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ABSTRACT

The computer program VBREAK is developed to predict the time-dependent,
two-dimensional velocity field under normally incident breaking waves on beaches
and coastal structures. To reduce computation time considerably, use is made of
the depth-integrated continuity and horizontal momentum equations. The momen-
tum equation includes the momentum flux correction due to the vertical variation
of the horizontal velocity. The bottom shear stress is expressed in terms of the
near-bottom horizontal velocity immediately outside the thin wave boundary layer.
The third equation for the momentum flux correction is derived from the depth-
integrated wave energy equation. In order to express these three one-dimensional,
time-dependent equations in terms of the three unknown variables of the water
depth, depth-averaged horizontal velocity, and near-bottom horizontal velocity, the
normalized vertical profile of the horizontal velocity is assumed to be cubic on the
analogy between turbulent bores and hydraulic jumps. Furthermore, the turbulent
shear stress is assumed to be expressed using the turbulent eddy viscosity whose
mixing length is proportional to the water depth.

The three governing equations are solved using the MacCormack finite differ-
ence method for its simplicity and success in the computation of hydraulic jumps.
The seaward and landward boundary algorithms are extensions of those used in the
previous one-dimensional models such as IBREAK. The developed model VBREAK
can function as a one-dimensional model if the momentum flux correction term is
assigned to be zero at the seaward boundary. To assess the applicability of the

MacCormack method to the shallow-water continuity and momentum equations,

Xii



VBREAK is reduced to a one-dimensional model and compared with the previ-
ously developed model IBREAK. The differences in the computed depth averaged
velocity and free surface are minimal. The MacCormack method is hence consid-
ered to be efficient and accurate in the solution of the shallow-water continuity and
momentum equations.

The quasi two-dimensional model VBREAK is compared with two laboratory
data sets. The first is from the experiment conducted by Stive and outlined in Stive
(1980) and Stive and Wind (1982). Finally, the model is compared with the data
collected and analyzed by Cox et al. (1995). VBREAK predicts the free surface and
depth averaged velocity well. The addition of the momentum flux correction in the
governing equations has little effect on these quantities as anticipated by Kobayashi
and Wurjanto (1992). However, the vertical variation of the horizontal velocity
1s sensitive to this momentum flux correction because there would be no vertical
variation without this correction term. The phase speed is predicted reasonably
well. The agreemeni between the measured and computed vertical variation of the
horizontal velocity is effected by the mismatch of the measured and computed phase
speed. Although the energy dissipation due to wave breaking is modeled explicitly
in VBREAK, energy dissipation in the model is primarily numerical for breaking
waves on gentle slopes. This is likely due to the fact that the energy dissipation
and associated landward mass flux in the surface roller are not accounted for in
VBREAK. Nevertheless, VBREAK predicts the vertical variation of the horizontal
velocity measured below the trough reasonably well.

Originally, this work was submitted by Bradley D. Johnson in the Spring of
1996 as a thesis (Johnson 1996) at the University of Delaware in partial fulfillment
of the requirements for the degree of Master of Civil Engineering. A summary
of this report is being presented at the 25" International Conference of Coastal

Engineering(Johnson et al. 1996).
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Chapter 1

INTRODUCTION

Available time-dependent, one-dimensional and other numerical models for
breaking and nonbreaking waves on inclined structures and beaches were reviewed
by Kobayashi and Poff (1994). The one-dimensional shallow-water models (e.g.,
Kobayashi and Wurjanto 1989; Kobayashi and Poff 1994) are relatively simple
and robust. Generally, these models predict the free surface elevation fairly ac-
curately, within about 20% errors. Raubenheimer et al. (1995) showed that the
one-dimensional, shallow-water model was in good agreement with the variations of
wave spectra and shapes (e.g., wave skewness) measured across the inner surf and
swash zones on a gently sloping natural beach.

The one-dimensional models predict only the depth-averaged horizontal ve-
locity. The vertical velocity may be estimated using the two-dimensional continuity
equation together with the computed depth-averaged velocity, while the bottom
shear stress may be expressed by a quadratic friction equation based on the depth-
averaged velocity. The comparisons with the experiment for regular waves spilling
on a rough, impermeable 1:35 slope conducted by Cox et al. (1995) indicated that
the horizontal velocity measured below the wave trough level was represented by the
computed depth-averaged velocity reasonably well. The computed vertical velocity
represented the measured vertical velocity at least qualitatively except under the
wave crest. The temporal variation of the bottom shear stress was predicted poorly

because errors in the computed horizontal velocity were magnified in the computed



bottom shear stress and because the bottom friction factor was not really constant.
These limited comparisons suggest that a vertically two-dimensional model will be
required to predict the detailed vertical variations of the fluid velocities and shear
stress which are essential for predicting cross-shore sediment transport on beaches
and hydrodynamic forces acting on armor units on coastal structures (e.g., Tgrum
1994).

A simplified two-dimensional model is developed in this report. To reduce
computational efforts considerably, the normalized vertical variation of the horizon-
tal velocity outside the wave boundary layer is assumed to be cubic. The vertically
two-dimensional problem is then reduced to a depth-integrated one-dimensional
problem in which the three time-dependent, one-dimensional differential equations
for the water depth h, depth-averaged horizontal velocity U/ and near-bottom hor-
izontal velocity u, need to be solved numerically. The simplified two-dimensional
model called VBREAK is computationally as efficient as the previous one-dimensional
models such as RBREAK2 (Kobayashi and Poff 1994). As a result, VBREAK can

be applied easily and routinely using workstations.

1.1 Outline of Report

The approximate governing equations adopted for VBREAK are derived in
Chapter 2. First, approximate two-dimensional equations for shallow-water waves
on relatively gentle slopes are derived from the continuity and Reynolds equations.
The approximate two-dimensional equations are then integrated vertically to ob-
tain the depth-integrated continuity and horizontal momentum equations. This
momentum equation includes the unknown momentum flux correction m due to the
vertical variation of the horizontal velocity u. An equation for the momentum flux
correction m is derived from the depth-integrated wave energy equation (Kobayashi
and Wurjanto 1992) The bottom shear stress and wave energy dissipation inside

the thin wave boundary layer are expressed in terms of the near-bottom horizontal

2



velocity u, and the wave friction factor (Jonsson 1966; Cox et al. 1995). The ver-
tical variation of the normalized horizontal velocity u outside the wave boundary
layer is assumed to he cubic on the analogy between turbulent bores and hydraulic
jumps (Madsen and Svendsen 1983; Svendsen and Madsen 1984). The momentum
flux correction m and the wave energy dissipation rate outside the wave boundary
layer due to wave bieaking are then expressed in terms of h, U and u;,. The three
depth-integrated continuity, horizontal momentum, and momentum flux correction
equations may thus be solved numerically to obtain the temporal and cross-shore
variations of h, U and u,.

The numerical procedures adopted to solve the three governing equations
with appropriate initial and boundary conditions are explained in detail in Chapter
3 of this report. The MacCormack finite difference method (MacCormack 1969)
is selected because of its simplicity and success in the computation of unsteady
open channel flows with hydraulic jumps (Chaudhry 1993). The computation is
initiated at the time { = 0 when the specified incident wave train arrives at the
seaward boundary and no wave action exists in the computation domain. The inter-
val At of each time step for the time-marching computation is calculated using an
approximate stability criterion of the adopted explicit finite difference method. Ap-
proximate seaward boundary conditions are used to compute the boundary values
of h, U and u; as well as the reflected wave train using the method of character-
istics (Kobayashi et al. 1987, 1989). The landward boundary algorithm used in
RBREAK2 (Kobayashi and Poff 1994) is modified to compute wave runup on the
slope which is assumed to be impermeable. The details of the computer program
VBREAK have been published separately in the report by Kobayashi and Johnson
(1995).

In Chapter 4. the model VBREAK is initially compared with a previously
developed one-dimensional model IBREAK (Kobayashi and Wurjanto 1989). The



model VBREAK is reduced to the corresponding one-dimensional model through
the appropriate simplification of the boundary condition for the momentum flux
correction. The two models are then based on the same governing equations. The
MacCormack method is assesed using one of the tests conducted by Ahrens (1975)
with regular waves on a rough 1:2.5 slope. Finally, The numerical model VBREAK
is compared with two sets of regular wave data in Chapter 4. One data set is the
comprehensive measurements of test 1 presented by Stive (1980) and Stive and Wind
(1982) in which the incident regular waves broke as spilling breakers on a concrete
1:40 beach. The other data set is the detailed velocity, bottom shear stress and free
surface measurements by Cox et al. (1995) for the case of regular waves spilling on
a rough, impermeable 1:35 slope.

The summary and conclusions of this report are given in Chapter 5

1



Chapter 2

MATHEMATICAL FORMULATION

2.1 Two-Dimensional Equations in Shallow Water

The approximate governing equations adopted in the numerical model VBREAK
are derived from the two-dimensional continuity and Reynolds equations (e.g., Rodi

1980)

ou';
5 = (2.1)
J
ou! ol Oui 1 op 5 +1 or; (2.2)
ov Y aat T Tpaal 9T, ba ;

in which the prime indicates the physical variables and the summation convention
is used with respect to repeated indexes. The symbols used in (2.1) and (2.2) are
depicted in Figure 2.1 where ¢’ = time; #] = horizontal coordinate taken to be pos-
itive landward; z, = vertical coordinate taken to be positive upward with 2, = 0 at
the still water level (SWL); u] = horizontal velocity; u), = vertical velocity; p = fluid
density which is assumed constant; p’ = pressure; g = gravitational acceleration; &;,
= Kronecker delta; and 7{; = sum of turbulent and viscous stresses. Assuming that

the viscous stresses are negligible, 7/; may be expressed as (e.g., Rodi 1980)

Qut  Ou 2
T;j = p lf)_: (61"‘- 'a?f) — gk!&:l (2.3)

g
in which v = turbulent eddy viscosity; and &' = turbulent kinetic energy per unit

Imass.
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Figure 2.1: Definition sketch.

To simplify (2.1) and (2.2) with (2.3) in shallow water, the dimensional vari-

ables may be normalized as

s # " A e :E_’z
T! ! T /gH: ) 2 H'

U = “ = Uy P = 4
VoH v ¢ pgH'

v k' ) [9
e ] k = — s -t T —_—
Vi H'Z/Tf ) /g;H" :/TJ ! & H!

(2.4)
(2.5)

(26)

in which 7" and H' are the reference wave period and height used for the normal-

ization. The parameter o defined in (2.6) is the ratio between the horizontal and

vertical length scales. The normalized variables in (2.4) and (2.5) are assumed to



be on the order of unity in shallow water. The normalization of v, and k' in (2.6) is
based on the turbulence measurements in a wave flume by Cox et al. (1994) which
have indicated that i, and k are on the order of unity or less inside and immediately
outside the surf zone, respectively.

Substituting (2.4)-(2.6) into (2.1)-(2.3), the normalized continuity and mo-
mentum equations are obtained. The conventional notations of = 2, z =z, u =

uy and w = uy are used in the following. The normalized continuity equation is given

by
du_ v _
0z 0z

The momentum equations are simplified under the assumption of o >> 1 for shallow

0 (2.7)

water waves. The approximate horizontal momentum equation is expressed as

o B P T TR 2.8
ot "or "9z 9z \P " 30 0z (28)
with
du
= Yp = 2.

B (2.9)
The approximate vertical momentum equation is written as

0 2k

0= ~B (P-l‘z—l-%) (2.10)

The free surface and bottom are located at 2z’ = 5’ and 2’ = 2| as shown in
Figure 2.1 where the bottom is assumed to be fixed and impermeable. The water
depth h' is given by A" = (3’ — 2z;). The dimensional variables ', z; and A’ are
normalized by the vertical length scale H’

' 2 h'

The kinematic boundary conditions at the free surface and bottom are expressed as

an an : :
§+ua—£—~w = 0 at z=1n (2.12)
Oz
U w = 0 at z=2 (2.13)



The normal and tangential stresses at the [ree surface are assumed to be zero. These

boundary conditions for 0% > 1 can be shown to yield

2k
p+ — . = 0 at g=9 (2.14)
¥ = 0 at z=179 (2.15)

Integration of (2.10) with respect to z using (2.14) gives
2k

p=1—z—o

(2.16)
The pressure is approximately hydrostatic in shallow water where k is on the order
of unity or less and o is relatively large to satisfy o > 1. Substituting (2.16) into

(2.8), the horizontal momentum equation is rewritten as

_3_11_4_ ?E-i- du 31} or
uam 9z Oz @ 0z

Eqgs. (2.7) and (2.17) together with (2.9), (2.12), (2.13) and (2.15) may be solved nu-

(2.17)

merically but considerable numerical difficulties are expected because the unknown
free surface elevation 5 varies rapidly in space and time. In addition, such a numer-
ical model will be too time-consuming to compute breaking wave motions of long

duration.

