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ABSTRACT

Time-dependent numerical models are developed to predict the temporal and
cross-shore variations of the free surface elevation and the cross-shore and alongshore
fluid velocities in the swash and surf zones under obliquely incident waves. The as-
sumption of shallow water with small incident angles and slow alongshore variations
are made to reduce computational efforts considerably and to eliminate difficulties
associated with lateral boundary conditions. These assumptions enable the mod-
els to compute the cross-shore fluid motion separately from the alongshore motion.
The numerical models allow gradual alongshore variations of the bathymetry and
the incident regular or irregular waves specified at the seaward boundary.

Two numerical models are developed in this study. The first model is a two-
dimensional (2D) model that neglects the vertical variations of the cross-shore and
alongshore velocities. As a result, this model neglects the dispersion due to the
vertical variations of the horizontal velocities and predicts only the depth-averaged
cross-shore and alongshore velocities. The second model is a quasi three-dimensional
(3D) model that assumes a cubic profile for the horizontal velocities and includes
the dispersion terms due to the vertical variations of the horizontal velocities. Two
additional equations for cross-shore and alongshore momentum flux corrections are
derived.

These numerical models are compared with available laboratory and field
data for planar beaches. To assess the importance of the dispersion terms, both

models are compared with the same data. Both models are shown to be capable

Xiv



of predicting the cross-shore variations of wave height, setup and runup for regu-
lar waves and root-mean-square wave height for irregular waves. The dispersion
effects on wave height and setup are shown to be minor. The models predict large
cross-shore and alongshore velocities near the shoreline for irregular waves. The
causes of these large velocities are examined but can not be ascertained for lack of
velocity data near the shoreline. For regular waves, the 2D model with the bottom
friction factor calibrated previously for swash oscillations predicts the magnitude
of longshore current but cannot reproduce the longshore current profile. For ir-
regular waves, the longshore current is predicted fairly well by both models. The
3D model improves the prediction of the longshore current profile for regular waves
significantly. This implies that the dispersion effects on the longshore current are
significant for regular waves but secondary for irregular waves. The 3D model is
also shown to predict the vertical shape of the longshore current inside the surf zone
but not outside the surf zone. The vertical variation of the longshore current for
irregular waves is shown to be small.

The 3D model is also compared with field data for a barred beach. The
model underpredicts the root-mean-square wave height in the bar trough region.
The field measurements of longshore currents generally indicate a broad peak in the
bar trough region. Under the assumption of alongshore uniformity, the model cannot
explain these broad peaks. The small alongshore variation of wave setup induced
by a small alongshore variation of obliquely incident irregular waves is shown to
significantly modify the driving force and longshore current profile in the bar trough
region where the cross-shore gradient of the alongshore radiation stress is small.
As a result, the longshore current profile in the bar trough region is sensitive to
the alongshore variability. On the other hand, for planar beaches, the longshore
current, profile is shown to be insensitive to the alongshore variation of obliquely

incident waves. This may explain why existing longshore current models based on

XV



the assumption of alongshore uniformity were regarded to be adequate before their

comparisons with the barred beach data.
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Chapter 1

INTRODUCTION

Obliquely incident waves breaking on a beach generate longshore current
that in turn drives longshore sediment transport. Knowledge of longshore sediment
transport is important for the design of shoreline erosion mitigation measures such as
sand bypassing and beach nourishment. Longshore sediment transport mostly takes
place within the region where the waves deform after breaking and the region where
a thin sheet of water rushes up and down the beach, known as the surf zone and
swash zone, respectively. Therefore, a quantitative understanding of surf and swash
hydrodynamics on beaches under obliquely incident waves is required for modeling
of sediment transport in these regions.

Iield and laboratory measurements on the distribution of longshore sediment
transport across the surf zone indicated that the distribution was generally bimodal
with peaks in the swash and breaker zones (e.g., Bodge and Dean 1987; Kamphuis
1991). Bodge and Dean (1987) observed that the relative significance of the peaks
shifted from the breaker zone peak to the swash zone peak as the surf varied from
spilling to collapsing conditions. They found that longshore sediment transport in
the swash zone might account for at least 5% to over 60% of the total drift.

There are two different approaches to study the surf zone hydrodynamics,
namely, time-averaged and time dependent models. Time-averaged models split the
fluid motion into a ‘wave’ part and a ‘current’ part where it is assumed that the

wave motion is already known. On the other hand, time-dependent models account



for wave propagation and there is no need to differentiate between the wave and
current parts of the motion. This is significant when dealing with the complicated
wave motion in the surf and swash zones, although this type of model requires more
computational effort.

Since the introduction of the concept of radiation stresses by Longuet-Higgins
and Stewart (1960), time-averaged models have been applied widely to predict the
cross-shore variations of the wave height, setup, longshore current and sediment
transport rate in the surf and swash zones along a straight shoreline (e.g., Battjes
1988). These models are relatively simple and useful for practical applications except
in the swash zone. Contrary to the field and laboratory data, the models based
on the time-averaged momentum and energy equations predict that the longshore
current and sediment transport rate approach zero at the mean water shoreline.
These models also underpredict the wave height and setup in the swash zone (Cox
el al. 1994). Furthermore, swash measurements on natural beaches (e.g., Guza and
Thornton 1982; Holman and Sallenger 1985) show the dominance of low-frequency
wave motions unless incident wind waves collapse or surge on foreshore slopes.

The main aim of this study is to develop time-dependent models in an attempt
to predict the time-dependent and time-averaged hydrodynamics in the surf and

swash zones as mentioned above.

1.1 A Brief Overview of Related Works

To explain a large volume of sediment transport in the swash zone, Thornton
and Abdelrahman (1991) proposed an analytical model by including a specified
standing wave of low-frequency interacting with an obliquely incident wave of a wind-
wave frequency. As a result of the interaction between incident and low-frequency
waves, a non-vanishing longshore current and sediment transport rate were found at
the shoreline. This model indicates the importance of low-frequency standing waves

in the swash zone that need to be estimated or predicted separately. To predict the



interaction between incident and low frequency waves in a more realistic manner,
a time-dependent numerical model will be required although it will require more
computational effort.

Ryrie (1983) developed a time-dependent numerical model for longshore fluid
motion generated by obliquely incident monochromatic waves with a small angle of
incidence along a straight shoreline with a plane slope. The model is based on the
two-dimensional shallow water equations. The cross-shore and alongshore motions
are decoupled using a new time variable, referred to as pseudo-time, which is a
function of the phase speed and incident angle of the incident waves at the break
point. The numerical model was not compared with any data. Recently, Brocchini
and Peregrine (1996) examined the integral flow properties of the swash zone using
the model of Ryrie (1983) and the standing wave solution of Carrier and Greenspan
(1958).

Kobayashi et al. (1987, 1989) and Kobayashi and Wurjanto (1992) developed
and evaluated a time-dependent, one-dimensional numerical model for normally
incident waves using laboratory and field data on wave runup on steep and gentle
slopes. This numerical model was shown by Cox et al. (1994) to agree fairly well
(within about 20% errors) with the free surface measurements in the swash and
inner surf zones using ten wave gages, partially buried in the sand, in a large wave
flume. Similar results were also observed from the measurements by Raubenheimer
et al. (1995) using a vertical stack of five runup wires supported parallel to a gently
sloping natural beach. Karjadi and Kobayashi (1994) and Kobayashi and Karjadi
(1994a) modified this model to predict solitary wave breaking, runup and reflection.
The existing one-dimensional model is expanded herein to predict the cross-shore
and temporal variations of the free surface elevation, the alongshore and cross-shore
fluid velocities in the swash and surf zones under obliquely incident waves. The

expanded numerical model is formulated unlike that of Ryrie (1983) such that it is



applicable to beaches of arbitrary geometry under obliquely incident random waves.

To reduce computational efforts considerably and to eliminate difficulties as-
sociated with lateral boundary conditions for general two-dimensional computations,
the assumptions of small incident angles and slow alongshore variations are made.
These assumptions enable the model to compute the alongshore velocity separately
after the free surface elevation and the cross-shore velocity are computed using the
one-dimensional model along at least three lines normal to the shoreline. On the
other hand, because of these assumptions, the numerical model expanded herein
cannot be used to predict edge waves (e.g., Bowen and Guza 1978; Huntley el al.
1981), which appear to play an important role in the generation of rhythmic beach
morphology (e.g., Holman and Bowen 1982). Furthermore, rip currents (e.g., Dal-
rymple 1978) and shear waves (Bowen and Holman 1989; Oltman-Shay et al. 1989)

are beyond the capabilities of the expanded numerical model.

1.2 Outline of Report

In Chapter 2, the governing equations employed in the expanded numerical
model are derived from the three-dimensional continuity and Reynolds equations
(e.g., Rodi 1980) in a manner similar to the derivation of Kobayashi and Wurjanto
(1992) of the approximate one-dimensional equations from the two-dimensional con-
tinuity and Reynolds equations.

The approximate three-dimensional equations under the assumptions of shal-
low water waves on a relatively gentle impermeable slope with small angles of in-
cidence are derived from the three-dimensional continuity and Reynolds equations.
The approximate three-dimensional equations are then integrated over the water
depth to obtain the depth-integrated continuity and horizontal momentum equa-
tions. In this study, two numerical models are developed. The first model is based
on the approximate two-dimensional equations that neglect the dispersion terms due

to the vertical variations of the horizontal velocities. This model is simply referred



to as the 2D model. The second model, based on a cubic profile of the horizontal ve-
locities, includes the dispersion terms due to the vertical variations of the horizontal
velocities. For brevity, this quasi-3D model is referred to as the 3D model.

The numerical procedures to solve the governing equations with appropriate
initial and boundary conditions are explained in Chapter 3. For the 2D model, the
governing equations for the cross-shore wave motion for small angles of incidence,
which are the same as those of the one-dimensional model, are solved using the
Lax-Wendroff method in the same way as the one-dimensional model developed by
Kobayashi et al. (1987, 1989). For the longshore motion in the 2D model and
for both the cross-shore and alongshore motions in the 3D model, the MacCormack
(MacCormack 1969) finite difference method is selected because of its simplicity and
success in the computation of unsteady open channel flows with hydraulic jumps
(Chaudhry 1993).

In Chapter 4, the 2D numerical model is compared with laboratory data
of Visser (1991) and field experiment conducted by Thornton and Guza (1986) at
Leadbetter beach in 1980. The comparisons indicate that the 2D model predicts
the maximum setup and runup fairly well although the model does not predict the
transition zone of constant wave set-down. Also for regular waves the model cannot
predict the longshore current profile since the model does not include the disper-
sion due to the vertical variation of the horizontal velocities. For irregular waves,
the model predicts the root-mean-square wave height and longshore current fairly
well. This implies that the effects of the dispersion on the longshore current under
irregular waves are negligible as already concluded by Thornton and Guza (1986).
The model predicts large cross-shore and alongshore velocities near the shoreline
and very low-frequency oscillations of the depth-averaged alongshore velocity. The
causes of these results are also examined in this chapter. The summaries of these

comparisons were published by Kobayashi and Karjadi (1994b, 1996).



In Chapter 5, the 3D model is compared with the same regular and irregular
wave data as the 2D model to assess the importance of the added dispersion terms.
These limited comparisons indicate that the significant improvement due to the
addition of the momentum flux corrections associated with the vertical variations
of the horizontal velocities is essentially limited to the cross-shore profile of the
longshore current induced by regular breaking waves. The effects of the dispersion
terms on wave height, setup and runup are shown to be secondary. The 3D model
is also shown to predict the vertical shape of the longshore current inside the surf
zone but not outside the surf zone. The summary of Chapter 5 will be published by
Kobayashi, Karjadi and Johnson (1997).

Chapter 6 discusses the application of the 3D model to a barred beach. The
model is compared with the DELILAH field data of Smith el al. (1993). The mea-
surements of longshore current on the barred beach during the DELILAH experiment
generally indicated a broad peak in the bar trough region. The 3D model cannot
explain this data under the assumption of alongshore uniformity. Low-frequency
components and alongshore variations of incident irregular waves are examined fo
explain the broad peak of the longshore current. The longshore current profile on
the barred beach is then shown to be sensitive to the alongshore variability unlike
the longshore current profile on the plane beaches examined in Chapters 4 and 5.
The summary of Chapter 6 will be published by Karjadi and Kobayashi (1996).

The summary and conclusions of this study is given in Chapter 7.

§



Chapter 2

MATHEMATICAL FORMULATION

The equations that govern the obliquely incident wave mofions on an imper-

rl"!

meable slope are derived and discussed in this chapter. The approximate governing
equations under the assumptions of shallow water waves with small angles of in-
cidence are derived from the three-dimensional continuity and Reynolds equations
(e.g., Rodi 1980). This derivation is similar to that of the one-dimensional equa-
tions from the two-dimensional continuity and momentum equations proposed by
Kobayashi and Wurjanto (1992).

The notations used in the following analysis are depicted in Figure 2.1. The
angle of wave incidence is . and will be assumed small. The other symbols shown in
this figure will be explained in the subsequent derivation. The model is formulated
in such a way that it will be applicable for beaches with arbitrary geometry under

obliquely incident regular or random waves.

2.1 Approximate Three-Dimensional Equations

The three-dimensional continuity and Reynolds equations are (e.¢., Rodi

1980)
o',
5 =10 21
H:r:- (2.1)
du,  , oul L ap 1 07/,
s+ = e g o — 2:2
v TG~ p s 9T, B (22)



where the prime indicates the physical variables and the summation convention is
used with respect to repeated indexes. The symbols involved in (2.1) and (2.2) are

depicted in Figure 2.1 and explained in the following:

\ H!’T!

> X5(y')

0c

x{& (z') p'= pressure
p = density (constant)

SWL

> X (x')

Figure 2.1: Definition sketch for obliquely incident wave motion on an imperme-
able slope.



t' = time

o = horizontal coordinate normal to the overall shoreline orientation,
taken to be positive landward

x!, = horizontal coordinate normal to z}

@l = vertical coordinate taken to be positive upward with 2, = 0
at the still water level (SWL)

wy = horizontal velocity in z) direction

why, = horizontal velocity in &, direction

uy = vertical velocity

p = fluid density, which is assumed constant

p' = pressure

g = gravitational acceleration

d;3= Kronecker delta

/= sum of turbulent and viscous stresses

Assuming that the viscous stresses are negligible, 7/,

ij
(e.g., Rodi 1980)
oul O 9

ozl

may be expressed as

where
v, = turbulent eddy viscosity
k' = turbulent kinetic energy per unit mass
To simplify (2.1) and (2.2) together with (2.3) in shallow water, the dimen-

sional variables may be normalized as

£ g % 4

= — : = [yg= " ' 4= — 2.4
I o T'(gH")2 7 ke T'(gH")'2[0, T (24)

)} (8 s P ’
e b 3 Mg 3 e - 95
MEGEHYE 0 T gz T P o= B8
V: k! 7;;(9”:)1;2 S
— . 2 = X = e p (
" H2 [T ok H'(gHNY2[T" ¢ H (2.6)
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where T, H" and 0, are the characteristic wave period, height and incident angle in
radian used for the normalization. The parameter o defined in (2.6) is the ratio of
the cross-shore length scale to the vertical length scale. The normalized variables
in (2.4) and (2.5) are assumed to be on the order of unity in shallow water. The
normalization of v| and k' in (2.6) is based on the turbulence measurements in a
wave flume by Cox et al. (1994), which have indicated that », and k are on the
order of unity or less inside and immediately outside the surf zone, respectively.
Substituting (2.4) and (2.5) into (2.1), the normalized continuity equation

can be written as

F)‘U.] - ('}‘H.z f)u;;
kel TR ) I [t T ke SR 2.1
day + (0c) Oy T Ows 0 (2.7)

Substituting (2.4), (2.5), and (2.6) into (2.2) and (2.3), the horizontal momentum

equations are given by

duy Oy p Oy ”;6:;] ~dp " 0 lL (zhdul) _fi}
a

. wy— + U g : . .
ot Oy “ T 0a, Ozs Oz = Oy Oxq 3o

0* o Ouy  Oug 13 iy 1 Jus _
o — —_— 2.8
+ 0'2 ('j(lf?' |\H£ ((’).'"2 * f)&fl + {"):?f;j . IF’}.'?:;'; —f_ (72 l;}f?_f| ( )
and

%—1—:,%4-02 Oy Juy  dp 1 0 lf’ (()N.g ()m)]

Un— = — ——T
ot day e T 3(3171 dr, 0% 0x, dxy  Oxg

o |0* [ Ouy 2k J ()u,z O {
+du [ (z”d:g) 30] +Elut(f};rr o? f)]'g)] (28)

whereas the vertical momentum equation is given by

1 [ Ous Jus Ot Dt J
BB et 02uy— —_— g
o? ( dt = Oxy o dry == u.}d'I 3 dxy (p+3)

1 a 1 Ous % Dy o5 0% 0 1 Jusy % Oy
ol L P e PO i 7Y e W
+r:l'2 Oaq & ctdry  Oxs o2 Oz, ' g o?dxy  Oua
o |1 Jug 2k & F
T [;‘ (Qa—) B 55] (2.10)

Under the assumptions of 0% > 1 and 0* < 1 for shallow water waves with

small angles of incidence, the terms on the order of ¢72,0% and smaller in (2.7),

10



(2.8), (2.9), and (2.10) may be neglected. The normalized continuity equation (2.7)

may thus be simplified as
OJuy  Oug
i e 2.11
day * dxs ( )
The normalized horizontal momentum equations (2.8) and (2.9) with z = 1 and 2

may also be simplified as

81.‘,5 81..-‘.5 r?m J 2 k fJ’T,'
- —tUug— = —— = — 2.12
ot Tt Oy i Das dua; B 3o Dxy ( )
with
Ou;
L=V — 2.13
= Oy ( )
and the normalized vertical momentum equation (2.10) is simplified as
0 2 k .
0=——r— T3+ — — 2.14
Oxy (?] T 3 J) ( )

The symbols 5" and d’ in Figure 2.1 represent the free surface elevation above
SWL and the water depth below SWL, respectively. Their normalized counterparts

are given by
! !
W
=75 d= ViE

where H’ is the characteristic wave height used for the normalization.

(2.15)

To further simplify the governing equations, the approximate three-dimen-
sional continuity and momentum equations derived above will be integrated over
the water depth using the kinematic and dynamic boundary conditions at the free
surface and bottom. The kinematic free surface and bottom boundary conditions
require that the total derivative of any fixed or moving surface with respect to time
is equal to zero on the surface (e.g., Dean and Dalrymple 1984). The kinematic free
surface boundary condition is expressed as

oy, 0y , On' g ; ’ :
—duy— tu— —u, = 0 atl za =1 2.6
A R ™A = iy

whereas the kinematic bottom boundary condition is
, od' , od'

Uy~ Uy—r
Lozt ‘0z,

+uy, = 0 at a4 = —d' (2.17)

L1



Substitution of (2.4), (2.5) and (2.15) into (2.16) and (2.17) yields

o 0 I |
d_: + 151% + Hfu-z?)i —uz = 0 at w3 =1 (2.18)
and
dd , Od |
?‘lﬁ z Hf”zﬂ +uz = 0 at 3 =—d (2.19)

For 0% < 1, these boundary conditions may be simplified as

9 ) |
::)_:: iy (;—:l — Uy = () at Ta = 1) (22{])
and
d |
thy ,(—( +u3 = 0 at 3= —d (2.21)
d.’If-]

‘or the dynamic boundary conditions at the free surface x5 = ), the tangen-
tial and normal stresses at the free surface are assumed to be zero, which can be

shown to result in

7:.=0 with 1=1,2 at z3=79 (2.22)
and
P+ % =0 at w3 =1 (2.23)
3o

as explained in the following.

Figure 2.2 shows the surface stresses acting on an infinitesimal fluid element
with area ABC=dS, area OBC=dS;, area OAC=dS,, and area OAB=dS;. The
total stress on the surface dS is %' = (X,%5,%,) and the unit normal vector

perpendicular to dS is @i’ = (n),nf,nk).

