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Abstract

Wave runup and overtopping on inclined coastal structures and wave runup on
beaches are reviewed together to examine the ranges of wave runup processes occur-
ring on slopes of different inclinations. Laboratory experiments on regular wave runup
and overtopping on coastal structures are reviewed first to provide historical perspec-
tive. More recent laboratory experiments on irregular wave runup and overtopping on
coastal structures are summarized to show the improved quantitative understanding due
to the improved capabilities for irregular wave experiments. Field experiments on wave
runup on beaches are then reviewed to discuss the possible dominance and causes of
low-frequency shoreline oscillations on gently sloping beaches. The recent development
of time-dependent numerical models is reviewed to indicate the rapid progress of the nu-
merical capabilities of predicting irregular wave runup on inclined coastal structures and
beaches. This review indicates that the improved quantitative understanding of irregular
wave runup and overtopping on inclined coastal structures and irregular wave runup on
beaches has essentially been limited to normally incident waves on coastal structures
and beaches of alongshore uniformity. Future experimental and numerical studies are
suggested in this review.

INTRODUCTION

The population of the world is concentrated near coasts. Tropical and extratropical
storms can cause severe damage due to extremely high wind, storm surge and waves. For
example, Hurricane Hugo in 1989 caused damage exceeding 7 billion dollars on the U.S.
mainland where more than 15,000 homes were destroyed and over 40 lives lost (Finkl and
Pilkey 1991). Hurricane Opal in 1995 caused damage mostly in the form of storm surge,
wave attack and overwash in contrast to Hurricane Andrew in 1992 whose principal agent of
destruction was wind (Webb et al. 1997). Furthermore, there is considerable public concern
over beach erosion because most developed beaches are experiencing long-term erosional
trends (National Research Council 1990). Storm damage and beach erosion will accelerate
if the mean sea-level rise increases due to the greenhouse effect (National Research Council
1987). On the other hand, tsunamis generated by submarine earthquakes and landslides can
cause severe coastal damage and loss of life (e.g., Wiegel and Saville 1996).

In the U.5., the Army Corps of Engineers’ shore protection program covers only 8 per-
cent of the nation’s 4,300 km of critically eroding shoreline and has shifted from primarily
coastal structures to primarily beach restoration and nourishment through placement of sand
(Hillyer et al. 1997). This program has also shifted from primarily recreation oriented to one
of protection for storm damage reduction. The performance of beach nourishment and pro-
tection projects is presently predicted by extrapolating historical shoreline changes because
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there is no satisfactory model available for predicting complex nearshore waves, circulation
and sediment transport processes (National Research Council 1995). On the other hand, the
maintenance and repair of coastal structures such as jetties and breakwaters is an important
element in the nation’s rehabilitation of deteriorating infrastructure. Most of these structures
in the U.S. are constructed of locally available stone and exposed to depth-limited breaking
design waves. Jetties constructed to stabilize navigation inlets and breakwaters constructed
to protect harbors have often interrupted sand drift and caused downdrift erosion (e.g., Dean
1987). This review paper deals with inclined structures, whereas vertical structures are more
common in Japan as discussed by Goda (1985).

Wayve runup is normally defined as the upper limit of wave uprush above the still water
level in the field of coastal engineering. Wave runup on a beach determines the landward
boundary of the area affected by wave action. Wave runup is hence important in delineating
the area affected by storm waves and tsunamis. A quantitative understanding of the swash
dynamics associated with wave uprush and downrush is also essential for predicting sediment
transport in the swash zone and establishing the landward boundary conditions of beach
and dune erosion models (e.g., Kriebel 1990). Moreover, field and laboratory measurements
indicate that the longshore sediment transport rate in the swash zone can be as large as
that in the breaker zone (Bodge and Dean 1987; Kamphuis 1991). On the other hand, wave
overtopping of dunes causes landward sediment transport due to overwash (Kobayashi et al.
1996).

The prediction of wave runup on a coastal structure is necessary in determining the crest
height of the structure required for no overtopping of design waves (e.g., Shore Protection
Manual 1984). Wave uprush and downrush on the seaward slope of the structure affect
the wave forces acting on armor units and the stability and movement of armor units (e.g.,
Kobayashi and Otta 1987). If wave overtopping is allowed, the stability of armor units on
the crest and landward side of the structure needs to be examined as well (Vidal et al. 1992).
Furthermore, the amount of wave overtopping determines the severity of flooding landward
of a structure protecting a shoreline (e.g., Kobayashi and Reece 1983). For a structure
protecting a harbor, wave overtopping affects wave transmission landward of the structure
(Seelig 1980).

This paper reviews our understanding of wave runup and overtopping on both beaches
and coastal structures where coastal structures generally have steeper and rougher slopes
than beaches. Wave runup and overtopping on coastal structures have traditionally been
investigated by coastal engineers in laboratories, whereas wave runup on beaches has been
studied by nearshore oceanographers using field measurements. On the other hand, solitary
wave runup has been studied in relation to coastal flooding and damages caused by tsunamis,
which are transient waves with much shorter durations than wind waves. Solitary wave runup
is also reviewed here to examine the effect of the incident wave duration on wave runup.

Storm surge and tides are important in determining the still water level in the absence of
waves. The numerical modeling of storm surge for the estimated atmospheric pressure and
wind field has matured considerably over the past 30 years as reviewed by Bode and Hardy
(1997). Storm surge models generally neglect wave effects such as wave setup and wave-



induced currents. Coupled surge-wave models on a continental shelf are being developed to
include wave effects on wind and bottom shear stresses acting on currents (e.g., Mastenbroek
et al. 1993). For example, wind waves increase the bottom shear stress felt by wind-induced
currents through nonlinear interactions in the bottom boundary layer (Grant and Madsen
1986). To extend such a coupled surge-wave model into very shallow water, wave breaking,
wave setup and wave-induced currents will need to be taken into account.

Concurrently, third-generation wave prediction models for arbitrary directional random
waves on a continental shelf have been developed and implemented over the last decade as
summarized by Komen et al. (1994). Van Veldder et al. (1994) and Booij et al. (1996)
attempted to extend full spectral third-generation wave prediction models into shallower
water by including the triad wave-wave interactions and surf breaking. The triad interactions
of waves traveling in different directions were observed to be important for directional spectra
of shoaling waves on a natural beach (Freilich et al. 1990) and in a laboratory (Elgar et al.
1993). The spectral energy dissipation rate as a function of frequency is not well understood
for breaking waves in the surf zone and different empirical formulas have been proposed
(Mase and Kirby 1992; Eldeberky and Battjes 1996; Elgar et al. 1997). Furthermore, these
spectral models neglect wave reflection and do not predict wave setup and runup on beaches.

In the following, the still water level in the absence of waves and the incident waves in
relatively shallow water outside the surf zone are assumed to be known, although the existing
numerical models may not be able to predict these quantities within errors and uncertainties
of about 10%.

This review paper is organized as follows. First, experimental studies on wave runup
and overtopping are reviewed because most of the existing knowledge is based on laboratory
experiments and field observations. Second, various numerical models for predicting wave
runup are reviewed to indicate the capabilities and limitations of available models based
on different assumptions. Third, the time-dependent numerical model based on the finite-
amplitude, shallow-water equations is explained in more detail because it is the simplest
model among the available numerical models and has already been compared with various
laboratory and field data. Finally, conclusions and recommendations are given to summarize
past progress and suggest future research directions.

LABORATORY AND FIELD EXPERIMENTS

Wave runup and overtopping on coastal structures have historically been investigated
using hydraulic models in laboratories probably because storm waves occur infrequently and
field measurements are expensive and difficult during storms. On the other hand, wave
runup on beaches has mostly been studied on natural beaches partly because of the diffi-
culties in simulating incident low frequency waves and reproducing actual beach profiles in
laboratories. Most laboratory experiments were conducted in wave flumes for normally in-
cident waves on straight structures and beaches. Experiments in directional wave basins are
becoming more common throughout the world. Wave runup on a beach was normally mea-
sured along a single cross-shore line normal to a long straight shoreline. However, the field
experiment DUCK94 has revealed that the nearshore dynamics is far less uniform alongshore



than had previously been assumed (Birkemeier and Hathaway 1996). This may also be true
for the wave dynamics on coastal structures. The alongshore variability is not addressed
in this review paper for lack of data. In the following, normally incident waves on straight
structures and beaches are assumed unless stated otherwise.

Wave Runup and Overtopping on Coastal Structures

Early laboratory experiments were conducted using solitary waves (Hall and Watts 1953)
and monochromatic waves (Saville 1955). This historical background of the early U.S. ex-
periments was given by Wiegel and Saville (1996). Various data on monochromatic wave
runup and overtopping were later summarized in TAW (1974), Stoa (1978), Shore Protec-
tion Manual (1984), and Bruun (1985). The runup height is generally normalized by the
wave height because the runup and wave height are on the same order of magnitude. The
normalized runup depends on many dimensionless parameters including the seaward slope
angle, wave steepness, normalized toe depth, slope roughness and permeability. As a result,
many figures were required to present various data sets.

Attempts to develop simple empirical formulas and theories were generally limited to
smooth uniform slopes in relatively deep water so that the normalized runup could be as-
sumed to depend on the slope angle and wave steepness only. Moreover, the critical wave
steepness for the onset of wave breaking may be assumed to be expressed in terms of the
slope angle. The need for a criterion for wave breaking is obvious because potential flow
theories with no energy dissipation may be applied to nonbreaking waves only. The relation-
ship proposed by Iribarren and Nogales (1949) is still widely used to estimate whether waves
break on the slope or not. Galvin (1968) separated the gradual transition of nonbreaking
to breaking waves into surging, collapsing, plunging and spilling breakers. On the other
hand, Miche (1951) hypothesized that wave runup results from standing waves formed by
the reflection of wave energy that is not dissipated by wave breaking. This hypothesis has
been used successfully to interpret wave runup data on natural beaches (e.g., Holland et al.
1995; Raubenheimer et al. 1995).

Farlier theories for the prediction of wave runup on smooth slopes were synthesized by
LeMéhauté et al. (1968) and are normally included in textbooks (e.g., Whitham 1974; Mei
1989). These theories for regular waves shed light on the wave mechanics involved in wave
runup but are not accurate enough for practical applications. The prediction of wave runup
is very difficult because the wave runup processes are nonlinear and involve the moving
shoreline. Furthermore, waves typically break on the slope of a coastal structure unless the
slope is sufficiently steep, whereas the steep slope is generally covered with armor units whose
effects on wave runup must be accounted for. On the other hand, laboratory data on regular
wave runup were presented by various deign curves based on dimensionless parameters as
explained above. The only exception was the simple empirical formula proposed by Hunt
(1959) for breaking wave runup on smooth uniform slopes in relatively deep water.

Various overall properties of regular waves breaking on smooth uniform slopes were mea-
sured and presented in different dimensionless forms until Battjes (1974) showed the ufility
of the surf similarity parameter or Iribarren number in expressing these overall properties



in a synthesized manner. It may be noted that Iribarren’s research is little known outside
of Spain and that his contributions to coastal engineering are summarized by Losada et al.
(1996). The surf similarity parameter combines the effects of the slope angle and incident
wave steepness and reduces the number of dimensionless parameters required in describing
the overall properties such as the breaker criterion, breaker type, wave runup and reflection.
The use of the surf similarity parameter simplified the breaker criterion of Iribarren and
Nogales (1949), the wave reflection formula of Miche (1951), and the wave runup formula
of Hunt (1959). The surf similarity parameter was also shown to be effective in describing
the stability of armor units as a function of the wave period and breaker type (e.g., Ahrens
and McCartney 1975; Bruun and Johannesson 1976; Gunbak and Bruun 1979; Losada and
Giménez-Curto 1979). Empirical formulas were developed to predict the normalized wave
runup and run-down on various rough and permeable slopes as a function of the surf similar-
ity parameter (e.g., Ahrens and McCartney 1975; Seelig 1980; Losada and Giménez-Curto
1981). On the other hand, Ahrens and Martin (1985) developed an empirical formula for
the normalized runup of nonbreaking waves on smooth uniform slopes which can not be
expressed as a function of the surf similarity parameter only.

