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ABSTRACT

The nonlinear fwo-line shoreline model has been developed to expand the
linear two-line shoreline model developed by Dalrymple (1997). The purpose of
this study is to explain the migration of sand waves that have been observed
in the field. To this date, there is no satisfactory physical explanation of this
phenomenon. The above two-line models account for the effects of wave refraction,
which was not considered in the original two-line model developed by Bakker
(1968b). In the nonlinear model, the wave focusing effect will also be considered

under the assumption of straight wave rays.

Extensive physical model tests were performed in a spiral wave basin to
verify numerical results. Test results are included for the case of a single beach fill
and three beach fills. By conducting bathymetry surveys of complete sets of three
dimensional data for both cases were acquired. In order to measure the rate of
longshore transport, the single groin method was used to trap all sediment moving
along the shoreline. The wave period, the root-mean-square wave height, and the
incident wave angle with respect to the radial direction were measured using two

wave gauges.

Numerical results for the nonlinear model were verified using the experi-
mental results, the linear model, and field observation data. For each comparison,
a variety of sensitivity analyses were examined. These included using a range of

incident angles, different inshore and offshore depths, different beach slopes, and

X1X



different types of initial contours. For the initial contours in this study, the soli-
tary sand wave, a single trapezoidal beach fill, and periodic beach were adopted.
Finally, the nonlinear model was applied to the simulation of the case of sand

hump migration at San Onofre, California.
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Chapter 1

INTRODUCTION

The shoreline represents the boundary between the ocean and land, and it
is changing position constantly. Considerable erosion due to both the long term
effects of normal wave conditions and short term effects, such as hurricanes and
storms, occasionally threatens people’s lives along the coast, whereas accretion
sometimes causes either functional problems for coastal structures or navigational
problems due to the change of the water depth. Frequently, the effects from arti-
ficial modifications to the shore provide unexpected erosion or accretion, altering
people’s property. It is extremely important to predict shoreline changes before-
hand in order to avoid both physical and economical damage. For instance, the
estimation of the lifetime of the project is critical for beach nourishment. In the
past, there have been numerous studies of this issue; however, due to difficulties of
predicting the sediment dynamics in the surf zone,the shoreline prediction models

lag far behind the models for wave propagation problems.

The term “sand wave” has been used to describe a changing shoreline with
wave-like motions usually resulting from some perturbations in the longshore di-
rection. Any unbalance of profiles in both cross-shore and longshore directions
will cause sand movement to return them to the equilibrium profile. One might

observe wave-like motions of sand during these processes. In this chapter, some



observations of sand waves in the field will be introduced. Then, existing con-
tour models will be briefly reviewed. Finally, the object of this study will be

summarized.

1.1 Previous Related Studies
1.1.1 Observation of Sand Waves

Some observations of migrating sand waves have been reported. There are
two types of sand waves: persistent waves and a single wave. Persistent sand
waves have been observed at very long beaches. They are possibly caused by a
periodic sand supply, like periodic sand bypassing. The other type of sand waves

can be seen at artificial shoreline modifications such as beach fills.

Bruun (1954) observed large undulations in the shoreline position migrating
along the shore in the direction of the littoral drift on the Danish North Sea
coast. Wavelengths of those sand waves were between 0.5-2 km and wave heights
were 60-80 m. Bakker (1968a) observed a kind of sand wave with a period of
about 60 years that seemed to be migrating with a velocity of about 1/6 to 1/3
km /year. Verhagen (1989) defined sand waves as longshore wave-like movements
of shoreline measured in a horizontal plane. He found that they had a celerity of
50-200 m/yr, a period of 50-150 years, and an amplitude of 30-500 m along the
Dutch shoreline. There is one more recent example for this type of sand waves in
Southhampton Beach, Long Island, New York. Eleven longshore sand waves have
been identified along Southhampton Beach and have an average length of 0.75 km

and an amplitude of 40 m (Thevenot and Kraus, 1995).

On the other hand, there is some evidence of cases of accretion and erosion

waves. For instance, the removal of the laydown pad at the San Onofre Nuclear



Generating Station in Southern California in late December 1984 gave coastal
engineers an opportunity to investigate a massive sediment injection on a smooth
shoreline (Grove and Sonu and Dykstra, 1987). They observed erosional and
accretional changes of profiles at some fixed locations at downcoast. They noted
that the changes in the profiles seemed to strongly depend on the distance from
the site. Furthermore, they stated that the speed of migration of the crest of the
hump was extremely slow, averaging only about 2 m/day or less than a kilometer
a year, and the decay of the size of the crest was extremely rapid, diminishing
by one half every 300 days. Inman (1987) found the diffusion coefficient for the
accretion wave at San Onofre to be 2 x10™*m?/sec, and velocities to range from
0.6 to 1.1 km/yr. To this data, no satisfactory explanation for the propagation of

sand waves exists.



1.1.2 Existing Contour Models

There are two general types of shoreline models that exist. Contour model
follow the movement of shoreline contours, and grid models examine the change of
bathymetry in various types of grids. The one-line model is the first and simplest
contour model and was presented by Pelnard-Considere (1956). It is also most
widely used for practical beach projects since it is relatively easy to handle. The
one-line model is a simple diffusion equation which describes the time history of

the shoreline position along a coast:
0y _ %%
ot dx?
where (G is the shoreline diffusivity, y is the shoreline position in the offshore

direction measured from the instant baseline, « is the longshore position and ¢ is

time.

Solutions to the diffusion equation are both mathematically and physically
well-established, so that after providing appropriate initial conditions, boundary
conditions and some physical parameters, it is easily solved either numerically
or analytically. For instance, Le Mehaute and Brebner (1961, cited in Dean and
Dalrymple, 1997) obtained periodical solutions with the initial shoreline, y(z,0) =
B cos Az. Here A is the longshore wave number of sand waves and B is the initial

amplitude of the sand waves. Assuming the periodic solution in « to be:
y(z,t) = f(t)cos Az,

They obtained the following solution:
yla,t) = Be~ "t cos Az

This solution, which has a periodic shape in the longshore direction, how-

ever, just represents a temporally decaying solution.
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One of the other solutions was a progressive wave solution examined by

Bakker (1968a). His solution was:

y(z,t) = Ae~ V75" cos(d%w — ot)

where o is the sand wave frequency and A is the initial amplitude of the sand
waves. This solution describes propagating waves with decaying amplitude. Un-
fortunately, the decay of the waves is extremely rapid compared to their very slow
propagation. The waves almost disappear after propagating approximately one

wavelength. Therefore, this solution also can not explain migrating sand waves.

The one-line model describes only one of the contours and assumes uniform
equilibrium profiles along the coast. Several additional assumptions were made
in the model such as no current, constant wave direction, small angles of wave
incidence, and a linear relationship between the angle of wave direction and the

alongshore transport rate.

The two-line shoreline model was originally introduced by Bakker (1968b)
to overcome some weak points of the one-line model. One of the assumptions
for the one-line model was a uniform equilibrium profile along the coast. In other
words, Pelnard-Considere assumed that subaqueous profiles always remain in their
equilibrium state. Therefore, he only had to follow the one line, the shoreline, and
still be able to predict the position of all others. However, in practice, profiles are
not always uniform along the coast, especially in the vicinity of coastal structures
such as groins, jetties and breakwaters. Beaches upcoast and downcoast usually
have different profiles, that is to say, steeper profiles upcoast and milder profiles
downcoast. Most of sediments ideally trapped by groins are accumulated on the
upcoast side of the groin, while most of the erosion occurs on the downcoast side

of the groin. The assumption of equilibrium profiles gives us a progression of
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the shoreline at upcoast locations and a recession at downcoast locations. The
contours of these profiles are assumed parallel to each other in the one-line model,;
however, in the real world, the bathymetries do not change at offshore locations
beyond certain depth. This depth is usually called the depth of closure. As a
result, the upcoast profiles develop a steeper slope than their natural equilibrium
and the downcoast profiles develop flatter bathymetries. This kind of bathymetry
can be generally found around coastal structures and is not explained by the one-
line contour model due to the assumption of parallel contours. Further, other

hydrodynamic system can cause even more complicated bathymetry.

Bakker’s two-line model improved some of the one-line model’s limitations,
introducing two contour lines at the inshore and offshore rather than just one
contour line and allowing his model to take into account cross-shore sediment
transport between the two contours. He defined the depths of the two contours
as Dy and Dy + Dy, respectively, and made two sections. Due to the cross-
shore sediment transport between the two contours, the two mass conservation
equations from each section were coupled together. Taking the x-axis as the
shoreline, positive in the downstream direction, and with the positive y-axis in
the offshore direction, he defined the distance of the inshore and offshore contours

from an arbitrary baseline as y; and y, , respectively.

These are Bakker's governing equations of two-line model:

pdn_ 00
9t ~ 7T B
dy2 0Q
Dt = gy —
2 ot u oz

where )y and @) are the longshore transport at each section and g, is the cross-
shore transport. Notice that y; in these equations is different from y). The two
are related by y, = y) — w where w is the horizontal distance between the two

depth positions Dy and D; + Dy at equilibrium.
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Onshore Transport
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Figure 1.1: Definitions of Bakker’s model

In addition to these equations, an equation for the cross-shore transport,
¢y 1s needed. The basic idea for Bakker’s approach is that any perturbation in
the spacing between the two contour lines from their equilibrium separation, w, is
countered by a tendency to recover the equilibrium spacing. Bakker also assumed
that cross-shore transport was linearly related to the difference between the spac-
ing of two contours and the equilibrium distance by the dimensional transport

constant O}, which is specified at each site.
gy = Cy(y1 — y3 +w) (1.1)
Offshore transport occurs if y; —y5 < w and onshore transport occurs if y; —y5 > w.

Next, longshore transport can be written as follows:

iy
Qi = @i, 1 oz
dy
Qz = Qz,,—ﬁ?za—z
L



where )y, and (),, are background transport rates for shorelines where the angles
of the shoreline normal with respect to y-axis, 71 and =, are zero, and the second
term represents the transport induced by the alongshore slope of the shoreline
assuming a linear relation between them, as assumed by Pelnard-Considere. The
terms ¢ and ¢, are linear constants which are determined by the site or field

conditions.

Substituting @), @2 and ¢, into the original governing equations, he ob-

tained:
dy 0%y
D, d—tl = —Cy(y1 —y2) + @1 33:21
dy: 0%y
Dza—: = Cy(y1 —v2) + @2 (91:22

Bakker introduced new variables as follows:

y = (Diyr+ Daya)/D
C,,Dt)
Dy D,y

ye = (y1 —y2)exp(
where D = Dy + D,.

Assuming further that =1, which means that contours with the same

curvature will be filled at the same rate and the relative profiles will not change,

he finally obtained these two simple diffusion equations:

dy 0%
% = Yo
Y. %y,
ot Gé’:}rr"a

with G = (¢1 + ¢2)/D.

Bakker (1968b) solved these equations numerically with boundary condi-

tions for a single groin and for several groins. Hulsbergen, Bakker and Bochove



(1976) verified Bakker’s results by conducting a laboratory experiment, and ob-
taining quite good agreement under a well defined wave field. On the other hand,
for some cases which had more complicated wave fields, Bakker’s model didn’t
show good results. They reported that it would be neccesary to include the ef-
fects of refraction, diffraction and rip-currents in order to improve the applicability

of the model.



1.2 Object of the Present Study

In the nearshore zone, effects of bathymetry on wave fields can be tremen-
dous and can cause extremely complicated sediment dynamics. One of the physical
phenomena, which can introduce changes in wave fields, is wave refraction. Since
longshore transport rates are strongly related to angles of incident waves, wave

refraction can cause dramatic changes in sediment dynamics.

