligible and en-
ergy is essentially conserved. A comprehensive model of near-shore pro-
cesses needs to be able to describe the additional complexity of surf zone
wave behaviour, including wave breaking and runup on the shoreface.
The breaking process is not described by the basic framework given
above. In addition, the process of fluid motion in the swash zone oc-
curs in a regime where the dispersive properties of the Boussinesq model
are not appropriate. Nevertheless, there has been a great deal of progress
madeé in extending the range of weakly dispersive models into the surf
zone, and thus providing a comprehensive model of wave motion in the
coastal environment.

8.1 Wave breaking

The application of the Boussinesq models in the surf zone region is prob-
lematic from the viewpoint of consistency. Nonlinearity becomes strong
(6 — O(1)) while dispersive effects should disappear (p* — 0). In this
limit, the Boussinesq model would approach the usual NSW equations.
These equations predict the eventual steepening and ‘breaking’ (mani-
fested through the convergence of solution characteristics) of any initial
wave form, and thus do not allow for the modelling of non-breaking waves
over any appreciable distance. The NSW equations provide a successful
and well tested framework for modelling the dissipation and runup of surf
zone waves [72] [73] [74] [75]. The numerical approach is usually based on
the Lax-Wendroff scheme or similar dissipative schemes which preserve
the mass and momentum conserving properties of the governing equa-
tions, but which dissipate energy. This approach provides predictions
of surf zone wave heights, fluid velocities and skewness and asymmetry
statistics which are in reasonable agreement with measurements [76]. The
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approach has the disadvantage that the modeller does not have control
over the dissipative processes involved, which, in turn, are not specified
by any physically based model. Finally, the NSW equations cannot ac-
curately predict the propagation of incident waves seaward of the surf
zone.

In contrast, the schemes utilized to solve the Boussinesq equations
typically are at least intended to be conservative of mass, momentum
and energy, and do not form weak solutions or shocks as the wave fronts
steepen. Instead, the increased wave front curvature leads to an increase
in the effect of dispersive terms as water depth decreases, rather than
a decrease. Since the schemes are basically conservative, the equations
respond to the increased curvature by radiating shorter waves which are
slower and hence trail behind the main wave crest. This effect is equiv-
alent to the undular bore phenomenon seen in low Froude number hy-
draulic jumps [77], the difference being that breaking would not occur
and replace the tendency to radiate the short waves as wave height in-
creased beyond some value. It is up to the modeller to invoke a dissipation
mechanism and include it in the model equations.

A number of different models for wave breaking effects have been used
to date. These models can be roughly separated into two groups: models
where the rate of dissipation depends on some geometric or global (in
time or space) property of the wave train, and models where the rate
of dissipation is determined entirely by local (in time or space) proper-
ties. Within each group, it is further possible to distinguish two basic
techniques for achieving a damping effect: use of an eddy viscosity for-
mulation, or use of an applied pressure distribution.

Eddy viscosity models have the longest history in application. These
involve extending the momentum equation by the addition of a dissipa-
tion term, indicated schematically by

ug + duty + Ny — (Wyty), + dispersive terms = 0 (110)

Note that some authors [78] [79] write the additional term with the eddy
viscosity coefficient outside the second derivative. This implies that a
contribution to flow momentum is imposed when breaking occurs, in
contrast to the momentum-conserving bore process in the non-dispersive
theory. In situations where dissipation is imposed globally and spatial
variations in v, over a wave period are small, this effect is minor. How-
ever, at the onset of breaking or in models where dissipation is localized
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and spatial gradients of viscosity are large, this momentum source effect
can be quite severe, and should be avoided by correctly specifying the
dissipation term.

Karambas et al [78] provide an example formulation where v, is
calculated, based on a mixing length hypothesis and then applied globally
over the waveform. No comparisons to data are provided.

Zelt [80] has utilized a spatially localized eddy viscosity formula-
tion [81] based on a mixing length hypothesis. Following Zelt, v, is given

by
vy = —ug, (111)

with the mixing length [ given by
| = ByH. (112)

Heitner and Housner [81] chose v = 2 based on comparisons between
numerical results and experiments on the width of the bore region in a
steady hydraulic jump. The factor B is used to introduce a breaking
criterion and is given by

1; U S 200
B={ usfuf=1; 2ul <u,<u, (113)
0; Uy > Uy

where u, is a critical velocity gradient taken to be

) .
* = 0.3,/ 114
up=—03)/% (114)

In practice, the expression (112) is linearized to give | = B~vh, and a
smoothing filter is used to smooth the computed v distribution slightly.
Zelt [80] used this formulation in the context of a weakly-nonlinear Boussi-
nesq model in Lagrangian coordinates and studied the breaking and
runup of solitary waves on a plane slope, and obtained reasonable agree-
ment with laboratory data [82]. More recently, Wei and Kirby [55] have
used this method to study the breaking of a random wave train over
a plane slope. Wei and Kirby used the laboratory data of Mase and
Kirby [83], who considered the propagation of a wave train corresponding
to a Pierson-Moskowitz spectrum over a 1:20 beach slope. An example
of 30 seconds of run time is shown in Figure 7, where the initial mea-
surernent at a depth of 47 c¢m is shown together with shoaled, breaking

37



waves at h = 17.5,15,12.5,10,7.5,5 and 2.5 cm progressing up the fig-
ure. These tests were conducted with a peak frequency of about 1 Hz,
corresponding to a value of kh ~ 2 in the deeper part of the tank. The
Nwogu-type model with improved dispersion was used as the basis for
calculations. Computations using the model based on depth-averaged
velocity (44) and (46) were also attempted and failed to reproduce the
shoaling and propagation of the shorter wave components in the wave
train, as would be expected for waves starting in this large a depth. The
calculations shown here reproduce the arrival time of individual waves as
well as the height and general shape of waves in the surf zone.