According to Gauss theorem (e.g., Greenberg 1988):

/// V.AdV = ]/ A.n'dS  for any A (2.24)
Jv Js

With A=constant, the equation becomes

// n'dS = 0
JJs
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where

S = sum of dS,dS;,dS,, and d.S;

- . . 1 n ] - -y
n! = positive outward from dS, dS;, dS;, and dS;

2
Ty~ 0
X5 .
8=(0,0,1) T
) X
c Tz |’I:' b 1
22"
X5
Ty~ P
8= (0,1,0) |
o = Ty
B X‘z I;B Té p' XI.I
,l L
& =(1,00) %
1= LM / A T, p
) ;
T
o X2

Figure 2.2: Surface stresses acting on fluid element.

Hence
—4 - ~ o — v
wdS —ée'dS; — ey dSy — é3'dS; =0
from which dS; = n} dS, dS; = n},dS, and dSs = n’,dS.

Using these relationships, the force balance on fluid element OABC is given by

a) — direction :  —(7; — p')dSy — 7{,dS; — T{3dS3 + X1dS =0
ah — direction :  —7y,dSy — (159 — p')d Sy — T34dSs + X5dS =0
ot — direction 1 —74,dS) — T4,d Sy — (143 — p')dS5 + 4dS =0
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which can be rewritten as

' ! T o PR 1 ! ! T
¥y = (TH — p')ny + Tigns + Tially
! / ! ! ! ! ! !
Yo = Tyny + ('7'22 — p')ng + Tyany
g ) /! ! ! ! s i I
Ty = Tayny + TagMg + (733 — P')ng

¥
1[ -+ VF t o f 1‘1"("! O f’) - U
with 7 = -——- TIor surface Xy, Ty, Ty, ) =

[V E|
For the free surface F" = z — 9'(2},25,1") = 0, the gradient of the free surface,
VI, is given by
an' oy : :
= (2oL, 2L 1)

oz’ Oxl)’ ) o0z, o 0zy

il L ﬂ ’ a_lf. .2?_!_. ’
L= [02 (6.‘12] +f72 day il

Hence, under the assumptions of % > 1 and 6* < 1, the unit vector 7’ is given by

VI =

and

o A SR 4 [ A 2 S I (}” 0.‘.’ ()?f J_
= (n"l 1 12, ?"‘3) = (__r_; e Wy
ocdry’ o Oy

The conditions of zero tangential and normal stresses at the free surface thus lead

to

1 dy , 0. dn
0 = (_'_—”) (114 — }”;) + (_;R) "‘"{z + T::s

o dry
L any ., 0. On 2 ; ;
0 = (_;51_1) Ty + (_;E (722 = P') + 723
L dn 1 dn
0 = (_;E) Tap + (”;E) Taa + (735 — 1)
Normalization of the above equations using (2.3), (2.4), (2.5), (2.6) and (2.15) yields
1 dy 1 Oy 2 0. on \ 0. duy  Ouy
= | —— = — =k — e || i — —_—
b ( Jf);a:-,) lcr (2yt 8:'::1) 3 crp] * ( o day o Dy ® dxq

v (@1 % I—@) (2.25)

Jrs o2 day




1L an\ 0. Juy  Ouy 0. on 0% gy 2
( o r'):::l) o i (?)w, T Oy ] ocdxy) | o " dxy Sk e

Oty 1 Oug _
0. — = 2.26
Hoe (r’);z:;; o? l’r):l?z) (2.26)
1 dn | Ous Owuy 0. oy Il Qug  Juy
Bos [ mma il g e et et Vol [ e e
( a 0:1:1) % (rfz 04 + 3:1:3) i3 ( o dxg e ot duy + Oy
L (. Oug 2 o
-I-; (ZVL U.‘I:g) — -:_;F.. —op (2:27)

Neglecting terms of the order (o72%), (0?) and smaller, (2.25), (2.26), and (2.27) may

B L dy 2, Juy |
0 = ( o‘a:n]) ( 3;‘ O'.?J) + 1 (E) (2.28)

be simplified as

, 1 oy 2 dus
U = |=—g— —=k - ) e 2.29
( aamg) ( 3°  oBf (r’):z:;;) (2:29)
9
0 = —§k—crp (2.30)
Equation (2.30) corresponds to (2.23), while substitution of (2.30) into (2.28) and

(2.29) gives the normalized boundary conditions at the free surface x5 = # given by
(2.22) with (2.13).
Integration of the vertical momentum equation (2.14) with respect to x5 using
(2.23) yields
2k

p=1—a3— — (2.31)
3o

which shows that the pressure is approximately hydrostatic below the free surface
elevation i where k is on the order of unity or less and o is relatively large to satisfy
o? > 1. Substituting (2.31) into (2.12), the horizontal momentum equations are

rewritten as

Ou; Ou; O, an & oT; (2.32)
=t Uy = ol
ot : (J:??] 2 d:?fy, Cj.’l’f; d.‘l-’g

with 1 = 1, 2.



The approximate continuity equation (2.11) and the approximate momentum
equations (2.32) are integrated vertically to further simplify the governing equations

in the following.

2.2 Depth-Integrated Equations

To reduce computational efforts significantly, the approximate three-dimen-
sional continuity and momentum equations are integrated over the water depth. The
depth-integrated continuity equation is obtained by integrating (2.11) with respect
to x5 from the bottom, which is assumed to be fixed and impermeable, to the free
surface. Applying Leibniz rule (e.g., Greenberg 1988) and the boundary conditions

given by (2.20) and (2.21), the depth-integrated continuity equation is

o ( ) —d
: fi uy dzs — [;lul — u:::l - [( E : )'u,l + u;;} =0
Ti=n

Oz J-d 4 iy

za=—d
,

' i

=—21 (2.21) =0 (2.20)

and can be rewritten as
ah 0{)(1 h
ot day

=0 (2.33)

with
h(t,z1,2q) = n(t, z1,z2) + d(21, 22)

and

Uik = / "y des (2.34)

('3
The depth-integrated horizontal momentum equations are derived in the fol-

lowing. By use of (2.11), the horizontal momentum equations (2.32) can be rewritten

as
Juy  Oui  Ouyug dn O
ot dxy Oy Oxr, Oxa
and
Ouy  Ougy  Ougils an a1y
ot dxy Oy Oxy  Oxy
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Integrating the above equations with respect to 23 from the bottom to the free
surface and applying Leibniz rule and the boundary conditions given by (2.20),

(2.21), and (2.22), we obtain

oUh " 0 /’1 24 on 4 n d
Yem— ; Ta — |U e U1 —— — Uy =i ; — — s
Bt | Bz, g1 ST " | . e e e .y

g o'

=0 [(2.21)] =0 [(2.20)]
o ;
—hﬁ Ts1 —Th1 (2.35)
=0 [(2.22)]
fﬂfgh_}.i/ﬂ o dr 1 @‘F ﬂ — |4 ﬂ_
ot Bxy Ja T o T 0 )] T 1 e T )L
=0 [(2.21)] =0 [(2.20)]
= —h'()l + Ts2 —Th2 (236)
. —~~

=0 [(2.22)]
Rearranging the second term on the left hand sides of (2.35) and (2.36), the depth-

integrated horizontal momentum equations are given by

ag:h i % 10U+ [ (= U3 = U) o] = _,r,%; mp (238)

with
= %/:; uy dy = depth-averaged value of u, (2.39)
Ug = ]—! :; ty dzy = depth-averaged value of u, (2.40)

In the following, the depth-integrated continuity equation (2.33) and the hor-
izontal momentum equations (2.37) and (2.38) are rewritten using the conventional
notations of * = x1,y = @y, u = uy,v = uy, U = Uy, V = Uy, 1 = 1, and 7y = 732

dh 1 7]
el o

(hU) = 0 (2.41)
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J 9, . an
— (R + —(BI* 4+ m) = —h—"—T
f)'t(M )+ Hm(h(_ +m) h 5 Tt (2.42)
J J dn :
— WU 1) = —h—— 2.43
(,ﬁ(hV) + (,)m(.-’s{. V +n) h By The (2.43)
with
n .
m = / (u—U)*dz (2.44)
—d

n o= / " (w—U)(v = V)dz (2.45)
{

=
The dispersion terms m and n defined in (2.44) and (2.45) express the cross-shore
and alongshore momentum flux corrections due to the vertical variations of u and
v, respectively. The dispersion terms result from the vertical integration of the
horizontal momentum equations (e.g., Rodi 1980). It is noted that (2.41) and (2.42)
with m = 0 are the same with those used previously for predicting the setup and
runup of normally incident waves (e.g., Kobayashi and Wurjanto 1992).

For the case of small angles of incidence, #* < 1, the dominant cross-shore
fluid motion computed using (2.41) and (2.42) is not affected by the secondary
longshore fluid motion varying more slowly in the longshore direction. Furthermore,
the variations in the y-direction appear only in the term d7/dy in (2.43) and along
the seaward boundary of the computation domain. The alongshore momentum
equation (2.43) is more sensitive to the gradual alongshore variability. In short, the
assumption of #* < 1 reduces computational efforts considerably and eliminates
difficulties associated with lateral boundary conditions for general two-dimensional
computations.

In this study, the numerical model is developed in two stages. First, the
dispersion terms due to the vertical variations of the horizontal velocities u and v
are neglected by setting m = 0 and n = 0. This 2D model is the extension of the
previous one-dimensional model where the predicted horizontal velocities are the
depth-averaged velocities only. In the second model, the dispersion terms m and n

are included. The vertical profile of u and v is assumed to be cubic on the analogy
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between turbulent bores and hydraulic jumps. For brevity, this quasi-3D model is

referred to as the ‘3D model’,

2.3 2D Horizontal Time-Dependent Model

As mentioned before, (2.47) and (2.48) with m = 0 are the same as the
equations used previously for the one dimensional model of Kobayashi and Wurjanto
(1992). They stated that the approximation of m = 0 might result in an error on the
order of 10%. Their numerical model is extended herein to two horizontal dimensions
using the approximation n = 0. This is equivalent to neglecting the dispersion terms
arising from the unknown verfical variations of the horizontal velocities. The depth-
averaged alongshore velocity V' is computed using (2.43) for the known values of U/
and h computed using (2.41) and (2.42).

For the 2D model, the physical bottom shear stresses 7j, and 7, are assumed

to be expressed as

e = spf R (VR U (2.46)
= s+ (VR v (2.47)

where f] is the bottom friction factor based on the depth-averaged velocities (e.g.,
Kobayashi et al. 1987, 1989). The value of fi specified as input is allowed to vary
spatially to accommodate the spatial variation of bottom roughness (Kobayashi and
Raichle 1994). Normalization of the bottom shear stresses according to (2.5) and

(2.6) with (2.13) yields

1 — o
T = Erffb’\/(r’?+0£1/‘f U (2.48)
Ty = Qaj{.\XU‘UerW 1% (2.49)

For 0? < 1, the normalized bottom shear stresses are simplified as
i = BlIOW § =s=5IUIV (2.50)
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with

. |
fo= Ea_f; (2.51)

2.4 Quasi-3D Time-Dependent Model

In this quasi-3D model, the dispersion terms m and n are included to account
for the dispersion effects due to the vertical variation of the horizontal velocities
w and v. Two new equations for m and n are derived from the corresponding
three-dimensional shallow-water momentum equations (2.32) using the algebraic
procedure based on the method of moments.

In this model, the bottom boundary layer is not analyzed explicitly and the

normalized bottom stresses for 2 < 1 are expressed as
.

Tha: = fhl'fibluh po Thy = fh|'-'£|[,|??|[, ; j'b = EU.II: (252)
in which u, and v, are the normalized cross-shore and alongshore velocities immedi-
ately outside the bottom boundary layer, respectively, and f; is the bottom friction
factor based on the near-bottom velocities 1, and v, and is not exactly the same as
the bottom friction factor f] used in (2.46) and (2.47), although the same notation
is used for simplicity. For normally incident waves, the quadratic friction equation
in the forms of (2.50) and (2.52) was shown to relate the bottom shear stress and
near-bottom velocity measured inside the surf zone within a factor of two (Cox et
al. 1996). The bottom friction factors based on the depth-averaged velocity and
the near-bottom velocity were also found to be approximately the same within the
accuracy of the measurements (Cox et al. 1996).

To derive the equation for m, the three-dimensional momentum equation
(2.32) with 7 = | multiplied by u is integrated from the bottom z = —d to the free
surface z = 5. Applying the kinematic boundary conditions (2.20) and (2.21) at the

bottom and the free surface, respectively, yields

d [ ou? o (mu® dan n O, .
Ll ln __—[ E de=puY e 9.53
Jat ./—d 2 ¢ ¥ 9z Ja 2 Bl dx * La¥ B (253
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The integrated equation (2.53) is then simplified using (2.41) multiplied by 7 to ob-
tain the depth-integrated instantaneous wave energy equation derived by Kobayashi
and Wurjanto (1992)

oKL 0
: —(Ep)=—-D 2.54
ot L d:r:( ) ( )

The specific energy E defined as the sum of kinetic and potential energy per unit

horizontal area is given by

o L7y . B
E = 5 (?; + hU* + m) for d>0
L ; g
B o= g0t =&+h0*+m)  for d<0 (2.55)

in which the potential energy is taken to be relative to the potential energy in the
absence of wave action with SWL at z = 0. The energy flux g per unit width is
expressed as

Ep =nhU + %(hUg + 3mU + m3) (2.56)

with ms = kinetic energy flux correction due to the third moment of the velocity

deviation (u — U) over the depth given by

7 .
my = / (u—U)’dz (2.57)
b

i

The energy dissipation rate D per unit horizontal area in (2.54) is given by
= Ty—— dz (2.58)

where use is made of 7. = 0 at z = 5 and no-slip condition u = 0 at z = —d. With
the assumption that there is no interaction between the bottom boundary layer and
the region above it, the energy dissipation rate D is separated into D; and Dg
(Kobayashi and Wurjanto 1992) where Dy is the energy dissipation rate inside the
bottom boundary layer and Dg is the energy dissipation rate outside the bottom
boundary layer due to wave breaking.

gy = 9
5 s A :f o +/’ n:;)—‘fdz (2.59)

Ta 7 A2
—d z

— 45y
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The thickness of bottom boundary layer, d;, is assumed to be much smaller than
the water depth h = (n + d).

It has been mentioned before that in this model the bottom boundary layer is
not analyzed explicitly. The energy dissipation rate Dy inside the bottom boundary

layer may be approximated by (Jonsson and Carlsen 1976)
Df = Tha:lp (2(1[})

By use of (2.13), the energy dissipation rate outside the bottom boundary layer due

to wave breaking Dpg is rewritten as

= 1/ [ o A I

where the lower limit z = —d of the integration should be interpreted at the elevation
immediately outside the bottom boundary layer.

Rearranging the instantaneous wave energy equation (2.54) with (2.55),
(2.56), (2.59) and (2.60), and by use of the depth-integrated continuity equation
(2.41) and the depth-integrated momentum equation (2.42), the equation for the
cross-shore momentum flux correction m is derived as (Kobayashi and Johnson

1995)

riji; + (,;l? (3?'H,U —I- TIb:j) =2 (U((';%” s T{,w'i},b o DB) (262)
with
ﬂ-b = Up — U (2‘63)

in which 1, = near bottom cross-shore horizontal velocity correction due to the ver-
tical variation of the cross-shore horizontal velocity u outside the bottom boundary
layer.

To derive the equation for n, (2.32) with = 1 multiplied by » and (2.32) with
¢ = 2 multiplied by u are added and integrated from z = —d to z = 5. Applying the

kinematic and dynamic boundary conditions at the free surface given by (2.20) and
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(2.22), respectively, and the kinematic condition (2.21) and the no-slip condition at

the bottom yields

a (n a [ an dn n v ou ,
cid by o e R, W i / o e S T, o
et [—d WSS Wae oy~ L (T"f):: . f):.;) de (A84)

which can be rewritten as

d —(hUV +n) + —(hU"‘V +2Un+Vm+n3) =

ot
on an U v du
—1 — hl — — S — | dz 2.65
lVa’)‘r : dy /_ (T (()L T’f):) 4 (4.69)
with
ng = ! (u—U)(v—V)dz (2.66)

—d
where m and n are defined by (2.44) and (2.45), respectively.

On the other hand, the addition of (2.42) multiplied by V, (2.43) multiplied

by U, and (2.41) multiplied by (-UV) yields

d d om ()n an n .
hU RUPV) +V— + = —h hU— — Ve — Unyy, (267
()f(? Vi O 5\ )+ O dr. .'V(){ Ay e oy (267)
Subtracting (2.67) from (2.65), the equation for the alongshore momentum flux
correction n is obtained as
on 0 dam on
2U V - U
5t * 55 2Un+Vm ) = VE —Ugs

?r () )
= VT + UTpy — / 1 (n,% -+ T_,,%) dz (2.68)

Similar to (2.59) and with the assumption of a thin boundary layer, the last

term on the right hand side of (2.68) may be approximated as

v [ v ou Bl . O '
/ ( ko i) dz > TppVp + ToyUs + (’ﬂ% ‘1 Ty;-)_”) dz (2.69)

Tew— Tu P
—d Jz "z =,

= ol
outside bottom

inside thin bottom
boundary layer

boundary layer

By use of (2.13), (2.63) and (2.69), (2.68) can be rewritten as

an )‘ dm ou . o
e + (NU +mV 4+n3)=V P e — UpThy — WpThy — 2Dy, (2.70)
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with

i = vp—V (2.41)

D /‘! du dv ; (272
= )y — — dz .

® J—d f!‘az (':?:: . )

in which 9, = alongshore horizontal velocity correction due to the vertical variation
of the alongshore horizontal velocity » immediately outside the bottom boundary
layer.

Since the thickness of the bottom boundary layer is assumed to be much
smaller than the water depth h = (n 4 d), the lower limit z = —d of the integration
in (2.61) and (2.72) should be interpreted at the elevation immediately outside the
bottom boundary layer. The contributions of the boundary layer flow, which must
satisfy v = 0 and v = 0 at the bed, to the second moments m and n given by
(2.44) and (2.45) and the third moments ms and ng defined by (2.57) and (2.66),
respectively, are assumed to be negligible.

To obtain h,U,V,m and n using (2.41) — (2.43), (2.62) and (2.70), the vari-
ables 1wy, vy, ma, na, Dg and D, need to be expressed in terms of these five unknown
variables. As a first attempt to deal with this closure problem, the instantaneous
horizontal velocities u and v outside the bottom boundary layer are assumed to be

expressed as

w(t,z,y,z) =U(t,z,y) + w(t,z,y)F(C) (2.73)
and
o(t, 2,9,2) = V(b 2,5) + Tt 2, y) F(O) (2.74)
with
z+d(z,y)
= —— 2.75
¢ h(t,z,y) i
in which F is assumed to be a function of ( only, with ( =0 at z = —d and ( =1
at z = 5. The definitions of @, and ¥, in (2.63) and (2.71) require I = 1 at the

24



bottom ¢ = 0. Furthermore, the dimensional turbulent eddy viscosity v outside the

bottom boundary layer is assumed to be given by

v, = (Ceh')

o’

az!

(2.76)

in which €y = mixing length parameter. The turbulence measurements inside the
surf zone by Cox et al. (1994) indicate that the mixing length parameter Cy is
on the order of 0.1. Accordingly, the eddy viscosity »; normalized in (2.6) may be

exp ressed as

v = aCFh? z_u (2.77)

Substitution of (2.73), (2.74), and (2.77) into (2.44), (2.45), (2.57), (2.61), (2.66)
and (2.72) yields

. i
m=Chii? ; n=Chiyd, ; Ci= [ F*d¢ (2.78)
J0O
1
mg = Cshit, ; ns= Cahiilt, ; Cs= / 3 d¢ (2.79)
0
© o2 |3 T R P Hdr|® .
Dp = CgaCjluy |> ; D, = CpaC} | w|twdy, ; Cp = / P d( (2.80)
S0 ( 5

in which the constants ('3, C3 and Cg can be found for the specified shape function

. To find 1 using (2.78) for the computed i = 0 and m = 0, it is assumed that

1
Sy o _(—C;;"h)’* for U >0
iy, = (%)* for U <0 (2.81)

to ensure that |u;| < |U| where uy = (U +1y) is the near-bottom cross-shore velocity
used in (2.52). After @, is obtained, then vy, = n/(Cyhi), vy = (V +03), and (2.79)
and (2.80) yield mg,ng, Dg and D,,.

