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ABSTRACT

In this thesis we examine the effect of longshore varying topographies on the
nearshore currents. The governing equations are derived from the conservation of
mass and momentum principles, integrated over the depth and the short-wave and
turbulent motions. The turbulent Reynolds stresses are modeled using the eddy
viscosity concept, which provides a simple closure to determine analytical profiles
for the vertical variation of the horizontal currents. A second closure in the model
equations is provided by a nonlinear formulation for the wave-current bottom shear
stress. The coupled wave-current problem is separated by considering only the
effects of the short waves on the currents. The short-wave quantities are given
by an external “wave-driver” model, and thus the wave-induced forcing is assumed
known. The coupling between the depth-varying and the depth-integrated equations
forms the Quasi-3D model system considered here. The model equations are solved

numerically using a high-order finite difference scheme.

We compare the solution of the present numerical model with that of a sim-
plified, semi-analytical model derived by Putrevu et al. (1995) for two beach config-
urations. This comparison provides an analysis of the limitations of the simplified
model, which turns out to be grossly inaccurate for a barred beach with a small
rip-channel. The reasons for the discrepancies are analyzed and found to be due to
several factors, the most important being that the largest forces (i.e., terms) in the
longshore direction are an order of magnitude smaller than the largest cross-shore

forces, and this is not properly recognized in the model of Putrevu et al. (1995).



We also examine the development and propagation of shear instabilities over
a longshore uniform plane beach. Our results are compared with those of previous
authors (Ozkan-Haller and Kirby, 1995) and we further study the phase spectra of
the cross-shore and longshore velocity fluctuations (associated with the shear wave
motion) calculated at the same location. Shear waves over a barred beach with a
small rip-channel are predicted as well for two different incident wave conditions. In
the absence of dispersive mixing, the shear instabilities are very energetic, though,
this mixing is reduced with the inclusion of the dispersive mixing (depth-varying
currents) in the model equations. In general, it appears that a balance exists between
the dispersive and the shear wave mixing, which are also dependent on the eddy
viscosity formulation. We predict the formation of rip-currents for a barred beach
under wave conditions with a strong longshore variability of the wave field in the
neighborhood of the rip-channel. The results show that the largest driving force for
the longshore currents in that region is the longshore gradient of the mean surface
elevation. Both unsteady rip-currents and shear waves are predicted simultaneously,

which suggests that both phenomena share a common instability mechanism.

Finally, we apply the present model to simulate the conditions observed at
three dates during the DELILAH 1990 field experiment, corresponding to different
wave and tidal conditions. The comparisons between the model predictions and the
data suggests that we failed to predict the large longshore current measured over
the trough region for the 10th of October. The possible existence of a larger scale
longshore pressure gradient during DELILAH is discussed, and found to be a possible
driving mechanism to justify the discrepancy. A second mechanism that can explain
this disagreement, is the too simplistic representation of the wave forcing provided by
the wave-driver used herein. For the other dates we find a closer agreement between
the model and data results, which gives confidence to the use of the present model,

though several improvements are suggested.



Chapter 1

INTRODUCTION

1.1 Nearshore currents

The term “nearshore currents” was introduced in the literature by Shep-
ard and Inman (1950) to define the currents directly associated with the action
of the wind generated waves in and near the breaker zone. Nearshore circulation
is dominated by wave-induced forces, associated with shallow water wave breaking.
However, due to the range of time and length scales that affect the nearshore region,
other forcing mechanisms for the nearshore circulation should not be neglected (e.g.,
wind and tide). These motions usually affect a larger area than the surf zone region
and thus the currents in that region are distinguished by those authors as “coastal

currents”.

In the nearshore region the flow pattern is dominated by wind-generated
waves that evolve from deep water to the shoreline under the processes of refraction,
diffraction, shoaling and breaking. Closer to the shore, as the waves propagate into
shallower water, wave breaking starts dominating the transformation processes and
turbulence is produced, convected, diffused and dissipated after breaking occurs.
The momentum carried by these waves is released as they break, providing a driving

force for the nearshore currents.



The wave and current motions create lifting forces in the sediments from
the sea-bed, which can be picked up and transported for considerable distances.
Hence, the fluid motion is responsible for the sediment transport and bed variations.
Although the sediment motion can affect the fluid motion (especially in the region
closer to the bed), this influence can be considered small enough such that we

account for it only by means of the bottom drag on the flow above it.

Shepard and Inman (1950), furthermore, considered the nearshore circulation

as a combination of the following sub-systems:

1. Shoreward mass flux of water carried by the wind generated waves;

2. Longshore currents as those which flow along the coast, and are caused by the

obliquely incident waves and longshore mean surface elevation gradient;

3. Seaward returning currents, which are subdivided into rip-currents and uni-

form seaward return flow (nowadays recognized as undertow).

In the following subsections we will provide a detailed description of these

flows and the interaction between them as they are not independent.

1.1.1 Short-wave motion and nearshore current generation mechanisms

Wave breaking can be considered as the process of transformation from an
essentially irrotational wave motion into rotational and turbulent flows (Battjes,
1988). The shallow water steepening has been identified as the primary cause of
breaking for waves on a beach. On natural sloping beaches the most common wave
breakers are spilling and plunging breakers. As the waves reach a limiting steepness,

a portion of the water front becomes vertical and then overturns, projects forward,



and forms a jet of water. The turbulence generated by wave breaking destroys the
organized nature of the motion, which then results in a motion characterized by the
propagation of a bore into shallower water (Peregrine, 1983). A surface roller in the
front of the bore acts as the main generation mechanism of turbulence, but behind

this region turbulence continues to spread (Peregrine and Svendsen, 1978).