In this study, effects of wave refractions will be added to Bakker’s two-
line shoreline model. This study consists of two parts : a laboratory experiment
and a numerical analysis. In Chapter 2 the development of the theory of both
the linear and the nonlinear two-line model with refraction will be explained.
Procedures and results of the experiment will be discussed in Chapter 3. The goal
of the experiment was to determine if the numerical model was giving reasonable
results. Since there are not so many sources of field data regarding sand waves,
the laboratory experiment was very important. Then in Chapter 4 results from

the numerical model will be examined by using the experimental data and some

field data.

To summarize, the main goal of this study is to develop a nonlinear two-
line shoreline model that has more applicability to general situations with fewer
assumptions and to verify its results by conducting a laboratory experiment and

examining some recent field data.
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Chapter 2

DEVELOPMENT OF THE TWO-LINE MODEL WITH
REFRACTION

The two-line shoreline model developed by Bakker does not account for any
water wave refraction; however one might argue that wave refraction can change
wave directions dramatically between two contours. In this chapter the theories
of both the linear and the nonlinear two-line shoreline model with refraction are
explained and the dimensional analysis of the linear model is performed to verify

the importance of each parameter.

2.1 Definition of the Geometry

Figure 2.1 shows the definition of the geometry in this model. One can
choose two arbitrary depths Dy and. D, so that ¢, and y; contours can be defined
which correspond to Dy and Dy 4+ D, , respectively by using the concept of equi-
librium profiles. Figure 2.2 shows the definition of the angles used for the theory.
As in Bakker’s model the (z,y) rectangular coordinate system is adopted. 6 is the
angle of wave incidence at offshore with respect to the y axis, and v is the angle
of the shoreline normal with respect to y-axis. Consequently, § —~ represents the

wave angle with respect to the shoreline normal.
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Figure 2.2: Definition of angles, plan view
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Let’s define the wave number at an offshore location as k, and the wave
numbers at the y, and y; contour are ky; and ki, respectively. Also, define the
offshore angle of wave incidence with respect to the y-axis as §,, that at the y;
contour as ji3 and that at the y; contour as i, as shown in Figure 2.3. Assuming
that the y; and y, contours are locally straight, one can apply Snell’s law across

the y; and y, contours:

kgsiﬂ(,{tg'—"ﬁ) - k;SiTl(,U.]—")/]) (21)
kosin(é, —ya) = kysin(pa —72) (2.2)

These equations can be interpreted using the refraction diagram shown in
Figure 2.4. 6, is the wave angle at the y, contour which becomes y; as the wave
passes over the y; contour. In Figure 2.3 6;(z) is written as po(x — A¢). Assuming
that the only known wave angle is é, and it is uniform in the longshore direction,
one can obtain pg(z) using Snell’s law. However, it is still necessary to find the
spatial lag A€ in the spatial argument of p2 to obtain py(z) from pa(z). In other
words, the angles obtained by Snell’s law along the same wave ray both at y; and
at y, usually do not have same spatial argument due to their oblique incidence.

Therefore, it is important to take into account this spatial lag.

Using trigonometry, 7, can be expressed as follows:

dy
dz

I

tan v,

Ay

Vdzt + dy? \/1 + (%Ef)z

s
v2(z) = arcsin (———‘29-—) (2.3)

1+ (522

sinyz(z)

or,
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Likewise, for the y; contour

iju_l
7(z) = arcsin | ——2—— (2.4)
VI+ (3

Straight Wave Ray

| y2 contour
y=fa(x)

ko+AE) Y1 contour

. | B y=fi(x)
Real Wave Ray

e

0

/i
/

o X ot AE

Figure 2.5: Straight wave ray assumption

As mentioned before, it is very important to determine the relationship
between py and py. However, the geometries between two contours are unfortu-
nately usually unknown or only partially known. Therefore, assuming a very mild
change in the bathymetry, one might assume a straight wave ray from the y, to

the y; contour. By making this assumption, one can derive the next relation.

61(zo + AE) = pa(z,)

Since the waves are traveling obliquely, there is a spatial lag A¢ in the
longshore direction. So, the next question is how to obtain the A¢. First, the

(z,y) rectangular coordinate system is adopted with the instantaneous origin O as



shown in Figure 2.5. Next, let A be the intersection of the ray with the y, contour
and let B be the intersection of the ray with the y, contour. Also, suppose the two
contours are expressed as the functions: y;, = fi(2), y2 = fa(z). The z values at
A and B are z, and z, + A€, respectively. The angle of the wave ray line passing

through both A and B with respect to the y axis is pa(z,).

From the geometry,
dz

d_y = —tan pa(z,)

Integrating this equation with respect to y,

z = —tan py(z,)y + C

Using one known point, A (z,, f2(z,)), evaluate the real constant C:

C = z, + tan py(,) f2(z,)

Back substituting this into the original equation and rearranging, one can

get Eq. 2.5. This is the equation for the straight wave ray.

2 = tan ua(@0){ folwo) — ¥} + 20 (2.5)

Finally, substituting the values at B(z, + A€, fi(z, + Af)) into Eq. 2.5,

the next implicit equation for A¢ can be obtained.

A¢ = tan pa(xo){ f2(zo) — fi(zo + AL)} (2.6)

To solve this implicit equation numerically, an iterative technique such as

Newton-Raphson technique can be used, as long as fi{(z) exists.
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After obtaining the relationship between i, and 61, the implicit relationship
between pi; and g will be established by applying Snell’s law from y, contour to

¥y contour as shown in Eq. 2.1.
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2.2 Cross-shore Sediment Transport

The following cross-shore sediment transport equation was first proposed
by Moore (1982) and later modified by Kriebel (1983), and Kriebel and Dean
(1985), which is based on the disequilibrium of the energy dissipation within the

surf zone:

Qy = K(D - D.)

where @), is the cross-shore sediment transport, K is the transport rate coefficient,
D is the actual energy dissipation per unit volume, and D, is the equilibrium
energy dissipation. This equation implies that, if D > D,, then destructive forces
act more strongly than equilibrium forces so that erosion occurs and sediment
moves offshore. Positive (), means offshore transport, while negative @), is onshore
transport. D can be calculated by expressing the energy dissipated by the control
volume, which can be taken over the depth with unit width in the longshore
direction and cross-shore distance Az, as the net energy flux from the control

volume:
Fo+ Ac) - F(a)
hAz

where h is the average water depth over the distance Az. Taking a limit of this

D=

equation, one can obtain:

e O
h II. 8.’]’:

Using linear wave theory one can obtain:

T ™

L Ll

B =

where 4 is the specific gravity of water, & is the dimensionless breaking index, ¢
is the acceleration of gravity and h is the depth of water. To calculate D,, the

equilibrium energy dissipation, one can use the equilibrium beach slope for %

18



Moore (1982) determined the value for K empirically by performing curve
fitting between a numerical equilibrium beach profile model based on this equation
and the results from both large scale laboratory tests and field data. He found

the best-fit value for K would be 2.2 x 10~%m*/N.
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2.3 Longshore Sediment Transport

The waves with incident angles different from zero can cause longshore
sediment transport due to the longshore component of their energy flux. The
energy flux per unit length in the longshore direction can be written as Eq. 2.7

using geometric relations (Dean and Dalrymple, 1997) .

P, = (EC,)ysin by cos 0, = -i%ngng sin 20, (2.7)

Here (£C,); is the energy flux passing between two wave rays that have a unit
spacing at the breakerline, Hj is the breaking wave height and 0, is the wave

incident angle at the breakerline.

Longshore Component

0 \ | ¥

Figure 2.6: Longshore component of energy flux

In a similar manner, the longshore sediment transport rate can be written

as follows:
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B KPy
p(s —1)g(1 —p)
where p(~ 0.3 or 0.4) is the porosity of the sediment, s (~ 2.65) is the specific

(2.8)

gravity of sand, and K is defined as the longshore transport coefficient ranging
from 0.2 (Kraus, 1980) to 2.2 (Caldwell, 1956, cited in Dean and Dalrymple,
1997). The determinations of the values for K were all empirical. Further the
shallow water approximation is taken as C; = v/ghs and the relationship between
the breaking wave height and the water depth at the breakerline is assumed to
be Hy, = khy. Here hy is the water depth at the breakerline and & is the breaking
index usually taken as 0.78. Substituting Eq. 2.7 into Eq. 2.8, one can obtain a

new expression for @) as in Eq. 2.9.

Ky/g/sH*
"~ 16(s — 1)(1 — p)

Q sin 20, (2.9)

Letting the coefficient of sin 260; in Eq. 2.9 be C, and introducing angles é

and v from Section 2.1, () may be written as,

Q = Cysin2(6 — ) (2.10)

with
K\/g/kHES
~16(s — 1)(1 —p)

where 4 is once again the wave angle with respect to the y-axis and v is the angle

Cq

between the shoreline normal and the y-axis, which is same as the slope of the

shoreline.
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2.3.1 Conservation of Mass

In this theory the conservation of sand was applied to two sections, each
with a longshore width of Az, and they are encompassed by the two contours and
the shoreline. Figure 2.7 shows idealized control boxes and the instant sediment

flows. The next set of equations represents the conservation of sand for the control

boxes.
oy
Az D GJ; = @Q1-— (Q1—|— i z) — Q Az
9, d
AeD, ;; = 0, (Qz-}-—Q—zAr)-i-QJAf (2.11)
Rearranging Eq. 2.11,
Iy 0
By ot —@ - Oz
dya ()Qz
Dg'—é‘i—' = 0~ o (2.12)

where

Q, = K(D-D.,)
(oF
Q2

Il

Cysin2(p1 — 1)

Il

Cysin2(pg — 72)

22



Control Box

i ys

Q> —= —F Q,t g_gle
T Y1
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A X

Figure 2.7: Planform view of idealized control boxes and the instantaneous sed-
iment flows
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2.3.2 Linearized Model

Dalrymple (1997) linearized these equations by assuming that both the
incident wave angles and the slope of the shoreline were sufficiently small. His
linearized two-line model used Bakker’s expression for the cross-shore sediment

transport:

gy = Cy(w — y3 4+ 1)

Again, ¢, is positive if y5 — y1 < w which means the contour spacing is
smaller than its equilibrium spacing, and offshore transport will act to return the
profile to equilibrium. Here the definitions of the shoreline positions are shown in

Figure 2.8 with y, = ¥} — w.

Equilibrium State

y1 contour

Y1

Base Line

Figure 2.8: Definition of the shoreline positions

Dalrymple expanded Eq. 2.2 using the trigonometric relationship,
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k, sin 6, cos v, — k, cos 6, sin vz = kg sin 15 cos ya — kg cos jig sin 7y

He first derived the explicit expression for ps using these assumptions.
Approximating the trigonometric functions siné as cosé to ¢ and 1, respectively,
the preceding equation was rewritten.

koo — koya = kapa — kaye

Ayl

Since, 4, can be also approximated as v, ~ -2, the above equation can be
written as the following equation for pi,.
ks k, | Oy}
=6 - )2 2.13
2 -1'72 ot ( kz) O ( )

Dalrymple also assumed straight wave rays from the y, contour to the y,
contour which were spaced y) — y; apart. Then he expressed the relationship
between 6; and p, as:

61(21) = pa(a1 — Af) (2.14)
where

&I :$(J+A£

Aé = (yy —y1)sin pa(z,) = (w + y2 — Y1) sin pa(z,) R wps(w,)

Expanding pia(z1 — A¢) about z = #, using a Taylor series:

_ O
51(-'171) = ;‘-*2('»?»‘1 = Af) = .“'2(371) = EH

Oz |, ke
1L
~ pg(z) — wpg(w,) % (2.15)




On the other hand, expanding p,(z, + Af) about = = z,,

(’),ug

pa(z1) = pa(zo + AE) = pa(z,) + ¥ A+ -
Solving for py(z,),
pale0) = palen) — 22| A (2.16)
da |,
At z = zy using Eq. 2.13:
ko K, 05 ‘
pa(z1) = kzé°+( - L_z) B . (2.17)
Taking the derivative of py(z) at = = z,
a’(a‘.z . ko Q‘J‘y;
B, =08 B, 2

Substitute Eq. 2.17, Eq. 2.16 and Eq. 2.18 into Eq. 2.15.

