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ABSTRACT

In this thesis a depth-integrated, shortwave-averaged nearshore circulation
model, called SHORECIRC, is developed, which includes the current-current and
current-wave interactions over depth. This model belongs to the class of quasi-
3D models, which combine the effect of the vertical structure with the simplicity
of 2DH models. The present model uses semi-analytical solutions for the 3D
current profiles in combination with a numerical solution of the depth-integrated
2D horizontal equations. The goal of this model is to gain an enhanced prediction
and analysis capability for nearshore circulation on any bathymetry and under

any hydrodynamical condition.

The current-current, current-wave induced dispersion mechanism has pre-
viously been found to significantly augment the lateral turbulent mixing in the
case of a steady, uniform longshore current on a straight coast. In this thesis, the
generalized quasi 3-D continuity and momentum equations governing nearshore
circulation are presented. These equations are based on the complete Reynolds

equations with as few additional assumptions as possible.

The numerical modeling of these governing equations is described in Chap-
ter 3. Special emphasis is placed on the development of accurate boundary con-
ditions, which are essential to the performance of a numerical model. For the

artificial (“seaward”) boundaries we develop an absorbing-generating boundary

Xiii



condition based on the Method of Characteristics, which is capable of generat-
ing waves at a boundary while simultaneously absorbing any outgoing progressive
wave with a mimimum of reflection. This boundary condition’s reflection errors

are shown in a number of formal tests.

At the shoreline a relatively simple inundation-storage boundary condition
is developed. It is compared for the case of one-dimensional run-up to the analyt-
ical solution by Carrier & Greenspan (1958) and for the case of two-dimensional
run-up of a solitary wave on a concave beach to numerical solutions by Zelt (1986)

and Ozkan-Haller & Kirby (1997).

In the last two chapters the model is applied to a number of specific cases
involving infragravity waves and longshore currents. It is emphasized that the use
of the SHORECIRC model is not limited to these cases, but has been developed

so that it can be used for general bathymetries and hydrodynamical conditions.

In Chapter 4, the generation of infragravity waves forced by normally-
;] . w
incident wave groups (also called “surf beat”) is analyzed. It turns out that the
generation process can be characterized by three external parameters: the relative
| Sa, the short- breakpoint location 2= and the breaki
slope steepness Sa, the mean short-wave breakpoint location 7+ and the breaking
&
mechanism . It is shown that a variation of the above-mentioned parameters
results in a variation in the ratio of outgoing to incoming wave energy. The value
of this “reflection coefficient” R can be interpreted as an integral measure of the

net transfer of energy to the infragravity waves as a result of shoaling and breaking

of the short-wave groups and their interaction with the long waves.

In Chapter 5, the SHORECIRC model is applied to the start-up of a long-
shore current and to infragravity waves forced by obliquely-incident wave groups.

In both cases it is shown that the quasi 3-D terms have a significant effect on the

X1V



results and represent terms in the momentum equations that can be at least of the

same order as the terms corresponding to the nonlinear shallow water equations.

The cross-shore component of the |G wave particle profiles shows a signifi-
cant depth variation. The depth variation of the longshore component is seemingly

slight, but nonetheless essential to the existence of dispersive mixing.

The magnitude of the quasi 3-D coefficients as a function of time and cross-
shore distance is also analyzed. It is found that the (time-varying) forcing has a
large effect on the size of these terms. The magnitude of these coeflicients is also
compared to the approximate values under the simplifying assumption of depth-
invariant velocity profiles below trough, which will be shown to cause significant

underpredictions.

The analysis of the quasi 3-D contributions to the momentum equations
shows that a number of these terms can be neglected in the cases shown in this
thesis. However, the assessment of the relative magnitude of these terms should
be performed for each individual case. For particularly complicated cases it is
advisable to retain all terms in the equations, since they may be significant locally

in space and time.
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Chapter 1

INTRODUCTION

1.1 Nearshore Circulation

Nearshore circulation can be defined as the current and long wave pattern
induced by short-wave motion, wind and fides in the vicinity of the shore. Espe-
clally the first aspect, the shoaling, breaking and refraction of short waves, can
generate steady and unsteady currents and low frequency (infragravity) waves.
These so-called nearshore phenomena, although hardly detectable when one looks
out over the ocean from the shore, are suspected to have a profound influence on

coastal processes such as beach erosion.

It is therefore important to be able to understand, predict and analyze these
hydrodynamical processes to be able to predict, plan and manage the evolution
of the coast. Since these processes are very complex, existing analytical solutions

and simplified numerical models do not suffice anymore.

In order to gain an enhanced prediction and analysis capability, a model
called SHORECIRC has been developed within the framework of the Seagrant
program. SHORECIRC is based on the complete Reynolds equations with as few
additional assumptions as possible and can be used to analyze nearshore circula-

tion on any nearshore bathymetry and under any hydrodynamical condition. In



this thesis special emphasis is placed on infragravity waves and their generation,

since these waves dominate the motion in the nearshore region.

1.2

Objective of the Project

This research effort is part of a long-term project by Dr. I[.A. Svendsen

and co-authors, which began in 1989. The preceding publications are listed in the

next section. The major objectives of this work are:

L.

ot

To develop a quasi three-dimensional model for the generation of time-

varying currents and infragravity waves in the nearshore region.

. To validate the model against a known analytical solution for the simplified

case of infragravity waves generated by simple wave groups incident on a

plane beach.

To analyze the mechanisms for the generation of infragravity waves inside the
surf zone. This includes the role of free and bound long waves in association
with time-varying breaking points and short-wave groupiness inside the surf

zone,

To analyze the importance of the dispersive mixing in shaping the genera-
tion and propagation of infragravity waves. This includes analysis of how
infragravity waves are influenced by the 3D structure of their horizontal

velocity distributions.

. To analyze which physical effects in the governing equations can be neglected

in order to simplify and therefore economize the modeling efforts.



1.3 Overview of Previous Work

In this section an overview of relevant previous work is presented. Since
research initially focused on distinet phenomena of nearshore circulation, this
chapter is organized to give an account of the progress on each topic. For a more
thorough review, we refer to Svendsen & Putrevu (1996). Additional references

on specific topics will be given in the chapters where they are addressed.

1.3.1 Longshore Currents

The analysis of nearshore circulation has been under continuing develop-
ment since the early sixties when the concept of wave radiation stress was de-
veloped by Longuet-Higgins & Stewart (1962, 1964). Bowen (1969a), Thornton
(1970) and Longuet-Higgins (1970) used that concept to physically explain phe-
nomena such as the longshore current and its shape. These early investigations
found that the lateral mixing required to match model results and longshore cur-
rent distribution data needed to be at least one order of magnitude larger than
the turbulent mixing. For early discussions on this topic, see Inman et al. (1971),

Bowen and Inman (1974) and Battjes (1975).

Putrevu & Svendsen (1992) and Svendsen & Putrevu (1994a) found that
current-current and wave-current interactions due to the nonuniformities of the
current over depth cause a momentum dispersion mechanism, which is analogous
to the dispersion of pollutants in shear flow (Taylor, 1954; Elder, 1959; Fisher,
1978) and increases lateral mixing on a plane beach by an order of magnitude
relative to the vertical eddy viscosity. This means that the horizontal (or lateral)
eddy viscosity parameter does not need to be artificially adjusted to force agree-

ment with data. Indeed, their calculations agreed well with Visser’s (1984) data,



which were taken on a plane laboratory beach.

A remaining problem, which has been studied intensively, is the longshore
current distribution on barred beaches. Various models (Baum & Basco, 1986;
Thornton & Guza, 1986; Larson & Kraus, 1991; Smith et al., 1993; Church &
Thornton, 1993 among others) show a distinct double peak in the longshore cur-
rent profile over a barred beach due to the fact that the wave breaks over the bar,
reforms and breaks again on the beach face. This process causes two regions of
radiation shear stress forcing, which drive the current. This finding is in conflict
with field data, such as Allender et al. (1978) and the DELILAH experiments,
which show a single peak in the trough behind the bar. The analytical model
by Dalrymple (1978), the numerical model results by Sancho et al. (1995) and
field analysis by Reniers et al. (1995) indicate that longshore variations of the
bathymetry can induce longshore pressure gradients, which in turn can shift the

maximum longshore current from the top of the bar to the trough.

1.3.2 2-DH Coastal Circulation

Nearshore phenomena such as the current circulation over periodically long-
shore varying bottom topographies (Noda et al., 1974; Ebersole & Dalrymple, 1980
and others) and in closed basins with in principle arbitrary bathymetries (Wu &
Liu, 1985; Wind & Vreugdenhil, 1986) have been studied using two-dimensional
horizontal (2D-H) models. These models describe the depth-mean current and
surface elevation and are based on the turbulence-averaged, depth-integrated,
time-averaged Navier-Stokes equations. Some models assume steady state while
some are time-dependent. Since the averaging is done over the short-wave pe-
riod, the effect of the short-wave motion is replaced by the radiation stress and

the shortwave-induced volume flux, which force the long wave and current motion.



These quantities cannot be determined by the wave-averaged equations themselves
and have to be supplied to the model through a so-called “short-wave driver”. The
bottom boundary layer effect is replaced by a wave-averaged bottom shear stress,
which in itself is modeled as a function of the depth-averaged velocity. The tur-
bulent shear stresses are represented by an eddy viscosity model, which closes the

equations.

These types of models have also been used to study the generation of rip
currents (e.g., Noda, 1974). Rip currents are strong jet-like flows in the seaward
direction. Ample field evidence of these features exists (Inman et al., 1971; Dal-
rymple & Lozano, 1978 to mention two). A number of theoretical mechanisms
that can induce these flows are mentioned in Bowen (1969b), Dalrymple (1978)

and Tang & Dalrymple (1988).

1.3.3 Vertical Structure of Currents and IG-waves

The vertical structure of currents and in particular the cross-shore circu-
lation or undertow has been another topic of research. Two-dimensional vertical
(2D-V) models, which can resolve the vertical distribution, have been used by
various authors (Dyhr-Nielsen & Sérensen, 1970; Borekei, 1982; Svendsen, 1984b;
Dally & Dean, 1984, 1986; Stive & Wind, 1986; Svendsen et al., 1987; Svend-
sen & Hansen, 1988; Okayasu et al., 1988 and Deigaard & Fredsge, 1989). Most
models assume steady state and assume longshore uniformity, which reduces the

equations considerably.

In essence, the steady cross-shore circulation current (or undertow), mean-
ing wave-induced volume flux and the return flow, is a result of the balance be-
tween the pressure gradient, which acts uniformly over depth, the short-wave

forcing, which is not uniform over depth, and the turbulent shear stresses. This



inequilibrium along the vertical axis drives the flow. The turbulent shear stresses
are usually represented by an eddy viscosity model. This results in a cross-shore
momentum equation, which is of second order in the depth coordinate z, which
requires two boundary conditions to close the problem. The usual choices are a
bottom boundary condition (i.e., the expression of the bottom shear stress in terms
of the bottom velocity) and the specification of either cross-shore conservation of

mass or a shear stress at the short-wave trough or mean water level.

Putrevu & Svendsen (1993, 1995) extended the analysis to include time-
varying forcing and presented local solutions for the vertical structure of the ve-
locity profiles in infragravity (IG) waves, both inside and outside the surf zone
for the case of surfbeat. They found that the local short-wave forcing causes a
substantial vertical variation of these profiles, while in the absence of such forcing

the profiles are relatively depth-invariant.

1.3.4 Quasi 3-D Circulation

Quasi-3D models were developed to combine the effect of the vertical struc-
ture with the simplicity of 2DH circulation models, which were described in the
two previous subsections. In an approach by De Vriend & Stive (1987) and Stive
& De Vriend (1987), the current is split into primary and secondary flow profiles
based on the assumption that the primary velocity profiles are the same in the
cross-shore and longshore direction. In a different approach, Svendsen & Lorenz
(1989) determined the vertically-varying longshore and cross-shore currents sep-
arately under the assumption of weak dependence. They found that the total
vertical current profile has a spiral shape, see I'ig. 1.1, with profiles that are very

different in the cross-shore and longshore direction.
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Figure 1.1: Three-dimensional structure of the current velocities in the surf zone
(from Svendsen & Lorenz, 1989).

Svendsen & Putrevu (1990) formulated a steady state 3D nearshore circu-
lation model using analytical solutions for the 3D current profiles in combination
with a numerical solution of the depth-integrated 2D horizontal equations for a
long straight coast. Sanchez-Arcilla et al. (1990, 1992) presented a similar con-
cept. They split the current velocity into a depth-invariant component and a com-
ponent with a vertical variation with zero mean flow integrated over the central
layer. Putrevu & Svendsen (1992) and Svendsen & Putrevu (1994a) recognized
that the current-current and current-wave interactions neglected in previous inves-
tigations induce a non-linear dispersion mechanism, which significantly augments
the lateral turbulent mixing and explains the difference in magnitude between the

vertical and horizontal mixing.

The time-dependent version of this model was presented in Van Dongeren



et al. (1994) for the special case of longshore uniformity in both the bathymetric
and hydrodynamical conditions. The generalized quasi 3-D model is presented in

this thesis.

1.3.5 Other Time-dependent Models

For completeness we mention a different class of models, which resolve the
instantaneous state of motion, such as models based on the nonlinear shallow

water equations or on the Boussinesq-equations.

Contributions to the former category include nonlinear shallow water mod-
els developed by Peregrine and co-authors (e.g., Hibberd & Peregrine, 1979; Pack-
wood & Peregrine, 1980; Packwood, 1983) and Kobayashi and co-authors (e.g.,
Kobayashi et al., 1989; Kobayashi & Wurjanto, 1992). Boussinesq-models for
breaking waves have been developed by Karambas et al. (1990), Brocchini et
al. (1992), Schiffer et al. (1992,1993) and Madsen et al. (1994) among oth-
ers. Since in that approach the governing equations are not averaged over the
short-wave period, these models are able to represent both short and long waves
simultaneously, which can be an advantage. This, however, also makes them
more computer-intensive and therefore expensive. These types of models are an

alternative to the types described in the previous sections.

1.4 Outline of Present Work

In the next chapter, the short-wave averaged, depth-integrated governing
equations are derived. Then, the local time-averaged (in other words, non depth-

integrated) equations are derived, the solution of which yield expressions of the

oo



depth variations of the currents. These will be used to transform the current-
current and current-wave integrals in the governing equations into expressions
which are dependent only on depth-averaged quantities. This procedure yields
the set of general quasi 3-D equations of horizontal momentum and continuity,
which can be solved numerically by finite differences in time and space with semi-
analytical expressions for the effect of the current distribution along the vertical.
As a check to their validity, these general equations are reduced to the previ-
ously derived equations in the case of a long straight (or cylindrical) coast. Also

presented in Chapter 2 are the energy equations for the short and the long waves.

In Chapter 3, the numerical method and the boundary conditions are de-
scribed. The method’s stability and accuracy are checked and the truncation

errors and their effect are investigated.

For our modeling purposes it was necessary to develop boundary conditions
at the open boundaries and at the moving shoreline. To that end, a so-called
absorbing-generating boundary condition for the seaward (or open) side of the
model is derived, which allows the propagation of outgoing long waves through
the boundary with a minimum of reflection while specifying an incoming long
wave. This boundary condition is tested for accuracy and reflection errors in a

number of formal tests.

A two-dimensional shoreline boundary condition based on the inundation-
drainage procedure is derived and tested for accuracy against a classical analytical
solutions for the case of a long straight coast and against two numerical solutions

for the case of a concave beach.

In Chapter 4, infragravity waves forced by normally-incident wave groups

(also called “surf beat”) are investigated. First, results from the linearized version



of the model are compared to a linear analytical solution and the nonlinear model
results are compared to laboratory data. The generation of these infragravity
waves by the transfer of energy from the short waves is analyzed in both the
linear and nonlinear versions of the model. Special attention is paid to the role
of incoming free and bound long waves in association with time-varying breaking

points as a function of the short-wave and bathymetrical parameters.

Chapter 5 addresses the importance of the dispersive mixing terms in the
governing equations. First, the start-up of a longshore current under steady state
forcing and the associated long and cross shore time scales are discussed. Then,
two-dimensional infragravity waves forced by obliquely incident wave groups are
shown. As in Chapter 4, the linearized model results are compared to an analytical
solution. Next, the effect of the nonlinear terms corresponding to the nonlinear
shallow water equations and the effect of the quasi 3-D terms is shown. Finally,
the magnitude of the quasi 3-D terms is shown relative to the other terms in the

momentum equation as a function of the cross-shore coordinate.

In Chapter 6, we will summarize the present work, draw conclusions and

list recommendations for future worlk.
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Chapter 2

DERIVATION OF THE GOVERNING EQUATIONS

In this chapter the governing equations of the SHORECIRC model are
described. In the first section, the depth-integrated, time-averaged governing
equations are derived. The complete derivation of the continuity equation is given
while only the procedure of the derivation of the momentum equations is described.

We refer to Putrevu & Svendsen (1991) for a more elaborate derivation.

In Section 2.2, the local, time-averaged momentum equations (sometimes
called “velocity profile”or “undertow equations”) are solved with the appropriate
boundary conditions. The derivation in this thesis is the time-steady version of

the more general one by Putrevu & Svendsen (1997).

The solutions to the local equations are then used in Section 2.3 to convert
the advective current-current and current-wave interaction terms in the depth-
integrated governing equations into terms that are functions of the depth-integrated
quantities and that reveal the momentum-dispersive effect or quasi 3-D effect that

these interaction terms represent.

The quasi 3-D terms are expressed in Section 2.4 in terms of polynomials

for the (quasi) steady state.



In Section 2.5, the governing equations are shown to reduce to the special

case of a long straight beach of Svendsen & Putrevu (1994a).

Finally, in Section 2.6 the energy equations for the short-wave and long-
wave motion are given as derived originally by Phillips (1977) with modifications
by Schiffer (1993). The energy equation for the short waves can be used as a
short-wave driver while the equation for the long waves will be used in Chapter 4

as an analytical tool to study the generation of infragravity waves.

2.1 Time-averaged, Depth-integrated Equations

The time-averaged, depth-integrated equations of conservation of mass and
momentum are derived for non-uniform currents over depth. This is a more general
form than those given by Phillips (1977) and Mei (1983) but the procedure is

essentially the same,

2.1.1 Conservation of Mass

The continuity equation reads

4 S0 (2.1)
where u, is the total velocity of long and short waves and w is the vertical ve-
locity. « is the index notation indicating the horizontal z, y directions. z is the
vertical coordinate, defined from the still water level (SWL) up, as is shown in

the definition sketch of Fig. 2.1.

Integrating this equation from the bottom at z = —h, to the instantaneous

surface at z = ( gives

c ‘} (84 - |
/—;;,, ;):ﬂ dz + w({) —w(—h,) =0 (2.2)
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Figure 2.1: Definition sketch.

We can apply the Leibniz rule to the first term, which yields

¢ b ) ¢ e
/ i ds — _d_-/h 0 i ra_cua(() 4 o hﬂ)uu(—h@)

By Oy  Ozg Oty 6 1

Substituting (2.3), the bottom boundary condition (BBC)

dh,

= f)
dx,

w(—h,) + ua

and the kinematic free surface boundary condition (KI'SBC)

w(() — “a(;:“ — 3—('!

into (2.2) yields the depth-integrated continuity equation

(¢ 0Qu
ot e Oz,

[n (2.6) we have defined

¢
Qn = / Uy dz
J=hy

13
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Next this equation will be shortwave-averaged or time-averaged, i.e., averaged

over the period of the short waves

Rl 29
where the overbar is defined as
L /T
i T/o - dt (2.9)

The effect of the time-averaging can be made more visible by splitting the
total velocity into three parts: the current (or long-wave) component V,,, the
short-wave component w,,, and the turbulent component u/, or

Uy = Vi + Uye + U, (2.10)
After turbulent (ensemble) averaging, which implies u, = 0, we have
=

Ua = Vo + Gus (2.11)

where the overbraces denote turbulent averaging. Dropping them for convenience,

the velocities are shortwave-averaged, where we define
e = 0 below trough (2.12)

so that the time- and turbulent-averaged (2.7) becomes

Qo= [j} Vadz + : Uype A2z (2.13)
where (; denotes the trough level. Defining the wave-induced volume flux,
Qua = /: Unper A2z (2.14)
9. (2.13) becomes
Qu = _Cr Vo dz + Qua (2.15)
Substituting (2.15) into (2.8) yields the result
T o ([ s o) =0 -

which is the depth-integrated, time-averaged continuity equation.
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2.1.2 Conservation of Momentum

In this subsection, an outline is given of the derivation of the depth-
integrated, time-averaged momentum equations. A more complete derivation for
the case of depth-varying currents is given by Putrevu & Svendsen (1991), which
is the extension of the procedure given by Phillips (1977) and Mei (1983). In the

following we largely follow the derivation given by Svendsen & Putrevu (1996).

The governing equations are derived from the Reynolds equations of hori-

zontal momentum, which read, in index notation

Jug " Oy g " Ougw | 5 dp y 1 (BT“;} i BT;;;)

ot dex., 0z B F’ o O, P

where p is the density, p is the instantaneous pressure, 6,4 is the Kronecker delta.

(2.17)

0z, 0z

The turbulent (or Reynolds) shear stresses 7,5 are defined as

N
Taf = =P Uy Ug (2.18)

We have assumed that the viscous stresses are negligible in a turbulent environ-

ment.

These equations are integrated term by term over depth from the bottom
at z = —h, to the instantaneous surface at z = (. The partial derivatives and
the integrals are then interchanged using the Leibniz rule, which yields a number
of boundary ferms. Most of these boundary terms can be eliminated using the
KFSBC and the BBC, while others can be replaced by surface and bottom shear
stresses. After performing these steps and applying a time-averaging, Eq. (2.17)

can be written as

a [ a ¢ l ——— 0h,
ugdz + < /} ugugdz = —p(—h, T
s p

ot o dz., g
10 ¢ A

e §8.g — Tunll | 4 L — B 2.19
p O, (f—n,.? Al ) P L



where ’rg is the surface shear stress, 'rf? is the bottom shear stress.

The pressure at the bottom can be eliminated using the vertical component

of the Reynolds equations of momentum

Jw O Ow? 1 dp 1 {7 O7ss
% B, Ve T he: 0 ;(ama ! az) (2.20)

which is also integrated from the bottom to the free surface. Then the Leibniz
rule is applied and the boundary terms are eliminated. After time-averaging and

some rearranging this leads to

g z Y ¢ : :
p(=h,) = pg(h, + ¢) + 8'(1" (]h PlsW — Tw,dz) ~ pg(h, + () (2.21)

where the second term on the right hand side of the equality is small under the
assumption that the vertical Reynolds shear stresses are small, so that the pressure

at the bottom is essentially hydrostatic.

We substitute (2.21) into (2.19), which gives

ac [ - OC
3 ugdz + 32:,,/—h,, uattgdz = —g (ho + )E

: z ' 1o <
_ li / pbagdz — r‘fc,ﬁ% Py h@l o ;f):a/ Tap Az

pOzy |J-n, s
s B
ol T, (2.22)
PP
where h = h, + (. We time-average (2.7) so that
. ¢ _
Qﬁ = /h ?Lﬁdz (223)

and expand the total velocity in the advective acceleration term into a current

part and a short-wave part, as in (2.11), so that we can write that term as

4 <
/ Uallp dz = _/‘f (V;r s u'wrx) (Vﬁ + umﬁ) dz =
—h-n =—Np
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¢ ¢ ¢
/; Vo Vadz + /h Unpee Uy dz + /C (Uwa Vo + vwp Va)dz  (2.24)

These equations can be used to rewrite (2.22) as

aQﬁ a <
R /_ Vo Vipdz + 5 f< *(ttun Vi + thup Vi) de =

1 8 ¢ 1
a - 5& wher m Z — Opf— -2
—g(h +f:)) > Pd&a {[ﬁu[;ﬂ 8+ Uwa Uwp) d 5_(,-2,09.-’1
L9 7 1§
1 A
P aﬁ:u/—h.—, T T P P (2 2 ))

The term in the square brackets on the right-hand side (RHS) is identified as the
radiation stress (the momentum flux due to the short waves) which can be written

as

¢ . 1 :
Saﬂ = f (P (Scrﬁ o} P Uy um,ﬁ') dz — 5(1{35,‘99' h)‘ (226)
i)

o
This definition is symbolically similar to Mei (1983), who uses a different definition
of t,,,, however. He requires ffhu Uwe Az = 0 where in the present derivation we

use the definition (2.12). With (2.26), (2.25) becomes

3@,@ ¢
dz Y
ot ();{'ﬂ /:lo Ve Vﬂ ¥+ Bt,, (uwu Vi + Uup 'l(,) d
o 10 G s P
AL a. af — f wp dz - - = 297
g(h -I—(.)dw p(?a,ﬂ,[ g —‘h.—,Tﬂ 4 ; : ( )

It is convenient to split the current velocity in a depth-invariant and a

depth-varying part as
Vo = Vi + Via(z) (2.28)

where we choose V., such that

7 ¢
V, = ]—/ tiydz = Qo (2.29)




By (2.15) this implies that

Vie dz = —Qua (2.30)

—flo

Substituting (2.28) into (2.27) yields the “final” form of the horizontal momentum

equations

Q) ) S )¢
r9ﬂ+ ( (Q Qﬁ)+ { /} Vi Vigds +

(')f (rjﬂfc, h f):L‘,_.,

o ¢ ¢
a_ we V 1w, o EZ ==l 5 ho o
i, Jo, e Vi thun Vi) &2 = =g (bt O

1 ¢ 75 74
s B . Ez\ e s s 2.31
p 0z, [ e /_JL,,T'M + p p ( )

We can solve these equations if we know the variation over depth of the currents,
which are the third and fourth terms on the left-hand side. In the next section,

these terms are analyzed and rewritten in terms of the depth-integrated variables.

2.2 Local, Time-averaged Equations

The variation over depth of the currents can be determined by solving the
local shortwave-averaged equations, which are not integrated over depth. In this

section and the next we will follow the derivation of Putrevu & Svendsen (1997).

Starting with the horizontal Reynolds equations, we introduce a split be-

tween currents and short-wave velocities (2.11)
g = Vo + Uue (2.32)

and average over the short-wave period to yield

A% oV..V, oV W 3 (TART I Ottty
Vo | OVaVp |, OVoW | OUuathup | O%up®u _
al Jz., 0z dx, 0z
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1.0 1 (07, o7, .
- g *( L (Tﬁ) (2.33)

— b —— :
p o 0w, o, 0z

(Svendsen & Lorenz, 1989). The vertical momentum equation can be integrated

over depth to yield

= ad [¢
p = pg(—2)— ,a?ﬁm + Tz ) / (pugw — Tyz)dz
0Ty Jz

& pg(( —2)—pud, (2.34)

The turbulent shear stresses may be expressed as (e.g., Rodi, 1980)

oVe  0Vp
Tl = — 2.35
P p (r)*r;; + d:}:“) ( )
and

v,
Top = por (2.36)

0z
where g = pwy; is the dynamic viscosity and »; is the turbulent eddy viscosity.

Introducing these expressions into (2.33) yields

OV | WVuVy  OVaW 9 ) Ity _

(TL.u,ﬂ,uwﬁ ‘h‘.}ﬁJ

ot Az, 0z dx,, 0z
¢ J oV, oVy J A i
— Ozg t dz., (u; (a:r:ﬂ * 3.‘1:“,)) s 0z (w 0z ) (a1}

Using (2.28) and the continuity equation, we can rewrite (2.37) as

J ()Vm‘ o avﬁ ()Vl,(i‘ a("?ﬁ <+ Vlﬁ)
5z ("‘ (9:) b+ 3 + o day

+ (Vi + Vi)

Mg | X

W 0z Y Oug

where
; d O, J v, 0V
B = —— (Upaliys — W2 - 2.39
Pe Ox,, (u Heib w"’) L 0z dx, ( (d’:ﬁ + ():;-r(,,)) ( )
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which is Putrevu & Svendsen’s Eq. (8) without neglecting the w? and turbulence

i

contributions. The fourth term on the RHS of (2.38) can be approximated by

(Vs + Vig) i Ve AL,

(V" + Vl”) 0%, “Ox, Ot * m

(2.40)

where we have used that in most practical case we have Vi3 < Vj. Defining

d o - 0 :
we can write (2.38) as
MVig 0 [ OVig | dVy ¢
iy e = el = [k i N
ot 0z (pia 0z Pe di Ty g
Ve - Mg Mg e
B VME);}:O, Vo Oz, K 0z (242)

Lastly, we can eliminate the term in parentheses on the right-hand side by sub-

stituting from the depth-integrated equation for the leading-order terms, which

reads
% +g % = —%—6{% (Sﬂﬁ -W) s /3 p_,_!_Tf? (2.43)
Eq. (2.42) then becomes

To solve for the vertical profiles, we split the depth-varying current velocity

into two parts

Vis = V5 + V) (2.45)
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where the first part is primarily the (slowly time-varying) component generated
by the local external forcing while the second part is generated by the advective
terms in (2.44). In this derivation, we will assume that the first component is

much larger than the second one,
1 0 .
Vg« V) (2.46)
which implies that the local external forcing is dominant and provides the primary

generation.

Splitting (2.44) in this way we have for VI(;;}
(0) . 91/(0)
My 8 (Wde

ot 0z 9z ) = —Is (247)

where the local external forcing is

, ; L. @ f. ¢ ] T8 — T8
fo = Pp — p—th (bcrﬁ —/_h Tap 42 | + % (2.48)

with two boundary conditions
(0) B
My _ 7

= t  z = —h, 2.49
0z p vy ! ' ( )

which assumes a slip velocity and an associated stress, and

¢
]
fh Vfﬁ}dz = —Qup (2.50)
If we assume that the time scale of the motion is large, we can neglect the local
acceleration term on the left-hand side of (2.47). This can be seen if we non-

dimensionalize the left-hand side of this equation using
t=T¢t z = hy 2 v = hyvJg .u: Vl{g} = ¢ V;}iu) (2.51)

where T is a typical time scale of the motion, and h; and ¢, are the depth and
celerity at breaking, respectively. The non-dimensionalized left-hand side then

becomes

- : 9.52
T ot ne 02\t oz (2:52)

o VLY by gl O ( ,:)V,’},“’)
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This implies that the acceleration is small if the parameter

| hy,
—_— 1 2.53
< (259

Integrating (2.47) for the steady state with the two boundary conditions

22 !-2 TB -‘I w,
. s (5 _ ‘?) 4o P (Z - E’) - Qh” (2.54)

4y

yields

Notice that the velocity Vl(g) is now written in terms of the (known) short-wave
forcing and the bottom friction. Putrevu & Svendsen (1997) show that this ex-

pression is the first approximation to the time-dependent solution of (2.47).