Statistical measures based on the entire experimental series (covering
about 800 waves) were computed. Figure 8 shows computed and mea-
sured third-moment statistics for an entire run, and indicates that the
simple eddy viscosity formulation is capable of providing accurate pre-
dictions of wave skewness and asymmetry, which are important for the
subsequent calculation of sediment transport properties.

Karambas & Koutitas [79] have provided a much more elaborate
scheme for computing the eddy viscosity v using an energetic eddy length
scaling rather than a mixing length based on the total depth. They obtain
good prediction of decaying wave heights in the surf zone, as compared
to regular wave data from several sources. They also provide setup cal-
culations which show a large underprediction relative to measured data.
This underprediction may well be due to the incorrect positioning of the
eddy viscosity in the model dissipation term in their formulation, which
would lead to a modification of the cross-shore time-averaged momentum
balance.

An alternate formulation based on a surface roller concept [84] [85]
has been described by Schaffer et al [86]. Using a weakly-nonlinear
Boussinesq formulation based on surface displacement and depth-integrated
volume flux, they formulate the model (written in the present notation)

n+ Py = 0 (115)
, A2 /P h*

P2 2
Pf_ - (F)I + RJ, =+ Na + H [E" (}})a:a:t - ?Pa'wt] e 0: (116)

where P = Hu and where R is a pressure-like imposed force specified by
the roller model. R is found to be an excess momentum effect which can
be written as

P2

R:M—F,

(117)

38



160 _. . ._ T T

140

1200

100

nath=47,17.5,15,12.5,10,7.5,5,2.5 em

50 55 60 65 70 75 80
time (sec)

Figure 7: Comparison of surface elevation at different water depths. Solid
line - experimental data [83]. Dashed line - numerical calculation based
on (52) - (53). Isolated blips on records under wave records indicate
temporally localized breaking. (From [55]).

where M is the actual momentum flux computed using the true verti-
cal distribution of horizontal velocity, including breaking and turbulence
effects. The main assumption in the model development thus revolves
around the choice of the assumed velocity profile. Schaffer et al choose
a simple two-layer model where the roller region is taken to be a simple
quiescent mass of water translating at the phase speed of the underlying
wave. Note that in this formulation, where R takes on non-zero values
only near the front of breaking wave crests, the overall average momen-
tum balance is not affected by the additional term.

Numerical calculations with this model also provide good predictions
of wave height decay, and additionally provide accurate prediction of surf
zone setup. Additional results using this formulation may be found in
Madsen et al [87]. The same general approach has also been used by
Brocchini et al [88] in both a Boussinesq and Serre model.
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Figure 8: Comparison of skewness (circles) and -asymmetry (stars) at
different water depths. Solid lines - experimental data [83]. Dashed lines
- numerical computations based on (52) - (53). (From [55]).

8.2 Runup

Modelling the complete wave transformation process in the cross-shore
direction requires a treatment of the movement of the water line on the
inclined shore face. The problem of modelling runup on the shore face
does not introduce major new physical considerations in the modelling
scheme (unless percolation effects are to be considered). Instead, the
problems presented are primarily numerical and are associated with the
movement of the boundary of the fluid domain in a fixed horizontal co-
ordinate system. There are several approaches to the solution of this
problem which are described in the literature, which can be categorized
roughly as:

1. coordinate transformation techniques, in which a mapped coordi-
nate follows the water edge;
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2. grid draining and filling techniques;

3. techniques which treat the entire modelled domain as part of the
active fluid domain.

The first category of models is exemplified by models developed in
Lagrangian coordinates. For the particular case of purely cross-shore mo-
tion, use of Lagrangian coordinates renders the shoreline stationary, and
thus the runup problem is essentially solved. Pedersen and Gjevik [89]
reported calculations of the runup of solitary waves using a Boussinesq
model written in Lagrangian coordinates, and obtained good agreement
with laboratory data. This approach was extended by Zelt [80], who
incorporated the breaking model described above and studied the runup
of both breaking and non-breaking solitary waves, again obtaining good
results. This approach can, in principal, be extended to two-dimensional
problems having longshore as well as cross-shore shoreline movement.
Use of a purely Lagrangian scheme for surf zone applications is problem-
atic, however, since the mean flow developed by breaking waves would
tend to advect the grid longshore relative to the stationary region of
interest. It is possible to adopt semi-Lagrangian schemes, where only
the cross-shore motion is treated in a Lagrangian framework. Alter-
natively, simple coordinate stretching techniques may be utilized which
strain the model grid in the cross-shore direction in order to follow the
moving shoreline. This approach has been used by Ozkan & Kirby [90]
in schemes for longshore runup using the NSW equations.