O1(zy) = po(zq) —w (;sg(a:]) =] A

. ks 0Py
~ ﬂz(.’lﬁ]) - ‘[ﬂ,{e‘.g(:ﬁl)(l e Y2

kz 0z? .
ko . ko, OV} ko 9%y
~ — —8 l——) = - 5
pa(zy) — w (kz oy by’ Bz w1) (1 kg) da? |,

From this expression Dalrymple obtained the approximated equation for

61, Eq. 2.19.
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. 2
Sl gl g
k ks

2

L (2.19)

Further, he expanded the equation of Snell’s law on the y; contour, Eq. 2.1,

in the same way as that of the y; contour and got the next relation.

ks ks
Bl = le'z—*—(l_ k;)

This equation is valid on the same wave ray. By using Eq. 2.14, the following
equation is valid at the same longshore position.

ko ko

= £161+(1_E)

Using Eq. 2.19 and Eq. 2.13 and approximating v, = %”;1, Dalrymple ob-

tained the following equation for s.

ks [k, ko Oyh  ky B 03] L o) 3\2 dy1

= — | =6+ (1 = 2)=2 —w—4,(1 — k)da ( P

k‘] .Ing ;12 dT' gt-z (2‘20)
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Moving on to longshore transport both at y; and at Y2, (2 can be approx-

imated as follows:

Q2 = Cygsin2(pg —y2) = 20, (2 — 72)

2 C[k5+( .

9yy _ Oy,
dx dx

.r(ug‘ f;"g
&, ko Oy,
R 26”25 20, — ks df

Taking the derivative of this,

Qs ko 0%yl B
or 20"5 oz?
Here, Dalrymple defined:
Ta ko
g2 = Zc’t,rk_z

Similarly, for @)y,

Q1 = Cysin2(py — 7)
~ 20,(pp1 —m)

ks ko Oy, ko

ko -
= 26:3 [kl (Eén + ( — k_- B'L w‘k_gén(l

Taking the derivative of this,

k. Ko 0%yl (
kg 87‘

%”20%(' fz)‘;?z 20w 0(1_;’:_:)%?35_
Here, he defined the following terms:

@ = QCG,%

q = qh (1 _ %)

gm = 20w ;:} 8o(1 — i_z)

» ks 621!1_

rqE Ox?



Finally, substituting expressions for 0Q),/0z, 0Q;/dz, Q, into the govern-

ing equations Eq. 2.12, one can obtain the next set of equations.

Iy , Oy, Py, | Py -
Di—= = =Cw-ya+n) = &35 timss + @ 52 (2.21)
(f)yf azyr
D=2 = Cylw—yr+y)— 57 (2.22)

By solving these two equations for y) and y;, one can examine the change
in time of shoreline position. Dalrymple (1997) developed a numerical model and

obtained the solutions to this model. The results will be presented in Chapter 5.
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2.3.3 Dimensional Analysis

To determine which parameters are more important in the linearized equa-
tion, the dimensional analysis was performed. In this analysis, to avoid confusion
the symbol ¥ was replaced by y3. (Actually, any derivative of y, would be same as
that of y; due to the relationship y, = v}, —w.) Combining Eq. 2.21 and Eq. 2.22,
one can get Eq. 2.23.

9%y, Ay, %y,
Dlpzw + Cy(Dy + Dz)g — (q2D1 + q‘DZ)ata %
0%y, 9%y, *ya ys

—Coln + @) 55 + G = —=02" = quCy—— g8 T 090255 =0 (2.23)

oz

First, it is necessary to introduce three nondimensional parameters:

2=ke; y=ky:t =ot

where k is the wavelength of sand waves, o is the wave frequency of sand waves

and z', y', t' are dimensionless. Substituting these into Eq. 2.23,

9"y, + Cy(Di+ D2)8yy  k(g2D1+ uD2) 0%yy  Cyk*(q1 + ) 0%y,
otr? oDy Ot aDyD, ot'dx'? o:D\Dy 0z

Cyk*q 0%yy  K’quCy Pyy | K'qiqe 'yy

02D Dy 0z 02Dy Dy 02 02Dy Dy dz't

[Further, using following additional nondimensional parameters:

k‘qu . ’1‘72(}'7' Lot kSQm A

o2 Y
o k 0 . ' C*-y

T - -': W=
q] _-U'D*I 1q'r O'D] y 9m (TD] $q2 O'D], Y UD]
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the nondimensional equation finally becomes

Dy, (D O0yy Dy, ) R Dy s %y,
or +( +l) ¥ (D2 ©th) g "2_(33) Cyle: — 0 + B 5

D] ds D] d4yr
(D),) ng:d 73 + (D_g) Q;q; 6:!:’: =

As a result, it was found that the importance of terms strongly depends

on the ratio of the two depths, Dy and D,.
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Chapter 3

LABORATORY EXPERIMENT

To verify the results from numerical models, several experiments were per-
formed using a circular basin at the Center for Applied Coastal Research at the
University of Delaware. This chapter discusses the procedure of our experiments

and their results.

3.1 Circular Wave Basin and Spiral Wavemaker

Our unique circular basin was designed for the study of littoral processes
because it can simulate an infinitely long beach in the laboratory eliminating end
boundary effects associated with conventional rectangular basins. Dalrymple and
Dean (1972) developed the linear spiral wavemaker theory for this type of basin
using small-amplitude assumptions. For this study, to predict wave angles in the

basin, the linear spiral wavemaker theory will be used.

The circular wave basin is 8.53 m in diameter and 0.61 m in height. It has
a spiral wavemaker at its center which is mounted on a pully-driven shaft. The
spiral wavemaker consists of a steel drum 90 cm tall and a 57.4 cm in diameter.
The rotation axis is offset 3.81 em from the drum center. When the drum is
rotated about this axis, regular spiral waves are generated (Dalrymple and Dean,

1972). Figure 3.1 shows the plan view of the basin.
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Figure 3.1: The plan view of the spiral basin
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3.2 Equilibrium Beaches

For experiments, equilibrium beach conditions were needed. The most
common way to express equilibrium profiles is to use the two-thirds power law,
hy) = Ay?/3 which was originally introduced by Bruun (1954). Later, it was
verified by Dean (1977), who examined more than 500 profiles on the US coast.
Here, A is defined as the profile scale factor and is a function of the grain size.
According to the sieve-analysis performed by Suh (1986), the mean size of the
sand in the spiral basin is 0.41 mm (medium sand) and the standard deviation is
0.625 (relatively well-sorted). Refering the relationship between the profile scale
factor A and the diameter of sediments (Moore, 1982), A can be predicted as

around 0.1.

Equilibrium beach profiles were constructed by generating waves of con-
stant size and period for several hours, until a survey showed insignificant change
in the beach profile. Figure 3.2 shows the temporal variation of the profiles at the
same location. Figure 3.3 explains the spatial variation of the profiles at the same
time. The plots indicate that profiles are nearly stable temporally at the same
location, while they have some spatial variations, especially in the offshore region.
These variations are difficult to avoid without the extremely careful construction
of beaches. However, the test area would be in the very shallow zones of less than
6 ¢cm depth. Thus, as long as the profiles remain constant in this region, it is
possible to say that equilibrium has been established af least locally. Due to the
short distance between the beach face and the wavemaker, relatively steep profiles

were observed at the offshore.

After establishing equilibrium conditions, the profiles were carefully mea-
sured. Dashed lines represent calculated equilibrium profiles using h = Ay§ with

A = 0.1, which was predicted by the size of sediments in the basin, in both figures.
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In the region shallower than 12 ¢m depth, they show very good agreement with

this value.

(=]

1] 5‘0 ‘";0 |‘5D 2(‘)0 250 300
Distance from the side wall (cm)
Figure 3.2: The temporal comparison at the tank center on September 13, 1996
(o) and September 30, 1996 (*). The dashed line denotes the calcu-
lated profile by h = Ay® with A = 0.1.
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Figure 3.3: The spatial comparison on September 30, 1996 at the tank center
(0), 30 degree to the right(*) and 30 degree to the left (+). The
dash line denotes the calculated profile by h = Ay® with A = 0.1.



3.3 Measurement Tools

A level bar specifically designed for this basin was used to conduct all
surveys. It crosses from the central shaft of the spiral wavemaker to the cinder
block side wall. At the center, the level is mounted on top of the shaft with a
circular cap so that it can rotate freely. At the outer wall, it is shaped like a

T-bar, both for stability and for easier adjustment of its position.

For horizontal measurements, the distance from the side wall was deter-
mined by a tape measure attached to the level bar, while for vertical measurements
a vernier attached to the level bar was used to measure elevations of the still water
surface and the beach profiles. The vernier can slide along the bar over almost the
whole tank radius. The level bar was capable of rotating around the center of the
basin while keeping a constant horizontal position so that almost the entire tank
could be covered by this equipment, excepting only a small range behind the steel
tower that supports the wavemaker drum. As a result, wave fields behind the
steel tower were rather different from those in other ranges due to the scattering
effect of the steel structure. However, for this experiment, only a half range in

front of the wavemaker was used.

Cylindrical coordinate system (r, , z) were established in the basin. First,
let the center of the basin be the origin and take the r-axis positive to front side of
the basin, which is opposite side of the supporting structure of the drum. Then,
mark standard reference points every 20 cm along the side wall where each 20
em arc corresponds positive 2.7 degree in right direction and negative in left.

Figure 3.4 shows an example of the mesh at test site.
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(Basin Front)

Figure 3.4: Example of mesh
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3.4 Wave Measurements

Two capacitance type wave gauges were used to measure the free surface
elevation and incident wave angles. The gauges were mounted on tripods using

the specially fabricated equipment and were located at certain points in the basin,

as shown in Figure 3.5.

i Basin Center

r1=0.95 m hl1=0.38 m

r2=2.65 mh2=0.12 m
r3=2.95 m h3=0.11 m

Basin Side

Figure 3.5: Locations of wave gauges

The gauges were calibrated at the beginning of each run. Two stepper
motors were used to move the gauges up and down by 1 cm increments and carry
out the calibrations accurately. The motors were connected to a PC through a
motor controller and an amplifier. The calibration operations were synchronized
by FORTRAN programs. Calibration ranges were from 3.0 cm below the still
water level to 3.0 cm above the still water level. At each of the 7 points data were
taken two times, then those were averaged to get the final data for calibration

CuUrves.
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Calibrations curves were made for converting the voltage data from the
wave gauges to free surface elevation data. The calibration curves were nearly

linear in each case. Figure 3.6 shows the results of the calibrations.
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Figure 3.6: Calibration curve fitting by results at r = 0.95 em (upper), ry =
2.65 cm (middle) and r3 = 2.95 em (lower).

The wave measurements were made at three different locations: ry =
0.95 m, ry = 2.65 m, and r3 = 2.95 m from the center of the basin, referring
Figure 3.5. At each location two wave gauges were set up to take data of the sur-
face displacement. The reason for the use of two gauges was that the calculations
of the angle of wave incidence were needed, using the time lag between the two
wave gauges. Locations were selected as one for offshore wave data, one for waves
in nearshore and one for between those. Due to both the period of waves and
the water depth in the basin, even at the center, waves were not in deep water.
According to the profiles from the survey, there was a change in the slope of the

bottom at approximately r, = 2.65 m where the depth was 12 ecm. Regarding the
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last location, it could be possible to be set up much closer to the shoreline, within
the surf zone; however, due to the unreliability of data in extremely shallow wa-
ter, the guages were set at r3 = 2.95 m where the depth was 11 cm. As a result,
the water depth and the angle of each wave gauge are hy = 38 em, ¢ = 30°,

hy = 12 em, ¢y = 20°, and hs = 11 em, ¢3 = 20°, respectively.