2.2 Depth-Integrated Equations

To reduce computational efforts significantly, (2.7) and (2.17) are integrated
from z = 2z, to z = n using (2.12), (2.13) and (2.15). No additional approximation is
introduced in this infegration. The depth-integrated continuity equation is expressed

as
on o
Ox

where h = water depth given by h = (7 — 2); and ¢ = volume flux per unit width

defined as

=0 (2.18)

= f” u dz (2.19)
2y



The depth-integrated horizontal momentum equation is written as

dq J 1 2) _
a+%(q{}+m+2h sl = 55 (2.20)

with
m:/” (u—U)?dz (2.21)
zp
in which U = depth-averaged horizontal velocity defined as U = ¢/h; 0 = normalized
bottom slope defined as 0 = dz,/dz; 7, = bottom shear stress; and m = momentum
flux correction due to the vertical variation of the horizontal velocity u where m = 0
if = U,
The previous one-dimensional models IBREAK (Kobayashi and Wurjanto
1989), RBREAK (Wurjanto and Kobayashi 1991), and RBREAK2 (Kobayashi
and Poff 1994) assumed m = 0 and expressed 7, in terms of U. Egs. (2.18) and
(2.20) with m = 0 were solved using the dissipative Lax-Wendroff finite difference
method to compute h and ¢ as a function of ¢ and z. These one-dimensional models
do not predict the vertical variations of the fluid velocities u and w. Furthermore,
these models do not account for energy dissipation due to wave breaking explicitly.
Boussinesq equations have been extended to predict breaking waves on gentle
slopes (Zelt 1991; Scaaffer et al. 1992). Boussinesq equations without the dispersive
terms correspond to (2.18) and (2.20) if the bottom friction is included in Boussi-
nesq equations (Zelt 1991). Gharangik and Chaudhry (1991) computed hydraulic
jumps using Boussinesq equations with and without the dispersive terms and found
that the dispersive terms had little effect on the computed hydraulic jumps. This
indicates that the dispersive terms may be negligible for breaking waves inside the
surf zone. Moreover, the dispersive terms derived under the assumption of potential
flow may not be valid for breaking waves. To include energy dissipation due to wave
breaking in Boussinasq equations, Zelt (1991) and Schaffer et al. (1992) added a
term corresponding ‘o the term for the momentum flux correction m in (2.20). Zelt

(1991) expressed this additional term in the form of horizontal momentum diffusion



with an artificial viscosity proposed by Heitner and Housner (1970). The artificial
viscosity was calibrated for breaking solitary waves where the diffusion term was
activated using a semi-empirical criterion for solitary wave breaking. On the other
hand, Schiffer et al. (1992) expressed the additional momentum flux using a simple
approach based on a surface roller that represented a passive bulk of water riding on
the front of a breaking wave. An empirical geometric method was used to determine
the shape and location of the surface rollers during the computation. These models
do not predict the vertical variations of the fluid velocities. It is also not certain
whether the compuled energy dissipation was truly caused by the term added to
the momentum equation because they did not check whether the computed results
satisfied the energy equation as will be elaborated in the following,.

In this report, the equation for the momentum flux correction m is derived

from the depth-integrated instantaneous wave energy equation (Kobayashi and Wur-

janto 1992)
OH . 8
ot Oz
which is obtained by integrating (2.17) multiplied by u from z = 2, to z = 5 by
use of (2.12), (2.13), (2.15) and (2.18). The specific energy F defined as the sum of

(Ep) = —D (2.22)

kinetic and potential energy per unit horizontal area is given by

1
E = 3 (qU +m + ?}2) for z, <0 (2.23)
E = é (qU +m+9?— zf) for z, >0 (2.24)

in which the potential energy is taken to be relative to the potential energy in the
absence of wave action with SWL at z = 0. The energy flux Ep per unit width is
expressed as
1
Br =ng+ 3 (qU* + 3mU + ms) (2.25)
with
" 3
mg = / (u—-U)"dz (2.26)

Zby
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in which ms = kinetic energy flux correction due to the third moment of the velocity
deviation (u — U) over the depth where my = 0 if u = U. The energy dissipation

rate D per unit horizontal area in (2.22) is given by
n o Ou
D= ["r2ds 2,27
zy ! 0z ( )

where use is made of the no slip condition u = 0 at z = z,.
The wave boundary layer is not analyzed explicitly in this numerical model.
The energy dissipation rate D; inside the wave boundary layer may be estimated
by (Jonsson and Carlsen 1976)
Di =7 w (2.28)

where u;, = near-botvom horizontal velocity immediately outside the wave boundary

layer. The normalized bottom shear stress 7, may be expressed as

1
fhi=flbs |ty 5 2 Fo= 3 ofe (2.29)

in which f], = wave friction factor (Jonsson 1966). The value of f! specified as
input is allowed to vary spatially to accommodate the spatial variation of bottom
roughness (Kobayashi and Raichle 1994). The previous one-dimensional models
(e.g., Kobayashi and Wurjanto 1992) employed (2.27) and (2.28) in which the depth-
averaged velocity U and the corresponding friction factor f” were used instead of the
near-bottom velocity u; and the wave friction factor f!. Cox et al. (1995) showed
that the bottom shear stress and near-bottom velocity measured inside the surf zone
could be related fairly well by the quadratic friction equation (2.28) with the wave
friction factor [}, estimated using the formula of Jonsson (1966).

The energy dissipation rate D given by (2.26) may be expressed as

D =D;+ Dgp (2.30)

11



in which D = energy dissipation rate outside the wave boundary layer due to wave
breaking. Assuming that the thickness of the wave boundary layer is much smaller

than the water depth, D may be estimated using (2.26) together with (2.9)

2
n
Dg =] 1 (g—u) dz outside boundary layer (2.31)
zy z
where the vertical variations of u and v; outside the wave boundary layer will be
assumed in the following.
Rearranging vhe instantaneous wave energy equation (2.22) with (2.27) and

(2.29) by use of (2.18) and (2.20), the equation for the momentum flux correction

m is derived

dm J om
ki R . SO — S -
5 + 52 (3mU + m3) = 2U 5 2 (nyty + Dp) (2.32)
with
Gy =upy — U (2.33)

in which @, = near-bottom horizontal velocity correction due to the vertical variation
of the horizontal velccity u outside the wave boundary layer. If u = U, @y = 0,m = 0
and mg = 0. As a result, (2.31) yields Dg = 0 if u = U, whereas Dp given by (2.30)
outside the wave boindary layer is also zero if u is independent of z. This proves
that the energy dissipation due to wave breaking in the previous one-dimensional
models based on the assumptions of @, = 0, m = 0 and m3 = 0 is solely numerical
(Kobayashi and Wurjanto 1992).

In order to express m, ms and Dpg in terms of @, the horizontal velocity u

outside the wave boundary layer is assumed to be expressible in the form
u(t,z,z) = U(t,z) + w(t,z) F(C) (2.34)

with
(= o — ()] [htz) for 0<¢ <1 (235)

12



in which F' = normalized function expressing the vertical variation of the velocity
deviation (u— U) frcm ¢ = 0 immediately outside the wave boundary layer to ¢ =1
at the free surface. Furthermore, the dimensional turbulent eddy viscosity v outside
the wave boundary layer is assumed to be given by

o’
0z

v, = (Ceh')? (2.36)

in which Cy = mixing length parameter. The turbulence measurements inside the
surf zone by Cox et al. (1994) have indicated that (2.35) is a reasonable first approx-
imation outside the wave boundary layer and that C} is on the order of 0.1. Using
(2.4)-(2.6) and (2.11), the normalized turbulent eddy viscosity »; corresponding to
(2.35) is expressed as

Ou
= Clo h? |— 2.37
vt Ofg Oz ( )
Substitution of (2.33) with (2.34) and (2.36) into (2.21), (2.25) and (2.30) yields
1
m = Chhii? L s f F2d( (2.38)
0
1
ms = Cahiid . e f Fod¢ (2.39)
0
tdr |
Ds = CsClolif® ; Cg= f x|« (2.40)
0 [

in which m and Dpg are positive or zero.

Madsen and 3vendsen (1983) and Svendsen and Madsen (1984) assumed a
cubic velocity profile for their analyses of a hydraulic jump and a turbulent bore on
a beach. Accordingly, the function F' in (2.33) outside the wave boundary layer is

assumed to be cubic and expressed as
F=1-(340.75a)(*+a¢® for 0<(<1 (2.41)

in which @ = cubic velocity profile parameter. The function F' given by (2.40)
satisfies (2.19) with ¢ = Uh and (2.32). The shear stress 7 given by (2.9) with
(2.36) must satisfy 12.15). However, (2.40) yields 7 = 0 at ( = 1 only if ¢ = 4.

13



Moreover, (2.40) results in 7 = 0 at { = 0 immediately outside the wave boundary
layer in contradiction with the turbulence measurements inside the surf zone by
Cox et al. (1994). Consequently, (2.40) with the single empirical parameter a
may not predict the shear stress accurately in the vicinity of the free surface and
bottom. Comparison of (2.40) with the cubic profile assumed by Svendsen and
Madsen (1984) suggests that the parameter @ is approximately 3. The range of a
= 3-4 is considered in the following. Substitution of (2.40) into the equations for

Cs, C3 and Cp in (2.37)-(2.39) yields

200 a b  ab a®

= il B R Wil vl 2.42
Cy l # g dgtatamiy (2.42)
3a  3b? 3a2+ 0  3ab?® @*b  a®
Cj + 64 1 i 5 +ab+ 7 = 3 < 3 + 10 ( 3)
3 bz 92 3
Cg = = (21)3 -} 36; + 9a*b + 77—{1) (2.44)

in which b = —(3 + 0.75a).

Figure 2.2 shows the cubic velocity profile function F' given by (2.40) as a
function of ¢ for a = 3.0, 3.5 and 4.0. The abscissa in Figure 2.2 is the value of
—F because 1y, in (2.33) is expected to be negative under the wave crest. Figure 2.2
hence depicts the normalized vertical variation of the horizontal velocity deviation
(u — U) under the wave crest. The assumed cubic profile is not sensitive to the
parameter a in the range of @ = 3-4 except in the vicinity of the free surface where
no velocity data is available inside the surf zone. Figure 2.3 shows the parameters
Cy, C3 and Cp as a function of the cubic profile parameter a. These parameters vary
little for @ = 3-4. Figure 2.3 indicates that Cy ~ 0.5, C3 ~ —0.03 and Cp ~ 13.
In short, Figures 2.2 and 2.3 imply that the computed results will not be sensitive
to the empirical parameter a. The mixing length parameter C, affects only Dp
given by (2.39) but will modify the computed magnitude of Dy more than the cubic

profile parameter a because Dg is proportional to C7.
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1.5

Figure 2.2: Cubic velocity profile function —F' as a function of ¢ with ¢ = 0 at
bottom and ( = 1 at free surface for a = 3.0, 3.5, and 4.0.
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Eqgs. (2.18), (2.20), and (2.31) together with (2.28), (2.32), and (2.37)~(2.39)
will be solved numerically in the next section to compute h, ¢ and m as a function

of t and . To obtain @, using (2.37) for the computed A and m, it is assumed that

; m \ M2 for U >0 2.45

”ﬁ-‘(m) or U2 ()
m 1/2

Y = S J

1y, (Czh) for U <0 (2.46)

which ensures that |uy| < |U| with uy = (U +1). It is required in (2.44) that m > 0.
For the computed h, U = ¢/h and 1, the horizontal velocity v can be obtained
using (2.33). The vertical velocity w can be found using the continuity equation
(2:7): {
w=—(z— ) % —h % [c - (1 + :11) G4 %g“] (2.47)

in which ( is given by (2.34) and use is made of w =0 at z = 2.

To examine the degree of numerical dissipation hidden in the computed re-
sults, the instantaneous energy equation (2.22) with (2.29) is averaged from ¢ = 4
toit = luaz

AE + ;% (Er) = -D; - D» (2.48)

with
E(t = tma.x) = E(t = tstat)

Lrnax — Tatat

AFE =

(2.49)
in which the overbar denotes the time averaging from the starting time #g., of
the statistical calculations to the ending time . of the computation as will be
explained in Section 3.4. For the computed h, ¢ and m, FE, Ep, D; and Dp are
computed using (2.23), (2.24), (2.27) and (2.39), respectively, during s < ¢ < tmax.
The computed £, Ep, Dy and Dp will satisfy the time- averaged energy equation
(2.46) in the absence of numerical dissipation in the adopted numerical procedures.
In the previous one-dimensional models, Dp was calculated using (2.46) because
these models did not include any physical dissipation mechanism associated with

wave breaking.



3.1

Chapter 3

NUMERICAL MODEL

MacCormack Method

bined and expressed in the following vector form:

with

and

ou , oF

G =
ot + dz i 0
h q 0
U= q ) F= JF? ) G = Gg
m F; Gs
L.y
F, = QU+?R+§h i Ga=0h+m
d
Fs = 3mU +mg ; Ge=2 (Tb'&b + Dp — Ua_T;

)

To solve (2.18), (2.20) and (2.31) for h, ¢ and m, these equations are com-

(3.2)

(3.3)

(3.4)

in which U = ¢/h. 7, is given by (2.28) with u, = (U + @) and w; is calculated

using (2.44). mg3 and Dp are obtained from (2.38) and (2.39), respectively. Eq.