The second category of shoreline treatments has a long history in the
context of storm surge and tsunami runup calculations. In this approach,
the water level in the most shoreward active grid in the numerical fluid
domain is checked. The shoreline is moved landward if the water level
exceeds a critical value or the grid is drained and inactivated if the water
level falls below a second critical value. This technique is most applicable
in explicit numerical schemes which are not impacted by the change of a
grid dimension. Liu et al [92] provide a recent example of this approach,
again in the context of long wave runup in the NSW equations.

Finally, there have been several approaches aimed at maintaining
an active computational grid over an entire pre-specified model domain
containing subaerial regions. Madsen et al [87] describe the application
of a method due to Tao [93] in which the solid seabed is replaced by
a network of very narrow vertical slots superimposed on the original
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topography. Water is assumed to occupy all of the network of slots up
to the original still water level, and thus the entire model grid is active
from the start. As the shoreline advances, slots fill until the water level
reaches the original bed level, after which water flows over the newly
submerged bed. In a sense, the method is analogous to coupling the
fluid domain to a porous bed, in which the level of porosity is then made
as small as possible. Madsen el al show a comparison for regular wave
runup to the analytic solution of Carrier & Greenspan [91] and show
that the level of apparent porosity in the numerical scheme must be very
carefully controlled in order to obtain accurate runup calculations. They
also found that it was neccessary to turn off the dispersive terms in the
model as the runup tip is approached.

An alternate approach to the problem of maintaining an active fluid
domain everywhere uses the approach of imposing a bottom friction
term, which becomes extremely large as the local total depth approaches
zero, thereby ‘freezing’ a thin layer of fluid on an otherwise subaerial
region [94].

Following this approach, Wei & Kirby [55] added a bottom friction

term of the form
U, ug|

Fj = —w (118)
and maintained an active grid over the entire domain by imposing a
minimum total depth. This method also requires a suppression of the
model dispersive terms at the runup tip, since the large curvature of the
water surface as the fluid jumps from near-zero to finite depth tends to
generate large short-wave oscillations on the scale of the grid spacing.

8.3 Waves on currents and mean current genera-
tion

Although the Boussinesq model is most often thought of as a wave prop-
agation model, it contains the framework for the computation of steady
or low-frequency motions driven either by imposed currents at bound-
aries or by the time-average of products of short wave components. This
may be seen directly by splitting the velocities and surface displacement
into wavy and slowly varying components, and then averaging the result-
ing equations to obtain separate equations for waves and currents. As
an illustration of the results, consider the decomposition of the surface

42



displacement n and velocity field @ into a current-induced part and a
wave-induced part

Ui Ne + Nw
Uy = Uei+ Uui, (119)

where we will use tensor notation for convenience. Peregrine’s [9] equa-
tions may be written as

n+ [Hw) ;=0 (120)
o — ¥ [ e B*..
Ui + 6U;Wi 5 + 1, — o §(h“j,ﬁ),e . E—(uj-,ﬂ),,; =0 (121)
We further introduce the notation
H=h+6én=h+6"n+n) = H:.+ 1. (122)

Using (119) and (122) in (120)-(121) and using a suitable average over
wave phase denoted by (), we obtain an equation for mass conservation
for the mean flow given by

Hc,t -+ (chcj + 6<??wuwj))aj =3 01 (123)

where the wave averaged quantity is the wave-induced mass flux. Denot-
ing the total mean flow velocity by

6
Uty = Ui + F(nwuw;), (124)

we may further write the mean flow momentum equation as
(Howsi) + (Hewiwig),; + Haey + S5 = O(6%), (125)

where dispersive effects on the slowly varying mean flow are simply
dropped in lieu of a more thorough scaling argument. The tensor .S5j;
is the radiation stress tensor

1
Sii = He(uwittus) + () (126)
and the term S;;; provides the forcing to drive steady or low-frequency
motions. Turning to the equations for the fluctuating motion, we re-
turn to vector notation and denote the wave-induced velocity as u,, and
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current, velocity as u.. The resulting governing equations are

Nwt + V- [Huy + 0npue — 6(uuy)] = 0 (127)
Uy + 6(“{: + uw) « Vi, + duy, - Vue + V?}w

1
—3p*hV(V u) = 0, (128)

where we have further neglected bottom slope effects in the dispersive
terms. The decomposition here is based on the assumption that the
largest component of the mean flow is of the same order as the wave in-
duced velocity; u,, = O(6+4/gh) in dimensional form. However, it is occa-
sionally the case (particularly in tidal inlets and estuarine entrances) that
the mean flow velocity can become the same order of magnitude as the
free wave speed 1/gh, and thus exceed the wave-induced orbital motion in
size. This case is not adequately covered by the weakly-nonlinear Boussi-
nesq models as given because it implies a fluid velocity which is larger
than assumed in the initial perturbation analysis. Yoon and Liu [95] have
considered this case in detail and have rederived the depth-averaged equa-
tions, including a separate large current from the start. The principle
revisions to the resulting governing equations occur only in the dispersive
terms for the wave motion, and essentially occur due to the advection
of the dispersive wave motion by the large current. Equation (128) may
be corrected to this more general level of approximation by replacing the
O(p*) dispersive term by the expression