If wave runup exceeds the crest height of a coastal structure, wave overtopping occurs.
Only the volume of overtopped water during a specified time interval was measured in typical
hydraulic model tests (e.g., Saville 1955; Jensen and Sorensen 1979). Accordingly, available
empirical formulas based on the measured volume of overtopped water such as the formula
proposed by Weggel (1976) predict only the average rate of regular wave overtopping and
do not give any information on the temporal variations of the water velocity and depth
during wave overtopping which are required to assess the severity of the damage caused
by wave overtopping. The measured average overtopping rate was typically normalized
by the incident wave height and gravitational acceleration. The normalized overtopping
rate was then expressed in terms of various dimensionless parameters including the crest
height normalized by the wave height or the hypothetical wave runup in the absence of wave
overtopping. The overtopping rate is much more difficult to predict than wave runup partly
because its order of magnitude varies considerably and partly because it is very sensitive
to the ratio between the hypothetical wave runup and the crest height (e.g., Weggel 1976).
Consequently, empirical formulas typically predict only order-of-magnitude estimates.

Solitary wave runup has been studied separately in relation to coastal flooding and dam-
age caused by tsunamis. Available laboratory data on solitary wave runup are limited in
comparison to regular wave runup data (e.g., Synolakis 1987). Since solitary waves do not
have specific wave periods, the overall properties of solitary and regular waves on smooth
uniform slopes were not compared until Kobayashi and Karjadi (1994a) introduced the rep-
resentative solitary wave period and associated surf similarity parameter. Breaking solitary
wave runup, normalized by its incident wave height, was shown to be predominantly depen-
dent on the surf similarity parameter and larger than breaking regular wave runup affected
by interaction between regular wave uprush and downrush on the slope. The characteristics
of solitary wave breaking, decay and reflection as a function of the surf similarity parameter,
were found to be qualitatively similar to those of regular waves (Battjes 1974).



Wind-generated waves are irregular with respect to their height and period. Tor lack
of extensive irregular wave data, earlier attempts to predict irregular wave runup and over-
topping hypothesized that runup and overtopping relationships for regular waves could be
applied to the individual waves in an irregular wave train (Saville 1962). This hypothesis has
been shown to yield fair agreement with experiments (Tsurata and Goda 1968; Van Oorschot
and D’Angremond 1968; Battjes 1971; Gunbak and Bruun 1979), although it neglects wave
group formation among storm waves and wave interactions on the slope. To apply this hy-
pothesis, the joint distribution of wave heights and periods (e.g., Longuet-Higgins 1983a)
is required but not well established (Goda 1985). Kobayashi and Reece (1983) applied this
hypothesis to predict irregular wave overtopping on a circular gravel island for lack of any
data apart from the data of Tautenhain et al. (1982) on obliquely incident wave runup
on straight sea dikes. Their example computation indicated that the probability of wave
overtopping and the amount of overtopped water would be sensitive to the spectral width
parameter; thus, the correlation coefficient between wave heights and periods.

An alternative and much simpler approach is to assume that the probability distribu-
tion of individual runup heights follows the Rayleigh distribution (Battjes 1971; Ahrens
1977; Losada and Giménez-Curto 1981). The Shore Protection Manual (1984) adopted the
Rayleigh runup distribution and estimated the significant runup (the average of the highest
one-third of the runups) as the regular wave runup based on the significant wave height and
period. Kobayashi et al. (1990a) showed that this method adopted in the Shore Protection
Manual (1984) could be used for a preliminary prediction of the runup distribution on a
rough permeable uniform slope because of its simplicity rather than its accuracy. However,
the experiment by Kobayashi and Raichle (1994) on irregular wave overtopping of a revet-
ment situated well inside a surf zone indicated that the Rayleigh runup distribution overpre-
dicted the overtopping probability because of wave breaking seaward of the revetment. The
empirical procedure in the Shore Protection Manual (1984) based on the Rayleigh runup
distribution and the overtopping relationship developed for regular wave runup was found to
underpredict the average overtopping rate in spite of the overprediction of the overtopping
probability.

Since irregular wave experiments in wave flumes have lately become standard, it is more
straightforward to develop empirical formulas directly from irregular wave data. Recent
advances in the laboratory simulation of irregular waves were reviewed by Mansard and
Miles (1995). Furthermore, recent empirical formulas based on extensive irregular wave data
include several dimensionless parameters to account for various important effects as reviewed
by Van der Meer (1994). These formulas were developed for the stability of armor units (Van
der Meer 1987, 1988), irregular wave runup and overtopping (Van der Meer and Stam 1992;
De Waal and Van der Meer 1992; Van der Meer and Janssen 1995), and irregular wave
reflection (Seelig and Ahrens 1995; Davidson et al. 1996).

These empirical formulas predict the important quantities for the design of coastal struc-
tures but do not yield any information on the spatial and temporal (or spectral) variations.
Moreover, the incident irregular waves are normally represented only by the significant wave
height and the spectral peak or mean period measured at the toe of the structure. The



specification of the incident waves at the toe of the structure is standard nowadays because
the irregular wave transformation on the beach seaward of the structure is not simulated in
typical laboratory experiments. However, this creates difficulties when the incident waves
break on the beach seaward of the structure. The separation of the incident and reflected
waves using spaced wave gages (e.g., Thornton and Calhoun 1972; Goda and Suzuki 1976;
Kobayashi et al. 1990) or collocated gages (e.g., Guza et al. 1984; Hughes 1993) is based
on linear wave theory and the accuracy of the available methods is uncertain for breaking
waves. Furthermore, no simple model is presently available to predict the incident significant
wave height inside the surf zone in the presence of waves reflected from the structure. Since
the design waves for most coastal structures are depth-limited breaking waves, it will be nec-
essary to develop an accurate method for separating the incident and reflected waves inside
the surf zone. Alternatively, the incident and reflected waves may be separated immediately
outside the surf zone using linear wave theory as was done by Kobayashi and Raichle (1994)
and Kobayashi et al. (1996). However, this approach will require the simulation or modeling
of the irregular wave transformation in the surf zone and the subsequent wave runup on the
structure.

Wind-generated irregular waves are also directional. Experiments on coastal structures
conducted in directional wave basins are becoming more common throughout the world.
These experiments were conducted for straight structures on the horizontal bottom to in-
clude the effects of incident wave angles and directionality in empirical formulas for wave
runup and overtopping (DeWall and Van der Meer 1992; Juhl and Sloth 1994), wave reflec-
tion (Isaacson et al. 1996), armor stability on the breakwater trunk (Galland 1994), and
armor stability on the breakwater head (Van der Meer and Veldman 1992; Matsumi et al.
1994; Vidal et al. 1995). Available data are still limited partly because directional wave
basin experiments include more design parameters and are much more time-consuming than
unidirectional wave flume experiments. Furthermore, measurements are normally limited
to free surface oscillations and slope profiles, but laboratory velocity measurements have
become easier owing to acoustic doppler velocimeters (e.g., Kraus et al. 1994). On the other
hand, field data associated with coastal structures are very limited and include only a few
measuring points (e.g., Melo and Guza 1991; Dickson et al. 1995).

Wave Runup on Beaches

The foreshore slope of a beach is generally much gentler than the seaward slope of a
coastal structure. Incident waves normally break on the beach before they uprush on the
foreshore slope. The time-varying shoreline elevation above the still water shoreline is called
runup among nearshore oceanographers (e.g., Guza and Thornton 1982; Holman and Sal-
lenger 1985), whereas wave runup is defined as the maximum elevation reached by the up-
rushing water in this paper and among coastal engineers (e.g., Shore Protection Manual
1984). The time-varying shoreline elevation is separated into wave setup (mean shoreline
elevation above the still water level) and swash (fluctuations about the setup level).

For regular waves breaking on smooth uniform slopes, wave setup normalized by the
incident wave height is on the order of 0.2 (e.g., Bowen et al. 1968), whereas wave runup



normalized by the incident wave height is approximately proportional to the surf similarity
parameter (Hunt 1959; Battjes 1974) which decreases as the slope is decreased for the given
wave steepness. As a result, wave setup becomes dominant in comparison to swash on a
very gentle slope for the surf similarity parameter on the order of 0.1 or less. In other words,
almost all the incident wave energy is dissipated by wave breaking in a wide surf zone on
the very gentle slope. Consequently, swash and wave reflection are negligible for regular
waves breaking on the very gentle slope (e.g., Kobayashi et al. 1989). On the other hand,
wave setup is small relative to swash on a steep slope that causes appreciable wave reflection
(Battjes 1974).

Irregular wave setup and swash on beaches are more complicated because of apprecia-
ble swash fluctuations with periods substantially longer than the incident waves. The low
frequency swash oscillations are typically dominant on gently sloping beaches (e.g., Huntley
et al. 1977; Guza and Thornton 1982; Raubenheimer et al. 1995; Raubenheimer and Guza
1996). These low frequency swash fluctuations are also present but negligible on the steep
slope of a coastal structure (e.g., Kobayashi et al. 1990). The low frequency swash fluc-
tuations are related to surf beat or infragravity waves on beaches. In the following, recent
research on irregular wave reflection, setup and swash on beaches are reviewed. Guza and
Thornton (1982) presented a comprehensive summary of earlier research on swash oscilla-
tions, whereas Guza and Thornton (1985b) summarized earlier observations of surf beat.

Incident wind waves and swells whose periods are less than about 20 s are normally
assumed to be dissipated completely on beaches. This assumption is appropriate on gentle
dissipative beaches and allows the local application of linear progressive wave theory even
inside the surf zone (Guza and Thornton 1980). However, wave reflection from steep reflective
beaches is not negligible as discussed in Kobayashi et al. (1989). On the other hand,
infragravity waves whose periods are in the range of about 20 to 200 s are generally assumed
to be reflected completely from beaches, although wave reflection varies more gradually with
respect to the wave period or frequency (Kobayashi and Wurjanto 1992a; Raubenheimer et
al. 1995). This assumption allows the use of linear shallow water theory with no dissipation
to compute edge waves, which are long waves trapped in the nearshore by reflection and
refraction (Holman and Bowen 1979) and leaky (untrapped) waves, which are standing in
the cross-shore direction (Guza and Thornton 1985b).

Elgar et al. (1994) estimated the energy of seaward and shoreward propagating waves
on a natural beach using extensive data from an array of 24 pressure sensors in 13 m water
depth, 2 km from the North Carolina coast. The observed ratio of seaward to shoreward
propagating energy in the swell-sea frequency band decreased with increasing wave frequency
and wave energy and increased with increasing beach slope, qualitatively consistent with a
regular wave formula by Miche (1951). Most incident swell-sea energy dissipated in the
surf zone but reflection was up to 18% of the incident swell-sea energy when the beach
face was steep at high tide and the wave field was dominated by low-energy, low-frequency
swell. In contrast, there was usually more seaward than shoreward propagating energy in the
infragravity frequency band. This trend increased with increasing swell energy, suggesting
the generation of infragravity waves in very shallow water. On the other hand, Baquerizo et



al. (1997) examined the cross-shore variation of the local reflection coefficient of normally
incident wind waves which was shown to increase shoreward with the increased percentage
of breaking waves. The incident wave energy is dissipated due to wave breaking in the surf
zone but the energy reflected, presumably from the shoreline, seems to be affected little by
wave breaking,.

Irregular wave setup on natural beaches was estimated as the time-varying shoreline
elevation measured using resistance wires and films. Guza and Thornton (1981) used a
resistance wire positioned 3 cm above and parallel to a gently sloping beach face. The
measured setup was about 17 percent of the deep water significant wave height but the
data consisting of 11 estimates showed considerable scatter. Holman and Sallenger (1985)
measured wave setup on a moderately steep beach with a nearshore bar using time-lapse
photography where the manually digitized shoreline for 154 time series was estimated to
correspond to the water depth on the order of 0.5 cm. The wave setup data also exhibited
considerable scatter and showed some influence of the nearshore bar at low tide. As a whole,
the measured setup was much larger than 17% of the significant wave height in 20 m water
depth.