( 3.1) is solved numerically using the MacCormack method (MacCormack 1969)

which is a simplified variation of the two-step Lax-Wendroff method (e.g., Anderson

et al. 1984) and has been applied successfully for the computation of unsteady open

channel flows with hydraulic jumps (e.g., Fennema and Chaudhry 1986; Gharangik
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and Chaudhry 1991). The use of the Lax-Wendroff method for ( 3.1) would be very
difficult because this method requires the Jacobian of F with respect to U.

The initial time ¢ = 0 for the computation marching forward in time is taken
to be the time when the incident wave arrives at the seaward boundary located at
z = 0 and there is no wave action in the computation domain = > 0. The initial

conditions for the computation are thus given by

h = —z at t=0 for <0 (below SWL) (3.5)
E = 0 at t=0 for z, >0 (above SWL) (3.6)
g=0 : m=0 & =0 (3.7

in which z, = normalized bottom elevation taken to be negative below SWL.

A finite difference grid of constant nodal interval Az and variable time step
At is used in the numerical model VBREAK. The spatial nodes are located at
x= (73— 1)Az with j =1, 2, ..., Jmax Where jnax = number of the spatial nodes
in the computation domain. The computational shoreline is defined as the location
where the normalized instantaneous water depth h equals a small value § such as
6 = 1072 as in the previous one-dimensional models (e.g., Kobayashi and Poff 1994).
The integer s is used to indicate the wet node next to the moving shoreline such that
hsy1 < 6 < hy where hy and h,yq are the values of h; at the node j = s and (s + 1),
respectively. It is noted that no wave overtopping and transmission are allowed in
the present form of VBREAK unlike the previous one-dimensional models. It is
hence required that s < Jmax.

The values of U; at the node j with j = 1, 2, ..., s and at the present time
t are known in the following where U; = 0 with j = (s + 1), (s +2), ..., Jmax

landward of the shoreline node s. The unknown values of U7 at the node j and
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at the next time level t* = (¢ + At) are denoted by the superscript asterisk. The

predictor, corrector and final steps of the MacCormack method are expressed as

At . . F 3 Q
g = U;~ s (Fip — F;) — AtG; for 9=1, 2, .o0y 8 (3.8)
. ’ Al . ‘ '
U, = U- (Fj —Fjo1) — AtG; for j=2,3, ..., (3.9)
]. ¥ .
U = §(U +0;) for j=2,3,...,s  (3.10)

in which a forward spatial difference is used for the second term on the right hand
side of the predictor equation ( 3.8), and a backward spatial difference is used for
this term in the corrector equation ( 3.9). This is because the spatial difference
in the predictor equation is recommended to be in the direction of propagation of
wave fronts (Anderson et al. 1984). Accordingly, the term dm/dz in the function
(i3 defined in ( 3.4) is expressed by the forward and backward spatial differences
in ( 3.8) and ( 3.9), respectively. The values of U; computed by ( 3.8) and the
corresponding values of F7 and G’j in ( 3.9) are temporary values at the next time
level t*. In the computer program VBREAK, the three equations corresponding to
each of ( 3.8), ( 3.9) and ( 3.10) are used for clarity. The values of U; are computed
using the seaward boundary conditions in Section 3.5. The numerical procedures
for the moving shoreline in Section 3.6 are used to improve the computed values of

U; and find the shoreline node s* at the next time level ¢*.

3.2 Numerical Stability and Smoothing

The constant nodal interval Az needs to be small enough to resolve steep
wave fronts in the surf zone. The variable time step size At for numerically stable
computation is estimated at the beginning of each time step using the following

approximate equation:

CrAz

max (|UJ-| + \/a)
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in which C,, is the Courant number and the denominator in ( 3.11) is the maximum
value of (|U;| + \/‘E) at all the wet nodes at the present time ¢. The value of At
for each time step is selected using ( 3.11) except for the last time step that is
chosen such that t* = (¢ + At) = tiax for given t and ty,ax. The numerical stability
of the MacCormack method applied to ( 3.1) with m = 0 and G2 = 0 requires
that C,, < 1 (e.g., Anderson et al. 1984). Eq. ( 3.11) is approximate because the
characteristic equations corresponding to ( 3.1) with m # 0 can not be expressed
in simple analytical forms. Moreover, ( 3.11) does not account for the shoreline
algorithm which tends to suffer numerical difficulties. Consequently, the value of
C', less than unity is specified as input to adjust At for the successful computation
of each case. This manual adjustment of At through the specification of C,, on the
order of 0.4 appears to be sufficient because the computation time of VBREAK is
relatively short.

Use of the MacCormack method results in numerical high-frequency oscilla-
tions which tend to appear at the rear of a breaking wave, especially on a gentle
slope. For open-channel flows, Chaudhry (1993) summarized a procedure presented
by Jameson et al. (1981) to smooth these high-frequency oscillations without dis-
turbing the rest of the computed variations. To apply this procedure for breaking
waves on slopes, the computed water depth i} at the node j and at the next time

level t* is used to calculate the parameter v; at the node j defined as
o =205 41

|h}‘+1| 4 2“*;] s |h;—1|

The parameter €40, at the midpoint of the nodes j and (5 + 1) is given by

for j=2,3,...,(s"=1) (3.12)

R |
€it05 = K (3—4_23—“) max (v, vj41) for 7=2,3, ..., (s"—2) (3.13)

in which & = numerical damping coefficient for regulating the amount of damping

the high-frequency oscillations. The computed water depth £} is modified as

by = hj+eipos (hiyr — b)) —€imos (B — hj.y) for j=3,4,..., (s"—2) (3.14)
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which should be considered as a FORTRAN replacement statement. Likewise, U*
and m} are smoothed using ( 3.14) with A7 being replaced by U7 and m3, respectively,
where €;40.5 is the same. The smoothed h}‘ and U? are used to calculate q; = h;fU;.

Chaudhry (1993) suggested the expressions of v; at the end points j = 1
and s* in ( 3.12) for open-channel flows. Addition of these expressions in ( 3.13)
and ( 3.14) is found to produce spurious fluid motions even in the absence of waves
on slopes. As a result, the smoothing at the end points is not recommended for
breaking waves on slopes.

The numerical damping coeflicient & is specified as input to VBREAK. For
breaking waves on gentle beach slopes, the value of k£ on the order of unity is found to
be necessary to damp the high-frequency oscillations adequately. For waves surging
on steep slopes of coastal structures, the value of & on the order of 0.1 appears to
be sufficient. However, the smoothing procedure based on ( 3.12) tends to cause
more damping near the shoreline where the water depth A is very small. To remedy
this uneven damping, the term [(h} + h},,)/2]"° is added in ( 3.13) to reduce the

damping near the shoreline.

3.3 Incident or Measured Wave Profile
The required wave input for the numerical model VBREAK is the normalized
incident or measured wave profile at the seaward boundary of the computation
domain, that is, n;(¢) = ni(t')/H' or n(t) = y'(t')/H" at x = 0 with ¢ = ¢//T" where
H'" and T" are the reference wave height and period used for the normalization in
(2.4)—(2.6). The specification of 7;(t) or n(t) at = 0 for ¢ > 0 needs to satisfy the
condition 7; = 0 or n = 0 at @ = 0 at the initial time ¢ = 0 to be consistent with
the assumed initial conditions of no wave action in the region of > 0 at ¢ = 0.
The temporal variation of the incident wave profile 5;(¢) at 2 = 0 can be
1. the incident monochromatic wave profile computed (by the computer program

VBREAK ) using an appropriate wave theory, or
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2. a user-specified incident irregular or transient wave train including the inci-
dent wave profile measured in the absence of wave reflection, measured in the
presence of wave reflection but separated from the reflected wave using linear

wave theory, or generated numerically for given frequency spectrum.

For convenience, the former will be referred to as the case of regular waves, while
the latter is simply called the case of irregular waves, although this case can also
include monochromatic transient waves.

The temporal variation of the normalized free surface elevation n(t) at © =0
can be specified as input if 5(¢) at 2 = 0 is measured in the presence of wave reflec-
tion. This option eliminates uncerfainties associated with the separation of incident

and reflected waves using linear wave theory in laboratory and field measurements.

3.3.1 Incident Regular Wave
For the case of incident regular waves, the periodic variation of 7;(¢) is computed by
the computer program using either cnoidal or Stokes second-order wave theory. The
height and period of the incident regular waves at the seaward boundary located at
z = 0 are denoted by H! and T}. The reference wave period T" is taken as 7" = T
for the incident regular waves. The reference wave height H’ specified as input may
be in deeper water depth. Since the numerical model is based on the assumption of
shallow water waves, the seaward boundary should be located in relatively shallow
water. As a result, it is not always possible to take H' = H{. Defining K, = H!/H',
the height and period of the regular wave profile 5;(t) at 2 = 0 is K, and unity,
respectively.

For Stokes second-order wave theory, the incident wave profile n;(t) at =0

is given by (e.g., Kobayashi and Poff 1994)

ni(t) = K, {._J_—"r:os [27(t + to)] + agcos [4m(t + to)]} for t >0 (3.15)
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with

2 (2 dm dy 3(21r) =
ay = Tc.oah ( L) [2 + cosh ( 7 )} llﬁ K. sinh 7 (3.16)

9
B B tanh% (3.17)

where ty = time shift computed to satisfy the conditions that n; = 0 at ¢ = 0
and n; decreases initially; a; = normalized amplitude of the second-order harmonic;
L = L')dy; dy = di/H'; Lo = Ly/d;; d, = water depth below SWL at ¢ = 0;
L' = dimensional wavelength at z = 0; and L{ = dimensional linear wavelength
in deep water. The normalized wavelength L satisfying ( 3.17) for given Lo is
computed using a Newton-Raphson iteration method. Eq. ( 3.16) yields the value
of ay for given d; = d;/H', K,, and L. Since ( 3.15) satisfies n;(t + 1) = ni(t)
and n;(—t — to) = ni(t + to), it is sufficient to compute the profile ;(t) for 0 <
(t + 1) < 0.5 to obtain n;(t) for 0 < ¢ < {nax Where &, = specified computation
duration. Eq. ( 3.13) may be appropriate if the Ursell parameter U, < 26 where
U. = [H{(L)*/(d))®] = (K,L*/d;) at @ = 0. It is noted that the value of U, based
on the normalized wavelength L computed from ( 3.17) is simply used to decide
whether cnoidal or Stokes second-order wave theory is applied.

For the case of U, > 26, cnoidal wave theory is used to compute the incident

wave profile 7;(t) at 2 = 0 (e.g., Kobayashi and Poff 1994)

0i(t) = Pmin + K, en? [2K(t +to)]  for £ >0 (3.18)
with
K, E\
hmin = E (1 = E) - K, (319)

where fmin = normalized trough elevation below SWL; en = Jacobian elliptic func-
tion; K = complete elliptic integral of the first kind; £ = complete elliptic integral
of the second kind, which should be differentiated from the specific wave energy

E given by (2.23); and m = parameter determining the complete elliptic integrals
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K(m) and E(m). It is noted that this parameter m is different from the momen-
tum flux correction n used in the previous sections. The notation of m for cnoidal
wave theory is standard and therefore used here. The parameter m for cnoidal wave

theory is related to the Ursell parameter U,

K,L?
I (3.20)

7i
¢ d, 3

For U, > 26, the parameter m is in the range 0.8 < m < 1. The parameter m for

given o, d;, and K, where o is defined in (2.6), is computed from

o K I
Y —-3=]|—-1= 3.
LA/ d; \/[1 + m d; ( L 3I(>] b (3:21)

where the normalized wavelength L is given by ( 3.20) as a function of m for given

d; and K. The left hand side of ( 3.21) is a reasonably simple function of m in the
range 0.8 < m < 1. As a result, ( 3.21) can be solved using an iteration method
which successively narrows down the range of m bracketing the root of ( 3.21).
After the value of m is computed for given o, d;, and K, the values of U, and L
are computed using ( 3.20), while ( 3.19) yields the value of 7,,;,. The incident
wave profile 7;(¢) is computed using ( 3.18) for 0 < (¢ + t) < 0.5 where the time
shift 1o and the periodicity and symmetry of the cnoidal wave profile are used in the
same manner as the Stokes second-order wave profile given by ( 3.15). It should be
mentioned that the Jacobian elliptic function and the complete elliptic integrals of

the first and second kinds are computed using the subroutines given by Press et al.

(1986).

3.3.2 Incident Irregular Wave

The specification of incident irregular waves as input to VBREAK is the same
as in the previous one-dimensional model RBREAKZ2 (Kobayashi and Poff 1994).
Various examples of user-specified irregular wave trains were given by Wurjanto and

Kobayashi (1991).

25



The incident wave train 7;(¢) normalized by the reference wave height H’ is

read at the following sampling rate

tmax
6t = GpINPT (9:22)

in which NPINP = specified number of points in the input wave train for 0 < ¢ < .«
with ¢ and f,ax being normalized by the reference wave period 7. The reference
wave height and period can be chosen as any height and period that are convenient
for the analysis of computed normalized results. The normalized wave height K,
specified as input for case of incident regular waves is not required when an irregular
wave time series is used. It is noted that the normalized incident regular wave train
given by ( 3.15) and ( 3.18) is also computed at the rate t; given by ( 3.22).