%,u?fffv I g i PO ) (129)

which essentially replaces the local derivative in the original expression
with a total derivative following the mean flow. The fully nonlinear
Boussinesq models described in section 3 do not impose an absolute scal-
ing on the size of velocity components, and thus contain Yoon & Liu’s
extension of the theory within the single set of model equations. These
models are thus completely valid for the computation of wave motions on
relatively large currents. The consistency of the model equation with the
dispersive term (129) may be seen by constructing its linear dispersion
relation, which reads (in dimensional form)

2 _ gk®H,

S 130
o = T I H? (130)

where
o =w — ku, (131)
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is the relative or intrinsic frequency. Equation (130) is a consistant ap-
proximation to the full linear dispersion relation for waves on a large
current ..

Since the forcing for steady or low-frequency motion implied by (125)
is embedded in the original Boussinesq or Serre model, computations in-
volving wave breaking should generate longshore currents or other more
complex nearshore circulation patterns directly. For the case of a periodic
incident wave train, the steady wave-induced current can be extracted
using a simple time average of the computational results. An example of
such a current pattern may be found in Sgrensen et al [96], who illus-
trate the computation of a rip current driven by longshore bathymetric
variations on an otherwise straight coastline. A computed water surface
and one half of the resulting circulation cell are shown in Figures 9 and

10.

Figure 9: Birds-eye view of the free surface elevation for the rip channel
case with regular waves. The surface rollers are shown in white. (from

[96]).



9 Models for wave propagation with a prin-
cipal direction

In addition to the models discussed above, which are all essentially fully
two-dimensional in the horizontal plane (or have the capability to be
extended in such a way), a considerable amount of work has been done
on modelling schemes which involve the a priori choice of a preferred
or principal propagation direction. These modelling schemes typically
take the form of first-order wave equations in this principal direction, ex-
tended to include effects due to nonlinearity, frequency dispersion, weak
transverse structure in the wave field and variations in the fluid domain
in the propagation or transverse directions. This subject has also been
recently reviewed by Akylas [97].

Historically, the first member of this class of models was developed
by Korteweg and deVries [3] and is known as the Korteweg-deVries or
KdV equation. For waves propagating in the +a-direction, the equation
may be written in stationary coordinates as

3 1
M+ e + 651 + 1 Glewe = 0, (132)

where the constant depth h = hg and where the linearized phase speed ¢
normalized by ¢ = /ghg is given by

1
c=1-——p

= (133)

Note that the KdV equation exhibits the same kind of cutoff in prediction
of a positive phase speed at high frequencies as seen in the Boussinesq
equations based on velocity at the mean water level, although the prob-
lem of imaginary speeds and subsequent instability is avoided. This effect
was addressed by Peregrine [77] and Benjamin et al [98], who introduced
the model equation

5,1 |
M+ e+ 6510 — 1 Gzt = 0, (134)

which has a corresponding linear phase speed

(135)
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Figure 10: Depth-integrated velocity for the situation shown in Figure 9
focussing on a circulation cell (from [96]).

which is positive for all wave lengths. Equation (134) is commonly re-
ferred to as the BBM or Regularized Long Wave (RLW) equation.

For the case where a transverse y-direction structure in the wavefield
is permitted (with characteristic y direction scales of O(1/p) relative
to z-direction scales), Kadomtsev and Petviashvili [99] introduced the
perturbed KdV equation (now commonly referred to as the KP equation)

3 a1 g1 .

(e + e + 8515 + 1 SNasa)z + 5y =0, (136)
where Y = py. As in the case of the KdV equation, the KP equation is
also solvable by means of inverse scattering transforms and is thus the
subject of considerable mathematical interest. There is also a solution
describing families of biperiodic waves (i.e., periodic in both the z and y
directions); see Segur and Finkel [100] and references therein. Hammack
et al [101] [102] have studied the correspondence between these solutions
and short crested nonlinear waves generated in a laboratory basin, and
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have shown a close correspondence between model and data, and also
that the theoretical restriction that the transverse lengthscale be large
relative to the lengthscale in the propagation direction is not a strong
restriction on applicability of the model equation.

In the following, we review recent efforts made in the direction of
extending and applying these one-dimensional or weakly two-dimensional
models to the problem of wave propagation in regions with varying depth.

9.1 Weakly two-dimensional propagation

The first KP equation for wave propagation in a variable domain with ar-
bitrary depth A(x) was given by Liu et al [103], who obtained it primarily
from an examination of existing KP and variable-coefficient KdV models.
Using a more formal perturbation expansion, Philip [104] suggested that
a more appropriate form of the model can be written as
h ¢ 4
(m +ens + 56%?? + 5%????3 + #z%nm)m + #2516 (¢*nv), =0,
(137)
where ¢ is dimensionless phase speed ¢ = (h/hg)'/?, and where we as-
sume that bottom slope in the propagation direction is O(¢). This equa-
tion is the same as the equation presented in [103] to within terms of
O(p?) times the bottom slope, which is smaller than terms retained in
the model equation. The model was used as the basis for constructing a
parabolic approximation for forward-scattered waves [68], and was found
to be an accurate predictor of wave focusing over variable bathymetry.
Kirby et al [105] used this model to compute the Mach reflection of
solitary waves from a vertical wall, and further extended the model co-
efficents to include the case of two-layer flow over topography. The form
of the linearized, nondispersive model corresponding to (137) can also
be justified using a splitting method applied to the usual linear long
wave equation [105] [106]; this approach also provides the equation for
the backward-propagating wave component as well as the coupling be-
tween the forward and backward modes due to linear reflection effects.