Holman and Guza (1984) compared the shoreline elevations measured using the time-
lapse photography technique and resistance wires elevated either 3 or 5 cm above the bed.
More recently, Holland et al. (1995) compared the time-varying shoreline elevations measured
using video images and five resistance wires at elevations of 5, 10, 15, 20 and 25 cm above the
beach face. These comparisons indicated the sensitivity of the shoreline elevation to the wire
elevation owing to thin runup tongues. The wave setup and the swash standard deviation
increased with the decrease of the wire elevation. The video-based estimate corresponded to a
very near-bed (less than a few centimeters elevation) wire measurement. These comparisons
imply that wave setup and swash depend on the definition of the time-varying shoreline.
Wayve setup defined by the mean water depth on an impermeable slope becomes tangential
to the beach face and approaches the upper limit of wave runup because the mean water
depth is positive in the region wetted by uprushing water (Bowen et al. 1968; Nielsen 1989;
Kobayashi and Karjadi 1996). On the other hand, Nielsen (1988,1989) measured the mean
water level on a natural beach and the mean water table inside the beach using manometer
tubes. He defined the shoreline setup as the elevation of the intersection between the beach
face and the straight line connecting the measured mean water level and water table. This
definition neglects the possible formation of a seepage face when the water table inside the
beach outcrops on the beach face above the mean water surface in the ocean (Nielsen 1990;
Turner 1993).

The considerable scatter of available data on wave setup on beaches appears to be caused
mainly by different methods used to measure wave setup. In addition, wave setup may be
sensitive to the spatial and temporal variability of the beach topography where edge waves
appear to play an important role in the generation of rhythmic beach morphology (e.g.,
Holman and Bowen 1982). Lippmann and Holman (1990) used daily time exposure images
of incident wave breaking on an open coast sandy beach to infer the spatial and temporal
variability of the nearshore sand bar morphology for 2 years at the site where Holman and



Sallenger (1985) measured wave setup. The bar morphology was found to be complex and
change rapidly during storms (on time scales of less than 1 day). The change of the bar
morphology may cause the corresponding changes of the mean water level and circulation
pattern including rip currents where Dalrymple (1978) reviewed various theories proposed
for rip current generation. The recent measurements by Smith and Largier (1995) using a
sector-scanning Doppler sonar indicated that the observed rip currents were episodical and
aperiodical. If the mean water level is sensitive to the beach topography, accurate prediction
of wave setup on the beach face will require sufficient data on the beach topography. The
dynamics of the beach topography can not be predicted at present, although efforts were
made to predict the shoreward movement of a linear bar outside the surf zone (Trowbridge
and Young 1989) and the seaward movement of a linear bar inside the surf zone (Thornton
et al. 1996).

Measured swash on beaches has been analyzed using spectral methods to examine the
variations of the shoreline oscillations with respect to the frequency f. The measured swash
spectra in the high frequency band were found to be approximately proportional to f~* (e.g.,
Huntley et al. 1977; Raubenheimer and Guza 1996) or f~* (Guza and Thornton 1982) and
almost independent of the incident wave height. This high frequency band approximately
corresponded to the wind wave frequency band. This was interpreted as the saturation of
the shoreline oscillations caused by breaking wind waves. Huntley et al. (1977) explained
the f~* dependence of the saturated swash spectra in the high frequency band using the
breaking criteria of Miche (1951) and Carrier and Greenspan (1958) for regular waves on
uniform slopes, assuming that each frequency component behaves like regular waves without
interactions among frequency components. On the other hand, the observed swash spectra in
the low frequency band did not show any clear frequency-dependence and were not saturated.
Swash energy in the low frequency band on gently sloping beaches tended to increase linearly
with increasing incident wave energy and become more dominant with increasing incident
wave height (Guza and Thornton 1982; Raubenheimer and Guza 1996; Ruggiero et al. 1996).

Low frequency swash oscillations can be generated in various manners. For a steep re-
flective slope, individual wind waves break and uprush on the slope and swash at wind wave
frequencies is dominant (e.g., Kobayashi et al. 1990). Grouped incident waves were observed
to runup and overtop as an amplified group, resulting in the increase of low-frequency com-
ponents (Kobayashi et al. 1989; Kobayashi and Raichle 1994). Furthermore, wave uprush
and downrush caused by individual waves were observed to interact and reduce the number
of individual runup events, resulting in the increase of swash oscillations periods (Carlson
1984; Mase and Kobayashi 1993). However, these low frequency swash oscillations on the
steep slope are generally small in comparison to the swash oscillations associated with in-
dividual waves. If the slope is gentle enough to cause the dissipation of individual waves
before they reach the shoreline, low frequency swash oscillations on such a gentle dissipative
slope can not be explained by the mechanisms based on individual waves. Large bores were
observed to overtake and capture smaller ones (e.g., Raubenheimer et al. 1995) but this is
not the dominant mechanism for energy transfer to low frequencies as explained by Guza
and Thornton (1982).
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Infragravity waves have been observed by many researchers to be substantial in very
shallow water and important in inner surf zones as reviewed by Guza and Thornton (1985b).
The measured fields of the cross-shore velocity and free surface elevation were shown to be
consistent with high model edge waves or cross-shore standing waves by many researchers as
also reviewed by Guza and Thornton (1985b) where the cross-shore velocity and elevation
fields for high mode edge waves and standing waves are too similar to differentiate these
waves. Low mode edge waves were observed in alongshore velocity fields (Huntley et al.
1981; Oltman-Shay and Guza 1987). The observed low frequency swash oscillations on
dissipative beaches have been shown to be consistent with linear standing waves by many
researchers (e.g., Guza and Thornton 1985b; Cox et al. 1992; Holland et al. 1995). Oltman-
Shay and Guza (1987) estimated that low mode edge waves contributed significantly to
the low frequency swash spectra observed on two California beaches. It may be noted
that shear waves with periods and alongshore wavelengths of the order of 100 seconds and
meters, respectively, are generated by the shear instability of the longshore current and cause
negligible free surface variations because shear waves are not surface gravity waves (Bowen
and Holman 1989; Oltman-Shay et al. 1989).

To predict the low frequency swash oscillations on dissipative beaches caused by infra-
gravity waves, it is necessary to predict infragravity waves in the nearshore. Several models
have been proposed for the generation of infragravity waves. Longuet-Higgins and Stewart
(1962) showed the existence of a second-order bound wave under normally incident wave
groups outside the surf zone that could subsequently be reflected from the shoreline and
escape out to deep water as free waves. Gallagher (1971) extended their cross-shore group
forcing model to obliquely incident waves and showed the possibility of resonant second-order
forcing of edge waves outside the surf zone. The laboratory experiment by Bowen and Guza
(1978) provided empirical evidence of this resonant interaction model even when the incom-
ing waves broke. Alternatively, Symonds et al. (1982) developed a cross-shore model for
the generation of infragravity waves by the time-varying breakpoint and the accompanying
variation in wave setup inside the surf zone. This model can not generate edge waves but
may possibly be extended to obliquely incident waves. List (1992) developed a cross-shore
model by combining the generation mechanisms proposed by Longuet-Higgins and Steward
(1962) and Symonds et al. (1982). Bryan and Bowen (1996) showed that edge waves could
be trapped and amplified on a nearshore bar. Elgar et al. (1992) observed infragravity waves
for about 1 year in 8 m water depth in the Pacific and in 8 and 13 m depths in the Atlantic.
The observed infragravity wave energy was well correlated with energy in the swell frequency
band of 7 to 20 s periods, suggesting that the infragravity waves were generated locally by
the swell. Infragravity waves were separated into free waves (edge waves or leaky waves
radiating to or from deep water) and bound waves (second-order waves coupled to groups
of incident waves). Bound wave contributions were significant only for energetic incident
waves (significant wave heights greater than about 2 m). In summary, these studies indicate
difficulties in predicting infragravity waves in the nearshore where no model is presently
available to predict edge waves and leaky waves radiating from deep water.

Since infragravity waves are not predictable, empirical attempts have been made to relate
swash statistics on foreshore slopes directly to incident wind waves in relatively deep water.
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Holman and Sallenger (1985) defined the significant swash height as 46 where o was the
standard deviation of the measured swash oscillation on a moderately steep beach. The
incident waves were characterized by the significant wave height and spectral peak period.
The significant swash height normalized by the significant wave height was plotted as a
function of the surf similarity parameter where the foreshore slope was used to represent the
beach slope effect on swash. The normalized swash height increased with the increase of the
surf similarity parameter in a manner similar to Hunt’s formula (Battjes 1974), although
the data consisting of 154 points showed considerable scatter. The swash height in the wind
wave frequency band appeared to be saturated only when the surf similarity parameter was
sufficiently small. Holman (1986) analyzed the same data and obtained the maximum runup
height during each data run of 35 minutes, the 2% exceedance level of shoreline elevation,
the 2% exceedance level for individual runup peaks, and the 2% exceedance level for swash
height as determined by a zero upcrossing method. These extreme values were normalized by
the incident significant wave height and plotted against the surf similarity parameter. The
normalized extreme values also increased with the increase of the surf similarity parameter
but exhibited considerable scatter. For the surf similarity parameter greater than about 1.5,
the runup was dominated by the incident wave frequencies but for smaller surf similarity
parameter longer period motions dominated the swash. This demarcation may be regarded
as a crude estimate for separating steep (reflective) and gentle (dissipative) beaches for the
purpose of wave runup predictions.

Nielsen and Hanslow (1991) measured wave runup probabilities using a cross-shore array
of stakes placed on a wide range of sandy beaches in Australia. They counted the number of
individual waves running up past each stake whose elevation was measured on each beach.
The exceedance probability for the given elevation above the still water level was estimated as
the ratio between the counted number of individual waves and the total number of individual
waves expected during each data run of 20 minutes. The estimated exceedance probabilities
for the cross-shore stake array were shown to follow the Rayleigh distribution reasonably
well where the vertical scale involved in the Raliegh distribution was obtained using a linear
regression analysis. The vertical scale for steep beaches was shown to be consistent with
Hunt’s formula in which the root-mean-square wave height and significant wave period were
used. However, the vertical scale for gentle (flat) beaches was approximately independent of
the beach slope. The foreshore slope of about 0.1 was the demarcation between the steep
and gentle beaches for their data. The proposed empirical formulas for the vertical scales
for the steep and gentle beaches showed considerable scatter.

Available field data on wave runup on beaches indicate difficulties in developing general
empirical formulas for different beaches and various incident wave conditions. This is prob-
ably because various wave transformation processes occur on actual beach profiles between
the shoreline and the offshore site where the incident waves are specified. Laboratory ex-
periments on irregular wave runup on coastal structures in relatively deep water involve less
variables. Moreover, the horizontal distance between the toe and shoreline (waterline) on
coastal structures is too short to allow the development of wave motions of different time
and spatial scales. However, most coastal structures are located well inside surf zones during
design storm waves and various wave transformation processes on fronting beaches will affect
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irregular wave runup on coastal structures (e.g., Kobayashi and Raichle 1994).

The statistical distributions of the swash oscillations measured on beaches were also
compared with statistical models based on linear (Gaussian) random waves (Huntley et
al. 1977; Holland and Holman 1993). If the swash oscillation is Gaussian, the probability
distribution of the time-varying shoreline elevation can be described only by its mean (wave
setup) and standard deviation (degree of the shoreline oscillation). The Gaussian assumption
was found to be satisfactory apart from certain discrepancies related to the skewness and
kurtosis of the measured swash distributions. This conclusion is similar to that of Guza and
Thornton (1985a) who computed the various moments of the fluid velocity field measured on
a gently sloping beach in estimating nearshore sediment transport rates. The Gaussian model
with the measured mean and standard deviation predicted the even moments fairly accurately
but could not predict the odd moments associated with the skewness and nonlinearities of
the velocity field. On the other hand, Kobayashi et al. (1997) measured the free surface
elevations using vertical gages placed at fixed locations on a smooth impermeable slope. In
their laboratory experiment, the free surface elevation could not be lower than the slope
elevation. The probability distribution of the measured free surface elevation in the lower
swash zone was shown to be approximately exponential with the skewness being equal to
two. Future studies will be required to establish the relationship between the shoreline
elevation on the beach face and the free surface elevation on a fixed location in the swash
zone. Statistical approaches may not reveal the swash dynamics but allow one to describe
time-varying variables using a few parameters such as the mean, standard deviation and
skewness.

