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Abstract

A model of the shallow water equations governing wave motions in the
nearshore environment is presented. Spatial derivatives contained in these
equations are computed using spectral collocation methods. A high-order
time integration scheme is used to compute the time evolution of the ve-
locities and water surface elevation given initial conditions. The model
domain extends from the shoreline to a desired distance offshore and is
periodic in the longshore direction. Properly posed boundary conditions
for the governing equations are discussed. A curvilinear moving bound-
ary condition is incorporated at the shoreline to account for wave runup.
An absorbing-generating boundary is constructed offshore. The boundary
treatments are tested using analytical and numerical results. The model
is applied to the prediction of neutral stability boundaries and equilibrium
amplitudes of subharmonic edge waves. Numerical results are compared
to weakly nonlincar theory and are found to reproduce the theory very
well.

1 Introduction

The nonlinear shallow water equations are a set of coupled hyperbolic equations
governing many types of processes in the nearshore region. They have been
widely employed to model long wave propagation in a variety of cases including
tsunami propagation or tidal oscillations. They may also be utilized to model
short surface wave propagation, if provision is made to account for dissipation

due to wave breaking. Finally, they provide a theoretical basis for modeling



currents and other quasi-steady flows.

Recently, it has been demonstrated that longshore currents induced by obliquely-
incident waves breaking on a beach may be unstable to perturbations which in-
duce undulating flow patterns in the longshore direction and time (Oltman-Shay
et al., 1989; Bowen and Holman, 1989). The nonlinear shallow water equations
provide a good basis for modeling the long-time evolution of these instabilities.
Viewed in isolation, these instabilities induce flow perturbations which are pri-
marily horizontal in nature (with vorticity as the primary restoring force), and
thus can be studied using rigid-lid models (Allen et al., 1996). However, these
motions occur in a complex surf zone environment characterized by a number of
additional low-frequency motions, including edge waves and surf beat, which are
primarily gravity dominated. The nonlinear shallow water equations provide the
leading order approximation of the free surface effects needed to study vorticity
and gravity-dominated motions in tandem.

In this paper, we present a numerical treatment of the nonlinear shallow
water equations which is specialized to long beaches and to motions which can
be assumed to be periodic in the longshore direction. Our aim here is to describe
the numerical approach and to verify it in comparison to analytical results for the
case of gravity wave motion. Tests involving vorticity waves are not described
here, as there are no documented “correct” answers that would serve as a basis
for model verification. Instead, results on the evolution of instability waves in the
surf zone will be described elsewhere (see Ozkan and Kirby (1995) and Ozkan-
Haller and Kirby (1996) for preliminary results).

First, a model of the nonlinear shallow water equations using Chebyshev
collocation in the shore-normal direction in conjunction with Fourier colloca-
tion in the shore-parallel direction is presented. The properly posed boundary

treatments for these equations are discussed. A curvilinear moving boundary



condition at the shoreline is constructed using an Eulerian model in conjunc-
tion with a moving grid. This boundary condition is tested for both one and
two-dimensional shoreline runup.

An absorbing-generating boundary condition at the offshore boundary is de-
rived based on the method of characteristics. It is tested for waves leaving the
domain at normal or oblique incidence to the artificial offshore boundary.

As we are primarily interested in using the model developed here to study
the onset and evolution of instabilities in the surf zone longshore current, the
question of whether the model is capable of reproducing unstable behavior in a
well understood case is of extreme importance. We thus conclude the paper with
an analysis of the growth of subharmonic standing edge waves, which evolve on
a long straight beach as a result of an instability of a normally incident (and
reflected) long-crested wave. This instability has been studied extensively, and
predictions for equilibrium edge wave amplitudes as a function of incident wave
conditions and frictional damping rates are available. We show that the present
model is capable of reproducing the neutral stability boundaries and equilibrium

amplitude predictions for this particular class of motions.

2 Governing Equations

In this study, a two dimensional horizontal model of the non-dispersive continuity
and momentum equations is developed. The governing equations, given below,

are the nonlinear shallow water equations.

Dy + (uD)s + (vD), = 0 (1)
Uy + Uy +ouy, = —gin, (2)
v+ uvy +vvy, = —gny. (3)



Here, n is the water surface elevation above the still water level, h is the still water
depth, D = h + 7 is the total water depth, u and v are the velocity components
in the  and y directions, respectively, where & points offshore and y points in
the longshore direction.

The domain in which these equations are solved is shown in Figure 1. It is
bounded by a curvilinear moving shoreline at = ((y,t). This representation
of the shoreline boundary imposes the restriction that the shoreline position be
single valued in the cross-shore direction z. The kinematic condition for the

shoreline dictates that
G = u® —v°(,, (4)
where the superscript s denotes that the variables are evaluated at the shoreline.

The physical requirement for a shoreline to exist is
D=h+n=0 onz=((y,t) (5)

Furthermore, the domain is bounded by an open boundary at # = L,. The
characteristic horizontal length scale is denoted by L. Periodicity is assumed in
the y direction.