A similar KP model has been developed by Chen [107].

A number of additional studies have provided KP models for a wide
range of physical settings, including surface and internal waves with
Coriolis-induced rotation [108] [109], gradually-varying channel width
and background flow [110] [111]. Chen & Liu [113] have provided a
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derivation of a comprehensive KP model covering all of these effects,
with some restriction on the allowed variability of bottom topography.

In most of the studies mentioned above, the domain in which waves
are propagating is assumed to be a channel with topography which varies
very weakly in the transverse direction. The depth may then be written
as

h(x) = h(z) + § B(x), (138)

where it is assumed that deviations from the average depth in the trans-
verse direction are O() relative to the average depth. This assumption
prompts a reformulation of the bottom boundary condition (6), which
after expanding about the depth h becomes

why 4+ 6u-VB = —w+ §Bw, + 0(6?); 2z = —h(z). (139)

This expansion has the effect of eliminating transverse depth variation
effects in the leading order solutions for the dependent variables in the
problem. The primary consequence of this is to remove the depth h from
within the y derivative terms in (136) or (137). The resulting model for
surface waves without background current [112] [113] may be written in
the present notation as

(? e 25h . 2 Ch? 680 Y 128 —0
It Joe T H 4?‘17}' 2?;777.& H 67?-w3: 2;;7?:: - #2‘-’?1’}’— s

) (140)
where ¢ = (h/ho)'/2.

For simplicity, most studies to date have provided computational ex-
amples based on the assumption that channel sidewalls are impermeable
vertical structures. Mathew & Akylas [114] provide an extension to the
model system to account for sidewalls which are sloped in such a way as
to still be confined to a region which is narrow compared to the main
region of the channel, but which are sloped gradually enough to affect
the dynamics of the motion in the channel.

Published tests of these model equations against actual data are lack-
ing. The model (140) with the assumption of weak transverse dependence
in the bottom topography has the advantage of being transformable into
a standard KP equations for several topographies of interest [112], and
thus analytic information on the deformation of solitary waves by this
class of topographies is immediately available. It is the present author’s
feeling that models which invoke this restriction may be too restrictive for
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application to general coastal topographies, although this is not known
conclusively at present.

9.2 One-dimensional propagation

The assumption of one-dimensional propagation in long wave theory is
quite restrictive. In open coastal applications, it implies a complete lack
of directionality in the incident wave field. The results of various studies
(to be discussed below) have indicated that results of one-dimensional
model calculations, while not capable of reproducing the two-dimensional
spatial geometry of the water surface, can give statistical measures which
are consistent with point measurements to a remarkable degree. For the
case of laterally unbounded motion (or for motion in a channel of constant
width 2b), Johnson [115] derived a variable depth KdV equation which
may be written in stationary coordinates as [116]

2
M+ oo+ 6= + 53?:% + #gi?}xm = 0(6%,6p?), (141)
2 2h 6
where h(z) is an arbitary function of & with a derivative of O(8) in
size, and where ¢ = (h/ho)'/? is the nondispersive phase speed scaled
by a value based on the reference depth hy. This equation may also
be altered into the form of a RLW equation by changing the dispersive
term. Svendsen and Hansen [117] sought to solve (141) for the case of
cnoidal waves propagating over a gently sloping bottom by assuming
the bottom slope to be an order smaller than indicated above, after
which a first order solution to the equation gives the usual cnoidal wave
as the local solution. The second order correction then produces an
an antisymmetric perturbation about the wave crest, leading to a wave
form which is pitched slightly forward at the crest. It is not clear how
applicable an approach such as this would be to the problem of arbitary
topography, since several phenomena of clear importance (such as the
continued deformation of a shoaled wave over a shallow shelf) would not
be reproduced. Most subsequent attention has been focused on purely
computational approaches.

For waves propagating in laterally-bounded channels, motion becomes
essentially one-dimensional if the horizontal lengthscale of the motion
along the channel greatly exceeds the lengthscale characterizing the chan-
nel width. Peregrine [118] gave a method for constructing Boussinesq
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equations for the case of a uniform channel of arbitrary cross-section, and
transformed the resulting equations to a KdV equation as well. Teng &
Whu [119] [120] have provided extensions of both a Boussinesq model and
a KdV model to the case of a channel of arbitrary cross section which is
allowed to vary along the channel length. For the case of a rectangular
channel of depth A(z) and half width b(z), the KdV form of their model

was given originally by Shuto [121] and may be written in the form

be 3b N h?
( ) ;7}"‘% + ,”* Cﬁ Neza = 0. (142)

by + ben, + 6

Miles [122] has pointed out that (142) is non-conservative of mass, with
the mass conservation equation given by

d

= bnd“r = Q(zo), (143)

where

3bcn®  ,bch? 1 fe
Q(zo) = | ben + 6 ks + p? = Vs | |ais + —/ (be)yndz.  (144)
4h 6 2 Jao