Finally, the shape function F' needs to be specified. Svendsen and Madsen

(1984) assumed a cubic velocity profile for their analysis of a single turbulent bore



on a beach. For regular and irregular breaking waves on beaches, the following cubic

profile is tentatively assumed:
F=1-(3+07a){*+a® for 0<(<1 (2.82)

in which @ = cubic velocity profile parameter. Equations (2.73) and (2.74) require
that ' = 1 at ¢ = 0 and the depth-averaged value of [I' equals zero. Substitution
of (2.73) — (2.75) and (2.77) into (2.13) yields the shear stresses 7, and 7,. Equa-
tion (2.82) predicts zero shear stresses immediately outside the bottom boundary
layer in contradiction with the turbulence measurements inside the surf zone by Cox
et al. (1994). Moreover, the shear stresses at the surface are zero only if « = 4.
Consequently, (2.82) with the single parameter @ may not predict the shear stresses
accurately in the vicinity of the free surface and bottom. Comparison of (2.82) and
the cubic profile assumed by Svendsen and Madsen (1984) suggests that « is about 3.

Substitution of (2.82) into (2.78) — (2.80) yields the explicit expressions of

('y, (' and O in terms of a (Kobayashi and Johnson 1995).

G = 14 2b + a " b* L ab i a’ (2.83)
ST T S L TR o
Ja  3b% 3a? +6°  3ab® d*b &
Yy = et L e 2.84
Cs 8 bopopp e bk —— bbb (2.84)
< 36ab? 27a*
By == = (zfﬁ+ LT 7”’) (2.85)
5
where b = —(3+0.75a) (2.86)

For the range of @ = 3 — 4, the assumed cubic profile I is not very sensitive to the
parameter a. Furthermore, C'; = 0.49 — 0.55, Cs = -0.07 - 0.00, and C'g = 12.3 — 15.2
for @ = 3 — 4. The computed results using €y = 0.1 = 0.2 in (2.80) and @ = 3 — 4 in
(2.83)-(2.85) are found to be very similar (Johnson et al. 1996). The typical values
of )y = 0.1 and a = 3 are hence employed for the 3D computed results presented

in Chapters 5 and 6.
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2.5 Time-Averaged Continuity and Momentum Equations

The time-dependent models based on the depth-integrated continuity equa-
tion (2.41), the depth-integrated cross-shore momentum equation (2.42), and the
depth-integrated alongshore momentum equation (2.43) allow us to compute the
oscillatory and mean components of the water depth h, depth-averaged cross-shore
velocity U/, and depth-averaged alongshore velocity V. The time-averaged quantity

denoted by an overbar is defined as

P - % / M) di (2.87)
tend — tlmgin Lhegin
where
M = computed time-varying quantity at given location
lhegin = normalized time when the time averaging begins
tena = normalized time when the time averaging ends

The time-averaged continuity equation derived from (2.41) is given by
RU =0 (2.88)

which satisfies the condition of no flux into the impermeable beach. The time-
averaged cross-shore momentum equation derived from (2.42) with the assumption
that mn = 0 and f, = 0 is similar to the conventional equation used to predict wave
setup (Kobayashi et al. 1989). The time-averaged alongshore momentum equation

corresponding to (2.43) can be written as

Jd on woy 1 85w
B e B e i 2.89
oz Y du Ty Lr]y 2 Oy(?Jr ) ( )
with
Sy = HlUV (2.90)

If the mean and variance of the free surface elevation  above SWL do not vary in

the alongshore direction, (2.89) is similar to the conventional alongshore momentum



equation in which /' ~ 0 is assumed and the dispersion term 7 is expressed in the
form of lateral mixing (e.g., Longuet-Higgins 1970). In this study, n = 0 for the 2D
model and n is explicitly computed using (2.70) for the 3D model. The term S,
given by (2.90) may be regarded as the alongshore radiation stress (e.g., Thornton

and Guza 1986) where S,, ~ (U —U)(V = V) for U~ 0 and AU = 0.

2.6 Time-Averaged Energy Equation

The time-averaged cross-shore energy equation corresponding to (2.54) and
(2.59) is given by
AE + ﬁ(m W, W, - (2.91)

with
E(ﬂ = f’cnd) - E(f = tl—n:gin)

iﬂlll] = f‘lnﬂgiu

AE =

(2.92)

For regular waves, AE defined by (2.92) is zero because of periodicity, whereas for
irregular waves, fpegin and te,q are chosen such that AF is negligible to obtain the
time-averaged energy equation for a stationary sea state. As a result, AF can be
deleted from (2.91) but is included for completeness.

In the previous one-dimensional model and the present 2D model, Dg is
calculated using (2.91) because these models do not include any physical dissipa-
tion mechanism associated with wave breaking. For the 3D model, the values of
I2, Epy Dy and Dpg are computed using (2.55), (2.56), (2.60) and (2.80), respec-
tively. The time-averaged energy equation (2.91) will be used to check the degree
of numerical dissipation in Chapters 5 and 6.

Equations (2.61) and (2.62) give Dg = 0 if u is independent of z so that
w = Uy = 0,m = 0, and ms = 0. This proves that the energy dissipation
due to wave breaking in the previous one-dimensional model and the present 2D
model based on the assumptions of @, = 0,m = 0, and my = 0 is solely numerical

(Kobayashi and Wurjanto 1992). The normalized energy dissipation rate Dg due



to the vertical variations of 7,, and u outside the boundary layer as given by (2.61)
is the same as the dissipation rate due to breaking of normally incident waves used
by Svendsen and Madsen (1984).

In addition to the nonlinear shallow water equations used in this study, the
motion of waves in the nearshore region is also modeled using the Boussinesq equa-
tions. To include energy dissipation due to wave breaking in the Boussinesq equa-
tions, Zelt (1991) added a term corresponding to the term m in (2.42) and expressed
this term in the form of horizontal momentum diffusion with an artificial viscosity
that was calibrated empirically for breaking solitary waves. Schaffer et al. (1992) ex-
pressed the additional momentum fluxes similar to the terms m and n in (2.42) and
(2.43) using a simple surface roller model in which an empirical geometric method
was used to estimate the shape and location of the surface roller. However, Zelt
(1991) and Schéffer et l.992) did not check whether their computed results satis-
fied the wave energy equation. Consequently, the degree of numerical dissipation in

their computed results was not certain.
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Chapter 3

NUMERICAL MODELS

The governing equations for the 2D and 3D models are solved numerically
using two different numerical methods. The unknown variables for the cross-shore
motion in the 2D model are computed using the dissipative Lax-Wendrofl method
in the same way as the one-dimensional model explained by Kobayashi et al. (1987,
1989) since the governing equations for the cross-shore motion for the 2D model are
the same as those of the one-dimensional model. The alongshore motion in the 2D
model as well as the cross-shore and alongshore motions in the 3D model are solved
using the MacCormack method (MacCormack 1969). This method is a simplified
variation of the two-step Lax-Wendroff method (e.g., Anderson et al. 1984) and
has been applied successfully for the computation of unsteady open channel flows
with hydraulic jumps (e.g., Fennema and Chaudhry 1986; Gharangik and Chaudhry
1991).

The two models use the same coordinate system, boundary and initial condi-
tions as well as the specified incident wave train at the seaward boundary, although
the 3D model requires the additional conditions for the momentum flux correction
terms m and n. Figure 3.1 shows the finite difference grid of constant grid sizes Az
and Ay used to solve the governing equations (2.41), (2.42) and (2.43) numerically.
The cross-shore coordinate x is taken to be positive landward. The alongshore coor-
dinate y is positive in the downwave direction with y = 0 at the upwave boundary.

The cross-shore lines in Figure 3.1 are located at y = (1 — 1)Ay with2 = 1,2, ..., [
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where [ is the number of the cross-shore lines. The seaward boundary of the compu-
tation domain is located at @ = (0 along the y-axis. Along each cross-shore line, the
nodes are located at @ = (5 — 1)Az with j =1, 2, ..., J where J is the number of
the cross-shore nodes. The computational shoreline is defined as the location where
the normalized instantaneous water depth A equals a small value ¢ as in the previ-
ous one-dimensional model . The initial time ¢ = 0 for the computation marching
forward in time is taken to be the time when the incident wave train arrives at @ = 0

and there is no wave action in the region @ > 0 and y > 0.

incident

\ wave

 J
=<

moving

/ shoreline

Figure 3.1: Finite difference grid for the numerical models.
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The incident wave free surface elevation, n;(t,y), at © =0 and y = (z — 1)Ay
with 2 = 1, 2, ..., I needs to be specified as input to the numerical model. The
bottom profile along each of the I cross-shore lines needs to be specified as well
unless the bottom profile is assumed to be uniform in the alongshore direction. The
value of d = (h — n) is the normalized depth below SWL and is known for the
specified bottom profile.

In Chapters 4, 5 and 6, the 2D and 3D numerical models will be compared
with available data whose beach profile and incident wave conditions may be as-
sumed to be uniform in the alongshore direction. For this case, it is sufficient to
compute the unknown variables in the cross-shore direction along three lines at
y =0, Ay and 2Ay with / = 3 in Figure 3.1, and then compute the unknown vari-
ables involved in the alongshore wave motion along the center line at y = Ay. The
computed 7 along the three lines are used to ensure the alongshore uniformity of
the mean and variance of 5 appearing in the time-averaged alongshore momentum
equation (2.89).

It is also noted that even if the beach profile and incident wave conditions
vary gradually alongshore, the developed numerical models should be applicable for
the computation of the gradual longshore variations of the wave motion by choosing
a larger value of I, provided that lateral boundary conditions do not affect the wave
motion in the computation domain. However, computations for this more general

case have not been made yet and beyond the scope of this study.

3.1 2D Numerical Model
3.1.1 Summary of Equations
The equations used for the 2D model are summarized in the following. The

depth-integrated continuity equation (2.41) and the horizontal momentum equations
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(2.42) with m = 0 and (2.43) with n = 0 are rewritten as

oh 0,
—+ —(hU) = 0 3.
7t oz (3:4)
0 7] ; an
—(hU) + —(hU?) = —h— — T, 3.
g+l e 1)
J J ny
—(h —(hU = —h—— 3.3
ai(s\/)-l-ax(a V) Lay Thy (3.3)
with
5 . e
Tow = flUIU 5 7oy = KUV 5 fo= QO’f; (3.4)
The time-averaged alongshore momentum equation (2.89) with n = 0 is given
by
Jd T 3
,_SJ:’ :__; _}'____ —T 3.5
oz 7 ity L(}y 2 f)y(” ) (6}
with

Sy = ROV (3.6)

where overbar denotes time-averaged quantities defined in (2.87).

The time-averaged cross-shore energy equation (2.91) is given by

d T
AE + E(EF) =—=D;—Dpg (3.7)
with
oo Lo 2 P
B = 3 (?; + hU ) for d=>0
| . ;
E = 3 (n* = d*+hU*)  for d<0 (3.8)
Et:ten: "‘Et:tmin .
AE = ZE=tend) = BIE= toogin) (3.9)
tend — tlsﬂgill
1
Erp = ?;fe.{f+§(,’a(.f3) (3.10)
Dy = mU (3.11)

Dp is calculated using (3.7).
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3.1.2 Numerical Method for Cross-Shore Wave Motion

For the known values of h,n,U and V at the time level ¢ and at all the
nodes used in the computation, the values of these variables at the next time level
t* = (t + At), which is denoted by the superscript asterisk, are computed in se-
quence. The time step size At is allowed to vary in a manner similar to the existing
one-dimensional model where At is reduced in a semi-automated way whenever
numerical difficulties occur at the moving shoreline.

Since the governing equations of the 2D model for the cross-shore wave motion
with small angles of wave incidence are the same as those of the one-dimensional
model along each of the cross-shore lines, the values of 17 and U? at the node j with
j=1,2,...,s" are computed from (3.1) and (3.2) using the dissipative Lax-Wendroff
method in the same way as the one-dimensional model explained by Kobayashi et al.
(1987, 1989). The integer s* indicates the wet node next to the moving shoreline at
the next time level t*. The incident wave train ; specified at @ = 0 for each of the
cross-shore lines is the input to this cross-shore fluid motion computation.

The Lax-Wendroff finite difference method is discussed briefly in the following
for the subsequent comparison between this method and the MacCormack method
used to solve the alongshore momentum equation (3.3). The continuity and cross-
shore momentum equations (3.1) and (3.2) and (3.4) can be rewritten in terms of A

and ¢ = hU as follows:

dh  Oq

2 tg, = U 3.12
ot " dx 4 ( )
dq a (¢ K _ _ ~
TR N T = —Uh— T 7 14
ot u dx (h + 2 0h — fi|U] (3.13)

where 0 = J(—d)/dz is the normalized local slope.
Fquations (3.12) and (3.13) can be combined and expressed in the following

vector form:
du  JF
e B 3.14
ot + Ox t ( )
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where

q .
B e (3.15)
| b
] [ 2w
F=|"|=[*T2" (3.16)
| I q
N Oh + f,|U|U
G _ 1 _ ! lb[ | (317)
G 0

Using a Taylor series expansion, U* at the next time level t* = ({ + At) is expressed

as

dU (z,t) 4 (At)? 9*U(x,t)

U*(z,t + At) = Uz, t) + At i > 52

+ O (At)? (3.18)

The main feature of the Lax-Wendroff scheme of second-order accuracy in
At and Az is to express the temporal derivatives in (3.18) in terms of the spatial

derivatives. From (3.14), the temporal derivatives of U can be written as

Ju JF
ou _ _oF _ 3.1¢
ot dx @ (3.19)
and
’*u 0 JoF d (OF 0G
=—\|\-—=—-G|=—7 |7 | — 5~ 3.2
atr ot ( O ) A ( ot ) ot (3:20)
in which OF /0t can be expressed as
JF Jou JoF L
where ’
IF 2?_ (h, = ?;)
A e S e L3 b : ‘.r 3
90 : 5 (3.22)

By use of (3.12) and (3.13), 9G4/t can be shown to be expressed as

oG, dq L T oh dq :
- = —{/— 3 _ f——-——f"—'—--—{).—', j'f Dk
ot 03;':: 257 (Lt h)a.-,: ¢ 9z h = flUIL (8.28)



Substitution of (3.19) and (3.20) together with (3.21) into (3.18) leads to
F At): [ 0 i
U*=U - At [Q-+G]+(' ) l_(—{A(QJrG)]—ﬁ]JrO(AJ) (3.24)

D 2 dx dx ot
Using the finite difference approximations of second-order accuracy in Az, (3.24)

can be shown to be expressed in the following explicit form:

! A)?
U =U;— A [5(1?”, _Fi)+ AmGJ} P R e S T

1 2
with

Al o
A= & (3.26)

| X a4
g = E(Am + A;) [Fm =Xy 4 7(G.-i+1 + G;) (3.27)

PAY 3 —
SI-_;' _ Te; — (QJ+I qi— I) (3.28)
0
or e Uil ' hiyr — b

Qi1 — Q= : Q¢

U = 03y — ([)ilUs1U; (3.29)

The superscript asterisk indicates the quantities at the next time level t* = (£ 4+ At)
and the subscript j denotes the nodal location at z; = (j — 1)Ax.

The vector D; in (3.25) represents the additional term for damping high
frequency parasitic oscillations, which tend to appear at the rear of a breaking

wave, and is given by (Kobayashi et al. 1987T)

A
5 [Q;(Ujr — ;) — Qe (U — Uy )] (3.30)
with
|
Q; = pil+ 5ri(A; + Ajp) (3.31)

where I = unit matrix. The coefficients p; and r; are given by
1

pi = TP le1]@igr — &5l (Djpn + 2b5) — €albipr — ©il(ia + ¢5)] (3.32)
€1|djp1 — o5 — f'-'z|'fl’-i+l = '*1’;'| By

N = = - : - -.‘;.-.;3

% (ci+1 + ¢5) s
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with

e=vVh ; ¢=U+c ; p=U-c

where ¢; and e, are the positive numerical damping coeflicients on the order of unity.

3.1.3 Numerical Method for Alongshore Velocity

Along each of the cross-shore lines excluding the cross-shore lines at ¢ = 1

and I, the value of V* at the node j with j =1, 2, ..., s* is computed using (3.3),

- ] a 1 3 A el Fa X S8 A <} [ g - S ™| —— . . e * T— * ]
which is expressed in terms of ¢ = AV where g, = h;V; and ¢, = b}V,

dqr gV an
o = —~h— — fi|U|V 3.34
ot dz lf)gj hlUl ( )

This equation for ¢ is solved numerically using the MacCormack method (MacCor-
mack 1969). The use of the MacCormack method eliminates the algebraic manipu-
lations involved in the Lax-Wendrofl method to express the temporal derivatives in
terms of the spatial derivatives performed in (3.19), (3.20) and (3.21).

The MacCormack method consists of two steps, i.e., predictor and correc-

tor steps, with forward and backward spatial differences which are interchangeable

(Anderson et al. 1984). When applied to (3.34), the predictor step is expressed as

At(

qe; = qu; — Toa Ul19e4: — {.f__;-"qgj) — At (3.35)

« (O NI

&

for j = 1,2, ..., 8" where U! and h} have already been computed and UL, = 0
landward of the moving shoreline node s*. The term ¢, given by (3.35) is a tem-
porary predicted value at the next time level £*. The normalized bottom friction
factor f, given by (3.4) is allowed to vary spatially and (f;); is used in (3.35). The

corrector step of the MacCormack method is given by

3 . At e
9= 9= < (”_;‘ qe; — U.:‘—l‘ffs'—l) =

,, fj??* ; i -1 Sy
ki (ET)J + (fo); 1U; |, (hj-) (3.36)
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*

for j = 2, 3, ..., s*. Finally, the value of q;, at the node j and at the next time
level t* is computed from

* ]' 2 ; : £y * L
@, =5 (0 +ie) +D; forj=23,...,s (3.37)

with

e At [“

Ty i
D 2Ax

fi = Uil (a0 = 00) =107 = Ul (0~ @m)] (338)

where D; is the numerical damping term based on the procedure described in Richt-
myer and Morton (1967) and ¢, is the numerical damping coefficient. The term D;
is added to (3.37) except for j = s* and gz, =0 with j = (s*+ 1), ..., J landward
of the moving shoreline.

The term (dn*/0y); for the cross-shore line 7 in (3.35) and (3.36) is approxi-
mated by a central finite difference based on the computed values of 57 at the two
adjacent cross-shore lines (z — 1) and (2 + 1) if all the nodes j at the three lines
(1 —1),7 and (i + 1) are wet and seaward of the shoreline whose location varies for
the three cross-shore lines. Otherwise, this term is set to be zero because the along-
shore fluid motion turns out to be sensitive to spurious shoreline oscillations of a
short duration unlike the cross-shore fluid motion as will be explained in Section 4.3
in relation to the computed results of V and U.

The numerical damping term D; given by (3.38) tends to reduce high-frequen-
cy numerical oscillations at the rear of a steep wave front without modifying the
slowly varying part of the alongshore fluid motion. The computed alongshore fluid
motions with the numerical damping coefficient ¢, = 0 and 1 are found to be the
same except for the slight reduction of the high-frequency numerical oscillations as
will be shown in Section 4.3. The computed results presented in Sections 4.2 and
4.3 are based on ¢, = 1 unless stated otherwise.

It is noted that a forward spatial difference is used for the second term on the

right hand side of the predictor equation (3.35), while a backward spatial difference
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is used for this term in the corrector equation (3.36). This is because the spatial
difference in the predictor equation 1s recommended to be in the direction of prop-
agation of wave fronts (Anderson ef al. 1984). Since wave breaking can also occur
during wave downrush on the slope, the computation is also made by reversing the
spatial differencing in the predictor and corrector equations. The computed results
are found to be practically the same as will be shown in Section 4.3. As a result,
the MacCormack method based on (3.35) and (3.36) should be applicable to wave

fronts propagating seaward as well as landward.