It was found to be better to use small angles ¢ to reduce error in the linear
approximation of the arc between two gauges. Since at r; = 0.95 m the distance
between two gauges became very small, there was a concern that wave scattering
from one of the wave gauge supports would affect the other gauge, thus a larger
angle, ¢, = 30°, was adopted only for this location. The sampling rate was 50 Hz
and the duration for each sampling was 200 sec. The first 40 second of time series
of water surface elevations at each location are plotted in Figure 3.7, Figure 3.4

and Figure 3.9.
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Figure 3.7: Time series of surface displacement at r = 0.95m at gauge | (upper)
and at gauge 2 (lower).
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Figure 3.8: Time series of surface displacement at r = 2.65m at gauge 1 (upper)
and at gauge 2 (lower).
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Figure 3.9: Time series of surface displacement at r = 2.95m at gauge 1 (upper)
and at gauge 2 (lower).
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Figure 3.10: Power spectra of surface displacement at » = 0.95m at gauge 1
(upper) and at gauge 2 (lower).

8
o
E
L
=
@
TO"Q 1 L L 1
0 5 10 15 20 25
Frequency (Hz)
10‘ T T T T
0
gw - Gage 2 b
&
E10™ .
=
@ 407 N .
-6
1 L L L L
- 0 5 10 15 20 25
Frequency (Hz)

Figure 3.11: Power spectra of surface displacement at r = 2.65m at gauge 1
(upper) and at gauge 2 (lower).
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Figure 3.12: Power spectra of surface displacement at r = 2.95m at gauge 1
(upper) and at gauge 2 (lower).

Next, a spectral analysis was made to determine wave periods and wave
heights. The data sets of surface elevations were transformed by using a first
Fourier Transform from the time domain into the frequency domain, then the
power spectra were plotted against frequencies as shown in Figure 3.10, Figure 3.11
and Figure 3.12. The peak frequencies and periods were determined from each
power spectrum. The peak period was T=0.98 sec, which seemed to stay the same

throughout the entire experiment.

The root-mean-square of the wave height is determined as follows. First,

the time-averaged specific wave energy per unit area is expressed as (Goda, 1978):

pg(n — no)? = pgfu S(N)df = pgm., (3.1)
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with

mo= [ S(f)df (3.2)

where S(f) is a frequency power spectrum and m, is a zeroth-moment of S(f). »
is the water surface elevation and 7, is an average of 7. So, ( — 1,)? represents a
variance of 5. On the other hand, the time-averaged energy per unit area based

on the linear wave theory would be LpgH? . Equating those two expressions we
8Py q g P

rms*

have:

-
pgmo = ZpgH;

TS

(3.3)

Finally,

Homs = 8m,

Table 3.1 shows results of wave heights for this experiment.

(3.4)

Table 3.1: Root-mean-square wave height
I{T"{!ls

Location

Gauge 1

Gauge 2

™

4.54

4.46

g

2.87

2.96

3.24

T3 2.82

The incident wave angle was also calculated at each location. Refering
Figure 3.13, let points A and B be the wave gauge locations and let O be the
center of the tank. The radii of both two points are the same, say, r. Define the
angle between line OA and OB as ¢. The distance between A and B is determined

by the geometry.

w
o
—

d:‘l‘rsiné (3.
2

Further, assuming the wave crest at t = ¢; and ¢t = {; + At, passes through

the point A and B respectively, the incident angles with respect to shoreline
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Wave Crest

Figure 3.13: Diagram for calculation of time lag

normal are approximately calculated as follows. Suppose At is very small and the
point A moves to the point A’ after ¢ = At. The radius of the curvature of the
spiral crest would be large enough to approximate the curve between A’ and B
as the straight line. Since travelling directions of waves are perpendicular to the
crest line, the incident wave angle # would be equal to ZABA' by geometry. The

angle # would be determined using the trigonometric relation.

Al
0 = arcsin — (3.6)
d
where A/ is the distance between A and A’. Af¢ would be calculated by examining

the time lag At of waves between two gauges,

C= %,——-»AE:CAt

CAt
d

f = arcsin

(3.7)
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Here, the phase speed should be calculated from dispersion relationship (Dean
and Dalrymple, 1984).
o® = gktanh kh
2r z_;-r

w=k=7

Finally, At needs to be determined. For this, the cross-correlation function
was used. The cross-correlation function between data from gauge 1 and gauge 2

is expressed as follows (Bendat and Piersol, 1986).

1 N
Culr) = 77— Y m(t)ma(t+ 1) 0 L7 % Mie
t=1

where N is the number of sample points from each gauge, 7 is the water surface
displacement data from gauge 1, 7y is the water surface displacement data from
gauge 2, 7 is the time lag between two gauges, T' is the peak period of the waves
(sec). fsis a sampling rate (Hz) and 7,4, is a sampling time which corresponds
to one wave length (i.e. one period). Since a time lag should be very small in
this case compared to the wave period, a domain of 7 would be limited. The
correlation function would be maximized when two data sets correlated perfectly,
which means that the 7 which maximized the cross-correlation function would be
the desirable time lag (Bendat and Piersol, 1986). In other word, if one of the
data sets is shifted by this 7, the most perfect match would occur between the
two records. Correlation function over a wave period in each case were plotted
in Figure 3.14, Figure 3.15 and Figure 3.16. Taking the maximum values for
each case, one can obtain the time lags. Then, using Eq. 3.7 the angles of wave

incidence could be calculated. Table 3.2 shows results of calculation for the time

lag.

Dalrymple and Dean (1972) expressed that the angle between the normal

to the wave crest and the radial direction as:
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.5 (3.8)

0 = arctan(
T
However, this equation does not take into acount the variable depth. Meanwhile,

Mei (1983) modified Snell’s law for circular depth contours,

kr sin @ = constant (3.9)

Table 3.3 is a comparison of the angles of wave incidence including the
results from other theories, which are the linear spiral wavemaker theory (Dal-
rymple and Dean, 1972) and the modified Snell’s law for circular contours (Mei,
1983). Since it was impossible to apply the modified Snell’s law to deep water
regime because the radial position at offshore, r, must be given. Instead, r; can
be taken as a reference point so that one can evaluate the constant value for the
modified Snell’s law by using the wavenumber and the wave angle at 7y from the
experiment. Comparison showed that the spiral wavemaker theory gave closer

results to the experimental result than the modified Snell’s law.
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Figure 3.14: Correlation function over a wave period at r = 0.95m.
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Figure 3.15: Correlation function over a wave period at r = 2.65m.
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3.16: Correlation function over a wave period at r = 2.95m.

Table 3.2: Calculation of time lag

r | & ? L | T C & d 7 0
(m) | (m) | (m=1) | (m) | (sec) | (m/sec) | (degree)| (m) | (sec) | (degree)
0.95 | 0.38 | 4.52 | 1.390 | 0.98 1.418 30 0.492 | 0.08 13.3
2.65  0.12 | 6.50 | 0.967 | 0.98 0.987 20 0.920 | 0.10 6.2
295 (0.11 ) 6.73 | 0.934 | 0.98 0.953 20 1.024 | 0.14 7.5

Table 3.3: Comparison of incident wave angles (unit:degree)

Gange Location o ro | Ty
Laboratory Experiment 13.316.2 (7.5
Spiral Wavemaker Theory | 14.1 | 5.1 | 4.6
Modified Snell’s Law 1831 33 | 29
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3.5 Longshore Sediment Transport

The rate of longshore sediment transport was determined by measuring
profile changes in the circular tank. At equilibrium, the single groin method,
which traps all longshore sediments in the surf zone, was used for measuring the
rate of sediment transport. The rectangular shaped groin was buried along the
profile. The length of the groin was sufficient to ensure no bypassing at its offshore
end. Offshore, the top of the groin was below the still water level so that its effects
on the wave fields was reduced. The groin was made of a hard plastic and was

heavy enough both to be stable in water and to resist wave action.

On the upwave side of the groin, for 1.8 m along the side wall, 10 test
profiles were measured. The profiles were taken along radii from the center of the
basin. The angle between two consecutive profiles was 2.7°, which corresponded
to a 20 cm arc at the center line of the side wall. In offshore region survey points
were taken every 5 cm for a distance of 70 cm beginning at a point 50 cm from
the side wall. The polar coordinate grid was used for calculating sand budgets in
this region. Sections were numbered from 1 to 10, with section 10 just to the left

side of the groin.

Figure 3.18 to Figure 3.22 show the profile changes at each section. Four
surveys were conducted at T=0 min, 10 min, 30 min and 60 min. Reviewing the
profile changes, it was clear that as the section closer to the groin, the profile
changes were significant. Also, one can say the test domain was broad enough for
our purpose because the profile at section 1 remained nearly unchanged, which

means the test area covered almost all area affected by the groin.

Since all longshore sediment would be trapped by the groin, the volume

changes in the test area would indicate the rate of longshore sediment transport,



which was the amount of the sediment coming into the test area from upwave side.
Taking into account the distortion of the grid due to the use of polar coordinate
system, the change of volume was calculated by simply multiplying the depth
changes at each survey point dh by the area of the mesh grid dA. Figure 3.17

shows the example of the mesh grid in the test area.

Figure 3.17: Mesh grid for measuring the longshore transport rate

Table 3.4 shows the calculations of the longshore sediment transport coef-
ficient from the measurements. The values on the first row were calculated from
the depth change from T=0 min to T=10 min. The other rows are T=10 min to

T=30 min, T=30 min to T=60 min and T=0 min to T=60 min.

Some formulae used for the calculations are as follows (Dean and Dalrym-

ple, 1997):

Hy, = khy

al



Cop = Cy = (ghs)?

kars sin az = kpry sin g

i .
o gngf

(EC,)psin ay cos ay,
pg(s —1)(1 - p)
where Hj is the breaking wave height, h; is the water depth at the breakerline,

Q=}C

k(= 0.78) is the wave breaking index for a spilling breaker, Cy and C, are the
wave phase speed and the wave group velocity at the breakerline, respectively, oy
is the wave incident angle at the breakerline, r is the distance from the center of
the basin to the breakerline, Ej is the wave energy at the breakerline, () is the vol-
umetric longshore sediment transport rate, K is a longshore transport coefficient,
p (= 0.4) is the porosity of sand, and s (= 2.65) is the specific gravity of sand.
To calculate g, the modified Snell’s law were used taking the r3 point, which was
the farthest point, as the reference point because there was no data available at

the breakerline.

The longshore transport coefficient, K, was found to be approximately 0.77
in the field (Komar and Inman, 1970) and 0.25 in the laboratory (Das, 1972, cited
in Suh, 1986). In this experiment, during the first 30 minutes the sediment were
accumulated quicker, then, the amount of trapped sediment decreased quickly in
the last 30 minutes. Averaging the results over the entire period of the run, one

could use 1.01 as K.
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Table 3.4: Calculation of longshore sediment transport rate
At | AV 0 K

(min) | (em3) | (m?®/day)
10 909.7 0.131 1.39
20 1959.2 0.141 1.49
30 1085.1 0.052 0.55
60 3954.0 0.095 1.01




3.6 Beach Fill

Only two complete tests were performed for this study because each test
required approximately 3000 manual survey points which took a long time to
measure due to the fairly primitive methods used. Despite its crudeness, however,

this method worked suprisingly well.

The surveys were conducted at four times, T=0 min, T=3 min, T=10 min
and T=20 min. 30 sections were taken at front side of the basin along radii and
each section had 23 points spaced every 5 cm for a distance of 110 cm beginning
at a point 50 cm from the side wall. So, each time 690 points surveys and in total
2760 times surveys were needed for this case. Figure 3.23 to Figure 3.26 show
contours at each time. The initial shape of the beach fill would ideally have been
perfectly rectangular, however, to account for the circular shape of the basin, the
side borders of the fill were aligned with radii to the center of the basin. This
way, the measured angle of wave incidence would be same as the angle of wave
attack with respect to the side lines. The actual shape of the initial beach fill was
trapezoidal, though the final plots were mapped onto a rectangular coordinate

system so that thier initial shape appeared rectangular.