The first set of terms in brackets in (144) represents the flux of mass
across a station & = xg. Miles concludes that the integral term in (144)
represents a transfer of mass to a reflected wave. Kirby & Vengayil [106]
constructed coupled KdV equations for opposite going waves using a
splitting technique, verified Miles’ conclusion, and further established
the two-way mechanism for mass transfer between the opposite going
waves. Based on direct computations and comparison to experimental
data [123], Kirby & Vengayil also concluded that the small additional
terms that Miles used to rearrange the variable coefficient equation into
its integral form should be include in the model system from the outset,
giving a rectangular channel equation of the form

*£\2
(on)e e+ 8022y s 2T oWl g, (14

xr

where +(—) denotes rightward(leftward) propagating waves. Mattioli [124]
has further extended these equations by including the nonlinear coupling
between the right and left running waves.
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10 Frequency domain formulations

The computation of a time dependent wave field as a means of simulating
a complex field condition presents a numerical modeller with essentially
the same problem as that faced by the experimentalist — how to inter-
pret the physical implications of a flood of data. The most prevalent data
analysis technique for either regular waves or statistically stationary ran-
dom waves is Fourier analysis. It therefore makes some sense to consider
a computation of the desired wave field in the frequency domain rather
than the time domain, since most of the effects being looked for in the
frequency domain are directly available from the computations without
further analysis. This is especially true for shallow water waves, where
the final stage of highly nonlinear wave evolution can be characterized
by a rapid transfer of energy from the fundamental (or spectral peak
in the case of random waves) to higher or lower harmonics, by means of
nearly resonant three-wave interactions. Much of the original impetus for
the development of these methods came from a study of the water wave
analogy of the process of second harmonic generation, long known in non-
linear optics [125]. Mei & Unliiata [126] and Boczar-Karakiewicz [127]
studied the phenomenon of second harmonic generation and recurrence
in weakly-dispersive long waves using the spectral approach, and showed
that the method provided an accurate description of the phenomenon;

see also [128] [129]

In this section, we review recent results obtained using spectral meth-
ods in the context of the variable depth problem.

10.1 Deterministic models in the frequency do-
main

Spectral equations for wave shoaling and evolution have been presented
in a number of different formats and notations. In this section, we will
present evolution equations for complex Fourier amplitude rather than
separating the resulting equations into equations for real amplitude and
phase.

In order to illustrate the structure of a deterministic model for water
wave shoaling, we derive such a model from the variable depth KdV
equation (141). We write the surface displacement 5 as a Fourier series
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with amplitudes A,, which are assumed to vary on a slow spatial scale
X = éx of the same order as variations in water depth;

N =
o (M0 D) g

n=1
where ()* denotes a complex conjugation, and where the series is termi-
nated at N components for computational reasons. The phase function

by, is given by ¢
$(n)(a, ) = 3 /X ka(X)dX — wnt (147)

and we assume that the wavenumber and frequency for each model are
given by linear nondispersive theory at leading order; w? = k2h. We pro-
ceed by substituting (146) in (141), collecting terms of O(é, pu?), and then
isolating the contributions to the motion at each frequency component
n. In this last step, we assume that the dominant mechanism leading to
nonlinear interaction between different frequency components is resonant
three wave interaction (see Phillips [130], Section 3.8). We thus ignore
any contributions from quadratic terms which are not oscillating at the
same frequency as the target frequency component n and obtain the set
of evolution equations

hx, ut g (KNP
Ty — 6T k An
Anx + — 4h A 2 5 n 6
338’;’% Z AtAn-i +2 Z AjAnu| =0,n=1,..,N. (148)
=1

The resulting model equation gives the rate of change of the Fourier
amplitude for each frequency component due to the leading-order ef-
fects of shoaling, frequency dispersion, and nonlinear interaction. This
model was originally given by Vengayil & Kirby [131], who extended it
to include laminar bottom friction effects and compared it to data for
shoaling periodic waves [63]. It is also essentially equivalent to the ‘con-
sistent” model given by Freilich & Guza [132], and is so named because
it retains only the leading order effect of each small term in the original
model equation. Kirby [133] has shown that, for this level of truncation,
the evolution equation being solved would actually be most analogous to
a modified KdV equation of the form

3 1
i e Ne — éﬁ?;”h = li{,za?hu = 0, (149)

"
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which has higher wave phase speeds and broader solitary wave crests
than corresponding solutions of the original KdV equations.