Wave overtopping on beaches and dunes is important in predicting sediment overwash
but has been studied very little in the past. Kobayashi et al. (1996) conducted laboratory
experiments to measure wave reflection, overtopping, and overwash of dunes. The measured
reflection coefficient and overtopping rates were compared with the empirical formulas of
Seelig and Ahrens (1995) and Van der Meer and Janssen (1995), respectively, developed for
coastal structures. The equivalent uniform slope for overtopping was assumed to be the
overall slope between the dune crest and the point where the water depth equaled the signif-
icant wave height. The toe depth of the coastal structure was assumed to correspond to the
water depth immediately seaward of the breaker zone on the beach. The formulas with these
adjustments were then shown to predict the order of magnitude of the measured reflection
coefficients and overtopping rates. Furthermore, the average volumetric sand concentration
in the overwash flow was measured to be about 0.04 for the small-scale experiments. Addi-
tional laboratory experiments will be required to asses the validity of these empirical results
because the ranges of parameters varied in these experiments were limited. Field experi-
ments will be very difficult during storms that are severe enough to cause wave overtopping
and overwash.

NUMERICAL MODELS

Various models on nearshore wave dynamics have been reviewed recently. These reviews
include wave propagation in the nearshore (Dalrymple 1992; Mei and Liu 1993; Liu 1994;
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Kirby 1997), wave breaking on beaches (Peregrine 1983), surf zone dynamics (Battjes 1988;
Svendsen and Putrevu 1996), wave impact on vertical walls (Peregrine 1995), wave motions
on inclined coastal structures (Kobayashi 1995), and long wave runup (Yeh et al. 1996).
Numerical models related to the prediction of wave runup and overtopping on beaches and
coastal structures for given wave conditions in relatively deep water on the order of 10 m or
less are reviewed in the following.

Regular wave setup and currents induced by monochromatic waves breaking on beaches
are normally predicted using the time-averaged continuity and momentum equations includ-
ing the radiation stresses associated with the time-averaged momentum fluxes due to waves
(e.g., Bowen et al. 1968; Longuet-Higgins 1970. Wu and Liu 1985). The radiation stresses
for monochromatic progressive linear waves over a slowly varying water depth was given by
Longuet-Higgins and Stewart (1964). The breaker height inside the surf zone has been esti-
mated assuming that the ratio v between the local height and mean water depth is constant
where v is in the range of about 0.7 to 1.2 depending on the beach slope and steepness
as summarized by Raubenheimer and Guza (1996). The assumption of constant 74 is not
appropriate in the trough region of a barred beach. Dally et al. (1985) used a time-averaged
energy equation with an empirical dissipation rate due fo wave breaking to predict the wave
height variation across a beach of arbitrary profile.

Irregular wave setup and currents induced by wind waves breaking on beaches are pre-
dicted by adjusting the time-averaged equations for regular waves in different ways. The
simplest approach is to represent irregular waves by the root-mean-square wave height H,,,,
with a representative wave period such as the spectral peak period or mean period (e.g.,
Battjes and Janssen 1978; Thornton and Guza 1983; Battjes and Stive 1985) where no time-
averaged equation is available to predict the spatial variation of the representative period.
The representative wave direction for directional random waves is normally selected to re-
produce the radiation stresses (e.g., Guza and Thornton 1985a; Wu et al. 1985; Thornton
and Guza 1986) where the spatial variation of the wave direction is based on unidirectional
monochromatic wave theory such as Snell’s law for beaches of alongshore uniformity and
the conservation of wave number for arbitrary bathymetry. The spatial variation of H,,,s is
predicted using the time-averaged energy equation with the dissipation rate estimated using
the formula for a hydraulic jump adjusted for irregular wave breaking (e.g., Battjes and
Janssen 1978; Thornton and Guza 1983). Alternatively, the individual waves in the incident
irregular wave train may be assumed to be approximated as a sum of regular waves for the
given distribution of wave heights and periods (Mase and Iwagaki 1982; Dally and Dean
1986; Dally 1992). This approach is presently limited to normally incident irregular waves
only and is similar to the hypothesis of equivalence used to predict irregular wave runup
using regular wave runup data (Saville 1962). These approaches based on the time-averaged
equations adjusted for irregular waves neglect wave reflection and infragravity waves and
have never been applied to coastal structures.

The existing time-averaged models for normally incident irregular waves, which have been
calibrated using surf zone data, may considerably underpredict the wave setup and the root-
mean-square wave height H,,,, in the swash zone on a beach in light of the comparison made
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by Cox et al. (1994). This is partly because the ratio 7y between the wave height (significant
wave height or H,,,;) and mean water depth can be considerably larger in the swash zone
than in the surf zone (Kriebel 1994; Kobayashi et al. 1997). Furthermore, the extensive field
data of Raubenheimer and Guza (1996) indicate that the measured values of v in the inner
surf zones are more variable than expected from earlier data and depend on the fractional
change in water depth over a wavelength. As a result, the time-averaged models will need
to be improved by adopting more accurate criteria for irregular wave breaking in the inner
surf and swash zones. Time-averaged models are much more efficient computationally than
time-dependent models and are suited for engineering applications. If the wave setup and
H,p,s in the swash zone can be predicted accurately and the relationship between H,,,s and
the swash standard deviation exists, it will be possible to predict the mean and standard
deviation of the shoreline elevation whose probability distribution may simply be assumed
to be Gaussian (Huntley et al. 1977). This will then allow one to estimate the exceedance
probability as a function of the shoreline elevation in an efficient manner. Future studies will
be necessary to develop such a statistical model.

Time-dependent models are required to predict the time-varying shoreline elevations on
beaches and coastal structures. Numerical models based on the finite amplitude shallow
water equations are presently the only models that have been verified fairly extensively
using laboratory and field data as will be discussed later. These models for nondispersive
waves can not predict wave shoaling without wave breaking over a long distance unlike
the Boussinesq equations for dispersive waves (e.g., Kobayashi et al. 1989). Consequently,
the computation domain of such a numerical model needs to be limited to the region with a
relatively short distance from the shoreline. The small computation domain allows the use of
small grid spacings to resolve breaking waves and runup sufficiently. Relatedly, the incident
waves required as input to the model need to be specified in shallow water.

Spectral models such as third-generation wave prediction models may eventually be ex-
tended to shallow water (Van Vledder et al. 1994; Booij et al. 1994) and provide the
incident waves required for the numerical model for predicting wave runup and overtop-
ping. For practical problems, only the gross characteristics of incident wind waves such as
the significant wave height, spectral peak period and pre-dominant wave direction may be
available in relatively deep water. Use may then be made of a standard directional spec-
trum for wind waves such as the TMA frequency spectrum (Bouws et al. 1985) and the
Mitsuyasu-type directional spreading function (Goda 1985). Shoaling and refraction of the
assumed directional spectrum may be computed using linear finite-depth theory for parallel
bottom contours (LeMéhauté and Wang 1982) unless the bathymetry is know to be complex.
Linear theories have been shown to predict the gross characteristics of shoaled and refracted
wind waves outside the surf zone reasonably well (e.g., Guza and Thornton 1980; Elgar and
Guza 1985a). The frequency spectrum of the computed directional spectrum may be used to
numerically generate the corresponding incident wave train in shallower water depth using
a random phase scheme (e.g., Elgar et al. 1985) as was done by Kobayashi and Wurjanto
(1992a), and Kobayashi and Karjadi (1996). However, this procedure does not account for
incident infragravity waves and the wind waves in shallower water depth may show marked
departures from this linear simulation due to nonlinearities (e.g., Elgar et al. 1984). Irregular
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wave runup on beaches and coastal structures may not be extremely sensitive to the details
of the incident wind waves outside the surf zone (Kobayashi et al. 1987).

Numerical models based on the Boussinesq equations for weakly dispersive waves for a
sloping bottom (Peregrine 1967) were developed to predict the weakly-nonlinear wave trans-
formation outside the surf zone. Abbott et al. (1978, 1984) solved the two-dimensional
Boussinesq equations in the time domain. Their numerical model was verified against an-
alytical and experimental results for shoaling, refraction, diffraction, and partial reflection
processes (Madsen and Warren 1984). Freilich and Guza (1984) developed a frequency do-
main model based on the one-dimensional Boussinesq equations to predict the nonlinear
evolution of the wave field’s Fourier amplitudes and phases. Elgar and Guza (1985a, 1985b,
1986) showed utility of the frequency domain model coupled with bispectral techniques for
predicting and analyzing the observed nonlinear evolution of shoaling random waves. Yoon
and Liu (1989) adopted the parabolic approximation of the Boussinesq equations developed
by Liu et al. (1985) to predict the development of stem waves (Wiegel 1964) along a vertical
wall numerically. The Boussinesq equations were recently modified to improve their linear
dispersion properties in deeper water and extend their applicability to shorter waves (Madsen
and Sorensen 1992; Nwogu 1993; Chen and Liu 1995; Wei and Kirby 1995). The Boussinesq
equations for weakly-nonlinear waves were also extended to fully-nonlinear waves in order to
predict shoaling waves up to the point of wave breaking more accurately (Wei et al. 1995).

The original and extended Boussinesq equations are based on the assumption of inviscid
irrotational flow. This assumption has been used successfully to predict when and how
waves break but is not valid after wave breaking (e.g., Peregrine 1983). Nevertheless, the
Boussinesq equations have been extended to the surf zone in semi-empirical manners because
no rigorous model is presently available to predict the detailed wave characteristics in the
surf zone. The simplest approach is to include the horizontal momentum diffusion terms with
an eddy viscosity in the Boussinesq equations after wave breaking (Zelt 1991; Karambas and
Koutitas 1992; Sato and Kabiling 1994) where the eddy viscosity and the onset of wave
breaking were expressed empirically in different ways. Zelt (1991) used a Lagrangian model
to facilitate the prediction of the moving shoreline due to solitary waves. Nwogu (1996)
estimated the eddy viscosity using a semi- empirical transport equation for turbulent kinetic
energy produced by wave breaking. Sato (1996) applied the numerical model of Sato and
Kabiling (1994) to simulate and interpret the observed tsunami propagation and focusing on
the lee side of an island.

Alternatively, Schéffer et al. (1992) included the additional momentum fluxes due to a
surface roller to account for wave breaking in the Boussinesq equations where an empirical
geometric method was used to estimate the shape and location of the surface roller. A similar
roller model was proposed by Brocchini et al. (1992). Madsen et al. (1994) extended the
roler model of Schiffer et al (1992) to predict the swash oscillations on a gentle slope due
to monochromatic and bichromatic waves. The moving shoreline was treated using a slot
technique with the dispersive terms switched off at the still water shoreline. but the computed
shoreline oscillations were dependent on the assumed width of an artificial slot. In short,
the extended Boussinesq models have been applied successfully to predict wave propagation
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from relatively deep water to the surf zone but the detailed shoreline oscillations appear to
have been predicted satisfactorily only for solitary waves (Zelt 1991). It is easier to treat the
moving shoreline using the finite amplitude shallow water equations which do not contain
the dispersive terms of third-order derivatives in the Boussinesq equations.

The vertical structure of the flow field is assumed in the shallow water equations including
the extended Boussinesq equations so that the governing equations do not depend on the
vertical coordinate. Numerical models based on vertically two-dimensional equations have
been developed to predict the vertical and cross-shore variations of the flow field as explained
in the following. These numerical models require more computational efforts and have not
yet been expanded to the three dimensions. Furthermore, the computations are typically
limited to relatively short durations even for two-dimensional problems.

For nonbreaking waves on steep smooth slopes, boundary integral equation methods for a
potential flow with nonlinear free-surface boundary conditions (e.g., Grilli 1996) will probably
predict wave runup more accurately than one-dimensional models based on the shallow water
equations. Chian and Gerritsen (1990) computed solitary wave runup on smooth slopes and
predicted the stability of armor units using the armor stability model of Kobayashi et al.
(1986). The predicted stability number was in fair agreement with the data by Ahrens (1975)
who tested riprap stability under regular wave action. The problem of their comparison is
that solitary wave runup on smooth slopes is very different from regular wave runup on the
corresponding riprap slopes. Liu and Cho (1994) included the effect of bottom friction via a
boundary-layer approximation in their computations of solitary and cnoidal wave runup on
smooth uniform slopes. Their computed results have confirmed that the effects of bottom
friction on wave runup are important when the slope angle is less than 20° (1:2.7 or gentler
slope). In short, the numerical models based on potential flow theory are of limited practical
use because steep slopes are normally protected with armor units, whereas waves on gentle
slopes tend to break. These models are more useful in predicting nonbreaking wave impact
on vertical walls (e.g., Peregrine 1995).