From the remainder of (2.44), we have the equation for VI(I;)’ which reads

vy o [ vy

leﬂ —g | alf = —Fp (2.55)
where

oV ., VY gy
By =g e + Targ. W & (2.56)

The boundary conditions that need to be satisfied are

av(l)

8—1; = i) at z = —h,

.
f Viydz =0

—ho

Integrating this equation for the steady state and substituting the boundary con-

dition yields

= C 1 2z
vl =y @) - / V—gf—h Fj dz dz (2.57)

This result means that the depth variation of 1/1(!}) is known in terms of variables

in the depth-integrated equations (V,,), the short-wave forcing (through Vl(g]) and

the value of V) at the mean surface elevation. This expression will be used in
18 I

the next section to transform the nonlinear integrals in (2.31).
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2.3 Calculation of Current-current and Current-wave Interaction Terms

In this section, results from the previous section are used to transform the
nonlinear integrals in (2.31) in such a way that they can be expressed in terms of

the variables in the depth-integrated equations and the known short-wave forcing.
First we split the depth-varying part of the velocity into
Vie = Wi 4 W (2.58)

as (2.45). The nonlinear integrals in (2.31) can then be expanded to read

¢ ¢
/h Via Vipdz + / Uwa Vg + twsVia dz
o b Ct

¢ e S
= /_h ViaVipdz + V‘lﬁ(@)/ Y 42 + an((.)/ U d

Ce

¢
_ I/I((x l(;;}d +/ Vf”im s _1_/} VU[;}V.“}(L.

—he

¢ < e . w0k 4

+ [ vOVD dz + Vig(C) / twa 4z + Via(0) / wugdz  (2.59)
—lta Ct Ct

We can neglect the fourth term on the RHS because of the smallness of the Vlli)

term. Using the definition (2.14) and substituting the solution for Vi from (2.57),

1ox

we have

—w = €1
/ VI(UJ V]({?J ds <4 ! Vl({fjl ( llgi(c) /2 = Fl(jngdZ) dz

—he vy J=h,

| z
-|-/ 1/1”} (Vl[rl}([;) /z E/—-‘L Fmdzd::) dz

+ V1p(0) Qua + Via({) Qua (2.60)
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This can be expanded as

'y ¢ 2
/ V](U] V(U)d /,r AN f 2 Fgdzdzdz +

z Vi J<h,

_/ VO / =~ [ F.dzdzdz
z Vi J—h,

"l"‘/lﬁ((,:) Q-r.-m — 1‘/1({})((:) Cg-mr.r + ‘/lu(C) Qwﬂ - ‘/]((1)(6) (]2-1“,(3
where (2.50) was used. Using the expansion (2.58) for Vj, this gives

/ vOvV©a: — [ VO / — [ made
—heo —ha z Vi ho

- / (u) / F‘_, dzdz dz

Vl{s‘ ((a) chr 2 V]rw)(C) Qwﬁ

We define the coefficient

Doy = — ] C o VO (dz)?

h ho —ho

(2.61)

(2.62)

(2.63)

which has a momentum-dispersive effect as will be shown later. Furthermore, we

define
4 ¢ ¢ 1 oh, ;
(-“-'mﬁ'v = ./—h,,, Vl(u]l (aquh' Vlﬁ dz — Vu[;)d ) (dz)a
Ghaap = — / v f —V”’(h,, + 2) (de)?
and

Mo = [ VOVE dz + VOO Qup + VD) Qe

_;_U
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(2.64)

(2.65)

(2.66)



so that (2.62) can be rewritten as

?ﬁmfﬁ oV, oV,
= ~ B Bay—= £ Dy —2 i
J " "( W Gy T P g, T a:;;,v)
oV,

A= (Glﬂ'ﬁﬂf + Glﬁa’y) VT = (GZQ'H + Gtz,('!r.r) ‘BT‘ (267)
vy

The derivation of (2.67) from (2.62) is rather lengthy and is detailed in Appendix
A.

With (2.67), (2.31) then becomes

Py (Ve Vs b + Mip)

ot Oz,
0 oV, OV v,
e lh (DM i * DM(’):I:T + 2D 5:{:7)]
0 , ’ o [, . OV
= Bz, [(G]aﬂq« + Gigay) Vr] = o [(quﬁ + Gapa) ﬁ]
o —ghde L P g -/CT i)+ BT (2.68)
= Lf)a‘.ﬁ p Oz, e SR p '

Notice that we have the following correspondence between the present notation

and the notation in Putrevu & Svendsen (1997)’s Eqs. (27) - (30)

Auaps|lpeser = — Giapy — Gigay (2.69)

_ | .
Baglpuser = 2Dgap + ;i (Gaap + Gapa) (2.70)

h
This means that (2.68) can alternatively be rewritten as

3@3 a =
5 T (Ve Vi b + Mop)




_amn lh (Dﬁﬁm + i)ﬂﬁa il i Brxﬂm)‘l < — [Auﬁ"f V‘T]

oz,

a 19 ¢ ) TS — T4
e e o= o 'Ycr - / efi C . i
gh T 5o (5 p= [, T dz | + - (2.71)

Eqs. (2.8) and (2.68) (or (2.71)) are the quasi 3-D equations. It is impor-

tant to note here that all the terms in (2.68) including the D and G terms are
functions of either the depth-averaged quantities or the V,(;') velocities, which we
can determine by using (2.47) or (2.54). In this form, the governing equations
can readily be coded in a numerical model, which solves the two-dimensional hor-
izontal equations numerically while using the semi-analytical solution of (2.47) or

(2.54) to represent the effect of the depth-varying currents (or IG waves).

For reference, we will expand (2.71) in z and y. The cross-shore momentum

equation then reads

()Q 3 /o =~ :
= — (T2 — {[f 3
=g d? (t h+ M) + 3 (OVh+ M)
B[ {. U ou oV
"";;j; -h ((2 D:I:J.' +' B;I.‘:L) ,} + 2 1{)3 ] ) "'l' B:.':a.' F)}T)l
o[ ouU ou oV oV
(f)y -h ((DJJH + Bﬂ—.‘f) H.’I? + Dyy ()y i ]")1-4- f)l + (! TY = 'B-!—H) ()y )]
de U7 4 vy w v
B ¢ 08s: , 054 () 0 )
= =g or J( Oz v oy ) t P (f):r:/ Tow d2 + (JJ/_; Tay 42
S =B
+ Q (2.72)

26



[For the IOIlg%}'IOFf‘ momentum equation we get

20, " B ras
= dq (Uw. + M) + o (V2h + M,,)
a [ oU U oV 14
—— | Dﬂ:- -B'w i DH e x5 @ Ty) o
dx _? (( v+ Bay) oz + P dy +1D dx + (Day + Biy) Ay )l

9 [ T s1 1%
‘ h‘ (By.’.f r('? + 2DM.’ ()‘ + (‘2 ;Jyy BJU) _)]

d1 ! Ay
) [Am U+ Ay V| + [Aw U + Ay V]
aC  1(dS,, s 8¢ . 9 [
= csgh ot s L[ ——X vy / e ___j' e
g r(')y P ( Oz B dy ) + - ((h Tay dz + By J_n, Tyy d
B__ B
pA—L (2.73)

2.4 Calculation of the Quasi 3-D Terms in the (Quasi) Steady State

In the quasi steady state (i.e., when the local acceleration is small), we can
determine the current profiles of Vl(;;) by integrating (2.47) twice and applying
the boundary conditions to yield (2.54). We can rewrite this equation using a

transformation of the vertical coordinate z to a new coordinate £, so that
= 24+ h, (2.74)

which means that ¢ = 0 at the local bottom and ¢ = h = h, +  at the mean

surface elevation. Eq. (2.54) then becomes

5 ' I B h Quwp
V(IJ] - .I—,()’ 2 I ) . IE] ;3 A * wf 275

18 2:};6 * pu;é 6 v, ks pvy 2 T h \&45)
For simplicity we can write this as

Vi) = b€ + b€ + by (2.76)
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where

[
l = = e}
" B (2.77)
B
"
by = = (2.78)
Py
by h Qup
by = — | +bhs+ 2.79
3 (3 v+ 25 e 7 (2.79)
Equivalently we can write
V& = a1 + az + a3 (2.80)

where aq, ay and a3 have the equivalent definitions for direction a.

Using (2.76) and (2.80) we can express the coefficients (2.63)-(2.66) in terms
of known variables and parameters. After some manipulations the dispersion

coefficient (2.63) can be rewritten as

D = i b i‘ { [ )E
D' = ay by 63 + (a1 by + az by 6

14

3 Lt
+ (a1 bs + fofz by + azby) 5

h? h? ;
+ (a2 by + az by) 5 +as 1:3? (2.81)

Notice that the result is symmetrical in @ and b or, in other words, in direction.
We can write (2.66) as

5

h j,4
Mop = arby 5 + (a1 by + azby) 1

3 h‘l

h
+ (a1 bg + azby + ag 51)% + (az by + azby) o + as by h
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+(a1 h® + azh + a3) Qus + (i h* + bah + b3) Qur (2.82)

which is also directionally symmetrical.

Eq. (2.69) can be expressed as

1 [(’3&1 b] hT ((r)ﬂ;] E)z H(a‘.z b1) hG

A(l’ = B s oy ap
o v | dz, 63 Oz, Oz, ) 36

((3(5, b n (')'agbl) h? day by h®

0z dx, ) 15 oz, 20

l")ftg 111;3 g (r}l'lq bg fl_d- (lj.ﬂ.g 1113 E (283)
oz, g 8 0zy 3
This expression is symmetrical in the first two indices.
Finally, Eq. (2.70) becomes
% ) 2 :
.B”ﬁ = —% l;—B iy !I}] !TI-J |- ((I,[ {12 + aq {)|) T—Z + g t')g :—;] +
2 1 5
E (ﬂ'rl 3)3 + L5 b]] h- <+ g ((Lg bg + g b-z) (2.84)

which is also symmetrical. The (partial) symmetry of the terms allows us to
calculate less coefficients, which will make the numerical model more efficient.

These expressions will be used to calculate the quasi 3-D terms in Chapter 5.

2.5 Reduction of the Equations on a Cylindrical Beach

Svendsen & Putrevu (1994a) [SP94] presented the quasi 3-D equations for
the special case of a cylindrical (longshore uniform) beach with longshore uniform,
steady forcing. In this section, we will show that the general formula (2.68) for

the y-momentum equation is consistent with SP94’s results.
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We first substitute (2.67) back into (2.68)

6% = % ( / i,, A% / Ei “} Fp (dz)* + /_ C o / . - [  Fo(d2) )

B :
g O@%h+/ Via Vi dz + VS(0) Qus + Vi UQW)
)¢ 10 ¢ 2 2
=Sy h r(_(’ oL (Sﬂﬁ = / T dz -+ u (285)
dzp pOEy . P

Under the assumption of steady, longshore uniform conditions without wind

forcing, we can reduce the y-component of (2.85) to

2z ([0 [ [ e+ [ v [ poaer)

d ¢ . .
> ;}T (,/—h, (f!lw] V][D) dz = (jl[u)([')cf)”’?-‘ + 1/1(0]((3) Qu!r.-.-)
1 d i i B
= = dg \ S — aydz | — == 2.86
i (= [} e - i)

where under longshore uniform conditions I/ = 0. Substituting from (2.57)

1 r= . .
/ - Fgdzdz = VI(;)(C) - Vl({;} (2.87)

Vi J=ho

(2.86) becomes

d (_ [ - ’ E R - :
([, oPm@ - Wy + [ OO0 - vt

N —hao

{ ¢
"_( f . U VO dz 4+ UP(C) Quy + VO (L_)Qm-)

dx

i ( ¢ A
peathl. .s;,u—/ Toy dz | — (2.88)
pdaz ) —ho P '
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We arrange and add back in the neglected term of (2.59), which gives

d

C_ F
d_q' (\/_h‘ ([I(U) VI(U) =7 “rl{U) ‘/1(1) e ‘/1(0) (}rl(l) + (jl[]) 1/](]}(33) +

- (f (= UY — v V) dz + U () Quy + 14“”(6)@,.,.1;)

1 d ¢ i
.4 (SW _f Tog iy | ~-—L (2.89)
pdz il P

We undo the split in the current velocities, (2.58), use (2.50) and the definition
(2.14), so that (2.6) can be rewritten as

) 4 M =
(;_? (_/;}h, Uy Vidz + III(C)/ vy dz + V|(C)/ Uy dz

JCe Ct
¢ B
= —i fn (q */h Toy dz | — v (2.90)
pa ~ho p

This can be approximated (as was done in SP94 in their Eq. (2.9)) to

d ¢
-——-(/" UVi + Uyv, + Vluwdz) =

I’Z T

1 d (. ¢ Ty ‘
— (53:_,,,— /_h Toy d:-:) et (2.91)

which is their Eq. (2.8). From there, their derivation can be followed to yield the

quasi 3-D y-momentum equation in the case of a cylindrical coast Q.15.D
This result means that the present quasi 3-D equations reduce to the pre-

viously found result for the special case of longshore uniformity.

2.6 Energy Equations

In this section the energy equations for the total motion, the short-wave

motion and the long-wave motion are given in the present notation. They are
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essentially the equations given in Phillips (1977) with some modifications as de-
rived by Schiffer (1993). The energy equation of the short waves can be used as
a wave driver if the wave pattern is known. This equation is applied in Chapter
4.4. The energy equation of the long waves will be used in Chapter 4 as a tool for

the analysis of the transfer of energy.

The energy equation for the total motion can be written as
d 32 2
B _fl‘ . Wy
df( T3 ”gg + ( h ok )) ¥

F - .
5 (Bt + Ve B + Vo St

0.5 (%) - 35 vut]) 20 em

where D is the total dissipation. F is the energy density in the short waves

¢ 1
E = / 5P p(u2, + w?)dz + = 5 _nq:q (2.93)
—ha

where w is the vertical short-wave induced velocity and 7 is the surface elevation
above the mean water level (as opposed to SWL). Ey, is the energy flux in the

short waves

¢ . | .
Eiy = ] Urpa (p&_,ﬁ +pgz—pgC + 5P (uf”ﬁ =5 '1::2)) dz (2.94)
—ho

In order to be consistent with Phillips (1977), his definition of the radiation stress

is used

. : 1 wer Y w,
/} (péﬂrﬂ - P Uyyey U wﬁ)d*ﬂ = Oag pq.f'L —_ p-cg—iﬁ

v ”
Sap 5 z (2.95)

The governing equation for the short waves can then be written as
d 1 2 0 ~ Qup
o (B —grem) 4 o (Bra + VB - 5Qu (5 )
m( 2ﬂfl)+dm(f-+ Q I
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('j‘f‘/- s, {)S(I; /
g Vo _Queep 5 . (2.96)

B Oz, T h Oz,

This equation can in principle be used as a time-dependent short-wave driver
to calculate the wave heights (and hence the wave-induced volume flux and the

radiation stresses) in the domain if the wave pattern is already known.

The energy equation for the long waves (or currents) reads

6, 23 Jd (1 Qs .
dt( (qt +% )) +8_L“( Qa( ,,) +P.0'CQH) +

Qrt d qaﬁ
hr d?ﬁ

This equation (in the present or linearized form) is used in Chapter 4 and 5 as
a tool of the analysis of the transfer of energy from the short waves to the long
(infragravity) waves. Eqs. (2.96) and (2.97) are complementary, which means

that their sum is the energy equation of the total motion (2.92).
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Chapter 3

NUMERICAL MODEL AND BOUNDARY
CONDITIONS

In this chapter the numerical model SHORECIRC, which solves the govern-
ing equations of Chapter 2, is described. First, the numerical method is presented
and checked for stability and accuracy, which gives insight into the nature of the

leading error inherent in the scheme.

In Sections 3.2 and 3.3 the boundary conditions of the nearshore model
domain are described in detail. Fig. 3.1 shows a typical domain (in this case the
bathymetry of the U.S. Corps of Engineers’ Field Research Facility at Duck, NC
on October 10, 1990), which can be used in the SHORECIRC model.

An important part of this thesis is the development of accurate boundary
conditions at the “open” boundaries and at the moving shoreline. In Section 3.2
an absorbing-generating boundary condition is developed at the “open” bound-
aries. Its accuracy is measured on the basis of an analysis of the reflection error.
The shoreline boundary condition, which is based on an inundation/drainage pro-
cedure, is described in Section 3.3. The performance of this condition is measured
against a well-known analytical solution for longshore uniform run-up and against
two highly accurate numerical solutions for the case of two-dimensional run-up on

a concave I}(‘-&(‘.ll.
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Figure 3.1: Typical bathymetry at the U.S. Corps of Engineers’ Field Research
Facility at Duck, NC taken on October 10, 1990.

3.1 Numerical Scheme

The governing equations (2.8) and (2.71) will be solved using a finite dif-
ference scheme on a fixed spatial grid. An explicit second-order Adams-Bashforth
predictor scheme and a third-order Adams-Moulton corrector time-stepping scheme
(Atkinson, 1978, p. 388) with O(At®) overall accuracy (when applied to ODE’s)
is used. The adva,nta,lge of this type of scheme is that it is explicit and easy to code
but the disadvantage is that the stability range is limited and that all calculations

have to be done twice per time step.

Eqs. (2.8) and (2.71) are rewritten so that only the local acceleration
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appears on the left-hand side, or

o
5 = N (3.1)
Qs ¢

where N and My are the right-hand sides of the continuity and momentum equa-

tions, respectively.

The second-order Adams-Bashforth predictor step then reads

G o= &+ (N - N+ oar) (3.3)

= = At , _
Qpi = Qpi+~ (3M3: — MFT') + O(Ar?) (3.4)

where subscript ¢ indicates the spatial index, while superscripts #, n and n + 1

denote the time-level at the predictor step, at ¢ = {* and ¢t = {"~! respectively.

The third-order Adams-Moulton corrector step reads

) At )
G = G+ (5N + 8NP - NPT + O(AF) (3.5)
et = gno 4 S (s 4 s M — MPTY) 4+ O(AP 3.6
Qs = Qﬁi""ﬁ(a lgi + 8 Mg, — Mpg; )+( ") (3.6)

The advantage of this method is that it is explicit while maintaining a high ac-
curacy in At. As will be shown in Chapter 3.1.2., the overall method has an

accuracy of O(A#?, Az?, Az?At, Ay?, Ay*At).

The right-hand sides of the equations contain spatial derivatives, which are
solved using a central difference scheme of O(Az?) in the interior of the domain.

At the boundary points we will apply a 3-point scheme of the same order.
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3.1.1 Stability

The stability of this scheme can be determined by performing a Von Neu-
mann (or Fourier) stability analysis (e.g., Twizell, 1984) on the linearized set of

equations, which reads

W 0Q. 9Q,

ot Oz Ay
Q. ¢ .
9Q,

T = —gh, % o+

where I, and I, represent the forcing, which in the present model is not solved
by an additional equation (such as the energy equation) but is known analytically
or through a wave driver. As will be seen below, these forcing terms do not enter
the amplification matrix and are not important in the stability analysis. Notice

that in this and further equations we will drop the overbar.

In the predictor step the set (3.7) reads
P

At 2 2Az 2Ax2

+3 Fom — 85 (85 — B,
2Ay 2Ay

Qi — Q% _  ghe Sy — bl G — i
At 9 : 2Az B 2Az (3:8)
+F,
p.*?. = p.n?_. q h, C-'nj+1 = C.n.nl (:?H] =
2% L2 . 3 1y th o L+ F
At 2 ( ( 2Ay 2Ay + 5
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where the superscripts indicate the time-level. (™ is the value of the surface
elevation at t = t" and the predictor level is indicated by the *. We have used the
short-hand notation @ for (), and P for (),. The subscripts indicate the node in

the spatial domain.

The corrector step reads

Gl =G L[ (D = Qs g (D = @y
At 12 2Azx 2l

(@9 — Qi 5 Pliva — £
2Ax ' 2Ay
pPr._ . — Pr et = P
+8 i,J+1 -1 _ i,j+1 4d—1
2Ay 2Ay
m—Qr _ _9h Gy — Sy L8 Gy — St
At 12 2A 2 N
(G = G5 R (3.9)
2Azx

PET = PG _ghe (G = i) | g (Gt = Gl
At 12 \ 2Ay 2Ay

n—1 n—1
( 2Ay ) ) e

In the following we will analyze the stability of this predictor-corrector

scheme following the procedure of Twizell (1984), which was also used by Wei
(1997). We will restrict ourselves in this analysis to the 1-DH equations for reasons
of clarity and brevity in the notation. The method itself is applicable to the sets

of 2-DH finite-differenced equations (3.8) and (3.9).
The stability range of the overall scheme can be found by substituting (3.8)
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into (3.9), which in the case of one-dimensional flow yields the following combined

set of finite-difference equations

4 n At n qh Al Q N n—1 n—1
A Ty (5 (Q"“ o Bl =3¢ - G + G I])

—5 ( £ = qf U — B~ 4 351})

+8 (@5 — QL) — (O - @) (3.10)
Q¥ = @ — ’;Zﬁ: (5 ( M= [3695“ 3QF — Qi + Qi D

. (_;1,_%[3@” 3Q, - @ + Qi)

8 (¢ — (M) = (G5 = 03Y) + B (3.11)

In the Von Neumann stability analysis the numerical solution is split into

an exact solution to the finite difference equation and an error term as

L =L Bl
(3.12)

Q=Q +q
where (¢ and )¢ are the exact solutions, and 5 and ¢ are the error terms. By
definition, the exact solutions must satisfy (3.10) and (3.11) identically and those

two equations therefore reduce to a set of finite difference equations in 5 and ¢,

; " _ ; -
respectively. These error terms can be represented as a Fourier series
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(0]
B = 3 g ithnsimnn 80

m=1

(3.13)

00
n o __ Ji(km @ — At
q,j — Z Q() La( m T — Thildm }

m=1
and the question addressed is whether such errors grow or decay in time. To
answer this question we consider one particular mode m, substitute that mode

into (3.10), and define the parameter
r = sin kAz (3.14)

where v is the Courant number

T CO% (3.15)

and ¢, = /g h,. After some rearranging we get from (3.10)

b . 13 . »
n+1 = n 1 — 3 ,).) n (_ _)
7?1, ”1 ( 8 7 + ql 12 2 C{,

5 1 . r

+ot (o) + @t (s (3.16)

where ¢ = y/—1 (when it is not used as a subscript) and where we have used the

trigonometric identities

{_likAa: = e—ikAz
sinkAz = . (3.17)

}LTld

cos kAzx = (3.18)

in the derivation.
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In a similar way we find by substitution of (3.13) into the z-momentum

13 D .

L s 5
+ g (E'f’-ﬂo ?') + a7 (ﬂ?'z) + F, (3.19)

equation (3.11)

To determine the stability, we combine (3.16) and (3.19) into a single matrix

equation
Zr! = AZ" + F (3.20)
where
Zrt = [, ¢t ) (3.21)
Z" = (0", q" 0" " ]" (3.22)
and
F=[0,F,,0,0]" (3.23)

The amplification matrix A then reads from (3.16) and (3.19)

[ — 29 —'}%";_; v 1l_ﬁi
13 5.2 1 5 .
= o NI 512 501 ﬁrz (3.24)
1 0 0 0
0 1 0 0
The matrix A can be diagonalized as
A =7)T (3.25)
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Figure 3.2: Variation of the absolute eigenvalues |)\,| versus the Courant number

v and the wave number kAz: (a) |A1]; (b) |A2]; (¢) |As]; (d) |A4l.
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where A\, (p = 1,2,3,4) is a vector containing the four eigenvalues of A. TFor a
given ¢,, these eigenvalues are a function of r, which itself depends on the Courant

number v and the wave number kAx.

For the error vector Z to remain bounded after successive applications of
(3.20) (i.e., in the process of time-stepping), we then have to require that the

norm of A satisfy the limit

PNES! (3.26)
and by (3.25) that the absolute value of all eigenvalues also satisfy

A <1 (3.27)

If the error vector remains bounded, or in other words, does not grow in time, the
method is stable. Conversely, we would also like the first two eigenvalues (which
are related to n™ and ¢™) to be not much less than unity, because that would imply

numerical dissipation (Anderson et al., 1984).

The eigenvalues of matrix A are determined numerically for Courant num-
bers ranging from 0 < v < 2 and for wave numbers ranging from 0 < kAz < 7.
Iig. 3.2 shows the variation of the four eigenvalues as a function of v and kAz.
It can be seen that only the first two eigenvalues can exceed the stability limit
(3.27) for this range of parameter values. Notice that Fig. 3.2d is rotated 180°

relative to the other figures.

The second eigenvalue )\, is the most critical, since its values are closest
to unity. For this eigenvalue, Fig. 3.3 shows cross-sections of Fig. 3.2b for
kAz = 0, w/6, 7/3, /2. The last value is recognized as the most unstable wave

number and is shown to limit the stability range of this scheme to » < 1.2.
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Notice that a stability analysis on the 2-DH equations would have intro-
duced the wave number [ Ay in the y-direction. This would have made the analysis
more complicated and the graphical representation less clear but would not have

changed the general conclusions about the stability range of the scheme.

It is important to emphasize here that the Von Neumann analysis is per-
formed on the linear equations and that these limits do not necessarily apply to
the nonlinear case, which is in general more stringent. In our case it has been

found through practical experiments with the scheme that in the two-dimensional



case a Courant limit of

At
= c,— < (). 328
v & = = 0.7 (3.28)

gives accurate and stable numerical results.

3.1.2 Accuracy

In this section we will investigate the accuracy of the scheme. This is useful
since it will give an indication of the nature of the truncation errors made in the
finite difference scheme. We follow the procedure as outlined in Anderson et al.

(1984).

To check the accuracy we first linearize the system (which implies that
we assume that the nonlinear terms are small) and write the set of governing

linearized equations (3.7) in matrix form as

Q. 00 gh, Q. 00 0 Q.
9 N Kl L2
=% | = 00 0 |5 |Q 00 gho |5 | Q
¢ 10 0 ¢ 01 0 ¢
o
+ | F, (3.29)
0

If we define

Q
E=|¢q, (3.30)
¢
we can write the system (3.29) as
0E oE oE L
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where A, B and F correspond to the matrices in (3.29). In the following analysis
of the accuracy, the forcing matrix F will not influence the results since it is known
either analytically or through an external wave driver. We will omit this term in

the following, which does not imply that the term itself is small.

The finite-differenced system (3.31) reads in the predictor step

Bi; — B 3 4 (Eis — By ] r — B
. (.. —_ —— 1+1,: -1, ._.A i+1,5 ; i
At 2A( R ¥ t3 9N

3 (Er.. — Er. 1., (Eiih — B!
— —-B §,j+1 i,j=1 _B 4,041 =1 3.32
2 ( 24y i 28y o

where the subscripts ; and ; represent the indices in the z and y directions, re-

spectively.

To check the accuracy of this step we can substitute Taylor expansions
about the point (7, 7,n) into the finite-difference equation (3.32) to find the lowest
order truncation error, which defines the accuracy of the scheme. Using the short-

hand notation

OE 0E JE
B — —_— z -_— = 1 : .3‘
5 E, e E, 3y E, (3.33)

we can write the Taylor series as (where for convenience we will omit the subscripts
i, J,n on the right-hand side)

At? A

E:-:]- = E:L', + AtE; + TE:; + TE.&M 2 O(Ai)4 (3.34)
T T A‘TS 4 i
Ei+1,;f — E'i—l,j =2AzE, + TE;,M_. -+ O(A;) (335)
T T i Ay 5 4 a ar
Bl — B4 = 20y By + TEyyy + O(Ay) (3.36)
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At* x>
E}L-I—_ll,j — E?:il,j = 2Azx (:E_I — At E. + TEQ;N) + ATIE;;_»Q;;;;
+ O(Az AL, Az’ At, Az?) (3.37)

g g At? Ay?
El;l — EfL = 2Ay (Ey — At By + 7Ey“) + _;’ Eyuy

+ O(AyAE, Ay°At, Ay*) (3.38)

After substitution of these series into (3.32) and some rearranging we get

At At?
E. + AE, + BE, = —T(Eu + AE;; + BE,) — TEEH
Az? Ay® At? At?
= A 6 Eg;a:;r: T B T Eyyy “l“ T A E:x:f.t + T B E_i,if.t
+ O(A, Az®, Ay®, Az?At, Ay*At) (3.39)

where we have put the original PDE on the left-hand side and the truncation errors
on the right-hand side. Notice that, because the right-hand side of the original
set of equations (3.29) contains spatial derivatives, we obtain mixed truncation
errors in (3.39). The leading truncation errors contain At terms, which means
that halving the time step does not increase the accuracy by a factor 8 (through
the At® term) but by a factor 2 only. The At term is multiplied by Az? and Ay?,

so its effect depends on the spatial resolution.

Next, we will replace the time-derivatives in the truncation error by spatial
derivatives by taking derivatives of the finite difference equation (3.39) and resub-
stituting into (3.39). As a result we will find the modified equation (Anderson et

al, 1984).
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First, we take the time-derivative of (3.39) and multiply by —5¢ where we

keep terms only to the order of the truncation

At At?
—5 (Ew + AE,;, + BE,,) = e (Ew + AE,: + BE,,)
+O(A, Az, Ay®, Az’ At, Ay*At) (3.40)
Substituting this result into (3.39) yields
Af? H 5
E:+ AE; + BE, = 5 (Bue + AE. + BE,,;) — EAt Eu
r‘z ’ 2 ) - - 0
—A £ E,.. — B ATUEW_,, + O(At, Az®, Ay®, Az?At, Ay*At) (3.41)

Next, we take a double time-derivative of (3.39) and multiply by AT‘Q, which yields

At? .
5 (Ew + AE,;; + BE,,) = O(AtS,AmS,Ays,A:r:zAi,A?jzAt) (3.42)

Substituting this into (3.41) eliminates the first term on the right-hand side to

the leading order in the truncation, so (3.41) becomes

5 ; Az? Ay?
Ef, + AE:(.- + BEy = '—l—;‘Aszg“ - A_rELa.a - Bi

6 ﬁ Eyyy

+ O(AL?, Az®, Ay®, Az At, Ay*At) (3.43)

Finally, we can eliminate the remaining E;y-term in (3.43) by taking a double
time-derivative of (3.39) and adding a combination of mixed derivatives in = and

y so that after some manipulation we have

Ettt = '_AS Exa.a. - SAJBEa..Ly = BAB}' Ea:y-y - ]33 :I?ly,.\,,”’|I

+ O(A3, Az?, Ay®, Az At, Ay’ At) (3.44)
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Substituting this result into (3.43) yields the modified equation

E. + AE, + BE, = %(Z} A2AL — A:z:"*) E... +

B/ 5. . 8. .
% (% B2At? — Ay"‘) E,, + 4—]At“’ (AzBEm,y + AB‘*E,,W) 4
+ O(A?, Az®, Ay®, Az At, Ay’ At) (3.45)

The terms on the right-hand side in (3.45) represent the finite-differenced, leading-
order errors of the numerical scheme. Hence the leading-order truncation errors
in the numerical scheme have the same effect as if we were actually solving (3.45)
exactly. We see that these terms are proportional to O(At?, Az? Az?At, Ay?,
Ay?At) and that the leading order is a third derivative, which causes dispersive

errors.

The same procedure can also be applied to the corrector step, which finally

can be written as

E. + AE, + BE, = ~= Ar’Eu, +

B ; 2 y ; ; ;i
= Ay E,,, + O(A, Az®, Ay®, Az’ At, Ay*At) (3.46)
i)

This  equation shows that the corrector step is accurate fto
O(A?, Az?, Az?At, Ay?, Ay?At). This apparent mismatch of the accuracy in
both steps is due to the fact that the values of E calculated in the predictor
step are premultiplied by a factor At in the corrector step which makes the steps
consistent (Atkinson, 1978). This is the reason why it is consistent to use a com-
bination of a second-order Adams-Bashforth and a third-order Adams-Moulton

time-stepping scheme.
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The leading-order errors in both steps are third derivatives, which cause
dispersive errors, i.e., wave components of different wave length or period will

propagate at different speeds.