Using spectral collocation schemes to determine the spatial derivatives and
an explicit time stepping scheme, the most straightforward boundary treatment
at, say, © = L, would be to specify one of the unknowns at the boundary (e.g.
u) and update the other two unknowns (v and D) at the boundary using (1),
(2) and (3). Although this type of an approach is acceptable when using finite
difference methods, it is strongly unstable when spectral collocation methods
are used (Gottlieb et al., 1982). The reason is that the use of (1) and (3) for
the evolution of v and D is an incorrect extrapolation of the equations to the
boundary.

In order to impose the onshore and offshore boundary conditions properly,
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we use the method of characteristics and rewrite the governing equations in the
unknowns u, v and D in terms of variables that carry information across the
onshore and offshore boundaries (herein called the f-characteristic variables) as
well as along those boundaries (herein called the y-characteristic variable). This
manipulation is carried out following Abbott (1979).

The governing equations can be written in matrix form as

q: + Aq, + Bq, = C. (6)
where
D u D 0 v 0 D 0
q=|uv |, A=|g v 0|, B=[0 » 0 |, and C= | gh, |.
v 0 0 u g 0 o gh,

The eigenvector matrix P of the matrix A is given by

—-3\DPlg 5Dlg 0
= Lo

P

O o=

1

2

0 |

Premultiplying (6) by the inverse matrix P~ gives
P~'q,+ (P~'AP) P 'q, + (P~'BP) P~lq, = P-1C. (9)

Algebraic manipulation of this equation results in

w; + A'w, + B'w, =C'. (10)
where
u— /gD 0 0 v 0 —\gD
Al'= 0 u++gD 0|, B'= 0 v VgD |,
0 0 u —3V9D /gD v
ghs
and C' = | gh, |. (11)
ghy
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The unknown vector w is defined by

u— 2v/gD B~
w=|u+2y¢gD | =] g+ |. (12)
v v

The three equations can now be written as

By + (u—c)f; +vB, —cyy = 2coco, (13)
BF+ (u+e)Bf +vhy +ey = 2cscos (14)
Yo+ uY oy = —gny. (15)

Here, ¢ is the nonlinear shallow water wave speed /gD = \/g(h + 1) and

o is the linear shallow water wave speed y/gh. Note that, in the absence of
longshore variability, the above equations reduce to uncoupled one-way wave
equations. As desired, the variables = and A% carry information across the
onshore and offshore boundaries whereas the variable 4 carries information along
those boundaries.

Note that the equation governing 7 = u + 2¢ (f~ = u — 2¢) carries infor-
mation in the 42 (—=z) direction and is therefore valid everywhere inside the
domain and on the right (left) boundary point but not on the left (right) bound-
ary point. The equation governing the evolution of the glancing variable y = v
is valid everywhere in the domain including the boundary points.

In order to impose the boundary condition at @ = L, properly, the incoming
B variable = has to be specified, while the outgoing 8 variable B+ and the
glancing variable v can be computed using (14) and (15), respectively. The
simplest boundary that can be constructed in this manner at, say, = = L, is a
fully reflective wall boundary, where f* and «4 are calculated using (14) and (15)
and £~ is specified as f~ = —p*. Numerical calculations using this condition

lead to stable solutions.



3 Treatment of Moving Shoreline

Gravity driven motions in the nearshore region have significant shoreline runup
associated with them. The most commonly used techniques to model shoreline
runup are Eulerian models with fixed numerical grids or meshes. Examples of
the implementation of such methods can be found in studies of solitary wave
and tsunami runup such as Liu et al. (1995). In these methods the shoreline is
defined as the interface between wet and dry cells; therefore, it is usually defined
within the accuracy of the grid size. The shoreline is advanced or retreated in
discrete steps. The amount of movement is dictated by the volume flux at the
last wet point. These methods are fairly straightforward to implement. How-
ever, the impulsive filling of a cell with fluid can lead to numerical problems or
time step constraints unless treated carefully. Also, an a priori estimate of the
maximum runup needs to be available in order to keep the domain large enough
to accommodate it.

Lagrangian methods are very well suited for the treatment of moving bound-
aries. In these methods, the fluid is represented as a large number of fluid
particles. Tracking the position of a particle at the shoreline is in general no
more difficult than tracking a particle in the interior of the fluid. Examples of
computations for solitary wave runup using Lagrangian methods are presented
by Pedersen and Gjevik (1983) and Zelt and Raichlen (1990). However, La-
grangian methods employed in regions with a net streaming velocity (such as
the longshore current in the surf zone) may require frequent regridding, since the
computational grid would tend to be advected and sheared by the steady flow.

Eulerian models with deforming grids are less frequently used in association
with long wave runup. Lynch and Gray (1980) and Gopalakrishnan and Tung

(1983) reported techniques whereby moving boundaries can be treated by finite



element Eulerian models. They involve moving grids where one boundary of the
grid tracks the position of the shoreline, and are more difficult to implement
than methods involving a fixed grid. However, they do not exhibit the problems
associated with grid draining and filling in fixed grid models, and would not
experience the difficulties associated with steady flows in a purely Lagrangian
model. Therefore, we have chosen to develop an Eulerian model with a moving
grid for application to the surf zone in the present study.

The problem at hand consists of solving a set of well-known governing equa-
tions (13), (14) and (15) in a complicated physical domain bounded by one curvi-
linear moving boundary defined by (4) and (5) and three stationary boundaries.
The challenge of modeling the moving boundary can be overcome by mapping
the variable size domain onto a fixed domain. Such a transformation will lead
to a grid that follows the shoreline with one grid boundary and will introduce
additional terms into the governing equation.