On the other hand, to simulate plunging waves on impermeable slopes, the Navier-Stokes
equations were solved by Sakai et al. (1986) using a marker and cell method and by Van der
Meer et al. (1992) using a volume of fluid method. Pedersen et al. (1992) applied a discrete
vortex model to simulate the motion of vortices generated by a jet of water and advected by
the ambient potential flow where a semi-empirical procedure was used to generate vortices.
Liu and Lin (1997) developed a numerical model to compute the evolution of a breaking
wave. The incompressible Reynolds equations for the mean flow field and the k — e equations
for the turbulent field (e.g., Rodi 1980) were solved using finite difference methods where
the free surface locations were represented by a volume of fluid method. This numerical
model was shown to be in good agreement with available data on the runup and rundown of
nonbreaking and breaking solitary waves.

The turbulence and vortices generated by breaking waves may be important for the
suspension of sediment in the surf zone (e.g., Deigaard et al. 1986; Pedersen et al. 1995) but
their effects on wave runup appear to be secondary. Laboratory measurements of turbulence
using Laser-Doppler velocimeters (e.g., Stive 1980; Nadaoka and Kondoh 1982; Cox et al.
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Iigure 1: Wave Runup on Rough Impermeable Slope

1994) and field measurements of turbulence using hot film anemometers (George et al. 1994)
have indicated that turbulent velocities are on the order of 10% or less of cross-shore velocities
below wave trough level in surf zones. Chang and Liu (1996) measured two-dimensional
instantaneous velocity fields under deep-water spilling waves using particle image velocimetry
(Greated et al. 1992). The mean and turbulent velocities were obtained from the ensemble
average of 24 repeated runs. The turbulent velocity was up to about 30% of the mean velocity
but highly concentrated air bubbles near the surface made the velocity measurement very
difficult. At present, no attempt has been made to measure the velocity and turbulence fields
in the swash zone on a beach (Kobayashi and Karjadi 1996).

For nonbreaking waves on steep porous breakwaters, Sakakiyama and Kajima (1992)
applied the porous body model developed originally for the flow in heat exchangers and
fuel-rod bundles in a nuclear reactor. Sun et al. (1992) used a boundary element method
for a potential flow outside of a rubble mound breakwater and a finite element method for
a seepage flow inside the porous breakwater. On the other hand, Fischer et al. (1992)
solved the Reynolds equations including laminar and turbulent flow friction in the porous
media which were solved using a finite difference method. These numerical models have
not been used widely probably because they require significant computation time in spite
of uncertain empirical parameters included in the governing equations for the flow inside
porous structures.

In the following, numerical models based on the finite amplitude shallow water equations
are reviewed in more detail because they have been used fairly extensively to predict regular
and irregular wave runup on inclined structures and beaches. These models may not be very
accurate but are relatively simple and applicable to both breaking and nonbreaking waves
on slopes of arbitrary geometry and reflectance.

Wave Runup and Overtopping on Impermeable Structures

Numerical models were developed to predict the wave motion and runup on a rough or
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smooth impermeable slope for specified normally-incident waves as shown in Fig. 1 for the
case of a rough slope where @ = horizontal coordinate taken to be positive landward with
x = 0 at the seaward boundary of the computation domain; 2 = vertical coordinate taken
to be positive upward with z = 0 at the still water level (SWL); d; = water depth below
SWL at the seaward boundary which is normally taken at the toe of the slope unless the
incident waves break seaward of the toe. # = local angle of the slope which is allowed to
vary along the slope; n = free surface elevation above SWL; h = instantaneous water depth
above the impermeable slope; and v = depth-averaged horizontal velocity. The theoretical
bottom level for the flow on the rough slope is difficult to pinpoint as is the case with
oscillatory rough turbulent boundary layers (Jonsson 1980). The finite amplitude shallow
water equations including bottom friction are the vertically-integrated equations of mass and
horizontal momentum for shallow water waves on the impermeable slope

oh 0

a + 3_32 (hu) = 0 (1)
0 d 1 i
e (hu) + P (hu2 + Eghz) = —ghtanf — §ﬁ’ |u | u (2)

where t = time; g = gravitational acceleration; and f, = bottom friction factor which may
vary due to the spatial variation of bottom roughness (e.g., Kobayashi and Raichle 1994).

Egs. (1) and (2) with f, = 0 have been derived assuming potential flow in textbooks
for wave theories (e.g., Mei 1989). However, these equations can be derived from the two-
dimensional Reynolds equations under the assumption of 0% > 1 with ¢ = ratio between
the horizontal and vertical length scales (Kobayashi and Wurjanto 1992a). Eq. (1) is ex-
act, whereas Eq. (2) is approximate because it neglects the additional momentum flux m
due to the vertical variation of horizontal velocity relative to the depth-averaged velocity u
(Kobayashi et al. 1997). The vertical momentum equation under the assumption of o2 > 1
yields approximately hydrostatic pressure below the instantaneous free surface. This numeri-
cal model for inclined structures under the assumption of o > 1 does not predict wave runup
on vertical walls well (Kobayashi and Tega 1996). The one-dimensional energy equation cor-
responding to (1) and (2) can be derived from the two-dimensional horizontal momentum
equation used to derive (2) as shown by Kobayashi and Wurjanto (1992a). The energy dis-
sipation rate due to wave breaking in this energy equation involves the vertical variations of
the horizontal velocity and shear stress which are unknown in the one-dimensional model.
As a result, the flow field represented by h and u is computed using (1) and (2) and the
energy dissipation rate due to wave breaking is then estimated using the energy equation.
This procedure is similar to the conventional analysis of a steady hydraulic jump but does
not simulate the wave breaking and associated energy dissipation explicitly (Kobayashi and
Wurjanto 1992a).

Eqs. (1) and (2) are written in the conservation-law form of the mass and horizontal
momentum equations except for the two terms related to the bottom slope and friction
on the right hand side of (2). This form is normally used in numerical methods (e.g.,
Richtmyer and Morton 1967). Kobayashi et al. (1986,1987) normalized (1) and (2) using
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the representative wave height and period at z = 0 denoted by H and 7', respectively, where
the water depth is on the same order as H in shallow water. The normalized equations
corresponding to (1) and (2) involve only two dimensionless parameters. One parameter
is the normalized slope which is proportional to the surf similarity parameter ¢ defined as
£ = tan@/(H/L,)°® with L, = gT?/(2r), which becomes that used by Battjes (1974) for
uniform slopes. The other parameter is the normalized bottom friction factor. As a result,
the normalized runup depends on these two parameters and the normalized incident wave
profile at # = 0 (Kobayashi et al. 1987).

Analytical solutions for (1) and (2) with f; = 0 were described by Synolakis (1987).
The analytical solutions are limited to nonbreaking waves on uniform slopes without any
energy dissipation. To predict the flow characteristics and armor stability in the downrush
of regular waves on uniform riprap slopes, Kobayashi and Jacobs (1985) applied the standing
wave solution of (1) and (2) with f, = 0 (Carrier and Greenspan 1958; Tuck and Hwang
1972) starting from the time when wave uprush was completed. An empirical formula was
used to estimate wave runup. Wave rundown was assumed to be completed when the free
surface slope became vertical during wave downrush. In short, analytical solutions are too
restrictive and lack versatility for wide applications.

The bottom friction term in (2) is empirical but necessary because the effects of bottom
friction on wave runup are not negligible except for steep smooth slopes. The existing
knowledge of the bottom friction factor f; is mostly based on oscillatory boundary layer
data well outside the surf zone (e.g., Jonsson 1966, 1980; Grant and Madsen 1986). Very
limited laboratory data are available in the surf zone on a beach (Cox et al. 1996) and for
coastal structures (Madsen and White 1976; Cornett and Mansard 1994). Measurements of
wave boundary layers on natural beaches are rare and very difficult (Trowbridge and Agrawal
1995). The values of f, have been calibrated for the specific applications of numerical models
based on (1) and (2) where these applications are described in the following. The calibrated
values of f, are on the order of 0.01 for smooth slopes and 0.1 for rough slopes.

Finite difference methods to solve the hyperbolic equations (1) and (2) expressed in the
conservation-law forms are given in textbooks for computational fluid mechanics (e.g., Richt-
myer and Morton 1967; Anderson et al. 1984). Moretti (1987) reviewed numerical methods
developed for flows with shocks that are similar to bores or breaking wave fronts. The explicit
MacCormack (1969) method, which is a simplified variation of the two-step Lax-Wendroff
method (e.g., Anderson et al. 1984), has been applied successfully to compute transient
open channel flows with hydraulic jumps as summarized by Chaudhry (1993). Greenspan
and Young (1978) used a method of characteristics to compute flow over a dyke. The ex-
plicit dissipative Lax-Wendroff method (e.g., Richtmyer and Morton 1967) has been used
most widely since Hibberd and Peregrine (1979) and Packwood (1980) used it to compute
bores on a beach of uniform slope. The MacCormack and Lax-Wendroff methods based on
constant grid spacing are second-order accurate in space and time and allow the formation of
bores. Both methods produce high frequency numerical oscillations at wave fronts of sharp
gradients and require a procedure to damp the high frequency oscillations without disturb-
ing regions of smooth gradients. A damping term is added in the dissipative Lax-Wendroff
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method (e.g., Packwood 1980), whereas a smoothing procedure is applied in the MacCor-
mack method (e.g., Chaudhry 1993). These two methods were compared by Johnson et al.
(1996) who modified the smoothing procedure slightly to account for the shoreline of zero
depth. The computed results were practically identical. The numerical stability criteria for
the explicit methods require courant numbers less than one, implying that the waves would
not propagate more than one grid spacing in each time step (e.g., Anderson et al. 1984).
On the other hand, (1) and (2) with f, = 0 were solved by Watson et al.(1992) using the
Weighted Average Flux method to compute a sequence of waves on a beach with an sub-
aerial bar and by Titov and Synolakis (1995) using a variable grid finite-difference method
to compute breaking and nonbreaking solitary wave evolution and runup. In short, several
finite difference methods have been applied for the computation of breaking and nonbreaking
wave runup on slopes with very limited intercomparisons of these methods.

The initial time ¢t = 0 for the computation marching forward in time is generally taken
to be the time when the specified incident wave train arrives at the seaward boundary of the
computation domain. Correspondingly, the initial conditions are given by 7 = 0 and u = 0
at t = 0 in the computation domain where 7 = 0 and u = 0 satisfy (1) and (2). To compute
regular wave runup on a slope, the computation needs to be continued until the computed
shoreline oscillation becomes periodic. This transient duration has been found to be several
wave periods for steep slopes but increases as the slope becomes gentler (Kobayashi et al.
1989). The cross-shore fluid motion responds much faster than the alongshore fluid motion
because of the slow development of longshore current (e.g., Kobayashi and Karjadi 1996).
To compute irregular wave runup on a slope, the shoreline oscillations needs to be computed
for at least about 200 individual waves to perform the subsequent spectral and statistical
analyses of the computed shoreline oscillations as discussed by Kobayashi et al. (1990) who
used smaller time steps when numerical difficulties were encountered at the shoreline during
their computations of long durations. To avoid the long computation time for irregular
waves, Cox et al. (1992) attempted to develop a frequency-domain model based on (1) and
(2) but used it to explain the generation of low-frequency waves due to the forcing terms
computed using the time-domain model. It appears to be difficult to develop an independent
frequency-domain model corresponding to (1) and (2) because these equations do not account
for wave breaking explicitly.

The finite difference methods used to solve (1) and (2) do not provide the values of h and
u at the seaward and landward boundary nodes. Time-dependent boundary conditions for
hyperbolic systems were examined by Thompson (1990). To develop appropriate boundary
conditions, (1) and (2) are expressed in the following characteristic form (e.g., Kobayashi et
al. 1987).

da da Ji g dz _
%-{—(u-}-c)% = —gta,113—ﬁ|u|u ; along T =ute (3)
ap p Js , dz
8t+(u_c)8x == gtan9+2h|u|u ; along i (4)
with
e=+/gh ; a=2+u ; f=2-u (5)
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where ¢ is the long wave speed, and « and 3 are the characteristic variables. If v < ¢, the
flow is locally subcritical, and a and 3 represents the characteristics advancing landward and
seaward, respectively. Using linear long wave theory, @ and f# can be shown to be related to
the waves propagating landward and seaward, respectively (Kobayashi et al. 1987; Kobayashi
and Wurjanto 1989b). If u > ¢, the flow is locally supercritical, and both characteristics a
and # advance landward. The supercritical flow may occur in very shallow water. For
example, the flow overtopping on the crest of a subaerial structure becomes supercritical
during the peak overflow (Kobayashi and Wurjanto 1989a).