From this analysis we can also see that the finite difference scheme is consis-
tent because the scheme approaches the original set of PDE’s when Az, Ay, At —

0.

3.2 Absorbing-Generating Boundary Condition

In this section, an absorbing-generating boundary condition is derived for
the 2D-horizontal nonlinear shallow water equations using the Method of Charac-
teristics. It assumes local superposition of the incoming and outgoing long waves
at the boundary and uses a relationship between the flux and surface elevation of
the waves. This boundary condition allows the outgoing waves to leave the com-
putational domain through the boundaries with a minimum of reflection while
specifying incoming waves at the same boundaries. The boundary condition’s
absorbing properties are tested for both linear and nonlinear waves for a range
of amplitudes and of angles of incidence. Its performance is compared to the
classical Sommerfeld radiation condition for the linear case and is shown to cause
significantly less reflection errors, especially for oblique angles. Also, a case of
simultaneous absorption and generation of waves at the same boundary is ana-
lyzed where it is shown that the errors are of the same order as for the case of
absorption only. Finally, the boundary condition is extended to include known

currents.

This section has been published as Van Dongeren & Svendsen (1997).
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3.2.1 Introduction

When analyzing nearshore problems using numerical models it is usu-
ally necessary to limit the computations to a small region around the area of
immediate interest. This implies introducing artificial boundaries for the compu-
tational region that form the interface to the exterior, which is either not modeled
or modeled in a simplified way. Thus one of the most important problems in
developing time-dependent shallow water models is the specification of accurate
boundary conditions along these artificial boundaries because, after long enough
time, the performance of these conditions will dominate the model results in the

entire computational domain.

These time-dependent models essentially solve approximations to the equa-
tions of motion (conservation of mass and momentum) by integration in time of
certain dependent variables, typically surface elevation and horizontal velocities.
The boundary conditions are required to provide a similar upgrading in time of

the same variables along the boundaries.

[n developing the nearshore circulation model SHORECIRC (Van Don-
geren et al., 1994, 1995), which is capable of describing a number of phenomena
(such as edge-waves, surfbeat, longshore currents, shear waves, etc.), we encoun-
tered exactly this problem. For our purposes it was necessary to develop boundary
conditions on the artificial boundaries that are able to generate a specified long
wave and simultaneously absorb outgoing waves, i.e., an absorbing-generating

boundary condition.

Most of the existing literature on the topic of artificial boundaries is con-
cerned with absorbing (sometimes called radiating, non-reflective or open) bound-

ary conditions specifically derived for the wave equation or the shallow water



equations. For a thorough review of this subject, we refer to Givoli (1991).

In one of the most frequently quoted papers, Engquist & Majda (1977)
[E&M] developed a perfectly absorbing boundary condition which is nonlocal in
space and time. This means that the complete time history along the entire
boundary is required in order to update the variables at any point along the
boundary in time. Because this is very impractical for any numerical application,
&M derived local approximations to the general solution of increasing order of
accuracy. The approximations are centered around chosen angles of incidence 8,
between the boundary normal and the direction of the outgoing waves. Higdon

(1986, 1987) derived a general form of this radiation condition and showed that

d e a\ :
(a-l-— ) u=>0 (3.47)

cos 0, Ox

it can be written as

where n is the order of accuracy and ¢, is the linear phase speed. This expression
gives the best absorption when the angle of the outgoing wave to the normal is
0,,. For 0, = 0° the equation reduces to E&M’s boundary condition, which only
absorbs normally incident waves optimally. To the first order of the approximation

(n = 1), the E&M boundary condition further reduces to the Sommerfeld radiation

0 J )
(E + € E) w =10 (3.48)

which essentially states that the outgoing wave is propagating in the positive

condition (Sommerfeld, 1964)

direction without change of form. Eq. (3.47) was also found independently by
Keys (1985) and is an improvement over the boundary condition developed by
&M because the reflection coefficient can be greatly reduced if the angle of
incidence 6, is known in advance. This might be the case for some types of
problems (e.g., waves radiating from a source inside the computational domain),

but not for the more general models we are considering here.



Another disadvantage of this type of boundary condition is that the solution
to the problem is assumed to have a certain form. Broeze & Van Daalen (1992)
did not make that assumption and derived a boundary condition from the local
energy flux in the normal direction fo the boundary using the variational principle

and showed improved accuracy in a panel method.

Unfortunately, these boundary conditions are only capable of absorbing
waves and (except for Broeze & Van Daalen) only address the linear problem.
Hibberd (1977) considered the more general problem of simultaneously generating
and absorbing waves in one horizontal direction and derived a boundary condition
for the nonlinear shallow water equations (NSW) where the outgoing wave is cal-
culated using the Method of Characteristics while an incoming Riemann variable
associated with an incident uniform bore is specified. On a similar basis, Verboom
el al. (1981) gave more general expressions for weakly-reflective boundary condi-
tions based on the specification of incoming Riemann variables. Verboom & Slob
(1984) derived two orders of approximation of this type of boundary condition
and calculated reflection coefficients which were of the order of a few percent.
However, the applications in the last two papers deal only with situations where
no incoming wave is specified and the boundary condition reduces to the case of

absorption only.

In the case of simultaneous absorption and reflection, it is not possible
to specify the incoming Riemann variable since it is a function of the unknown
surface elevation and velocity. Instead, considering the problem in one horizontal
direction, Kobayashi et al. (1987) used the outgoing characteristic and substituted
a linear long wave relationship between the velocity and the surface elevation to
solve for the outgoing wave. They did not report on the accuracy of the boundary

condition. The present work gives an extension of this boundary condition to the



general case of two horizontal dimensions and expands the condition to a higher

order of approximation.

The outline of this section is as follows. In Subsection 3.2.2 we discuss the
formulation of the problem. In Subsection 3.2.3 the boundary condition is derived
from the fundamental equations for two orders of the approximation. In Subsec-
tion 3.2.4 the reflection properties of both versions are investigated for the case
of absorption only and compared to the classical Sommerfeld radiation condition
for the linear case. In Subsection 3.2.5 the boundary condition i1s further tested
for the case of simultaneous generation and absorption at the same boundary. We

will conclude this section with a Discussion and Conclusions.

3.2.2 Formulation of the Problem

The boundary conditions we specify along the artificial ocean-side bound-
aries must guarantee a unique and well-posed solution to the differential equations.
As may also be inferred from the literature review given above, this is not a
straightforward problem, and it appears that to some extent waves and currents

need to be addressed separately.

From the outset one would expect that the idea of emulating the effects
of a large ocean in a computation that only covers a small region of that ocean
imposes some limitations on what can actually be represented in the model, and
this is true. More importantly, however, it also requires a clarification of which

physical mechanisms we should actually try to describe along those boundaries.

Our requirements can be formulated by stating that the boundary condi-

tions need to satisfy two criteria:

T
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I. The region outside the computational domain can influence the motion in-
side only through the incident (long) waves and through the currents along
the boundaries. Thus we must assume that we know and can specily those

currents and incident waves.

2. (Long) waves propagating out of the computational region must be allowed
to propagate freely through the open ocean-side boundaries with minimal

reflection.

It turns out that whereas outgoing waves can be separated from the total
signal and absorbed at the artificial boundaries, this is not the case for currents.
The distribution of the currents is essentially an elliptic problem. (This becomes
apparent if we combine the governing equations of continuity and momentum
into the two-dimensional wave equation. In the case of (quasi)-steady currents,
this equation reduces to the elliptic Laplace equation.) Therefore, the currents,
or their derivatives, have to be specified along the entire boundary to uniquely
specify the problem. This also implies, however, that in the general case extensive
information is needed about the currents outside the domain in order to be able

to specify the currents along the computational boundary.

Finally, it raises the question of how to distinguish between waves and
time-varying currents. A closer inspection of this problem suggests that this is
a matter of the time scale of the variations relative to the time it takes for a

disturbance to propagate across the computational domain.

Thus the boundary conditions must be able to generate a specified long
wave and simultaneously absorb outgoing waves, in the presence of known currents
and ideally without much additional computational effort. For simplicity, we limit

the applications in the present work to the case of incident long waves without



currents, although in the Discussion we will derive the results for the case including

currents.

3.2.3 Derivation of the Boundary Condition

The governing equations of the SHORECIRC model are the depth-
integrated, short-wave-averaged continuity and momentum equations with short-
wave-induced forcing (Van Dongeren et al., 1994; Svendsen & Putrevu, 1996),
which were derived in Chapter 2. If we place the open boundaries carefully we
can achieve weak local forcing near these boundaries. This means that the dom-
inating terms in the continuity and momentum equations near those boundaries
are the terms corresponding to the nonlinear shallow water (NSW) equations,

which in matrix form read

w u 0 g u' o 0 0 '
a ol _|_ U 71 U i i + 0 = () =/
at | = oz | ¥ U9 oy |
h h 0 h 0 h o h

gPe 4 f,
= | g%+ (3.49)

dy'

0

where h is the total water depth h = h, + C, h, is the still water depth and C is
the shortwave-averaged surface elevation. @’ and ' are the depth averaged and
shortwave-averaged velocities in the 2’ and 3" directions, respectively. See Fig.
3.4 for a definition sketch of the wave properties and Fig. 3.5a for the coordinate
system. It may be worth emphasizing that since we are considering the general
case of short-wave motion with arbitrary time variation, the shortwave-averaged
¢ and @', v’ represent surface elevation and the depth-averaged part of the particle

motion, respectively, in the infragravity wave motion. Usually ¢ will also include a
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steady set-down or set-up component. f represents all the local forcing terms for
the motion, which comprises the radiation stress gradients, the current-current and
current-wave integrals (originating from the non-uniform variation of the velocities
over depth) and the bottom and wind shear stresses. These effects are included

in the original SHORECIRC equations.

Z
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Y
7777

Figure 3.4: Definition sketch.

In the general case of arbitrary angle ¥ between the boundary at a point
and the coordinate axes, we can follow the procedure outlined in Abbott (1979).

Thus we can write (3.49) in the form

w, + Awy + Bw, = C (3.50)
where
ﬂf
W = o' (3 t-)l)
h



and the matrices A, B and C correspond to the matrices in (3.49), respectively.
We can determine the eigenvalues for this system from the determinant of the

linear combination of the matrices A and B or
[ cos? A + sindB — A\, I| =0 (3.52)

where ¥ is the angle between the normal to the boundary and the z’-axis as
identified by Verboom et al. (1981) (see Fig.3.5a), Iis the identity matrix and A,

are the eigenvalues. The eigenvalues thus found are

M = i cosd + v sind (3.53)
Ao = ' cosd + v sind + \/gh (3.54)
A3 = ' cosd + v sind — y\/gh (3.55)

From these eigenvalues we can construct the eigenvector matrix P of the deter-

minant (3.52)

cost) cosd  sint

P=| sind sind —cos? (3.56)

Premultiplying the system of equations (3.50) with P~! and adding in
I=PP 1 yields

Plw, + (P'AP)Plw, + (P'BP)P'w, = P7IC (3.57)

where the terms between parentheses are the diagonalized matrices. System (3.57)
represents the governing equations in characteristic form as derived by Verboom
et al. (1981), their Eq. (11.7), which is valid for an arbitrary angle 9 between the
coordinate axes and the model boundary. (Note that the eigenvectors in their Eq.

(11.5) contain a typographical error and are therefore not identical to (3.56).)
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Figure 3.5: Coordinate system (a) for arbitrary angle 9 between domain bound-
ary and z-axis; (b) for 9 = 0.

However, the derivation becomes easier to follow if we define the coordinate
system in such a way that the z-axis is normally inward to the seaward boundary
of our rectangular domain, which sets 7 = 0; see Fig. 3.5b. The equations in
characteristic form (3.57) then simplify to

ap 9~ _op~ v Oh,

T— T, r._ S J. — . = f _ L3 EI‘.S
i (- ~ % T Y9 T ¥ )
apt - apt  _opt o] oh, ,

= —(4 ) — — P— — C— — + Fj 3.59
ot 8+ Bz dy ‘ dy i dx + fgt (3.92)
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Ay Oy oy O
ot _n(r);r. —v Ay - {Ia + Fy (3.60)

In (3.58) the Riemann-variable 4~ is defined as

B~ = @i—2¢ = UQTL) — 21/g (ho + ©) (3.61)
l() "

where (), is the total flux in the @ direction and # is the depth averaged velocity.
The Riemann-variable of (3.59) is similarly defined as f* = u + 2¢. It turns out
that the y-equation is the y-momentum equation itself which has the Riemann-
variable

Qy

Y (3.62)

Figure 3.6: Definition sketch of the characteristics.
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The definition sketch in Fig. 3.6 shows that g+ propagates along a char-
acteristic in the positive z direction, 7 in the negative & direction and 7 in the
y direction. The forcing terms Fg+, Fz- and F, originate from the f-terms in
(3.49). These terms imply that %, 3~ and v vary along their characteristics and

hence are variables rather than invariants.

During the computation we will at time step n know the value of (" and
(Q%,Qy) at interior as well as boundary points. The incoming wave motion is
specified along the boundaries through specification of (Q.;, @), which represent
the # and y components of the flux of the incident wave. The numerical integration
of (3.49) will then provide the values of the total ¢, Q,,Q, for interior points in
the domain at time step n + 1, and the problem is to determine the equivalent
total values along the boundaries at n 4 1. In this process we also determine the

parameters of the outgoing wave.

In the following, the absorbing-generating boundary conditions for two dif-
ferent orders of the expansion are derived for the z = 0 boundary. These boundary
conditions can be generalized to boundaries with a normal at an arbitrary angle
to the coordinate axes. Since the boundary conditions are local, a generalized
form can be developed, which applies to any overall shape of the boundary. This
is omitted here for brevity. In Subsection 3.2.4 we do, however, implement the

equivalent boundary conditions on all sides of the rectangular domain.

Assuming linear superposition of the incoming wave (subscripted ¢ in the

following) and the outgoing wave (subscripted r), we can write

Qo = Quit Qur (3.63)
( = G+6 (3.64)

Without further approximation the outgoing Riemann-variable (3.61) can then be
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rewritten as

B~ Qi (l+¢+§r)“+_c@_(l+@+gr)—f

Go coh, he eohts ho
— 241+ Gt (3.65)
h, '
where
& =4l 08 (3.66)

At this point we introduce the assumption that the total volume flux in the direc-

tion of the wave propagation is related to the surface elevation by the equation

Q=c((-0)+Q (3.67)

where ¢, is the celerity of the wave seen from a fixed coordinate system and ¢, ¢
represents the volume flux in the oscillatory part of the motion. 5 is the net
volume flux, which consists of the nonlinear volume flux, @),,, in the infragravity
waves and the “current”. ? is the average over the infragravity wave period of
the infragravity wave surface elevation (. It has been shown (see Svendsen (1974)
or Svendsen & Justesen (1984) for two different derivations) that this relation-
ship, which is purely kinematical, is exact for plane progressive waves of constant
form, no matter what height or nature. Thus the use of this relationship here
only implies that assumption for the incoming and outgoing wave motion in the
neighborhood of the boundary in question. (Svendsen & Justesen (1984) found
that even for waves deforming rapidly towards breaking, the error from using this
relationship was less than 5%). For reference, the derivation of this relationship

following Svendsen (1974) is repeated in Appendix B.

For simplicity we assume in the following that ( as well as () are zero.
Then, again using linear superposition, Eq. (3.67) for the z-components of the

incoming and outgoing waves can be written as

Qe = ¢ (i cos 0; (3.68)
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Qsy = —elcosd; (3.69)

where 0; and 0, are defined as the angles between the normal to the boundary and

T

the incoming and outgoing waves in the range [—7, 7], respectively. Eq. (3.65)

then becomes

o ey, G Qur fl

G, cshe ho,ccosf;  h,ccos,

Q:c,r Qa:,t' QJ:,?’ =
y coh, (]' * hoccos;  h,ccos f}r)
Qui ey V?
~ & (l + h,ccos 0; a h,ccos 6’,) (3.70)

Here we can expect that Q,./h.c, < 1, in which case an explicit result for
() can be developed as follows. If we expand this expression to first order with

respect to Q,/h.c, we get

@=q@m+m@m+OLﬁ)z (3.71)
where for convenience we have defined
Qi = f—‘h: (3.72)
@, = L (3.73)
b = % (3.74)
- -
- [j" P (3.76)

Solving with respect to @, , yields

Q. ===l +0 ( 9s )2 (3.77)

b'l Co ” Lo
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It turns out, however, that for larger amplitude waves this expansion (3.77)
is one of the most significant error sources. It is therefore useful to carry the

expansion of (3.70) to second order, which yields a quadratic equation in @}, ,

3
g =eQp;+ 0@ +aQ+aQ2 +0Q,,Q,;+0 ( L ) (3.78)

Co } Lo
where

% + cos d,

cos? 6,

(3.79)

a

cosf; — cosf, — 2
by, = b X 2 3.80
% cos 0; cos 0, ( )

% — cos 0;

Cq (381)

cos? 0;

Again we can solve for (!  and eliminating the false root yields the second

!
T

, _ bt b, (\ll da(a Qi+ Q2 —a) 1) L0 ( Q- )(33.8‘2)

order expression for

i 2a (b1 + b2 QY ;)* coho

which can be used instead of (3.77).

It is important to notice that the expansion in ~%= requires that the second

-’Jho
term under the square root is small since ¢ is also proportional to FQ;: . Also notice
that %;;— is consistently set equal to zero when 0; = £7. Performing a binomial
08 0;

expansion on the square root in (3.82) yields

’ by + by .{.-:'i - 2a(c va,i + ¢ ;‘1’& = CS)
BT ORI

9 2 - "‘. .!3 — ¢ 2 L 3
_ 2a (a1 Qi + c2Q%F; — c3) )-}-O (Q) (3.83)

(0 + b2 Q)

Expanding only to the first term in the binomial expansion (and setting by = 0

Co hn

and ¢, = 0) retrieves (3.77), which approximates (3.82) to within a few percent



for 2= ~ ,—f— < 0.05. Similarly, the expansion to the second term (3.83) is nearly

coho
identical to (3.82) up to % = 0.1. This means that the boundary conditions can
at least be applied to long waves with amplitudes of about 10% of the still water
depth at the boundary. Furthermore, the expansions can clearly be extended to

even higher order if needed or (3.70) can be solved directly by iteration.

Equations (3.77) and (3.82) have two unknowns, @’ , and 6,, which can be

determined by realizing that

!
0, = arctan ( f"r) _ (3.84)

T
This introduces the additional unknown @ ., which can be determined by using
(3.62), which is rewritten as

I = 7('}10 -+ C) — Qy,f

v Co Ps

(3.85)

in which @,; is specified and 7 is determined by integration of the last of the

characteristic equations (3.60).

In these expressions (~ is the Riemann-variable, which is updated to the
next time level by (3.58) at the 2 = 0 boundary. (The value of = in the in-
terior points, which is needed to calculate ij—_ in (3.58), is constructed from @,

and ¢ using (3.61)). From (3.77) or (3.82), and (3.84) and (3.85) we can find

!

L and 0, iteratively. With the incoming wave known through

the unknowns @)
specification, the boundary value of total flux @), can then be determined at the

next time step.

It should be emphasized that boundary conditions (3.77) and (3.82) are
derived for the = 0 boundary and that they can readily be generalized for any
other boundary that is normal to a coordinate axis. The boundary conditions

can also be generalized to boundaries that are not normal to a coordinate axis by
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rotating the coordinate system in the solution presented here. For brevity, this

derivation is omitted in this thesis.

3.2.4 Reflection Properties

The absorption properties of the boundary condition are tested for a
unidirectional wave in a domain of constant depth for various angles of incidence
and wave amplitudes. In the following examples waves are generated at the z = 0
and y = 0 boundaries only and absorbed at all four boundaries for both orders
of the absorbing-generating boundary condition, see Fig. 3.7. The equivalent
absorbing-generating boundary conditions are derived for and implemented at all

four sides of the domain.

The physical parameters are still water depth h, and wave length A =
100 h,, which yields a period T' = ll)ﬂm. To ensure sufficient accuracy we
use the numerical parameters Az = Ay = A\/60 and At = T/100, which yields a
Courant number of 0.6. The numerical method used in all tests is a second-order
Adams-Bashforth predictor scheme with a third-order Adams-Moulton corrector
scheme for the time-integration and a second-order finite difference scheme in
space. The predictor-corrector method, while derived for ODE’s, has been applied
to PDE’s in many studies. One of the earlier references is Longuet-Higgins &

Cokelet (1976).

In the following, we will first test the lowest-order expansion of the bound-
ary condition (3.77) for a small wave amplitude-to-depth ratio using the linear
equations. We will then conduct the same test using the nonlinear shallow water
equations to show the influence of the nonlinear terms. Thirdly, we will repeat the
second test for a’'larger amplitude-to-depth ratio to demonstrate its importance.

Finally, we will implement the higher-order boundary condition (3.82) and test it
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Figure 3.7: Definition sketch of the domains used in the reflection tests.

SN

for the larger amplitude-to-depth ratio using the nonlinear equations to illustrate

the performance improvement over the third test.

3.2.4.1 Linear waves

In the first test, sinusoidal waves with a small amplitude A/h, = 0.01 are
propagated using the linear equations and absorbed using the boundary condition
that applies the lowest order expansion of @, ., (3.77). Sinusoidal waves are
specified as the initial condition. This case was previously shown in Van Dongeren

el al. (1994).
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The reflection properties are computed for a square domain

O ={(z,9):0<z<)0<y <A} (3.86)

where we want to make sure that the reflections are caused by one absorbing
boundary (at @ = A) only. This is accomplished as follows. Solutions are computed

in two domains: a rectangular domain

Q={(z,y): 052 N0y <3)} (3.87)
and a larger, square domain,

Qs ={(z,y):0<x<3),0<y <3} (3.88)
See Fig. 3.7 for a definition sketch.

The non-generating boundaries in domain 3 are placed so far away that
they have no effect on the solution in the smaller domain Q; during the dura-
tion of the simulation. Therefore inside the smaller domain we can consider the
23-solution free of reflection errors. Similarly, in domain 2, the non-generating
boundary at y = 3 X will not influence the solution in the smaller domain §2;.
Hence the difference between the two solutions can only be caused by the ab-
sorbing boundary at # = A. The two solutions are subtracted from each other
at the instant in time ¢" = min(7'/ cos 0;, 7'/ sin 0;) when the initial condition has

propagated out of £y and the difference is normalized by the amplitude A

) = |CR§($1T ltn; 6!) = C-Qg(mr v, tn; 93)|

3.89
P (3.89)

alz,y,t"; 0;

where (g, and (g, are the solutions for the test runs in the domains Q, and Qs,

respectively.

Eq. (3.89) yields a spatial picture of the reflection error in §; due to the

absorbing boundary condition at z = A. Figs. 3.8a, ¢ and e show contours of the
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spatial errors for three angles of incidence: 0; = 0, % and 7 where 0; is defined as
the angle between the direction of propagation and the z-axis. The errors are of

the order 0.005 or 0.5%.

Note that the boundary condition is derived based on the nonlinear equa-
tions in characteristic form while the waves themselves are run under the linear

equations, which is in itself inconsistent but allowable for small amplitude waves.

3.2.4.2 Nonlinear waves

To show the effect of the nonlinear terms in the equations, a second test
is run for the same parameters, the same angles of incidence and with the same
order of the boundary condition but using the nonlinear equations. The waves
generated at the boundary are again sinusoidal. The spatial errors are plotted
in Figs. 3.8b, d and f. Comparison to the previous case shows that including
the nonlinear terms in the governing equations increases the error by a factor 2:
they are now of the order of 1%. This is due to the fact that in the first order
approximation (3.77), Eqs. (3.68) and (3.69) reduce to the linear relationships of

constant form
Qvs = 86y (; cos 0; (3.90)
Qur = —€o(rcosb, (3.91)
where ¢, is given by (3.66). This means that in this approximation of the boundary
condition the waves are assumed to propagate through the boundary with constant

form. This is true for linear waves, but not quite for nonlinear waves. Hence, the

nonlinear properties of the wave contribute fo the reflection error at the boundary.

As can be seen in Fig. 3.8, the errors are spatially dependent. In order to

obtain a single measure of the error as a function of the angle of incidence, the

Tk



relative L*-error is computed (Strikwerda, 1989). This L?-error is defined as the
squared difference of (g, and (g, evaluated in the domain Q; and normalized by
the RMS of the larger area solution at the time instant ¢ = ¢ when the initial

condition has propagated out (which is different for each 0;)

o \/291 (Eﬂz(ma i, tﬂ; gs) = Eﬂa(:l:a Y, t'n.; 01))2
\/Zm (Cau (2,17 6;))?

e (1" 6;) (3.92)

Figure 3.9 shows the L?-error for the range of angles of incidence of 0; =
0,75, %> - 5] for both the linear and nonlinear low-amplitude cases described

above.

Also plotted in Figure 3.9 is the error incurred when the Sommerfeld ra-
diation condition (3.48) is applied for sinusoidal waves. That condition shows
near-perfect absorption for waves of normal incidence but shows large errors for
more obliquely incident waves. In fact, the error is 100% for glancing angles. In
contrast, the errors due to the boundary condition derived in Subsection 3.2.3 are
of the order of 0.5% to 1% for the whole range of angles of incidence, which is

acceptable for most applications.

However, the error is a function of the nonlinearity parameter, 6 = A/h,.
The absolute error is O(6%), while the relative error, which is the absolute error

normalized by the exact flux, is O(é).

In a third test, the model is run for the same parameters as the previous
test but with a wave with an amplitude ten times as large, A/h, = 0.1. The
spatial variation of the reflection errors, see Fig. 3.10a, ¢ and e, are about one
order of magnitude larger than in the previous test, as one should expect. Fig.
3.11 (dashed line) shows that the relative L*-error versus 0; for a single absorption

boundary is about 10%, or 6 * 100%, which is too large for practical purposes.
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Figure 3.9: Reflection error vs. angle of incidence 0; for A/h, = 0.01. First
order BC: linear scheme (—), nonlinear scheme (— —). Sommerfeld
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As mentioned in Subsection 3.2.3, a major error source for large amplitude
waves is the first order expansion of (3.70). For larger amplitudes, it is therefore
advantageous to use the second-order approximation (3.82) as the boundary con-
dition. A fourth test was conducted with the same parameters as in the previous
case but with the second-order approximation of the boundary condition (3.82)
implemented at all four boundaries. The spatial errors for this test as calculated
by (3.89) are shown in Fig. 3.10b, d and f. We see that the error is now re-
duced by a factor 5 compared to the left-hand side panels. For a single absorbing

boundary, the relative L%-error versus the angle of incidence 6; as calculated by
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Figure 3.10: Reflection errors vs. (z/),y/)) for wave amplitude A/h, = 0.1 and

a nonlinear scheme (@) §; = 0, at t* =T, first order BC; (b) ¢; = 0,
at t" = T, second order BC; (¢) 0; = £, at t" = T'/ cos %, first order
BC; (d) 0; = %, at t" = T'/ cos %, second order BC; (e) ; = 7, at
t" = T/ cos %, first order BC; (f) #; = %, at ¢" = T'/ cos §, second

4
order BC.
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Figure 3.11: Reflection error vs. angle of incidence 6; for A/h, = 0.1. First
order BC (= =), second order BC (—).

(3.92) is shown in Fig. 3.11 (solid line). It has a magnitude of about 3%, which
is close to the theoretical normalized relative error e; ~ §* for the second order
approximation. For our purposes, this magnitude of the error for medium height

waves is acceptable.

Since the second order approximation (3.82) is explicit in ()., it does not
require considerably more computational time than the linear expression (3.77)

and it will therefore be used in the remainder of this section.

3.2.5 Example of Simultaneous Absorption and Generation

To illustrate the application of the boundary condition for the case of
simultaneous absorption and generation of waves at one boundary, consider a
domain with an absorbing-generating boundary at the z = 0 boundary and a wall
at @ = Ly = 0.75A. From a cold start, incoming waves are generated at normal
incidence from t = 07" — 10T, tapered with a hyperbolic tangent function during

the first and last period of generation in order to suppress transients due to shocks.



This wave train will reflect off the wall at 2 = 0.75 A and produce a standing wave
until the incident waves are turned off at 7' = 107". The physical parameters used
are: water depth h, = 1m, wave length A\ = 100h,, T'= X/ \/g ho, A = 0.04 h,,
so & = 0.04. The numerical parameters are Az = Ay = T% and C, = 0.6. Two

tests are conducted: one for the above parameters using the linearized governing

equations and one using the nonlinear equations.

For the first case, Fig. 3.12a shows the time series of the specified volume
flux of the incident waves at x = 0, normalized by ¢, h,. The effect of the hyper-
bolic tangent function is clearly visible as the amplitude grows to its full value
in little more than one wave period. Fig. 3.12b shows the flux of the outgoing
wave train at the same point as calculated by (3.82). The front of the outgoing
wave flux has a delay of 1.57" because it has to travel back and forth through the
domain. The wave flux has a phase shift of # because it is traveling in the —z
direction. Some small trailing waves around ¢ = 127" can be seen. Still water is
recovered almost immediately after the outgoing wave passes through the z = 0
boundary, which indicates that the reflections are small. We can quantify the er-
ror ¢ as the normalized difference of the amplitude of the incoming and outgoing
wave trains, or

A — A,
= % = 1.47-107" (3.93)

in this case, where A; is the amplitude of incoming wave train and A, is the

amplitude of the computed outgoing wave train at the z = 0 boundary.

The time series of the total flux in Fig. 3.12¢, which is the sum of the
two time series above, shows first a progressive wave in the +az direction, then
the anti-node of the flux of a standing wave, then a progressive wave in the —z

direction and finally still water.
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In the second test, the second-order boundary condition (3.82) is tested for
the same parameters as above but using the nonlinear equations. In the nonlinear
case, wave crests propagate faster than wave troughs, which means that the wave
fronts steepen up and “break” if a wave is allowed to propagate over a sufficient
distance. This distance becomes shorter as the wave amplitude is increased. A

wave crest propagates with a celerity
3. 4
(@ + Sorest = € (1 +26+ O(é")) (3.94)

where we have used @@ = ¢(orest/h from (3.67) and (pese = A. Similarly, for the

speed at the trough we have

(B + Clivough = 6 (1 — %5—1— 0(62)) (3.95)

This means that at the point of generation the difference in time between a trough
and the following crest, A7, by definition is equal to 1'/2 and decreases with
distance traveled as

At (z) = ?2: + @ (( ! - : ) =T G — 36 E) (3.96)

u + C)r?rﬁ'st (ﬁ* e C)h‘ﬂ'u.gh

In order to avoid numerical dissipation at the wave front, we will require that a
wave will not have steepened up too much after it has traveled back and forth

through the domain over a distance = 2 L so that

. 3
2&:1'(——5—)<_-7 «
A7 (2 Lb) S - 66-2) < =T (3.97)

which shows that there is an inverse relationship between the basin length L,
we can use in this test and the nonlinearity 6. Our choice of L, = 0.75\ and
§ = 0.04 satifies this condition. To facilitate comparison we have used the same

parameters in the linear case above, even though (3.97) is not a restriction there.