3.1.4 Numerical Stability Criterion for MacCormack Method

The linear stability criterion for the MacCormack method applied to (3.34)
without the terms on the right hand side of (3.34) is the Courant condition (e.g.,
Ryrie 1983; Anderson et al. 1984) as shown in the following. For the linear stability
criterion, U is assumed constant. The predictor, corrector and final steps of the
MacCormack method applied to this simplified alongshore momentum equation may

be written as

. UAt
9 = %= ("*’-*—'m B q;:})
) : UAt ;. :
& 1 .
& = 3 (i’,ﬁ*J i 0 i?z’,)

Substituting g, into the final step, the value of ¢; is given by
I : . ;
q;, = = [(2 —20%)qp, + (o — a)q,,, + (& + u)q,fj_l]
with

_ UAt
“= Az
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For the assumed form of ¢y, = e*‘e™ with z; = (j —1)Az, the amplification factor
(¢ for the time step from the present time ¢ to the next time level t* = (1 + At) is
written as

G = e*™ =1 — o?(1 — cos kAz) — i sin kAz

The stability condition of |G| < 1 is satisfied if @ < 1 (Anderson et al. 1984),

which leads to
|Unn | At
il el
Ax —

where |U,,| is the maximum absolute value of U in the computation domain.

(3.39)

On the other hand, the numerical stability criterion for the dissipative Lax-

Wendroff method used to solve (3.12) and (3.13) is given by (Packwood 1980)

At 1 .y €
—— & e [ M 3.40
Az = |Un| + €m l( T 4) 2] ( )
with
¢, = maximum value of Vh >0
¢ = maximum value of ¢ and ¢ introduced in (3.32) and (3.33).

Using the following inequalities
e? €
14+ =) -~
a+ -

<1 for e>0
2

and
If-.’!'.'n-[ +‘ Ciy > |{-er|

(3.40) leads to
At |

Az " U

As a result, the Courant condition for the MacCormack method used to solve

(3.41)

(3.37) is satisfied if the numerical stability criterion for the dissipative Lax-Wendroff
method used to solve (3.12) and (3.13) is satisfied.

For the computed results presented in Chapter 4, the value of At smaller
than that required by the numerical stability criterion is used to minimize spurious

shoreline oscillations as will be discussed in more detail in Section 4.3.
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3.1.5 Seaward Boundary Algorithm
The value of ¢;, with j = 1 at the seaward boundary # = 0 can not be
computed using (3.37). To devise an appropriate seaward boundary algorithm, the
depth-integrated alongshore momentum equation (3.34) is expressed in the following

characteristic form as depicted in Figure 3.2:
av [ !('JV dan M

n il B By i (3.42)
where use is made of the continuity equation (3.12). The variation of the character-
istic variable V' along dz/dt = U is given by (3.42).

To compute Vi and ¢; = hV]" using (3.42), the linear approximation of
dx/dt = U at x = 0 and at the time level t* is expressed as dz /At = Uy as depicted
in Figure 3.2 where the spatial increment éz satisfies |6z| < Az due to the Courant
condition, At < Az/|Uy,|. If UF > 0, éz > 0 and the characteristic path is directed
landward. If Uy < 0, éx < 0 and the characteristic path is directed seaward.
The finite difference approximation of (3.42) along this characteristic path may be

expressed as

- _ (a?,*) Ul (3.43)
1

At dy i
where V is the value of V at the start of this characteristic path at the time level ¢
with éx = At UY.

If Uy > 0, the characteristic variable propagates into the computation domain
and V should be specified as input; however, this option is not feasible for practical
applications. Alternatively, 1% may be estimated from V; and V, by interpolation

for U7 < 0 and by extrapolation for U > 0.

V=V- o Ui (Vs — W) (3.44)
Az
Substitution of (3.44) into (3.43) yields
(f), [UF]T17" At on*
Vi =14+ AL Vi —— Ut (V; — W) — At 3.45
! { ¥ I i~ a1 =) 3y 48]
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Figure 3.2: Sketch of seaward boundary algorithm for alongshore velocity V.

where (0n*/dy), is approximated by a central finite difference based on the computed

values 77 at the two adjacent cross-shore lines.

3.2 3D Numerical Model

3.2.1 Summary of Equations

The equations used for the quasi-3D model are summarized in the follow-

ing. The depth-integrated continuity equation (2.41) and the horizontal momentum

equations (2.42) and(2.43) are given by

oh 0 .

— 4+ —(hl) =

5 T ag ) = 0
J J ; on
o ;( —\ N !2 TL — e’ el
f)'{.(h(' ) + f)ar“ﬂ +m) ha::: Tha
0 3} an
2 TR s LR Y
m(hV) - 8:13(13_ V +n) hf)y Thy

with
L]

m= | (u=U)dz ; n= fﬂ (u—U)(v—V)dz
—d

~d
I

Tow = folws|us 5 Toy = foluelve ;3 fo = EU‘H’

w=U+w, ; v=V+0
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(3.49)



The two additional equations (2.62) and (2.70) for m and n are given by

g )
(;r: + ;— (3mU + m3) = 2 (U% — UpThy — DH) (3.52)
on | 0 ) o
;—T + 9 (nU +mV +n3) = V{T?F — 'n;—] — VpThe — UpThy — 2D, (3.53)
with
up = — (%)2 forU = 0; iy, = (%) * forl <0 ;
=y Go= [ A (3.54)
Py = L g = e 3.!
' Cahviy, ' " 0 ' .
5 . " l -
mg = Cahity ; nz=Cshigv, ; Cs= f F3d¢ (3.55)
Jo
¥2= |3 o i T ’ Ldr P -
Dy = (;BU()3|15F>|' : Dy = (-"BJC’£|“b|“'b'”b : C’H - / I_C (Jf(' (;5{))
J0 (

The instantaneous cross-shore and alongshore velocities are expressed as

u(t, z,y,2) = Ut,z,y) + t(t, z,y) () (3.57)
o(t,z,y,2) = V(t,2,y) + os(t, 2,y)F(¢) (3.58)

with
b= H (3.59)

and

F=1-(34075a)(*+a(® for 0<(<1 (3.60)
The typical values of €y = 0.1 and a = 3 are employed for the 3D computations.

For a = 3,y = 0.55,C5 = —0.07 and Cp = 15.2.

The time-averaged alongshore momentum equation (2.89) is given by

Jd . i —()T_,-' I Pgr——s
15’2” e — » 1 e e — 3 . (‘ l
e i mikl Al v ) (3.61)

with
Sy = BUV (3.62)

43



The time-averaged cross-shore energy equation (2.91) is given by

] e S e
AE + ;—(E,.') = 107 ~ D
r
with
~ I 1 2 2 S
i = 5(1; + RU* + m.) for d >0
o= % (?';2 —d* + hU? + m) for d<0
AR = EU == '!'(-._-,n(l) - E(f = 1EI;mgin)

?'-encl = thcgin
1

Ep = nhU+ 5(hU? 4 3mU + ms)

bl

Dy = mpw
JDH w= C’BO‘C‘ﬂ'&bl:s

The numerical energy dissipation rate, Dyumerical, 15 defined as

- ; T v
Dlmuwl'it:a] =—-AF - L"(EF) = DJ‘ 7= DB

dax

which will be zero if the computed results satisfy (3.63).

3.2.2 Numerical Procedures

(3.63)

(3.64)
(3.65)
(3.66)
(3.67)
(3.68)

(3.69)

The 2D numerical model presented in Section 3.1 is extended herein to in-

clude the two additional equations (3.52) and (3.53) for m and n, respectively. The

coordinate system, boundary and initial conditions as well as the specified incident

wave train at the seaward boundary remain the same. For the known values of

n, h = (n+d), U m, V and n at the time level ¢ and at all the nodes used in

the computation, the values of these variables at the next time level * = (1 + At),

which are denoted by the superscript asterisk, are computed in sequence.

The

variable time step size At is determined for each time step using an approximate

numerical stability criterion for the explicit finite difference method adopted in the

following.
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First, along each of the cross-shore lines, the values of 57, h? = (n] + d;),

U; and m; at the node j with j = 1, 2, .-+, s* are computed from (3.46), (3.47)
and (3.52) for the incident wave train 7; specified at = 0. The integer s*, which
must be less than J, indicates the wet node next to the moving shoreline at the
next time level { = t*. To compute the cross-shore wave motion along each line, the
computer program VBREAK developed for normally incident waves, as described in
detail in the report by Kobayashi and Johnson (1995), is modified slightly for the
obliquely incident wave trains. VBREAK solves (3.46), (3.47) and (3.52) using the
MacCormack method (MacCormack 1969).

The variable time step size At is determined at the beginning of each time

step using an approximate equation

("n. A""' . i
At = * for j=1,2,-++,s (3.70)

max (|U,,[ + \/D

in which C,, is the Courant number and the denominator in (3.70) is the maximum

value of ([U,H—\/E) at all the wet nodes at the present time t. The stability criterion
for the MacCormack method applied to (3.46) and (3.47) with m = 0 and without
the terms on the right hand side of (3.47) is C,, < 1 (e.g., Anderson et al. 1984).
Equation (3.70) is approximate because the characteristic equations corresponding
to (3.46), (3.47) and (3.52) with m # 0 can not be expressed in simple analytical
forms. Moreover, (3.70) does not account for the shoreline algorithm which tends
to suffer numerical difficulties. Consequently, the value of (), less than unity is
specified as input to adjust At for successful computation.

Use of the MacCormack method results in numerical high-frequency oscilla-
tions which tends to appear at the rear of a breaking wave, especially on a gentle
slope (Kobayashi and Johnson 1995). The procedure for smoothing these high-
frequency numerical oscillations presented by Jameson et al. (1981) and summa-
rized by Chaudhry (1993) for hydraulic jumps is modified slightly for breaking waves

on a sloping beach. This modified smoothing procedure is presented in detail by
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Kobayashi and Johnson (1995), who have stated that for breaking waves on gently
sloping beaches, the numerical damping coeflicient # specified as input to VBREAK
on the order of unity is necessary to damp the high-frequency oscillations whereas
for waves surging on steep slopes of coastal structure, the value of £ on the order
of 0.1 appears to be sufficient. The computed results for different values of x were
presented by Johnson et al. (1996).

The seaward boundary algorithm for A} and U] at 2 = 0 is based on the
characteristic equations derived from (3.46) and (3.47) in a manner similar to that
devised by Kobayashi et al. (1987, 1989) for the case of m = 0. To obtain the value
of m} at @ = 0, (3.52) for m = Cyhti from (3.54) is rewritten in terms of @, and
approximated by an explicit first-order finite difference based on the known values
at the nodes j = 1 and 2. This is because m = 0 is a trivial solution of (3.52) for
x > 0 and t > 0 for the initial condition m = 0 at £ = 0. This problem could
be avoided if the value of m associated with the vertical variation of v at = = 0
were known in the presence of reflected waves. On the other hand, the landward
boundary algorithm dealing with the moving shoreline is a minor extension of that
used by Kobayashi et al. (1987) for the case of m = 0 where the vertical variation
of u is assumed to be small in the vicinity of the moving shoreline.

After computing the values of 77, k7, UF and m] with j = 1,2,- -, s" for each
line, the values of V¥ and n} at the node j with j = 1, 2, -+, s* along the middle
cross-shore line are computed using (3.48) and (3.53) which are expressed in the

following vector form:

Jav. 0P 7
W—FE—I—R:O (3.71)
with
P R
=¥ § P=|""] 5 B=|" (3.72)
T Pz R‘;
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and

PR = U¢g+n (3.73)

P, = nU*+m*V 4+ C3h* (?"Lz)z vy (3.74)
on*

B = h*% A (3.75)

; ok I dm* au*
Ry = fyluf|ugty + filugligos + 2Cs0CFiy [y v, — V—,) +n 5
Jr dr

(3.76)

where ¢ = hV and use is made of (3.50), (3.55) and (3.56). The computed values
of h*, U*, m* = Cyoh*(i;)?, 4; and up = (i + U~) at the next time level ¢* along
the middle cross-shore line 7 are used in (3.73) — (3.76). The term (dn*/dy); for the
cross-shore line ¢ at the node j is approximated by a central finite difference based
on the computed values of #* at the node j at the two adjacent cross-shore lines
(1 —1) and (¢ + 1) if all the nodes j at the three lines (2 — 1),¢, and (2 + 1) are wet
and seaward of the shoreline whose location varies for the three cross-shore lines.
Otherwise, this term is set to be zero.

For the known values of q; = hV, n = Cyhiyvy, from (3.54) and v, = (V + )
from (3.51) at the present time ¢ along the cross-shore line, (3.71) is solved using
the MacCormack method whose accuracy is second order in time and space. The
predictor and corrector steps of the MacCormack method and the value of V7 at

the node j and at the next time level t* are expressed as

At

V; = V;— A (P41 — P;) — AtR; (3.77)

. . At . ) ) |

Yy = Ve (P, —P;_,) - AR, (3.78)
: 1 . _ ‘ ._ . .

Equation (3.77) yields the temporary predicted values of ¢, and n;. Use is made
of Vj = g?gj./h.;f, ('.'LJ;,)’,- o= ?}.J-/[(_?gh,_’;f(ﬁg,)j] and (0y); = [(?”9,5,]J + V:,.] to compute P_,-
and R; in (3.78). The terms dm*/dx and dU* [z in (3.76) are approximated by

the forward and backward spatial differences in (3.77) and (3.78), respectively, to
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be consistent with the forward and backward spatial differences of 9P /02 used in
(3.78) and (3.79).

The moving shoreline is accounted for in (3.77) by setting P; = 0 at
J = (s*+1) for the dry node landward of the moving shoreline. As for the seaward
boundary algorithm at the node j = I, the 2D model used the characteristic equa-
tion (3.42) for the case of n = 0. An alternative and simpler algorithm is adopted
herein considering the difficulty in deriving the characteristic equations correspond-
ing to (3.71). The imaginary node at j = 0 is added to compute V, using (3.78)
in which the linearly extrapolated values of Py = (2P| - lf’-;), Us = (2UF — U3)
and mj = (2mj — mj) at the node j = 0 are employed for the backward spatial
differences involved in (3.78).

#*

After q, and n} with j = 1, 2, - -+, s™ are computed using (3.719), Vi = q?}/h:?

is computed and the procedure used to smooth £}, Ur and m] is applied to smooth
*

Vi and n;. The values of (9,)F and (v,)]

* are then computed using the smoothed

V¥ and n} together with (3.54) and (3.51). Finally, the values of these variables for

j = (s* 4 1) are set to be zero for the dry nodes landward of the moving shoreline.

48






Chapter 4

COMPARISON OF THE 2D MODEL WITH
AVAILABLE DATA

The 2D numerical model developed in Section 3.1 is compared with regular
wave laboratory data as well as field data. First, the incident wave profiles used in

these comparisons are described in the following.

4.1 Incident Wave Profiles
4.1.1 Regular Waves

The incident wave profile at the seaward boundary needs to be specified as
input to the numerical model. The obliquely incident regular wave train 5!(¢',y’) at
2’ = () for the small angles of incidence #; in radian is assumed to be in the following

dimensional form:

', y") odic fnction of (e — - L (p_ Y (4.1)
= eriodic ch — — . — 4.
Aty periodic function o T 170 T 0

in which

L' = wavelength at the seaward boundar
g y

(" = L'/T" = phase velocity at the seaward boundary

Fquation (4.1) accounts for the phase or time lag along the alongshore coordinate

y'. The periodic function in (4.1) is specified using Stokes second-order or cnoidal
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wave theory depending on the value of Ursell parameter U, in the same way as in
the existing one-dimensional model (Kobayashi et al. 1987) where U, is defined as

L'Z

B T
(E t

(4.2)
with

L = L'/d, = normalized wavelength at the seaward boundary

dy = dj/H'" = normalized water depth at the seaward boundary

The periodic function in (4.1) is specified using Stokes second-order theory if U, < 26
and using cnoidal wave theory if U, > 26. The dimensional wave train n!(t',y’) is

computed using (4.1) and normalized using (2.4) and (2.15).

4.1.2 Irregular Waves
On the other hand, the incident random wave train at the seaward boundary

is assumed to be unidirectional and expressible in the following dimensional form:

N
ot (ty) = Z C! cos (2w f1t' — O:ky' + ©,, + AD) (4.3)

n=1
with

f
v 1

= nAf" = frequency

, 1 :
At = —— = frequency band width
"'lua.x
t .. = computation duration
!f
N = 22 — number of harmonics
9AL!
At = sampling rate
k! = wave number for f! based on linear wave theory
0; = representative incident wave angle (07 < 1)
¢, = random phase angle in the range 0 — 27
n | & 1)

C' o= [28'(f)Af]Y? = amplitude
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S'(1)
A® = phase shift chosen such that 5! =0 at t' =0

n;
ot!

measured incident wave frequency spectrum

as well as

>0 at =0and y=0

The incident rand train 5! at gi y' is [ using an i
I'he incident random wave train 7; at given y' is computed using an inverse
fast Fourier transform of the following equation obtained from (4.3):

n(t'y Z [a], cos(2m fLt") + b sin(27 f1t')] (4.4)

n=1

with

al = C!cos(kl Oy — P, — AD)

n

E?’ = (;‘; Hil’l(}i:;_ogy! = (I)'n - Aq))

n

The phase shift A® in (4.3) is introduced to satisfy the initial conditions of
nt =0 at ¢’ = 0. The condition of dy!/dt' > 0 at ' = 0 is imposed to produce initial
longshore current in the downwave direction for positive 0; for the coordinate system
shown in Figure 3.1. This procedure reduces the transient duration associated with
the slow development of longshore current as will be shown in Section 4.3. To satisfy
the above two conditions, the phase shift A® is computed from (4.3) with 5! = 0 at

! =0and y'=0
SN, C! cos ®,

n=1

N
> n=1 Cl sin @,

n=]

tan AP =

(4.5)

which has two roots in the range 0 < A® < 27. The condition of dy!/dt’ > 0 at
t' = 0 and y’ = 0 requires that
N
Y Cl2r fl sin(@, + A®) <0 (4.6)
n=1
Only one of the two roots obtained from (4.5) satisfies (4.6).
The incident random wave profile 5! at given y’ is computed using (4.4) with

(4.5) and (4.6). Since (4.5) does not ensure 7! = 0 at ¢’ = 0 for y’ > 0, the computed

values of 7! at t' = 0 for y' > 0 are adjusted as will be explained in Section 4.3.



4.2 Comparison with Regular Wave Data

Visser (1991) conducted eight monochromatic wave experiments in 34 m long,
16.6 m wide and 0.68 m deep wave basin. A pumping system was installed to
ensure the alongshore uniformity of longshore current. The beaches were made of
concrete with 1:10 and 1:20 slopes. Detailed data on uniform longshore currents,
local wave heights, angles of wave incidence, wave setup and runup were tabulated.
The observations were started 60 minutes after the start of the wave generator to
eliminate start-related variations in flow and wave fields. Current velocities were

measured using a dye method whereas wave runup was measured visually.

4.2.1 Input Parameters

The numerical model is compared with four experiments for which the sea-
ward boundary location can be taken to be in relatively shallow water seaward of
the breaker line. Table 4.1 lists the experiment number used by Visser (1991) and
the slope and incident wave characteristics specified as input to the numerical model

where

tan ' = uniform slope
d; = water depth below SWL at the seaward boundary

located at &' =0

T" = regular wave period used for the normalization

H' = incident regular wave height at 2’ = 0 used for the normalization
0, = angle in degrees of wave incidence at ¢’ = 0

o = ratio between the cross-shore and vertical length scales

L g il
defined as T"(g/H')z in (2.6)

0. = #; = reference incident wave angle in radian used
for the normalization

£ = surf similarity parameter (Battjes 1974) given by ¢ = o tan6'/\/27.



Table 4.1: Incident waves at seaward boundary z’ = 0.