The seaward boundary algorithm depends on the wave data available at the seaward
boundary # = 0. For most practical applications, the free surface elevation of the incident
wave train, 7;(t) at ¢ = 0, is specified using wave theories or wave data in the absence of a
structure, whereas the free surface elevation of the reflected wave train, 7,(t) at = 0, needs
to be predicted to assess the degree of wave reflection in the presence of the structure. Con-
sequently, Kobayashi et al. (1987) expressed the total water depth at the seaward boundary
as

h(t,e) =dy+m(t) +n:(t) at =0 (6)

It is normally possible to choose the location of the seaward boundary such that v < ¢ at
z = 0 and the value of # = (2¢ — u) at 2 = 0 can be computed using (4) for the computed
values of h and u in the computation domain. For the computed value of 3, #,({) may
be estimated using linear long wave theory and h is then given by (6) for the specified
ni(t). Finally, u is given by u = (2y/gh — ). The numerical procedure developed by
Kobayashi et al. (1987) has been used widely for its capability of predicting reflected waves
approximately. This procedure has been modified by Kobayashi et al. (1989) to account for
second-order wave set-down and return current at @ = 0 which may not be negligible for
beaches. This procedure can also be modified to specify the measured free surface elevation,
n(t,z) = [n:i(t) + n.(t)], at @ = 0 (Cox et al. 1994; Kobayashi and Poff 1994).

If the measured time series of 77 and u at 2 = 0 are available, the seaward boundary
algorithm is not necessary because the measured values of 7 and u can be used directly
in the finite difference method used to solve (1) and (2) as was done by Raubenheimer
and Guza (1996), Raubenheimer et al. (1996), and Elgar et al. (1997). The comparisons
made by Kobayashi and Poff (1994) and Raubenheimer and Guza (1996) indicate that the
computed results using these different procedures differ within the errors of the numerical
model based on (1) and (2) which are typically less than 20% in comparison with free surface
measurements.

The landward boundary conditions depend on the crest height of a structure relative to
the still water level and wave runup. For a subaerial structure with no wave overtopping, the
landward boundary is located at the moving waterline. The numerical algorithms dealing
with the moving waterline or shoreline were reviewed in the proceedings edited by Yeh et
al. (1996). All the algorithms attempt to satisfy the conservation of water mass but the
details differ significantly. The algorithm becomes more complex if the detail of the waterline
movement needs to be resolved accurately using small grid spacings and time steps. The
predictor-corrector-smoothing procedure described by Hibberd and Peregrine (1979) and
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Packwood (1980) was explained in detail by Kobayashi et al. (1987). To overcome numerical
difficulties encountered at the moving waterline for the computation of irregular waves of long
durations, this procedure was adjusted further as reported by Kobayashi and Poff (1994). In
essence, this procedure attempts to satisfy both (1) and (2) at the moving waterline under
the constraint of the finite difference method used to solve (1) and (2). After the moving
waterline is obtained, the waterline elevation measured by a real or hypothetical wire placed
at a specified distance above and parallel to the slope can be found from the elevation of the
intersection between the wire and the instantaneous free surface elevation.

If wave overtopping occurs on the crest of a subaerial structure, the landward boundary
may need to be taken at the landward edge of the crest because the jet of overtopped water
issuing landward may not be described by (1) and (2). Kobayashi and Wurjanto (1989a)
used (3)—(5) to develop the landward boundary algorithm for the overtopping flow at the
landward edge of the crest located at = x.. If u < e at the grid point next to z = =z,
the overtopping flow is subcritical or critical and only (3) for the characteristics a advancing
from the computation domain can be used to find A and u at 2 = a.. For this case, the flow
at = x. is assumed to be critical, that is, u = ¢ at # = 2,. On the other hand, if u > ¢ at
the grid point next to & = 2., the overtopping flow is supercritical and both (3) and (4) for
the characteristics @ and f can be used to find h and v at @ = 2.. After h and v at z = 2, is
found, the instantaneous overtopping rate is given by hu at z = x, where hu = 0 at z = z,
when the moving waterline is located seaward of the landward edge of the crest.

For a submerged structure, the landward boundary may be taken at the landward toe
of the structure in order to compute the wave transformation over the entire structure. To
find h and u at the landward boundary located at @ = @4, Kobayashi and Wurjanto (1989b)
used (3) for the characteristics @ advancing landward under the assumption of u < ¢ at
& = w¢. For the value of a computed using (3), the free surface elevation of the transmitted
wave train, 74(t) at * = x;, may be obtained assuming linear long wave theory. The total
water depth h at @ = 2. is then the sum of 7(t) and the still water depth at 2 = z..
Finally, u = (a — 21/gh) at ¢ = z. by use of (5). It should be stated that (1) and (2) with
no frequency dispersion do not predict the detfails of the transmitted waves in the region
where the still water depth increases landward. If the incident waves break on the crest of
a submerged breakwater or nearshore bar, the transmitted bore-like wave may eventually
become undular as it propagates further landward (Kobayashi and Wurjanto 1989b). The
Boussinesq equations for dispersive waves are required to predict the development of an
undular bore (Peregrine 1966). Even if the incident waves do not break on the crest of
a submerged structure or nearshore bar, the number of wave crests will increase due to
nonlinear wave interactions on the basis of the field data on a barred beach obtained by Elgar
et al. (1997) who showed that the observed energy transfer could be predicted accurately
by the Boussinesq equations. In short, the numerical model described here may predict
the wave transmission coefficient fairly accurately (Kobayashi and Wurjanto 1989b) but the
predicted wave train may not show the increased number of wave crests.

The computed variations of the water depth h and the depth- averaged velocity u with
respect to ¢ and z were used by Kobayashi et al. (1986) and Kobayashi and Otta (1987) to
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predict the hydraulic stability and sliding motion of armor units on a rough impermeable
slope. The drag, lift and inertia forces acting on an armor unit were expressed in terms of the
computed depth-averaged velocity and acceleration. The numerical stability model predicts
the variation of the local stability number along the slope whose minimum value corresponds
to the critical stability number for initiation of armor movement. It should be noted that the
wave-induced forces acting on an armor unit are not well understood for lack of extensive
data. Tgrum (1994) measured the fluid velocities and wave-induced forces simultaneously
but could not express the lift force in terms of the measured velocities. If armor units are
placed on a slope in such a manner that no armor units are exposed to direct wave action,
armor units will need to be lifted out of their positions to commence their sliding and rolling
motions along the slope (Melby and Kobayashi 1996 ).

Numerical models similar to that described here were also developed using (1) and (2).
These numerical models for rough or smooth impermeable slopes were compared with labora-
tory data as summarized in the following. The comparisons with regular wave data include:
wave reflection and runup on rough slopes (Kobayashi et al. 1986, 1987); zero-damage sta-
bility numbers for riprap slopes (Kobayashi et al. 1986; Kobayashi and Otta 1987); free
surface and waterline oscillations, dynamic pressure, and stone displacements on a 1:3 rough
slope (Kobayashi and Greenwald 1986, 1988); wave reflection and runup on smooth slopes
as well as free surface and waterline oscillations and dynamic pressure on a 1:3 smooth slope
(Kobayashi and Watson 1987); free surface and velocity oscillations on a 1:2 slope (Allsop et
al. 1988); wave reflection, runup and run-down on slopes covered with dolosse (Kobayashi
and Wurjanto 1989c¢); average overtopping rates on smooth structures (Kobayashi and Wur-
janto 1989a); wave reflection and transmission coefficients over smooth submerged structures
(Kobayashi and Wurjanto 1989b); and wave runup, run-down, velocities and pressure on a
1:3 smooth slope in a large flume (Van der Meer and Breteler 1990). The comparisons with
solitary wave data include: free surface elevations and velocities on a smooth submerged
breakwater (Losada et al. 1992); and breaking solitary wave runup on a 1:19.85 smooth
slope (Kobayashi and Karjadi 1994a). The comparisons with irregular wave data include:
reflected wave trains and waterline oscillations on a 1:3 rough slope (Kobayashi et al. 1990);
reflected wave trains, free surface oscillations, overtopping flow depth, and average overtop-
ping rates on a 1:2 rough slope fronted by a gentle smooth slope and situated well inside
the surf zone (Kobayashi and Raichle 1994); average overtopping rates on dunes (Tega and
Kobayashi 1996); and armor stability on leeside slopes of overtopped breakwaters (Kudale
and Kobayashi 1996).

The extensive comparisons with the measured free surface elevations and related quanti-
ties such as the waterline oscillations, runup and run-down on impermeable slopes indicate
that the numerical models based on (1) and (2) can normally predict the free surface ele-
vations within errors of about 20%. The prediction of wave run-down can be less accurate
because run-down is sensitive to a thin layer of downrushing water. The more limited com-
parisons with the measured horizontal velocities indicate that the computed depth-averaged
velocities represent the measured velocities within similar errors. The measured overtop-
ping rates generally vary considerably and can normally be predicted only within a factor
of about 2. The limited comparisons with the measured dynamic pressure suggest that the
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hydrostatic pressure approximation employed in (1) and (2) is less accurate on steep slopes.
The agreement on gentle slopes is expected to be better because the hydrostatic pressure as-
sumption is routinely applied to obtain the free surface elevation from the measured pressure
in very shallow water on beaches (e.g., Raubenheimer et al. 1995, 1996; Raubenheimer and
Guza 1996) since Guza and Thornton (1980) made the intercomparisons of local pressure,
velocity and free surface elevation on a beach. On the other hand, the hydraulic stability
model coupled with the numerical flow model based on (1) and (2) has also been shown to
predict the observed zero-damage stability number within errors of about 20% if the drag, lift
and inertia coefficients are calibrated. The measured armor displacement can be predicted
only qualitatively.

The two-dimensional finite amplitude shallow water equations corresponding to (1) and
(2) were recently solved by Liu et al. (1995) to explain the enhanced runup and trapping of
tsunamis on the lee side of an island. Liu et al. (1995) solved the two-dimensional equations
using a staggered explicit finite difference leap-frog scheme where the nonlinear convective
terms were linearized with an upwind scheme of first order accuracy. Good agreement
was obtained between the measured and computed free surface displacement and maximum
runup around a circular island with a 1:4 smooth side slope for nonbreaking solitary waves.
They have noted that no numerical solution has been demonstrated to successfully reproduce
wave breaking in a two-dimensional flow. Future studies will be required to develop two-
dimensional numerical models for breaking solitary, regular and irregular waves on coastal
structures of arbitrary geometry.

Wave Runup on Permeable Structures

Linear long wave theory combined with the Forchheimer equation expressing the flow
resistance inside the porous rubble-mound breakwater was applied successfully to predict
the reflection and transmission coefficients of nonbreaking regular waves for the case of no
wave overtopping (e.g., Madsen and White 1975). Nonlinear long wave theory is required
to predict the flow field and wave runup on a permeable slope more accurately. To predict
regular waves on a permeable slope, Thompson (1988) applied the continuity equation (1)
and the horizontal momentum equation (2) used by Kobayashi et al. (1986, 1987) to predict
regular waves on an impermeable slope. He used a linear seepage flow equation (Darcy’s
law) to predict the flow inside a porous breakwater. His formulation neglects the mass and
momentum fluxes between the flows outside and inside the breakwater.

Kobayashi (1986) extended the finite amplitude shallow water equations to a permeable
slope by including the vertical mass flux in (1) and the horizontal momentum flux in (2) to
express the mass and momentum fluxes per unit horizontal area into a permeable underlayer.
Kobayashi (1986) also presented the vertically-integrated equations of mass and horizontal
momentum for the flow in the permeable underlayer where the laminar and turbulent flow
resistance was expressed in the form adopted and calibrated by Madsen and White (1975).
Kobayashi and Wurjanto (1990) extended the characteristic equations (3) and (4) to the per-
meable slope and obtained an energy equation including the energy flux into the permeable
layer to estimate the rate of energy dissipation due to wave breaking on the permeable slope.
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The numerical model developed by Kobayashi and Wurjanto (1990) used the assumption of
a thin permeable underlayer to simplify the horizontal momentum equation for the flow in
the permeable layer. In the simplified equation, the horizontal hydrostatic pressure gradient
drove the flows against the resistance in the thin permeable underlayer. Computation was
made for regular waves on permeable slopes. The computed runup, run-down and reflection
coefficients were in agreement with available empirical formulas, whereas the computed zero-
damage stability number was compared with irregular wave data to show the limitations of
the regular wave approximation.