It is clear that the bathymetry beyond the depth 6 cm remained nearly
unchanged, so 6 cm could be called the depth of closure. Following the same
contour line over time, one can determine the evolutions of contours. The depth
6 cm corresponds 32 cm contour line measured from the basin bottom; the 38 cm
line is the still water level and 35 cm is the middle of two depths as indicated in
Figure 3.23 to Figure 3.26. So, the 38 cm lines represent the shorelines of each

case.
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Figure 3.27 to Figure 3.41 show the profile change at the each section.
Once again, one can notice that the offshore profiles were almost unchanged.
Also, it is clear that there were remarkable erosion from section 6 to section 14,
which correspond the beach fill. On the other hand, there were some accretion at
both ends of beach fill. This phenomenon can explain the sand movement due to

alongshore diffusion.
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Figure 3.38:

Figure 3.39: Profile changes at Section 25 and Section 26 (Beach Fill); T=0 min
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3.7 Periodic Beach

Since there are some area behind the wavemaker where wave fields are
not same as those in front, it was impossible to simulate real infinitely periodic
beaches, that is, to use the entire circumference of the basin. Furthermore, to keep
the same spatial resolution as in the beach fill case would require an enormous
number of measurements. However, it was possible to examine multiple beach

fills as an alternative.

Three rectangular beach fills were constructed in the test area as shown in
Figure 3.42. Periodic beach has the 2 m wave length and the 0.3 m amplitude. For
this case due to the initial shape, three sections at upwave side and four sections
at downwave side were added. Regarding the number of measurement points at
each section, six points in the landward direction were added, whereas four points
at offshore end were reduced because almost insignificant changes were observed
at this region in the previous experiment. The distance between two consecutive
points along radii was same as before, 5 cm. The times surveys were conducted
were also same as the beach fill case. So, each time 925 points and a total of 3700

points of surveys were required.

Figure 3.42 to Figure 3.45 give the evolution of contours. As mentioned
in previous chapter, this plot was distorted from the real data, which was based
on the (r,0) coordinate. Also, longshore distance and cross-shore distance have
different scales. One can observe that the contours beyond the depth of 6 cm which
corresponds the level of 32 em, were hardly changed through this experiment and
there were not any significant wave migrations in this case as well. Again, the 38
cm lines represent shorelines in each time. One can observe that diffusions of fills

were extremely rapid; especially, in first 10 minutes.
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Figure 3.46 to Figure 3.64 show changes of profile at the each section. One
can observe significant offshore and onshore fransports at some sections which

correspond crests and troughs of initial impulsive waves.
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min (o), T=3 min (4), T=10 min (*), T=20 min (x)
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Chapter 4

NUMERICAL MODEL

Based on the theory of the two-line model with refraction, the nonlinear nu-
merical two-line model with refraction was developed. The linear two-line model
was developed by Dalrymple (1997) with the assumption of small angles both
for incident wave rays and for slopes of contours in the longshore direction. In
this study, that model is improved by removing these restrictions on angles. Fur-
thermore, the nonlinear two-line model now includes the effect of energy density
difference at the y; contour by using the assumption of the straight wave rays and
the “bin method”. In this chapter, the procedure used to develop the one-line
and two-line models will be reviewed. Numerical results will be discussed and

compared with the experimental results and those from the linear model.

4.1 Formulation of the Nonlinear Numerical Model

Since the development of the theory of the two-line model was already
introduced in Chapter 2, only the conclusion of the theory will be summarized

here. The following set of equations are the governing equations of this model.
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6!!1 3@1
s ot @ dx

dy; Q>
Por = @

where
Qy = ky(D — D.)
Q1 = Cysin2(py —m)

Q2 = Cysin2(py — 72)

For the cross-shore transport the following results from Section 2.2 will be

added:

Using the schematized profile as shown in Figure 4.1 the depth h and the beach

slope Oh/0x can be approximated as follows:

(3?1) (D1 +Dy)/2

D Y2 —
@ N (D1 + D3)/2
oz ), w

h o~ Dl
Therefore, the equation for the cross-shore transport can be written as:

bt

53 1 1
Q= ﬁkﬂnzg%ﬂi"(ﬂl + D3) ( — “)

Ys— Y1 w

(4.1)
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Figure 4.1: Definition of the beach slope in the cross-shore transport model

For longshore transport, the determination of wave angles at each contour
and the alongshore slope of the contour were required. The slope of the beach can

be calculated using the following two equations which were derived in Chapter 2:

Ay
71 = arcsin a—”'a
L4 (512

( Dyz

X da

Y2 = arcsin | ——=t0——
dy2 \2

Meanwhile, Eq. 2.6 was used for computation of py from p,, while p; was calcu-
lated from the offshore wave angle by using Snell’s law with the shoreline positions
y1 and y, defined by the functions f; and f,, respectively. The regularly spaced
grid in the longshore direction is shown in Figure 4.2. It was necessary to know
the value of the shoreline position for at the all grid points along each contour,
so called yi(z;), y2(2;). Furthermore, additional resolution will be needed for f;

in order to obtain the spatial lag A¢ by solving for the « value at the intersection
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of the straight wave ray and the y; contour. The survey data are usually discrete
data points, so it is necessary to get an appropriate function f; which can inter-
polate y; data reasonably well. In this model the cubic spline curve fitting was

adopted to achieve this goal.

The cubic spline is an especially appropriate mathematical tool for curve
fitting to discrete data (Gerald, 1978). The method fits a third-order polynomial
curve to each interval and can work with regular or irregularly spaced data sets.
Furthermore, since each interval has its own third order polynomial function,
it is easy to take their derivatives. This is extremely effective when used with
the Newton-Raphson technique, which requires the first order derivative of the
function. Using this method for the approximation of y, the spatial lag A¢ was
obtained. Finally, Snell’s law from the y, to the y; contour led to the relationship
between gy and py. When the spacing of the two contours is very large, the error

in computing the spatial lag A€ can be quite significant.
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4.1.1 Finite Difference Equations

The governing equations are expressed below in finite difference form using

a forward-difference scheme in time and a centered-difference scheme in space

(Hoffman, 1992).

D y?“,-—yf", o Yoid ~ Wi
N i 20z
D. yi — y3s — O — Qi1 — @3
: At 8 20z
or
un-{-ll =y — & no__ EQ?Hl "‘ Q?i—l
P sTTAN B By 20z
,Un+1 y?. + E no__ QQE‘H — &7
o $ e Dg Uy Dg QAT
where
1i = Cysin2(py; —97;)
5; = Cgsin2(py; —73;)
(%)
- . dw )i
71; = arcsin P
ReSas
()
i . 9z}
v2; = arcsin =
)
1+
aﬂ " _ Yiipr — Yiza
dx ; 20z
@ " Yoiv1 — Y2
oz |, 20z

Assuming that fi(z;) or ys;, the position of the y, contour, is known, ~3,

can be calculated by using Eq. 4.7. Then, y3; can be obtained by applying Snell’s
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law with the offshore wave angle. On the other hand, the effect of the spatial lag
A on QF, has to be considered. First, Eq. 2.6 can be rewritten by using z; which
is the « value at the intersection of the straight wave ray and the y; contour as

shown in Figure 4.2.

zy; = tan po () { fa(@:) — fi(ey;)} + @i
Using the assumption of straight wave rays, one may derive the relationship.
61 (w5;) = py (a7)
Further, applying Snell’s law from the y; to y; contour, one may obtain y; at .
iy, = arcsin li—: sin(67,; — 7}"’51.)] + 11
ke

= arcsin L—B sin(py; — ’ﬁ‘b‘-)l + 1h;
’

Here, 71,, is the slope of the y; contour at zy; where the straight wave
ray from z; on the y; contour passes over the y; contour. 7f,. was calculated
by linearly interpolating the 41;. Assuming that z}, exists between z; and x4,
Fiq. 4.10 gives the approximation of ;.

Yo =i+ (=)W (4.10)
where r is the ratio of zj, — x; to the grid spacing Az. Then, one can obtain
longshore transport at zj as in Eq. 4.11.

Qs = Cqsin2(puiy; — ') (4.11)

Finally, it is necessary to interpolate Qf,, to get the values on the regularly spaced

grid because those data were needed to carry out the finite difference method.

Cross-shore transport can be written by using Eq. 4.1.

1 1
8. =i (— - —) (4.12)

n n
Ya:e — Y1 W
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where

51 L
Ky = ﬁf\"}«nzg%ﬂf (D 4B

Eq. 4.2 and Eq. 4.3 are coupled together through the cross-shore transport
term @, and the relationship between pj; and xf; in the longshore transport

term which is strongly related to the spatial lag A¢.

Since this finite difference scheme is based on the forward-difference scheme
in time and the centered-difference scheme in space, basically three data in space
at the present time step are required to compute the value at the next time step.
However, since this model has the spatial derivative of the longshore transport
terms, 0y and @3 and the temporal derivative of the shoreline positions y; and
Yy, additional y; and y; terms will be needed to compute the y; and y; values at the
next time step. Figure 4.3 shows the computational grid using @'s. More details
about the computation of @); and )y are shown in Figure 4.4. The calculation
of (), is relatively straightforward as shown in the upper right figure. Since p
can be calculated from the offshore wave angle 6,, its value can be considered as
constant. Therefore, the computation of @7, depends on only that of 3, and
involves yy, , and y3,,.,. As for @1, a different procedure was needed. In the
bottom figure in Figure 4.4, QF,; indicates longshore transport at z;; on the y,
contour. The Q7. are obtained by interpolating from @7,;. To obtain z},, all y¥;
and y5 . were needed because it was required to solve implicitly for the intersection
of the straight wave ray and the y; contour. To complete this numerical scheme,

two extra points were needed at both ends of the y; and y, contours.
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4.1.2 Boundary Conditions

The positions of the four extra points for the boundary conditions can be
determined by specifying the type of boundary conditions. For instance, the fixed
boundary condition can be expressed by assigning values identical to the initial

values for every time step.

yr(1) = yi(1), ¥7(2) = 1 (2), y7 (N +3) =y} (N +3), yF(N +4) = y;(N +4)
y3(1) = y3(1), ¥3(2) = y3(2), y3(N +3) = y3(N +3), y5(N +4) = y3(N +4)

On the other hand, the periodic boundary condition requires the following

relations.

yr(1) =yt (N +1), 57(2) =97 (N +2), y7(8) =y7 (N +3), y7(4) = y7 (N +4)
y2(1) = y3(N +1), y3(2) = y3(N +2), y7(3) = yz (N +3), y3(4) = y3 (N +4)

where N is the total number of data points including four extra points for the

boundary condition.
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4.1.3 Focusing Effect of Longshore Transport Along the y; Contour

The directions of wave rays directly depend on the bathymetry in the ocean
because of wave refraction effects. In this model, some factors determining the
bathymetry are the shape of the y; and y; contours and their depths. Due to
the convex shape of y, contour offshore, the spacing of the wave rays passing
over that region will narrow. Sometimes rays may even cross under the straight
wave ray approximation. In the meantime, the concave y; contour makes the
spacing increase. As a result, the density of wave energy reaching the y; contour
is not uniform in the longshore direction. To account for this effect, so called “bin

method” was invented for the nonlinear model.

The “bin method” needed a certain number of bins produced by dividing
up the computational domain. Assuming that a single straight wave ray coming
from each point on the equally spaced grid on the y; contour, such rays will
travel in a direction which will depend on the shape of the y; contour. Since the
. coefficient of the longshore transport term C; is proportional to the energy flux,
the wave energy is also related to the longshore transport. Therefore, it is natural
to superimpose longshore transport contributions, if more than two wave rays
come into the same bin. The sign of transport from each bin must be considered
to take into account the transport directions so that the sum of values in each bin
becomes the net transport for the region. The regular grid spacing dz was chosen
as the bin size for this model. In this manner, the focusing effect can be included

in this model.