The sampling rate 6¢; must be small enough to resolve the temporal variation
of n;(t) but is normally much larger than the finite difference time step At calculated
by ( 3.11) for the numerically stable computation. A simple linear interpolation of
ni(t) sampled at the rate 6t; is performed to find the value of ;(¢*) at the time level

t* = (t + At) during the time-marching computation.

3.3.3 Measured Wave Profile

If the free surface oscillation is measured at the seaward boundary of the
computation, it is more direct and straightforward to specify the measured free
surface oscillation as input to VBREAK . This option eliminates the uncertainty
associated with the separation of incident and reflected waves using linear wave
theory.

The measured free surface elevation above SWL at the seaward boundary is
normalized by the values of H' and 7" specified as input. The normalized input
time series of 7(t) at # = 0 is read at the sampling rate 6t; given by ( 3.22) and
interpolated linearly in the same way as 7;(t) at = 0 for case of specified irregular

waves.
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3.4 Statistical Calculations

The statistical calculations in this report imply the calculations of the mean,
root-mean-square (rms), maximum and minimum values of computed time-series for

the duration of tsa <t < thax. For example, the rms value of 7 is defined as

o 1/2

ts= [ =77 | = [ 7= @] (3.23)

in which the overbar denotes the time averaging for g, <t < fpax.

For the case of regular waves, the statistical calculations should be executed
over the last wave period, assuming that the computation duration ty.y is large
enough to reach the periodicity of time-varying quantities during tga < ¢ < tyax
with Zsar = (tmax — 1). This duration ranges from approximately five wave periods
for coastal structures (Kobayashi and Wurjanto 1989) to about 30 wave periods for
beaches (Kobayashi et al. 1989).

For irregular wave computations, the statistical calculations are conducted
over most or all of the computation duration. The initial transient waves may be
excluded by specifying an appropriate value of 4, estimated from the corresponding

regular wave compuiation.

3.5 Wave Reflection

The normalized reflected wave train 7,(¢) at the seaward boundary needs to
be computed to estimate the degree of wave reflection from the computation domain.
It is also required to find the unknown value of the vector Uj at « = 0 and at the
next time level t* = (1 + At) which can not be computed using ( 3.10). The seaward
boundary algorithm needs to be developed for the cases of IWAVE=1 and 2 where
the incident wave profile 7;(¢) at @ = 0 is specified as input and for IWAVE=3

where the total free surface profile (%) at @ = 0 is specified as input.
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In order to derive approximate seaward boundary conditions for h and ¢,

(2.18) and (2.20) are expressed in the following characteristic forms:

do o da T 1 Om dz
'Et‘ = §+(U+C)a—x'——9—§—£'a—1 a.long E—U-I-C (3.24)
g 9p B 7 10m dz g
oy = a+(U_'c)3:c_9+h+E§; along dt—U—c (3.25)
with
c=vVh ; a=U+2 ; B=-U+2c (3.26)

in which ¢ is the normalized phase velocity, whereas o and f are the characteristic
variables.

Assuming that U < ¢ and the flow is subcritical in the vicinity of the seaward
boundary where the normalized water depth below SWL is d;, o and /3 represent
the characteristics advancing landward and seaward, respectively, in the vicinity of

the seaward boundary. The total water depth at the seaward boundary is expressed

in the form (Kobayashi et al. 1987).
ht)=di+n(t) at =0 (3.27)

with
2O =@ +7t) at z=0 (3.28)

where 7; and 7, are the free surface elevations normalized by H' at z = 0 due to the
incident and reflected waves, respectively. The incident wave train may be specified
by prescribing the variation of #; with respect to ¢ for ¢ > 0. Alternatively, the free
surface elevation measured at @ = 0 may be specified as input by prescribing the
variation of  with respect to ¢ for £ > 0. The normalized reflected wave train 1,
is approximately expressed in terms of the seaward advancing characteristic 3 at
=l

n(t) ~ %\/djﬂ(t) —di—C; at =0 (3.29)

28



where 3 is obtained using ( 3.25) and linear long wave theory is used to derive
( 3.29). For h(t) at a = 0 calculated using ( 3.27), U = (2v/h — f3) using ( 3.26) and
g.=hll,

The correction term Cy in ( 3.29) introduced by Kobayashi et al. (1989) to
predict wave set-down and setup on a beach may be expressed as

L= (m-nU-U) & e
(s 2\/E§ : at @ =0 (3.30)

For incident regular waves on gentle slopes, C; may be estimated by (Kobayashi et

al. 1989)
K;
164,

where the assumptions of linear long wave and negligible wave reflection were made

Ci

for gentle slopes (3.31)

in ( 3.30) to derive ( 3.31). For coastal structures, wave reflection may not be
negligible but the location of the seaward boundary may be chosen such that ¢, ~ 0
on the basis of ( 3.31). For incident irregular waves, ( 3.31) may still be used as
a first approximation to improve the prediction of wave set-down and setup on a
beach. When the measured time series of 5(t) at « = 0 specified as input includes
the wave set-down or setup at @ = 0, the reflected wave train n,(t) is computed
using ( 3.29) with C;, = 0.

On the other hand, the value of m at the seaward boundary needs to be
found using (2.31). The initial condition for m is specified as m = 0 at ¢t = 0 in
the computation domain > 0. The value of m at @ = 0 might be taken as m = 0
at @ = 0 if the seaward boundary is located outside the surf zone. This is because
the vertical variation of the horizontal velocity assumed in (2.33) is caused by wave
breaking in this numerical model for shallow water waves. However, the boundary
condition of m = 0 at @ = 0 will yield m = 0 for ¢ > 0 and > 0 because m = 0

is a trivial solution of (2.31). It is hence required to introduce m > 0 at z = 0 so
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that m > 0 for t > 0 and 2 > 0. One option is to rewrite (2.31) in terms of @, using

(2.37), (2.38) and (2.39)

duy d T Catty, [t Oh Oty Ty + CBf|ﬂ5[ﬁb 5
3t T as Uh) =34, ( h oz 3%) Cah (3:92)

with
Cpe = CpCio (3.33)

in which 7, is given by (2.28) with u, = (U + @) and @ = 0 is not a trivial solution
of ( 3.32). The value of m = Cyhi} at 2 = 0 may be obtained using the value of

at * = 0 computed using ( 3.32) as explained in the following.

3.5.1 Seaward Boundary Algorithm for Specified Incident Regular and

Irregular Waves

An explicit first-order finite difference equation corresponding to ( 3.25) is
used to find the valve of ff at @ = 0 and the next time ¢* for the cases of specified

incident regular and irregular waves

At

Bi =P — (Uh —e1)(Ba— B) + A [91 + (’%l +

At my —my

A & (3.34)

where By = (—U; +2¢;1) and f; = (—U; +2¢;). The right hand side of ( 3.34) can be
computed for the known values of U; with j = 1 and 2 at the present time ¢t where
the spatial nodes are located at @ = (j — 1)Az. The value of 57 at the time ¢* is
calculated using ( 3.29). The incident wave profile ;(t) specified as input together
with ( 3.27) and ( 3.28) yields the value of k], while U = [2\/@ — ft] using the
definition of @ given in ( 3.26). Thus, the values of A%, Uy, and ¢} = Urh} at & = 0

and the time t* are obtained.
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As for the value of m}] at @ = 0 and the next time t*, an explicit first-order
finite difference approximation of ( 3.32) is used to obtain the value of (@)} as

follows:

()] = )~ 2 0 a0y — U )] — 5 { S0 [, (2 -]

+3 (b)) + kT [(78), + Cie | (), | ()]} (3.35)

The value of mj is then calculated using (2.37)

mj = Cohj [()}]’ (3.36)

3.5.2 Seaward Boundary Algorithm for Specification of Total Incident
and Reflected Waves

When the total free surface comprised of both incident and reflected waves
n(t) at 2 = 0 in ( 3.27) is specified as input, the values of 5} and h} at z = 0 and
the time #* are known. The value of U} at = 0 and the time t* is computed using
( 3.25) for the characteristic variable § advancing seaward from the computation
domain.

A simple first-order finite difference approximation of ( 3.25) along the straight
line, dz/dt = (U} — ¢f) < 0, originating from the point at node 1 and the time

t* = (t + At) may be expressed as

(3.37)

Al mgy —
51 =+ Ao+ (1] 4 20 e

h |7 Az hy
where By, is the value of § at the time ¢ and at the location of 2 = éz given by

bz =— (U — ) At >0 (3.38)

The numerical stability criterion given by ( 3.11) requires that §z < Az.
As a result, the point of z = éz is located between nodes 1 and 2. The linear

interpolation between the known values of 3, and 3, at the time ¢ yields

ox
P2 =P+ e (B2 — B1) (3.39)
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Using ( 3.38) and ( 3.39), ( 3.37) may be rewritten as

- At ; i (Tb)] E M

(3.40)
which corresponds to ( 3.34) except that (U; — ¢;) in ( 3.34) is replaced by (U — ¢}).
Eq. ( 3.40) for By = (2¢; — UY) is an implicit scheme for U for the known value of
€ = m Solving ( 3.40) for U} yields
1
T

Ui = [1- R -] {2 - Bk [ (o) +

MMy — ml]
h,'l

At lal 4 (Zﬂ” (3.41)

If the absolute value of the denominator on the right hand side of ( 3.41) becomes
almost zero, this implicit algorithm may not be appropriate. This problem has never
been encountered so far partly because the numerical stability criterion expressed
as ( 3.11) generally requires a value of At/Az that is much less than unity.

After Uy is computed using ( 3.41), the value of ff is obtained from 3 =
(2¢; — Uy). The value of n* for the reflected wave profile is then calculated using
( 3.29) at the time t*. The value of 5} for the incident wave profile is obtained from
n: = (9} —nr) based on ( 3.28). The value of m} is computed using ( 3.36) with
( 3.35).

3.5.3 Wave Reflection Coefficient
The average reflection coefficient r for regular and irregular waves may be
estimated using the root-mean-square values of the time series of 5, and 7; as defined
by ( 3.23)
7 = (1 )rms / (7)rmms (3.42)
which is equal to the square root of the ratio between the time-averaged reflected

wave energy as compared to the time-averaged incident wave energy on the basis

of linear wave theory. The reflection coefficient as a function of the frequency for
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irregular waves can be calculated using the reflected and incident wave spectra

computed from the time series of 5, and 7; (e.g., Kobayashi et al. 1990).

3.6 Wave Runup

For the case of no wave overtopping, the landward boundary of the numer-
ical model is located at the moving shoreline on the slope where the water depth
is essentially zero. The kinematic boundary condition requires that the horizontal
shoreline velocity be the same as the horizontal fluid velocity. In reality, it is difficult
to pinpoint the exact location of the moving shoreline on the slope. For the compu-
tation, the shoreline is defined as the location where the normalized instantaneous
water depth equals a small value § such as § = 1072 as explained in Section 3.1.

The following numerical procedure dealing with the moving shoreline located
at h = ¢ is used to obtain the values of U} at the next time ¢* = (¢ + At) for the
nodes j > s where s = integer indicating the wet node next to the moving shoreline
at the present time t such that h, 1 < 6 < h,. It is noted that the procedure is
somewhat intuitive and may be improved since the moving shoreline tends to cause
numerical instability.

1. After computing U} with j =2, 3, ..., s using ( 3.10), it is checked whether
h%_, < 6, which may be encountered during a downrush. This is considered a
computation failure since the shoreline should not move more than Az because
of the numerical stability criterion of the adopted explicit method given by

(3.11).

2. f b = h;_y, use by = (2h;_; — k}_;), and U} = (2Ur_; — Ux,), so that the
water depth near the shoreline decreases landward. The following adjustments

are made
o if |UY| > |Ur,|, set Us = 0.9U_,;
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o if A* <0, set h? = 0.5h%_,;

e and if hY > h%_,, set ht = 0.9h%_,
Then, obtain ¢} = h;U; based on the adjusted values of h% and U;.

If h <6, set s* = (s—1) and go to Step 11. The integer s* indicates the wet

node next to the shoreline at the next time t*.
If A > 6, compute by, = (2h; — h}_,), Uy, = (2U; —U;,), and ¢}, =
h*+1( s41°

If by, <6, set s* =5 and go to Step 11.

. If by, > 6, compute U} at the time t** = (t* 4+ At) using ( 3.10) with m =0

where U? and Uj; in ( 3.10) are replaced by U;* and U7, respectively. The
vertical variation of the horizontal velocity may be assumed to be small in the
vicinity of the moving shoreline. Improve the linearly extrapolated values in
Step 4 using the following finite difference equations derived from (2.18) and

(2.20) with m =0 at 7, = 0:

* * Az ik
gs-{-l = qs— At (h - h ) (343)
£ 1 AJ bt G
O = U*[ (U —U,) + Beyy — 2y + 202 6, (3.44)

The upper limit of the absolute value of (UF)~" in ( 3.44) is taken as 6! to

avoid the division by the very small value. Calculate h},, = ¢}, ,/Uz,,.