Expt. | tan @' | d] T H' 0, o 0* ¢
No. (em) | (s) | (cm) | (deg)
2 0.101 | 21.1 { 1.00 | 9.5 [ 26.0 | 10.2 | 0.206 | 0.409
3 0.101 | 21.3 | L.00 | 8.7 | 14.2 | 10.6 | 0.061 | 0.428
4 0.050 | 18.5 | 1.02 | 7.9 | 13.9 | 11.4 | 0.059 | 0.227
5 0.050 | 18.2 | 1.85 | 9.0 | 12.9 | 19.3 | 0.051 | 0.385

For these experiments, plunging breakers were observed. The assumptions of
o? > 1 and 0* < 1 may be appropriate except for experiment 2 with 62 = 0.206.
The only empirical parameter involved in the numerical model is the bottom friction
factor f] in (2.51) where f; ~ 0.05 has been used for predicting wave runup on
smooth slopes in small-scale experiments (e.g., Kobayashi et al. 1989). The value
of f{ = 0.05 is used here for both cross-shore and alongshore fluid motions.

The normalized grid sizes Az and Ay in Figure 3.1 need to be chosen to
be small enough to resolve breaking waves in the surf and swash zones. For these
experiments of alongshore uniformity, it is sufficient to use the three cross-shore
lines at y = 0, Ay and 2Ay in Figure 3.1. The value of Az is selected to be on
the order of 0.01, corresponding to 200 grid spacings between the seaward boundary
and the still water shoreline. The value of Ay is chosen fo be the same as Az to
yield the same spatial resolution in the normalized coordinates. A limited sensitivity
analysis with (Ay/Az) ~ 1,2,5, and 10 has indicated that the computed results for
experiment 2 remain essentially the same as long as Ay is on the order of Az as will
be shown in Figure 4.10 as an example.

The incident wave train 7; as a function of time t at longshore location
y = 0,Ay and 2 Ay is computed using (4.1) and normalized using (2.4) and (2.5).
The incident wave train 7; at ¥y = 0 is computed in the same way as in the existing

one-dimensional model (e.g., Kobayashi et al. 1987) whereas the time series of 7; at

¢
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Figure 4.1: Exampleof incident regular wave trains at y = 0, Ay, 2 Ay (alongshore
phase shift is exaggerated for clarity).

y = Ay and 2 Ay are computed using the computed time series of #;(,0) with the
alongshore phase shifts depending on the characteristics of the incident wave and
the value of Ay. As an example, Figure 4.1 shows a Stokes second-order incident
wave train for experiment 2 at location y = 0,Ay and 2 Ay where the alongshore

phase shifts have been exaggerated for clarity.

4.2.2 Computed Time Series

The detailed computed results for experiment 2 are presented as an example.
The temporal and cross-shore variations of the free surface elevation 7, the depth-
averaged cross-shore velocity U, and the depth-averaged alongshore velocity V' are
stored along the center line at y = Ay.

The temporal variations of 1, U and V for the duration 0 < ¢ < 300 at
x = 0 (at the seaward boundary), = 0.509 (immediately seaward of the breaker
line), @ = 0.770 (in the outer surf zone), z = 1.550 (in the inner surf zone), and

@ = 2.265 (in the swash zone) are shown in Figures 4.2, 4.3 and 4.4, respectively. The



cross-shore fluid motion represented by n and U computed using (3.12) and (3.13)
becomes periodic fairly quickly for t = 20 as has been the case with the previous one-
dimensional computations for beaches (e.g., Kobayashi et al. 1989). The alongshore
fluid motion represented by V computed using (3.34) becomes periodic very slowly
especially in the vicinity of the breaker line. The very slow response of the alongshore
fluid motion is qualitatively consistent with the analytical result of Ryrie (1983) for
the periodic solution development as well as the experimental procedure adopted by
Visser (1991) who made measurements one hour after the start of the wave maker.
In light of Figure 4.4, the time averaging denoted by the overbar in the following is
performed for the duration 200 < ¢ < 300.

The computed cross-shore variations of 7, s, U, Uwms, V and Vi for
experiment 2 are shown in Figure 4.5 where the root-mean-square values representing

the magnitude of the oscillatory components are defined as

=1 3 V= (U-0)"; V2 =(Vv-7) (4.7)

rms

For example, if 7 = 0.5cos(27t), 7 = 0 and 9yms = I/\/g = 0.35. The normalized
uniform slope is indicated by the dashed-dotted straight line in the top panel in
Figure 4.5. The upper limit of the wave setup 7 is the maximum runup elevation
on the slope above SWL because h > 0 in the region wetted by water. The increase
of 7 and the decrease of fuy,s in the surf and swash zones are approximately linear.
On the other hand, U, decreases slowly in the surf zone and rapidly in the swash
zone. U is negative and represents the cross-shore return current as explained by
Kobayashi et al. (1989). The longshore current V is dominant in the surf zone
and the oscillatory component Viys decreases approximately linearly in the surf and
swash zones.

Figure 4.6 shows the computed cross-shore variations of the normalized quan-
tities involved in the time-averaged cross-shore wave energy equation (3.7) and the

time-averaged alonegshore momentum equation (3.5). In Figure 4.6, £ = specific
2 ! | 5

o
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energy per unit horizontal area; Ep = energy flux per unit width; D; = energy
dissipation rate due to bottom friction per unit horizontal area; Dy = energy dissi-
pation rate due to wave breaking per unit horizontal area; 5,, = alongshore radiation
stress given by (3.6); and f,]U[V = alongshore bottom shear stress.

Figure 4.6 indicates that the energy dissipation due to wave breaking is dom-
inant and does not occur suddenly in this numerical model which does not account
for wave breaking explicitly (Kobayashi and Wurjanto 1992). For these experiments
of alongshore uniformity, the computed alongshore gradients of the mean and vari-
ance of 77 are negligible and the time-averaged alongshore momentum equation (3.5)
reduces to dS,,/dx = —f,]U|V. Figure 4.6 also shows that S,, decreases monoton-

ically in the surf and swash zones. The computed cross-shore variations of dS,,/dz

and — f|U|V are essentially the same where f,|U|V is plotted to distinguish the two

CUrves.

4.2.3 Comparison with Measurements

Figure 4.7 compares the measured and computed cross-shore variations of the
normalized local wave height H for each of the four experiments listed in Table 4.1.
The agreement is very good in view of no adjustable parameter included in this
numerical model to initiate wave breaking. However, it should be stated that this
numerical model can not predict wave shoaling without wave breaking over a long
distance (Kobayashi et al. 1989).

Figure 4.8 compares the measured and computed cross-shore variations of
the normalized wave setup 7 together with the normalized uniform slope indicated
by the dashed line for each of the four experiments. The agreement is good in
the swash zone but the computed mean water level rises too rapidly landward of
the breaker line as was the case with the previous comparison by Kobayashi et al.

(1989). The numerical model does not predict the fransition zone of constant wave



sef-down whose effects on surf zone hydrodynamics were reviewed and elaborated
by Nairn et al. (1990).

Table 4.2 shows the comparisons of the measured and computed maximum
setup and runup for the four experiments. The computed maximum setup and runup
correspond to the mean and maximum shoreline elevations, respectively, measured
by hypothetical wires placed parallel to and above the uniform slope at elevations
of 1, 5 and 10 mm, whereas the actual measurements were made visually.

The computed maximum setup and runup are not, very sensitive to the wire
elevations and in fair agreement with the measured values except that the numerical
model with the bottom friction factor f{ = 0.05 slightly underpredicts the visually
measured runup. It is also noted that the swash oscillations in the regular wave
experiments are very narrow in comparison to swash oscillations on natural beaches
that tend to be dominated by low-frequency motions (Guza and Thornton 1982,

Holman and Sallenger 1985).

Table 4.2: Measured and computed maximum setup and runup.

Maximum Setup Runup
Expt. Computed Computed
No. | Imm ‘ Hmm ‘ 10mm | Meas. | lmm | S5mm [ 10mm | Meas.
2 0.34 | 0.29 0.26 0.29 | 0.38 | 0.35 0.35 0.43
3 0.34 | 0.28 | 0.25 0.31 | 038 | 0.35 | 0.35 | 0.47
4 0.19 | 0.17 | 0.17 0.20 | 0.20 | 0.20 | 0.21 0.24
5 0.28 | 0.23 | 0.21 027 1031 029 | 029 | 0.34

Figure 4.9 compares the measured and computed cross-shore variations of the
longshore current V for the four experiments. The numerical model with f{ = 0.05
predicts the magnitude of V' but can not predict the shape of V probably because
the numerical model based on (3.3) does not include lateral mixing (dispersion)

and it can not predict the transition zone as shown in Figure 4.8. Comparing
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Figure 4.2: Computed temporal variations of free surface elevation 1 at x=0, 0.509,
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Figure 4.7: Measured and computed local wave height H for four experiments.
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the similar agreement for experiments 2 and 3 whose incident wave conditions are
listed in Table 4.1, it may be concluded that #? = 0.206 may still be regarded to
be much less than unity. Visser (1984) and Nairn et al. (1990) showed it would
be necessary to delay the initiation of the influence of energy dissipation on the
generation of longshore currents until the landward limit of the transition zone.
These shortcomings of the numerical model may be serious for longshore currents
generated by regular waves but are much less apparent for irregular waves due to
irregular wave breaking and generation of low-frequency motions as can be seen in
the comparison with the field data of Thornton and Guza (1986) in the next section.

Finally, Figure 4.10 indicates that the computed longshore current is not
sensitive to the values of (Ay/Az) used in the computation as long as Ay is on the

order of Az where Ay ~ Az has been used unless stated otherwise.

4.3 Comparison with Field Data

The 2D numerical model is also compared with field data to verify whether
the numerical model is applicable to natural beaches as well. The numerical model
is compared herein with the field experiments conducted by Thornton and Guza
(1986, 1989) at Leadbetter beach in February 1980. The mean nearshore slope
tan @/ varied between 0.03 and 0.06 during the experiment but no major bar was
apparent. The incident waves were limited to a narrow window of approach because
of the protection from a cape and islands. Comparison is made with the data of
February 5 and 6 that included the bottom profiles, the incident wave frequency
spectrum and representative angle of incidence in 3 m depth, and the cross-shore
variations of the measured root-mean-square wave height and longshore current.
The wave conditions and bottom contours near the shoreline could be reasonably

assumed to be uniform in the alongshore direction.
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4.3.1 Input Parameters

The measured incident wave frequency spectra in the 3 m water depth on
February 5 and 6 presented by Thornton and Guza (1986) included only the sea-swell
band of frequencies (0.05-0.3 Hz). As a result, the incident wave train 5! computed
using (4.4) does not include the incident low-frequency wave components. The spec-

! sy and the representative

tral peak period 77, the root-mean-square wave height H;
incident wave angle 0; at the seaward boundary in the depth d; = 3 m are summa-
rized in Table 4.3. The assumption of random phases in (4.4) is not really valid in
shallow water due to nonlinear phase coupling (e.g., Elgar and Guza 1986). The
computed results presented in the following will need to be interpreted in light of
these limitations of (4.4).

The computed results presented in the following are based on the normal-
ization using H' = H] ., T' = T} and 0. = 0; in radians at the 3 m depth. The

parameter o defined in (2.6) is hence given by

g 1/2
7= (f-'ff )

The values of ¢ and 0. listed in Table 4.3 suggest that the assumptions of shallow

water waves with small angles of incidence are appropriate for these data sets.

Table 4.3: Incident wave at seaward boundary d' = 3 m.

Date | tan @’

m

& T (W] 6 [o] @ [ ¢
(m) | (s) | (m) | (deg)
Feb 5 | 0.035 | 3.0 | 12.8 | 0.49 | 7.8 |57 | 0.0196 | 0.80
Feb 6 | 0.033 | 3.0 | 11.1 | 0.28 | 7.5 |66 | 0.0169 | 0.87

The number of cross-shore lines in the finite difference grid shown in Fig-
ure 3.1 is taken as I = 3 since the beach and incident wave conditions are assumed
to be uniform in the longshore direction. The bottom profiles along the three cross-

shore lines are assumed to be the same and taken as the measured bottom profiles
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Figure 4.11: Measured bottom profiles for February 5 and 6.
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on February 5 and 6. The mean bottom slope, tan @’ , between the shoreline and
the mean breaker line was 0.035 and 0.033 on February 5 and 6, respectively, as
listed in Table 4.3. The actual bottom profiles shown in Figure 4.11 are used for
the following computations. Plunging breakers were most often observed. The surf
similarity parameter defined as ¢ = otanf /(27)/* was & = 0.80 and 0.87 on
February 5 and 6.

The dimensional cross-shore grid spacing is taken as Az’ = 0.180 m on Febru-
ary 5 with H .= 0.49 m and Az’ = 0.135 m on February 6 with H] = 0.28 m in
order to resolve steep wave fronts. The normalized grid spacing Az is about 0.007
on both days. The number of grid spacings between the 3 m depth and the still
water shoreline is 400 and 520 on February 5 and 6, respectively. The dimensional
alongshore grid spacing is taken as Ay’ = 1.32 and 1.03 m on February 5 and 6,
respectively, so that the normalized grid spacings Az and Ay are approximately the
salne.

The normalized computation duration, ¢,,.x = !

‘max

[T, is taken as tax = 500.

»?

Correspondingly, ¢/ . = 107 and 93 min on February 5 and 6, respectively. The
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!
‘min

computation duration i exceeds the sampling duration of 68 min employed by
Thornton and Guza (1986) to account for the transient duration of the computation
initiated from no wave action at ¢ = 0.

The incident wave train n!(¢',y’) computed at y’ = 0, Ay’ and 2Ay’ using
(4.4) is normalized as 5; = 7!/ H]

vms With £ =#/T7. The sampling rate At/ associated
with N in (4.4) was taken to be 0.5 sec. The normalized sampling rate At; must be
small enough to resolve the temporal variation of 5; but is normally much larger than
the finite difference time step At required by the numerical stability criterion. The
time step At used for the actual computation is about 0.0002 and much smaller than
the sampling rate to minimize spurious shoreline oscillations as will be explained
later in the discussion of the computation results for alongshore velocity. A simple
linear interpolation of 7; sampled at the rate At is performed to find the value of 7;
at the time level t* = (¢ + At) during the time-marching computation. The values
of n; at t = 0 is set to zero for y’ > 0 since (4.5) does not ensure 7! = 0 at ¢’ = 0
and y’ > 0. The effect of these adjustment to the specified spectrum is extremely
small. Figure 4.12 shows the normalized incident wave trains 7; at y = 0, Ay and
2Ay which satisfy the initial condition 7; = 0 at time ¢t = 0, and dn;/0t > 0 for
small time .

The only empirical parameter involved in the numerical model is the bottom
friction factor f} in (3.4). Use is made of f] = 0.015 which was the value calibrated
by Raubenheimer et al. (1995) using runup measurements on the fine-grained,
gently sloping Scripps beach. The Leadbetter beach is composed of fine to medium
size sand. Thornton and Guza (1986) calibrated the friction factor 'y for their
longshore current model using the measured longshore currents on the Leadbetter
beach. The two friction factors are related by C'y = 0.5 f}, assuming that the bottom
[riction factor for the present time-dependent model and their time-averaged model

for longshore current are the same. Their calibrated value of 'y ~ 0.006 furns
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out to be very consistent with f{ ~ 0.015 based on the runup measurements by

Raubenheimer et al. (1995).

0.6 ' ; ' ;

0.5f line 1 o~
- == line2 = o
0.4F oveeeer line 3 e :
o
~Ha
m; 0.3f e y
A

0.2f /./._“‘ i
0.1} ’.“4.-"'“ n

0 L 1 L 1

0 0.02 0.04 0.06 0.08 0.1
t

Figure 4.12: Initial portions of adjusted incident random wave trains 7; at y =0

(line 1), Ay (line 2), 2Ay (line 3).

Figure 4.13 shows the measured and normalized incident wave frequency
spectrum S;(f) for February 5 and 6 corresponding to the incident wave train 7;(t,y)
at @ = 0 and at y = 0, Ay and 2Ay specified as input to the numerical model,
where the dimensional frequency [’ is normalized as [ = ["T] and the peak of S:i(f)
is located at f = 1. The spectra S;(f) at y = 0, Ay and 2Ay are identical because
of the assumption of alongshore uniformity of the incident wave conditions. The
specified spectra S;([) do not include any low-frequency component where Thornton
and Guza (1986) used f' = 0.05 Hz as a cutoff frequency. The normalized reflected
wave trains 7,(¢,y) at = 0 and at y = 0, Ay and 2Ay are computed when h and
[/ are computed using (3.12) and (3.13) (Kobayashi et al. 1989). The corresponding
reflected wave spectra are computed to be essentially identical and are also shown in

[Figure 4.13 which present the smoothed spectra S,(f) with 64 degrees of freedom.
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The computed reflected wave spectra S,(f), especially for February 5, are domi-
Bl

nated by the low-frequency wave components. The cross spectra among n,(¢,y) at

y =0, Ay and 2Ay are also computed. The computed coherence squared is nearly

unity, and the computed phase difference is almost zero because of the very small

value of Ay ~ 0.007 used in the computation. The reflected wave direction may

become discernible if the number of cross-shore lines and the value of Ay are in-

creased.

4.3.2 Computed Time Series

The computed temporal and cross-shore variations of 5, U/ and V at y = Ay
only are used because of the assumed alongshore uniformity. Figures 4.14, 4.15, and
4.16 show the computed temporal variations of the free surface elevation 5 above
SWL, the depth-averaged cross-shore velocity U/ and the depth-averaged alongshore
velocity V, respectively, at & = 0 (in the 3 m depth), z = 1.28 (in the breaker zone),
x = 1.92 (in the inner surf zone), @ = 2.56 (near the still water shoreline), and
x = 2.81 (above the still water shoreline) for February 5 while Figures 4.19, 4.20,
and 4.21 show the computed temporal variations of 5, U, and V at = 0 (in the
3 m depth), = = 1.98 (in the breaker zone), = 3.08 (in the inner surf zone),
r = 3.82 (near the still water shoreline), and « = 3.93 (above the still water shoreline)
for February 6. These figures are explained after some of the details associated with
the numerical method are discussed below.

Figure 4.17 shows that the computed alongshore fluid motions without the
numerical damping term D; given by (3.38), where the numerical damping coeffi-
cient ¢ is set to be zero, are practically the same as those computed using ¢, = 1
except for the slight modifications of the high-frequency components. Computa-
tion is also made by reversing the spatial differencing in the predictor and corrector
equations (3.35) and (3.36). Figure 4.18 shows that the computed results are in-

distinguishable, implying that the MacCormack method adopfed in Section 3.1.2

73



should be applicable to wave fronts propagating seaward as well as landward.

Figures 4.14 and 4.19 and Figures 4.15 and 4.20 indicate that the transient
duration of 5 and U computed using (3.12) and (3.13) with no wave action at £ =0
is short as has been the case with the computed results for regular waves shown
in Figures 4.2 and 4.3. On the other hand, Figures 4.16 and 4.21 show that the
transient duration of V' computed using (3.34) is long near the breaker zone and
inner surf zone where the longshore current develops very slowly. The slow response
of the alongshore fluid motion for irregular waves is qualitatively similar to that
in Figure 4.4 for regular waves. The oscillatory components of 7 in Figures 4.14
decrease landward where the lower limit of 5 at @ = 2.56 and 2.81 is limited by the
bottom elevation. On the other hand, the oscillatory components of U/ and V in
Figures 4.15 and 4.16 increase landward and become the maximum near the still
water shoreline. The comparison of the oscillatory components of 7, U/ and V at
z = 2.81 above the still water shoreline indicates that the fluid velocities U and V
oscillate much more than the water depth h in the swash zone where h equals the
free surface elevation n above the bottom elevation. The results for February 6 are
also similar as depicted in Figures 4.19, 4.20, and 4.21.