The coordinate transformation from the physical variables z € [((y,1), L,
and y € [0, L,] to the intermediate variables ¢ € [0, L,] and 1 € [0, L,] used here
is given by

z=¢+((yt)e %,  y=y. (16)

A stationary orthogonal grid in the (¢,t) domain corresponds to a physical
grid that is following the shoreline (see Figure 2). The movement of the grid
lines is damped out exponentially with offshore distance so that the grid is al-
most stationary at a certain distance offshore. This distance is dictated by the
value of the parameter a. As a result of the transformation, the derivatives in
the governing equations are altered, resulting in a few additional terms. The

derivatives in the governing equations now become

ele = Oelg + (o



Oy = v+ ()sd, (17)

where ¢(z,y,1) is given by (16) and ( )|, and ( )|, denote time derivatives in
a reference frame where  and ¢ are fixed, respectively.

The intermediate grid in the variables ¢ € [0, L;] and % € [0, L,] obtained
above is next mapped onto a computational grid in the variables s € [—1,1] and

r € [0, Ly] (see Figure 3). The coordinate transformation

1+s

)
80— 8

¢=1L p=r (18)

is used. The value of the parameter sy is dictated by the location of the offshore
boundary. If the offshore boundary is located at infinity sy equals unity. In this
case a physical domain in the shape of a semi-infinite strip is modeled while the
computations are carried out in a box-shaped domain. For a finite offshore width
so > 1.

As a result of this second transformation the derivatives in the governing

equation are further modified and become,

Oiele = Oely +( )sss6
()e = ()s840s
)y = ()r+()sSe9y, (19)

where ¢(z,y,t) and s(¢) are given by (16) and (18), respectively. Here, ( )

denotes time derivatives at fixed values of s.

As a result of the two coordinate transformations the governing equations

now read
B + (st + so(u—c) +s,0] By + 0B, — ey —sycs = 254000, (20)
Bt 4 [se 4 so(u+¢) + s0] BF + 0B +c1r + sy01. = 2526000, (21)

Yo + [t + Sot + $yV] Y + VY, = —gnr — g8yns. (22)
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At the shoreline ¢ = /gD = 0, and the equations in the f-variables col-
lapse into one redundant equation and no information about the values of the
[-variables can be deduced. However, the velocity at the shoreline can be deter-

mined using the z-momentum equation
uy + [8¢ + spu’ + 8,v°| ul + vul = —gs.qn;, (23)
where the superscript s denotes that the variables are evaluated at the shoreline.
After applying the two coordinate transformations the kinematic condition (4)
reads
G = u® —0v°(,. (24)
The physical requirement (5) for a shoreline to exist becomes

D=h+7=0 ons=-—1. (25)

The evolution of the wave field is calculated by time stepping (20), (21) and
(22) along with (23) and (24) while imposing the condition stated in (25) and
an offshore boundary condition to be discussed next.

In the following sections, it will be shown that this boundary treatment com-
pares favorably to analytical and other numerical results. However, in some
situations, especially when steep waves are involved, it causes grid points to run
up the shore to form a thin film of water on the beach. As a result grid points
are lost to the beach and the resolution of the solution is decreased. Therefore, it
is necessary to prevent the occurrence of a thin film which is evidenced by more
than one grid point with D < Dyj,esn associated with them. The parameter
Dipresn 18 a threshold value appropriate for the application. If the occurrence of
a thin film is detected, the shoreline position is redefined as the average of the
positions of the most seaward point with D < Dyj.csp and the next offshore point
with D > Dypresn. The row at the longshore positions where the thin film was

detected is then regridded.
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4 Offshore Absorbing-Generating Boundary

An absorbing-generating boundary condition needs to be specified at the offshore
boundary to simultaneously allow waves to exit the domain of interest with
minimum reflection as well as specify incoming waves at the offshore boundary.
The logic of the absorbing-generating boundary condition can be best understood
when the problem is reduced to a one dimensional case. The extension to the

two dimensional problem follows in a straightforward manner.

4.1 One dimensional problem

In one dimension, the governing equations at the offshore boundary =z = L,
reduce to
By +(u—¢)B; = 2coco, (26)
B+ (u+e)BF = 2coco,, (27)

which are uncoupled one-way wave equations. The characteristic variables are
given by 7 = u — 2¢ traveling in the —z direction and % = u + 2¢ traveling in
the 4z direction.

If an outgoing wave exists in the absence of an incoming wave, the incoming
characteristic will carry no information and will reduce to =~ = u — 2¢ = —2¢.
Therefore, the particle velocity associated with the outgoing wave is U, =
2Cout — 2¢o, Where cop = \/m In this case the boundary condition at
the offshore boundary & = L, would be constructed by computing the outgoing
characteristic f7 using (27) and specifying the incoming characteristic A~ as
—2cy.

In turn, if an incoming wave exists in the absence of an outgoing wave, the
outgoing characteristic will carry no information and will reduce to A+ = u42¢ =

2¢p. The particle velocity associated with the incoming wave is then U;, =
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—2¢in+2¢o, where ¢y, := 1/g(h + 1in). The specification of the boundary condition
is again straightforward; #* can be computed using the governing equation and
B~ has to be specified as the incoming wave.