If |Us,q| <8, set s* = s and go to Step 11.

A, < A% and B, <6, set s* = s and go to Step 11.

A hGy, < b and hY, > 6, set s* = (s+ 1) and go to Step 11.
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10. If A7, > hj, the linearly extrapolated values of A7, ,, U7, ,, and ¢}, in Step 4
are adopted in the following instead of those computed in Step 6. Furthermore,
set s* = (s+1) if by, < h; and U}, > 6 and set s* = s otherwise where h},

and U;, , are the adopted values.

11. After s« is obtained, set h; =0, U7 =0, ¢; = 0 and m} = 0 for j > (s* + 1)
since no water is present above the computational shoreline. If s* = (s 4 1),
set mj,; = 0. It is noted that the smoothing procedure given by ( 3.14) does

not affect this shoreline algorithm.

Once the normalized water depth A at the given time is known as a function of
¢, the normalized free surface elevation, Z, = Z!/H', where the physical water depth
equals a specified value 6/, can be computed as long as 6, = (6./H') > §. The use of
the physical depth §! is related to the use of a runup wire to measure the shoreline
oscillation on the slope (e.g., Raubenheimer et al. 1995). The specified depth &’ can
be regarded as the vertical distance between the runup wire and the slope, while the
corresponding elevation Z! is the elevation above SWL of the intersection between
the runup wire and the free surface. The computed oscillations of Z,(t) for different
values of 6, can be used to examine the sensitivity to ¢! of wave runup and run-
down, which are normally defined as the maximum and minimum elevations relative
to SWL reached by uprushing and downrushing water on the slope, respectively. The
normalized runup R, run-down Ry, and setup Z, as well as the root-mean-square
value (standard deviation) of Z,(t) for given ¢ are obtained from the computed

oscillation of Z,(t).



Chapter 4

COMPARISON OF MODEL VBREAK TO DATA AND
PREVIOUS MODEL

4.1 Comparison of Model to Previously Developed One Dimensional
Model

To demonstrate the effectiveness of the MacCormack method in the numer-
ical solutions of the continuity and momentum equations, the model VBREAK is
reduced to a one-dimensional model and compared with a previously developed one-
dimensional model. VBREAK implements the explicit first order finite difference
of ( 3.32) to obtain the value of (43)] and thus mj, the momentum correction factor
at the next time level at the seaward boundary. When the value of mj is set to zero
at all times, the computed values of m} at any j are zero for all times everywhere
inside the computational domain. Thus the computed horizontal velocity has no
vertical variation. For the entirety of this Section 4.1, VBREAK is reduced to a
one-dimensional model through the specification of zero vertical variation at the
seaward boundary.

The model VBREAK as a a one-dimensional model is compared with the
previously developed IBREAK; the two models employ different numerical methods
to solve the same governing equations. Use is made of the 1:2.5 riprap revetment
test conducted by Ahrens (1975). The comparison of VBREAK to IBREAK is the
only example of a steep slope computed in this report. The seaward boundary for

the computation is taken at the toe of the 1:2.5 slope where the water depth below
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SWL d] is 15 ft. Cnoidal waves of 8.5 s period with a height of 3.06 ft are the time
series of the incident wave at the seaward boundary. A friction factor of 0.3 for the
riprap slope (Kobayashi et al. 1987) and a Courant number of 0.4 are used for the
computation. Although the numerical model VBREAK is found to be stable for
Courant numbers up to 0.7, the value C), = 0.4 is used so as to be consistent with
other comparisons throughout this report. A numerical damping coefficient & of 0.1
is sufficient for damping high frequency oscillations throughout the six wave periods
from ¢ = 0 to t = {,,4, = 6. The steep slope case suffers less numerical oscillation
problem at the rear of the steep front than the gently sloped cases computed in
the subsequent sections. Tables 4.1 and 4.2 are the primary input and output
from the model VBREAK as explained by Kobayashi and Johnson (1995). The
resultant dimensionless parameters for this case are: surf similarity parameter ¢ =
4.4; the ratio of horizontal to vertical length scales o = 27.6; Ursell number = 30.1.
As evident in the primary output file, the reflection coefficient (r = 0.55) is large
as expected for the steep slope and surf similarity parameter ¢ = 4.4. Although
information on the cubic profile parameter a is included, it is not utilized in the
computations until the following sections.

Figure 4.1 depicts the six Cnoidal waves used as input to the models VBREAK
and IBREAK as well as the reflected wave. Incident and reflected waves are found
to be essentially the same for both models. The reflected wave is of considerable size
relative to the incident wave and periodicity is reached within two wave periods.

The runup for the computational shoreline based on the water depth 8, =
0.787 in is shown in Figure 4.2 where the incident wave train arrives at the shoreline
at £ ~ 0.5. The computed runup Z is the normalized shoreline elevation above the
SWL and is plotted against the normalized time. Following an initial depression
of the free surface, the runup consists of the setup 7 ~ 1.0 above the SWL and a

periodic component of amplitude ~ 1.0. Figure 4.2 shows that the two models yield
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Table 4.1: Primary input data file for VBREAK in comparison with IBREAK .

3 = number of comment lines

Ahren (1975) Test 12

2 <--ISYST
1 <-—-IWAVE
2 <--IBOT
0 <--INCLCT
3 <--IENERG
;! <--ITEMVA
1 <--ISPAEU
Bi 6. <--TSTAT, TMAX
100 <--5TILL
0.001 0.400 0.1 <--DELTA,COURNO,DKAPPA
3.06 8.5 <--HREF, TREF
1.0 <--KS
24001 <--NPINP
4.0 .10 <--APROFL, CMIXL
1B 0.4 <--DSEAP,SLSURF
1 <--NBSEG
60.000 9.000 .30
1201 <--NPOUT
3 <--NDELR
0.157480
0.787402
1.574803
4 <--NONODS
91 101 111 121 <--NODLOC(1) (2) (3) (4)
b <--NOTIML
5.0 5.25 5.50 5.75 6.0 <--TIMSPA
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Table 4.2: Primary output file for VBREAK in comparison with IBREAK.

Ahren (1975) Test 12

WAVE CONDITION

Cnoidal Incident Wave at Seaward Boundary

Normalized wave height KS = 1.000000
i-m = 0.112815261D+00

E = 0.111509461D+01

K = 0.262149782D+01

Reference Wave Period = 8.500000 sec.
Reference Wave Height = 3.060000 feet
Depth at Seaward Boundary = 15.000000 feet
Norm. Depth at Seaw. Bdr. = 4.902
Included Correction Term CT

0 = no; 1 = yes INCLCT = 0

Normalized Wave Length = 12.144
"Sigma' - 27.5673

Ursell Number = 30.084

Surf Similarity Parameter = 4.400

Input Wave Train from Time=0 to TMAX

Computed or Read at Normalized Rate DELTI = 0.000250

Parameters of Vertical Velocity Variations

Cubic Profile Parameter APROFL = 4.000000
Mixing Length Parameter CMIXL = 0.100000
Momentum Flux Coefficient c2 = 0.485714
Kinetic Energy Flux Coeff. C3 = 0.000000
Energy Dissipation Coeff. CB = 12.342857
Coefficient of DB CBL = 3.403313

BOTTOM GEOMETRY

Norm. Horiz. Length of
Computation Domain 711121
Number of Segments = 1

|
o

SEGMENT XBSEG(I) ZBSEG(I) BFFSEG(I)
I feet feet

..... X=0 0.000000 -15.000000
i 60.000000 9.000000 0.300000
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Table 4.2: — Continued

COMPUTATION PARAMETERS

0.444451D-02
0.100000E-02

Nlormalized DX
Normalized DELTA

Courant Number = 0.400
Must not exceed unity
Numerical Damping Coefficient = 0.1000
Must be zero or positive
llormalized Computation Duration TMAX = 6.000000
Statistical Calculations Start
when Time is equal to TSTAT 5.000000
Total Number of Spatial Nodes JMAX = 161
Number of Nodes Along Bottom Below SWL
STILL = 100
Storing Temporal Variations from Time = 0
to TMAX at Normalized Rate DELTO = 0.005000
Wave Runup Time Series Stored for
NDER = 3 Water Depths
Time Series of ETA, U, and UB
Stored at NONODS = 4 Nodes
Spacial Variations of ETA, U, and UB
Stored at NOTIML = 5 Time Levels
Maximum time step B 0.82969E-03
Minimum time step = 0.50928E~-03
REFLECTION COEFFICIENT
ETARRMS/ETAIRMS = 0.550
INCIDENT AND REFLECTED WAVES
Max Min Mean RMS
Inc. 0.6287 -0.3713 0.0000 0.3472
Ref. 0.2790 -0.2720 0.0143 0.1910

SHORELINE OSCILLATIONS

Largest Node Number Reached by Computational Shoreline

SMAX = 138
3§ DELTAR(I) RUNUP(I) RUNDOWN(I) SETUP(I) RMS(I)
[inch] Ru Rd Zr Rrms
1 0.157 1.831 0.641 1.295 0.365
2 0.787 1.811 -0.322 0.874 0.668
3 1.676 1.803 -0.746 0.670 0.813
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Incident and Reflected Waves at Boundary

1 T T T T T
————— VBREAK Incident IBREAK Incident
-—-——-- VBREAK Reflected - IBREAK Reflected
?.'\ e VY “,'\:. Pk
i ! \ ;o SN
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Figure 4.1: Incident and reflected waves at the seaward boundary:

Reflected(- - -).
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1.5

Figures 4.3 and 4.4 depict the computed spatial variation of the normalized

Runup

Figure 4.2: Computed time series of normalized runup with §/ = 0.787 in :
IBREAK(—); VBREAK(- - -).

results that are almost indistinguishable. Two additional computational shoreline

depths are also specified but are not shown here as the results are basically similar.

free surface n and the normalized depth averaged velocity U at five times throughout
the final wave period. The plots for ¢ = 5 and ¢t = 6 are identical because of the
periodicity. In each panel, the variations of  computed by VBREAK and IBREAK
match almost exactly. The planar bottom is shown in each panel as a straight line.
On the other hand, the spatial variations of the depth averaged horizontal velocities
computed by the two models differ only slightly. The greatest difference occurs at

the shoreline where the slight irregularity of the results of IBREAK seems physically
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implausible.

The cross-shore variations of the maximum, minimum, and mean of the nor-
malized free surface with the planar bottom profile and the depth averaged velocity
are depicted in Figure 4.5. The free surface statistics are practically the same. The
wave height increases as the wave shoals and is reflected from the steep slope. The
mean free surface reveals a small set-down before wave uprush occurs at approxi-
mately z = 0.3. A significant setup occurs at the shoreline as shown in Table 4.2.
The depth averaged velocity statistics are, again, essentially the same for the two
numerical models. A small discrepancy is apparent in the maximum depth averaged
velocity near the shore as the model VBREAK predicts a value that is approxi-
mately 20% larger than the prediction of IBREAK. The mean of the horizontal
velocity U is a small negative value throughout the domain. This is a return current
caused by forward velocities under the crest with larger water depth.

The cross-shore variation of the mean volume flux is cited as an indicator
of the computational accuracy (Kobayashi et al. 1989). Theoretically, the no flux
condition into the impermeable beach would dictate a net volume flux of zero. The
time averaged continuity equation corresponding to (2.18) indicates that the time
averaged volume flux would be zero throughout the domain. Figure 4.6 demon-
strates that the flux is indeed very much less than one for both models. IBREAK
demonstrates a greater accuracy than the developed model for this case. However,
the net volume flux computed by VBREAK of approximately 0.003 or less is still
acceptably small.

The normalized energy quantities for both models are shown in Figure 4.7.
The normalized mean specific wave energy shown in the first panel increases as
the waves shoal then falls to zero at the shoreline. The normalized mean energy
flux as defined in Chapter 2 falls monotonically to zero at the shoreline as energy is

dissipated through bottom friction and wave breaking. Panel three shows the energy
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dissipated in the bottom boundary layer as explained in Section 2. For the non-
breaking waves on the steep riprap slope, the wave energy dissipation by the bottom
friction is dominant. Panel four indicates that VBREAK dissipates only a small
fraction of energy in breaking while IBREAK does not include energy dissipation
due to the vertical shear. This is expected as the breaking dissipation is dependent
on a vertical structure as addressed in Section 2.2. The final panel depicts the
numerical dissipation from both models. The numerical dissipation is calculated
through an energy balance as outlined in (2.46) and (2.47) where discrepancies are
attributed to numerical dissipation related to no explicit wave breaking modeling
in IBREAK and the deficiency of the simplified wave breaking modeling adopted
in VBREAK. It should be noted that the numerical dissipation is small relative to

the physical dissipation due to the bottom friction.