Finally, cubic spline curve fitting is once again used to interpolate the values
on the regularly spaced grid because the finite difference scheme needs @)y values
at all grid points in the computational domain. Unfortunately, approximated Q4

values were noisy in many cases, leading to significant noise in the final predicted

90



y1 contour. A numerical filtering technique applied to the )y data was necessary
to solve this problem. The filtering time was examined in many cases, but it
was impossible to establish the criteria for an infinite possibility of cases with
unlimited geometric and wave conditions. Five-point Shapiro filtering (Shapiro,
1970) was used for this model. This filtering technique is able to remove only
relatively small noise so that it retains most of the important information in the

original signal.

4.1.4 Stability Analysis

Since this model is nonlinear, there is not a particular method for stability
analysis like that for the linear model. Dalrymple (1997) used the following re-
lationship to estimate the proper dt for his linear two-line model which used the

Crank-Nicolson method.

D] AI&‘32
dt inear — 413
(dt); o (4.13)
where ¢, is defined as:
ky
= 20C,—
1 q k]

On the other hand, since the nonlinear model uses the forward-time centered-
space (FTCS) approximation, the next relation, Eq 4.14 can be used to find the
proper computational time step, even though it is also the criterion for the linear

model.

— lD]A&IZ
4 4q

1
(dt)nom'inem = Z(dt)linear (414)

It was determined that the nonlinear model still can work under the linear
criterion. This relationship includes two parameters, dt and dz. Since dx may

affect the resolution of the results, it is recommended to choose a small dz.
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4.2 Results
4.2.1 Comparison Between Model Results and Experimental Results

The results from both the nonlinear model and the linear model were com-
pared with the results from two experiments: the single beach fill and three beach
fill cases. First of all, it was necessary to determine the contours from the depth
measured in the experiment, which were discrete survey points describing the
beach profile at each section (see Chapter 3). To accomplish this, the cubic spline
curve approximation was applied to interpolate between the data points and find
the contour positions which correspond to the depths, Dy and D,. After finding
those points and plotting them in the same horizontal plane, the cubic spline curve
approximation was again used to obtain the contour line passing through them.
If the grid sizes in the longshore direction of both the numerical and the physical
model were the same, the last procedure would not be needed. The grid size in
the physical model was 20 ¢, while that in the numerical model could be smaller
than this to improve the computational resolution. In this study, 10 em was used

for the grid size in the numerical model.

The comparison was made for two different inshore depths: Dy = 1.5em
and D; = 3.0cm. Table 4.1 shows the all input data used for the numerical
computations. In the table, Dy and D, are the inshore and offshore depths,
respectively, A is the profile scale factor, Hj is the wave height at the breakerline,
8, is the incident wave angle with respect to the y axis, T' is the wave period, X
is the longshore transport coefficient, C, is the cross-shore transport coefficient
for the linear model, k, is the cross-shore transport coefficient for the nonlinear
model, dz is the spatial grid spacing, and di is the computational time step.
The asterisk denotes the measured values from the experiment. For the initial

condition, the data set at ¢ = 0min was used directly. Since there is not a
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particular method to determine €, the values were calibrated to give the best
agreement with the experimental data. Two cases were used for the comparison
with different depths D; to check whether the ratio of the two depths, D,/ D, was
an important nondimensional parameter, as was indicated by the dimensional

analysis for the linear model.

93



Table 4.1: Input conditions for the comparison with the experimental results.

Conditions | unit Case 1 Case2
Dy cm 1.5% 3.0*
Dy em 3.0" 3.0%
A m3 0.1* 0.1*
H, cm 8 15"
b, degree 13.8" 13.3*
T sec 0.98* 0.98*
K -- 1.01* 1.01*
Cy m/day 1.0 1.0
kg m*/N [2.2x107° | 2.2 x 107°
dz m 0.1 0.1
dt sec 15.3 25.0

[igure 4.5 and Figure 4.6 show the results of comparisons for the beach fill
of case 1, which has the shallower inshore depth. As one can see, both the linear
and the nonlinear model had relatively good agreement with the experimental
data except the y; contour at t = 20 min. Figure 4.7 and Figure 4.8 show the
results of the single beach fill of case 2. The agreement became a little worse,

especially the result at t = 3 min.

Figure 4.9 and Figure 4.10 show the results of comparisons for the periodic
beach of case 1. In this case, the linear model seemed to decay much faster than
the experiment using same value as the beach fill case for C,, while the nonlinear
model still showed very good agreement with the experiment. Finally, Figure 4.11
and Figure 4.12 show the results from the the periodic beach of case 2. Once
again, the agreement at { = 3 min became worse. Otherwise, results were still

relatively good.
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4.2.2 Solitary Wave

In the comparison with experimental data, it was impossible to observe
effects from wave refraction because of the small scale geometry. Below are some
results from both the nonlinear and the linear numerical model which use solitary
wave shaped contours for their initial conditions. The amplitude of the solitary
wave was 200 m and the wave length was 5000 m. Table 4.2 shows input data
for these cases. “Regular slope” in Table 4.2 implies the beach profile with the
sediment scale parameter, A = 0.1, which is the common value for many beaches.
Likewaise, “Mild slope” means that for A = 0.01. The parametric analysis for the

incident wave angle was made using this slope.

Table 4.2: Input conditions for solitary wave cases

Conditions | unit Mild slope | Regular slope

Dy m 3.0 3.0

Dy m 6.0 6.0

A ms 0.01 0.1

Hy M 0.5 0.5

5 degree | 0, 10, 30 0, 30

f sec 10 10

K -- O:TT 0.77

af mjJday | 512X 10-° 0.0

ky m*/N | 2.2x 107° 2.2x10°°
dx m 50 50

dt day 2 2
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Dalrymple found that sand waves may migrate only on a very mildly sloped
beach (1997a). The first comparison was made with this type of beach. Fig-
ure 4.13, Figure 4.17 and Figure 4.21 show the evolutions of contours predicted
by the linear model. Figure 4.14, Figure 4.18 and Figure 4.22 show results from
the nonlinear model. The linear model gives the migration with some angle of
incident wave. For the large incident wave angle 30°, the amplitudes of contours
increased once, then propagated with the gradual decay. The result from nonlin-
ear model does not shows remarkable migrations, instead, it shows the focusing
effect with hot spots on the downwave position of the solitary wave shaped con-
tour. The location of the hot spots was different depending on the incident wave
angle. Figure 4.15, Figure 4.19 and 4.23 may be able to explain this phenomenon.
These figures depict the approximated straight wave rays. By looking at these
figures, one can see how some wave rays are concentrated in one spot and how

the spots move when the incident wave angle is changed.

Some artificial rays are entering the computational domain from the left
side. These rays are necessary especially when one must examine large incident
wave angles. If wave angles are too large, there will be very few or possibly no
points for the intersection of the rays and the y; contour in the computational
domain. Then it becomes impossible to calculate the rate of longshore transport
along the y; contour. In this model, there is a fake domain outside and to the
left of the computational domain. For the fixed boundary condition, both the
y1 and yy contours in this region are just straight and parallel to the shoreline
with values at left end of the real domain. On the other hand, for the periodic
boundary condition, the same data as those in the real computational domain are

used for the hypothetical contours.
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Figure 4.16, Figure 4.20 and 4.24 show approximations of longshore trans-
port at the y; contour. The upper figures indicate the raw data of longshore
transport at the y; contour calculated from approximated straight wave rays.
The longshore positions of those points indicates the points where the rays arrive
from regularly spaced grid points on the y; contour. As a result, the raw data are
not only irregularly spaced in the longshore direction, but also not in order. Due
to the focusing effect, some regions have higher density of points which implies
greater longshore transport. The middle diagram in each figure explains the re-
sults obtained after using the “bin method”. At this point, the sequence of data
sels becomes properly ordered and each regular grid point has one corresponding
data point. After the longshore transport contributions are summed in each bin
dz and interpolated by using the cubic spline curve approximation, the results
unfortunately tend to have a small amount of noise. The wavelength of that noise
tends to be much smaller than the wavelength of the water waves. Practically
speaking, the straight wave ray approximation may cause a big error under the
conditions like large spacing of contours. Also, wave diffraction may play a part
in smoothing out wave crests. Therefore, this noises must be filtered out to obtain
reasonably smooth contours. After applying Shapiro filtering, one may obtain the
bottom diagram in each figure. By using Shapiro filtering, it is possible to retain
more information from the original signal despite the 50 repetitions of numerical
filtering. However, in order to obtain relatively smooth contours, some important

information were filtered out as shown in Figure 4.16, Figure 4.20 and 4.24.



4 Y2 contour
pzsiil 1 ; —r i

2.715

271

2.705

2.7

Offshore distance (m)

2.695 L :
0 1.6 1.8 2

x 10
5400 T T

5350

m)

—

5300

B R
o L4
Q =]

T

Offshore distance

1 1 L 1 1 L 1

1 L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Longshore distance (m) x 10°*

47 ]
-k
143
o

Figure 4.13: Evolution of y; and y; contours for incident wave angle 0 on the
mild slope (A = 0.01) at t=1, 2, 3, and 4 years. Solid line, linear
model; dotted line, initial contour. (Solitary Wave).

106



4 Y2 contour
10
2.72 % T T T T T T T T T T

2715F

n

e |

i
T

2,705

Offshore distance (m)

)
~
o

0.2 0.4 1.6 1.8 2

5400 T T

5350

o
(]
(=]
o
T

42 3]

na n

(=] (%),

o =
T

Offshore distance (m)

L 1 L 1 1 1

1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Longshore distance (m) x 10*

(4]

e

3
o

Figure 4.14: Fvolution of y; and y, contours for incident wave angle 0° on
the mild slope (A = 0.01) at t=1, 2, 3, and 4 years. Solid line,
nonlinear model; dotted line, initial contour. (Solitary Wave).

107



Figure 4.15:

Figure 4.16:

I
o

Offshore distance (m)
™

-
o

0.5
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Longshore distance(m) x 10"

Approximated straight wave rays for incident wave angle 0° on the
mild slope (A = 0.01) at t=1 year. (Solitary Wave)

a2z T T T T T T T T T
g 100} 1
3 S ——
E
& -100 R
1 L 'S 'l i L '} L i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
v-ln‘
Zat T T T T ; T T T
% 100} 7
= !
g L
£ *
5 -100f * —
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4
T T T T T T T T T *10
& 100f 4
==
% o
& -100f 1
L L L. 'l 1 '

0.2 04 06 0.8 1 1.2 1.4 1.6 1.8 2
Longshore distance (m) x10*

o

Approximation of longshore transport at y; contour for incident
wave angle 0° on the mild slope (A = 0.01) at t=1 year. Upper, raw
data; middle, after bin method; lower, final result after filtering.
(Solitary Wave)

108



4 Y2 contour
x 10
2.72 T T T T I,'l-' T T T T

1

2715

s
-J
T

2.705

o
~

Offshore distance (m)

3
[}
©
o

1.6 1.8 2
x 10

0.2

5400 T

5350

U

(4] (43 (93] (4]

'y ] n (5]

W o w o

o o o o
T

Offshore distance (m

1 ] 1 ] L

1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Longshore distance (m) x 10°

Figure 4.17: Evolution of y; and y; contours for incident wave angle 10° on the
mild slope (A = 0.01) at t=1, 2, 3, and 4 years. Solid line, linear
model; dotted line, initial contour. (Solitary Wave).