Assuming that the incoming and outgoing waves exist simultaneously but
that their particle velocities are independent of each other the observed velocity
at the boundary is u = Uy, + Uput = 2(Com — ¢in) and the total water surface
elevation is 7 = ni, + Nowe. This assumption is equivalent to superimposing the
incoming and outgoing waves at the boundary. However, this superposition does
not imply a linearization of the problem at the boundary since the velocities
associated with the waves are calculated using the nonlinear equations. As a
result, the interactions between the incoming and outgoing waves are neglected

while the self-interactions of these waves are included.

4.2 'Two dimensional problem

The extension of the above ideas to the two dimensional case has previously
been presented by Verboom et al. (1984) for the case of wave absorption for a
viscous fluid. A similar technique has been used by Van Dongeren et al. (1994)
for simultaneous absorption-generation in the context of long wave propagation.

The technique involves defining the particle velocities of the incoming and
outgoing waves as U;, and Uy, respectively, along with their components in the
x direction u;, and u,, and their components in the y direction v;, and v,y
(see Figure 4). Known quantities at the offshore boundary = = L, are variables
associated with the known incoming wave u;,, vy, and 5;, as well variables de-

termined from the governing equations v = vy, + v, and B+ = u + 2¢ where

U = (Uin +Uows) and ¢ = \/ g(h + Min + Mout). The unknowns are the z-component
of the outgoing wave particle velocity w,,; and its propagation speed ¢y, which

is defined above.
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The total celerity ¢ can be rewritten as
= ¢y, + Cou — G- (28)
Since Bt = u + 2¢ is known, we can write,
4t = (ﬁ+ - u)2 —4c% + 4ck. (29)

(From the discussion about the one dimensional problem, we can deduce that in
the absence of any interaction with the incoming wave, the particle velocity of

the outgoing wave in the propagation direction is given by,
Uout = 2Cout — 2¢p (30)

or,

4¢3 = (Uout + 2¢0)” . (31)
Equating the right hand sides of (29) and (31), rearranging and using v = (u;, +

Uout) Gives,

]Iﬂ

Uout = (ﬁ+ - uiﬂ.) - [U:ut + 4Uaut Cp 'i' 46?,1 (32)

Using geometrical arguments (see Figure 4), it can be stated that U2, = u?,, +

2

vout‘

Substituting the expression for ., given in (32) and rearranging gives
dU2, + eUpi + f =0, (33)
where,

d = (ﬁ+ — Ujn — 2cl})(ﬁ—l_ — Uin + 2(?0)
e = 20 [()8+ ~ thin)" — Vg — 46;'2?1]

f = _i [(ﬂ+ — Uin — 2C£n)2 + Ugﬂf] [(‘8+ — Uin + 26,‘,1)2 + Ug”t] ’ (34)

Now, the unknown particle velocity U,,; can be found to be

i :{ (—e+ @40 /(2d) for d #0

—fle for d =0 (38)
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Therefore,

- T 2
Uout — Sgn(Uout) U‘fut_vout

1
Cout = Co+ EUout- (36)
The incoming f-variable can be specified as
46_ =" (uin = uout) = ZC: (3?)

where c is given by (28).

5 Numerical Solution Method

Traditionally, the most straightforward method to solve the shallow water equa-
tions has involved making finite difference approximations of spatial derivatives
in conjunction with an explicit or implicit time stepping scheme. The accuracy
of such methods is limited due to truncation errors associated with the difference
approximations. These errors usually arise in the form of dispersion or dissipation
errors. More recently, spectral and pseudospectral methods have become more
popular. A wide variety of spectral schemes exist and are reviewed in Canuto
et al. (1987) and Boyd (1988). A recent application of spectral schemes to wa-
ter wave propagation problems has been performed by Panchang and Kopriva
(1989) who used a Chebyshev collocation method to analyze short wave prop-
agation over complicated bathymetry. In addition, Falqués and Iranzo (1992)
applied spectral collocation methods to the linear shallow water equations. Dal-
rymple et al. (1994) compared several spectral methods in the context of forward
propagating water waves. When compared to finite difference methods, spectral
methods give more accurate approximations for spatial derivatives, as they have
no truncation errors and therefore lead to more accurate solutions with less dis-

persion and dissipation errors. Furthermore, they can be tailored to suit the
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motions of interest since basis functions for the spectral derivatives can be cho-
sen to naturally satisfy the boundary conditions and variable grid spacing can
easily be incorporated to achieve high resolution where steep solutions are ex-
pected. In this manner a solution of the desired accuracy can be achieved with far
less spatial points and therefore, less computational time than with finite differ-
ence schemes. Since these are desired features of the model, spectral collocation
schemes are employed herein for the computation of the spatial derivatives.
Given initial conditions for the water surface elevation 5 and the velocities u
and v, the governing equations given in (20), (21) and (22) are integrated in time
using an explicit third order Adams-Bashforth scheme. The governing equations

can be written in the form

iBt_ = Fl.(nauav) (38)
ﬂt+ = Fﬂ(”!uvv) (39)
T’ = F3(7}7U1U)' (40)

The definitions for F(n,u,v), Fa(n,u,v) and F3(y,u,v) contain spatial deriva-
tives of their arguments and can be obtained by comparing (38) through (40) to
(20) through (22).