Systems of the form (148) may be applied to either regular or irreg-
ular wave. For the case of regular wave data, it is sufficient to compute
the complex Fourier spectrum A, for one period of the wave, and use
this as input data to initialize the model at some station z. The equa-
tions are then solved by marching in z to obtain the complex Fourier
spectrum at more shoreward locations, after which the time series may
be reconstructed, if desired, using the inverse transform. For the case of
irregular waves, the process used is essentially similar to the computation
of smoothed power spectra from measurements. The time series of data is
broken into a set of shorter series, each of which is transformed to give an
ith realization of complex spectrum, A’. The individual realizations are
then used to initialize separate model runs. The results of computations
at desired x locations are then collected and used to compute smoothed
statistical estimates. For example, an estimate of the power spectrum
Sn = |A,|?/2 based on I realizations of the data would be given by

1 it
Su= 5= Y0 IALP. (150)
21 i=1
This process can be somewhat painstaking, as the integration of (148)
can become quite stiff and cause adaptive step size schemes to grind to
a halt. Nevertheless, it is a reliable approach in most instances.

Freilich & Guza have shown that a model equivalent to (148) is capa-
ble of reproducing most of the features of spectral evolution during the
random wave shoaling process, including amplification of the spectrum
due to shoaling as well as the transfer of energy to higher harmonics of the
spectral peak. The consistent model given here actually tends to overpre-
dict purely linear shoaling effects due to the lowest-order representation
of the shoaling process used. The shoaling term in (148) dictates that
the amplitude of any one Fourier component evolves (in the absence of
nonlinear effects) according to Green’s Law

An(z) | [ h(z0) A _
‘An(wﬂ) a (h(:c)) 1 (151)

which can cause serious overprediction of amplitude for components ini-
tialized at a sizeable depth. This problem is partially alleviated by re-
taining inhomogeneous domain effects arising from the dispersive terms.
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Freilich & Guza presented a model which retained additional effects in
both shoaling terms and nonlinear coupling coefficients; this model has
been extensively tested against data and has been seen to be a robust
predictor of second and third-moment statistics [134]- [137], even in cases
where wave directional spreading becomes significant.

Madsen & Sgrensen [129] have considered the modification of the
Boussinesq model for the purpose of obtaining accurate shoaling coeffi-
cients in spectral models; see also [45]. However, since each frequency
component is separately identified, it is in fact possible to represent
full linear dispersive effects in the individual equations. Such an ap-
proach has been pursued by Agnon et al [138], who used the spectral
Zhakharov equations to formulate a one-dimensional model, and by Kai-
hatu.& Kirby [139], who developed a set of mild slope equations coupled
at second-order in wave steepness and extended Agnon et al’s model to
two horizontal dimensions.

For the case where directional spreading of waves becomes significant,
it is necessary to move to a two-dimensional or weakly two-dimensional
format. Liu et al [103] developed a two-dimensional spectral model in the
form of a coupled set of parabolic models; this model is reviewed in [68].
In order to overcome the angular restrictions implied by the use of a
parabolic approximation, Kirby [140] developed a model using a Fourier
decomposition in both time and the longshore direction y. The model
then steps a complex directional spectrum in the +z-direction. Several
computational examples involving laboratory data are available for either
of these models, but extensive testing against field data is lacking.

10.2 Bispectra and third moment statistics

As waves become significantly nonlinear during the shoaling process, they
become asymmetric in both the vertical and horizontal directions. In
terms of statistics, the vertical asymmetry is referred to as skewness
and is given by the normalized third moment of the sea surface, while
horizontal asymmetry is called asymmetry and is given most directly by
the normalized third moment of the Hilbert transform of the sea surface.
Both of these quantities are directly related to a third-order spectrum
known as the bispectrum. A raw complex bispectral value is given in
terms of complex Fourier amplitudes by

B;; = AiAj A}, (152)
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The bispectrum plays a central role in the detection of nonlinearity in a
random wave train, with the real part of the bispectrum related to the
presence of in-phase harmonics (as in a regular periodic Stokes or cnoidal
wave) and the imaginary part related to the presence of phase-locked but
out-of-phase harmonics (as in a sawtooth waveform). In this guise, the
real part presents the distribution of contributions to skewness over the
frequency domain, while the imaginary part gives the distribution of
contributions to asymmetry.

In the context of spectral models, the bispectrum has an immediate
dynamical consequence. If we rearrange (148) into the form of an energy
equation (by multiplying by A} and adding A, times the conjugate of
(148)), we get the set of model equations

hX . Iné n—1 . N—n -
E|A,],| =— [ Y S(Bint) +2 Y S(Buyl, (153)

|An % +
4 =1 =1

where & denotes the imaginary part. The presence of imaginary bispec-
tral components is thus directly tied to the transfer of energy between
spectral components. The characteristic pitched-forward sawtooth form
of surf zone waves is representative of a rapid, sustained transfer of en-
ergy towards higher frequencies. This transfer must continue throughout
the surf zone as long as the waves remain bore-like in nature. The ces-
sation of breaking and reformation of a less asymmetric individual wave
also implies a cessation of this energy transfer process. This result has
consequences for the development of wave breaking models, which are
considered next.