Kobayashi et al. (1990a) applied this numerical model to compute irregular waves on
rough permeable slopes. The computed maximum irregular wave runup was in fair agreement
with the empirical formula of Ahrens and Heimbaugh (1988). The spectra of the computed
waterline oscillations contained noticeable low-frequency components, which increased with
the decrease of the surf similarity parameter as expected from runup data on natural beaches
(e.g., Holman and Sallenger 1985). The spectra of the computed reflected wave trains indi-
cated the increase of wave reflection with the decrease of frequency as well as the increase
of the average reflection coefficient with the increase of the surf similarity parameter. These
trends are qualitatively consistent with regular wave data (e.g., Battjes 1974). The computed
critical stability number for initiation of armor movement was in fair agreement with the
measured stability number for the start of damage (Van der Meer 1988). The comparison of
the computed armor stability for the regular and irregular waves suggested that the armor
stability would be reduced appreciably and vary less along the slope under the irregular wave
action. Furthermore, Kobayashi et al. (1990b) examined the critical incident wave profile
associated with the computed minimum stability of armor units to better quantify design
wave conditions. In addition, a simplified model was proposed to predict the eroded area us-
ing the computed probability of armor movement. This model was in qualitative agreement
with the empirical formula for the damage level proposed by Van der Meer (1987, 1988).

Norton and Holmes (1992) developed a numerical model for the reshaping of dynamically
stable breakwaters under regular waves. The armor layer was numerically represented by
a random assembly of interacting spherical particles. They adopted the numerical flow
model of Kobayashi and Wurjanto (1990) which was shown to be in fair agreement with
the velocities measured on the slope of a berm breakwater. A force model was used to
agsess armor stability on the slope and an empirical procedure was adopted to estimate the
displacement distance of unstable armor units. The limited comparison of their numerical
model with an experiment on the profile evolution of a berm breakwater was promising.

The numerical model of Kobayashi and Wurjanto (1990) based on the assumption of
a thin permeable underlayer was found to be inappropriate for the experiment conducted
by Kobayashi et al. (1991) for a 1:3 rough permeable slope with a thick permeable under-
layer. The computed results did not satisfy the time- averaged equation of mass mainly
because the thin layer model did not account for water storage in the region landward of the
moving waterline on the permeable slope. Kobayashi and Wurjanto (1992b) and Wurjanto
and Kobayashi (1993) extended the earlier model to a permeable underlayer of arbitrary
thickness and included this region with the free surface inside the thick permeable under-
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layer. The inertia terms in the horizontal momentum equation for the flow inside the thick
permeable underlayer are not negligible and were included in their numerical model based
on the MacCormack (1969) finite difference method. The comparison with the experiment
by Kobayashi et al. (1991) showed that this extended numerical model could accurately
predict the time series and spectral characteristics of the measured reflected waves and wa-
terline oscillations on the 1:3 permeable slope. The computed results indicated that the wave
propagation, attenuation and setup inside the permeable underlayer reduced the intensity
of wave breaking and resulting energy dissipation on the permeable slope but increased the
energy flux and dissipation inside the thick permeable underlayer. The permeability effects
also resulted in the time-averaged landward and seaward mass fluxes above and inside the
permeable underlayer, respectively.

A similar numerical model was developed by Van Gent (1994) who used the modified
Forchheimer equation for the flow resistance in the permeable layer proposed by Van Gent
(1995a) on the basis of the measurements in an oscillating water tunnel. Van Gent (1994)
allowed the discontinuity of the free surface elevation outside and inside the permeable slope
to account for the formation of a seepage face on the permeable slope but an empirical pro-
cedure was required to describe the discontinuity. The formation of the seepage face depends
on the degree of permeability (Turner 1993) and is expected to be much less pronounced on
permeable breakwaters than on sand beaches. Tgrum and Van Gent (1992) showed that the
numerical model of Van Gent (1994) was in fair agreement with the velocities measured on a
berm breakwater. His model was also in fair agreement with the regular wave profiles, runup
and run-down on a berm breakwater measured by Van Gent (1995b), who also proposed a
semi-empirical model to predict the profile evolution of a berm breakwater.

In summary, the above comparisons with laboratory data indicate that the numerical
models based on the extended finite amplitude shallow water equations including the perme-
ability effects can predict the free surface elevation and velocity on a permeable slope within
errors of about 20%. Their capabilities are similar to those of the corresponding numerical
models for impermeable structures. The accuracy of the computed flow field inside the per-
meable underlayer is uncertain for lack of data. The numerical models are presently limited
to a single permeable underlayer above an impermeable lower boundary unlike linear wave
models (e.g., Madsen and White 1975). The prediction of armor stability and displacement
is more empirical and will require the calibrations of the force coefficients and armor dis-
placement procedure for different types of permeable breakwaters. Finally, a horizontally
two-dimensional model on a permeable structure of arbitrary geometry will need to be de-
veloped to predict the wave motion and armor stability on the head of a breakwater.

Wave Runup on Beaches

The finite amplitude shallow water equations on a plane slope were solved numerically
by Hibberd and Peregrine (1979) to predict the propagation of a bore on a beach of uniform
slope. Their numerical solution was capable of describing the behavior of the bore runup
and the formation of a landward-facing bore in the downrush. Packwood (1980) included
viscous effects and studied periodic and irregular bores on beaches using measured free
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surface profiles as input at the seaward boundary. Svendsen and Madsen (1984) included
the effects of turbulence generated by wave breaking to predict a turbulent bore in the surf
zone only.

The computed results by Packwood (1980) appeared realistic and promising but his
seaward boundary algorithm did not allow the specification of the incident wave train as
input and the prediction or absorption of the reflected wave train. Such a seaward boundary
algorithm was developed by Kobayashi et al. (1986, 1987) to predict wave reflection and
runup on coastal structures as explained in relation to (6). Kobayashi et al. (1989) modified
this seaward boundary algorithm to account for second-order wave set-down and return
current at the seaward boundary on a beach of arbitrary profile. The numerical model based
on (1) and (2) with the modified seaward boundary algorithm was then applied to predict
the wave transformation in the surf and swash zones on gentle slopes as well as the wave
reflection and swash oscillation on relatively steep beaches. The slope of a steep beach is
generally smaller than the gentle slope of a coastal structure.

Kobayashi et al. (1989) compare the numerical model with the regular spilling wave
data on a 1:40 slope by Stive (1980) and Stive and Wind (1982) as well as the undertow
measurement for regular spilling waves on a 1:34.25 slope by Hansen and Svendsen (1984).
The numerical model was shown to be capable of predicting the development of the wave
profile asymmetry about the vertical axis from the symmetric cnoidal wave profile outside the
breakpoint to the sawtooth profile in the inner surf zone. The computed shoreline oscillation
on the gentle slope showed the dominance of the setup over the swash in accordance with
the saturation hypothesis of Huntley et al. (1977). The numerical model was also shown
to be incapable of predicting wave shoaling without wave breaking over a long distance,
unlike the Boussinesq models for dispersive waves. In addition, comparisons were made
with the wave reflection and swash excursion measurements for regular waves plunging and
surging on a 1:8.14 slope described by Guza and Bowen (1976) and Guza et al. (1984).
The numerical model was also compared with the measured time series of the reflected wave
train and shoreline oscillation on a 1:8 slope with and without an idealized bar for incident
regular and grouped waves. As a whole, the numerical model predicted both time-varying
and time-averaged hydrodynamic quantities in the surf and swash zones on gentle and steep
slopes within errors of about 20%. The exception was the time-averaged horizontal velocity
(undertow) measured below wave trough level as explained in the following.

The undertow is driven by the vertical imbalance of the vertically-varying momentum
flux and the vertically-uniform pressure gradient due to the wave setup in the surf zone
on a beach. Because of its importance to the offshore sediment transport, various undertow
models have been proposed (e.g., Dally and Dean 1984; Svendsen 1984; Stive and Wind 1986;
Svendsen et al. 1987). Cox and Kobayashi (1996) used detailed laboratory measurements
and showed the difficulties in estimating the terms involved in the time-averaged cross-shore
momentum equation and the eddy viscosity used in existing undertow models. Consequently,
Cox and Kobayashi (1997) developed a simple kinematic model based on a logarithmic
undertow profile in the bottom boundary layer coupled with a conventional parabolic profile
in the interior layer (e.g., Stive and Wind 1986). This model was capable of predicting the
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measured undertow profiles both inside and outside the surf zone for regular waves provided
that the mean bottom shear stress was calibrated and the measured volume flux below wave
trough level was used. This model was also shown to be applicable to irregular waves (Cox
and Kobayashi 1998). In short, no undertow model is presently accepted widely because
each model can be calibrated to yield fair agreement with each data set but the calibrated
coefficients vary among existing data sets.

The difficulty in predicting the undertow using the depth-integrated equations (1) and
(2) is that these equations predict the depth-averaged velocity u only and do not model the
wave breaking processes explicitly. The time-averaged value of u computed by Kobayashi et
al. (1989) was negative but its magnitude was underpredicted by a factor of about 2. This
underprediction appears to be caused by the effect of a surface roller (Svendsen 1984; Madsen
et al. 1994; Cox and Kobayashi 1998). If the magnitude of the time-averaged value of u
could be predicted accurately, the undertow profile could be predicted using the kinematic
model of Cox and Kobayashi (1997).

For normally-incident irregular waves on beaches, Kobayashi and Wurjanto (1992a) qual-
itatively compared the numerical model of Kobayashi et al. (1989) with the field data of
Holman and Sallenger (1985) on the wave setup and swash statistics on a moderately steep
beach with a nearshore bar. The computed setup and swash heights were found to follow the
lower bound of scattered data points partly because of the neglect of low-frequency compo-
nents in the specified incident wave train and longshore variability on the natural beach. A
more quantitative comparison was also made with the spectrum of the shoreline oscillation
measured on a 1:20 plane beach by Elgar and Guza (1985a, 1985b) who also presented the
corresponding wave spectrum in the 1.7 m depth immediately outside the surf zone. The
numerical model predicted the dominant low-frequency components of the measured swash
spectrum fairly well. On the other hand, Cox et al. (1994) used the measured free surface
elevation inside the surf zone as input to the numerical model as explained in relation to
(6). Comparisons were made with regular and irregular wave data from the SUPERTANK
Project. The numerical model predicted the measured free surface oscillations in the surf
and swash zones fairly well, whereas the time-averaged model of Battjes and Stive (1985)
underpredicted the wave height and setup in the swash zone considerably.

The numerical model based on (1) and (2) with the different seaward boundary conditions
explained in relation to (6) was compared with extensive field data. Raubenheimer et al.
(1995) initialized the model with observations from pressure and current sensors collocated
about 50 m from the mean shoreline in about 1 m depth on a gently sloping beach. The model
was compared with pressure fluctuations measured at five shoreward locations and runup
measured with a vertical stack of five wires at elevations of 5, 10, 15, 20 and 25 cm above
the beach face. As the wire elevation increased, the measured mean runup location moved
seaward, low-frequency energy decreased, and high-frequency sea swell energy increased.
The numerical model accurately predicted these trends and the variation of wave spectra
and shapes (e.g., wave skewness) across the inner surf zone. Raubenheimer and Guza (1996)
presented additional comparisons including data from a steep concave beach. The runup
predictions by the numerical model agreed well with observations with the vertically stacked
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runup wires. The numerical model predictions and observations of sea swell runup excursions
and reflection indicated the saturation at sea swell frequencies. The relative amount of
reflected energy at sea swell frequencies was observed and predicted by the model to increase
both with increasing Irribarren number and decreasing distance from shore. At infragravity
frequencies, runup excursions were observed to be unsaturated, and the numerical model
accurately predicted the dominance of waves standing in the cross-shore where low-mode
edge waves appeared to be negligible in these observations.