For the computation for February 6, it is found that the value of At smaller
than that required by the numerical stability criterion is necessary to minimize spu-
rious shoreline oscillations. The computed temporal variations of alongshore velocity
V using At ~ 0.0007 plotted in Figures 4.22 and 4.23 show sudden jumps which
originate at the shoreline and propagate in the seaward direction. The shoreline os-
cillations along the three cross-shore lines depicted in Figure 4.24 confirms that the
sudden jumps are caused by spurious large shoreline differences lasting for a short
duration. The use of At equal to one half of 0.0007 reduces the jumps but does
not eliminate the problem completely as can be seen in Figure 4.25. Therefore, the

computation is repeated with At ~ 0.0002 and the numerical algorithm dealing with
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the moving shoreline is improved somewhat to minimize spurious shoreline oscilla-
tions. This problem was not apparent in the previous one-dimensional cross-shore
computations because their effects on the cross-shore fluid motion were limited to
the swash zone and lasted only for a short duration. The computed results for 5 and
[/ using these three different values of At remain essentially the same. As a result,
the computations for both February 5 and 6 presented in this chapter are based on

At ~ 0.0002 with no apparent unrealistic shoreline oscillation.

4.3.3 Computed Spectra

The computed alongshore velocities V in the region of the slow longshore cur-
rent development in Figures 4.16 and 4.21 exhibit very slow oscillations which will
be elaborated in the following. The computed temporal variations of 5,/ and V for
the duration 200 <t < 500 are used in the following spectral and statistical calcula-
tions to account for the slow development of the alongshore velocity V. Admittedly,
the time-dependent model is not efficient computationally for the alongshore fluid
motion because of its slow response and dominant longshore current.

Figures 4.26, 4.27, and 4.28 show the smoothed frequency spectra of 7, U, and
V with 64 degrees of freedom for February 5 that correspond to the time series of 7, U,
and V for 200 < ¢ < 500 shown in Figures 4.14, 4.15, and 4.16, respectively. The
noticeable low-frequency (f < 0.64 corresponding to [’ = 0.05 Hz) wave components
near the shoreline are expected from the previous field measurements (e.g., Guza and
Thornton, 1982; Holman and Sallenger, 1985) and will be discussed further at the
end of this section. Figure 4.28 clearly shows the very low frequency component of V
at @ = 1.28 (in the breaker zone) and 1.92 (in the inner surf zone) corresponding to
the very slow oscillations of V' in Figure 4.16. The corresponding very low frequency
components of 7 and U at @ = 1.28 and 1.92 are absent or extremely small in

[Figures 4.26 and 4.27.
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Figure 4.14: Computed temporal variations of free surface elevation n at z = 0,
1.28, 1.92, 2.56 and 2.81 for February 5.
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Figure 4.16: Computed temporal variations of depth-averaged alongshore velocity
V at z =0, 1.28, 1.92, 2.56 and 2.81 for February 5.
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Figure 4.19: Computed temporal variations of free surface elevation 5 at = = 0,
1.98, 3.06, 3.82 and 3.93 for February 6.
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Figure 4.20: Computed temporal variations of depth-averaged cross-shore velocity
Uat x=0,1.98, 3.08, 3.82 and 3.93 for February 6.
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Figure 4.21: Computed temporal variations of depth-averaged alongshore velocity
V at @ = 0, 1.98, 3.08, 3.82 and 3.93 for February 6.
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Figure 4.22: Computed temporal variations with sudden jumps of depth-averaged
alongshore velocity V at z = 0, 1.98, 3.08, 3.82 and 3.93 for Febru-

ary 6 with At ~ 0.0007.
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Figure 4.23: Computed temporal variations with sudden jumps of depth-averaged
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Figure 4.24: Shoreline oscillations at three cross-shore lines for February 6 with
At ~ 0.0007.
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Figure 4.25: Computed temporal variations with reduced jumps of depth-averaged
alongshore velocity V at @ = 0, 1.98, 3.08, 3.82 and 3.93 for Febru-

ary 6 with At ~ 0.00035.



To infer the likely origin of the very low frequency component of V, the
corresponding spectra of dn/dy, q:U, and |U|V are plotted in Figures 4.29, 4.30, and
4.31, respectively. The alongshore free surface gradient dn/dy in the approximate
alongshore momentum equation (3.34) or (3.42) drives the alongshore wave motion
in this simplified numerical model. The alongshore momentum flux, AUV = ¢U in
(3.34) affects the alongshore fluid motion through the nonlinear interaction of h, U,
and V, where h is the sum of 5 and the still water depth. The alongshore bottom
stress fu|U|V in (3.34) reduces the alongshore fluid motion, where the normalized
bottom friction factor defined in (3.4) is f, = 0.43 on Febrnary 5. Figure 4.29
indicates the considerably very low frequency component of dn/dy at = = 1.28

and 1.92 which does not vary much with the normalized frequency f. Comparing
Figures 4.27 and 4.30, the spectral shapes of U/ and ¢;U at x = 1.28,1.92, and 2.56 are
similar in the region where the mean g, is a significant portion of ¢;. The temporal
variations of ¢, are similar to those of V shown in Figure 4.16. The cross-shore
variation of g, will be presented later in relation to that of the longshore current V.
Comparison of Figures 4.28 and 4.31 indicates that the spectral shapes of V and
|U|V are similar except near the shoreline where the spectra of [U|V contain more
higher-frequency (f 2 1.5) components, probably due to the nonlinear interaction of
|U| and V.

To examine whether the very low frequency component of dn/dy in Fig-
ure 4.29 is capable of generating the very low frequency component of V' shown in

Figure 4.28, use is made of the linearized alongshore momentum equation corre-

sponding to (3.42)
ov. 0Oy
ot dy
The temporal variation of V for 200 < ¢ < 500 is calculated by integrating (4.8)

(4.8)

for the computed temporal variation of dn/dy at given a corresponding to each

spectrum shown in Figure 4.29. The initial value of V at t = 200 is taken as the
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value of V at ¢ = 200 computed using (3.34).

Figure 4.32 compares the spectrum of the temporal variation V' at given x
calculated using the linear equation (4.8) with the corresponding spectrum of V
computed using the nonlinear equation (3.34) and shown in Figure 4.28. It is noted
that the linear equation (4.8) amplifies the very low frequency component of V
because (4.8) yields |V| = |A|/(2x f), where V and A are the complex amplitude of
V and dn/dy for given f, respectively. Figure 4.32 shows that the two spectra of
V at @ = 0 are essentially identical except for the very low frequency range. This
indicates that the nonlinear terms in (3.34) are negligible at = 0 as may also be
inferred from the spectra of ¢,/ and |U|V at 2 = 0 shown in Figures 4.30 and 4.31.
Figure 4.32 also indicates that the nonlinear terms in (3.34) reduce the spectra of
V at z = 1.28 and 1.92, especially for the low-frequency range. On the other hand,
the term dn /0y in (3.34) and (3.42) is negligible relative to the nonlinear terms near
the shoreline at x = 2.56 and 2.81 except for the very low frequency range. This is
consistent with the significant decrease of the spectra of d7/0y near the shoreline
as shown in Figure 4.29.

Figure 4.32 suggests that the very low frequency component of dn/dy is large
enough to cause the corresponding very slow oscillations of V. However, the origin
of this very low frequency component of dn/dy is not certain. It has been mentioned
that the earlier computations shown in Figures 4.22-4.25 exhibited infrequent sud-
den jumps in the computed temporal variations of V' caused by the infrequent large
differences of the shoreline location along the cross-shore lines 1 and 3. The cen-
tral finite difference approximation of dn/dy along the cross-shore line 2 using the
computed values of 5 along the two adjacent cross-shore lines is sensitive to the
spurious large shoreline difference lasting for a short duration. The final results pre-
sented herein are computed using the improved numerical algorithm dealing with
the moving shoreline and using a smaller time step At as explained in relation to

Figures 4.22-4.25. The computed shoreline oscillations along the three cross-shore
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lines do not show any unrealistic shoreline location difference. The very low fre-
quency component of the spectrum of dn/dy at @ = 2.81 shown in Figure 4.29 is
indeed extremely small.

The very low frequency component of dn/dy seems to be related to the break-
ing of obliquely incident random waves because the very low frequency components
of dn/dy and V tend to occur in the vicinity of the breaker zone as shown in Fig-
ures 4.16, 4.28, and 4.29. No very slow oscillations were found in the computed
temporal variations of V for regular waves as shown in Figure 4.4. Cross-spectral
analyses of V' and dn/dy do not indicate any cross-shore wave pattern in these very
low frequency components. Since the present numerical model does not simulate
wave breaking explicitly, the origin of the very low frequency component of dn/dy

can still be numerical.

4.3.4 Comparison with Measurements
IMigure 4.33 shows the comparisons between the measured and computed
cross-shore variations of the local root-mean-square wave height, Hys = H/, ./ H',

rms

on February 5 and 6. Thornton and Guza (1986) obtained H]

s USINE a zero up-
crossing method from 68 minutes free surface elevation records after band-pass fil-
tering between 0.05 and 0.5 Hz. Accordingly, the computed temporal variation of 5
for 200 < ¢ < 500 is analyzed in the same way to obtain H,,s based on the zero up-
crossing method. In addition, the computed spectral estimate of H,y,, = (8??:,‘,)1"’2
is also presented in Figure 4.33 where m, is the zero moment of the frequency spec-
trum of n after the band-pass filtering. The agreement between the data and the
present time-dependent model is no better than that between the data and the time-
averaged model of Thornton and Guza (1983) presented with their data except that
the only empirical parameter involved in the time-dependent model is the bottom
friction factor [] whose effect on the free surface elevation 7 is essentially limited in

the swash zone (e.g., Kobayashi and Wurjanto 1992).
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Figure 4.26: Computed frequency spectra of free surface elevation 7 at
x = 0,1.28,1.92,2.56, and 2.81 on February 5.
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Figure 4.27: Computed frequency spectra of cross-shore velocity /7 at
z = 0,1.28,1.92,2.56, and 2.81 on February 5.

92



February 5

T T T T T
0.05 x=0 J
Sy
0 1 1 1 i L
T T T T L]
dr x=1.28
S
Vooost .
0 ‘ .
0.05 T T T T T
X=1.92
Sy L A
. i i - .
T T T T T
% Xx=2.56 |
Sv oos} 1
0 1 1
0.05 : . ; . r
x=2.81
., ‘\k
0 L 1 T i 4
0 05 1 1.5 2 25 3
f

Figure 4.28: Computed frequency spectra of alongshore velocity V' at
x = 0,1.28,1.92,2.56, and 2.81 on February 5.
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Figure 4.29: Computed frequency spectra of alongshore free surface gradient
dan/oy at x =0, 1.28, 1.92, 2.56, and 2.81 on February 5.
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Figure 4.30: Computed frequency spectra of alongshore momentum flux,
UV = qU, at z =0, 1.28, 1.92, 2.56, and 2.81 on February 5.
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Figure 4.31: Computed frequency spectra of alongshore bottom shear stress |U|V
with fy = 0.43 at z =0, 1.28, 1.92, 2.56, and 2.81 on February 5.
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Figure 4.32: Computed frequency spectra of alongshore velocity V' al
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Figure 4.34 compares the measured and computed cross-shore variations of
the longshore current V on February 5 and 6 where the overbar denotes the time
averaging for 200 < ¢ < 500. The computed maximum and minimum alongshore
velocities, Viax and Viin, during 200 < t < 500 are also plotted in Figure 4.34 to
show that the alongshore velocity V is oscillatory (positive and negative) outside
the surf zone and essentially unidirectional (mostly positive) in the surf zone where
the temporal variations of V at five different locations in cross-shore direction have
been shown in Figures 4.16 and 4.21. The time-dependent model with the bottom
friction factor f{ = 0.015 calibrated by Raubenheimer et al. (1995) using runup
measurements on a natural beach also predicts the longshore current reasonably
well. This suggests the robustness of the adopted empirical formula for bottom
[riction, (2.46) and (2.47), although it may be too crude to predict the detailed
temporal variation of the bottom shear stress accurately. Thornton and Guza (1986)
compared their time-averaged model with the longshore current data and obtained
similar agreement. No data is available in the swash zone to compare the accuracy

of the time-averaged and time-dependent models.

4.3.5 Computed Time-Averaged Quantities

Figure 4.35 shows the computed cross-shore variations of the alongshore ra-
diation stress S,, given by (3.6), its cross-shore gradient, and the time-averaged
alongshore bottom shear stress f,[U/]V in the time-averaged alongshore momen-
tum equation (3.5). The alongshore variations of the computed mean and variance
of 5 are found to be negligible in (3.5) relative to the other two terms shown in
Figure 4.35. It is noted that for this 2D model, the alongshore momentum flux cor-
rection n = 0. The assumption of alongshore uniformity requires that the computed

mean and variance of 5 at y = 0, Ay and 2Ay should be identical. Figure 4.35 show

that the computed time-dependent results satisfy the time-averaged force balance
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Figure 4.33: Comparisons between measured and computed root-mean-square
wave height H,, on February 5 and 6.

99



Viin Vand Vimax

0 0.5 1 1.5 2 2.5 3 3.5

1.5¢ -~ Feb. 6

-0.5¢ Vinin ® Data ]

Figure 4.34: Comparisons between measured and computed longshore current V
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ties, Vinax and Viin, on February 5 and 6.
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between the cross-shore gradient of S, and the alongshore bottom shear stress apart
from the high-frequency numerical oscillations of dS,,/dz. The minute oscillations
of S,, caused by the high frequency numerical oscillations of the computed &, U,
and V are almost indiscernible in Figure 4.35 but are significantly amplified in the
cross-shore derivative of S, approximated by a central finite difference. The along-
shore bottom shear stress shown in Figure 4.35 is the maximum near the still water
shoreline as may be expected from U/ and V shown in Figures 4.15, 4.20, 4.16 and
4.21. Figure 4.35 also indicates that the numerical dispersion of the time-dependent
model is negligible in the time-averaged alongshore momentum equation (3.5) which
includes no physical dispersion or lateral mixing term. Thornton and Guza (1986)
already showed that the lateral mixing was not important for their longshore current
data.

Figure 4.36 shows the computed cross-shore variations of g, = hV and LV.

The time-averaged alongshore volume flux g, per unit width can be expressed as

G=hV+(h=0)(V-V) (4.9)

where the second term on the right-hand side of (4.9) is the time-averaged alongshore
volume flux component due to the oscillatory components (A — h) and (V — V).
IFigure 4.36 indicates that this component in (4.9) is small in comparison to the
product of the mean water depth & and the longshore current V' except for the
regions of small 7 in the swash zone and small V outside the surf zone.

To examine the nature of large fluid velocities near the still water shoreline,
Figures 4.37 and 4.38 show the computed cross-shore variations of the mean values
7, U and V as well as the root-mean-square values of the oscillatory components
(n—1), (U~- U) and (V — V) denoted by the subscript rms where fyms, Upms and
Vs are the standard deviations of , U and V, respectively. The normalized bot-

tom elevation is indicated by the dotted line in the top panel of Figures 4.37 and 4.38.
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Figure 4.35: Computed cross-shore variations of alongshore radiation stress S,
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February 5 and 6.
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Figure 4.36: Computed cross-shore variations of mean alongshore volume flux
G = hV and product of mean depth /h and longshore current V' on
February 5.

The wave setup 77 becomes tangential to the beach in the swash zone (Bowen et al.
1968). The mean cross-shore velocity U is negative and represents the cross-shore
return current as explained by Kobayashi et al. (1989). Unlike the computed results
for regular waves shown in Figure 4.5, 7, does not decrease linearly landward,
while Upms and Ve actually increase landward before their decrease in the swash
zone. For lack of velocity data near the still water shoreline, the computed cross-
shore variations of U, and Vi, can not be verified, whereas the cross-shore one-
dimensional model has been shown to predict the free surface elevation 7 in the
inner surf and swash zones fairly accurately (Cox et al. 1994; Raubenheimer et
al. 1995). The field data obtained at Torrey Pines Beach, California by Guza and
Thornton (1985) indicated that the variance UZ . was almost constant in depths

rms

ranging from 0.4-2.5 m and that the variance V?

2« increased monotonically as depth

decreased as shown in Figure 4.39, which indicated the cross-shore variations of the
variances of the total, high-frequency, and low-frequency components of the cross-

shore and alongshore velocities. Their field data and the computed results shown in
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Figures 4.37 and 4.38 point out the inadequacy of the conventional assumption of
depth-limited, linear breaking waves made in existing time-averaged models.

The time-averaged wave energy equation (3.7) is used to examine the cross-
shore variations of the time-averaged values of the specific energy E, the energy
flux Ep, the dissipation rate D; due to bottom friction, and the dissipation rate
Dpg due to wave breaking as shown in Figure 4.40. The computed dissipation rate
Dpg indicates intense wave breaking immediately seaward of the still water shoreline
located at # = 2.56 on February 5 and at = = 3.82 on February 6 in IYigure 4.40.
This intense wave breaking may partly explain the large oscillatory velocities near
the still water shoreline shown in Figures 4.37 and 4.38. The computed wave energy
dissipation in the swash zone is caused mostly by bottom friction due to the large
cross-shore velocity U/ in the swash zone.

The large oscillatory velocities near the still water shoreline may also be
caused by low frequency waves. In the very shallow water for the velocity data of
Giuza and Thornton (1985) as shown in Figure 4.39, the low- and high-frequency

were of the same magnitude and the variance V2

components of the variance U2 o

rms
was dominated by the low frequency component. For comparison, the oscillatory
components (7 —7), (U — U) and (V — V) are filtered to obtain the components

of 9i.; UZ,, snd V2

rms rms

in the high-frequency (f" > 0.05 Hz) and low-frequency
(/" < 0.05 Hz) bands as shown in Figures 4.41 and 4.42. The computed low-
frequency components of nZ . and U2 . in the swash zone turn out to be smaller
than the corresponding high-frequency components probably because the incident
low-frequency wave components are not included in the specified incident wave train
in the 3 m depth as shown in Figure 4.13. Furthermore, edge waves are excluded in
this numerical model. On the other hand, the computed low- and high-frequency
are of the same magnitude near the still water shoreline even in

components of V.=

the absence of incident low frequency waves and edge waves.
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Recently, Kobayashi et al. (1997) derived simple relationships between the
free surface and cross-shore velocity statistics using linear progressive long-wave
theory. Accordingly, the relationship between the normalized standard deviations
of n and U may be expressed as

Trms
Vi

whereas the mean cross-shore velocity U is estimated as

?_T:—\/f( )2 (4.11)

where 7us and Upye are the standard deviation of 5 and U, respectively, and h is

U, rms =

(4.10)

Trs
h

the mean water depth including wave setup.

Figures 4.43 and 4.44 show the comparisons of the cross-shore variations of
Ups and U computed using the 2D model and using (4.10) and (4.11) together
with the computed values of 7,5 and ?;,‘,IIQ/E for February 5 and 6, respectively. The
normalized bottom elevation is depicted with the dotted line in the top panel of these
figures. Similar to the experimental results of Kobayashi et al. (1997), the computed
values of fums/l in Figures 4.43 and 4.44 increases gradually and then rapidly near
the shoreline as h approaches zero. Hence, contrary to the field data obtained by
Thornton and Guza (1982, 1983), the computed values of ?h-ms/I do not approach
constant in the inner surf zone. These figures also show that the simple relationships
(4.10) and (4.11) based on linear progressive long-wave theory predicts the standard
deviation of cross-shore velocity, Upns, and the mean cross-shore velocity, U, fairly
well up to the still water shoreline. Consequently, the large velocities seaward of
the still water shoreline may simply be explained by the landward increase of ?;1.1,,5/Z
in which the landward decrease of 7, 1s more gradual than that of h as shown in
Figures 4.43 and 4.44. In the swash zone, local nonlinear effects such as the bottom
friction as well as wave reflection appear to be important in view of the comparison

shown in these figures.