The third order Adams-Bashforth scheme is given by

(ﬁ_)n+1 _ (ﬁ_)ﬂ + % [23F]n. . 16F1“_1 + 5Ff1—2] (41)
()" = (6" + g orr —r6mt .
Artl = ymg % [231‘? — 16557 + SF;_Z] ' -

The superscripts denote the time level at which the terms are evaluated with n
being the present, known time level.
The spatial derivatives in the right hand side of (38),(39) and (40) are com-

puted using spectral collocation. The advantage to using spectral derivatives is
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the accuracy that can be achieved. For smooth solutions, the error asymptot-
ically decays faster than any polynomial order (Canuto et al., 1987) compared
to a low fixed polynomial order for finite difference derivatives. Therefore, a
desired accuracy can usually be achieved with spectral methods using far less
spatial points than for finite difference schemes. In addition, spectral methods
introduce no dispersion errors.

In order to apply spectral methods to the problem at hand, the domain of
interest is discretized into an (NX + 1) x (NY + 1) point mesh. The collocation
points in the offshore direction s are chosen as the reversed Gauss-Lobatto points
given by s; = — cos(7i/NX) (1 = 0, ...,NX). This choice ensures that the grid
points in the physical domain are concentrated close to the shoreline. Using these
collocation points, the Chebyshev collocation calculations can also be carried out
using efficient Fast Fourier Transform (FFT') routines.

The collocation points in the longshore direction r are chosen to be equally
spaced so that r; = jAy (7 = 0, ...,NY). Fourier collocation is applied in
this direction since the Fourier basis functions naturally satisfy the periodicity
boundary condition imposed in the longshore direction.

Let ) represent one of the variables A, #* or v at a certain time level. Using
Fourier collocation for the r direction derivatives in the governing equations
and a Chebyshev collocation method for the s direction derivatives @ will be

approximated by
NY NX ,
Q(s,m) = Qp(s,7) = Y Y anmTn(s)e™ " (44)
m=0n=0
where T,(s),n = 0,1.... are Chebyshev polynomials of the first kind and are

given by

Tw(8) = cosnb, = arccos s. (45)
Approximations to the derivatives in the longshore direction r are computed
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by differentiating (44) with respect to r. Rewriting the equation gives,

NY
= Z Ap(8)e™ " where A, (5) = qun (46)

m=0 n=0

The function A,,(s) is known since it is the Fourier transform of @, in r at a

fixed s location. Differentiating the above equation yields

(@Qp(s,7) A" s)e™ " where A’ (s)=imkAn(s (47
P m

m=0

Thus, inverse Fourier transforming A! (s) gives the desired spatial derivative.
Note that the derivative of @), along an x line is a function of the values of @),
at all the y locations, hence the derivative has a global character. Furthermore,
the procedure defines the values of the derivatives at all mesh points, no special
procedure is required to evaluate derivatives at the boundaries.

The derivatives in the s direction are computed using Chebyshev colloca-

tion. The procedure is much like that described above for Fourier collocation.

Rewriting (44) yields

NX
— Z B, (r)T,(s), where By( Z L (48)

m=0

The function B, (r) is known as the Chebyshev transform of @, in s at a fixed r
location. Differentiating with respect to s gives

(Qp(s,7) Z BL(#)T,(8). (49)

n=>0

Using the definition for the Chebyshev polynomials given in (45) and the trigono-
metric identity 2sin f cosnf = sin(n + 1)0 — sin(n — 1)0, the coefficients B! (r)

can be computed in decreasing order by the recurrence relation

eaB,(r) = B;.+2('r) +2(n + 1) By (r), (50)
where
2 #dn=0 .
Gy = { 1 ifn>1 and Bl(r)=0 forn> NX (51)
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Once again, no special boundary treatment is needed. Both methods of
differentiation are described in detail by Canuto et al. (1987).

A type of instability in the time integration of nonlinear systems is caused by
the process known as aliasing. The onset of the aliasing instability is character-
ized by the excitement of waves at the limit of the resolution. In the simulations
shown here, a solution smoothing technique involving a high order filter devel-
oped by Shapiro (1970) is used to prevent the spurious growth of the shortest
waves that can be resolved and avoid aliasing. The filter effectively eliminates
waves at twice the grid spacing but applies only minimum damping to all longer

waves while preserving the relative phases of waves of any wavelength.

6 Test Cases

In this section, the accuracy of the boundary treatments is verified using several
test cases. First the shoreline boundary condition is tested for one dimensional
as well as two dimensional runup. The offshore boundary is tested for waves
leaving the domain of interest at normal incidence or at an angle to the offshore

direction.

6.1 Shoreline Boundary

1D Runup

An analytical solution for single wave runup on a sloping beach by Carrier
and Greenspan (1958) is used to verify the accuracy of the shoreline treatment.
This example corresponds to the physical problem in which the water level at
the shoreline is depressed, the fluid is held motionless and then released. The
shoreline water level climbs to a position higher than the still water level, and

then slowly settles back to it.
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The initial water surface elevation n as a function of offshore distance z can

be expressed in parametric form as

5 a’ 3 &
n = eml ll - §(a2 + 52)3,*2 * 5(&2 £ {2)5,’2]
L .4 5 a’ 3 a’
e =1 = 2
‘ 6e T ll 2(@+ &P " 2 (@ +«’;’2)"”'2] s

for ¢ > 0, where a = 1.5(1 4 0.9¢)'/2. The parameter ¢ is the maximum nondi-
mensional water surface elevation, m is the beach slope, L is a cross-shore length
scale. The water surface elevation approaches the still water level far from the
shoreline.