It should be emphasized that these steepening effects are inherent in the

NSW-equations, in which the dispersive terms have been neglected, and that they
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are not due to the boundary condition. However, we need to avoid these effects

in order to fairly test the boundary condition.

For the nonlinear case, Fig. 3.13a and Fig. 3.13b show the time series of
the flux of the incoming and outgoing wave trains, respectively. Notice that the
outgoing waves are asymmetric because the wave crests propagate faster than the
troughs under the nonlinear equations. As before, we can quantify the error of

the boundary condition in this case as

Ai = Ar g =

which, as expected, is larger than the error found in (3.93), and of the order
€, ~ 6% = 0(107?), as found in the previous subsection, even though the error

calculation methods are different. Fig. 3.13¢ shows the total flux in @ = 0, similar

to Fig. 3.12¢.

These examples show that the derived boundary condition performs equally
well in the case of simultaneous absorption and generation as in the case of ab-

sorption only.

3.2.6 Discussion

The numerical tests described above show that the reflection errors due
to the present boundary condition are only a few percent for cases of absorption-
generation as well as absorption only. This is a remarkable improvement over the
absorption properties of the widely-used radiation conditions based on the wave
equation, which only absorb waves at one specific angle of incidence perfectly and

produce large errors for other angles of incidence.
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It is mentioned that for simplicity the present form of the boundary con-
dition does not account for time-varying or steady currents. However, the math-
ematical modification of either (3.77) or (3.82) to include currents is straightfor-
ward. Accounting for a nonzero current flux Q and 1G-wave averaged surface

elevation C, we can generalize (3.63) and (3.64) to

QI = Q-.l:,i + Qa:,r ‘i‘ ﬁ (399)
{ = (484G (3.100)
Following the same procedure as in section 3.2.3, the Riemann-variable (3.61) can

now be expanded as

B~ Q+ Qui+ Qur (1+?+Ci+<j,)'l
' hs

Co Co h’o

—2J1 & % (3.101)
o

Substituting for the z-components of the incoming and outgoing waves from (3.67)

Qzi = (U + ¢){icost; (3.102)

Qzr = (U — ¢)(, cosb, (3.103)

and expanding to lowest order yields (after some rearranging)

- : (CS - QL — Q + i) + 0 ( Qs )2 (3.104)

T .
b Cslts he cohs

where ¢; is given by (3.76) and

(1 — i—i) cosf, + 1)
(1 — %) cos 0,

(1 + f—i) cost — 1)
(1 + %) cos 0;

b, (3.105)

(3.106)
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The real problem, as stated in Subsection 3.2.2, lies in the philosophical distinction
between currents and long waves and in the fact that currents will have to be
known a priori and specified along all boundaries of the domain. This means that
the terms involving the long-term averaged value of the water surface elevation C,
the current velocity U/, and the net volume flux Q in (3.104) need to be known

and specified in order to close the problem. A similar expansion to second order

is straightforward.

In its present form the boundary condition has one drawback. It cannot
absorb multiple waves with wave number vector directions that deviate more than
7. This is due to the fact that by using (3.68) and (3.69) the set of multiple waves
at the boundary is essentially approximated by one representative progressive
wave, which is not a valid assumption when two or more wave trains intersect at

oblique angles.

3.2.7 Conclusions

In this section an absorbing-generating boundary condition for the non-
linear shallow water equations is derived based on the Method of Characteristics.
Numerical tests show that by using this boundary condition, reflection errors are
limited to a few percent of the incident wave amplitude for the full range of an-
gles of incidence, which is an improvement over the classical radiation conditions.
Unlike those radiation conditions, the present boundary condition allows simulta-
neous specification of an incident wave train and absorption of an outgoing wave
train at the same boundary, which makes it particularly suitable for application

on artificial oceanside boundaries in shallow water models.
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3.3 Shoreline Boundary Condition

In the present model it is necessary to impose a boundary condition at the
shoreline in order to simulate the inundation/drainage process. This boundary
condition needs to be stable and accurate so that the results in the nearshore
region are not adversely affected. It also needs to be numerically efficient so that

the necessary computational time does not increase dramatically.

The advantage of using a fixed spatial grid is that the governing equations
can be coded easily and efficiently. The main disadvantage is that a fluctuating
surface elevation will cause nodes in the swash zone to change from being inun-
dated to being dry and vice versa as opposed to so-called “moving grid” models

in which the spatial grid is adapted to the changing surface elevation.

In the literature only a few shoreline boundary procedures on a fixed spa-
tial grid have been described in detail. Reid & Bodine (1968) were the first to
describe a procedure in which dry land is inundated if the water level exceeds the
bathymetric level of the land. Hibberd & Peregrine (1979) described the run-up
and run-down of a uniform bore on a sloping beach. They linearly extrapolated
the surface elevation in the most shoreward “wet” node to determine whether
the next point will become “wet” or stay “dry” in the next time step. If the
depth in this most shoreward “wet” node fell below a small threshold value é
this node would become “dry” itself and the procedure would be repeated for the
next “wet” node at the next time step. They report good agreement with ana-
lytical solutions for non-breaking waves (Carrier & Greenspan, 1958; Spielvogel,
1976). Kobayashi et al. (1987) and Kobayashi & Johnson (1995) used the same
technique and improved on the tendency of this boundary condition to become
unstable. However, the procedure becomes very complicated. Brocchini & Pere-

grine (1996) provided a theoretical outline for a shoreline boundary condition but
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did not give an application of the theory.

In this thesis we apply an alternative procedure based on the physical prin-
ciple of storing a volume of water between the most landward inundated node and
the actual shoreline. First we will discuss the longshore uniform (or 1- D) case
and then make an extension to the two-dimensional horizontal situation. The
boundary condition will be tested against a nonlinear analytical solution by Car-
rier & Greenspan (1958) for the longshore uniform case and against two numerical

solutions (Zelt, 1986; Ozkan-Haller & Kirby, 1997) for the two-dimensional case.

3.3.1 One-dimensional Procedure

The one-dimensional procedure is essentially as illustrated in Iig. 3.14. At
a given time ¢t = 1", the water surface and the beach have a point of contact,
which lies between the fixed grid points z, and z, + Az. Nodes at = < z, are
then inundated (or wet) while points z > x, are dry. This implicitly assumes a
monotonically varying water depth in the swash zone. The variable s denotes

the distance between the last wet node z, and the actual shoreline position.

The volume (or rather, area in the one-dimensional case) of water stored

landward of node x, at { = {™ can be calculated as

Tats™ £ Tots™
& = / / deds = f (ho + (") dz (3.107)

ho To
Expanding the depth and surface elevation in Taylor-series about the last wet

node at z = z, and integrating yields

Tots" dh,
0y = / (ho|“ + 79% (z — zo) +
ac" 3
ey + —OC—L (z — z,) + O(A.’uz)) d =
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Figure 3.14: Schematic representation of a cross-section near the shoreline.

(s")? + O(Az®) (3.108)

o1 (0h, OC
(ho +¢")ls, 8™ + 3 (a_;JF 33:)

To

The horizontal distance s™ can be found from the intersection of the free surface
and the bathymetry, again expanded about the last wet node z,, where from now

on we will drop the z,-index.

! ah’“ o = _I_ C’-‘l T &
- 9z ° ¢ Az
g — _M (‘3 JU())



Substituting (3.109) into (3.108) yields
1 (ho _I__C;n)').

Oy = =2 =2 3.110

which, as stated before, is the volume stored shorewards of 2 = 2z, at t = t*. In
the small time step At from ¢ = t" to t = ¢"*! the time-integrated flux @), through
the cross-section at the most shoreward wet point z, will add or subtract water

to this volume. This integrated flux yields a volume §)

tn+1

V= Qs

t n

dt (3.111)

where we can use a predictor-corrector scheme for the numerical time-stepping,
as was done for the governing equations themselves. The variable () at @ = z, in
(3.111) is itself updated from the z-momentum equation, which includes friction

terms.

In the case of uprush, ) is stored in the dashed box beyond the last wet
point z, in addition to the volume ), already present. To the first approximation
the water surface gradient does not change in this small time step, we can calculate
the surface elevation in node z, at the next time level ¢t = ¢!, At that time we

then have

1 (ho_i_cn+1)2

& 4+ = Bt W
nt+l e Ohe Q.g_l. = 3
(M = J 2 (h +90) (dT + (,)m) h, (3.112)

which means that the surface elevation in # = x, at the next time step ¢t = t"*! is
known. Similarly we can calculate the new point of contact between the bed and

the water surface at the next time t = t**! as

Sn-!—l =5

(3.113)
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If the new point of contact lies shoreward of the dry point =, + Az, as is the case
mm Fig. 3.14, this grid point then becomes “wet”, i.e., the new shorewardmost

node.

The point of contact at z = x, + s™*! does not necessarily coincide with a
grid point. However, using the fact that the cross-shore flux at x,+s"*! is zero by
definition, we can find the cross-shore flux in the shorewardmost node by linear
interpolation between the flux in the point of contact (which is zero) and the flux

in the next-to-last “wet” node.

In the case of a receding water level in the downrush phase the integrated
flux through the last wet point is subtracted from the volume stored landwards
of that point. The procedure is essentially the same as described for the uprush
with one exception. If the integrated flux exceeds the stored volume, the point z,

becomes dry and the point z, — Az becomes the new most landward dry point.

In the next time step the procedure is repeated for the new shorewardmost
point. At that time level the local surface gradient in the last “wet” node is evalu-
ated from the updated values of the surface elevation in the three shorewardmost

grid points, which allows the gradient to be different from the gradient at ¢t = ¢,

3.3.2 Two-dimensional Procedure

The procedure in two dimensions is an extension of the previous subsection.
We now must take into account the longshore variation of the surface elevation,
the flux and the bathymetry. Consider a spatial grid and an arbitrary shoreline
at ¢ = t" as illustrated in the plan view of Fig. 3.15. The solid nodes are the
inundated nodes in the ocean, and the open nodes are the dry nodes at time step

b==t"
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Figure 3.15: Plan view of an arbitrary shoreline on a fixed grid with inundated
nodes (o) and “dry” nodes (o).

In order to update the variables at a grid point (z,,¥,), which is the closest
“wet” node to the shoreline in the z-direction for a given y = y,,, we first consider
the volume of water stored in the control volume indicated by the dashed lines at
t= ¢

!fo”!"%g' -'l’r)""sn(”) Cn
0y = zaxdl =
Y _%y_ T —hg,

Yo

vot St paots™(y)
/ / (ho + (") dzdy (3.114)

Using (3.108) for the inner integrals we have

i‘:"o“|"%"li n 1 l aho acn
0 = f % (U?-n‘l‘C Niwow) " (y) + 9 (d’r +_)

(s"(y))*

(w0,u)

or

+0(A®)) dy (3.115)
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Expanding about y = y,, dropping the indices and truncating to O(Ay)? yields

vt 5 oh, L oC
Ql - [ ((hn + F)Tj ( Uﬂ) C }(f - T}o) + O(AT}) )

_ Ay
oo 2

o, 0" [ Ohy (‘)Cn Tl AN2
+ 4 S+ o) + 5 (G + ) o)

+0(Az*, Ay?) ) dy (3.116)

Integrating with respect to y yields

B e Ohy O\ | s
by = #4188+ g (31: * f)m)(b ) Ay

+ 0(Az?, Ay®) (3.117)

where all variables are evaluated at (z,,y,). As before we can substitute (3.109)

and we then get

ho 4+ (™ _
Y = -5 (8!14()_‘& + O(Az®, Ay®) (3.118)
f’-'J 5‘3

where all variables are evaluated at (z,,y,). Notice that for this order of the
approximation (3.118) is equal to (3.110) multiplied by the longshore grid space
Ay.

Similar to the previous case we can calculate the net in- or outflow through
the boundaries of the control volume in the time step At from ¢ = t* to t = ¢"*'.

The net inflow through the three boundaries is

ntl Yot %" :l.,—l-s

Ly
2

Jro+5{yo+%y“) ‘ (
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We expand the first integral in Taylor-series about (z,,y,), the second integral

about (z,,y, — —Az—”) and the third integral about (z,,y, + %'1)

B (nt1 vot+ 5 90, ,
e /.ﬂ_%z Q=F|{xmyo] + Ay el (y — o) + O(Ay") dy
" (/ @y (Zoivo—5E) + ’? (2 — o) + O(A‘T’J) ‘h:)
To Jr (Jfo,?,‘o—%g]
3’o+3(yn+%£] - s .
(L i + 5| (e + ol
Lo b [a.‘..,‘y;.+%3)
di (3.120)

and evaluate the spatial integrals to find

tn-{-.‘l

Oy = ” (le[mmyu) Ay
Q. '
Hlon-a0lw-a + 5, oo t) -
0Q. .2,
i ] s = di
Qy|{2.‘o,'ya+'%u') Sl(yo_'_%ﬁ) (L):I’. [E(-ryrf‘l"éag] ’ |(yo+%2))
+ O0(Az®, Ay®) (3.121)

We then expand this expression about (z,,y,), keep terms up to O(Az?, Ay?, s%)

where s = O(Az) and omit the indices to get

Ay ds Ay oQ, 00y 5
1 — 5

:rA ys — T me 5 '
(Q ¥y + Qys — Qy 2 Oy 2 Oy . O

intl

0= /
t"ﬂ

—Qys — Qy

Ay% 8 = ﬂagy . 9Qy

2 Byb 2 dy ; dx

32

+O(Az®, Ay®) ) dt (3.122)
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After some rearranging we then get

E“+1 aQy s " 5 .

0 = Ay f Qo — 2 ) dt + O(Aa*, Ay’) (3.123)
n Y

Again, similarly to the one-dimensional procedure, we add €2, from (3.123), and

Q, from (3.118) to find the surface elevation at (z,,y,, t"*"') and we can calculate

the distance s™*!

from z, to the actual shoreline. If this distance exceeds Az,
the previously dry node z, + Az becomes wet during this time step in the case of
local run-up. In the case of local run-down the last wet node becomes dry if the

flux out of the control volume exceeds the stored volume.

This procedure is repeated for all nodes in y, where z, is the most shoreward

“wet” node for every cross-section in y.

3.3.3 Numerical Tests

The shoreline boundary condition was tested against an analytical solution
by Carrier & Greenspan (1958) for the longshore uniform case and against two
numerical solutions by Zelt (1986) and Ozkan-Haller & Kirby (1997) for the two-

dimensional case of a concave beach.

3.3.3.1 One-dimensional case: Carrier & Greenspan (1958)

Carrier & Greenspan (1958) derived a nonlinear analytical solution for the
problem of the run-up of a non-breaking shallow water wave on a plane beach.
They were able to find an explicit solution by a transformation of the independent
variables (z,t). They studied the run-up of a single surge after the release of a
mound of water offshore and also the run-up as a result of a periodic forcing
offshore. We choose to compare the model results to the analytical solution for

the last case.
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Figure 3.16: Comparison of present model (—) to Carrier & Greenspan (— —)
for A = 0.7 for time-instances at intervals of 0.13 T

The parameters governing the solution are the horizontal length scale L,

the bottom slope h,. and the amplitude of the wave motion A. For this comparison,

we choose L, = 50m and h, = 1/30. These parameters define the period of the
motion as T' = /L, /(g hs) = 12.36s.

The model equations used in this test are the NSW equations with friction

or forcing. The numerical parameters are Az = {%m and a Courant number
v = 0.7. The model is first tested for an amplitude of A = 0.7. Figure 3.16
shows the comparison between the present model and the analytical solution at
time intervals of 0.13 T'. The surface elevation is normalized by the amplitude A.
The model results agree so well with the analytical solution that it is difficult to

see the difference between the solid and the dashed line.

Figure 3.17 shows the comparison between the present model and time
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Figure 3.17: Comparison of present model (—) to Carrier & Greenspan (e e e)
for A = 1.0 for time-instances at intervals of 0.13 T’

instances of the analytical solution at intervals of 0.13 7" for A = 1.0, which is

the maximum non-breaking wave amplitude. We see that the model and theory

agree very well in this case also. Of course, the agreement will become less if a

larger space step is used. This test shows that the numerical model converges to

the analytical solution.

3.3.3.2 Two-dimensional case: Zelt (1986) and Ozkan-Haller & Kirby
(1997)

The two-dimensional shoreline boundary condition is tested against two
numerical solutions for the run-up of a solitary wave on a concave beach with a
sloping bottom. One solution is by Zelt (1986), who used this case to test a fully

Lagrangian finite element model of the shallow water equations, which included
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some dissipative and dispersive terms. Ozkan-Haller & Kirby (1997) used the same
case to test their Fourier-Chebyshev Collocation model of the nonlinear shallow

water equations.

Figure 3.18: Definition sketch of the concave beach bathymetry (courtesy Dr.

H.T. Ozkan-Haller)

Iligure 3.18 shows the definition sketch of the concave beach bathymetry in
the present coordinate system, converted from the original system by Zelt (1986).
The bathymetry consists of a flat bottom part and a beach part with a sinusoidally
varying slope. For Zelt (1986)’s fixed parameter choice of /f = g—: = u%, the

bathymetry is given by

h
k= (3.124)

0.4 (x— Ls
h, —

q—c A

3 —cos T
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where h; is the shelf depth, L, is the length of the shelf in the modeled domain
and L, is the length scale of the longshore variation of the beach. This results
in a beach slope of h, = %o in the center of the bay and of h, = : normal to
the “headlands”. In the following we chose L, = 8m, which determines h, =
1.0182m. We set L, = L,. Different values for L, only cause phase shifts in
the results, but no qualitative difference, so this parameter is not important in
this problem. Also indicated in the Figure are the five stations where the vertical

run-up (the surface elevation at the shoreline) will be measured.

At the offshore (z = 0) boundary we specify an incoming solitary wave,

which in dimensional form reads

G (t) = a hysech® ( 4;3 a(l+a) (t-— t(,)) (3.125)
which is similar to Zelt (1986)’s Eq. (5.3.7). The phase shift ¢, is chosen such
that the surface elevation of the solitary wave at £ = 0 is 1% of the maximum

amplitude. The only parameter yet to be chosen is . We will compare our model

to Zelt’s case of @ = % = 0.02, where H is the offshore wave height. Zelt
found that the wave broke for a value of @ = 0.03, so the present test should

involve no breaking, but has a large enough nonlinearity to exhibit a pronounced

two-dimensional run-up.

Any outgoing waves will be absorbed at the offshore boundary by the
absorbing-generating boundary condition described in Section 3.2. At the lateral
boundaries y = 0 and y = 2 L, we specify a no-flux (wall) boundary condition
following Zelt. The model equations used in this test are the nonlinear shal-
low water equations without forcing or friction. The numerical parameters are

g = Y = }sm with a Courant number v = 0.7.

Fig. 3.19a shows the normalized vertical run-up at the five cross-sections
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Figure 3.19: Comparison of present model (—) to Zelt (1986) (— =) for a =

0.02: (a) Timeseries of run-up in 5 stations, (b) Maximum run-up

and run-down.
indicated in Fig. 3.18 as a function of time, which is normalized by \/g h,/L,. The
solid lines represent the present model results while the dashed lines denotes Zelt’s
numerical results. Here y/L, = 0 is the position at the headland, while y/L, =1
represents the midpoint of the bay. We see that the agreement is generally good,
except that the present model does not capture the second peak in the time series
at y/L, = 0 very well. This secondary peak or “ringing” is due to the wave
energy that is trapped along the coast and propagates towards the midpoint of

the bay (Zelt, 1986). It is suspected that this focusing mechanism is not properly
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captured because the present method approximates the shoreline as a staircase
pattern, which in effect lengthens the shoreline. Also, the spatial derivatives are
not evaluated parallel and perpendicular to the actual shoreline but in the fixed
x and y directions. The first trough in the time-series at y/L, = 0.75 is also not
captured well, but this will be shown to improve in the comparison below. The
agreement at the locations y/L, = 0.25 and y/L, = 0.5 is generally good despite

the large gradient of the local shoreline relative to our grid.

Fig. 3.19b shows the maximum vertical run-up and run-down, normalized
by H, versus the alongshore coordinate y. It is seen that the maximum run-up
agrees well with Zelt but that the maximum run-down is not represented well
in the center of the domain. The “wiggles” in the solid line are evidence of the
staircasing of the shoreline: since the shoreline is not treated as a continuous but

rather as a discrete function, so is the run-up in the individual nodes.

As stated above, Zelt modeled the NSW equations including some dis-
persive and dissipative terms, which the present model does not have. For that
reason, we also compared our model to the results of Ozkan-Haller & Kirby (1997)
who modeled the NSW equations using a Fourier-Chebyshev Collocation method,
which does not have any numerical dissipation or dispersion errors. They use a
moving, adapting grid with a fixed Ay (which is equal to the present model’s Ay
in this comparison) but with a spatially and temporally varying Az so that the
grid spacing in @ near the shoreline is very small. In the present model Az is
set equal to Ay, which means that we can expect to have less resolution at the

shoreline than Ozkan-Haller & Kirby (1997).

Fig. 3.20a shows the normalized vertical run-up at the five cross-sections
versus normalized time. We see that the present model (solid lines) agrees better

with Ozkan-Haller & Kirby (1997)’s results (dashed lines) than with Zelt (1986)’s,
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Figure 3.20: Comparison of present model (—) to Ozkan-Haller & Kirby (1997)
(= =) for @ = 0.02: (a) Timeseries of run-up in five stations, (b)
Maximum run-up and run-down.

especially around the local maxima and minima. Both models agree with the

prediction of the first trough in the time-series at y/L, = 0.75, which means that

the dispersive and dissipative terms that Zelt included in his equations might have

become important at that point.

Fig. 3.20b shows the normalized maximum vertical run-up and run-down
versus y. We see that the present model has a better overall agreement with

Ozkan-Haller & Kirby (1997)’s than with Zelt (1986)’s computations.
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In conclusion, the shoreline boundary condition agrees well with the analyt-
ical solutions for the longshore uniform case but shows some discrepancies for the
case of a concave beach, which can be attributed to the “staircase” discretization

of the shoreline.
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Chapter 4

GENERATION OF SHORE-NORMAL
INFRAGRAVITY WAVES

In this chapter the depth-integrated, shortwave-averaged nearshore circula-
tion model SHORECIRC is applied to study the generation of infragravity waves

due to normally-incident wave groups on a plane beach.

In Section 4.1 an overview of the existing literature on the generation of
infragravity waves is given, including references on relevant field data. In Section
4.2 the model is linearized to study the simplest possible case of surfbeat (one-
dimensional infragravity wave) generation, which will prove to contain many of
the relevant mechanisms. The relevant parameters are identified and variation of
these parameters shows that different shoaling curves of the long-wave amplitudes
can be found. As a consequence, the energy of the outgoing long wave can be larger

or smaller than that of the incoming long wave.

The effect of the choice of the parameters on the generation of infragravity
waves can be assessed using the “reflection coefficient” R, which is defined as the
ratio of the amplitude of the outgoing wave and the amplitude of the incoming
wave. Following Schaffer (1993), the value of R on the shelf can be interpreted as
an integral parameter to characterize the net energy gain or loss in the infragravity

waves as a result of shoaling and breaking of the short-wave groups and their
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interaction with the long waves. Moreover, we will study the transfer of energy
from the groups to the incoming and outgoing long waves separately as a function
of depth. In this way, we can examine the process of infragravity wave generation

on the slope.

In Section 4.3, the nonlinear terms corresponding to the nonlinear shallow
water equations are included. It is shown that the mean set-up makes the most
important contribution to the generation of long waves, in particular very close
to the shoreline. Finally, in Section 4.4 the model is validated against laboratory

data by Kostense (1984).

This chapter is essentially an expansion of Van Dongeren et al. (1996).

4.1 Introduction

It is well-known that a forced long wave propagates with short-wave groups
at the group speed (Longuet-Higgins & Stewart, 1962). When these groups prop-
agate onto a beach, the short waves shoal and break. In the shoaling process the
incoming, bound long wave, which traveled with the group, gains energy and is
released from the groups. The incoming long wave propagates shoreward, inter-
acts with the breaking process, eventually reflects off the beach and propagates

seaward as a free wave.

The total motion of the incoming and outgoing long waves produces a
standing wave-like pattern that was called “surf beat” by Munk (1949) and Tucker
(1950), who were the first to report field measurements of this phenomenon. Later,
these low-frequency motions (whose periods are of the order of several minutes in
the field) became known as “infragravity waves” and were confirmed in a number

of field campaigns (Wright et al., 1979, 1982; Huntley et al., 1981; Holman, 1981;
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Guza & Thornton, 1982, 1985; Oltman-Shay & Guza, 1987; Howd et al. 1991)
to contain a significant portion of the total energy in the wave field. Gallagher
(1971), Guza & Bowen (1975) and Bowen & Guza (1978) showed theoretically
that energy may be transferred from obliquely-incident wave groups to edge waves.
This was confirmed in experiments by Guza & Chapman (1979). However, these
interactions have to satisfy the edge wave dispersion relation exactly, which is too

limited a condition to explain the omnipresence of these phenomena in field data.

The generation of infragravity waves was explained more convincingly by
Symonds et al. (1982), who assumed that the groupiness which existed outside
the breaker zone is destroyed by the breaking and that the short waves inside the
surf zone will decay with a saturated wave height. This implies that the position
of the break point varies over the period of the wave group because higher waves
in the group will break further offshore than smaller waves. The break point then
acts as a wave maker and generates long waves at the frequency of the break point
oscillations, which is equal to the frequency of the short-wave groups. Because
the groupiness is destroyed in the breaking region, no long-wave generation takes

place inside the surf zone.

Schiffer & Svendsen (1988) examined the other extreme where all short
waves regardless of their height are assumed to break at a fixed break point. This
means that the groupiness outside the surf zone is transmitted into the surf zone

where long-wave generation can take place.

It is likely that neither mechanism is exclusively responsible for long-wave
generation but that it is due to a combination of both effects. Therefore Schaffer
(1993) merged the two extreme mechanisms into one hybrid analytical solution for
the total long-wave envelope in which a parameter & is used to interpolate between

the two extremes. He analyzed some of the effects of parameter variations.
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Some field studies suggest that there is more energy in the free (outgoing
or trapped) waves than in the incoming bound waves (Munk, 1949; Tucker, 1950;
Elgar et al, 1992; Herbers et al, 1995 to name a few). This indicates that in the
nearshore region energy has been transferred from the short waves to the long
waves. However, other observations (Guza & Thornton, 1985; Kostense, 1984)
show that the energies of the incoming and outgoing long waves are about equal,

which means that no net long-wave energy was gained in the nearshore region.

This inconclusive field evidence suggests that gain or loss of infragravity
wave energy may be a function of the relevant parameters. In the next section
the linearized model is analyzed and its response to the variation in the governing

parameters is studied.

4.2 Linear Analysis

In this section the model is linearized to study the simplest possible case
of surfbeat (one-dimensional infragravity wave) generation, which will prove to
contain many of the relevant mechanisms. First, we will state the governing lin-
ear equations and give expressions for the short-wave forcing and the boundary
conditions. Then, we will non-dimensionalize the model and identify the govern-
ing parameters. For a number of sets of these parameters, we will compare the
model results to the analytical solution by Schaffer (1993). The incoming and
outgoing long waves are separated linearly and the envelopes of each long wave
are shown. The growth rate of the amplitudes of the incoming and outgoing long
waves is analyzed and explained using the work term in the energy equation of
the long waves, and the phase differences between the waves and the forcing. It
is shown that different growth rates of the long waves can be found for different

parameter choices and that the “reflection coefficient” R on the shelf can be used
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to characterize the net energy transfer to the infragravity waves.

4.2.1 Model Formulation

To study the mechanisms of infragravity wave generation, the depth-
integrated, time-averaged mass and momentum equations (2.8) and (2.71) are
reduced for the case of depth-uniform long waves propagating in the shore-normal

a-direction to

ac  aQ B
90 d (Q? 9 | 108w T8 c
ot o ( )*“(”ﬂ“)ad, et =0 (+2)

These equations represent a set of nonlinear shallow water equations with forcing
and friction, where the radiation stress gradient provides the forcing on the long

waves. In this section we will linearize the model to

8( Q) .
4.3
ot e =0 (4:3)
0Q a 108,
o Tt o ! (44)

in order to analyze the simplest possible case of linear waves propagating on a flat
shelf connected to a plane beach, where the forcing is generated by a frequency-
modulated bichromatic short-wave group. As will be shown, even this simple case

will provide insight into the long-wave generation mechanisms.

Following Schaffer (1993), we can generate a radiation stress forcing by su-

perimposing two monochromatic short-wave trains of slightly different frequencies

w = w(l+e€ (4.5)
wy, = w(l— e (4.6)
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where w is the mean short-wave frequency and ¢ is the frequency modulation.
As Schaffer (1993) notes, this perturbation is an alternative to the wave number
perturbation by Mei & Benmoussa (1984), Schaffer & Svendsen (1988) and Liu
(1989).

Using the results of Schaffer’s derivation we can write the radiation stress

forcing in our notation as

1 : aj (’l + 26 cos([ %:id;r - Awt)) " h > hy
S = 3 P9 (2 n— —) (4.7)
1y2h? (l. + 26(1 — k) cos([ ?—:’ dr — Aw t)) yh < hy
where £ is the parameter controlling the breaking mechanism: £ = 0 corresponds
to the case of a fixed break point, while £ = | represents the time-varying break
point case. n = ¢,/c where ¢, 1s the group speed. a, is the wave amplitude of the
primary short wave in the group while the groupiness 6 = ay/a; is the ratio of
the amplitudes of the secondary wave and the primary waves. h; is the depth at

breaking.

The difference frequency between the two short waves
Aw = W —Wwy = 2ew (48]

is also the long-wave forcing frequency. Inside the surf zone, we use a saturated
short-wave amplitude over water depth criterion

|
ay = 51;’1‘ (4.9)

where 7 is a constant, so that the short-wave amplitude is a function of the local

water depth only.

It is important to notice that the forcing consists of a steady part (the first

term in (4.7)), which causes a steady set-up, and a time-varying part (the second
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term in (4.7)), which forces a long wave. In our analysis we are interested only
in the latter and in the rest of this section we show only the time-varying part of

the solution. The forcing of the time-varying solution can be written

a} b cos(. ‘3—:’ dz — Awt), h > hy,
S = pg (2 n— %) (4.10)
17202 6(1 — k) cos(, ‘i‘—:’ dz — Awt), h < hy

a: fixed breakpoint £ =0

maximum short-wave amplitude
instantaneous short-wave envelope

______
____
-
-----

hy

breakpdéint

b: moving breakpoint £ =1
amplitude modulation 26

breaking region ] |
2 Teg s

Figure 4.1: Definition sketch of the generation mechanisms: a) Schaffer & Svend-
sen (1988)’s fixed breakpoint generation mechanism. b) Symonds et
al. (1982)’s moving breakpoint generation mechanism. (Reproduced
from Schaffer, 1993)
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Fig. 4.1a shows a definition sketch of Schaffer & Svendsen (1988)’s fixed
breakpoint generation mechanism. Indicated in the figure are the instantaneous
short-wave envelope and the maximum and minimum short-wave amplitudes as a,
function of the horizontal coordinate z’. The difference between the minimum and
maximum values of the amplitude is twice the amplitude modulation 6. Notice
that this amplitude modulation is transferred into the surf zone. Fig. 4.1b shows
the principle of Symonds et al. (1982)’s generation mechanism. Short waves
of different amplitude break at different locations in the breaking region and no

modulation 1s transmitted into the surf zone.