109



x10* Y2 contour

272 T T T T Pio T T T T
—2.715F 7
E
8
g 271F B
@

b =
2 2.7051+ .
o
£z
O 2'7 1 1 1 | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10°
¥1 contour

5400 T T T T -1 T T T T

5350+
E

o 5300
(4]
_% 5250+
o
1]
S 5200
=
(2]
=
O 5150 1 1 1 1 1 1 | 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Longshore distance (m) x 10"

Figure 4.18: Evolution of y; and y, contours for incident wave angle 10° on
the mild slope (A = 0.01) at t=1, 2, 3, and 4 years. Solid line,
nonlinear model; dotted line, initial contour. (Solitary Wave).

110



Figure 4.19:

Figure 4.20:

x 10

Offshore distance (m)
r &

-
o
T

—
T

05
-5000 0 5000 10000 15000 20000

Longshore distance (m)

Approximated straight wave rays for incident wave angle 10° on
the mild slope (A = 0.01) at t=1 year. (Solitary Wave)

2]
=4
o

Qi (ma/dayfdx)
N E
(=] [ =]
S, &
l
: + 4
i
&
i

600 - | . : . —
8 *
=400 -
8
3 w
Ezoo * i
o G *
o : ;
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Q1 (m3/day/dx)
B B
%

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Longshore distance (m) x10°

Approximation of longshore transport at y; contour for incident
wave angle 10° on the mild slope (A = 0.01) at t=1 year. Up-
per, raw data; middle, after bin method; lower, final result after
filtering. (Solitary Wave)

0 ]



X 10* Y2 contour

2.715F

Mo
E
L= S
~ o -
T

Offshore distance (m)

g
(o]
©
5

1.8 2
x 10

5500 T

g

(=]

o
T

5300

5200

Offshore distance (m)

[43]
oty
o
(=)

L
0.6 0.8 1 1.2 1.4 1.6 1.8 2
Longshore distance (m) x 10°

o
o
no
o
»

Figure 4.21: Evolution of y; and y, contours for incident wave angle 30° on the
mild slope (A = 0.01) at t=1, 2, 3, and 4 years. Solid line, linear
model; dotted line, initial contour. (Solitary Wave).

112



4 Y2 contour
agef e . . i . ; '

)
i
i
o
T

Offshore distance (m
!0 [\]
0 S ~
~ o —
1

"o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X 10't
Y1 contour
5400 T T T T v T T T T
5350 '
E 5300}
3
c 5250
7
T 5200k
o
25150
0
::6 5100 1 1 1 1 1 1 L 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Longshore distance (m) x 10"

Figure 4.22: Evolution of y; and y, contours for incident wave angle 30° on
the mild slope (A = 0.01) at t=1, 2, 3, and 4 years. Solid line,
nonlinear model; dotted line, initial contour. (Solitary Wave).

113



x 10

id
o

n
S

ol
na

™

Ofishore distance (m)
o

-

::

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
Longshore distance (m) x 10"

Figure 4.23: Approximated straight wave rays for incident wave angle 30° on
the mild slope (A = 0.01) at t=1 year. (Solitary Wave)

o
o
o

o

Q1 (m3/dayidx)
g 8
(=] =]
ﬁff

(=]
o
o
o
'S
o
(=]
o
©
20
o
r-9
@
®
ra

3 1n‘
1500 T T T T T T T j T

Q1 (m3fdayfdx)
g 8
=] [=]
—T
s I L

Q1 (m3/day/dx)
g
-

500
0 i il L '} L L '
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Lengshore distance (m) x 10"

Figure 4.24: Approximation of longshore transport at y; contour for incident
wave angle 30° on the mild slope (A = 0.01) at t=1 year. Up-
per, raw data; middle, after bin method; lower, final result after
filtering. (Solitary Wave)

114



Figure 4.25 and Figure 4.26 show evolutions of the y; and y, contours at
t=1, 2, 3, and 4 years. Both models did not show any migration on the profile
with A = 0.1 even for the large incident wave angle. For the incident angle 07,
both models give almost same results. For 30°, the linear model decay faster than
the nonlinear, and the nonlinear model shows a small focusing effect on the crest

of the solitary wave.
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Figure 4.25: Evolution of y; and y; contours for incident wave angle 0° on
the regular slope (A = 0.1) at t=1, 2, 3, and 4 years. Solid line,
nonlinear model; dash-dotted line, linear model; dotted line, initial
contour (Solitary Wave).
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4.2.3 Beach Fill

The model was next examined by using the beach fill shaped contours
which are not as smooth as the solitary wave contour. The initial shape of the
y1 contour was a trapezoidal, approximately 5000 m long and 200 m wide. Both
ends of the fill are tapered with a slope, 1 : 2. The y; contour has basically the
same shape as the y; contour; however, the spacing between the y; and the y,
contour is reduced by 100 m. As shown in Table 4.3, the results were compared
in four cases in which sediment scale parameter, A = 0.1, 0.01 and the offshore

depth Dy = 3m, 6 m. FEach case has two kinds of incident wave angle, 0° and 30°.

Table 4.3: Input conditions for beach fill cases

Conditions | unit Case 1 Case 2 Case3 Case 4
Dy m 3.0 3.0 3.0 3.0
Dy m 6.0 6.0 3.0 3.0
A ms 0.1 0.01 0.1 0.01
Hy m 0.5 0.5 0.5 0.5
b, degree 0, 30 0, 30 0, 30 0, 30
£ sec 10 10 10 10
K -- 0.77 0.77 0.77 0.77
Cy m/day 0.60 5.12:% 10~ 0.27 1.8 %103
k, mfN | 22% 1077 | 22%107% [22% 107" | 22107
dz m 50 50 50 50
dt day 2 2 2 2
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Figures 4.27 to 4.32 show the results from case 1. Since the linear and
the nonlinear models use different cross-shore transport model, €, values were
estimated such that both models would give the same cross-shore transport at
the beginning of the computation. Specifically, both formulas were equated then

solved for C, using the spacing between the two contours at the center of the fill

as (y2 — ).
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regular slope (A = 0.1) at t=1 year. Solid line, nonlinear model;
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Fill ; Case 1).
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For the incident wave angle 30, the result from the nonlinear model shows
an antisymmetric shape. This might be caused by a wave refraction effect. Both
cases show that the nonlinear model tends to keep the initial shape more than the
linear model; in other words, the nonlinear model tends to decay more slowly. In

this case, the incident wave angle did not affect the results so much.
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Figure 4.30: The position of y; and y; contours for incident wave angle 30°
on the regular slope (A = 0.1) at t=1 year. Solid line, nonlinear
model; dash-dotted line, linear model; dotted line, initial contour
(Beach Fill ; Case 1).
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Figure 4.31:

Figure 4.32:
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Figures 4.33 to 4.38 show the results from case 2. For the incident wave
angle 0°, the lifetime of the beach fill was much longer than case 1 for both the
models. Surprisingly, both models give almost same results. For the nonlinear
model, it is possible that longshore transport against the decay was produced by a
focusing effect (see Figure 4.34). The nonlinear model showed a big focusing effect
for the large incident wave angle 30°, which clearly appeared on the downwave
side of the beach fill in Figure 4.37, while the linear model showed an unusual

shape that was difficult to interpret physically.
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the mild slope (A = 0.01) at t=1 year. Solid line, nonlinear model;
dash-dotted line, linear model; dotted line, initial contour (Beach

Fill ; Case 2).
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Figure 4.34:
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Fill ; Case 2).
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Figures 4.39 to 4.44 show the results from case 3. In case 3, the shallower
offshore depth D, = 3 m was used. Basically, this case showed same trends as case
1, although the difference between both results was smaller than that in case 1.
The difference between results from the two incident wave angles was very small

as in case 1.
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Figure 4.39: The position of y; and y3 contours for incident wave angle 0° on the
regular slope (A = 0.1) at t=1 year. Solid line, nonlinear model;
dash-dotted line, linear model; dotted line, initial contour (Beach
Fill ; Case 3).
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Figure 4.43:

Figure 4.44:
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Figures 4.45 to 4.50 show the results from case 4. In this case, since the
spacing between two contours is smaller than case 2, the location of the focusing
effect has been moved to the left. As in case 3, results in this case have similar
trends as case 2, although the linear model did not show the unusual shape that

was seen in case 2.
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Figure 4.45: The position of y; and y, contours for incident wave angle 0° on
the mild slope (A = 0.01) at t=1 year. Solid line, nonlinear model;
dash-dotted line, linear model; dotted line, initial contour (Beach

Fill ; Case 4).
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Figure 4.49: Approximated straight wave rays for incident wave angle 30° on
the mild slope (A = 0.01) at t=1 year (Beach Fill ; Case 4).
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4.2.4 Periodic Beach

Periodic beaches, which have sinosoidal wave shaped contours, were used

for the following five cases. The amplitudes of periodic waves which describe the

y1 and y, contours were 200 m and 100 m, respectively, and their phase shift,

A¢, was 0° in case 1 to 4, varied from 0° to 180° every 90° in case 5. There

were five waves in the computational domain. As shown in Table 4.4, the results

were compared in four cases, case 1 to case 4, depending on the sediment scale

parameter, A = 0.1, 0.01 and the offshore depth Dy = 3m, 6m. In case 5, the

phase shift, A¢, was varied. The incident wave angle for these cases was 30° for

all cases.

Table 4.4: Input conditions for periodic beach cases

Conditions unit Case 1 Case 2 Case3 Case 4 case b
Dy m 3.0 3.0 3.0 3.0 3.0
Dy m 6.0 6.0 3.0 3.0 3.0
A me 0.1 0.01 0.1 0.01 0.01
Hy m 0.3 0.3 0.3 0.3 0.3
S, degree 30 30 30 30 30
T sec 10 10 10 10 10
K -- 0.77 0.77 0.77 0.77 0.77
Oy m/day 0.06 5.12 x 10~ 0.27 1.8 x 10~* 0.0001
k, mi/N [22x10°%[ 22x107% [22x10°®[22x10°[2.2x10°°
A degree 0 0 0 0 180@90
dx m 50 50 50 50 50
dt day 10 10 8 8 8
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Figure 4.51 to Figure 4.54 show the results from case 1. In this case, one
can see relatively small focusing effect at the crest of each wave in the nonlinear
model. Otherwise, the linear model decayed a little faster than the nonlinear

model.
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Figure 4.51: Evolution of y; and y; contours for incident wave angle 30° on the
regular slope (A = 0.1) at t=400, 800, 1200, 1600 and 2000 days.
Solid line, nonlinear model; dotted line, initial contour (Periodic

Beach ; Case 1).
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Figure 4.55 to Figure 4.58 show the results from case 2. In this case, there
were strong focusing effect at the trough of waves in the nonlinear model. As
shown in Figure 4.56, one can notice the very high density of the rays with strong
focussing at those region. In fact, the result from the nonlinear model blowed up
later. So, the contours after only 400 days are shown in Figure 4.55. On the other
hand, the linear model showed some migration. The amplitude of the y; contours

increased with the propagation.
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Figure 4.55: Evolution of y; and y; contours for incident wave angle 30° on the
mild slope (A = 0.01) at t=400 days. Solid line, nonlinear model;
dotted line, initial contour (Periodic Beach ; Case 2).
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raw data; middle, after bin method; lower, final result after filtering
(Periodic Beach ; Case 2)
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Figure 4.59 to Figure 4.62 show the results from case 3. Due to the shollow

offshore depth, there was not enough distance between two contours for wave rays

to concentrate. As a result, the focusing effect in the nonlinear model was reduced.