In order to simulate this situation in dimensional space a beach slope m of
0.02 and a length scale L of 20 m is chosen. The paramefer ¢ is given by 0.2
in the simulation shown. The theory by Carrier and Greenspan (1958) predicts
that a surging breaker results if the initial nondimensional depression is 0.23.

In this simulation the parameter so in (18) is chosen to be unity so that the
domain extends to infinity in the offshore direction. The depth threshold value at
the shoreline Dy s, discussed in Section 3 is chosen as zero for this application.
The simulation is carried out using 64 collocation points in the z-direction. A
16th order Shapiro filter is applied. Figure 5 (a) shows snapshots of the water
surface elevation n as a function of offshore distance every 1.6 seconds, with ¢ = 0
s corresponding to the initial depression of the water surface and the maximum
rundown position, and ¢ = 19.2 s corresponding to the maximum runup position.
Figure 5 (b) shows the time series of the shoreline position. The numerical and

analytical solutions are seen to agree to within visual resolution.

2D Runup

The second test case for the shoreline boundary condition involves solitary
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wave runup on a bay with a sloping bottom. The test case geometry combines
a curved shoreline with a sloping nearshore bathymetry that merges with a con-
stant depth region offshore. This geometry is depicted in Figure 6. The still
water surface is outlined with a single closed thick line above the bottom. The

curved portion of the shoreline traces a period of a cosine curve. It is given by
(y,t =0) = Co(y) = (53)
g = = — C0§ —
Gy, Goly = 7

where L is the half-width of the bay. The depth grid is given by

3L
ho — h —FTw__ for z < 8L
h = 9 te)= 3? - (54)
ho for z > %

where hg = 0.4L/n. The incoming wave is specified as a solitary wave. The
dispersive parameter /3 given by (ho/L)? is fixed at (0.4/7)? following the choice
for ho and the wave height to offshore water depth ratio o = (H/ho) of 0.02 is

used. The incident wave on the constant depth region is then given by

= ahgsech? Voho N — H
n = ahg h{ 7 X(f-l' ghg(l+a))}, (55)

N \/i—;(l + a). (56)

Computations previously carried out by Zelt (1986) for this case show that

where

breaking waves result if the wave height to water depth ratio is increased to 0.03.
Zelt’s (1986) calculations were carried out using a fully Lagrangian finite element
model, the results show pronounced two dimensional runup.

In this simulation the parameter sq in (18) is chosen to be unity. Therefore,
the domain extends to infinity in the offshore direction. The shoreline threshold
depth Dypresn is chosen to be zero. The computations are carried out using 128
X 64 collocation points and a 16th order filter is applied in both horizontal

directions.

20



Figure Ta shows normalized runup in the cross-shore direction as a function of
the nondimensional time scale ¢’ = t1/gho/L at different locations along the bay,
where y = 0 denotes the midpoint of the bay and y = +1 denote the boundaries
in the longshore direction. Figure 7b shows the normalized maximum runup and
rundown in the cross-shore direction as a function of longshore location. The

present model is seen to compare well with results by Zelt (1986).

6.2 Absorbing-Generating Boundary

1D Absorption-Generation: A Group of Waves

The first test case for the offshore boundary condition involves the specifica-
tion of a group of waves at the offshore boundary of a constant depth domain
that is bounded onshore by a wall. The wave packet is expected to undergo
a full reflection at the wall and travel back out of the domain at the offshore
boundary. The packet is made up of sufficiently many waves so that a standing
wave pattern will be formed. Eventually, no more incoming waves are present
and the last waves reflect off the wall and leave the domain through the offshore
boundary. Using this test, the error at the offshore boundary can be quantified
since the wave height of the individual incident (H;,) and reflected (H,,;) waves
are expected to be the same although the shape of the waves is expected to
change as they travel through the domain. The error can be quantified in the

form of a reflection coefficient for simultaneous absorption-generation defined as

|If£n = Hout |

Ry = =2

(57)

Once the theoretical amount of time for the wave packet to leave the domain has
elapsed, any disturbances left in the domain are errors in the absorption process

only as no generation is present at that time. Therefore, the reflection due to
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only absorption can be quantified as

H,;
Ra h Hrz’n

(58)
where H; is the height of any leftover disturbance in the domain.

Figure 8 shows time series at the offshore boundary of the incident prescribed
wave and the outgoing wave. The associated reflection coefficients, R,, and R,,
are given in the caption of the figure and are about 0.06% and 0.02%, respec-
tively. The reflection due to only absorption R, is seen to be significantly lower
than the reflection due to simultaneous absorption-generation R,,. Since this
was a consistent result of this and other similar test cases not shown here, re-

sults for only R,, will be shown in the following test cases that focus on the effect

of oblique incidence.
2D Absorption-Generation: Obliquely Incident Waves.