It is also assumed that the shelf is wide enough so that at the toe of the
beach the incoming long wave corresponds to the equilibrium bound long wave
for the flat shelf

. 1 5}(;:“)
“= k-

where the subscript ; denotes conditions on the shelf. This equation corresponds to

(4.11)

the “geometrical optics” solution (i.e., the first term in a WKB-expansion (Bender
& Orzag, 1978)), which assumes a local equilibrium between the forcing and the
long wave amplitude at any depth on the slope. This solution was first found by
Longuet-Higgins & Stewart (1962), who derived (4.11) for constant depth from
(4.3) and (4.4) by assuming that in the equilibrium state the long wave is bound

to the wave groups, which travel with ¢, so that

d J
v R i 4.12
ot~ s (l2)
which means (4.3) and (4.4) can be combined to
2 86 1 ‘S'CI-';L' G
ghe — €))7 = —— = 4.13
9k = &) 5z =~ 52 (4.13)
Integrated by parts, this yields
o & 1 S 1 Sew
= 0 = mem—— s=z' S — = |
¢ = <(0) pghs — lo=ar + pghs — c2 =0
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This equation reduces to (4.11) for constant depth where the integration constants
on the right and left-hand sides cancel. It turns out that in the following cases the
last term in (4.14) is small. It is important to emphasize that the solution (4.11)
only exists on a flat shelf. Notice also that (4.11) becomes singular if the water
depth is allowed to go to zero slowly, i.e., if the infragravity wave propagates slowly
relative to the depth variation. It is one of the purposes of the present study to
investigate what the growth rate of the infragravity wave is if the bottom varies

“fast” relative to the propagation speed of the infragravity wave.

The outgoing wave is absorbed using the absorbing-generating boundary
condition derived in Chapter 3.2. In the linearized form of the model we impose

a no-flux condition at the still water shoreline.

4.2.2 Non-dimensionalization and Relevant Parameters

In order to identify the relevant parameters in this problem, we first com-
bine the governing equations (4.3) and (4.4) for the time-varying motion into the

wave equation

0% J a¢ 1 9*5)
= s | R St e iR 4.15
ot? 4 oz (I oz p Oz (hel)
We will apply the following non-dimensionalization
| .,{»‘ hy — h, g ; _—rr
D B=Tg = hm(i—h) (=(C
(4.16)

Q = \9hC,Q m = a,d SG) = pgbal S
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where the subscript ; denotes conditions on the shelf and the * denotes the nondi-
mensional quantities. We choose to non-dimensionalize the surface elevation in
such a way that the equilibrium bound long wave in (4.11) becomes an O(1)
quantity. Using (4.16) we get

o §a2 a* (2n—-1 /
Ll =~ Pyoas ( 2) cos (%LS- Ef./ ghs dh’ + t’) (4.17)
e V| g é;

pghs {1 = "ﬁ)

ghs

I'rom this we can see that the proper scale for the surface elevation in this problem

18
= 8 a?
s = — 4.18
( W (4.18)
so that the non-dimensional ¢’ from (4.16) becomes
= da’ -
= 2ep (4.19)
hs
The non-dimensional wave equation then becomes after some rearranging
5 h: oo (,, 0 K sl
C (5 o g L.‘L' —_— hf:i — g I'.‘L > x.‘a. (4.20)
ot'? hy Aw? Oh' dah! he Aw?  dh'?
This analysis shows that the relative slope steepness parameter
_ h: _
Gp = 28 (4.21)

A = P
he Aw?

is relevant. Notice that the parameter .5',_;_'1"’ also appears in the cosine in (4.17).
Notice that Sa resembles the Irribarren number (Irribarren & Nogales, 1949) and
the surf similarity parameter (Battjes, 1974) if the wave height H is used as a

scaling parameter instead of the shelf depth h,.

Using the fact that the wave length of the incoming bound wave L on the

shelf can be expressed as

(4.22)



where ¢, ; is the group speed on the shelf, we can write (4.21) as

_, | L\?* gh, 5
Sa =15 (h,,.?]:) T (4.23)

where we recognize the second factor as the square of the slope parameter S, as
identified by Schaffer & Svendsen (1988). The third factor is the ratio between
the (squared) free and forced long-wave celerities. The parameter Sa is thus a
modified version of S, which describes the gentleness of the bottom slope and
hence is the appropriate slope parameter for gently-sloping beaches. For further

discussion see Svendsen & Putrevu (1996).

The local amplitude of the mean short wave and the position of the break-

point is determined from the conservation of energy flux in the shoaling region
2 2 :
Cob B = 4.0, (4.24)

where the subscript ; denotes the (mean) break point. We assume that the short

waves will break if they exceed the wave height to water depth ratio v (4.9), so

hy _ 2 [Cge (4.25)
hy ¥\ Cip. Ba

This implicit parameter essentially states that the non-dimensionalized break

that (4.24) can be written

point is determined by a parameter governing the breaking (), and by parameters
that control the shoaling process (ay/h, and the ratio of the group celerities at
the break point and the shelf.) Furthermore, the parameter «, which governs the

type of breaking mechanism, will be relevant.

To summarize, we have identified three parameters that govern the gener-
ation of infragravity waves: Sa, 2—*’ and k. This choice is an alternative to the five
parameters that Schaffer (1993) identified, which are (in the present notation)

hew

7 K, hy ays, ~ (4.26)
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where the © denotes his non-dimensionalization using the fictitious deep-water
wave number k., = % The difference between the two methods is that we
non-dimensionalize by the shelf depth, which is a physical parameter, instead of
by k.. In this way we essentially combine Schéffer’s first and third parameters
into Sa. We also combine his parameters a; , and 7, which govern the short-
wave transformation, into the break point parameter (4.25). Please note that
the present parameters can trivially be rewritten in terms of Schiffer’s and are

therefore essentially equivalent but in our opinion more convenient.

In the remainder of this section we will investigate the importance of each of
these parameters by varying their values. The breaking index 4 will be assumed
known from measurements and therefore kept constant. In the process of this
analysis, we will address the separation of incoming and outgoing long waves and
the nature of free and forced long waves. Also investigated are the energy transfer
from the wave groups to the long waves and the relative phase differences between
the forcing and the long waves. It will be shown that varying the governing
parameters has a profound effect on the value of the “reflection coefficient” R and
that the transfer of energy from the short-wave groups to the infragravity waves

can be characterized by the integral value of R on the shelf.

4.2.3 Case 1: Fixed Breakpoint

The first, case considered is that of a fixed breakpoint (£ = 0) correspond-
ing to the mechanism proposed by Schiffer & Svendsen (1988). An example
that illustrates the different effects is obtained if we use the following param-
eter values: primary wave amplitude @y, = 0.4415m on the shelf, groupiness
§ = 0.1, saturated breaking with v+ = 0.7, beach slope h, = 1/30 and shelf

depth h, = 6m. We choose w = 1.857! and ¢ = 0.1173, so that the forcing
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frequency Aw = 0.422s~" by (4.8). For these parameters, So = 1.02- 1072
according to (4.21). This corresponds to a value of Schiffer & Svendsen (1988)’s

slope parameter of § = 0.25, which is relatively mild. The breaking depth is

hy/hy = 0.21 according to (4.25).

Fig. 4.2a (solid lines) shows the envelope of the time-varying long wave
versus the horizontal coordinate with the origin at the shoreline, normalized by
ha/hs, so that 2’ = 1 corresponds to the toe of the slope. This long wave is the
sum of the incoming long wave, which is modified by the short-wave forcing, and
a seaward propagating (outgoing) long wave, which has reflected off the shoreline.
The surface elevations are normalized by af , §/h,, according to (4.19). Also plot-
ted is the analytical solution by Schéffer & Svendsen (1988) (dashed line) which is
computed on the slope only (2’ < 1). This confirms that the model results agree
very well with the analytical solution. The break point is located at @’ = 0.21 and

is indicated in this and further figures.

The total long-wave motion can be separated into an incoming and an
outgoing long wave using linear superposition of the surface elevation and of the

flux

C=C+6+06 and Q = Q; + @ (4.27)

where ? is the steady set-up, subscript ; denotes the incoming wave and subscript
. denotes the outgoing wave. Also, we know that for waves propagating without

change in shape we have

Q=c( (4.28)

which was proven in Appendix B and used in Chapter 3.2. The computations will

show that

Qi = Cy i and Qr ==y h‘o (_v:r (429)



Figure 4.2: Case 1: (a) Envelope of the total long-wave motion vs. the nondi-
mensional horizontal coordinate: present model (—) and analyti-
cal solution (= =); (b) Envelope of the incoming long wave: present
model (—), Green’s Law (= —) and Longuet-Higgins & Stewart
(1962)’s steady state solution (= -); (c¢) Envelope of the outgoing
long wave: present model (—) and Green’s Law (= —); (d) Reflec-
tion coefficient.
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which implies that the incoming wave essentially propagates with group speed ¢,
and the free outgoing wave propagates with the shallow water wave speed. Solving
for ; and (. from the four equations (4.27) and (4.29) yields

Vahe (-0 + @ _al=0-8

= and .=
T = T VT

These equations are essentially modified versions of those given by Guza et al.

(1984), who used the shallow water celerity for both the incoming and the outgoing
waves. The separation of the incoming and outgoing wave implies assumptions
about the speed of the waves used in the interpretation of the model output. These

assumptions are not used in the model itself.

The solid lines in Fig. 4.2b show the envelope (; of the incoming long
wave. This envelope is obtained by separation of the model output ¢ and @
of the total wave motion into an incoming and outgoing part using (4.30) and
determining the maximum and minimum surface elevation of the incoming wave

over an infragravity wave period at every location.

Note that the long wave shoals faster than as predicted by Green’s Law
(f o h='/1, the dashed line), which means that energy must have been transferred
to the long wave. Also shown is the shoaling curve according to Longuet-Higgins &
Stewart (1962)’s steady state theory, (4.11) (the dash-dotted line), which is plotted
as a function of the local depth, even though it is theoretically only valid on the flat
shelf. This means (4.11) corresponds to the “geometrical optics” solution, which
assumes a local equilibrium between the forcing and the long-wave amplitude
at any depth on the slope. Outside the surf zone, this curve grows much faster
than the actual wave, which indicates that on a sloping beach the bound long wave
does not have “time” to attain local equilibrium but that it depends on its history.

Inside the surf zone (4.11) is nearly constant, as was found by Schiffer (1993).
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The nature of the shoaling of the incoming long wave amplitude is discussed in

more detail below.

In Fig. 4.2¢ the envelope of the outgoing long wave (solid lines) closely
follows Green’s Law (dashed line) which suggests that this wave is a free long wave.
However, there are some oscillations noticable around the dashed line because
energy is traded back and forth with the incoming short-wave group, as will be

explained below.

Figure 4.2d shows the ratio of the amplitude of the outgoing wave and the
incoming wave (the “reflection coefficient” R) versus the local depth. This ratio
is by definition equal to unity at the shore. For the chosen parameter values, the
ratio is larger than unity everywhere else. This means that there is more energy
in the outgoing wave than in the incoming wave at every position, which indicates

that net energy has been transferred from the short waves to the long waves.

In fact, the energy in the outgoing wave is 100 times the energy of the
incoming wave on the shelf for the present choice of parameters. As stated above,
the value of R on the shelf is an integral parameter that can be used to charac-
terize the net energy transfer to the infragravity waves as a result of shoaling and
breaking of the short-wave groups and their interaction with the long waves. It
will be seen in the next subsections that varying the governing parameters will
have an effect on the local value of R as well as on the integral value of R on the

shelf.

4.2.3.1 Nature of Free and Forced Incoming Long Waves

It is useful to analyze the relationship between the different theoretical

results and the model results a little further. In Fig. 4.3 the computed amplitude
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Figure 4.3: Case 1: Envelope of the incoming long wave: present model (—),
Longuet-Higgins & Stewart (1962)’s steady state solution (—-), deep
water asymptote (lower ——) and shallow water asymptote (top ——).

(solid line) and the “geometrical optics” solution (4.11) (dashed line) of Iig. 4.2b
are plotted again. In Longuet-Higgins & Stewart (1962), (4.11) is expanded in
terms of 4 = kh where k is the mean wave number of the short waves. An

expanded version of their derivation can be found in Appendix C for reference.

Longuet-Higgins & Stewart (1962) found
& o ho? (4.31)

which is valid for short waves propagating in shallow or shallow-to-intermediate
depth water (because p < 1). For the present example, however, this is not the
case. In fact, the value of g on the shelf is about 2, which means that the short

waves propagate in intermediate depth. The relationship (4.31) is therefore only

117



an asymptotic value of the equilibrium equation (4.11), but it has been used in

field data analysis nevertheless (e.g., Elgar et al., 1992).

The other extreme, the asymptote for deep water short waves, can be

derived from (4.11) as

— Sy w— (J (4.32)
and since for deep water n = J and ¢ = £ we get
5 1 3B o .
b= TE = (439
"o e

following a similar expansion as outlined in Appendix C. This shows that for large

depths the amplitude of the incoming long wave varies as h_'.

Elgar et al. (1992) used (4.31) to estimate the growth rate of the energy and
found that in a bound wave Fiound ~ fffwnd o< h;®. On the other hand, the energy
growth rate in a free wave is assumed to follow Green’s Law, so Ef... o< ho®.
Since their data analysis shows that the energy between two arrays at 8m and
13m grows approximately as Faua o< by ', they conclude that the free IG-wave
energy is more important than the energy in the bound waves. However, the “swell
and sea” (short-wave) frequencies in their data set ranged from f = 0.08 Hz to
f =0.24 Hz in a local depth of 8. Using linear theory, this implies that at that
location p ranges from about 0.5 to 2. In other words, the use of the asymptote
(4.31) might not be warranted. The energy in the bound waves might grow with

a rate between h;° and k', which are the squares of the asymptotic growth rates

o 1

of the amplitudes. The latter of these values is much closer to the observed rate

of growth.
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The growth curves corresponding to both (4.31) and (4.33) are plotted in
Fig. 4.3 as well. It is seen that the “geometrical optics” curve lies between the

two asymptotes.

The computed growth (solid line) of the amplitude of the incoming long
wave does not increase as a simple power of h,, as might be expected, but exhibits
an oscillatory behavior as well. This phenomenon was also shown by Molin (1982)
and Mei & Benmoussa (1984), who attribute these oscillations to “interference”
between the bound wave in equilibrium with the local forcing and the generated

free waves.

Qualitatively the oscillatory behavior can be explained as follows: as the
long wave propagates over the shelf it is in equilibrium with the forcing, which
implies that no net energy is exchanged with the short waves. According to (4.11),
the incoming long wave and the forcing are exactly in anti-phase and that the long
wave consists of a bound wave only, which propagates with the group velocity ¢,.
As the short-wave groups propagate onto the sloping beach, the amplitude of the
short waves in the group changes due to shoaling and consequently the amplitude
of the radiation stress forcing changes as well. This means that the amplitude of
the incoming long wave is no longer in local equilibrium (4.11) with the forcing. In
order to reach that local equilibrium, energy must be transferred from the groups
to the incoming long wave, which is only possible if the phase difference of the

incoming wave changes o a value other than .

This is possible if free waves are generated on the slope. Such a wave will
propagate with the shallow water speed. The incoming long wave is therefore
composed of a bound as well as a free component. When the total incoming long
wave is no longer in anti-phase with the forcing, energy is transferred to the long

wave and its amplitude will grow faster than Green’s Law predicts. However, the
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short-wave forcing is continuously changing, which means that the local equilib-
rium is also changing. If the rate of change of the forcing (which is a function of
the beach slope and the forcing frequency) is too “fast,” the incoming long wave
does not have enough “time” (as Longuet-Higgins & Stewart (1962) describe it)
to adjust to the new equilibrium and will therefore always be lagging behind. In

-2
o

the present case, the approximate amplitude growth is (; oc A ? which means that
it is slower than can be expected from the equilibrium or “geometrical optics”

theory.

4.2.3.2 Energy Transfer in Infragravity waves

As a tool to study this energy transfer in more detail we can use the long-

wave energy equation (2.97), repeated for the one-dimensional case

O (L (e + @V +2(L,6(9) + pei0
i (gﬂ(g(, +T))+8:¢‘:(2’0Q(.&) trec@) +

C:) a S::::r;

h Oz,

+Un=0 (4.34)

which in linearized form becomes

oE 0y Q 085
ot oz h, Oz

(4.35)

where I is the long-wave energy, E; = pg( @ is the energy flux and the third
term represents the work the short waves do on the long wave through the radi-
ation stress. Averaging over the IG-wave period (denoted by the double overbar)
eliminates the temporal variation and yields a balance between the energy flux

and the work

a?f Q 8'5'9:3: ; .
T Ta. = 43¢
Ox + h, Oz 9 (4.36)
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The two terms can be each split into an incoming and outgoing part

8E;, 5 OB;, | Qi 0S5 | Qr 05

O B 'k, B T h Bk — ° (4.37)

Figure 4.4a shows the balance between the energy flux gradient (dashed
line) and the work term (solid line) in (4.36) across the domain for the same
parameter values as in Fig. 4.2. Both terms are non-dimensionalized using (4.16)

and (4.19) so that

OE; hy 82 ad OF,

= = — 1"'-.; el / .‘

Oz PINIHe 53— G )
Q 9S.s hy 6%at Q' DS"
P I e }.3 . 5 W : rr i 5}
he 02 PINI R s W By S

Notice that in the present model the short-wave forcing and therefore the
short-wave amplitudes are specified. This means that energy can be transferred
from the short waves to the long waves without reducing the energy in the former.
Conversely, a transfer of energy from the long waves to the short waves results in
a decrease of energy in the long waves only without a corresponding increase in

the short-wave energy. This is a general restriction of linearized models.

Figure 4.4b shows the work done on the incoming wave, which is the third
term in (4.37). It is negative across the whole domain (except in a small region
just shorewards of the toe but invisible on this scale of the plot), which means
that energy flux is gained. The work term also exhibits oscillations which are not
visible on this scale. The gain in energy flux is consistent with the finding of Fig.
4.2 that the incoming long wave increases faster in amplitude than a free long
wave. Conversely, Fig. 4.4c reveals that the work done by the short waves on the
outgoing long wave oscillates around zero, which means that energy is traded back

and forth but that over the whole domain the long wave loses or gains very little
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Figure 4.4: Case 1: (a) Work done on total long wave (—) and energy flux (——);

(b) Work on incoming long wave; (c) Work on outgoing long wave;
(d) Energy flux of incoming wave (—), energy flux of outgoing wave
(= =), and energy flux of total long wave (- -).
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energy. It essentially decreases in amplitude as a free long wave, as was already

seen in Mg, 4.2¢c.

In Fig. 4.4d the energy fluxes of the incoming, the outgoing and the total
long-wave motion are shown, normalized by

24
d%aj

Ef = pgyJghs h_2 B (4.40)

Notice that the incoming wave already gains about 50 percent of energy flux sea-
ward of the break point. The incoming long wave reaches its maximum energy
flux at the shoreline where it is fully reflected. The outgoing wave shows an oscil-
lating energy flux. The total energy flux becomes increasingly negative seawards,
which means that energy is propagating in that direction, as a consequence of the

net transfer of energy from the short waves to the long waves.

4.2.3.3 Phase Differences between Long Waves and Forcing

Another way to visualize the process of the generation of infragravity waves
is to compute the phase difference between the incoming and outgoing long waves
and the forcing. Fig. 4.5a shows the phase difference A¢s between the incoming
long wave and the radiation stress (dashed line). This phase difference is defined
as the time lag between the maximum values of the incoming long wave and the

forcing normalized by the infragravity wave frequency.

In the equilibrium situation on the shelf, the incoming long wave and the
forcing are in anti-phase (i.e., the phase difference is 7) as can be seen from
(4.11). As is shown in Fig. 4.5a, the phase difference starts to change when the
wave groups and the long wave propagate onto the shelf. It is first slightly larger

than 7, then smaller than 7, and finally larger than 7 again.
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Figure 4.5: Case 1: (a) Phase difference A¢g between the incoming long wave
and the radiation stress gradient (—) and phase difference Adgyg

between the incoming long wave and the radiation stress (— —); (b)

Phase difference between the outgoing long wave and the radiation

stress gradient; (c) Track of the crest of the radiation stress gradient

(= ), the calculated incoming long wave (—), and the calculated

outgoing long wave (— —) and the theoretical free long wave (- - -).
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The phase difference of the long wave relative to the radiation stress gradi-

s

ent Aggs (Fig. 4.5a, solid line) is equal to 5 on the shelf, becomes slightly larger

il

Z just after the toe, then smaller than

than 7 and finally larger than 7 again.

The value of A¢gs provides information about the sign of the work term.

From (4.29) the work term on the incoming long waves can be written as

Qi o Gy C‘L 052z .
ho 0z h, Ou kel

We can write the incoming long wave and the forcing gradient in terms of an

amplitude and a phase function

G = (i cos(p— Adas)
(4.42)
C 'S‘u‘:l: ( SF‘:.‘;;;
09, _ 59, sl

3 £ 6.‘13

where ¢ is the phase function, and (; and 5= are the amplitudes of the incoming
long wave and the forcing gradient. Substituting these expressions in (4.41) we

get

Cqg (,Tt d S.?::.: G Ct' 85’1.-;:.-
h, Oz h, Oz

cos(¢p — Adys) cos ¢

1 Cqy 6€ 05'-.1:.1:
2 h, Oz

cos Adys (4.43)

Eq. (4.43) shows thiat the work term should be negative for Adys > 7. In Fig.
4.5a we see that we have this condition on most of the sloping beach region and this
result corresponds to the negative sign of the work term in I'ig. 4.4b. Notice that
in Fig. 4.5a the phase difference A¢ys < 7 in the small region 0.85 < z' < 0.95.
This indicates that the work term is positive in that region. This corresponds to

positive values of the work term in Fig. 4.4b, which are not visible due to the

scale, however.



Fig. 4.5b shows the phase difference between the outgoing wave and the
radiation stress gradient. Since the forcing and this long wave propagate in op-
posite directions, the phase difference continually varies over the whole range —%
and E‘T’" This means that the work done on the outgoing wave is alternately pos-
itive and negative, which results in the oscillatory behavior of the amplitude of

the outgoing wave, as was already seen in Fig. 4.2c.

In Fig. 4.5¢ the crests of the forcing (dash-dotted line), the incoming wave
(solid line) and the outgoing wave (dashed line) are tracked in time, normalized
by the period T' = Z—z of the infragravity wave. It turns out that the forcing
propagates with the group speed ¢,, while the incoming long wave has a speed
which is slightly off the group speed. In fact, the incoming wave slows down a
little bit right after the toe, which is what generates the phase difference required
for the energy transfer. The outgoing free long wave propagates with the shallow

water speed \/g h,, the theoretical value of which is plotted in the figure as the

dotted line. The calculated and theoretical speeds are indistinguishable.

4.2.4 Case 2: Fixed Breakpoint with Halved Frequency Modulation

To illustrate the effect of the variation of the parameters, the frequency
modulation e is halved to ¢ = 0.0587. This decrease means that the forcing
frequency Aw is also half of the value of case 1, while all other parameters remain
the same. For these values we have Sp = 4.08 - 1072, which is four times the
value of Sp in case 1. Schiffer & Svendsen (1988)’s equivalent slope steepness
parameter is then S = 0.5, which incidates that the relative slope is steeper in
this case. The breaking depth remains at hy/h, = 0.21 according to (4.25) and

is indicated in the figures.

Fig. 4.6a again shows that the computed long-wave envelope (solid lines)
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Figure 4.6: Case 2: Labels as Fig. 4.2
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Figure 4.7: Case 2: Labels as in Fig. 4.3

agrees very well with Schaffer (1993)’s analytical solution (dashed line). As in
I'ig. 4.2b, the growth of the amplitude of the incoming long wave in I'ig. 4.6b
is larger than Green’s Law predicts but is smaller than the “geometrical optics”
theory suggests. Fig. 4.6¢ shows that the outgoing long wave essentially decreases
in amplitude again as a free long wave. The “reflection coefficient” (the ratio of
the amplitude of the outgoing wave and the incoming wave) is larger than unity
in the whole domain in this case (as in the previous case), which means that the
outgoing wave is more energetic than the incoming wave. The value of R is smaller
than in case 1, however, which indicates that less energy has been transferred than

before.

The amplitude of the incoming bound long wave (solid line) in Fig. 4.7
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again shows oscillations as it grows with decreasing depth. The wave length of
the oscillation is larger than in Fig. 4.3, however, which is due to the fact that
the period of the long wave in this case is twice the value of the period in case 1.
Also, it is seen that the trend in the growth is slower than was observed in Case
1. Thus an increase in the long-wave period (through a decrease in the frequency
modulation in this case) causes the wave to adjust more slowly to the changing

forcing.

Fig. 4.8a shows the energy flux of the total long-wave motion (dashed line)
and the work that the forcing does on the total wave motion (solid line). Notice
that the oscillations are twice as long as in the previous case (see Fig. 4.4a). Also,
the magnitude of the terms has decreased relative to Case 1, because a decrease
in the forcing frequency reduces the size of the radiation stress gradients, as can

be seen from taking the = derivative of (4.10).

Fig. 4.8b shows that the work done by the forcing on the incoming long
wave is negative as before. The work done on the outgoing long wave (see Fig.
4.8¢) again exhibits an oscillation. Iig. 4.8d shows that the energy flux of the
incoming wave (solid line) increases steadily with decreasing depth. Note that the
energy flux of the incoming wave at the break point is already 50 percent of the
value it has at the shoreline. The energy flux of the outgoing wave (dashed line)

shows oscillations as in Case 1.

Fig 4.9a shows the phase lag between the incoming long wave and the radi-
ation stress (dashed line) and between the incoming long wave and the radiation
stress gradient (solid line). As in the previous case, the phase lag indicates that
the work done by the forcing on the incoming long wave is negative. Fig 4.9b
shows the phase lag between the outgoing wave and the forcing, which changes

continually as before. Note that the distance over which the phase lag varies is
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Figure 4.8: Case 2: Labels as in Fig. 4.4

130



o '. i i ; i i
0 0.2 0.4 0.6 0.8 1 1.2
-

Figure 4.9: Case 2: Labels as in Fig. 4.5
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twice the distance of the previous case.

The track of the crests of the incoming wave (solid line), the radiation stress
gradient (dash-dotted line) and the outgoing wave (dashed line) are plotted in Fig.
4.9c. It shows that the incoming long wave propagates with a speed slightly (but
necessarily) off the group speed ¢,. The theoretical value of the speed of a free
outgoing long wave is plotted as the dotted line again and is indistinguishable

from the calculated speed of the outgoing wave.

Essentially, the characteristic behavior of the long waves in this case is
similar to the behavior of the previous case. The main difference between the
two cases is that an increase in the long wave period (through a decrease in the
frequency modulation) reduces the net energy gained in the process of short-wave

shoaling and breaking.

4.2.5 Case 3: Fixed Breakpoint with Double Slope

The third case is designed so that in combination with Cases 1 and 2 it
demonstrates the significance of the parameter Sx. Here the frequency modulation
¢ 1s reset to the value ¢ = 0.1173 of Case 1. The only parameter that is changed
relative to Case 1 is the beach slope which is chosen as h, = ;=. According to
(4.21) it can be expected that this change in the slope will have the same effect
as the halved frequency modulation of Case 2, since in this case S = 4.08 - 1072

also. The breaking depth is again hy/h, = 0.21.

Indeed, Fig. 4.10 shows the same results as Fig. 4.6. The growth of the
amplitude of the incoming wave Fig. 4.11 exhibits the same behavior as Iig. 4.7.
The figures showing the work terms and the phase lags are not repeated, since

they are identical to Figs. 4.8 and 4.9.
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Figure 4.10: Case 3: Labels as Fig. 4.2
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These computations confirm the importance of the parameter (4.21).

Figure 4.11: Case 3: Labels as in Fig. 4.3

4.2.6 Case 4: Fixed Breakpoint with Different Shelf Depth

In Case 4, we will vary the shelf depth hs. If the values of the forcing
frequency Aw, the bottom slope h, and all other parameters are kept the same as
in Case 1, but we reduce the shelf depth by a factor 4, we could expect the same
results as in Cases 2 and 3, since we again have Sa = 4.08 - 1072 according to

(4.21).

However, changing the shelf depth will change the value of h/hy in (4.25).
To obtain model results which are identical to Cases 2 and 3, we have to keep this

parameter constant (at hy/h, = 0.21) as well. This can be achieved when «, and
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the ratios ¢, /¢, as well as a;/hy remain unchanged. Keeping the ratio ¢, /¢y
constant essentially implies that n, = ¢, /¢s or kg hs remain unchanged. Since
we reduced the shelf depth by a factor 4, it would then be required that the wave
number of the short waves on the shelf k; is increased by a factor 4, which by the

linear dispersion relation
w? = gk, tanh k, h, (4.44)

implies that the mean short-wave frequency be doubled from its value of Case
I. In order to keep the value of Aw constant, this implies that the frequency
modulation ¢ is halved relative to its value in Case 1, because of the relation
(4.8). Finally, maintaining the ratio a,/hs will require that the amplitude of the

short waves is reduced by a factor 4 as well.

Thus in order to achieve results similar to Cases 2 and 3 for a shelf depth
of hs = 1.5m, the other parameter values become: a;, = 0.1104m, § = 0.1,
vy =07, hy = 1/30, w = 3.657" and ¢ = 0.05865. It turns out that again the
results are identical with the results shown in Figs. 4.6-4.9 and are not repeated

here.

4.2.7 Case 5: Moving Breakpoint

In this section we will consider the case of a moving breakpoint (£ = 1)
corresponding to the mechanism proposed by Symonds et al. (1982). The same

parameter values as in Case | are used.

Figure 4.12a shows the comparison of the long-wave envelope as predicted
by the model and the analytical solution by Schéffer (1993). The difference be-
tween the two solutions is due to the fact that in the analytical solution the

breaking region (ranging from 0.2 < 2’ < 0.24 in this case) is contracted into a
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Figure 4.12: Case 5: Labels as Fig. 4.2
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point at 2’ = 0.22 whereas in the numerical model no such simplification is made.

The breaking region is indicated in this and further figures by two vertical lines.

Up to the point where breaking starts, the incoming long wave in Fig. 4.12b
gains amplitude (or energy flux) as before. Over the breaking region, however, it
can be seen that the amplitude actually decreases, a feature which is investigated
in more detail below. Inside the surf zone (h/hs < 0.2) a standing long wave
occurs due to the absence of forcing in that region, see Figs. 4.12b and c. Figure
4.12¢ shows that outside the surf zone the outgoing long wave again decreases in

amplitude according to Green’s Law.

I'inally, the ratio of the amplitudes of the outgoing wave and the incoming
wave is shown in Fig. 4.12d. The “reflection coeflicient” is about unity in the
surf zone and in the breaking region and becomes larger than 1 in the shoaling
region, which indicates that there is more energy in the outgoing wave than in the

incoming wave.