The linear model also gave the simply decaying result.
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Figure 4.59: Evolution of y; and y, contours for incident wave angle 30° on the

regular slope (A = 0.1) at t=400, 800, 1200, 1600 and 2000 days.
Solid line, nonlinear model; dotted line, initial contour (Periodic
Beach ; Case 3).
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Figure 4.60: Approximated straight wave rays for incident wave angle 30° on
the regular slope (A = 0.1) at t=400 days (Periodic Beach ; Case
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Figure 4.63 to Figure 4.66 show the results from case 4. As in case 2, the
nonlinear model gave the focusing effect at the trough of waves, however, once
again, the effect was reduced due to the shallow geometry. The linear model gave
migration with decay of the amplitude, wihle the nonlinear model showed some

movement, however, it moved upwave.
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Solid line, nonlinear model; dotted line, initial contour (Periodic
Beach ; Case 4).
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Figure 4.64:

Figure 4.65: Approximation of longshore transport at y, contour for incident
e angle 30° on the mild slope (A = 0.01) at t=
raw data; middle, after bin method; lower, final result after filtering
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Figure 4.66: Evolution of y; and y, contours for incident wave angle 30° on the
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Figures 4.67 to 4.74 show the results from case 5. In this case, the offshore
depth, Dy = 3m, the sediment scale parameter, A = 0.01, were fixed and the
breaking wave height, H, = 0.3m, was used. The sensitivity analyses for the
phase shift between two contours were made. Here, the phase shift was difined as
the longshore distance between the crest of the y; and the y; contours. It can be
expressed by using the phase of periodic waves, which describes the y; and the
Yy contours. For instance, if two contours are in phase, the distance between two
crests are zero, and the phase shift is 0°. In this study, the y; contour was shifted
from the y, contour in the upwave direction 0%, 90°, 120°, and 180°. For the cross-
shore transport coefficient in the linear model, €, = 0.0001 1 /day was used in this
case. Here are some interesting phenomena. In the linear model, A¢ = 0° gives the
relatively fast migration to the downwave side, and A¢ = 180° gives the relatively
fast migration to the upwave side. Results from A¢ = 90° and A¢ = 120° show
very small migration to the downwave and upwave side, respectively. Also, these
waves decay much rapidly than those from A¢ = 0° and A¢ = 180°. As for the
nonlinear model, results showed opposite phenomena. A¢ = 0° gives some kind
of migration to the upwave side, and A¢ = 180° creates antisymmetric contours
which can be described as moving to the downwave side. Results from A¢ = 90°
and A¢ = 120° show very small migration with slow decay. Further computation
would be needed to confirm the following phenomena, however, for the nonlinear
model, the results will become noisy because of its boundary effects. Figure 4.75
shows the example of the results after the long computation such as 1000 time
steps. In addition, the number of waves in the computational domain has been
changed in order to confirm if it affect the results. As a result, it did not affect

the trend of the results.
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4.2.5 Tield Data

Grove, Sonu and Dykstra (1987) observed the migration of a sand hump on
the smooth coastline at San Onofre, California. They took surveys of the profiles
at discrete survey points (denoted s-1, s-2, s-3, s-4, s-5, and s-6) for two years
following the removal of the front pad of the land fill for the San Onofre Nuclear
Generating Station in December 1984. They described the sand hump migra-
tion as downcoast with an extremely slow speed and a rapid decay. Figure 4.76
shows the survey results at the site. The initial volume of sand for the land fill
was approximately 150,000 m®. The initial shape of the land fill had about 300 m
longshore length and 60 m width from the previously existing shoreline. According
to their survey, the sediment scale parameter A at background beach was approx-
imately 0.09. In spite of lack of data, one may simulate the shoreline change and
the profile change assuming other parameters. Let’s assume a plane beach with
the uniform slope starting from the 30 m seaward from previous shoreline, the
berm height was 3.5 m. Ignoring sand smoothed out to both side of the landfill
by bulldozers and considering the conservation of the volume of sand, this slope
will intersect with the background profile at 150 m from the shoreline, and its
depth will be 2.5 m. Finally, adding appropriate taper to both sides, one may get
the trapezoidal beach fill type initial contours. Rgarding the other parameters, it
was assumed that the breaking wave height was 0.3 m, the incident wave angle
at offshore with respect to the y axis was 30°, the wave period was 10 sec, the
spatial grid was 10 m, and computational time step was 0.1 days. Figure 4.77
shows results from the linear model and the nonlinear model after 60 days. The
inshore depth D; was taken as 1.0 m, and the offshore depth D, was 1.5 m. The
cross-shore transport coefficient C, for the linear model was 1.19 m/day. Since
the offshore contour was straight, initially there was no refraction effect. Both

model gave similar results and these did not show any migration.



By changing the inshore depth Dy and plotting contour positions after 60
days at specific point (s-1, s-4 and s-5), one can obtain Figure 4.78. The points
s-1, s-4 and s-5 are located at 3000 m, 4250 m, and 5000 m, respectively, in
Figure 4.77. Results shows small accretion at s-1, and s-4 and s-5 seemed to stay
in the background profile. One can compare this results by looking at the survey
results in Figure 4.76. At s-1, the survey result showed the significant shoreline
proceeding, approximately 20 m at the mean water level in about 60 days, which
is between survey number 1 and 2, meanwhile, the numerical results showed much
smaller proceeding, about 10 m at depth 0.2 m. Also, the survey showed smaller
accretion at s-4 approximately 20 months behind s-1. However, the numerical
result did not showed this phenomenon. As a result, the numerical model could
not explain the results from field data, although the data for this analysis was not

suflicient.



Figure 4.76: Survey results at the site
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Chapter 5

CONCLUSIONS

5.1 Conclusions

The nonlinear two-line shoreline model with refraction was developed after
the linear version introduced by Dalrymple (1997). The both models were based on
the concept of the two-line model developed by Bakker (1968b). Several examples
of the migration of sand waves have been observed in the field. However, existing
contour models such as the one-line model and Bakker’s two-line model were
not able to provide satisfactory explanations for this phenomenon. The two-line
model with refraction is expected to explain the physical mechanism behind these

migrations of sand waves.

The governing equations of the two-line model with refraction were two
mass conservation equations at the inshore and the offshore. These equations
included longshore transport at the inshore and the offshore contours, and cross-
shore transport. As in Bakker’s two-line model, cross-shore transport played a
role in coupling together these two equations. As for the cross-shore transport,
the nonlinear model used an expression based on the difference between the ac-
tual energy dissipation rate and that for an equilibrium profile, which was first
proposed by Moore (1982), while the linear model used the same expression as

Bakker (1968b). The refraction effect showed up in the longshore transport terms
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which were functions of the incident wave angles with respect to the shoreline
normal. Also, it leads the spatial lag into the spatial argument of those incident

wave angles. This is another relationship between two equations.

The finite difference scheme used for the nonlinear model was based on
a forward-difference in time and the centered-difference in space. In order to
carry out these computations, two extra points at both ends on each contour were
needed. For determination of these points, two types of boundary conditions were

used: fixed boundary and periodic boundary.

In the nonlinear model, the focusing effect was also considered under as-
sumption of the straight wave rays from the offshore to the inshore contour. To
include the focusing effect, the “bin method” was invented. For the bin size, the
spatial grid size dz was specified by considering the computational resolution and
the time consumption of the computation. It was found that signals after using
the “bin method” tended to have some noise which should not have been there
because the size of the noise was smaller than the wavelength of the water waves.
Moreover, practically, wave crests would be expected to be smoothed out due to
wave diffraction. To remove this noise, a numerical filtering technique, the five
point Shapiro Filtering, was applied to the raw longshore transport data. That
filtering was able to remove only high frequency noise components so that the
signal could still retain most of the information of the original signal after filter-
ing repetitions. After using these scheme, the model produced relatively smooth

contours.

In order to verify the numerical results, extensive laboratory experiments
were performed in a spiral wave basin. Two sets of surveys were conducted with
different initial shapes of the contours: a single beach fill and three beach fills.

Ilach set included surveys at t=0, 3, 10, and 20 minutes. Prior to these main
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surveys, measurements of the rate of longshore transport were made by using the
single groin method. It was found that the longshore transport coefficient X was
approximately 1.01. Water wave measurements were made by using two wave
gauges. It was determined that the wave period was 0.98 second and the wave
angle with respect to the radial axis was 13.3 degree at 0.95 m from the center of
the basin. The sediment scale parameter, A, was determined to be 0.1 by applying

the two-thirds power law to all profiles in the test area in their equilibrium state.

Verification of the numerical results was performed by comparing results
from both the nonlinear and the linear model with experimental data. Also,
several other simulations were made for the numerical model using various input
conditions. Comparisons between numerical results and experimental data were
relatively good, although the linear model results showed faster decay than the
experimental data in three beach fills case. Two kinds of inshore depth were used

for the comparison, and the case of shallower depth showed better agreement.

Despite relatively good agreement with experimental data, it was not suffi-
cient to explain migrations of sand waves because the experimental results them-
selves did not show any migration. In attempt to resolve this inconsistency, several
sensitivity analyses were performed. In the first analysis, solitary wave-shaped
contours were used for initial conditions, and the wave angle with respect to the
y axis was varied with regular slope (A = 0.1), and mild slope (A = 0.01). In
this analysis, the linear model showed some migration on the mild slope beach
with large angles, while the nonlinear model did not show any migration, instead
it showed remarkable focusing effects with the hot spot located downwave of the
solitary wave shaped contour. In the second analysis, trapezoidal beach fills were
used for the initial contours. In this case, two kinds of wave angles, beach slopes,

and offshore depths were used. It was found that a wave angle of 0° might be able
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to extend the lifetime of the fill due to the focusing effect. It can be concluded
that a shallow offshore depth definitely will reduce the focusing effect because
the rays will not be able to concentrate enough over the short distance between
two contours. In the third analysis, periodic contours were used with two kinds
of beach slopes and offshore depths. The wave angle in this test was fixed at
30°. As in the solitary wave case, the linear model showed some migrations on
the mild slope beach; on the other hand, the nonlinear model rather generate

antisymmetric shape by focusing effect.

Sensitivity analyses about the phase shift A¢ between the two initial con-
tours were made. Results showed some interesting phenomena. For the linear
model, the result from A¢ = 0° shows the strong migration to the downwave
side, and that from A¢ = 180° shows the strong migration to the upwave side.
Also, the results from A¢ = 90° and A¢ = 120° show the very little migration
with extremely rapid decay to the downwave and upwave sides, respectively. Al-
ternatively, the nonlinear model provides opposite results. It was unclear if the
antisymmetric shape contours of the nonlinear results can be called as the migra-
tion of sand waves. As stated in the previous case, results strongly depend on

geometry such as the offshore depth and the beach slope.

Finally, numerical results were applied to field observation data, which was
the migration of a sand hump on the smooth coastline at San Onofre, California.
Both the nonlinear and the linear model could not explain the observed data,

although the data for input were not sufficient.

5.2 Suggestions for Future Work

First of all, further experiments will be needed in order to verify some of

the numerical results that indicated sand wave migration. For instance, wave
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refraction effects should be examined using larger scale geometry with very mild
slope beach profiles and larger offshore wave angles. This is very important be-
cause there is not enough field data for migrating sand waves. Even though there
is significant evidence for migration, information such as wave data and survey

data have not been sufficient.

As for the nonlinear numerical model, there are still more possibility to
improve both the water wave and the sediment transport problem. For example,
assumption of the straight wave rays clearly induces errors under a large spacing
of contours. Also the wave diffraction effect should be considered to produce more
realistic wave rays. Since the present model depends on numerical filtering to re-
duce the noise caused by the bin method, a more physically reasonable scheme
should be developed. For the numerical scheme itself, one could use a more so-
phisticated numerical technique, such as the Crank-Nicolson method, to carry out
more accurate computations. Also, better boundary conditions for constant long-
shore transport should be developed as replacement for the fixed boundary used
in the present model to express constant sand supply. If there is no cross-shore
transport at the boundary, the present boundary conditions work well; however,
in the presence of significant cross-shore transport, the present method was not

sufficient.

Finally, in this report, the nonlinear two-line shoreline model with refrac-
tion could not explain the migrating sand waves, whereas the linear model showed
some kind of migration. However, it should be mentioned here that the angle used
for the linear model, which induced migration, was not small angle. This violates

the assumption of small angle for the linear model.
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