Keeping the same domain as in the previous test case, incoming waves are
now specified at the offshore boundary at an angle to the offshore direction.
Furthermore, the standing wave system that results from the reflection of such
a wave from the wall is specified as an initial condition. The propagation and
evolution of this system is then observed by continuing to specify the incoming
wave and allowing the reflected wave to leave the domain. Several test cases
involving different angles of incidence ranging from 0° to 67.5° are carried out.
The reflection coefficient at the boundary R,, is computed as before and is shown
as a function of angle of incidence in Figure 9. It is seen to increase with angle

of incidence but to remain below 1% for a wide range of angles.
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7 Application: Subharmonic Edge Waves

We now consider whether the present model is intrinsically stable and non-
dissipative enough to reproduce the analytically known properties of a certain
nonlinear instability mechanism, in which subharmonic edge waves are excited
by normally-incident, cleanly-reflected surface waves.

Guza and Davis (1974) showed that a monochromatic wave train, normally
incident on a beach and strongly reflected, is unstable to edge wave perturbations,
identifying a mechanism of edge wave generation through resonant interactions
between the incident wave and the resulting edge waves. They also derived
growth rates of the initially small edge wave perturbations and showed that
the strongest resonance arises between the incident wave of period T; and two
mode zero edge waves of period T, = 27T} traveling in opposite directions along
the beach, forming a standing edge wave. This standing edge wave is hence a
subharmonic of the incident wave. Guza and Bowen (1976) further analyzed
this mechanism and identified three processes that may limit edge wave growth:
further nonlinear edge wave-edge wave interactions leading to the radiation of
edge wave energy into the far field, finite amplitude demodulation due to the
fact that the natural frequency of the edge wave o increases with amplitude
and eventually detunes such that the forcing frequency ceases to lie within the
resonant bandwidth, and viscosity.

Using nonlinear perturbation analysis, Guza and Bowen (1976) showed that
radiation and detuning are of comparable importance in limiting edge wave
growth and that viscosity is relatively unimportant, once edge wave growth is
initiated. In their analysis, the lowest order potential is described as the sum of

the normally incident wave at frequency 20 and the standing edge wave at the
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subharmonic frequency o such that

=l (59)
where
| 2
¢ = Sid Jo(x) sin20t where x?= 4(&)_33
2% gm
be = “Lecosdy cos(ot +0), (60)

where m is the beach slope, A is the edge wave wavenumber. The variable 0 is
the phase difference between the incident and edge waves and a; and a, are the
amplitudes of the water surface elevations of the lowest order incident and edge
wave, respectively, at the still water shoreline.

The theory by Guza and Bowen (1976) predicts that the frequency band
within which edge waves will grow for a given wavelength in the absence of

viscosity is centered on oo = gmA, where the initial growth rate is maximum,

and has the bandwidth
(1 —0.0338¢;)0; <o < (1+ 0.0338¢;)o . (61)

The parameter ¢; is a measure of the nonlinearity of the incident wave and is

given by

o B (62)

gm?

Perturbation analysis predicts the natural edge wave frequency o as

or = (1+0.055¢) 0. (63)
where
2
U0 2
= o (64)

is a measure of the nonlinearity of the edge wave.
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Their results further indicate an upper limit on the possible maximum edge
wave amplitude for a given frequency o due to the effects of radiation and de-

tuning in the absence of viscosity. This upper limit is given by
€. = 0.767/¢; (65)

This edge wave amplitude occurs when the forced edge wave has frequency oy
given by (63) as (1 + 0.0324¢;)0q, as stated by Rockliff (1978). The phase of
the edge wave in relation to the incoming wave can also be determined. The
maximum nondimensional edge wave amplitudes and the phase differences are
given in Figure 10 as a function of a nondimensional detuning parameter A. The

actual edge wave frequency is given by
o = (1 + 0.0338A¢;)0y. (66)

The maximum response occurs at A = (.96.

Existing laboratory experiments (Bowen and Inman, 1971; Guza and Inman,
1975) confirm that edge wave amplitudes substantially larger than the incoming
wave amplitude at the shoreline occur when the incoming wave is strongly re-
flected by the beach. However, the subharmonic resonance ceases when the wave
breaks cleanly, which occurs at €¢; 2 2 (Guza and Inman, 1975).

The numerical model of the nonlinear shallow water equations described in
Sections 3-6 is expected to reproduce the theoretically predicted and experimen-
tally observed phenomenon of the generation of subharmonic edge waves and
their growth to finite amplitude. For a simulation, a beach slope of 0.1 is cho-
sen, the longshore width L, of the domain is chosen to be (27 /)), where ) is
determined such that the natural frequency of a small amplitude edge wave
is 09 = 2m/20 rad/sec. The amplitude of the incident wave is specified as

A = 0.01 m at the offshore boundary located at x = 100 m. Since the low-
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est order water surfacz elevation of the incident wave is given by
n:i = a;Jo(x) cos 20t, (67)

a; can be determined to be 0.091 m. Furthermore, an initial perturbation at the
subharmonic edge wave wavenumber is introduced by specifying the initial water

surface elevation to be
Ne(,y,0) = a.e™" cos \y. (68)

The initial amplitude a¢. = O(107%) and u = v = 0 are also specified and the
growth of the edge wave amplitude a, is observed. Edge waves of different periods
can be forced by varying the period of the incoming wave. The physical domain is
modeled using 64 x 32 collocation points. An 8th order Shapiro filter is applied in
both horizontal directions, and the depth threshold value at the shoreline Dy, cqn
discussed in Section 3 is chosen as 1 mm.