The 1G-wave generation process is further illustrated by the direct analysis
of the energy transfer in Fig. 4.13. Fig. 4.13a shows the balance between the
energy flux gradient (dashed line) and the total work (solid line). Fig. 4.13b shows
that the work that the short waves do on the incoming long wave is negative in
the shoaling region, as was seen in previous cases. The work done in the breaking
region is positive, which indicates that energy flux is lost. This is consistent with
the loss of amplitude shown in Fig. 4.12b. Inside the surf zone no forcing occurs,

so the work is zero.

Fig. 4.13¢ shows that through the breaking region the work done on the
outgoing wave is negative so that energy flux is gained (in magnitude) when the

wave propagates out. Seaward of breaking the work is oscillating around zero as
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in Case 1. The energy fluxes of the incoming, outgoing and total wave are plotted

in g, 4.13d.

To summarize, the moving break point mechanism introduces a breaking
region, in which the short-wave forcing does positive work on the incoming long
wave and negative work on the outgoing long wave. The work that is done on the
long waves in the breaking region influences the amplitudes and by extension the

“reflection coefficient”.

4.2.8 Case 6: Moving Breakpoint with Halved Frequency Modulation

Next we will change the frequency modulation to its value in Case 2, so
that ¢ = 0.05865, which is half the value of Case 5. The other parameters used are
the same as in Case 2 but & = 1. (As was shown in Cases 3 and 4, we could have
changed the beach slope h, or the shelf depth &, to obtain equivalent results.) It
turns out, however, that for £ = 1 a profound change occurs relative to the case

of a fixed break point.

We first, verify that the deviation between the model and the slightly sim-
pler analytical solution is negligible, as is shown in Fig. 4.14a. Fig. 4.14b shows
that the amplitude of the incoming wave increases outside of the breaking region
and decreases in the breaking region itself, similar to the previous case. Inside the
surf zone forcing is absent and a standing wave occurs, see Iigs. 4.14b and c. In
this case, however, the outgoing long wave loses amplitude when propagating out
through the breaking region, see Fig. 4.14c. This results in a reflection coefficient
R less than unity inside the breaking region. R becomes larger further offshore,
see I"ig. 4.14d, but due to the loss of energy in the breaker region the offshore
value of the “reflection coefficient” has been reduced by about 100 percent relative

to the previous case.
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Figure 4.14: Case 6: Labels as Fig. 4.2

140



'’
Gy
8z’

SE} Q' -
oz’ ? ks

952z
o'

9
o

200

-200

200

-200

U T T T T I
ﬂ : a
______________ 15, WRTRIRRUS - (NPT  RUTT. DN NS, B
1 L I 1 L
0.2 0.4 06 0.8 1 1.2
"
£ 13
T ! ! 1 1
: : b
1 1 I 1 L
0.2 0.4 0.6 0.8 1 1.2
=
T
T T T L) ]

Figure 4.15: Case 6: Labels as in Fig. 4.4
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Analysis of the energy transfer confirms this result. Figure 4.15a once again
shows the balance between the terms in (4.36). The work on the incoming wave
in Fig. 4.13b is similar to Fig. 4.13b, but Fig. 4.15¢ shows that contrary to
the previous case, the work the short waves do on the outgoing long wave is now
positive, which means that the energy flux decreases in magnitude as the long

wave propagates out through the breaking region.

The reason for this different behavior is the phase difference between the
short-wave groups and the incoming and outgoing long waves in the breaking
region. As the short waves propagate onto the beach, the phase shift between the
associated incoming long wave and the groups grows from 0.57 to about 0.6,
as we have seen in the previous cases. This phase shift causes the work to be
negative so energy is transferred to the long waves. In the breaking region the
forcing is varying in time (when the short waves in the group are smaller and
break closer to shore) or constant (when the waves are larger and break further
offshore). This causes the longwave-averaged work done on the incoming long
wave to be positive in the breaking region. This behavior is independent of the
period of the incoming wave groups, because the breaking region is small relative

to the length of the groups.

With the destruction of the wave groups by the varying break point, the
long wave is released in the breaking region and propagates shoreward as a free
wave, where it is reflected and propagates seaward through the breaking region.
The sign of the work that the short waves do on the outgoing wave is then depen-
dent on the relative phase between them, which is a function of the time it takes
the long wave to propagate through the surf zone and back. For a plane beach

this time lag can be calculated as twice the propagation time from the shore to
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the mean break point hy:

hy 4 ]
B s B o s e — (4.45)
Jo o hyv/gh hy V g

where AT' = 44 s in Cases 5 and 6 considered here.

In Case 5 the ratio of the time lag AT to the group period T, = 27 /Aw
18

AT;P _ % %% &3 (4.46)
This integer value means that the outgoing long wave is “in phase” with the
incoming long wave in the breaking region (which is short relative to the long-
wave length). Because these waves propagate in opposite directions, the signs of
the work terms are opposite as well, as was shown in Fig. 4.13. In Case 6 the ratio
AT/T, is about 1.5 (because the forcing frequency was halved), which means the

incoming and outgoing waves are in “anti-phase”, which causes the work on the

incoming and outgoing waves to have the same sign.

The ratio AT /T, essentially specifies the number of wave groups in the
surf zone. As can be seen from (4.46) it depends on the forcing frequency, the
beach slope and on the short-wave amplitude at breaking. Instead of changing
the forcing frequency, an equivalent variation of the beach slope would yield the

same result.

This ratio is equivalent to the parameter X' which was already found by
Symonds et al. (1982) and the slope parameter S, = hy Ly/hy used by Schiffer
& Svendsen (1988) where L; is the length of the surf zone and Ay is the depth at

breaking. Rewriting those parameters yields

_ Aw? hy, &> AT
g h? 4

P
X = 7—) = d%* 52 (4.47)
T
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This case shows that the choice of the number of wave groups in the surf
zone influences the sign of the work done on the outgoing wave. In this particular
case, the work done in the breaking region reduces the energy flux in the outgoing

wave and therefore reduces the “reflection coeflicient”.

4.2.9 Case 7: Moving Breakpoint with Halved Shelf Depth

In this section, it will be shown that for a suitable choice of parameters,
we can achieve a “reflection coefficient” that is less than unity outside the surf
zone, which would mean that the incoming long wave is more energetic than the
outgoing wave and that the infragravity waves would have experienced a net loss

of energy.

The parameters chosen in this case are the same as in Case 6, but now
the shelf depth hy, = 3m. We choose a, = 0.4221m so that the energy flux on
the shelf is equal to the energy flux in the previous case to ensure that the short

waves will break at the same dimensional depth.

Fig. 4.16a shows the comparison of the model (solid line) to the analytical
solution, which is nearly identical except in the breaking region. Notice that
hecause offshore distance is normalized by h/h, where in this case the shelf depth
has been halved relative to the previous case, the breaking region now extends
from 0.39 < 2’ < 0.47. As in the previous case, we see that the amplitude of
the incoming wave in Fig. 4.16b decreases in the breaking region. The amplitude
of the outgoing wave again decreases when it propagates seaward through the
breaking region in Fig. 4.16¢c. The most important change relative to the previous
case is that the “reflection coefficient” in Fig. 4.16d, which is about unity in the
surf zone (z' < 0.39), decreases sharply in the breaking region and has a value

of R = 0.6 on the shelf (z > 0.39). This indicates that the outgoing wave is
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Figure 4.16: Case 7: Labels as Fig. 4.2
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less energetic than the incoming long wave, meaning that the infragravity wave

actually lost energy in the wave group shoaling and breaking process.

This result can be attributed to the fact that the reduction of the shelf
depth reduces the length of the shoaling region in which energy is transferred
from the short waves to the long waves as was shown in all previous cases. This
is the only region in which the infragravity wave gains net energy, as can be seen
in Fig. 4.17b. The infragravity wave loses energy when it propagates shoreward
(Fig. 4.17b) and seaward (Fig. 4.17c) through the breaking region, which for
this particular choice of parameters amounts to a net loss of energy in the entire

process.

Fig. 4.17c shows the energy fluxes of the incoming long wave (solid line),
the outgoing long wave (dashed line) and the total (dash-dotted line). It is seen
that energy flux is gained when the wave propagates into shore in the shoaling
region. Energy flux is lost when the wave propagates back and forth through the

breaking region.

4.2.10 Case 8: Moving Breakpoint with Reversal of Groupiness

As a final case, we will show the effect of a choice of the breaking mecha-
nism parameter £ = 2. As can be seen from (4.7), this choice of & implies that
the groupiness is not only transmitted into the surf zone (as was the case for a
fixed breakpoint) but that it is also reversed. In this case, infragravity waves
are generated both in the breaking region (Symonds et al. (1982)’s mechanism)
and in the surf zone (Schaffer & Svendsen (1988)’s mechanism). Physically, this
situation corresponds to a situation in which the higher short waves in the group
break closer to shore than the lower ones. The other parameters are the same as

in Case 1.
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Figure 4.18: Case 8: Labels as Fig. 4.2
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Figure 4.19: Case 8: Labels as in Fig. 4.4
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Fig. 4.18a shows again the comparison between the present model (solid
line) and the analytical solution (dashed line) which exhibits small differences
in the breaking region. The incoming wave in Fig. 4.18b grows in the shoaling
region and shows first an increase and then a decrease in the breaking region.
Inside the surf zone, the amplitude becomes larger relative to the value in the
breaking region. The outgoing wave more or less decreases according to Green’s
Law, see Fig. 4.18c. The “reflection coefficient” is about unity throughout the
surf zone, decreases in the breaking region and increases in the shoaling region,

see 4.18d.

The analysis of the work terms in the energy equation confirms this result.
Fig. 4.19a shows the balance between the energy flux gradient and the work.
In Fig. 4.19b it is shown that the work done on the incoming long wave is first
negative in the breaking region, then positive and finally negative in the inner
surf zone, which corresponds to the growth of the amplitude in Fig. Fig. 4.18b.
The outgoing wave exhibits much of the same behavior as was seen in Fig. 4.4c.
The energy flux of the incoming waves (solid line in Fig. 4.4d) increases outside
the surf zone, decreases in the breaking region and grows again in the surf zone.
The energy flux in the outgoing wave (dashed line) shows the oscillatory behavior,

which was shown before.

4.2.11 Summary of Cases

To summarize the results, the three governing parameters as well as the
reflection coefficients R, which is measured on the shelf, are listed in Table 4.1
for all eight cases. It can be seen that R on the shelf is reduced if the parameter
Sa is increased. As stated above, this is due to the fact that less work is done on

long waves that have a longer period (as in Case 2) or that propagate on a steeper
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slope (as in Case 3), so that less energy is transferred. It has been shown that for
k = | energy flux is lost in the breaking region depending on the phase between
the forcing and the long waves. Furthermore, in Case 7 we saw that if the shelf
depth is reduced, the shoaling region in which net energy is transferred to the
long waves is reduced also, so that it is possible that the outgoing long wave has

less energy than the incoming long wave.

Table 4.1: Summary of eight cases: governing parameters Sa, ;—‘ﬁ and & and
&
reflection coefficient R, on the shelf.

| Case | Sa | ;—:f | K | R, |
1 1.02-10"%2 [ 0.21 [ 0 | 10.0
2-4 {4.08-10"210.21|0|6.79
5 1.02-107% [ 0.21 | 1 | 6.54
6 4.08-107%10.21 | 1]2.94
7 8.14-107% 1 0.42 | 1 | 0.61
8 1.02-107% [ 0.21 | 2 | 7.38

4.3 Importance of Nonlinear Terms

To investigate the importance of nonlinearities on the results, the model is
run with the parameters of Case 7, but with a frequency modulation ¢ = 0.1173.
The particular choice of the parameters is not really important in this example
since the general effect of the nonlinearities that we will show in this section is

independent of the values of the parameters.

The model is run using the nonlinear equations (4.1) and (4.2). In this case
it is impossible to linearly separate the incoming and outgoing long waves. There-

fore, we will study the envelope of the total long-wave motion. Fig. 4.20a shows
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Figure 4.20: Envelopes of the total long-wave motion: (a) Nonlinear version;
(b) Linear version; (c¢) Linear version with mean set-up included in
the depth (—) and nonlinear version (repeated from (a)) (= —).

the envelope when the nonlinear equations are used. The envelope computed us-

ing the linearized model in Fig. 4.20b shows a distinctly different behavior. The
nodes and anti-nodes are shifted in space relative to the nonlinear model results.

This is due to the fact that in the nonlinear version of the model the travel time

AT is dependent on the still water depth h, as well as the set-up (. In short,

the set-up effectively changes the beach slope in the surf zone experienced by the

long waves. If we artificially include the mean set-up C in the linear model, the

nodes shift, see Fig. 4.20c (solid line). Comparing to the nonlinear result from



Fig. 4.20a, which is repeated in Fig. 4.20c (dashed line), we see that the two
solutions agree well. This indicates that the mean set-up is the most important

nonlinear term.
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Figure 4.21: Work done on total long wave (—) and energy flux (— —): (a)
Nonlinear version; (b) Linear version; (¢) Linear version with mean

set-up included in the depth.

Another way to visualize this is to examine the terms in the nonlinear

long-wave equation (2.97), averaged over the [G-wave period

a1 Q° E 005, . ——
oV 79 e J =
f):n(z” T PIS Q) t+3, tUn=0 (4.48)



which is the nonlinear extension of (4.36). The work that the bottom friction
does on the current is small and is neglected in the following. The energy flux and
the work balance each other, as can be seen in Fig. 4.21a. For the same set of
parameter values the results obtained with the linearized equations (Fig. 4.21b)
show a change of sign of the terms. When we artificially add the mean set-up in
the linearized equations, we see that the sign of the work and energy flux gradient
terms is reversed such that [igs. 4.21a and ¢ qualitatively agree, although there

are differences in the absolute values.

In conclusion, the results in this section show that including the mean set-
up changes the linearized model in such a way that its results agree well with the

nonlinear model results.

4.4 Comparison to Laboratory Data of Kostense (1984)

As a validation of the nonlinear version of the model, SHORECIRC was
tested against Kostense’s (1984) laboratory data as well as a nonlinear time do-

main model (Roelvink, 1993) and the linear, analytical solution by Schiffer (1993).

Kostense (1984) performed careful measurements of the amplitudes of the
incoming and outgoing long waves in a wave flume at Delft Hydraulics with a
constant depth section and a section with a constant slope of h, = 1/20. The wave
paddle motion included second-order wave generation and was able to absorb the
outgoing free long wave, which means that free standing waves could be avoided.
Experiments were conducted for four series of tests labeled A through D, see Table
4.2. In series A and B the difference frequency Aw was varied, while for series
C and D the wave height ay of the primary wave was varied. For all cases the
bottom slope is h, = 1/20, the depth of the toe of the beach hy, = 0.5m and the

amplitude modulation 6 = 0.2.
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Table 4.2: Input and Output for Kostense (1984) data sets. Notice that the
pairs D1 and A3, and B2 and C2 are the same.

Series | wy B w € aq Aw G Ly
() | () | (=) (m) | (s) | (mm) | (mm)
Al 3.062 | 2.145 | 2.6035 [ 0.1761 | 0.055 | 0.9169 | 5.168 | 0.986
A2 3.062 | 2.296 | 2.6790 | 0.1430 | 0.055 | 0.7662 | 4.885 | 1.672
A3 3.065 | 2.456 | 2.7605 | 0.1103 | 0.055 | 0.6088 | 4.588 | 2.069
A4 3.077 | 2.618 | 2.8475 | 0.0806 | 0.055 | 0.4590 | 4.312 | 1.144
Ab 3.063 | 2.755 | 2.9090 | 0.0529 | 0.055 | 0.3078 | 4.121 | 0.573
Bl 4,295 | 3.372 | 3.8335 | 0.1204 | 0.0565 | 0.9231 | 2.351 | 1.300
B2 4.065 | 3.293 | 3.6790 | 0.1049 | 0.055 | 0.7719 | 2.569 | 0.578
B3 4.070 | 3.455 | 3.7625 | 0.0817 | 0.055 | 0.6148 | 2.448 | 1.626
B4 4.071 | 3.609 | 3.8400 [ 0.0602 | 0.055 | 0.4623 | 2.346 | 0.820
B5 4.070 | 3.762 | 3.9160 | 0.0393 | 0.055 | 0.3077 | 2.250 | 0.786
o1 4,294 | 3.522 | 3.9080 | 0.0988 | 0.08 | 0.7722 | 4.700 | 1.017
C?2 4.065 | 3.293 | 3.6790 [ 0.1049 | 0.055 | 0.7719 | 2.569 | 0.578
C3 4,295 | 3.523 | 3.9090 | 0.0987 | 0.035 | 0.7716 | 0.923 | 0.886
D1 3.065 | 2.456 | 2.7605 | 0.1103 | 0.055 | 0.6088 | 4.588 | 2.069
D2 3.065 | 2.456 | 2.7605 | 0.1103 | 0.035 | 0.6089 | 1.875 | 1.539
113 3.065 | 2.456 | 2.7605 { 0.1103 | 0.03 | 0.6089 | 1.380 | 1.346

The model uses a; and Aw (columns 6 and 7 in Table 4.2) as input as well
as 6 = 0.2 and the bathymetry of the experimental set-up. At the wave-maker side
we apply the absorbing-generating boundary condition, while at the shoreline we
implement the one-dimensional shoreline boundary condition derived in Chapter

3.3.1. The short-wave forcing was calculated from the energy equation of the short

() 1 Q2 j (Qm
Y lg 3 -
af(L 3" ;)+5(L+(L Q(h))Jr

1} d (‘;T Cu)ﬂl (‘)’5';‘1:

e -
Oz h Oz,

waves (2.96)

+Umn =D (4.49)



where D is the dissipation term analogous to a bore (Svendsen, 1984a).
2a3

dyd. T

D=-pgh (4.50)

In this equation d. and d, are the total water depths at crest and trough and
T = -‘% is the period of the long wave. By calculating the short-wave energy F
from (4.49), we allow for a feedback mechanism of energy from the long waves back
to the short waves through the terms involving the @ and U. This mechanism
was not present when we specified the radiation stress forcing using (4.7) or (4.10)
in the linearized model. In the linear case, the short waves transfer energy to the
long waves without gaining any energy back from the long waves. However, a
limitation of the use of (4.49) is that we still need a theory to calculate the short-
wave forcing from the short-wave energy F. In the present model, we use linear
long-wave theory, which we know is inaccurate, particularly inside the surf zone

(Svendsen & Putrevu, 1993).

An expression for the weak-current bottom shear stress, as found by Liu &

Dalrymple (1978), is chosen
2 ; =
Ty — _Pfr:w Uy brb (451)
T

where the coefficient f.,, = 0.02, u, is the wave velocity amplitude and U, is the
long-wave velocity at the bottom. The breaking parameter v, = 2a;,/hy = 0.75 is
used. The amplitudes of the incoming and outgoing long waves as calculated by

the model at the wave-maker side boundary are given in the last two colums of

Table 4.2.

As can be seen in Fig. 4.22, for the incoming long wave the present model’s
prediction of the amplitudes (left-hand side panels) is in close agreement with the
data and the other models. The prediction of the amplitudes of the outgoing wave

(right-hand side panels) shows more variation, especially for cases C2 (which is
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the same as B2) and C3. It is interesting that the other models’ results also show
a large deviation from the measured values for those cases. The present model’s
predictions all fall in the range of predictions by the data and by other models.
In fact, except for two values of series C, SHORECIRC actually performs better,

which gives us confidence in its physical accuracy.

4.5 Conclusions

In this Chapter, the SHORECIRC model has been used to study infra-
gravity wave generation. First, three external parameters governing this process
are identified. These parameters Sa, ;1—”1 and k are related to the geometry of the

problem. They are an alternative to the five parameters identified by Schaffer

(1993).

The linearized version of the model showed excellent agreement with the
analytical solution by Schiffer (1993). In order to be able to analyze the generation
of infragravity waves further, the incoming and outgoing long waves are separated.
As expected, the incoming long wave already gains energy flux outside the surf
zone due to the changing forcing. Increasing the parameter Sa, by increasing the
slope or the forcing period, reduces the work done on the incoming wave and as
a consequence also energy flux gain. In any case, this increase is not nearly as
fast as Longuet-Higgins & Stewart (1962)’s steady state theory for bound waves
suggests, which is an important finding in the analysis of field data. We find
that the growth rate of the bound long waves is not a simple function of the
depth variation, but is also dependent on the short-wave characteristics such as

the relative water depth k h,.

In the cases with a fixed break point the energy flux gain continues inside

the surf zone, whereas in the cases with a moving break point, it is found that the
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incoming wave loses energy flux in the breaking region.

In the cases with a fixed break point the outgoing long wave is seen to ex-
change energy flux with the short waves with very little net gain over the domain,
so that it essentially decreases in amplitude according to Green’s Law. When the
breakpoint is allowed to move, however, the outgoing wave either gains or loses
flux depending on the phase between the short-wave forcing and the outgoing wave
in the breaking region. This phase difference is a function of the length of the surf
zone relative to the length of the wave groups, which in other words means that

the number of wave groups in the surf zone is an important parameter.

The terms in the linear energy equation are shown to be an important tool
in the analysis of the energy transfer process. From the sign of these terms it can
be deduced whether the infragravity waves gain or lose energy. The generation of
infragravity waves can also be visualized by showing the phase difference between
the long waves and the short-wave forcing. The variation of the phase differences

correspond to the variation of the energy in the long waves.

It is shown that a variation of the parameters results in a variation in the
ratio of outgoing to ingoing wave energy, which may explain the seemingly incon-
clusive field evidence. The value of the “reflection coefficient” R can be interpreted
as a characteristic measure of the net transfer of energy to the infragravity waves
as a result of shoaling and breaking of the short-wave groups and their interaction

with the long waves.

Extending the model to include the nonlinear terms shows the importance

of the steady set-up over the other nonlinear terms.

Finally, the nonlinear model has been tested against the Kostense (1984)

data set. It is shown that the model predictions and the laboratory results agree
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very well. In most cases, the present model’s predictions are better than previous
models except for a few data points where other models also showed a large

deviation relative to the laboratory data.
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Chapter 5

EFFECTS OF QUASI 3-D DISPERSIVE MIXING

In this chapter we will investigate the importance and the effect of the
quasi 3-D (also called dispersive mixing) terms, which were derived in Chapter 2,
in two particular cases: the start-up of a longshore current and infragravity waves

forced by obliquely-incident wave groups.

In Section 5.1 the start-up of a longshore current on a plane beach is
studied. This case was also shown in Van Dongeren el al. (1994). It turns
out that, because of the longshore uniformity in both the bathymetry and the
hydrodynamical conditions, only one of the dispersion terms in the y momentum
equation is significant and most other terms vanish. This remaining dispersion
term, however, has been shown to have a profound effect on the shape of the
horizontal longshore current profile (Svendsen & Putrevu, 1994a). Furthermore, it
is shown that the time scale to attain steady state is much larger for the longshore
current, than for the cross-shore current. The three-dimensional development of
the current spirals is shown. For the steady state, the magnitude of the quasi 3-D
coefficients as a function of the cross-shore coordinate is analyzed and compared

to an approximate value.

In Section 5.2 the effect of the quasi 3-D terms on infragravity waves, forced

by obliquely-incident wave groups, is examined. This case will be more interesting
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to analyze than the longshore current case, because the hydrodynamical condi-
tions are longshore periodic instead of longshore uniform, and more terms in the

momentum equations are retained.

First, the results of the linearized model are compared to the analytical so-
lution by Schaffer (1994). Then, the effect of the nonlinear terms, corresponding
to the 2D-H equations, and the effect of the quasi 3-D dispersive mixing terms are
shown. Also shown is the variation of the longshore and cross-shore infragravity
wave profiles over an [1G-wave period for a number of locations both inside and
outside the surf zone. We will investigate the magnitude of the quasi 3-D coefli-
cients as a function of the cross-shore distance. Finally, the relative importance
of the quasi 3-D terms in the momentum equations is shown, after which we can
make recommendations about. which terms can be neglected in the equations for

this application.

5.1 Start-up of the Longshore Current

In the first application of the quasi 3-D equations (2.8) and (2.71), we will
study the start-up of a longshore current on a plane beach induced by imposing
short-wave forcing due to shoaling and breaking monochromatic waves in a domain

at rest at ¢ = 0. For reference, we repeat the governing quasi 3-D equations here

o | 0Qu .
E H:]:{x =0 (-)I)

Qs 0 ;- -
- ar—m(u,vﬁthMaﬁ)

d oV, OV vV, 0 >
‘_E [fl (Dﬁﬂf?};; o D“‘YE _I' Br.\'ﬂ'ga' = (.—}3:[.! [Arwﬁ"f V"}']
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a 1o [, ¢ ) 5 — T4 |
= —gh— — — S —f 0 d £ = 5.2
gh dxp p 0z, (S p —ho Tap O | v P (5.2)

In the case of monochromatic waves we can express the radiation stress as

H?, h > hy, ‘
S,,ﬁ = o4 Pmﬁ (5»;)
’)’2 hg 3 h S hb

where H is the wave height, which is calculated from conservation of energy flux
outside the surf zone. We assume that the short waves break when the breaking
index v = H/h, = 0.75 is exceeded. Assuming sine wave theory for the short
waves, the shape factor P,s in (5.3) is defined as

1 9khy ke kp 2k h,

Fop = 16 L+ sinh 21.:!:,(,) k2 sinh 2k h,

dfp (5.4)

where k, and kg are the wave numbers of the mean short wave in the horizonal

and g directions and 6,5 is the Kronecker delta.

The eddy viscosity is assumed to be constant over depth, but is varying in
the cross-shore direction as
0.01 hyv/gh,, Fai by
v = ( .

—4
(0.8 (%) 4 0.2) v, ho> by

(1
o
—

where vy, = 0.01 hy /g by, and hy, is the breaking depth. The variation of the eddy
viscosity inside the surf zone was found by Svendsen et al. (1987) and Okayasu
el al. (1988). The variation outside the surf zone was first used by Svendsen
& Putreva (1994a) and was based on the only available measurements of the
turbulent kinetic energy by Nadaoka & Kondoh (1982). The shortwave-induced

volume flux is assumed as (Svendsen, 1984b)

| HN\? | cos O
Qwu — g q hﬂ h‘“ ( ) (56)

ho sin 0
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The bottom friction is modeled using a weak-current assumption (Liu & Dalrym-
ple, 1978) where the cross-shore current is assumed to be nearly parallel and the
longshore current is nearly perpendicular to the direction of the short-wave groups

so that

Te — —P fmu (278 {-’rb
™

Tf} = = p .I‘C'T,U 1-"(} %
-

In these expresssions the friction coeflicient is chosen as f., = 0.02, u, is the

short-wave velocity amplitude and f/@ﬁ is the long-wave velocity at the bottom.

At the offshore boundary (at & = 0) we will impose the absorbing-generating
boundary condition developed in Chapter 3.2. At the landward side we impose
the shoreline boundary condition developed in Chapter 3.3, while at the lateral

boundaries we will use a periodicity condition.

The quasi 3-D “D)” “M)” “A” and “B” coefficients in the momentum
equations (2.71)/(5.2) are calculated from the expressions (2.81), (2.82), (2.83)
and (2.84). These expressions were derived using the steady-state solution of the
local, shortwave-averaged momentum equation (the “profile equation™) (2.47),

repeated here,

?V(U) . 3V(ﬂ} I3 S _ B
P2 () s LR (5 T rgas) -

at 0z dz

which, using the boundary conditions (2.49) and (2.50) yielded (2.54). Defining
the vertical coordinate from the bottom up, we can rewrite (2.54) as (2.75), which

1s repeated here,

- 5 f 5 h Q
v _ ﬁ ¢ 4 B g [ L8 pe o T8 wh 5.9
14 wa SN p-’ﬂg 6, v + ow + N (5.9)
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The parameters used in this example are offshore depth h, = 3m, beach
slope h, = 1/20, angle of incidence of the monochromatic wave ¢, = 22.4° and
wave height H, = 0.61m at the offshore shelf. With these parameters the fixed
breakpoint is located at o = 0.9 m. The numerical parameters are Az = 1 m and

Cr = 00

We can define the surf zone width L; as the relevant length scale. For the
present parameters we have L, = gﬁ = 18m. The time interval 7" in which a
long wave propagates from the breakpoint to the shore and back can be considered

the relevant time scale. For the present parameters we have

Ly

1= Vg

= 6.05 (5.10)

Fig. 5.1 shows the surface elevation versus normalized time for a number
of locations both inside and outside the surf zone. We see that the impulsive
application of the short-wave forcing at ¢ = 0 initiates a surge in the mean surface
elevation. After reflection from the beach, it propagates seawards and is absorbed
by the ocean-side boundary condition. The steady state in the set-up is reached

in about 157,

On the other hand, it is found that the longshore current velocity (normal-
ized by the long-wave celerity at the breakpoint /g k) in Fig. 5.2 (solid lines)
does not attain steady state until about 507, which indicates a difference in time
scales of cross-shore and longshore motion. In fact, the steady state is only ap-
proached asymptotically as the net forcing of bottom friction, the radiation stress
and the dispersive mixing decreases to zero. This difference in time scales is due
to the fact that the wave groups refract to near-normal incidence, which means
that the forcing in the cross-shore direction is much larger than the forcing in the

longshore direction.
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Figure 5.1: Normalized surface elevation versus normalized time for cross-shore
positions indicated in the Figure.

The figure shows that the cross-shore profile of the longshore current is
initially triangular (as would be predicted by Longuet-Higgins (1970) for the case
of no lateral mixing mechanism). The turbulent and dispersive mixing cause a
spreading of momentum (i.e., longshore current velocity) away from the break-
point, which quickly modifies the triangular shape into a more curved longshore
current profile. However, the momentum spreads relatively slowly, particularly
outside the surf zone. Notice that the shoreline boundary condition allows for a

run-up above the still water line.
Also indicated in Fig. 5.2 (dashed lines), are the horizontal longshore
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Figure 5.2: Normalized longshore current velocities versus normalized depth
with quasi 3-D terms (—) and without quasi 3-D terms (— —) at
t=0,2,6,10,14,20,30,40 and 487"

current profiles at the same time-instances for the case where the quasi 3-1 mixing

is artificially neglected in (5.2). We see that the profile is essentially triangular and

is only slightly modified by the turbulent mixing effect, which diffuses a relatively

small amount of momentum seawards of the breakpoint. In the absence of a large

mixing effect, the radiation shear stress gradient is balanced by the bottom friction

only, which results in a much stronger longshore current than in the case which

included the quasi 3-D mixing.

Returning to the case with quasi 3-D mixing, we see that, as the cross-shore
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balance is approached, the total cross-shore velocity %l = U — 0. Because of

this, and because of the longshore uniformity (which implies % = 0), the y

momentum equation (2.71) reduces to

0Q, d (Q.Q, B oV
a | ( T M) = g (BlDee + %) 57
0 - 185, , 7 .

Of the quasi 3-D terms in this equation, the dispersive mixing term
%

D:m, a_
Oz

is the most important, as will be shown in the next section. Recall that according

to (2.81)

]. ¢ ()) C_ ] # ([}) v
DWE—/ m_/_f U© (dz)? 5.12
@ h. e 1 L e 1 ('f Z) ( ) )

vy
This term is essentially the same as the D, term defined by Svendsen & Putrevu
(1994a). (For a reduction of the governing equations to the case of a longshore
uniform steady state, see Chapter 2.3.2.) Hence in this case we can essentially

determine the dispersive mixing from the cross-shore circulation only.