4.2 Comparison of Model to Data of Stive (1980)

The model VBREAK is compared with the comprehensive measurements of
test 1 presented by Stive (1980) and Stive and Wind (1982). Because the numerical
model VBREAK predicts the vertical variations of the horizontal velocity, the com-
parison of the measured and computed velocities can be made without any ambigu-
ity. Likewise, the free surface characteristics might demonstrate greater agreement
with the measured data as a result of a realistic vertical structure. In Stive’s test
1, the incident regular waves with the period 7" = 1.79 s broke as spilling breakers
on the 1:40 concrete beach. The seaward boundary for the computation is taken
to be at the still water depth dj = 0.2375 m, where the near-breaking wave profile
was shown to be similar to the cnoidal wave profile as explained by Kobayashi et
al. (1989). The measured wave height at the seaward boundary was H' = 0.172
m. The free surface and velocity characteristics have been found to be relatively
insensitive to the choice of the cubic velocity profile parameter, a. In this particular

comparison, the parameter a is set to 3.0. The friction factor of 0.05 is used as in

48



Energy per unit Surface Area

| //\m\ ]

01 .\‘\‘ i

-0.1
Energy Flux

03

02— =

-01
Energy Dissipation due to Bottom Friction

— IBREAK
0.5 — VBREAK S

Energy Dissipation due to Breaking

0.1
0.05 N

-0.05 |- 1
-0.1

0.2 T I T T T T

-0.1
-0.2

T
1

T
1

Figure 4.7: Computed cross-shore variation of normalized specific wave energy,
energy flux, bottom dissipation, breaking dissipation, and numerical

dissipation: IBREAK(—); VBREAK(- - -).

49



the previous computation by Kobayashi et al. (1989). A Courant number of 0.3 is
adopted for the stable computation. Numerical stability is more difficult to maintain
during the longer computation for the gentle slope of Stive compared with the steep
slope case in Section 4.1. The numerical damping coefficient « is taken to be 1.0
in an effort to suppress the high frequency oscillations that occur at the rear of the
breaking wave crest. Tables 4.3 and 4.4 represent the primary input and output files
of the numerical model VBREAK. The resultant dimensionless parameters were:
surf similarity parameter ¢ = 0.135; the ratio of horizontal to vertical length scales
o = 13.5; and Ursell number = 121.7.

The normalized incident wave specified as input to the model and the com-
puted reflected wave are depicted in Figure 4.8. The reflection coefficient r = 0.008
is very small as expected from the small surf similarity parameter £ = 0.135.

With a computational shoreline based on the water depth 6. = 1 cm, the
computed runup is shown in Figure 4.9 where the incident wave train arrives at the
shoreline at ¢ ~ 5. "The periodic runup consists of the steady setup 7 ~ 0.06 from
the SWL and a relatively small oscillatory component of amplitude ~ 0.015. The
swash is much smaller than the swash on the steep slope presented in Section 4.1.

Figures 4.10 and 4.11 depict the computed spatial variation of the normal-
ized free surface n and the depth averaged velocity U at five times throughout the
final wave period. The plots for ¢ = 29 and { = 30 are identical because of the
periodicity. As the wave propagates shoreward, the saw tooth profile develops. The
high frequency numerical oscillations are apparent following the crest of the wave;
The numerical smoothing described in Section 3.2 is intended to reduce these oscil-
lations. The previous one-dimensional models based on the Lax-Wendroff scheme
also developed these unrealistic numerical irregularities. Figure 4.11 also shows
the near bottom velocity calculated by model VBREAK. The horizontal velocity

up = (U + 1) immediately outside the bottom boundary layer is attenuated due to
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Table 4.3: Primary input data file for Stive’s test 1.

3 = number of comment lines

Stive 1980 Test 1

1 <--ISYST
1 <--IWAVE
1 <--IBOT
i <--INCLCT
1 <--IENERG
1 <--ITEMVA
3 <--ISPAEU
29, 30. <--TSTAT,TMAX
190 <--STILL
0.001 0.300 1.0 <--DELTA,COURNO,DKAPPA
2172 i.79 <--HREF, TREF
1.0 <--KS
9001 <--NPINP
3.0 .10 <--APROFL,CMIXL
.2375 0.0256 <--DSEAP, SLSURF
1 <--NBSEG
18.000 .025 .05 <--WBSEG(1),TBSLOP(1),BFFSEG(1)
3001 <-=NPOUT
1 <--NDELR
L <--DELRP (1)
6 <--NONODS
1 41 61 81 101 <--NODLDC(1,2,3,4,5)
141 <--NODLODC(8)
b <--NOTIML
29.0 29.26 29.560 29.75 30.00 <--TIMSPA(1,2,3,4,5)
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Table 4.4: Primary output file for Stive’s test 1.

Stive 1980 Test 1

WAVE CONDITION

Cnoidal Incident Wave at Seaward Boundary

Normalized wave height KS = 1.000000

i-m = 0.113153458D-02

E = 0.100242146D+01

K = 0.477945412D+01

Reference Wave Period = 1.790000 sec.
Reference Wave Height = 0.172000 meters
Depth at Seaward Boundary = 0.237500 meters
Norm. Depth at Seaw. Bdr. = 1.381

Included Correction Term CT

0 =no; 1= yes INCLCT = 1

Normalized Wave Length = 12.963

"Sigma" = 13.518

Ursell Number = 121.692

Surf Similarity Parameter = 0.135

Input Wave Train from Time=0 to TMAX

Computed or Read at Normalized Rate DELTI = 0.003333

Parameters of Vertical Velocity Variations

Cubic Profile Parameter APROFL = 3.000000
Mixing Length Parameter CMIXL = 0.100000
Momentum Flux Coefficient  C2 = 0.548214
Kinetic Energy Flux Coeff. C3 = -0.069420
Energy Dissipation Coeff. CB - 15.163393
Coefficient of DB CBL = 2.049839

BOTTOM GEOMETRY

Norm. Horiz. Length of
Computation Domain T.741422
Nlumber of Segments = 1

SEGMENT WBSEG(I) TBSLOP(I) BFFSEG(I)
I meters

1 18.000000 0.025000 0.050000



Table 4.4: — Continued

COMPUTATION PARAMETERS

Normalized DX = 0.215040D-01
Normalized DELTA = 0.100000E-02
Courant Number - 0.300
Must not exceed unity
Numerical Damping Coefficient = 1.0000
Must be zero or positive
Normalized Computation Duration TMAX = 30.000000
Statistical Calculations Start
when Time is equal to TSTAT= 29.000000
Total Number of Spatial Nodes JMAX = 361
Number of Nodes Along Bottom Below SWL
STILL = 190
Storing Temporal Variations from Time = 0O
to TMAX at Normalized Rate DELTO = 0.010000
Wave Runup Time Series Stored for
NDER = 1 Water Depths
Time Series of ETA, U, and UB
Stored at NONODS = 6 Nodes
Spacial Variations of ETA, U, and UB
Stored at NOTIML = 5 Time Levels
Maximum time step = 0.73200E-02
Minimum time step = 0.27400E-02
REFLECTION COEFFICIENT
ETARRMS/ETAIRMS = 0.008
INCIDENT AND REFLECTED WAVES
Max Min Mean RMS
Inc. 0.7906 -0.2088 0.0000 0.3096
Ref. -0.0354 -0.0427 -0.0388 0.0024

SHORELINE OSCILLATIONS

Largest Node Number Reached by Computational Shoreline
SMAX = 204

I DELTAR(I) RUNUP(I) RUNDOWN(I) SETUP(I) RMS(I)
[em] Ru Rd Zr Rrms

1 1.000 0.074 0.047 0.059 0.009
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Figure 4.9: Computed normalized time series of runup with 6, = 1 cm.

bottom friction. The magnitude of the computed bottom velocity is slightly smaller
than that of the depth averaged velocity because 1, is assumed to be out of phase
with the depth averaged velocity U in (2.44). Near the bottom, the horizontal ve-
locity develops a kink as the depth averaged velocity U changes sign and the value
of 1, changes abruptly. This unrealistic kink, which is apparent in Figure 4.11, sug-
gests the shortcoming of the vertical variation of the horizontal velocity assumed in
(2.33).

Figure 4.12 shows the computed and measured maximum free surface eleva-
tions throughout the domain for the final wave period. The measured and computed
minimum free surface elevations are depicted in Figure 4.13. The wave height com-
parison is shown in IMigure 4.14, defined as the difference between the maximum and
minimum elevations. The data of Stive presented in these plots is read from Figure

4 of Stive and Wind (1982). The wave height prediction, appears to be better in



Eta

time = 29.0, 30.0

time = 29.25

time =29.50

time = 29.75

2 1 L 1 I L 1 I I L
0 05 1 1.5 2 25 3 3.5 4 4.5 5

Figure 4.10: Computed cross-shore variation of normalized free surface 5 at 5 time
levels, t = 29.00, 29.25, 29.50, 29.75, and 30.00.
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Figure 4.12: Cross-shore variation of the measured and computed maximum nor-
malized free surface.

part, due to the cancellation of the overprediction and underprediction in the com-

puted maximum and minimum elevations. The numerical model underpredicts the

rapid decrease of the wave height immediately landward of the break point where

the wave height is the largest.

The computed and measured time-averaged free surface elevation, set-down
or setup, is depicted in Figure 4.15. The computed mean free surface is notably
different in shape from that computed with IBREAK in Figure 11 of Kobayashi et
al. (1989).

The maximuin and minimum horizontal velocities at four spatial positions
are depicted in Figure 4.16. In each panel the dashed line represents the computed
horizontal velocity distribution and the solid line is the computed depth averaged
velocity. The vertical axis is the ratio of z/d where z is the normalized vertical
coordinate and d is the normalized still water depth. This is slightly different from

the vertical axis of IMigure 7 in Stive (1980) where the vertical coordinate equaled
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Figure 4.15: Cross-shore variation of the measured and computed mean normal-
ized free surface.

zero at the mean water level. It is worth noting that the maximum and minimum
values in Figure 4.16 are obtained at each elevation z without regard to the vertical
phase differences. Panel one indicates that although the specified and measured free
surface elevations match at the seaward boundary reasonably well, the maximum
horizontal velocity is considerably overpredicted. Likewise, at the subsequent loca-
tions = 1.29, 2.15 and 3.011 the predicted maximum velocity is larger than the
measured. The greatest computed variation of the velocity over the depth occurs
after breaking, at z = 1.29. This, however, does not correspond well to the mea-
sured data below the trough level that display virtually no variation with depth at
& = 1.29.

The model VBREAK exhibits the small seaward oriented return current as
explained by Kobayashi et al. (1989). Figure 4.17 shows the computed return
current and the measured normalized undertow below the trough level at several

locations throughout the water depth. The return current is calculated as the time
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61



average of the horizontal velocity at a given elevation. The measured values are taken
from Figure 8 based on Stive’s data from Svendsen (1984). The numerical model
predicts the order of magnitude of the undertow but does not predict its vertical
variation well, perhaps because the model does not account for the landward mass
flux caused by a roller above the trough.

For completeness, the cross-shore variations of the maximum, minimum and
mean of the normalized free surface, the depth averaged velocity, and the near
bottom velocity are depicted in Figure 4.18. The near bottom velocity is slightly
smaller than the depth averaged velocity U as expected.

As in Section 4.1, the cross-shore variation of the time-averaged volume flux
is used as an indicator of the computational accuracy. Figure 4.19 demonstrates
that the computed flux is nearly zero to satisfy the no flux boundary condition into
the impermeable beach.

The normalized energy quantities are shown in Figure 4.20. Notable is the
fact that the numerical dissipation dominates over the physically tenable mecha-
nisms such as breaking dissipation and bottom dissipation included explicitly in
VBREAK . The value of the cubic velocity profile parameter @ has been set to 3.0
in order to increase the breaking dissipation as explained in Section 2.2. However,
the breaking dissipation is still small. The increase of the mixing length parameter
Cy in 2.39 from 0.1 to 0.2 causes the decrease of ||, resulting in little change in
the breaking dissipation. This indicates that the velocity profile assumed in (2.33)
does not describe well the wave energy dissipation due to breaking on the gentle
slope. This probably derives from the fact that the wave front(roller) is not mod-
eled specifically.

The measured and computed temporal variations of the free surface are com-
pared at four spatial locations throughout the domain as shown in Figure 4.21. The

variation of the free surface from the mean water level 7 for the last wave from
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t = 29.0 to ¢ = 30.0 is shown in each panel. The crest of the computed wave form
has been matched by hand with the measured crest; therefore, IFigure 4.21 should
indicate only the comparison of the predicted and measured wave shapes. In fact,
differences between the computed and actual phase speeds are expected, based on
the comparison of VBREAK to the data set of Cox (1995) which preserved the
phase information throughout the domain. Panel one shows the degree to which the
specified incident cnoidal wave agrees with the measured data of Stive. Again, the

high frequency oscillations following the wave crest are apparent in Figure 4.21.

4.3 Comparison of Model to Data of Cox et al. (1995)

The model VBREAK is finally compared with the data collected by Cox et al.
(1995) that included detailed velocity profiles inside the surf zone. The experiment
was performed in a wave flume. The 1:35 beach was constructed of Plexiglas and
had a thin layer of sand glued to the surface to increase the bottom roughness.
Figure 4.22 depicts the experimental setup and measurement locations. At each
measuring line, water velocity measurements were taken at approximately twenty
locations throughout the water column.