Since a complete time series is not available at the still water shoreline as
it becomes dry during the rundown period, time series at @ = 6 m are used
to determine the equilibrium amplitude of the edge wave. Figure 11 shows the
theoretical maximum edge wave amplitude at # = 6 m as a function of the
nondimensional detuning parameter A.

The computed masimum edge wave amplitude is found for comparison with
theory by isolating the linear edge wave component at the frequency f = o /27 by
bandpassing the computed time series of the water surface elevation at (z,y) =
(6m,0m) using a bandwidth of 0.02 Hz. Furthermore, the phase relation between
the bandpassed edge wave and the lowest order incident wave given in (67) can
also be determined by observing the time lag between zero-upcrossings of the
incident and edge wave.

Time series for edge waves corresponding to a number of A values ranging

from -1.06 to 1.04 have been simulated and shown in Figure 12. The time series
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are recorded at y = 0 where maximum runup of the standing edge wave occurs.
The figure shows that the equilibrium amplitude is reached most rapidly for
A = 0, corresponding to an edge wave at the linear natural period of 7T, = 20
sec, where the initial growth rate of the instability is highest. It can be noted
that the maximum amplitude is reached later for cases corresponding to higher
| A values. This is consistent with theory since the initial growth rates decrease
with increasing | A|. The instability ceases to exist altogether for |A| > 1.
Figure 11 also shows the nondimensional maximum edge wave amplitude for
model results for the cases seen in Figure 12. It can be observed that the low
and high frequency cut-offs of the unstable motion below and above which edge
wave perturbations are stable are predicted. Also shown are the phase differences
between the edge wave and the incoming wave predicted by theory and numerical

computations. It is seen that the phase lag increases with increasing A.

8 Summary and Conclusions

A model of the nonlinear shallow water equations has been developed with the
objective of studying low frequency motions in the surf and swash zones. A high
order time integration scheme has been used in conjunction with spectral collo-
cation for the calculation of spatial derivatives. T'wo dimensional shoreline runup
is modeled using a Fulerian shoreline model in conjunction with a moving grid.
This method compares favorably to analytical and numerical results for both
one-dimensional and two-dimensional shoreline runup. An absorbing-generating
boundary condition is used at the offshore boundary. It is shown that errors (in
the form of partially reflected waves) remain small for a wide range of incident
angles.

The model is used to predict the growth of subharmonic edge waves to fi-

nite amplitude. This application is physically representative of the complexity
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of motions in the surf and swash zones since onshore and longshore directed
motions coexist and interact to create a wave field with significant two dimen-
sional shoreline runup. It also constitutes a severe and physically relevant test of
the model. Since high amplitude edge waves cause significant two dimensional
shoreline runup, an accurate shoreline treatment is important. Since the edge
wave amplitudes are limited by the loss of energy to waves radiating offshore,
the absorbing boundary condition is essential. Furthermore, since the maximum
edge wave amplitude is reached at large time scales with respect to the periods
involved, low dispersion and dissipation errors are desired.

The growth of subharmonic edge waves to finite amplitude is successfully
simulated. The equilibrium edge wave amplitudes and phases are predicted with
satisfactory agreement to weakly nonlinear theory. Neutral stability characteris-
tics of the motion are also reproduced since a high frequency and low frequency
cut-off are predicted and edge waves with frequencies beyond the unstable fre-
quency band are observed to be stable. Since the predicted motion results from
a physical instability of the basic state, the predicted low and high frequency
cut-off points demonstrate that the model reproduces physical instabilities while
remaining numerically stable.

It can be concluded that the developed numerical model is suitable for the
further study of complex surf zone phenomena such as longshore and cross-shore
directed currents, edge waves and shear waves and the nonlinear interactions be-
tween them. Preliminary results on long time evolution of shear instabilities of
longshore currents may be found in Ozkan and Kirby (1995) and Ozkan-Haller
and Kirby (1996). The model is also being extended at present to include the
effects of time-varying short wave forcing, applied through the action of radiation

stress terms.
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Figure 5: Runup in 1D: (a) Snapshots with At = 1.6 sec of 5 versus z. (b) Time
series of shoreline position. Exact solution (------ ), present model ( ).
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Figure 6: Bathymetry of the 2D runup test case.
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Figure 7: (a) Runup in 2D: Time series of runup along y. (b) Maximum runup
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Figure 9: Simultaneous absorption-generation: Reflection as a function of inci-
dent angle 6.
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Figure 10: Equilibrium nondimensional amplitude of a subharmonic edge wave
and its phase 6 in relation to the incoming wave as a function of edge wave
frequency detuning.
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Figure 11: Equilibrium amplitude of a subharmonic edge wave at z = 6 m and
its phase ¢ in relation to the incoming wave as a function of edge wave frequency
detuning. Perturbation theory ( ), model (o).
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Figure 12: Water surface elevation n at (z,y) = (6,0) m for various A values
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