For completeness it is mentioned that the computations were performed
with a very short coast to ensure that no instabilities in the form of shear waves

developed.

5.1.1 Three-dimensional Current Profiles

As was described in Chapter 2 (and in the previous section), the calculation
of the nonlinear integrals in the depth-integrated momentum equations (2.71)

requires that the current profiles are determined. The slow development in the
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Figure 5.3: Three-dimensional current profile evolution at the breakpoint (';:—b =
1): (a) at t = 6T. (c) at t = 20T. (e) at t = 487T. Three-
dimensional current profile well inside the surf zone (f,—:‘: = 0.35): (b)

at t=6T. (d) at t =207T. (f) at ¢t = 487T.
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flow implies that the vertical velocity profiles can be considered a quasi-steady
response to the instantaneous forcing. Thus, we can solve the vertical profile
equations (2.47) for the quasi-steady state, which yields the equations for the
vertical profiles of the current (2.75), which were repeated as (5.9). This also
give us an opportunity to trace the development in the three-dimensional current

profiles in the process of starting up a longshore current.

=

Figs. 5.3(a), (c), and (e) (the left-hand column) show three snapshots
of the 3-D current spiral at the breakpoint (h,/hy = 1) at three time instances
t = 6,20,487. Figs. 5.3(b), (d), and (f) (the right-hand column) show the
current spirals at the same times for a position in the surf zone (h,/hy = 0.35).
The cross-shore and longshore current profiles are also shown as projections in the
figures. The current velocities, U/ and V| are normalized by the local wave celerity
at still water ¢, = v/g h,. The vertical position above the bed, ¢, is normalized

by the still water level h,.

The figures show that just as the overall cross-shore momentum balance
is established relatively quickly, the cross-shore current profile (the “undertow”)
is also quickly established and thereafter remains fairly constant. The longshore
current, on the other hand, grows slowly in time, as was shown in Fig. 5.2. The
combined development of the two components results in a gentle turning of the

current spiral.

The consequence is that the different time scales for the cross-shore and
longshore motion cause the velocity spirals to change quite significantly during the
start-up of the longshore current. With time-varying forcing from random waves,
the variation will probably be less dramatic. However, the results for the 2DH
case with weak wave groups analyzed by Svendsen and Putrevu (1994b) suggest

that the vertical currents profiles can vary significantly.
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It is important to emphasize that the depth-variation of the currents is
critical to the existence of dispersive mixing. If the longshore current were as-
sumed fo be depth-uniform, the dispersive mixing coefficient D,, would be zero
identically. This can be seen directly from the derivations in Chapter 2.3. If we
consider the y momentum equation (so that the subscript 5 = ,) and assume that

the longshore current V' is depth-uniform, which means that in (2.28) we have

V=V and V) =0 (5.13)

The depth-dependent integrals in (2.59) in this case reduce to

¢ ¢
] = ‘/lr:r Izl dz + / uanl ep Uwvla dz
—ho Ct
¢ _ e
- /C v Viadz & Via(0) fc vwdz = Via(C) Quy (5.14)

The nonlinear integrals now only contribute to the M,, term in the y momen-
tum equation, as can be seen following the derivation in Chapter 2.3. The more

important D,, term is lost completely.

5.1.2 Relative Magnitude of Quasi 3-D Coefficients

[t is important to realize that the quasi 3-D D.g, M.p, Aapy and Bug
coeflicients do not necessarily become zero themselves in the steady state, but
that the terms in which they appear become zero because the velocity V,, or its
horizontal gradients become zero. It is useful to show the cross-shore variation
of the size of these coefficients, even though their net contribution may be small,
because this will enable us to contrast the magnitudes found in this analysis to the
magnitudes that will be calculated in the next section for time-varying motion.
We will also compare the magnitudes in this analysis to an approximate value

that can be obtained under a simplifying assumption, as will described below.
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The quasi 3-D coefficients were defined in (2.63), (2.69) and (2.70) and are

repeated here for convenience.

‘ dh
= (ﬂ) (0) 0
Ar_\f,ﬁ'\" = - o I/;cr fz v, (aj f o ‘/‘l'ﬁ‘ d 1/] d ) (dz)z
— AW hi z © g, _ y© Oh, Y ;
'/"Lo z W (dr,r " Vl“ < ‘/lrx d ((..,) (55)

1 < { 5 ¢1
B = 4 / (0) / / VO ()t -+ [0 VO / 2 VO (b, + 2) (dz)?
- h J=p, Vi z Vg J—h, T h —hao i v i+ 5 L]

1 /< ¢ 1 ,
_E ~/—h Vl(f‘;)l 'V_ti/l(r{:) (h’n + Z) (dZ)z (5]6)

and
Doy = f_ 5 A% =y B Vi) (dz)® (5.17)

We will split the M,z term in (2.66) into an integral term
/ (U] (U) dz (5.18)
and a term for the surface contribution
Eap = Via (©) Qus + V13 (0) Quo (5.19)

so that

Mcrﬁ = C"(.'rﬁ' + Eﬂﬁ (520)

The value of these coefficients can be calculated from the expressions (2.81),
(2.82), (2.83) and (2.84). These expressions were derived using the quasi-steady
state solution of the local, shortwave-averaged momentum equation (2.47) (the
“profile equation”). This yields the equations for the vertical profiles of the current

(2.75), which were repeated as (5.9).
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The cross-shore variation of the quasi 3-D coefficients will be shown in Figs.
5.4, 5.5 and 5.6 (solid lines). Also shown in these figures as the dashed lines are
the magnitudes of these coefficients if we assume that the velocity profiles are
depth-invariant below trough, as was done in Putrevu & Svendsen (1997) in their
discussion, so that

[ Q-m
Vig = == (5.21)

This corresponds to a uniformly distributed return flow to compensate for the
volume flux @Q.,5, which is positive for the chosen angle of incidence of the short
waves. Using this expression, we can approximate the quasi 3-D coefficients (5.15)

- (5.19) as

B0 [ QueQup ._
) SE e wey w 5‘22
P 3 vy Oz, ( h? ) (5.22)
’ Qwoz Qwﬁ
D = —-:- n.24
wfl 3-"»""{, ( )
Qwrx Qwﬁ
PR i 5.25
orfi 3 (J )
and
":,ﬁ i il Q'umrh?mﬁ (52{))

[n this approximation the quasi 3-D coefficients can be calculated from (2.81),

(2.82), (2.83) and (2.84) if we set the coefficients
a'[=b]=ag=b2=0
The breakpoint is indicated by the vertical lines in the next figures.
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IMig. 5.4 (a) shows the variation of B, calculated by (2.84) versus the cross-
shore coordinate. Its value is fairly constant outside the surf zone and becomes
much larger just shoreward of the breakpoint, which is due to the fact that the
“undertow” profiles are much more curved in the surf zone. Because of the simple
short-wave modeling, this transition in curvature occurs very rapidly, which will
increase the cross-shore gradients in the quasi 3-D coefficients. Notice that the
value of the quasi 3-D coefficients in these figures is not made dimensionless so that
they can only be compared to each other. If we compare the magnitude of B, to
D, in Fig. 5.4 (b) (solid line), we see that the former is much larger across the

domain. This is a surprising result since B!

B3, the depth-invariant approximation

of By, is zero, see Fig. 5.4 (a) (dashed line). However, the contribution of B,

to the momentum equation is relatively small since it is multiplied by % and

-] £ 4 & " .
%, which in this case both become zero when the steady state in the cross-shore

direction is reached.

The D, term in Fig. 5.4 (b) has a much larger contribution to the momen-
tum equations since it is multiplied by %, which remains nonzero, as can be seen
from (5.11). The depth-invariant approximation (dashed line) is virtually equal to
the steady-state solution (2.81) outside the surf zone. This is due to the fact that
the undertow profiles are nearly vertical because the local forcing is very small.
Inside the surf zone, the value of D,, in the depth-invariant approximation is
about a factor two smaller than the solid line, because there the undertow profiles
are in reality very much curved and the assumption of depth-invariant profiles is
obviously violated. This is an important finding, which indicates that using the
depth-invariant current profiles significantly underpredicts the magnitude of the

dispersion coefficients.

Figs. 5.4 (c) and (e) show the variation of B,, and B,,, respectively, as
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calculated by (2.84). Each of these coefficients is at least of the same order as
the corresponding D,, and D,, term in Figs. 5.4 (d) and (f), but will make a
smaller contribution to the momentum equations because they are multiplied by
smaller gradients in the velocities. Figs. 5.4 (d) and (f) (dashed lines) also show
the approximate values when the depth-invariant velocity profiles are used. We
see that this would underpredict the actual value across the domain because in
this approximation the tilt that the longshore currents exhibit (as was shown in

the previous section) is neglected.

Figs. 5.5(a), (¢) and (e) show the magnitude of the C,5 coefficients, as
defined in (5.18), versus the cross-shore coordinate. It can be seen that the mag-
nitude of these coefficients is significantly underpredicted if the curvature of the
current profiles is neglected, especially in the surf zone. The approximation is
much better outside the surf zone where the cross-shore velocity profile is almost

depth-invariant.

Figs. 5.5(b), (d) and (f) show the E,z coefficients, which were defined in
(5.19) and represent the surface velocity contributions to the M,g term. Again,
the magnitude of the coefficients is underpredicted if the depth-variation of the
currents is not taken info account. Inside the surf zone, even the sign of the
coefficients is predicted incorrectly. This is due to the fact that (5.21) will pre-
dict negative velocities at the surface under the assumption of depth-invariant
currents, because they are assumed to balance the positive wave-induced volume
flux. However, the velocities at the surface are really positive, as was seen in IYig.

5.3, so that the F,z coefficients are also positive in the surf zone.

Finally, the magnitude of the A,s, is shown in Fig. 5.6. As was seen
in the previous figures, the assumption of depth-invariant currents below trough

(dashed lines) causes an underprediction of the magnitude of the A,g, coefficients
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that would be calculated by (2.83) (solid lines), see I'igs. 5.6(a), (c¢) and (e). Figs.
5.6(b), (d) and (f) show that the A,pz, coefficients are identically zero because the
third index in A represents derivatives in the longshore uniform y direction, as

can be seen in (5.1.5).

Summarizing, we have found that the quasi 3-D coefficients are in general
nonzero and exhibit a significant cross-shore variation. The contribution of these
coefficients to the momentum equations may be small or zero due to the fact that
they are multiplied by (gradients of) the depth-averaged velocities. We will refer
back to Figs. 5.4-5.6 in the next section, where we will study infragravity waves

forced by obliquely-incident wave groups.

5.2 Infragravity Waves Forced by Obliquely-incident Wave Groups

In this section the effect of the quasi 3-D terms on infragravity waves
due to obliquely-incident wave groups is studied. These wave groups consist of
two sinusoidal short waves that have a slightly different frequency but have the
same direction of propagation. As these wave groups propagate towards shore
at the group speed ¢,, they refract towards the shore-normal direction. The
incoming bound infragravity wave that propagates with the groups in the same
direction will also refract in. As the wave groups shoal onto the beach and are
destroyed, this incoming IG wave is modified by the wave group transformation
and is released. It will then reflect off the shore and propagate and refract seawards
as a free long wave, see I'ig. 5.7 for a definition sketch. This process of infragravity
wave generation is essentially the same as was described for normally-incident
infragravity waves in Chapter 4, except for the effect of the nonzero angle of

incidence.
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Figure 5.7: Definition sketch of obliquely-incident and obliquely-reflected infra-
gravity waves.

This case will be more interesting to analyze than the previous one, be-

cause the hydrodynamical conditions are longshore periodic instead of longshore

uniform, and therefore more terms in the momentum equations are expected to

be non-zero.

Iirst, we will compare the linearized model results to the linear, analytical
solution of Schiffer (1994). Then, we will show the effect that the nonlinear terms
corresponding to the 2-DH shallow water equations have on the solution. Next,
we will include the quasi 3-D terms (sometimes called “dispersive mixing” terms),
which arise from the non-uniformity over depth of the infragravity waves and were

derived in Chapter 2. The infragravity wave profiles in the z and y direction are
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shown. The relative importance of these terms is shown in the z and y momentum
equations. This also means that recommendations can be made about which terms

can be neglected for this case.

5.2.1 Comparison to the Linear Analytical Solution

As was done in Chapter 4, we will first linearize the governing equations
in order to compare to the analytical solution of Schéffer (1994) for the time-
varying motion on a plane beach. For reference, these equations of continuity and

momentum read

9  8Q.

i —_ 5.2
5 T g = (3:27)
Qg I 108.p

+ gho—— + — = 0 (5.28)

ot dxg p Oz,
The short-wave forcing is caused by a wave group consisting of two sinusoidal
short waves that have a slightly different frequency but have the same direction
of propagation. This is essentially the two-dimensional extension of the case de-

scribed in Chapter 4. Given this short-wave forcing, the radiation stress S,s can
be written as (Schaffer, 1994)
H? (1 + 26 cos(24)), h > hy
Saﬁ =pg Paﬁ (529)
Y h% (1 4+ 26(1 — k) cos(29)), h<h
where the wave height modulation § = H,/H, is the ratio of the wave heights of

the secondary wave to the primary wave in the group. & is the breaking parameter,

as defined by Schiffer (1994) and in Chapter 4. The breaking criterion is H; =
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v ho. The shapefactor P,z was defined in (5.4). The phase function is defined

following Schéaffer (1994), his Eqgs. (5) and (6), as
29 = f " Kydz + K,y — Awt (5.30)
0

The forcing frequency Aw is the difference frequency between the frequencies wy

and w, of the two short waves in the group
Aw = w —w; = 2ew (5.31)

where ¢ is the frequency modulation between the two waves in the wave group and
w is the mean frequency of w; and wy. These expressions are similar to the ones
found for the case of normally-incident waves in Chapter 4. In (5.30) K, and K,
are the z and y components of the wave number of the wave group, or in other
words, they are the z and y components of the difference between the wave number
components of the two short waves, k(1) and k(*). After some manipulation, this
can be rewritten as

" © 94
K, = kY — @ = 2¢ k (l _ sin 9,)

* cosf; \n T

(5.32)

where n = ¢, /¢ and 6; is the angle of incidence of the short waves with respect to
the normal and the subscript , denotes conditions on the shelf. This equation is

similar to Schéffer (1994)’s Eq. (7). We also have

2) _ 9 k sin 0;

= 2

(5.33)

Tig

which is consistent with Schaffer (1994)’s Eq. (8). In the case of normally-incident

short-wave groups, (5.29) reduces to (4.7).

On the shelf we will assume an incoming equilibrium bound long wave
(Longuet-Higgins & Stewart, 1962) which propagates in the direction of the wave

groups. The outgoing free wave will be absorbed using the absorbing-generating
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boundary condition developed in Chapter 3.2. In the linearized version of the
model, we impose a no-flux condition at the still water shoreline. At the lateral
boundaries we impose periodicity. The alongshore domain length is put equal to

the alongshore projection of the infragravity wave length.

[t is important to note here that the incoming short-wave group and there-
fore the incoming bound long wave propagate in the same direction with the group
speed ¢,. The outgoing long wave, however, does not propagate with the group
speed but with the shallow water speed /g h,. These different celerities turn out
to have a profound effect on the refraction of these waves. According to Snell’s
Law, the alongshore wave number K, in (5.33) is conserved as the short-wave
groups refract towards shore. The alongshore wave number K, , of the outgoing
long wave

Aw
V g ;3'0

is also conserved as it refracts out to sea. In fact, since the long waves are fully

Kop = sin 0, (5.34)

reflected at the shoreline, the alongshore wave number of the incoming wave must
equal the alongshore wave number of the outgoing wave, so that from (5.33) and

(5.34) we have

5 ke sin 0; Aw
E =
Ns Vg h,

where 0; and 0, are the angles of the incoming and outgoing waves, respectively.

sin 6, (5.35)

Using (5.31) we can rewrite this equation as

sin 0; W N €, Ny

sin 6, - kg h, - N n

(5.36)

or

6, = sin™! (siu 0; - . i) (5.37)

0o By
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where ¢, denotes the group speed. From this we can deduce that for a given
shelf depth and short-wave group parameters, it is possible that the angle of the
outgoing wave may become 90° well before it reaches the shelf again. The depth

at which this occurs is called the “caustic.” At this caustic depth we have

.qho,c "r
h il (5.38)

sinf; .

Gio M
where the caustic depth is denoted by the subscript .. The maximum angle of
incidence on the shelf for which the caustic will not occur on the slope (i.e., where

the caustic depth equals the shelf depth) is then given by

graz _ gin-1 ( c';.sl ) (5.39)

If the caustic does occur on the slope, the outgoing wave will be “trapped” along
the shore. In the following examples, however, we will limit the discussion to cases
for which the input parameters are chosen such that there is no caustic on the
slope, which means that the outgoing waves propagate out to the shelf. These

waves are called “leaky.”

The input parameters for the following case are: shelf depth hy, = 3m
and mean short-wave frequency w = 1.857', so that ks hy = 1.192. The wave
height of the primary short wave on the shelf H, ; = 0.6 m and the wave height
modulation § = 0.1. The frequency modulation is chosen as ¢ = 0.1. The breaking
index is v = 0.75 with a fixed breakpoint £ = 0. The beach slope is chosen as
h. = 1/20. Finally, the angle of incidence on the shelf is chosen as 0; , = 22.37°,
which is less than the limiting angle of incidence 07" = 37.07%, according to

(5.39), so that the infragravity wave is “leaky.”

These parameters imply that the forcing frequency Aw = 2¢w = 0.36s7!

and that the short waves will break at hy = 0.9m or %& = 0.3. The angle of
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the outgoing wave on the shelf is 0,, = 38.4°. The numerical parameters are

Az = Ay = 1m and the Courant number v = 0.7.

Figure 5.8: Envelope of the total long-wave motion vs. depth : present model
(—) and analytical solution (— —=).

I'ig. 5.8 shows the comparison of the envelope of the total long-wave mo-
tion where the solid line indicates the present model and the dashed line indicates
the analytical solution by Schéffer (1994). The agreement is very good, which
gives us confidence in the accuracy of our model. The envelope represents the
maximum surface elevation, which itself is periodic both in time and in the along-
shore coordinate y. As in Chapter 4, the surface elevation is normalized by §a?/h;
and the shore normal coordinate is made dimensionless by h,/hg, so that ' =0
corresponds to the still water shoreline and 2’ = 1 to the toe of the slope. The

breakpoint is located at 2’ = 0.3 in this case.



5.2.2 Importance of Nonlinear 2D-H Terms

As a next step we will include in the model the nonlinear terms so that
the governing equations correspond to the nonlinear shallow water equations with

forcing, which for reference read

o 0Qu ,
% e = 0 (5.40)
aQrG 0 Qa Q.@ ps aE
"J'n
% | Br, ( ) Tl t g
1a (. ¢ U :
- s_r“- - o Z - = L] .4.].
T p 0z, ( ﬂ f_!m Tap 42 | ¥ P - (B41)

where we have now also included the turbulent stresses which are modeled with
an eddy-viscosity closure as

1 /c f ; ov, . oV
e z = M h -
p J=ho el we dxg dz,,

We have included friction terms in (5.41) so that the longshore current forced by
the steady radiation shear stress remains bounded. At the landward side of the
domain we now impose the shoreline boundary condition of Chapter 3.3 in order

to allow for run-up and run-down.

Fig. 5.9 shows the envelope of the surface elevation (i.e., steady set-up and
the long-wave motion) for the nonlinear shallow water equations (5.40) and (5.41)
(solid line). Comparing to the linear solution (which is a linear superposition of
the steady set-up and the long-wave envelope in Fig. 5.8), we see that including
the nonlinear terms shifts the nodes and anti-nodes of the envelopes and changes
the amplitudes of the anti-nodes. As was seen in Chapter 4.3, it turns out that
the most important contribution of the nonlinear terms is the change in the local

water depth: in the nonlinear shallow water model, the long waves propagate in
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Figure 5.9: Envelope of the surface elevation vs. depth: present nonlinear model
(—) and linear solution (— —).

the total water depth (b = h, + (), whereas in the linear model they propagate

in the still water depth only.

5.2.3 Importance of Quasi 3-D Terms

As was seen in Chapter 2, the depth-nonuniformity of the infragravity
waves (or currents) result in additional terms in the governing equations. For

reference, we will repeat the quasi 3-D momentum equations (2.71)
0Q s o

t T Oz,

= 0 [h’ (DB’Y% +. D ()Vﬁ + B ()Vw)‘| -+ i [Amﬁ'"r f/'Y]

0.4 0%y | 0z, T 0z 0.

(f”ix Vﬁ h + Mnﬁ)
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o 1o (. ¢ T8 — T8 |
. q/ apdz | + 2—2 5.43
44 derg  pOx, ( = L, i p (5.43)

For emphasis it is mentioned again that the quasi 3-D A.z,, Bag, Dag and
M,z coefficients are calculated using the expressions (2.81), (2.82), (2.83) and
(2.84). These expressions were derived using the quasi-steady state solution of
the local, shortwave-averaged momentum equation (2.47) (the “profile equation”).
This yields the equations for the vertical profiles of the current (2.75), which were

repeated in the chapter as (5.9).

Figure 5.10: Envelope of the surface elevation vs. depth: quasi 3-D model (—);
nonlinear shallow water model (= =).

The cross-shore envelope of the surface elevation using the quasi 3-D equa-
tions (2.8) and (2.71) is shown in Fig. 5.10 (solid line). Also shown is the envelope
computed using the nonlinear shallow water equation (the solid line in Fig. 5.9,
repeated here as the dashed line). We see that the quasi 3-D terms have a large

effect on the envelope in the surf zone and in the area around the breakpoint, a
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point which will be discussed in more detail below. The nodes of the envelope,

however, do not seem to have shifted significantly relative to the 2-DH solution.

Fig. 5.11 shows a snapshot of the surface elevation at a particular time.

For effect, we have shown three wave lengths in the longshore y direction.

Figure 5.11: Snapshot of the surface elevation.

5.2.4 Three-dimensional Infragravity Wave Particle Velocity Profiles

In order to calculate the quasi 3-D terms in the momentum equations, we
have to determine the vertical variation of the infragravity wave particle velocities
by (2.75) (repeated in this chapter as (5.9)). This equation was derived under the

assumption of quasi-steady state (see the discussion of this assumption in Chapter
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2), which is obviously valid in the case of the slowly-developing longshore current
in the previous section. In the case of time-varying infragravity waves, however,
the quasi-steady state approximation might not be valid everywhere, especially in
the region seaward of the break point. However, it is conjectured in Putrevu &
Svendsen (1997) that the steady-state solution (2.75) is the first approximation
to the complete solution of (2.47), so that the IG wave profiles computed by the

present model are correct to leading order.
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Figure 5.12: Infragravity wave profiles for three locations (2’ = 0.42, 0.17 and
0.07) and for five time instances of the infragravity wave period.
The breakpoint is located at 2’ = 0.3.

Fig. 5.12 shows the IG particle velocity profiles for three different locations

(' = 0.42,0.17 and 0.07) and at five time intervals of the infragravity wave period.
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The motion is a result of the forcing by the obliquely-incident wave groups, and of
the incoming 1G wave and the obliquely-reflected 1G wave. Notice that the steady
part of the short-wave forcing (5.29) drives a steady longshore current, and that
the time-varying part of the forcing cause a variation of the velocity profiles over

an 1G period.

Since the breakpoint is located at 2’ = 0.3, the location 2" = 0.42 is outside
the surf zone. The IG wave velocity profiles at that location show a little bit of
curvature in the cross-shore direction and essentially vary linearly with depth in
the longshore direction. The two locations inside the surf zone show much more
variation. The cross-shore velocity profiles vary significantly over one infragravity

wave period, especially at 2’ = 0.07.

The details of the variation of the velocity profiles can better be seen in
Iig. 5.13, which shows the projections of the profiles in the longshore and cross-
shore direction. Fig. 5.13(a) shows the cross-shore velocity (commonly called
the “undertow”) normalized by the local long-wave celerity ¢, versus normalized
depth at ' = 0.42, which is located well outside the surf zone, for ten intervals per
infragravity wave period. It can be seen that the profiles are slightly curved due to
the (time-varying) forcing f, in (2.75). This term (defined in (2.48)) is a function
of the radiation stress gradients and the gradients in the short-wave velocities.
These gradients are larger in the time-varying case than in the time-steady case

as can also be seen by taking the spatial derivatives of (5.29).

Qualitatively, the results are similar to calculations made by Smith &
Svendsen (1995, 1996) for cross-shore time-varying infragravity wave profiles us-
ing an eigenfunction expansion. Similar to their results, the greatest velocity
gradients occur near the surface and that the velocities near the surface and the

bottom are in anti-phase. Unlike Smith & Svendsen (1995, 1996) we find that in
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Figure 5.13: 1G wave particle velocities in the cross-shore and longshore direc-
tion normalized by the longwave celerity ¢, vs. normalized depth

for ten intervals per 1G wave period: (a) Cross-shore velocity U
at ' = 0.42. (b) Longshore velocity V at 2’ = 0.42. (c¢) U at
2 =017 (d)Vata =017 (e) U at o= 007 (f) Vit

z' = 0.07.
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the present model the depth-mean of each of the profiles below the mean surface
elevation is negative. This is to be expected since (2.50) was used as a boundary
condition, which states that the wave-induced volume flux has to be balanced by

a non-zero depth-mean current.

As was stated above, the assumption of quasi steady state is the least likely
to be valid at larger depths (i.e., more seaward of the break point), since the eddy
viscosity becomes smaller away from the breaking region, which is the primary
source of turbulence. It is possible, therefore, that the omission of the acceleration

term in (2.47) increases the curvature of the infragravity wave profiles.

Fig. 5.13(b) shows the longshore velocity V' at the same location. Due
to the relatively small angle of incidence of the short-wave groups, the forcing
induced by the short waves in the y direction is also small. This means that
these profiles are fairly linear with only a slight curvature. The profiles exhibit
a non-zero mean over depth due to the momentum that has advected out of the
surf zone due to the dispersive mixing, as was also seen in the case of a steady

longshore current in the previous section.

The cross-shore profiles in Figs. 5.13(c) and (e) exhibit the typical char-
acteristic undertow profile in the surf zone that were previously shown for the
steady case by a number of authors (Svendsen, 1984b; Dally and Dean, 1984,
1986; De Vriend & Stive, 1987; Svendsen et al., 1987; Svendsen & Hansen, 1988;
Okayasu et al., 1988; Roelvink & Stive, 1989 to mention but a few) and also in the
previous section, and for the time-varying case by Putrevu & Svendsen (1995).
The longshore profiles in Figs. 5.13(d) and (f) are slightly more tilted than the
longshore current profile in Fig. 5.13(b) because inside the surf zone a strong
mean forcing is present due to the difference between the radiation stress gradient

and the pressure gradient. The time variation of the longshore profiles is not very
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large due to the fact that the short-wave groups have refracted to near normal

incidence inside the surf zone.

5.2.5 Relative Magnitude of Quasi 3-D Coefficients

In this section we will discuss the relative magnitude of the quasi 3-D
coefficients for the case of leaky infragravity waves. The magnitude of the quasi 3-
D coefficients is calculated directly from the model results under the assumption of
quasi-steady state, as discussed in the previous section. The computed magnitude
is compared to the approximation by Putrevu & Svendsen (1997) who assumed
that the velocity profiles are depth-invariant below trough. The analysis in this
section is similar to the one performed in Subsection 5.1.2 and we will refer back

to the expressions and results found there.

For completeness, we will expand the momentum equations (2.71) in both
horizontal coordinates. For this purpose we divide the M,s term into a (', 5 and
it (&)

an I,z term as was done in (5.20). The z-momentum equation then becomes

0Q, 0 (Q* 9 (0.0,
ot + })_n_,- (_h— + (fw, + E:(.':L‘ + % 2 + Sy = Ex-y

0 | ( ou - oU %
_;}__}' -h ((")‘D.I.L % ‘ZUt i BJ.L) g Hr ZD;lry (;)y + -Bg,a. ay)}
a [ U ol
_% «h' ((D:ﬂy + Buy) Dz + (Dyy + w) By

oV 1%

43 [Aeee 0+ Ay V] + 5 [ U+ Ay V]

194



o 1 (asm 4 as,,._,,,) P

e 5.44
de  p\ Ox dy p (5.44)

Similarly, for the y-momentum equation we get
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where in these equations we have used the eddy-viscosity closure (5.42). The
definitions of the A,gy, Bapg and D,z coefficients were given in (2.63), (2.69) and
(2.70), and repeated in this chapter as (5.15), (5.16) and (5.17). Please note
that these definitions are slightly different in appearance from, but completely
equivalent to those given in Putrevu & Svendsen (1997). For consistency in our

notation, we will use the above definitions.

As stated above, the quasi 3-D coefficients were calculated using the expres-
sions (2.81), (2.82), (2.83) and (2.84) found in Chapter 2.4. These expressions are
valid for the (quasi) steady state of the time averaged local momentum equations

(2.47) and are expected to be the first approximations to the full solution.
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Figure 5.14: Magnitude of B and D coefficients vs. cross-shore distance z’ for
five intervals per 1G wave period: (a) Byy. (b) Dys. (¢) Byy. (d)
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In Figs. 5.14, 5.16 and 5.19 the variation of the individual quasi 3-D co-
efficients in the cross-shore direction for five time intervals per infragravity wave
period is shown. These figures give an indication of the relative magnitude of
these coefficients to each other. However, they do not appear as isolated coeffi-
cients in the equations but rather appear in combination with the depth-invariant
velocity or depth-invariant velocity gradients. Therefore, the individual terms in

the equations will be studied in more detail below.

5.2.5.1 B,s and D,z Coefficients

Iig. 5.14 shows the variation of the B,s and D,s coeflicients versus the
cross-shore coordinate for five time intervals of the infragravity wave period. In
the figures @’ = 0 corresponds to the still water shoreline and 2’ = 1 to the toe of
the beach. The coefficients themselves are not made dimensionless and can only

be compared to each other.

The B and D coefficients exhibit quite a large variation over an I1G wave
period, which indicates that the local time-varying forcing is very important. It
can be seen that the magnitude of all coefficients is increased significantly if we
compare them to the magnitudes that were found in Fig. 5.4 for the steady
case. As was already seen in Fig. 5.4, the values increase significantly across the
breakpoint, since the “undertow” profiles become much more curved inside the
surf zone due to the increased forcing. Because of the simple short-wave modeling,
this transition in curvature occurs very rapidly, which will increase the cross-shore
gradients in the quasi 3-D coefficients. The figure shows that the B,z coeflicients
are in general larger than the corresponding D, coefficients, which was already

seen in Fig. 5.4 also.

We also see that the D,, and B,, coefficients are larger than the D,, and
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B, coefficients, which are in turn larger than the D,, and B,, coefficients. This is
because the short-wave groups refract to the normal, which means that the cross-
shore velocities are more curved than the longshore velocities. This could already
be seen in Fig. 5.13. The curvature of the velocity profiles directly influences the

magnitude of the dispersive coefficients.