The constant wave period throughout the experiment was 2.2 s. The measur-
ing line, L2 was locaied at the break point defined by Cox et al. (1995) as the point
where aeration occurred in the tip of the wave crest. The spilling wave developed
into a turbulent bore landward of measuring line 3.

The free surface and velocities were measured for the duration of the last
50 waves out of 300 at each location. The numerical model VBREAK is run with
300 waves in order to be consistent with the experimental procedure. The statistical
measurements are based on the last 50 waves in the same way as the measured data.

The free surface and velocity characteristics have been found to be insensi-
tive to the choice ol the cubic velocity profile parameter a. In the following, the

parameter a is set to 3.0 as in Sections 4.1 and 4.2.
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Figure 4.22: Experimental setup (Cox et al. 1995).
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The friction factor f/, = 0.05 is the same as that for the gentle slope specified
in Section 4.2. An argument could be made that the friction factor for the quasi-
two-dimensional model VBREAK would need to be recalibrated because the bottom
friction is based on a near bottom velocity u; rather than a depth averaged velocity
U. However, the difference between the near bottom and depth averaged velocities
is not large enough to warrant this effort. This is especially true considering that
the bottom dissipation is secondary in the surf zone and that the constant friction
factor is itself an approximation.

A Courant number of 0.4 maintained numerical stability and has been used

in both of the following comparisons.

4.3.1 Model Initiation before Breaking

The model VBREAK is initially compared to the data with the seaward
boundary at measuring line 1 depicted in Figure 4.22. The height of the incident
regular waves at measuring line 1 was H' = 13.22 ecm. The corresponding still water
depth was 28.00 cm. Tables 4.6 and 4.7 represent the primary input and output from

the model VBREALK. The resultant dimensionless parameters were: surf similarity
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Table 4.5: Horizontal locations and still water depths at six measuring lines.

Line No. o d
(¢cm) | (ecm)

L1 0 | 28.00

L2 240 | 21.14

L3 360 | 17.71

L4 480 | 14.29

L5 600 | 10.86

L6 720 | 7.43

parameter £ = 0.216; the ratio of horizontal to vertical length scales o = 19.0; Ursell
number = 74.0.

The normalized incident wave profile measured at line 1 is specified as input
to VBREAK and is depicted in Figure 4.23. Only the last fifty waves are utilized
in the model to data comparison and thus only those fifty waves are depicted in
Figure 4.23. The total of the 300 waves is constructed through the repetition of
six sets of the 50 waves depicted in Figure 4.23. The calculated reflected wave is
insignificant relative to the incident wave. The computed wave reflection coefficient
r = (.01 is consistent with the small surf similarity parameter ¢ = 0.216 for the 1:35
slope.

The runup computed based on a computational shoreline of water depth ¢!
= 0.5 cm, is depicted in Figure 4.24. As in the previous figure, only the last 50 of
the 300 waves are shown. The computed runup Z is the shoreline elevation above
the SWL and is plotted against the normalized time. The incident wave shown
in Figure 4.23 is not breaking but is not perfectly periodic. The runup on the
gentle slope amplifies the nonperiodic components of the incident waves shown in
Figure 4.23. The runup consists of setup 5 ~ 0.06 and oscilla;,tory components of
amplitude ~ 0.02. The runup was not measured in the experiment by Cox et al.

(1995).
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Table 4.6: Primary input data file (initiated before breaking) for Cox et al. (1995).

b --> NLINES

L13053 BDJ June ‘956

SBC at L1; 300 waves input; £’=.05; and IWAVE=3

1 <--ISYST

3 <--IWAVE

1 Lr=1B0T

1 <--IENERG

1 <--ITEMVA

1 <--ISPAEU

1300 <--FINP2

250, 300. <--TSTAT,TMAX
490 <--STILL

0.001 0.400 1.0 <--DELTA,COURNO,DKAPPA
.1322 S <--HREF, TREF
66001 <--NPINP

3.0 .10 <--APROFL, CMIXL
.28 0.028571 <--DSEAP, SLSURF
1 <--NBSEG

15.000 .028571 .06

66001 <--NPOUT

1 <--NDELR

0.5

18 <--NONODS

i 2 3 120 121

122 180 i81 182 240

241 242 300 301 302

360 361 362

b <--NOTIML

299.0 299.25 299.50 299.75 300.0 <--TIMSPA

i}



Table 4.7: Primary output file (initiated before breaking) for Cox et al.

L130563 BDJ June

SBC at L1; 300 waves input; £’=.05; and IWAVE=3

WAVE CONDITION

Measured Total Wave Profile at Seaward Boundary

Reference Wave Period = 2.200000 sec.
Reference Wave Height = 0.132200 meters
Depth at Seaward Boundary = 0.280000 meters
Norm. Depth at Seaw. Bdr. = 2.118

Included Correction Term CT

0 = mno; 1 = yes INCLCT = 0

Normalized Wave Length = 12.515

"Sigma' = 18.951

Ursell Number = 73.951

Surf Similarity Parameter = 0.216

Input Wave Train from Time=0 to TMAX

Computed or Read at Normalized Rate DELTI = 0.004545

Parameters of Vertical Velocity Variations

Cubic Profile Parameter APROFL = 3.000000
Mixing Length Parameter CMIXL = 0.100000
Momentum Flux Coefficient C2 = 0.548214
Kinetic Energy Flux Coeff. C3 E -0.069420
Energy Dissipation Coeff. CB = 15.163393
Coefficient of DB CBL = 2.873676

BOTTOM GEOMETRY

Norm. Horiz. Length of
Computation Domain .979232
Number of Segments = 1

1]
(52}

SEGMENT WBSEG(I) TBSLOP(I) BFFSEG(I)
I meters

1 15.000000 0.028571 0.050000
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Table 4.7: — Continued

COMPUTATION PARAMETERS

Normalized DX

Normalized DELTA

Courant Number

Must not exceed unity
Numerical Damping Coefficient
Must be zero or positive

Normalized Computation Duration TMAX

Statistical Calculations Start
when Time is equal to
Total Number of Spatial Nodes

TSTAT
JMAX

Number of Nodes Along Bottom Below SWL

STILL =

Storing Temporal Variations from Time = 0

to TMAX at Normalized Rate

DELTO =

Wave Runup Time Series Stored for

Time Series of ETA, U, and UB

0.
0.

NDER =

NONODS =

Stored at
Spacial Variations of ETA, U, and UB
Stored at
Maximum time step =
Minimum time step =
REFLECTION COEFFICIENT
ETARRMS/ETAIRMS = 0.010
INCIDENT AND REFLECTED WAVES
Max Min
Inc. 0.7186 -0.3113
Ref. 0.0098 -0.0012

SHORELINE OSCILLATIONS

0.798295D-02

0.100000E-02

0.400

1.0000
300.000000

250.000000
750

490
0.004545
1 Water Depths

18 Nodes

NOTIML = b Time Levels
21941E-02
13309E-02
Mean RMS
-0.0277 0.3057
0.0050 0.0029

Largest Node Number Reached by Computational Shoreline
SMAX = 523

I  DELTAR(I) RUNUP(I) RUNDOWN(I) SETUP(I) RMS(I)

[cm] Ru

Rd

Zr Rrms

1 0.500 0.099

0.028

0.060 0.015



Incident and Reflected Waves at Boundary
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Figure 4.23: The last 50 normalized incident and reflected waves at seaward
boundary, measuring line 1.
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Figure 4.24: Computed normalized time series of runup with ¢, = 0.5 cm.
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Figures 4.25 and 4.26 depict the computed spatial variation of the normalized
free surface 5 and the depth averaged velocity U as well as the near bottom velocity
uy, at five times throughout the final wave period. Because the input waves specified
at the seaward boundary are not exactly periodic, panel one of Figure 4.25 exposes
the slight difference between the free surfaces at times ¢t = 299 and ¢ = 300. The
wave shape changes as it propagates shoreward. The nonlinear terms in the shallow
water equations are responsible for the steepening of the wave front that is most
apparent in panel one of Figure 4.25. The magnitude of the near bottom velocity
shown in Figure 4.26 is smaller than that of the depth averaged velocity because
of the assumption made in (2.44). The near bottom velocity has an implausible
discontinuity at the zero crossings of the depth averaged velocity caused by the
abrupt change of the near bottom velocity correction based on (2.44a) and (2.44b).
If the computed momentum flux correction m does not approach zero as the depth
averaged velocity U approaches zero, a discontinuity will occur in the horizontal
velocity as the depth averaged velocity changes sign.

The comparison of the computed and measured time series of the normalized
free surface for the last ten waves is depicted in Figure 4.27. The free surface shown
in panel one is used as the boundary condition for the computation. Subsequent
panels show the agreement in phase and shape at five measuring lines. Initially,
VBREAK overpredicts the phase speed as seen in the second panel at measuring
line 2. After wave breaking, the model underpredicts the phase speed. The greatest
accumulative error is apparent in the last panel, at measuring line 6. Additionally,
the wave height is underpredicted at the measuring lines 2-6.

Because the input wave is measured data, the model output is not perfectly
periodic; comparisons are therefore made of the hydrodynamic quantities phase-
averaged over the last 50 waves. The comparison of the phase-averaged free surface

is made in Figure 4.28. Because the nonperiodic components are relatively small,
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Figure 4.25: Computed cross-shore variation of normalized free surface 5 at 5 time
levels, t = 299.00, 299.25, 299.50, 299.75, and 300.
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Horizontal Velocity
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Figure 4.26: Computed normalized cross-shore depth averaged velocity U/ and
near bottom velocity w; at 5 time levels, ¢ = 299.00, 299.25, 299.50,
299.75, and 300: U (- - -); up (--+).
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Figure 4.27: Measured and computed time series for the last ten waves of

the normalized free surface at six measuring lines: Measured(—);
Computed(- - -).
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the phase-averaged iree surface exhibits the same characteristics as the individual
waves shown in Figure 4.27.

The horizontal velocity data was taken at approximately twenty elevations
throughout the water depth. Figures 4.29 through 4.34 compare the model VBREAK
output with the phase-averaged measured velocity at three vertical elevations. The
first panel shows the comparison near the wave trough level. The plot of the mea-
sured phase-averaged u is discontinuous due to dropouts in the measured data. Only
the reliable data near the trough has been plotted in Figure 4.29 through 4.34. The
second panel of each figure is at a vertical location near mid-depth. Finally, the
last is a comparison of the near bottom velocities at a distance of 1.1 em above
the bottom. Obviously, the disagreement in the measured and computed velocity
variations is exacerbated through the inaccurate prediction of the phase speed. For
instance, at measuring line 6, the velocities are predicted reasonably well except for
the mismatch in the phase between the computed and measured data. The irreg-
ularities in each of the velocity plots, as previously seen in Sections 4.1 and 4.2,
are due to the sign change in the bottom velocity correction. The discontinuity in
the bottom velocity correction accompanies the sign change in the depth averaged
velocity U. It is most apparent near the bottom and free surface where the values
of F'in (2.33) is the largest as shown in Figure 2.2.

The vertical velocity variations at six phases are shown in Figures 4.35
through 4.40. In each figure, the first panel depicts the computed and measured
horizontal velocity as a function of the normalized vertical distance (z — z,) above
the bottom. The computed and measured free surfaces are shown as an empty circle
and as a horizontal line, respectively. The measured velocity data is plotted as a
solid line, excluding the data points that are deemed unreliable due to the proximity
of the free surface. The second panel depicts the comparison of the vertical varia-

tion of the measured vertical velocity with the value computed using (2.45). The
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Phase Averaged Free Surface
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Figure 4.28: Time series of the phase-averaged, normalized free surface at six
meastiring lines: Measured(—); Computed(- - -).
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z—z = 1.974
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z—z, = 0.915

05}
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Figure 4.29: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 1; (2’ — z;) = 1.1, 12.1, 26.1 cm.: Measured(—);
Computed(- - -).
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Figure 4.30: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 2; (2 — z;) = 1.1, 8.1, 18.1 ¢cm.: Measured(—);
Computed(- - -).
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z—2z, = 0.613

Figure 4.31: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 3; (¢’ — z;) = 1.1, 8.1, 16.1 cm.: Measured(—);
Computed(- - -).
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z—z, = 0.991
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051
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Figure 4.32: Normalized phase-averaged horizontal velocity u at three elevations
al measuring line 4; (2 — z;) = 1.1, 8.1, 13.1 cm.: Measured(—);
Computed(- - -).

84



z— 2z = 0.764

05

<05

z — 2z, = 0.461

05}

-05 E

Figure 4.33: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 5; (2 — z;) = 1.1, 6.1, 10.1 cm.: Measured(—);
Computed(- - -).
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Figure 4.34: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 6; (2’ — z;) = 1.1, 4.1, 7.1 cm.: Measured(—);
Computed(- - -).
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Vertical Variations of Horizontal Velocity at 6 Phases ml1
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Vertical Variations of Vertical Velocity at 6 Phases mi1
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Figure 4.35: Vertical variations of normalized horizontal and vertical velocity at
six phases at measuring line 1: Measured(—); Computed(- - -).

discrepiency between the measured and computed vertical variations are caused, in
part, by the aforementioned phase mismatch. As a whole, the agreement is reason-
able in spite of the simple vertical velocity profile assumed in (2.33) with (2.40).
This is probably because the comparison is limited below the wave trough level
where the energy dissipation due to wave breaking is expected to occur above the
trough level.