10.3 Wave breaking

The problem of modelling wave breaking in a spectral model is fraught
with difficulties. The fact that dissipation mechanisms are highly local-
ized in time (i.e., confined to the roller region as the roller advects past
a fixed observer) indicates that they should have a global representation
in the frequency domain, with all frequency components being mutually
dependent. There is no existing model which includes these effects at
this level of complexity. Instead, there has been a tendency to approach
the problem by appending a dissipation term to the spectral model (148),
giving a model of the form

Anx 4+ = —cmdn, (154)
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The a, are usually chosen by using a bulk energy decay model to compute
the energy loss for the entire modelled spectrum, and then distributing
this loss in some weighted manner across the frequency spectrum. An
early attempt using this approach was made by Liu [141], who studied
the breaking of regular periodic waves [63]. Liu chose to use a distribu-
tion of a,’s with no dependence on frequency. The resulting wave forms
in the modelled surf zone show a marked lack of asymmetry, which is at
odds with the known tendency for surf zone waves to become sawtoothed
in form. Based on the arguments in the previous section, it is clear that
this approach suppressed the transfer of energy from the fundamental to
higher harmonics, indicating an over-accumulation of energy at relatively
high frequency. Thus, though wave height and total variance are reason-
ably predicted, third moment predictions are essentially destroyed. This
approach has also been followed in a recent application using random
waves by Eldeberky & Battjes [142].

Mase & Kirby [83] considered the problem of the dependence of a,,
on frequency. Based on observations of data for the breaking of a wave
train characterized by a smooth, Pierson-Moskowitz spectrum, they con-
cluded that «,, should have a quadratic dependence on frequency. Using
this distribution, they were able to obtain accurate predictions of the
evolution of wave heights, power spectra and higher moments for the
simple spectral shapes considered.

Despite the indications of partial success observed so far, the accu-
rate prediction of transformation and breaking of complex, multi-peaked
spectra has still not been accomplished. It is likely that a successful
model will need to retain some of the global nature of the dissipation
process in the frequency domain, as mentioned above. Models of this
type are under development but are undocumented at present.

10.4 Stochastic model formulations

The recent implementation of deep ocean or shelf scale wind wave models
has depended to a large extent on the use of action flux models aimed at
directly computing wave statistics as opposed to any phase-retaining de-
terministic portrait of the individual waves [143]. It is tempting to apply
this approach in the nearshore wave environment as well, although the
underlying assumption of random phases, which is central to the devel-
opment of statistical closures in intermediate depth action flux models, is
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hard to justify in shallow water applications, where the presence of rapid
spectral energy transfer implies strong phase coupling between spectral
components.

The framework for developing stochastic closures for spectral models
is known from several fields. Equation (153) can be averaged over a num-
ber of realizations to yield a model for the smoothed power spectrum S,
which depends on the smoothed bispectrum. It is then necessary to con-
struct a model to compute the evolution of the bispectrum based on val-
ues of the trispectrum, or fourth order spectral moments. This cascade
extends to all orders, and hence a closure problem becomes apparent.
Work in this format is in its infancy and will not be well documented for
some time yet. There is some indication that the equations for the bis-
pectra can be closed in terms of products of power spectral components.
It is not clear that this closure will yield a simpler computational envi-
ronment than the deterministic model described above, as the number of
bispectral components essentially goes like N* and thus the number of
equations needed to compute a broad spectrum will rival the number of
solutions for multiple realizations needed in the deterministic framework.

There is one existing example in the literature of an attempt to in-
voke a simpler closure and thereby confine the number of equations to be
solved to the number of spectral components. This is given by Abreu et
al [144], who used a closure proposed by Newell & Aucoin [145] which is
limited to strictly resonant interactions. The model formulation is quite
restrictive in that it neglects all interactions between waves travelling in
different directions, as is required by the limitation to tuned resonances.
However, it is well known that there are directional interactions in spec-
tral wave fields [146] [147]. Directional interactions are also crucial in the
formation of hexagonal patterns in biperiodic wave structures and in the
formation of Mach stems [140].

Despite these negative conclusions about the first attempted low-
order closure scheme, it will continue to be highly desirable to develop
approximate closures which eliminate part of the burden of computing
the entire bispectrum in future stochastic models.



11 Future Directions

The maturation of the theoretical basis and numerical methods for the
Boussinesq equations has led to a recent explosion of effort aimed at
utilizing these models for coastal engineering prediction. A number of
purely hydrodynamic models have been discussed above. Recently, mod-
els coupling the hydrodynamics to sediment transport models aimed at
predicting seabed evolution have also been developed [148] [149]. Further
development and testing in this area needs to be done.

The future is certain to see an extension of the Boussinesq and similar
equations to O(p*) [150]. Since the present O(p?) models with corrected
dispersive properties are capable of predicting the propagation of waves
over most of the range of shoaling water depths, modifications of the
model equations to include O(u*) effects are likely to provide a limited set
of improvements if propagation characteristics are the primary concern.
Indeed, there are no existing data sets which would adequately test the
improved performance of an O(p*) propagation model. The main reason
for providing such an extension to the theory would be to provide a more
accurate predictive capability for the fluid kinematics, which are not as
well predicted as the propagation characteristics are at present. Any
model extension in this direction should be based closely on a related
model of the fluid kinematics carried to comparable accuracy, in order to
reap a significant benefit from the extension.

In the realm of spectral applications, the future is likely to hold the
development of a number of stochastic models, in which the determin-
istic methods prevalent to date are replaced by methods for computing
the wave power spectrum, together with higher spectral moments. As
mentioned above, these methods are just now in their earliest stages of
development.
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