0.8 Feb.5
£
£06
204
1]

I= 0.2

Urrns - A\

3.5
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velocity V for February 5.
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Figure 4.40: Computed cross-shore variations of specific energy E, energy flux
Ep, dissipation rate Dy, and Dp due to bottom friction and wave
breaking, respectively, for February 5 and February 6.
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Figure 4.41: Computed cross-shore variations of variances of free surface eleva-
tion 75, cross-shore velocity U and alongshore velocity V' in high
(f" > 0.05Hz) and low (" < 0.05Hz) frequency bands for Febru-

ary 5.
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Figure 4.42: Computed cross-shore variations of variances of free surface eleva-
tion 7, cross-shore velocity U/ and alongshore velocity V' in high
(f" > 0.05Hz) and low (f" < 0.05Hz) frequency bands for Febru-
ary 6.
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Figure 4.43: Cross-shore variations of Temss Pems/ oy Urms and U computed using
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puted using (4.10) and (4.11) together with the normalized bottom
elevation for February 5.
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Chapter 5

COMPARISON OF THE QUASI-3D MODEL WITH
AVAILABLE DATA

The computed results presented in Chapter 4 are based on the depth-integra-
ted continuity equation (3.1) and the depth-integrated horizontal momentum equa-
tions (3.2) and (3.3), neglecting the dispersion due to vertical non-uniformities of
the horizontal velocities u and v. However, wave breaking produces vertical vari-
ations in the horizontal velocities and resulting energy dissipation (e.g., Svendsen
and Madsen 1984). Furthermore, the vertical variations of instantaneous velocities
and shear stresses are required for detailed analyses of sediment transport in the surf
zone. Although Thornton and Guza (1986) have already concluded that the disper-
sion effects were not important for predicting longshore currents on a planar beach
generated by random waves, the computed results for regular waves depicted in
Figure 4.9 suggest that the dispersion terms are required to improve the agreement.

Very little is known of these dispersion effects on surf zone hydrodynamics
apart from the analysis of Svendsen and Putrevu (1994) that showed the importance
of the dispersion effect due to the nonlinear interaction of cross-shore and longshore
currents in explaining the measured cross-shore variations of longshore currents
induced by regular breaking waves. They used a time-averaged model in their
dispersion analysis where linear wave theory with depth-limited breaker height was

employed to describe the wave motion.
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To assess the importance of the added dispersion terms m and n in the time-
dependent momentum equations (3.47) and (3.48) due to the vertical variations of
instantaneous horizontal velocities u and v, the 3D model described in Section 3.2

is compared with the same regular and irregular wave data as in Chapter 4.

5.1 Comparison with Regular Wave Data
5.1.1 Comparison of 2D and 3D Models with Data

The 3D model is compared with the same four experiments of Visser (1991) as
in Section 4.2. The depth-averaged longshore current data of Visser (1991) was based
on the current velocity measurements of dye clouds injected at three depths. The
3D computations are made in the same way as the corresponding 2D computations
presented in Section 4.2 except the seaward boundary location for experiment 4
in the 2D and 3D computations is moved somewhat closer to the breaker line to
better satisfy the assumption of shallow water. For experiment 4, the incident wave
characteristics specified as input to the numerical model are: water depth at the
seaward boundary d} = 12.41 c¢m, wave period 7" = 1.02 s, wave height H" = 8.4 cm,
incident wave angle 0; = 13.1° whereas the values for experiments 2, 3 and 5 remain
the same as listed in Table 4.1.

The temporal variations of the free surface elevation 5 and the depth-averaged
cross-shore velocity U/ computed by the 3D model are practically the same as those
computed by the 2D model shown in Figures 4.2 and 4.3 and hence are not pre-
sented here. The depth-averaged alongshore velocity V' shown in Figure 4.4 for the
2D model is modified considerably as depicted in Figure 5.1 for experiment 2. As a
whole, the alongshore velocity V' is smaller than in Figure 4.4. The measured and
computed cross-shore variations of the local wave height H, the wave setup 7, and
the depth-averaged longshore current V for experiments 2-5 are compared in Fig-
ures h.2 — 5.4, respectively. The normalized bottom elevation for each experiment

is shown as the straight line in Figure 5.3. For the cross-shore fluid motion repre-
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sented by H and 7, the differences between the 2D and 3D computations are minor,
probably within the accuracy of these models in light of the agreement shown in IFig-
ures 5.2 and 5.3. This implies that the dispersion term rm in the depth-integrated
cross-shore momentum equation (3.47) is secondary as anticipated by Kobayashi
and Wurjanto (1992).

The average values of the relative errors for the 2D and 3D computations for
each experiment are inserted in the parentheses in Figures 5.2 and 5.3. The relative
error for each data point is defined as |Y,, — Y.|/|Y;n| where Y,,, = measured value
and Y. = computed value. The average relative error for the mean water elevation,
77, is large because of the difficulty in predicting the relatively small set-down and
setup accurately.

On the other hand, for the alongshore fluid motion represented by the long-
shore current V, which is dominant in comparison to the oscillatory alongshore
velocity in the surf zone in these experiments, the dispersion term n in the depth-
integrated alongshore momentum equation (3.48) improves the agreement of the
longshore current profile noticeably as shown in Figure 5.4. The longshore currents
computed using f] = 0.02 and 0.025 for experiment 4 and f; = 0.02 for experiment 5
are also shown in Figure 5.4. The alongshore bottom shear stress 7, in (3.48) is im-
portant in determining the magnitude of V' but modifies its profile little as expected
from the previous work (e.g., Longuet-Higgins 1970). It is noted that the cross-shore
variations of H and 7 computed using these bottom friction factors for experiments
4 and 5 are indistinguishable from those shown in Figures 5.2 and 5.3 for f{ = 0.05
and are not plotted in these figures. The importance of the dispersion effect on
the longshore currents in Figure 5.4 is consistent with the analysis of Svendsen and
Putrevu (1994) based on the vertical variations of currents only, while the present

analysis is based on the vertical variations of the instantaneous horizontal velocities.
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Figure 5.1: Computed temporal variations of depth-averaged alongshore velocity
V at = 0,0.509,0.770, 1.550 and 2.265 using 3D model.
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Figure 5.2: Measured and computed local wave height H for four experiments for
comparison of 2D and 3D models.
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Figure 5.3: Measured and computed wave setup 7 for four experiments for com-
parison of 2D and 3D models.
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Figure 5.4: Measured and computed depth-averaged longshore current V for four
experiments for comparison of 2D and 3D models.
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To explain the computed results in Figure 5.4, the time-averaged alongshore

momentum equation (3.61) for the case of alongshore uniformity is given by

d dn
— (.5 — = -7 5
(.‘f:x:('sw) + dux Tty (5.1)

in which S, = AUV is the alongshore radiation stress based on the depth-averaged
velocities /' and V. The mean alongshore momentum flux 7 due to the vertical
variations of the horizontal velocities u and v is included in the 3D model, whereas
7 = 0 for the 2D model. Figure 5.5 shows the computed cross-shore variations of
dS.,/dz and di/dx for experiment 2 as an example. The cross-shore gradients of
S,y for the 2D and 3D computations are similar because i, U and V are not affected
much by the dispersion terms m and n. This figure indicates that the term di/dx
included in the 3D model decreases the force driving the longshore current near
the breaker point but increases this force near the shoreline. Correspondingly, the
computed longshore current V for the 3D model in Figure 5.4 is reduced near the
breaker point but increased near the shoreline. In short, the dispersion term 7 is

important in the time-averaged alongshore momentum equation (5.1).

5.1.2 Vertical Variations of Longshore Currents

The depth-averaged longshore current data of Visser (1991) were based on
the current velocity measurements of dye clouds injected at the surface, mid-depth,
and 1 em above the bed. The measured vertical variations of the longshore current v
were presented for experiments 3 and 4 in Figures 5.6 and 5.7 where the cross-shore
location z is indicated for each vertical measuring line. The vertical variation of the
alongshore velocity v for the 3D model is computed using (3.58), (3.59) and (3.60) for
the computed temporal and cross-shore variations of V', 0, and & in these equations.
It is noted that the 2D model does not yield the vertical velocity variations. The
time-averaged velocity ¥ is computed for the given elevation (2—z;) above the bottom

and below the wave trough level where z, = (—d) is the normalized bottom elevation
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Figure 5.5: Computed cross-shore gradients of 5, and 7 for experiment 2.

introduced for clarity. To estimate T above the trough level, v is also computed
for the given value of { = (z — z)/h with ( = | at the instantaneous free surface
and plotted as a function of the mean elevation, (z — z) = (h, with A = mean
water depth. Figures 5.6 and 5.7 show that the vertical variations of ¥ computed
for the given (z — z) and ¢ are almost identical inside the surf zone where the
breaker point was located at 2 = 0.9 for experiment 3 and = = 0.5 for experiment 4.
The measured and computed vertical profiles of ¥ are approximately parallel except
outside the surf zone where the assumed cubic profile (3.60) for breaking waves
may not be appropriate. Outside the surf zone, the vertical profile of ¥ decreases
with the increase of (z — z). In this region, dS,,/dz = 0, so that the currents
are entirely driven by the dispersion mechanism and the (much weaker) turbulent
mixing (Svendsen and Putrevu 1994). The discrepancy between the measured and
computed longshore current ¥ inside the surf zone in Figures 5.6 and 5.7 is mostly
caused by the error in the predicted depth-averaged longshore current V shown in

IYigure 5.4 where Figure 5.7 is based on f; = 0.025 for experiment 4.
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Figure 5.6: Measured and computed vertical variations for longshore current o for
experiment 3 for 3D model.
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Figure 5.7: Measured and computed vertical variations for longshore current v for
experiment 4 for 3D model.



As for the vertical variation of the instantaneous cross-shore velocity 1, John-
son et al. (1996) compared the numerical model based on (3.46), (3.47) and (3.52)
for normally incident waves with the velocity measurements below the trough level
by Cox et al. (1994). The vertical variations of the measured and computed cross-
shore velocities were relatively small below the trough level and above the bottom
boundary layer. The computed vertical variation of u above the trough level could

not be verified for lack of data.

5.1.3 Numerical Damping and Dissipation

According to Kobayashi and Johnson (1995), the value of numerical damping
coefficient £ used for the 3D model in the smoothing procedure for breaking waves
on the gently sloping beach is on the order of unity as discussed in Section 3.2.
As a result, £ = 1 has been used unless stated otherwise. The computation using
r = 1 improves the prediction of the transition zone but underpredicts the maximum
setup for experiments 4 and 5 in Figure 5.3. Figure 5.8 shows that the computed
wave setup 77 using £ = 0.3 for the 3D model yields slightly better agreement for
experiments 4 and 5. Table 5.1 and 5.2 compares the measured and computed
maximum setup and runup for the four experiments using k= 1 and 0.3 in the same
way as in Table 4.2. 1t is noted that the measured values for experiment 4 are
slightly different from those in Table 4.2 since the normalization is made using the
different value of the wave height H' at the shallower seaward boundary location.
On the other hand, Figures 5.9 and 5.10 show that the cross-shore variations of the
wave height I and the depth-averaged longshore current V based on x = 0.3 do
not change much as compared to the computed results with £ = 1. In summary,
the numerical damping coefficient & in the range of £ =0.3-1 modifies the computed
results slightly but does not change the essential features of the computed results

using the 3D model.



Table 5.1: Measured and computed maximum setup 7 using different values of x
for 3D model.

Maximum Setup

Expt. | Computed (£ = 1) | Computed (x = 0.3)
No. Imm [ Hmm | 10mm | Imm | Hmm | 10mm | Meas.
2 029 | 0.25 | 0.22 | 037 | 0.32 | 0.29 0.29
3 0.28 | 0.24 | 0.21 0.36 | 0.32 | 0.29 0.31
4 0.14 | 0.12 | 0.11 0.19 | 0.18 | 0.17 0.19

5 0.18 | 0.15 | 0.13 | 0.25 | 0.21 0.19 0.27

Table 5.2: Measured and computed runup using different values of s for 3D model.

Runup
Expt. | Computed (k = 1) | Computed (x = 0.3)
No. Imm | Hhmm ‘ 10mm | lmm | Hhmm ‘ 10mm | Meas.

2 0.32 { 0.30 | 0.29 | 0.40 | 0.38 | 0.36 0.43
3 0.31 { 0.30 | 0.29 | 040 | 0.38 | 0.35 0.47
1 0.15 | 0.15 | 0.16 | 0.21 | 0.21 | 0.21 0.23
H 0.20 | 0.20 | 0.20 | 0.29 | 0.27 | 0.27 0.34

The time-averaged energy quantities are shown in Figure 5.11. The numerical
dissipation rate, Dyumerical, sShown in the last panel and defined in (3.69) is the differ-
ence between the values of D computed using the time-averaged energy equation
(3.63) and the physical dissipation rate Dp predicted using (3.68) for the 3D model.
It is noted that the numerical dissipation rate is of the same order as the wave
breaking dissipation rate computed using (3.68) explicitly in the 3D model. The
values of k = 0.3 and 1.0 have only minor effects on the time-averaged energy quan-
tities. This suggests the shortcoming of the cubic velocity profile assumed in (3.60)
to describe the wave energy dissipation due to breaking on the gentle slope. This
probably arises from the fact that the wave front (roller) is not modeled specifically

in the 3D model (Johnson et al. 1996).
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Figure 5.8: Measured and computed wave setup 7 for four experiments using dif-
ferent values of x for 3D model.
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Figure 5.9: Measured and computed wave height H for four experiments using
different values of x for 3D model.
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Figure 5.10: Measured and computed depth-averaged longshore current V for four
experiments using different values of & for 3D model.
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Figure 5.11: Computed cross-shore variations of time-averaged specific energy I,
energy flux Ep, bottom frictional dissipation rate D, breaking dis-
sipation rate Dp predicted physically by 3D model, and numeri-
cal dissipation rate Dyumerical €stimated using time-averaged energy
equation.
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5.1.4 Computed Instantaneous Velocity Field

IMigure 5.12 shows the computed cross-shore variations of the free surface
n, the depth-averaged cross-shore velocity U, the near-bottom cross-shore velocity
correction 1y, the depth-averaged alongshore velocity V', and the near-bottom along-
shore velocity correction vy, at five time levels throughout the final wave period for
experiment 2. The computed cross-shore variations at ¢ = 299 and { = 300 are
identical due to periodicity. The saw tooth profile develops as the wave propagates
shoreward. The near-bottom cross-shore velocity correction, 1, is assumed to be
out of phase with U/ in (3.54) to ensure that |uy| < |U| where w, = (U + ) is
the near bottom cross-shore velocity. Consequently, the value of 1, computed using
(3.54) changes abruptly as U changes its sign. The magnitude of v, is small in
comparison to the magnitude of V, suggesting that the deviation of the alongshore
velocity v given by (3.58) from the depth-averaged velocity V is fairly small as is

the case with the longshore current » shown in Figures 5.6 and 5.7.
g g

5.2 Comparisons with Irregular Wave Data

The 3D computations for the Leadbetter beach data of Thornton and Guza
on February 5 and 6 are made in the same way as the corresponding 2D computations
in Section 4.3. The bottom friction factor is taken to be fi = 0.015 for the 2D and
3D computations. The 3D computations are also made using [} = 0.01.

Figure 5.13 compares the measured and computed cross-shore variations of
the normalized root-mean-square wave height H,,,, on February 5 and 6. The differ-
ences between the 2D and 3D computations are less than those shown in Figure 5.2
for the regular waves. The cross-shore variations of H,,s computed using f; = 0.01
are indistinguishable from those shown in Figure 5.13 for f{ = 0.015.

Figure 5.14 shows the computed depth-averaged longshore currents V using

Ji =0.01 and 0.015 in comparison with the longshore current measured at a distance
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Figure 5.12: Computed cross-shore variations of 1, U, 13, V', and vy, at 5 time levels,
t = 299.0, 299.25, 299.5, 299.75, and 300.0 for experiment 2.
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above the bottom. These comparisons are meaningful only if the longshore current
v varies little vertically. Ifigure 5.15 shows the computed vertical variations of v
based on fi = 0.01 at six cross-shore locations on February 5 where @ = 2.56 and
2.81 are in the swash zone. It is noted that the time-averaged value of v at the given
distance (z — z) from the bottom is computed only if this elevation is wet always
during 200 < ¢ < 500, whereas the time-averaged value v at the given normalized
distance ( = (z — 2,)/h is computed as long as h > 0 and plotted at the mean
elevation, (z — z,) = Ch, where v = 0 set during A = 0 is included in the time
averaging. The computed vertical variations of © on February 6 are also small and
the measured longshore currents may be assumed to represent the depth-averaged
longshore currents. It is noted that the vertical variations of ¥ for irregular waves
in Figure 5.15 are smaller than those for regular waves in Figures 5.6 and 5.7.

Figure 5.14 shows that the dispersion effects included in the 3D model im-
prove the agreement somewhat if the bottom friction factor f] is reduced to f{ = 0.01
from f{ = 0.015 used for the 2D model. Moreover, the dispersion effects on the long-
shore currents induced by breaking irregular waves are secondary in comparison to
those shown in Figure 5.4 for regular waves. To confirm this conclusion, Figure 5.16
shows the computed cross-shore variations of dS,,/dz and di/dz on February 5
in the same way as Figure 5.5 for regular waves. The term dn/dz included in the
3D model is secondary in the alongshore momentum equation (5.1). Thornton and
Guza (1986) already showed that the dispersion or lateral mixing was not impor-
tant for their longshore current data where the lateral mixing term was based on
the eddy viscosity formulation of Longuet-Higgins (1970).

Figure 5.17 shows the time-averaged energy quantities for February 5. Similar
to Figure 5.11 for regular waves, the numerical dissipation rate in the 3D model is
appreciable relative to the physical dissipation rates Dy and Dpg for irregular waves

as well.
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Figure 5.13: Measured and computed root-mean-square wave height H,, on
February 5 and 6 for comparison of 2D and 3D models.

134



e Data Computed (f = 0.015)
i =t

1.5 T T T

3.5

Figure 5.14: Measured and computed depth-averaged longshore current V' on
February 5 and 6 for comparison of 2D and 3D models.
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Chapter 6

COMPARISON OF THE 3D MODEL WITH BARRED
BEACH DATA

The concept of alongshore radiation stress has been shown to satisfactorily
describe the cross-shore distribution of longshore current on a planar beach (e.g.,
Svendsen and Putrevu 1994). The peak is located near the breaking zone inside
the surf zone where the cross-shore gradient of wave height is maximum. For regu-
lar waves, horizontal mixing is required for smoothing the current profile, whereas
Thornton and Guza (1986) found that for irregular waves, horizontal mixing is not
important as a result of the randomness of the breaker locations.

On a barred beach, conceptually, waves will break on the bar, reform and
break again on the beach face producing two peaks in the longshore current distri-
bution. Contrary to this concept, the measurements of longshore currents on the
barred beach obtained during the Duck Experiment on Low-I‘requency and Incident-
Band Longshore and Across-shore Hydrodynamics (DELILAH) experiment (Smith et
al. 1993) generally indicated a broad peak in the bar trough region. Existing time-
averaged models for longshore currents, which couple four governing equations for
the wave height, wave angle, mean water surface elevation, and longshore current,
have not been able to predict these broad peak longshore current data (Smith et al.
1993).

Smith et al. (1993) developed a one-dimensional time-averaged numerical

model for longshore current that included the effect of turbulence due to wave
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breaking through a general transport equation for the mean turbulent kinetic en-
ergy. Their model improved the model proposed by Larson and Kraus (1991) but
produced an unrealistic high peak on the beach face. Church and Thornton (1993)
developed a model using a spatially varying bottom friction coefficient based on
a one-dimensional turbulent kinetic energy equation associated with the breaking-
wave induced turbulence. However, this model was unable to satisfactorily predict
the broad peak of the longshore current distribution observed in the DELILAH exper-
iment. Momentum fluxes associated with mass transport above the trough level of
broken waves, which were ignored in the other models, were included in the model
developed by Kuriyama (1994). His model with additional empirical coefficients
was compared with the longshore currents measured at Hazaki Oceanographical
Research Facility (HORF) in Japan. At present, there is no model available to pre-
dict the broad peak of the longshore current on a barred beach in a physically
satisfactory manner.

To assess whether the time-dependent 3D numerical model including the
dispersion effects in Section 3.2 is capable of predicting the longshore current on a
barred beach, the 3D model is compared with the DELILAH field data of Smith et
al. (1993). The comparison suggests that the broad peak of the longshore current
in the bar trough region cannot be explained under the assumption of alongshore

uniformity.