For completeness, the cross-shore variation of the maximum, minimum and
mean of the free surface, the depth averaged velocity, and the near bottom velocity

is depicted in Figure 4.41.
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Vertical Variations of Horizontal Velocity at 6 Phases mi2
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Figure 4.36: Vertical variations of normalized horizontal and vertical velocity at
six phases at measuring line 2: Measured(—); Computed(- - -).
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Vertical Variations of Horizontal Velocity at 6 Phases mi3
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Figure 4.37: Vertical variations of normalized horizontal and vertical velocity at
six phases at measuring line 3: Measured(—); Computed(- - -).
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Vertical Variations of Horizontal Velocity at 6 Phases ml4
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Figure 4.38: Vertical variations of normalized horizontal and vertical velocity at
six phases at measuring line 4: Measured(—); Computed(- - -).
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Vertical Variations of Horizontal Velocity at 6 Phases mi5
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Figure 4.39: Vertical variations of normalized horizontal and vertical velocity at
six phases at measuring line 5: Measured(—); Computed(- - -).
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Vertical Variations of Horizontal Velocity at 6 Phases ml6
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Figure 4.40: Vertical variations of normalized horizontal and vertical velocity at
six phases at measuring line 6: Measured(—); Computed(- - -).
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Free Surface Statistics
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Figure 4.41: Computed cross-shore variation of maximum, minimum, and mean
of the normalized free surface elevation, depth averaged velocity, and
near bottom velocity.
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Time Averaged Volume Flux
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Figure 4.42: Computed cross-shore variation of normalized, time averaged volume
flux .

The cross-shore variation of the time averaged volume flux is again used as
an indicator of the computational accuracy. Figure 4.42 demonstrates that this flux
is zero almost exactly.

The normalized energy quantities are shown in Figure 4.43. The numerical
dissipation dominates over the dissipation due to bottom friction and wave breaking
as in Section 4.2. This clearly indicates the shortcoming of the assumed velocity

profile in (2.33) which may be reasonable below the trough level but can not account

for the much larger dissipation occurring above the trough level.
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Figure 4.43: Computed cross-shore variation of normalized specific wave energy,
energy flux, bottom dissipation, breaking dissipation, and numerical
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4.3.2 Model Initiation after Breaking

The model VBREAK is compared to the identical set of data as in Sec-
tion 4.3.1 except with the seaward boundary located at measuring line 3 as depicted
in Figure 4.22. The height of the incident regular waves at measuring line 3 was
H' = 12.71 cm. The corresponding still water depth was 17.71 cm. The Tables 4.8
and 4.9 represent the primary input and output files from the model VBREAK
The resultant dimensionless parameters were: surf similarity parameter ¢ = 0.22;
the ratio of horizontal to vertical length scales o = 19.3; Ursell number = 183.0.

Figures 4.44 through 4.60 may be compared with the corresponding figure
is Section 4.3.1. As a whole, the agreement between the measured and computed
free surface and velocities is somewhat better because VBREAK is initiated at a
measuring line landward of the break point and closer to measuring lines 4, 5, and
6. The vertical variation of the horizontal velocity given by (2.33) with (2.40) is
assumed to be caused by wave breaking and it is hence more appropriate to take

the seaward boundary of VBREAK inside the surf zone.
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Table 4.8: Primary input data file (initiated after breaking) for Cox et al. (1995).

b --> NLINES

L33053 BDJ June ’95

SBC at L3; 300 waves input; £’=.05; and IWAVE=3

1 <--ISYST

3 <--IWAVE

1 <--IBOT

1 <--IENERG

i <--ITEMVA

i <--ISPAEU

J300 <--FINP2

250. 300. <--TSTAT,TMAX
310 <--STILL

0.001 0.400 1.0 <--DELTA,COURNO,DKAPPA
L1271 2.2 <--HREF, TREF
66001 <--NPINP

3.0 .10 <--APROFL,CMIXL
.177143 0.028571 <--DSEAP, SLSURF
1 <--NBSEG

11.400 .028571 .05

66001 <--NPOUT

1 <--NDELR

0.5

12 <--NONODS

1 2 3 60 61

62 120 121 122 180

181 182

5 <--NOTIML

299.0 299.25 299.50 299.75 300.0 <--TIMSPA
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Table 4.9: Primary output file (initiated after breaking) for Cox et al. (1995).

L33063 BDJ June

SBC at L3; 300 waves input; £’=.05; and'IHAVE=3

WAVE CONDITION

Measured Total Wave Profile at Seaward Boundary

Reference Wave Period = 2.200000 sec.
Reference Wave Height = 0.127100 meters
Depth at Seaward Boundary = 0.177143 meters
Norm. Depth at Seaw. Bdr. = 1.394

Included Correction Term CT

0 =mno; 1 = yes INCLCT = 0

Normalized Wave Length = 15.969

"Sigma" = 19.328

Ursell Number = 182,968

Surf Similarity Parameter = 0.220

Input Wave Train from Time=0 to TMAX

Computed or Read at Normalized Rate DELTI = 0.004545

Parameters of Vertical Velocity Variatioms

Cubic Profile Parameter APROFL = 3.000000
Mixing Length Parameter CMIXL = 0.100000
Momentum Flux Coefficient C2 = 0.548214
Kinetic Energy Flux Coeff. C3 = -0.069420
Energy Dissipation Coeff. CB = 16.163393
Coefficient of DB CBL = 2.930764
BOTTOM GEOMETRY
Norm. Horiz. Length of

Computation Domain = 4.,632540
Number of Segments = 1

SEGMENT WBSEG(I) TBSLOP(I) BFFSEG(I)
I meters

1 11.400000 0.,028571 0.050000
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Table 4.9: — Continued

COMPUTATION PARAMETERS

Normalized DX

Normalized DELTA

Courant Number

Must not exceed unity
Numerical Damping Coefficient
Must be zero or positive

Normalized Computation Duration TMAX

Statistical Calculations Start
when Time is equal to
Total Number of Spatial Nodes

= 0.814155D-02
= 0.100000E-02

Number of Nodes Along Bottom Below SWL

Storing Temporal Variations from Time = 0

to TMAX at Normalized Rate

= 0.400
= 1.0000
= 300.000000
TSTAT=  250.000000
JMAX = 570
STILL = 310
DELTO = 0.0045b45

Wave Runup Time Series Stored for

Time Series of ETA, U, and UB

(45
0.

NDER = 1 Water Depths

NONODS = 12 Nodes

Stored at
Spacial Variations of ETA, U, and UB
Stored at
Maximum time step =
Minimum time step =
REFLECTION COEFFICIENT
ETARRMS/ETAIRMS = 0.019
INCIDENT AND REFLECTED WAVES
Max Min
Inc. 0.9450 -0.2849
Ref. 0.0320 0.0007

SHORELINE OSCILLATIONS

Largest Node Number Reached by

NOTIML = 5 Time Levels
27585E-02
14089E-02
Mean RMS
-0.0211 0.2714
0.0169 0.0052

Computational Shoreline
SMAX = 364

I  DELTAR(I)

Lem] Ru

RUNUP(I) RUNDOWN(I) SETUP(I) RMS(I)

Rd Zr Rrms

1 0.500 0.1656

0.014 0.0090 0.031



Incident and Reflected Waves at Boundary
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Figure 4.44: The last 50 normalized incident and reflected waves at seaward
boundary, measuring line 3.
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Figure 4.45: Computed normalized time series of runup with 8. = 0.5 cm.
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Figure 4.46: Computed cross-shore variation of normalized free surface n at 5 time
levels, t = 299.00, 299.25, 299.50, 299.75, and 300.
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Horizontal Velocity
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Figure 4.47: Computed normalized cross-shore depth averaged velocity U and
near cottom velocity up at 5 time levels, ¢ = 299.00, 299.25, 299.50,
299.75, and 300: U (- - -); up (-+-).
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Figure 4.48: Measured and computed time series for the last ten waves of

the normalized free surface at four measuring lines: Measured(—);
Computed(- - -).
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Figure 4.49: Time series of the phase-averaged, normalized free surface at four
measaring lines: Measured(—); Computed(- - -).
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Figure 4.50: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 3; (2 — z) = 1.1, 8.1, 16.1 cm.: Measured(—);
Computed(- - -).
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Figure 4.51: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 4; (2’ — z;) = 1.1, 8.1, 13.1 cm.: Measured(—);
Computed(- - -).

106



z—z, = 0.795

051
L mse s
3 0p=— / =5
R ———
B ’
05
-1
z — z, = 0.430
1
05|
I 0= (] —=e=a
“M—”‘————————-—-—._..__—-—/’
-05
=1 —_—

Figure 4.52: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 5; (2’ — z;) = 1.1, 6.1, 10.1 cm.: Measured(—);
Computed(- - -).
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Figure 4.53: Normalized phase-averaged horizontal velocity u at three elevations
at measuring line 6; (2' — z) = 1.1, 4.1, 7.1 em.: Measured(—);
Computed(- - -).
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Figure 4.54: Verti-al variations of normalized horizontal and vertical velocity at
six phases at measuring line 3: Measured(—); Computed(- - -).
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Figure 4.55: Vertical variations of normalized horizontal and vertical velocity at
six phases at measuring line 4: Measured(—); Computed(- - -).
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Figure 4.56: Vertical variations of normalized horizontal and vertical velocity at
six plases at measuring line 5: Measured(—); Computed(- - -).
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Figure 4.57: Vertical variations of normalized horizontal and vertical velocity at
six phases at measuring line 6: Measured(—); Computed(- - -).
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Figure 4.58: Computed cross-shore variation of maximum, minimum, and mean
of the normalized free surface elevation, depth averaged velocity, and
near hottom velocity.
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Figure 4.59:

Computed cross-shore variation of normalized, time averaged volume
flux .

114



0.08
0.06
0.04
0.02

0.15

0.1

0.05

0.15

0.1

0.05
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Chapter 5

CONCLUSIONS

The numerical model VBREAK is developed to predict the cross-shore and
temporal variations of the free surface elevation 7, the depth-averaged horizontal
velocity U, and the near-bottom horizontal velocity correction @, associated with the
momentum flux correction m due to the vertical variation of the horizontal velocity u
under the action of normally incident breaking waves. The three governing equations
required for the computation of the three unknown variables are the depth-integrated
continuity and horizontal momentum equations together with the new equation for
the momentum flux correction m derived from the depth-integrated wave energy
equation.

The normalized vertical profile of the horizontal velocity u outside the thin
wave boundary layer is assumed to be cubic on the basis of limited available data.
The turbulent shear stress outside the wave boundary layer is assumed to be ex-
pressed using the turbulent eddy viscosity whose mixing length is proportional to
the instantaneous water depth. Although two additional empirical parameters are
introduced in relation to these assumptions, the computed vertical profiles of the
horizontal velocity are found to be fairly insensitive to these empirical parameters
in their ranges expected from limited available data.

The numerical model VBREAK is reduced to a one-dimensional model and
compared to the previously developed model IBREAK. With appropriate simpli-

fication of the seaward boundary condition, the momentum flux correction equals
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zero identically throughout the computation domain for all times. The computed
results of the one-dirnensional model corresponding to VBREAK are essentially the
same as the results of IBREAK for the steep slope case. The comparison of the
models demonstrates the efficiency and accuracy of the MacCormack method in the
solution of the finite-amplitude shallow-water equations.

The model VBREAK is compared with the laboratory data presented by
Stive (1980) and Stive and Wind (1982). The free surface statistics are predicted
reasonably accurately. The computed minimum horizontal velocities at several ver-
tical locations under the wave trough compare well with the measured data. The
maximum horizontal velocities, however, are consistently overpredicted. The time-
averaged seaward return current is predicted to within the order of magnitude only.
Despite the explicit modeling of energy dissipation due to wave breaking, most of
the energy is dissipaied numerically. The assumed velocity profile does not describe
well the wave energy dissipation due to breaking on a gentle slope. This is probably
due to the absence of a surface roller in the model VBREAK to increase the energy
dissipation due to wave breaking and the shoreward mass flux above the trough
level.

The model VBREAK is compared with the detailed fluid velocity measure-
ments of Cox et al. (1995). VBREAK predicts the general free surface character-
istics well. The laboratory data of Cox included phase information and is used to
asses the phase speed predictions of VBREAK. The computed phase speed exceeds
the measured speed seaward of the break point. Following wave breaking, however,
VBREAK underpredicts the phase speed. The computed horizontal velocities com-
pare reasonably well with the data except that differences in phase generate errors,
especially near the wave crest. The agreement with the data improves somewhat
when the seaward boundary of VBREAK is taken to be landward of the break

point because the vertical horizontal velocity variation in VBREAK is assumed to
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be caused by wave breaking. The discontinuity in the bottom velocity correction
that accompanies the sign change in the depth averaged velocity generates an unre-
alistic kink in the time series of the horizontal velocity. As a whole, the agreement

is reasonable considering the assumed simple vertical velocity profile.
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