Fig. 5.15 shows the comparison of the D coefficients as calculated by the
model (panels (a), (¢) and (e), which are repeated from Fig. 5.14 (b), (d) and (f))
versus the approximate value that is obtained if we assume that velocity profiles

are depth-invariant below the mean surface or

w Qwﬁ

(0) _
Vm a h

(5.46)

Under this assumption the expressions of the quasi 3-D coefficients become (5.22)-
(5.26). These coefficients can be calculated from (2.81), (2.82), (2.83) and (2.84)

if we set the coefficients
=l =a=0=0
The breakpoint is indicated by the vertical lines in the next figures.

IYig. 5.15 shows that in the approximation the magnitude of the dispersive
coefficients is dramatically underpredicted when the (time-varying) curvature of
the velocity profiles is neglected altogether. This underprediction is now not only
significant inside the surf zone but also outside, even though the velocity profiles

are only slightly curved, as could be seen in Fig. 5.13 (a) and (b).

5.2.5.2 (.3 and F,5 Coefficients

Fig. 5.16 show the dimensional values of (.5 and E,4 as defined in (5.18)

and (5.19), respectively. The time variation is again very significant. As in the
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previous figure, the (;, and FE,, coefficients are larger than the C,, and (',
coefficients, which are in turn larger than the C,, and C,, coefficients, due to
the smallness of the angle of incidence of the wave-groups. The F coefficients are
larger in magnitude than the corresponding C' coefficients, especially just inside
the breakpoint (2 < 0.3), where the surface velocities become large due to the
large gradients in the forcing and the large local value of the shortwave-induced
volume flux Q.. In fact, it will be shown below that these terms have a very
significant effect around the breakpoint since their gradients contribute to the

momentum equation.

The assumption of depth-invariant velocities (5.46) again underestimates
the magnitude of these coefficients, especially around the breakpoint. Fig. 5.17
shows the comparison between the C,5 coefficients as calculated in the model
and the approximate (4 value as calculated by (5.25). Fig. 5.18 shows the
similar comparison between the E,s coefficients as calculated in the model and
the approximation £2/5 by (5.26). Similar to the steady case in Figs. 5.5 (b), (d)
and (f), it can be seen that in the approximation the magnitude of the coefficients
is underpredicted and that in the surf zone even the sign is predicted incorrectly.
As was explained above, this is due to the fact that (5.21) will predict negative

velocities at the surface under the assumption of depth-invariant currents whereas

the velocities are really strongly positive, as can be seen in Fig. 5.13.

5.2.5.3 A,p, Coefficients

Finally, Fig. 5.19 shows the variation of the A,p, coefficients. Since this
term is symmetrical in the first two indices (as was already seen in (2.83)), we can
reduce the number of A coefficients from eight to six. The figure shows that the

A,z term is much larger than all the other coefficients. It can be seen that the
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Figure 5.17: Comparison of C' coefficients for five intervals per IG wave period:
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value of all coefficients is larger seawards of the breakpoint than in the surf zone.
However, in the momentum equations these coefficients are multiplied by U and
V, which both tend to zero offshore. The values of A, vary significantly across
the breakpoint because the horizontal gradients of the rapidly-changing velocity
profiles enter the expression (5.15). This means that, in the governing equations,
we can expect some of these A terms to be large locally around the breakpoint.
The contribution of these and all other quasi 3-D terms to the momentum equa-

tions will be shown in the next section.

5.2.6 Analysis of Quasi 3-D Contributions to the Momentum Equa-

tions

The analysis of the quasi 3-D mixing coefficients in the previous section
only gives a partial picture of the mixing effect. In this section, therefore, a more
direct assessment is obtained by looking at the magnitude of the terms in the
momentum equations in which these quasi 3-D coefficients appear. The analysis
is performed for an arbitrary fime instance after the periodic state of the IG waves
is reached and is strictly speaking only valid for this particular time. However, the
magnitude of the terms in the equations at this time instance are characteristic
for their magnitudes at any time in the periodic state. The conclusions that are

drawn in this analysis are therefore representative for this case.

5.2.6.1 Cross-shore Momentum Equation

First, we analyze the terms in the z momentum equation. To reduce the

large number of terms, we first define four “lump” terms

ol AU 1%
D] = h ((2.93,3; + 2}/1 + BLL)E + QD_W '((,—i;' + .BJ,-;,,- E) (5/17)

204



0.05
T
S
=]
g
e
o
5
]
<
-0.05
0.02
___ oot
-~
o 0
£
> —0.01
=
<
« -0.02
-0.03
-0.04
0.01
—_
“ 0.005
T—
5]
g
—
> 0
S
>
= :
0,005 == 1vessaniii
-0.01

Figure 5.19: Magnitude of A coefficients vs. cross-shore distance 2’ for five
intervals per IG wave period: (a) Auus. (b) Apay. (€) Apye. (d)
Agyy. (€) Ayye. (f) Ayyy.

205



ou U
.Dg = h ((Dry + B.Ly) 07 + (-Dyy A+ Ut) -5;
1% Vv ,
Af = Apgpll + Agpy ¥ (5.49)
and
s = daal F Asip ¥ (5.50)

The # momentum equation (5.44) can then be written

aQ'L 6 _12 ey a Qﬁ” Q?} 1

D, 0Dy N OA, N 0A,
Ox Ay Ox dy

0 F 4t B
Fgh2t g 2 (85“‘ + db”) += =0 (5.51)

de — p\ Oz dy

Iig. 5.20(a) shows all terms in (5.51). It can be seen that the most
important terms in the equation are the pressure gradient, the radiation stress

a8s

e and the local acceleration.

gradient

Of the quasi 3-D terms, only the %fﬂ term is of the same order of magnitude
locally at the breakpoint. This is due to the fact that the short waves are assumed
to break at one location, which means that the cross-shore velocity profiles undergo
a rapid change over a short distance. Since F,,, which was defined in (5.19), is

a function of the velocity at the surface, its gradient will therefore be large. The

. ] T - .
figure also shows that the —"E—ﬁ,'- and the Bf;l terms are locally significant buf

smaller than the above terms at the breakpoint.
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In Fig. 5.20(b) the contributing terms to the quasi 3-D “lump” terms

(5.47)-(5.50) are shown. It can be seen that of these terms

e T = Pt S . — !
dx (h Bll dx ) Or (2 h Dsﬂ' oz ) 9z (Aa,a,a, ( )

make the largest contributions. Notice that all these terms involve derivatives in
x only, which means that we can assume that all terms involving y derivatives are

small in this particular case.

5.2.6.2 Longshore Momentum Equation

In this section we will analyze the relative magnitude of the terms in the

y momentum equation. IT we define

/A A% ) OV .
Dy =h (Byy o + 2D,, 5o + (2Dyy, + 21 + Byy) d—u) (5.52)
and
Ay = Ay U + Ay V (5.53)
we can rewrite the y momentum equation (5.45) as
OQT,-‘ f) Qw Q?J Y . t:) _3 % ;
ot "t e ( AR vl W
oDy 0Dy  0A;,  0A;
Cdr Oy ¥ O * Dy
8 1 {88, . 88 (o
h—=+ = — L < =0 5.54
+g£f}y+p(fﬂw + f)y)-l-p (i)

Fig. 5.21 (a) shows that in the y direction there are a number of terms that
are at least locally important. Of the depth-integrated (2-DH) terms, the local

. ; s 95,
acceleration, the pressure gradient, the radiation shear stress =2 the bottom
b ¥ 1!7 3 gz
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friction, and the advection term % (%ﬁ) are important. We also see that of the

quasi 3-D terms

OE,, dD,

dx O
are important also. The first term is locally significant around the breakpoint for
the same reason that the %}‘— was important in the £ momentum equation. The

second term is of the same order of magnitude as the 2-DH terms inside the surf

Zzone.,

In Fig. 5.21 (b) the contributing terms to the quasi 3-D “lump” terms are
shown. It can be seen that of these terms, % (h D g) makes by far the largest
contribution. This is due to the fact that the steady short-wave forcing drives a
longshore current that is relatively strong compared to the time-varying motion.

av

This also means that the shear in the longshore current 5~ is much larger than

the other gradients in the 1G wave velocities.

For this particular case, we can simplify the equations by neglecting all
the quasi 3-D terms that are small. Of course, the results described here only
apply to this particular case. This analysis should be performed on a case-to-
case basis which means that for every situation the complete quasi 3-D equations
should be analyzed before the relative magnitude of the terms can be assessed.
IFor some cases, for example situations with complicated bathymetries and time-
varying hydrodynamical input, it is advisable to retain all the quasi 3-D terms in

the equations because they might be significant locally in space and time.
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5.3 Conclusions

In this chapter we applied the quasi 3-D SHORECIRC model to two cases:
to the start-up of a longshore current and to infragravity waves forced by obliquely-

incident wave groups.

In the first case, it was shown that a steady state in the cross-shore direction
is achieved on a relatively short time scale. The time scale to reach a steady
state in the longshore direction is much longer. This is due to the fact that the
short-wave forcing in the shore normal direction is much stronger than in the
longshore direction, because of the smallness of the angle of incidence of the wave
groups. Also, in the cross-shore direction the forcing is balanced by a pressure
gradient which is established relatively quickly, whereas in the longshore direction
the forcing is balanced by the dispersive mixing and the bottom friction, whose

equilibrium value is attained asymptotically.

The quasi 3-D dispersive mixing term is seen to have a large influence on the
shape of the horizontal longshore current velocity profile. This mixing acts over
and above the turbulent mixing and causes momentum to be spread seawards from
the surf zone. It was also shown that, in the process of reaching a steady state, the
current velocity profiles reveal a gently turning spiral shape. It is emphasized that
the depth-variation of the currents is critical to the existence of dispersive mixing.
[n the hypothetical case of depth-uniform currents the dispersive mixing would be
zero identically, which would dramatically change the horizontal longshore current

velocity profile.

The magnitude of all quasi 3-D coefficients as a function of the cross-shore
distance is shown. It turns out that these coefficients are not necessarily small

or zero themselves but that their contribution to the momentum equations may
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be negligible because they are multiplied by velocity gradients that may be small.
The magnitude of these coefficients is also compared to an approximate value,
which assumes that the velocity profiles are constant over depth below trough. It
is shown that under this simplifying assumption the magnitude of the quasi 3-D
coefficients is significantly underpredicted, especially in the surf zone, because the

curvature of the profiles is neglected.

Thus, for the case of a longshore current on a cylindrical coast, we find that
only one of the dispersive mixing terms, involving the D,, term, is significant and

can be determined from the (steady) cross-shore circulation.

In the second case for infragravity waves forced by obliquely-incident wave
groups the hydrodynamical conditions are no longer longshore uniform but are
longshore periodic, which means that more terms in the momentum equations are

important.

It has been shown that the linearized model agrees well with the linear ana-
Iytical solution for the long-wave envelope by Schiffer (1994). However, including
nonlinear terms corresponding to the 2-DH shallow water equations reveals that

the nodes and anti-nodes of the envelope shift shoreward.

The quasi 3-D terms are seen to have a significant influence on the long-
wave envelope around the breakpoint and a lesser influence on the amplitude of the
envelope elsewhere. It should be noted that the magnitude of the quasi 3-D terms
around the breakpoint is influenced by the unrealistic short-wave modeling applied
in this thesis. Although the details of the short-wave height variation around the
breakpoint may be inaccurate, this does not change the fact that rapid variations
of the wave height, the wave-averaged properties and the |G wave particle velocity

profiles do occur around breaking, so that it can be expected that the results are
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at least correct in a qualitative sense.

The calculation of the quasi 3-D coefficients requires that the infragravity
wave particle velocity profiles be determined. These profiles show that the time-
varying forcing has a large influence on the cross-shore motion (“the undertow”).
Outside the breakpoint, it is seen that the cross-shore velocity profiles are slightly
curved, while inside the surf zone they exhibit a strong curvature which is typical
for undertow. These velocity profiles qualitatively agree with laboratory data
(Smith & Svendsen 1995, 1996). Due to the refraction of the short-wave forcing
to near-normal angles of incidence, the time-variation of the longshore motion is
not as strong as the variation in the undertow. In this direction the steady forcing
is dominant and causes the longshore velocity profiles to be pitched forward. This
slight deviation from a depth-invariant velocity profile is critical to the existence

of dispersive mixing, as was seen in the steady case.

As in the previous case, we have investigated the magnitudes of the quasi
3-D coefficients as a function of time and cross-shore distance. It is found that,
especially outside the surf zone, the magnitudes are much larger in this case than
in the previous (steady) case. This is due to the fact that the time-varying forc-
ing causes the IG velocity profiles to be more curved, which directly influences
the magnitude of the quasi 3-D coefficients. As before, the magnitude of these
coeflicients is also compared to the approximate values under the simplifying as-
sumption of depth-invariant velocity profiles below trough. It is shown that in the

approximation the quasi 3-D coefficients are significantly underpredicted.

Finally, the contribution of the quasi 3-D terms to the momentum equa-
tions is analyzed. In the cross-shore direction, it is shown that a number of quasi
3-D terms are locally significant around the breakpoint, where the infragravity

wave velocity profiles undergo a large change in shape. In the longshore direction,
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it turns out that the same dispersion term that was found in the steady case is
dominant over all other quasi 3-D terms. This is due to the fact that in this par-
ticular case there is a relatively strong cross-shore shear in the longshore velocity,

which is much larger than the other gradients in the IG wave velocities.

This dominance of one quasi 3-D term over the other is of course case-
specific. This implies that an assessment of the relative magnitude of these terms
should be performed on each individual case and that for particularly compli-
cated cases it is advisable to retain all terms in the equations, since they may be

significant locally in space and time.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this thesis, a depth-integrated, shortwave-averaged quasi 3-D nearshore
circulation model is developed. This model includes the depth-dependent long-
and short-wave velocity interactions which induce nonlinear quasi 3-D mecha-

nisms, and are important in the applications shown in this thesis.

In Chapter 2 the quasi 3-D equations were described. First, the depth-
integrated, time-averaged governing equations were derived. The depth-dependent
integral terms that occur in those equations were transformed into terms that are
functions of the depth-integrated quantities and quasi 3-D coefficients. The latter
require that the local, time-averaged momentum (or “velocity profile”) equations
are solved. In this thesis, the semi-analytical solution for the quasi steady state
was given, which is the leading-order term in the time-dependent solution of the
profile equations. The generalized quasi 3-D equations were shown to reduce to

the special case of a long straight beach of Svendsen & Putrevu (1994a).

In Chapter 3 the numerical model SHORECIRC was described. First, the
numerical integration method was described. An explicit second-order Adams-

Bashforth predictor, third-order Adams-Moulton corrector time-stepping scheme



was chosen, which is easy to code and has a wide stability range. The leading-order

truncation errors were shown to be of a dispersive nature.

The remainder of Chapter 3 was devoted to the development of accu-
rate boundary conditions, which are essential to the performance of a numeri-
cal model. For the artificial (“seaward”) boundaries we derived an absorbing-
generating boundary condition based on the Method of Characteristics, which is
capable of generating waves at a boundary while simultaneously absorbing any
outgoing progressive wave with a mimimum of reflection. In a number of formal
tests it was shown that this boundary condition induces reflection errors that are
limited to only a few percent of the incident wave amplitude for the full range
of angles of incidence and reflection, which is an improvement over the classi-
cal radiation (or “Sommerfeld”) conditions. Unlike those radiation conditions,
the present boundary condition allows simultaneous specification of an incident
wave train and absorption of an outgoing wave train at the same boundary, which
makes it particularly suitable for application on artificial oceanside boundaries in

our model or any shallow water model.

At the shoreline we developed a boundary condition that is based on the
principle of storage of volume. Cells at the shoreline boundary in the fixed numer-
ical grid are either inundated or drained as a result of the integrated flux through
the neighboring nodes. This simple boundary condition was shown to agree very
well with the one-dimensional analytical solution by Carrier & Greenspan (1958).
We found good agreement in the case of two-dimensional run-up of a solitary
wave on a concave beach compared to other numerical solutions by Zelt (1986)

and Ozkan-Haller & Kirby (1997).

In the final two chapters of this thesis, the model was applied to a number of

specific cases involving infragravity waves and longshore currents. It is emphasized
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that the use of the SHORECIRC model is not limited to these cases, but has been
developed so that it can be used to analyze nearshore circulation on any nearshore

bathymetry and under any hydrodynamical condition.

In Chapter 4 the SHORECIRC model was applied to the case of gener-
ation of infragravity waves (“surf beat”) due to normally-incident wave groups.
It was shown that the process of generation of IG waves can be characterized by
three external parameters: the relative slope steepness Sa, the mean short-wave
breakpoint location ;—;*:— and the breaking mechanism x. These parameters are re-

lated to the geometry of the problem and are an alternative to the five parameters

identified by Schéffer (1993).

The linearized version of the model showed excellent agreement with the
analytical solution by Schaffer (1993), which indicates that our numerical model
is sufficiently accurate. After separation of the incoming and outgoing 1G waves,
the respective envelopes were studied. The incoming long wave is shown to gain
considerable energy flux outside the surf zone due to the changing forcing. How-
ever, this increase is not nearly as fast as Longuet-Higgins & Stewart (1962)’s
steady state theory for bound waves suggests, which is an important finding in

the analysis of field data.

The energy transfer between the short waves and the IG waves was analyzed
using the terms in the linear energy equation. It is shown that a variation of the
above-mentioned parameters results in a local variation in the ratio of outgoing to
incoming wave energy, which may explain the seemingly inconclusive field evidence
on this topic. The value of the “reflection coeflicient” R can be interpreted as an
integral measure of the net transfer of energy to the infragravity waves as a result
of shoaling and breaking of the short-wave groups and their interaction with the

long waves.
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Extending the model to include the nonlinear terms showed the importance
of the steady set-up over the other nonlinear terms. This nonlinear version of the
model has been shown to agree well with the Kostense (1984)’s laboratory data

set and Roelvink (1993)’s nonlinear model.

In Chapter 5, the SHORECIRC model was applied to the start-up of a
longshore current and to infragravity waves forced by obliquely-incident wave
groups. In the former case, it was shown that a steady state in the cross-shore
direction is achieved on a relatively short time scale. The time scale to reach a
steady state in the longshore direction is much longer. The quasi 3-D dispersive
mixing term was seen to have a large influence on the shape of the horizontal
longshore current velocity profile. This mixing acts over and above the turbulent
mixing and causes momentum to be spread seawards from the surf zone. It was
also shown that, in the process of reaching a steady state, the current velocity
profiles develop a slowly-turning spiral shape. It is emphasized that the depth-

variation of the currents is critical to the existence of dispersive mixing.

In the second case for infragravity waves forced by obliquely-incident wave
groups the hydrodynamical conditions are no longer longshore uniform but are
longshore periodic, which means that more terms in the momentum equations are
significant. It was shown that the linearized model agrees well with the analytical
solution for the long-wave envelope by Schiffer (1994). Including nonlinear terms
corresponding to the 2-DH shallow water equations revealed that the nodes and
anti-nodes of the envelope shift shoreward. The quasi 3-D terms were seen to have
a significant influence on the long-wave envelope around the break point and a

lesser influence on the amplitude of the envelope elsewhere.

The calculation of the quasi 3-D coefficients requires that the infragrav-

ity wave particle velocity profiles be determined. These profiles showed that the
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time-varying forcing has a large influence on the cross-shore motion (“the under-
tow”). Outside the breakpoint, it was seen that the cross-shore velocity profiles
are slightly curved, while inside the surf zone they exhibit a strong curvature
which is typical for undertow. These velocity profiles qualitatively agreed with
laboratory data (Smith & Svendsen 1995, 1996). The time-variation of the long-
shore motion is not as strong due to the refraction of the short-wave forcing to

near-normal angles of incidence.

The magnitude of the quasi 3-D coefficients as a function of time and
cross-shore distance were also examined. It was found that, especially outside
the surf zone, the magnitudes are much larger than in the previous (steady) case.
The magnitude of these coefficients was also compared to the approximate values
under the simplifying assumption of depth-invariant velocity profiles below trough,

which was shown to cause significant underpredictions.

Finally, the contribution of the quasi 3-D terms to the momentum equations
was analyzed. In the cross-shore direction, it was shown that a number of quasi 3-
D terms are locally significant around the breakpoint. In the longshore direction,
it turned out that the same dispersion term that was found in the steady case, is
dominant over all other quasi 3-D terms. This is because in this particular case
there is a relatively strong shear in the longshore velocity which is much larger

than any other gradients of the velocities.

The relative significance of the quasi 3-D terms is case-specific. This implies
that an assessment of the relative magnitude of these terms should be performed
on each individual case and that for particularly complicated cases it is advisable
to retain all terms in the equations, since they may be significant locally in space

and time.
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6.2 Recommendations

In the future some of the shortcomings in the present SHORECIRC model
should be addressed. First of all, semi-analytical solutions of the time-dependent
local momentum equations should be developed in order to more accurately deter-
mine the IG wave profiles. This innovation might make a difference in the results.
It should at least show how good an approximation the quasi steady-state solution

is to the complete solution.

Secondly, a time-averaged model is no better than the short-wave driver
it uses. In most of this thesis a linear analytical solution for the radiation stress
variation is used. This has the obvious deficiency that it is based on a wave theory
which is not valid for breaking waves. There is also no feedback mechanism to
transfer energy from the long waves to the short waves, as was discussed in Chapter
4. In the comparison with Kostense (1984)’s data we used the energy equation
for the short waves as a short-wave driver. Because this includes such a feedback
mechanism, the use of this driver yields a more realistic prediction of the local
short wave heights, but in the calculation of the radiation stresses we once again
have to resort to linear theory for lack of a better alternative. A better short-
wave driver (such as REF/DIF, which also uses sine waves) should be used or

developed.

Another point to be addressed is the formulation of some of the parameters.
In particular, the expression for the eddy viscosity parameter v, outside the surf
zone is based on a single data set for turbulent kinetic energy by Nadoaka &
Kondoh (1982). Some additional measurements should be performed to better
model this critical parameter. A linearized expression for the bottom friction has
been used in this thesis. This can easily be replaced by a nonlinear formulation

but the real problem is the need for a general formulation of the friction coefficient
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in the case of waves and currents under an angle.

In the present form, the absorbing-generating boundary condition is capa-
ble of absorbing progressive waves at the offshore boundaries. An extension for
the case of waves and currents is outlined in Chapter 3.2 but not implemented in
SHORECIRC as of yet. Another deficiency is that the boundary condition cannot
treat non-planar waves, such as edge waves. In the analysis of “trapped” infra-
gravity waves at the shore, the model should be modified to enable this without

having to extend the domain too far offshore.

While the shoreline boundary condition showed good agreement with the
analytical solution of Carrier & Greenspan (1958) and the numerical solutions by
Zelt (1986) and Ozkan-Haller & Kirby (1997), it is not very robust. Especially
in the case of forced waves special care has to be taken that the calculation at
the shoreline nodes does not “blow up.” It is recommended that this boundary
condition be modified, perhaps following Brocchini & Peregrine (1996)’s outline

for the development of these types of boundary conditions.

Finally, we strongly encourage that this model be used in field data sim-
ulations. SHORECIRC has already been compared to Delilah 1990 and will be
applied in the analysis of the forthcoming Sandy Duck 1997 data, but its use

should not be limited to these data sets.
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Appendix A

DETAIL OF THE DERIVATION OF QUASI 3-D

INTEGRAL TERMS.

In this Appendix, we will give the detailed derivation of (2.67) from (2.62).

For reference, (2.62) reads

¢ A )V(” ¢ VAR C_l_
J=ho = J=ho 1o z Vi J=ho
¢ (1 =
(0) g B e
_ ./—hu Vig ./,-; E -/~h,, Fodzdzdz
+ VIUO) Qua + V(0) Que
The first triple integral in (A.1) reads
¢
= ©® / / Fydzde dz
—ha Jz Vi ho
If we substitute (2.56), repeated here,
At (0) A1 -0)
; U]dvﬁ ()V dvlﬁ
Fp = V] Oz + ():1:,), el 0z

into (A.2), we get

¢ W, - oV
L = Vx(l:) / ( (U]( £ + V= 18 + W
—ho z W ho

‘ =
Y gy dx.,
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The first term of (A.4) can be written as

_ {}}8 f
L = / m / Viy Jz. dzdzdz
¢
= / U) / / Vl(“} dzdzdz — )V
ho z Y 9.y
OV
= h Dﬂ‘f '5-1-‘;'

(A.5)

where we have used the fact that the gf is not a function of depth and where we

have used (2.63) in the last step.

The second term in (A.4) can be rewritten using the Leibnitz rule on the

inner integral as
VA

i = / / 1(3 dzdz dz
Vi

Loy

where V, is not a function of depth.

In the third term in (A.4),

: o a1/(0)
' y ¢ z
I, = f vo (Ll g‘ﬁ dz dz dz

—ho z Vi J=h, 2

the inner integral is irli'egra.l'.ed by parts, so that

¢ ¢1
L = f_h V2 [ — (W) VS(z) - W(=ho) V3 (=ho) -

z WV

V]ﬁ (;W d.’z) dzdz

We can substitute for the W terms from the continuity equation

ow 9V, oV,

0z ., d.,
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where we have approximated the total velocity V, by its depth-averaged value f/,,,.

Integrating this equation once yields

v,

W(z) = W(—h,) — =

L (ho + 2) (A.10)

At z = —h, we apply the bottom boundary condition

oh, Oh, - |
W(=ho) = =52 Vy(ho) ~ =5V, (A.11)
“oF g

We substitute (A.9), (A.10) and (A.ll) into (A.8), which then becomes

. ¢ 0) dh, - 0 (0
L= [ W] (dq« Vo (Vi (—he) = Vi) =
(0] 3 (?f/ & ({}} dV - 16
V5 (o + 2) 5T + /—h,, Vi d= 57 ) dedz (A.12)

Next, we will substitute (A.5), (A.6) and (A.12) into (A.2) so that

AV,
I] — Iﬂ + fn'; + JJrf: = hD”ﬁf‘a’Tﬁ‘
Lo |

8 118 z oh .
o [*1 ]9 0),;,,) _ oy g @) g
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L [ (G (W) - Vi) -

..+..

v© A R R\ A
Vig’ (ho + 2) 9z, o _h”Vw dz oz, dz dz : (A.13)
This can be rewritten as
A
L = hDgy——
: K Oz, +
s : l 0 z oh .
v [ v ([ vi9a) - v el as -
7 —ho & z dT'q —ho V;ﬁ Vl _.’E..), !
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v, (¢ (1
% . Vl((?)/ —1/1%)](?19 + z)dzdz +

Oz A
Wy ¢ (0)
e Lhoma z H/ VO dz dz dz (A.14)

Then, using the definitions (2.63), (2.64) and (2.65), this equation becomes

" o 9%
Ii = ;'-"Drw r')V + Gmg,,,V + (rza;j ¥ + hD %

dT"” dx Loy " 5:’:

(A.15)

Similarly, the second triple integral in (A.1) can be treated in the same

way (with e and f switched) and becomes

¢ ¢ z
I, = / VI(U) 12 F,dzdzdz =

— h-u z V AR }I-o

av, V. OV,
.r!l Dﬁﬁ, ) + C[ﬁaﬂf V -+ (lzﬁa (L)T’Y + h Dﬁrv () (Al())
Ly Oy

Using the results (A.15) and (A.16), and the definition (2.66) we can write
(A.1) as

I = Muﬁ—fl—f'z:

. av, oV, rr)‘V
Mg = B | Doy =Bk Ty —— £ 9 D5 =5 =
Oy dx. dz.,
“f # 1 v af/’)’
(Glaﬁ'\f . (Jl{fﬂ’v) Vy - (620-‘/* i Gzﬁa) 9. (A'l7)
]

which is (2.67), Q.E.D.
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Appendix B

ol

DERIVATION OF Q = C4(C—0) +

The relationship
Q=a(l-0+0Q (B.1)

is derived for a long wave in a slightly modified form adapted from Svendsen
(1974). Here ¢, is the celerity of the wave seen from a fixed coordinate system so

that
o =6 + U (B.2)

where ¢, is the wave celerity in a coordinate system moving with U, the uniform
current velocity. In order to be consistent with the notation in this paper, the
surface elevation of the long wave is denoted ( and we will use f to indicate
the time-averaged value over a long wave period. This relationship is valid for
any wave that propagates with permanent form in an ambient current and is not

limited to long waves or small amplitude waves.

We consider the conservation of mass for a control volume framed by one
fixed vertical boundary at z, see Fig. B.1, and one vertical section at z, = z,(t),
which is moving with celerity ¢,. This means that the surface elevation ¢, at z,

is constant in time.
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Figure B.1: Definition sketch of constant form wave on a horizontal bottom.

For this control volume the continuity equation reads

¢ Ca
/ (wy + U)dz — / ((uw+U) — ) dz =
—hg —ho

za OC = :
f Srd + ca (ho+ ) (B.3)
where the u,, is the (long) wave component, and @ = u,, + U. We define
¢
Q = (uw + U)dz (B.4)
and choose z, such that
Ca
/! Uy dz = 0 (B.5)
We finally assume that the wave propagates with constant form, which means
that
¢ ¢
—_— = — b B.f.
ot = “Bg (B.6)
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Substituting (B.4), (B.5) and (B.6) into (B.3) yields

Q = Cg (C == Ca) + U U"*a =+ Eu) (BT)

Taking the time-average over a long wave period of this equation yields

Q = Gy (E . En) = U(ho -+ (,:u) (BS)

which can be used to eliminate the (,-term in (B.7), which yields

Q=cal-0+0Q (B.9)
Q.E.D.

It is emphasized that the only real assumption used in deriving this ex-
pression is that the wave is of permanent form. No assumptions about the height
or shape of the wave have been used. For completeness it is also noted that the

time-average of (B.4) yields

- ' : _
0 = /h wwdz + Uho+0) = Qu + U (ho +0) (B.10)

where @), is the wave-induced mass flux. This means that strictly speaking 5

includes an ambient current and the wave-induced mass flux.
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Appendix C

DERIVATION OF LONGUET-HIGGINS AND
STEWART (1962) BOUND WAVE GROWTH.

In this Appendix, we will redo Longuet-Higgins and Stewart (1962)’s deriva-
tion of their Eq. (5.6) because of some typos in their paper (which did not influence

the final result).

From (4.11)

1 S _
s i) . 0.1
plghs — &, ()

vl

L]

we can write the amplitudes as
l"f
> ]- *5.1!:1:

AR R ... (N (2
Tihe — 3 L

In the denominator, we can write the radiation stress in terms of the energy flux

F c¢g and we can express the denominator in terms of p to yield

oo L Ee (2 — 2) (C.3)

9 tanl
pghy — ghon?=2E

Expanding n, ¢, and tanh g in terms of p and keeping only the lowest order we

have
& = _l"-‘?“ﬂa%(%~ Luto(uh)
& P gho(p* + O(p?))
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Ee 1

3

= —= O(p
2 p wghip (1)
3 Ec, 1

S (C.4)

where the energy in the short waves £/ = %pg H? and where in the last step we

have made the lowest order substitution from the linear dispersion relation
wh, = gptanh p = gp* + O(p*) (C.5)

in order to eliminate the y term in the denominator. From (C.4) we can see that
outside the surf zone, where the energy flux E ¢, is constant, we have

- 5

(i o ho® (C.6)
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