6.1 Estimation of Incident Irregular Waves

The 3D model is compared with the DELILAH data on October 14, 1990
at 1900 EST, which included the cross-shore variations of the measured root-mean-
square wave height and longshore current. The frequency spectrum measured at the
8 m water depth was narrow banded in frequency with symmetric directional distri-

butions about a mean oblique wave direction. The wave conditions at the 8 m depth
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were: the root-mean-square wave height H'

mms = 0.83 m; the spectral peak period

T = 12.0 sec; and the dominant incident wave direction ; = 18°. The bathymetry
was nearly uniform in the alongshore direction.

The seaward boundary of the numerical model based on the assumption of
shallow water waves is taken at the water depth d' = 3.64 m below the still water

level where the measured root-mean-square wave height H! _ was 1.02 m. The mea-

rms
sured frequency spectrum at d’ = 8 m is used to estimate the assumed unidirectional
frequency spectrum and the predominant incident wave direction at d’ = 3.64 m us-
ing the computer program RESHOAL developed by Poff and Kobayashi (1993) as
explained in the following.

RESHOAL assumes a straight shoreline with parallel bottom contours. For a
given incident directional random wave spectrum at a deeper water depth, RESHOAL
computes the directional random wave spectrum at a specified shallow water depth
using linear finite-depth wave theory for directional random wave shoaling and re-
fraction (LeMéhauté and Wang 1982). The incident directional random wave spec-
trum at the deeper water depth d' = 8 m is assumed to be given by the product of
the TMA frequency spectrum (Bouws et al. 1985) and the Mitsuyasu-type direc-
tional spreading function (Goda 1985). The input parameters for RESHOAL af the
deeper water depth d’ = 8 m are: H] , = spectral estimate of significant wave height;
1" = spectral peak period (1} = 12 s for this data); v = spectral peak enhance-
ment factor; §; = dominant incident wave direction (6; = 18°); Smax = maximum
value of the spreading parameter. RESHOAL computes the directional spectrum,
frequency spectrum and directional spreading function at the shallower water depth
d" = 3.64 m. The parameters H] ., 7, and sp.x need to be calibrated such that
the root-mean-square of wave height at the 3.64 m depth is equal to the measured

value of H!

rms

=1.02 m and the assumed incident directional wave spectrum at the

8 m water depth is similar to the measured spectrum. The calibrated values are
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H' ., = 1.35 m; v =5; and $;ax=120 at the 8 m water as shown in Figure 6.1.
= H!./V2 yields H! . = 0.95 m for
= 0.83 m.

It is noted that the assumption of H] .

H! . = 1.35 m, which is slightly larger than the measured value H/ .

Figures 6.1 shows the measured and fitted frequency and directional spectra
at the 8 m water depth and the computed frequency and directional spectra at
the seaward boundary d' = 3.64 m. The fitted directional spectrum at the 8 m
depth is the TMA frequency spectrum with v = 5 and H], = 1.35 m with the
Mitsuyasu-type directional spreading function with sy.x = 120. The computed
frequency spectrum with 77 = 11.9 s at d' = 3.64 m is used to compute the incident
wave trains at the seaward boundary using (4.3) required as the input to the 3D
model. This incident frequency wave spectrum does not include low-frequency wave
components as shown in Figure 6.1. The computed dominant incident wave direction
is 0; = 12° at d' = 3.64 m as may be seen from the computed directional spectrum
at d' = 3.64 m in Figure 6.1 which suggests that the assumption of unidirectional
random waves may be reasonable.

Similar to the computations made in Chapters 4 and 5, the normalized com-

putation duration is taken as f,.x = 500 corresponding to t/ .~ 99 min. The

‘max
sampling rate At’ in (4.3) is taken to be the same as the sampling rate of the
field data, At = 0.125 s. The bottom friction factor is assumed to be f] =0.015.
The computed results presented in the following section are based on the normal-
ization using the wave conditions at the seaward boundary of d' = 3.64 m, i.e.,
the measured root-mean-square wave height H' = H] . = 1.02 m; the computed
spectral peak period 7" = T/=11.9 sec; and the computed dominant wave direc-
tion #; = 12°. Correspondingly, o = T’(_g/H')% = 37 and 0, = & = 0.21 in
radians. The assumptions of o* > 1 and 0* < 1 are satisfied for this data.
The normalized grid spacings are taken as Az ~ Ay = 0.0106 corresponding to

the dimensional cross-shore and alongshore grid spacings of Az’ = 0.40 m and

Ay’ = 1.91 m, respectively.
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6.2 Comparison with Measurements

Figure 6.2 shows the comparisons between the measured and computed cross-
shore variations of the local root-mean-square wave height H,,s and the longshore
current V together with the measured bottom profile. The computed temporal
variation of 7 for 200 < ¢ < 500 is used to obtain H,, based on the zero-up crossing
method whereas the computed longshore current V is obtained by averaging the
temporal variation of the depth-averaged alongshore velocity V' for the duration
200 < t < 500.

Figure 6.2 shows that the 3D model without the incident low-frequency wave
components underpredicts the root-mean-square wave height in the bar trough re-
gion. Moreover, the model predicts a peak in the longshore current at the seaward
edge of the bar crest in contrast to a broad peak in the bar trough region.

The computed cross-shore variations of the time-averaged energy quantities
in (3.63) are shown in Figure 6.3. The dissipation due to bottom friction Dy has
a peak near the shoreline where the oscillatory cross-shore velocity is large. The
dissipation rate due to wave breaking, Dg, shown in the fourth panel has peaks
near the bar crest and on the beach face where the waves break. The numerical
dissipation rate shown in the last panel is dominant over the physical dissipation
rates computed explicitly in the 3D model and is the maximum at the seaward edge
of the bar crest. This numerical dissipation rate appears to compensate for the
underpredicted value of Dy at the bar crest.

Figure 6.4 shows the computed cross-shore variations of .5, /dz and dit/dz in
the alongshore momentum equation (5.1). The dispersion term dn/dz is secondary
in comparison to the cross-shore gradient of the alongshore radiation stress, d.S,,/dz.
The driving force represented by dS,,/dz is small in the bar trough region.

As an attempt to explain the broad peak in the longshore current distribution,

the effects of incident low-frequency waves and alongshore non-uniformity of incident
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wind waves on the cross-shore distribution of longshore current are examined in the

subsequent sections.

6.3 Effects of Incident Low-Frequency Waves

The incident wave spectrum at the seaward boundary shown in Figure 6.1
does not include low-frequency components. The low-frequency components might
modify wave breaking on the bar crest and improve the agreement of the longshore
current profile. As a first approximation, uniform low-frequency components are
added to the incident wave spectrum as shown in Figure 6.5. The additional energy
of these low-frequency components is taken to be 4% and 20% of the energy of
the wind wave frequency components to examine the sensitivity of the computed
results to the amount of the low-frequency components. It is noted that the 20%
low-frequency component at the 3.64 m depth are expected to be too large in reality.

The measured and computed cross-shore variations of the root-mean-square
wave height and longshore current are compared in Figure 6.6. The agreement for
the root-mean-square wave height is improved somewhat but the additional low-
frequency components modify the longshore current profile little. Consequently,
the broad peak of the longshore current in the bar trough cannot be explained by

incident low-frequency waves.

6.4 Effects of Alongshore Non-Uniformity of Incident Wind Waves
Longshore currents have been primarily modeled assuming alongshore unifor-
mity, although it has been known that alongshore non-uniformities affect longshore
currents. Putrevu et al. (1995) derived a semi-analytical solution for longshore
current, that allows for weak alongshore variation in the bottom topography. Their
calculation showed that the longshore current could deviate by up to 30% from the
mean for a 10% deviation of the bottom topography. Symonds and Huntley (1980)

showed that the alongshore gradient of wave setup can shift the peak of the long-
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shore current shoreward. Gourlay (1976), Keeley and Bowen (1977), and Wu et
al. (1985) studied the effect of the alongshore variation of breaker height on the
longshore current. Gourlay (1976) conducted experiments in a laboratory to study
a non-uniform longshore current system generated by the alongshore gradient of
breaker height behind an offshore breakwater. Keeley and Bowen (1977) measured
the longshore currents in Martinique Beach, Canada at several alongshore locations
and found that alongshore variation in the breaker height contributed about 10%
to the overall current strength. Wu et al. (1985) compared their two-dimensional
circulation model with the Nearshore Sediment Transport Study (NSTS) field mea-
surements at Leadbetter Beach, California and demonstrated that the non-uniform
wave field resulted in the formation of a non-uniform longshore current pattern.
To study the effect of the alongshore variation of incident wave conditions
within the limitation of the 3D model based on three cross-shore lines shown in
Figure 3.1, the incident wave trains 5); specified as new input to the model are

modified as follows:
Line 1: new (7;)1 = old (i)
Line 2: new (7;)2 = old (n:)2 x (1 —6,)
Line 3: new (n;)3 = old (n:)s x (1 —26,)

where the old time series (1;)1, (7:)2 and (7;)3 have been computed using (4.3) for in-
cident unidirectional random waves of alongshore uniformity. The distance between
two adjacent lines is Ay’ = 1.91 m. The dimensionless parameter 6, is taken to be
much less than unity to satisfy the assumption of gradual alongshore variation. The
incident wave intensity decreases or increases in the down-wave direction depending
on &, > 0 or 6, < 0, respectively.

The computed results using these new incident wave trains are shown in
Figures 6.7 and 6.8 for the cases of 6, = 0, 0.0005 and 0.001 and for the cases of

6, = 0 and -0.001, respectively. The root-mean-square wave height changes very
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little since the specified change in the incident wave train is very small. For the
wave infensity decreasing in the down-wave direction, the longshore current profile
increases almost uniformly across the shoaling region and over the bar crest. The
increase in the longshore current is larger in the bar trough region, whereas the
increase is smaller in the swash zone. The broad peak in the bar trough region is
similar to the broad peak observed in the field. For the wave intensity increasing
in the down-wave direction as shown in Figure 6.8 the longshore current in the bar
trough region is decreased significantly and becomes negative.

To explain the computed results in Figures 6.7 and 6.8, the time-averaged
alongshore momentum equation (3.61) is rewritten as

a - R of 1 8+——= :
._‘bl;” —r -I_ e = —-— e, ( # I
Az b dx + I(’)y T 2 dy(” ) oy (6.1)

in which S;, = AUV is the alongshore radiation stress based on the depth-averaged
velocities U and V. Figure 6.9 shows the cross-shore variations of the driving forces
on the left hand side of (6.1) for the cases of ¢, = 0.001 and —0.001. The terms of
di)dz and $0(n — 77)*/dy are on the order of 0.005 or less in the bar trough region
and secondary in comparison to the other two terms plotted in this figure. For both
cases, the cross-shore gradient of the alongshore radiation stress, d.5,,/0z, driving
the longshore current is very small in the bar trough region. The additional term
hoij/ Oy associated with the alongshore wave setup gradient modifies the driving
force significantly in the bar trough region. The incident wave intensity and resulting
wave setup decrease or increase in the down wave direction depending on 6, > 0 or
0, < 0, respectively.

Figures 6.10 and 6.11 show the computed vertical variations of the long-
shore current @ for the alongshore uniform case (6, = 0) and the non-uniform case
(6, = 0.001), respectively, computed in the same way as for the planar beach
case discussed in Section 5.2. Similar to the computed results for irregular waves

on the planar beach shown in Figure 5.15, the computed vertical variations of T are



very small. However, the longshore currents measured at the same barred beach
by Haines and Sallenger (1994) showed marked vertical variations, which cannot be
explained by the present 3D model.

To examine the effects of the alongshore non-uniformity on planar beaches,
the modified incident wave trains for the cases of 6, = 0.0005 and 0.001 are also
specified for the computations for the regular wave experiment 2 of Visser (1991)
and the irregular wave data of Thornton and Guza (1986) on February 5. For the
planar beach as shown in Figure 6.12, the longshore current increases almost uni-
formly in the shoaling and surf zones except in the swash zone. Contrary to fhe
computed results for the barred beach shown in Figure 6.7, the longshore current
profile shape on the planar beaches is not sensitive to the alongshore non-uniformity.
To explain this difference, Figure 6.13 shows the cross-shore variations of the driving
forces in the time-averaged momentum equation (6.1) for both regular and irregu-
lar waves on the planar beaches. The additional driving force terms hof/dy and
10(n — 1)/ 0y due to the alongshore variations are small in comparison to the main
driving force, 8S,,/0z, causing the almost uniform increase in the longshore current
without changing its shape as shown in Figure 6.12. The computed results discussed
above imply that the broad peak of the longshore current on a barred beach can be
caused by the very small alongshore variation of wave height and setup. This may
explain why existing longshore current models based on the assumption of along-
shore uniformity were regarded to be adequate before their comparisons with the
barred beach data. For planar beaches, the effect of alongshore non-uniformity, even
if it exists, can be accounted for by adjusting the constant bottom friction factor
that does not change the longshore current profile shape as shown in Figures 5.4 and
5.14. On the other hand, for barred beaches, the very small alongshore variation of
wave height and setup modifies the longshore current profile shape that cannot be

changed much by adjusting the constant bottom friction factor.
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Chapter 7

SUMMARY AND CONCLUSIONS

The finite-amplitude shallow-water equations under the assumption of small
incident angles are solved numerically to predict the cross-shore and temporal vari-
ations of the free surface elevation and the cross-shore and alongshore velocities in
the swash and surf zones. The use of the finite-amplitude shallow-water equations
limits the computation domain within a short distance from the shoreline. The
assumption of small incident angles reduces computational efforts considerably and
avoids difficulties associated with lateral boundary conditions. This assumption
may be too restrictive for field applications but allows us to compute the dominant
cross-shore fluid motion along each cross-shore line using the one-dimensional con-
tinuity and cross-shore momentum equations for normally incident waves developed
by Kobayashi et al. (1987, 1989).

The secondary alongshore velocity, which may vary slowly in the alongshore
direction, is then computed using the alongshore momentum equation for the com-
puted free surface elevation and cross-shore velocity along the cross-shore lines. The
timc-averaged alongshore momentum equation is used to check the accuracy of the
numerical method as well as the seaward and landward boundary algorithms em-
ployed to solve the time-dependent alongshore momentum equation.

Two models are developed in this study. The 2D model neglects the vertical
variations of the instantaneous horizontal velocities, whereas the quasi-3D model

includes the dispersion effects due to the vertical variations of the horizontal veloci-
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ties on the depth-integrated cross-shore and alongshore momentum equations (3.47)
and (3.48). The dispersion terms m and n in these equations express the additional
cross-shore and alongshore momentum fluxes, respectively. It is noted that for the
2D model, m = 0 and n = 0. T'wo additional equations for m and n are derived from
the depth-dependent cross-shore and alongshore momentum equations. To close the
problem, the deviations of the horizontal velocities from the depth-averaged veloci-
ties are assumed to be expressed by the cubic profile normalized by the near-bottom
deviations and the instantaneous water depth. The equations for m and n are solved
numerically together with the cross-shore and alongshore momentum equations to
compute the temporal and cross-shore variations of the water depth and the cross-
shore and alongshore depth-averaged and near bottom velocities.

The developed 2D and quasi-3D models are compared with the laboratory
data for obliquely incident regular waves of Visser (1991), who ensured the along-
shore uniformity of longshore currents using a pumping system, and with field data
of Thornton and Guza (1986) for that the assumption of alongshore uniformity ap-
peared reasonable. To assess the importance of the dispersion effects, both models
are compared with the same data sets. Comparisons between the measured and
computed cross-shore variations of the wave height and setup for regular waves and
the root-mean-square wave height for irregular waves indicate that both models are
capable of predicting these time-averaged quantities. The dispersion effects on the
cross-shore variations of the wave height and setup are shown to be minor, indicat-
ing that the cross-shore dispersion term m may be neglected in the depth-integrated
cross-shore momentum equation as anticipated by Kobayashi and Wurjanto (1992).

The computed oscillatory components of the cross-shore and alongshore depth-
averaged velocities become the maximum near the still water shoreline for the field
data of Thornton and Guza (1986), contrary to the conventional assumption of

depth-limited linear breaking waves made in existing time-averaged models. The
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causes of these large velocities are examined using the time-averaged wave en-
ergy equation and filtering the computed temporal variations in the high- and
low-frequency bands. The computed energy dissipation rate indicates intense wave
breaking immediately seaward of the still water shoreline that may partly explain
the computed large velocities near the shoreline. The computed high- and low-
frequency components of the alongshore velocity variance are of the same magni-
tude near the shoreline even in the absence of incident low frequency waves and edge
waves. Kobayashi et al. (1997) derived simple relationships between the free surface
and cross-shore velocity statistics using a linear progressive long-wave theory. The
computed values of the normalized free surface standard deviation, 7,/ h, increase
gradually and then rapidly near the shoreline as the mean water depth . approaches
zero. The computed landward increases of the cross-shore velocity standard devia-
tion and the undertow magnitude can be explained using these relationships with
the computed cross-shore variation of s/ /.

For regular waves, the 2D model with the bottom friction factor calibrated
previously for swash oscillations predicts the magnitude of the longshore current
but cannot reproduce the longshore current profile. The quasi-3D model, which
includes the dispersion effects, improves the prediction of the longshore current
profile significantly. For irregular waves, both models using the bottom friction
factor calibrated by Raubenheimer et al. (1995), predict the longshore current
profile as accurately as the calibrated time-averaged model by Thornton and Guza
(1986), which requires much less computational efforts. The advantage of the time-
dependent models can not be confirmed for lack of swash velocity data. The 3D
model computation is also made using different values of the bottom friction factor
to improve the agreement of the longshore current. The bottom friction factor is
important in determining the magnitude of the longshore current but modifies its

profile little. In summary, the dispersion effects on the longshore current profile are
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significant for regular waves but secondary for irregular waves, especially in view of
the uncertainties associated with the bottom friction factor. Furthermore, the 3D
model is shown to predict the vertical variations of the longshore current inside the
surf zone but not outside the surf zone since the assumed cubic velocity profile may
not be appropriate outside the surf zone.

The computed results using the 2D model are used to explain the very low-
frequency component of the computed depth-averaged alongshore velocities V' gen-
erated by irregular breaking waves. The oscillatory components of the computed
alongshore velocity are analyzed using the nonlinear and linear alongshore momen-
tum equations together with the computed alongshore gradient of the free surface
elevation. The nonlinear terms associated with the alongshore momentum flux and
bottom shear stress are shown to be negligible outside the surf zone and reduce
the low-frequency components of the alongshore velocity in the breaker and inner
surf zones. On the other hand, the alongshore free surface gradient is found to be
negligible in driving the alongshore oscillatory fluid motion in the swash zone except
for the very low-frequency range. The very slow oscillations of the computed along-
shore velocity in the vicinity of the breaker zone are inferred to be caused by the
very low-frequency component of the alongshore free surface gradient whose origin
is uncertain and can be numerical.

Finally, the 3D model is also compared with the DELILAH field data for a
barred beach (Smith et al. 1993). The frequency and directional spectra were
measured at the 8 m depth. The seaward boundary of the numerical model, based
on the assumption of shallow water waves, is taken at the 3.64 m depth. The
shoaling and refraction of linear directional random waves is computed to estimate
the frequency spectrum and dominant wave direction at the seaward boundary.
The 3D model underpredicts the root-mean-square wave height somewhat in the

bar trough region and predicts a peak in the longshore current at the seaward
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edge of the bar crest. Under the assumption of alongshore uniformity, the model
cannot explain the observed broad peak in the longshore current in the bar trough
region. Small alongshore variations of the incident wave intensity and resulting wave
setup are shown to modify the longshore current profile in the bar trough region
significantly. The cross-shore gradient of the alongshore radiation stress driving the
longshore current is very small in this bar trough region. The alongshore gradient
of wave setup is shown to alter the force driving the longshore current significantly
in this region and produces a broad peak in the longshore current. Contrary to
the computed results for the barred beach, the longshore current profile on planar
beaches is found to be insensitive to the alongshore variations of the incident wave
intensity and resulting wave setup. As a result, the prediction of the longshore
current profiles on barred beaches will require the knowledge of small alongshore

variability that is very difficult to measure accurately.
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