In addition, Raubenheimer et al. (1996) compared the numerical model with wave evo-
lutions observed on transects crossing the mid and inner surf zone on three beaches (a steep
concave beach, a gently sloping beach, and a beach with an approximately flat terrace ad-
jacent to a steep foreshore). The model was initialized with the time series of sea surface
elevation and cross-shore current observed at the most offshore sensors located about 50 to
120 m from the mean shoreline in mean water depths 0.8 to 2.1 m. The model accurately
predicted the cross-shore variation of energy at both infragravity and sea swell frequencies.
The ratio 7, of the sea swell significant wave height to the local mean water depth h was
examined because of its imporfance to time-averaged models. The observed and predicted
values of v, increased with increasing beach slope f and decreasing normalized (by a char-
acteristic wavenumber k) water depth kkh and were well correlated with 3/kh. Errors in the
predicted individual values were typically less than 20%. Numerical simulations were used
to examine the effects of infragravity waves on waves in the sea swell band. The computed
values of 7, were insensitive to infragravity energy levels.

Finally, Elgar et al. (1997) compared the numerical model with the wave evolution
observed across a barred beach. For a low energy (wave height about 0.4 m) bimodal wave
field, high- frequency seas dissipated in the surf zone, but lower-frequency swell partially
reflected from a steep (slope = 0.1) beach face, resulting in significant cross-shore modulation
of swell energy. The numerical model was capable of predicting these combined effects of
reflection from the beach face and dissipation across the sand bar and near the shoreline.
However, Elgar et al. (1997) also noted the limitations of this shallow water model without
frequency dispersion.

In summary, the above comparisons with extensive field and laboratory data indicate
that the numerical model based on (1) and (2) for normally incident waves predicts the wave
transformation and swash oscillation on beaches of various profiles fairly well (within errors
of about 20%) provided that the model is initialized with the known wave conditions in the
surf zone or immediately outside the surf zone. In other words, the seaward boundary of
the numerical model must be located at a relatively short distance from the shoreline so
that frequency dispersion may be neglected in the computation domain. Since the numerical
model for normally incident waves can not predict edge waves, the good agreement between
the model and field data implied that edge waves were negligible in these data sets. However,
it is not clear whether the assumption of normally incident waves was really satisfied in
these data sets. A numerical model for obliquely incident waves is needed to assess the
range of incident angles for which (1) and (2) may be used to predict the cross-shore wave
transformation.
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Ryrie (1983) developed a time-dependent numerical model based on the two-dimensional,
finite amplitude shallow water equations for predicting longshore fluid motion along a straight
shoreline with a plane slope generated by incident periodic bores with a small angle of
incidence. The numerical model was not compared with any data. This model was applied
by Asano (1996) to predict sediment transport in the swash zone and by Brocchini and
Peregrine (1996) to examine the integrated and averaged flow properties of the swash zone.
Alternatively, Kobayashi and Karjadi (1994b, 1996) developed a numerical model that could
be applied to beaches of arbitrary geometry under obliquely incident regular or irregular
waves with small angles of incidence. Alongshore bathymetry variations were assumed not
to exceed the alongshore variations associated with the obliquely incident waves.

The numerical model of Kobayashi and Karjadi (1994b, 1996) assumes that 82 < 1 where
0. is the characteristic wave angle in radians. Under this assumption, the two-dimensional
continuity and cross-shore momentum equations have been shown to be approximated by
(1) and (2) for normally incident waves, whereas the two-dimensional alongshore momentum
equation has been shown to be simplified as
%(hv)+(%(h1w) = —ghg—z—% folulv (7)
where v is the depth-averaged alongshore velocity. The alongshore free surface gradient
dn/dyin (7) drives the alongshore time-dependent fluid motion. The cross-shore fluid motion
for obliquely incident waves with #2 < is the same as that for normally incident waves,
implying that the refraction of nearly normally incident waves is negligible within a relatively
short computation distance.

Considering the errors of about 20% associated with the numerical model based on (1)
and (2), the assumption of 2 < 1 may be regarded to be acceptable if 62 is less than about
0.1, that is, @, is less than about 20°. Available data on obliquely-incident wave runup,
overtopping, reflection and armor stability on coastal structures (De Waal and Van der Meer
1992; Juhl and Sloth 1994; Isaacson et al. 1996; Galland 1994) suggest that the effects of
incident wave angles may be neglected in view of the scatter of data points if 6, is less than
about 20°. No data is available to estimate the upper limit of 6, for beaches. It should be
noted that the numerical model for 2 < 1 can not predict edge waves, shear waves and rip
currents on beaches. For lack of data, it is not certain whether these phenomena occur on
coastal structures as well.

For the cross-shore wave motions computed using (1) and (2) along three cross-shore lines,
Kobayashi and Karjadi (1994b, 1996) solved (7) using the MacCormack (1969) method along
the middle cross-shoreline where obliquely incident regular or irregular waves were specified
at the seaward boundary located immediately outside the surf zone. First, the numerical
model was compared with the regular wave data by Visser (1991). The wave height, setup
and runup were predicted well but the longshore current profile was predicted poorly. The
computed alongshore velocity v indicated the dominance of the mean (longshore current)
over the oscillatory component about the mean in the surf zone. The development of the
longshore current from the initial condition of v = 0 to the steady current was computed to
be very slow unlike the quick response of the cross-shore flow field. Second, the numerical
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model was compared with the field data by Thornton and Guza (1986). The measured cross-
shore variations of the root-mean-square wave height and longshore current in the surf zone
were predicted fairly well. The causes of large cross-shore and alongshore velocities near the
shoreline predicted by the model were examined but could not be ascertained for lack of
velocity data near the shoreline.

Empirical lateral mixing has been introduced in time-averaged models to predict the
realistic longshore current profile induced by regular breaking waves (e.g., Longuet-Higgins
1970). Svendsen and Putrevu (1994) showed that the lateral mixing could be caused by
the nonlinear interaction of vertically-varying cross-shore and longshore currents. They used
linear wave theory with depth- limited breaker height to describe the regular wave motion.
On the other hand, the time-averaged model of Thornton and Guza (1986) did not require
lateral mixing to predict the longshore current profile induced by irregular breaking waves
because their random wave model accounted for the breaking of individual waves over a
breaker zone. This may explain why the numerical model of Kobayashi and Karjadi (1994b,
1996) without any empirical lateral mixing could not predict the realistic longshore current
profile induced by regular breaking waves. However, the lateral mixing mechanism for regular
and irregular waves needs to be elucidated in a unified manner.

The depth-integrated momentum equations (2) and (7) neglect the dispersion due to
vertical nonuniformities of the instantaneous horizontal velocities where dispersion is the
terminology used in hydraulic engineering (Rodi 1980). Kobayashi et al. (1997) included
dispersion terms in (2) and (7) to account for additional cross-shore and alongshore mo-
mentum fluxes due to the vertical variations of the instantaneous horizontal velocities. To
predict these unknown momentum flux corrections, two new equations were derived from
the corresponding three-dimensional shallow-water momentum equations using a method
of moments. The three equations for the cross-shore continuity, momentum, and momen-
tum flux correction were solved numerically to predict the water depth and the cross-shore
depth-averaged and near-bottom velocities as explained by Johnson et al. (1996). The two
equations for the alongshore momentum and momentum flux correction were solved numer-
ically to predict the alongshore depth-averaged and near-bottom velocities. Kobayashi et al.
(1997) compared the developed model with the same data sets as Kobayashi and Karjadi
(1994b, 1996) to examine the dispersion effects due to the momentum flux corrections. The
dispersion effects on the wave height and setup were shown to be minor. The dispersion
effects significantly improved the agreement with the longshore current profile induced by
regular breaking waves but were secondary for the longshore current profile induced by ir-
regular breaking waves. Consequently, this time-dependent model with the momentum flux
corrections clarifies the lateral mixing mechanism for regular and irregular waves on planar
beaches in a unified manner.

Karjadi and Kobayashi (1996) compared this numerical model with the field data for a
barred beach by Smith et al. (1993). The model under the assumption of alongshore unifor-
mity could not predict the broad peak of the longshore current in the bar trough region. The
small alongshore variation of wave setup induced by a small alongshore variation of obliquely
incident irregular waves was shown to significantly modify the driving force and longshore
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current profile in the bar trough region. On the other hand, the longshore current profile
on planar beaches was shown to be insensitive to the small alongshore variation of obliquely
incident waves. This may explain why existing longshore current models based on the as-
sumption of alongshore uniformity were regarded to be adequate before their comparisons
with the barred beach data.

In summary, the numerical models for obliquely incident waves have mainly been used
to examine the alongshore fluid motion because of the assumption of small incident angles.
Under this assumption, the cross-shore fluid motion and resulting runup depend only on the
incident wave conditions and the beach profile along each cross-shore line. This may partially
justify the comparisons made by Raubenheimer et al. (1995, 1996) between the numerical
model for normally incident waves and their field data for which the incident irregular waves
were directional but may have satisfied the assumption of the incident wave angle less than
about 20°. However, a two-dimensional model for arbitrary incident wave angles will be
required to predict the alongshore variation of wave runup on beaches of arbitrary three-
dimensional profile.

The permeability effects of sand beaches on wave runup have been studied little probably
because their effects appear to be small unlike rubble mound structures. Packwood (1983)
developed a numerical model based on (1) and (2) with vertical seepage into an initially dry
beach to calculate the influence of a permeable bed on the runup of a single bore on a gently
sloping sand beach. Fine-medium grade sands were shown to have very little effect on the
phase of wave uprush. Some differences between impermeable and permeable bed solutions
were found in the phase of wave downrush. The numerical model was not compared with
any data and the computed differences might be within the errors of the model.

On the other hand, wave setup and runup are important for the groundwater flow inside
a sand beach. The mean onshore pressure gradient due to wave setup drives a circulation of
water within a porous beach (Longuet-Higgins 1983b). Numerical models based on Darcy’s
law for vertically two-dimensional groundwater have been developed and applied to examine
the groundwater response to artificial drainage proposed for beach stabilization (e.g., Li et
al. 1996). These models generally account for tidal fluctuations but neglect wave setup and
runup. The infiltration of water into sand beaches due to wave runup was studied using
laboratory and field data in order to include the wave effects on the groundwater flow (Kang
et al. 1994; Kang and Nielsen 1996). A numerical model for wave runup and infiltration into
partially saturated sand will be required to predict the infiltration rate onto the water table
inside a sand beach.

CONCLUSIONS

The quantitative understanding of irregular wave runup and overtopping on inclined
coastal structures and irregular wave runup on beaches have improved considerably for the
last decade owing to the improved laboratory and field experimental capabilities followed
by the development of time-dependent numerical models. However, these improvements
have essentially been limited to normally incident waves on coastal structures and beaches
of alongshore uniformity. Furthermore, laboratory experiments were typically conducted in
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relatively deep water to separate the incident and reflected waves in front of the structures
using linear wave theory as well as to separate the problem of wave transformation in front of
the structures from the problem of wave runup on the structures. Relatedly, field experiments
on wave runup on beaches were conducted along straight shorelines without any structure
to avoid complications caused by the interactions of incident waves with structures.

Most coastal structures are located in relatively shallow water and exposed to breaking or
broken waves during design storms. Laboratory experiments under actual design conditions
are usually conducted for site-specific problems and may not be summarized in generalized
manners. As a result, systematic laboratory experiments on coastal structures located inside
the surf zone will be necessary to investigate the wave transformation and breaking on
beaches in front of structures and the subsequent runup and overtopping of the transformed
and broken waves on the structures.

Field experiments on wave runup and overtopping on coastal structures during storms are
desirable but it will be difficult to measure all the relevant quantities required to quantify the
wave runup and overtopping processes. Relatedly, it is desirable to measure wave runup on
beaches in the vicinity of coastal structures but extensive arrays of instrument will be required
to measure the detailed spatial and temporal variations of the nearshore wave motions and
runup on such beaches. Laboratory experiments in directional wave basins with extensive
instrumentation are feasible but very time-consuming.

Numerical time-dependent models will need to be extended for directional random waves
on coastal structures and beaches of arbitrary three-dimensional geometry, although such
models will require considerable computation time. Furthermore, the time- dependent
boundary conditions of the horizontally two- dimensional, finite amplitude shallow water
equations are not well established.

In short, the progress in the experimental and numerical studies on irregular wave runup
and overfopping may have been impressive but the remaining tasks appear to be more diffi-
cult and challenging. A hybrid approach based on laboratory and field experiments coupled
with numerical models appears to be the most practical and promising approach to investi-
gate the wave runup processes on inclined structures and beaches of arbitrary geometry due
to spatially-varying directionally random waves.
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