Roller (or vortex) formation does not cause an immediate decrease of the
total kinetic energy, but it induces a loss of the energy associated with the wave
motion. A decrease in wave energy is accompanied by a more or less proportional
decrease in total convective momentum flux. Because total momentum is conserved,
a positive mean horizontal pressure gradient is induced, resulting in a setup of the

mean water level.

Short waves carry mass towards the shore due to the open orbital trajectories
of the particle motions above the surface trough level. After wave breaking, the
surface bore that forms also transports water with it shorewards. This shoreward
mass flux of water is returned offshore by the undertow and, when present, by

rip-currents.

Wave breaking is not only responsible for small-scale turbulence, but also
creates other motions of different types and scales, such as low-frequency waves
and steady flows. Low-frequency waves can propagate along the shore, trapped by
refraction, as well as across the shore, radiating energy between the nearshore and
offshore regions. The first type are recognized as edge waves, while in the second
case they are generally known as “leaky” waves. The importance of both types
of waves is evidenced by the fact that natural beaches often exhibit morphological
features such as bars and beach cusps with length scales considerably in excess of
those of the wind waves. In fact, this length scales often show to be of the same

order as the observed long-wave length scale.



Three classes of steady flows can be considered, which were already men-
tioned above: longshore currents, rip currents and undertow. Longshore currents are
originated mainly by the transfer of longshore momentum when waves break onto
the beach. A longshore gradient in the mean surface elevation can cause strong
longshore currents as well, and also rip-currents. The latter are known to carve
rip-channels in the sand bed, which in turn reinforce the convergence of the water
towards them and lowers the setup that it would exist otherwise. An early account,
of rip-currents and rip-channels morphodynamics is given by Shepard et al. (1941).
Dalrymple (1978) classified rip-currents into two categories, the first being related
to forcing by wave-wave or wave-current interactions, and the second being related
to a longshore non-uniform bottom topography. A simple linear model given by that
author illustrates the formation of rip-currents on a barred beach with rip-channels,
forced by a local longshore pressure gradient. The water flowing seawards along
the rip-current originates from the shoreward mass transported over the bar by the

short waves.

The undertow is the offshore flow beneath the trough level, opposite to the
shoreward mass flux above the trough, carried along the wave motion. Several stud-
ies address this two-dimensional (in a vertical plane) flow, where a good literature
review can be found in Svendsen (1984a) and Dally and Dean (1986). This flow
is forced by the cross-shore pressure gradient, which in turn is mainly caused by a
decrease (in the breaking region) of the cross-shore component of the wave radiation
stress. The description of the undertow flow is not a closed problem yet, mainly
due to the unknown characteristics of the flow in the breaking and surf zones, and
the interaction between the mean flow and the short-wave motion (Nielsen and You,
1996). The correct estimation of the wave mass transport is another issue that

deserves further research (Osiecki and Dally, 1996; Garcez Faria et al., 1996a).



1.1.2 TUnstable motions

Rip-currents are just a feature of general horizontal circulation cells which
can be caused by a variety of factors, all involving some alongshore nonuniformity
in the geometry and/or the incident waves. A stability analysis was performed by
Hino (1974) for a system of normally incident waves on an initially plane beach,
with allowance for changes in morphology as a result of sediment transport caused
by the flow field. Results showed that the system was unstable against longshore
perturbations: both the flow field and the bottom topography allowed for longshore
periodic solutions in a slow time-scale, such that the flow field was considered quasi-
stationary. Their instability mechanism predicted the formation of cusps and oblique
crescentic sand bars. Similar studies have recently been presented by Christensen

et al. (1994) and Falqués et al. (1996).

A similar type of instability mechanism was identified by Bowen and Holman
(1989) for the longshore currents, as a result of a shear in the cross-shore distribution
of the longshore currents, leading to the so-called shear waves or vorticity waves.
Their solution allowed for a hydrodynamic instability mechanism on a shorter time-
scale than that of Hino (1974), such that the bottom was considered fixed and the
unstable wave modes are of the order of 100-1000 s. This mechanism has similar
properties to that of the Rayleigh instability of inviscid parallel flows. Evidence
of these motions have been observed both in field (Oltman-Shay et al., 1989) and

laboratory (Reniers et al., 1997) conditions.

There are also indications that rip-currents can be hydrodynamically unsta-
ble, in a similar fashion to that of the shear waves motion. In fact, rip-currents
are analogous to plane jets, and these are known to be unstable (Drazin and Reid,

1982). Field observations of fluctuations of the rip-currents have been reported by

o



Shepard and Inman (1950) and Sonu (1972). Recent experimental results in labora-
tory facilities (Haller et al., 1997) also suggest that flow instabilities can be present

in rip-currents.

1.1.3 Horizontal and vertical distribution: Quasi-3D concept

It is convenient to distinguish between two major classes of models to describe
the motion in the nearshore region: (i) the time-dependent models that resolve the
instantaneous state of the motion, and (ii) the wave-averaged models where the
short-wave (wind induced) motion is separated from the mean motion. Only the

second method will be discussed in this work.

Among the wave-averaged models, several approaches have been used for the
last three-decades. A common approach has been by means of a two-dimensional
horizontal (2DH) flow model. This type of models is based on the turbulence-
averaged, depth-integrated, time-averaged (over the short-wave period) Navier-Stokes
equations and describe the mean current and surface elevation for a coastal area.
Another modeling concept, known as cross-shore circulation or two-dimensional ver-
tical (2DV) model, describes the mean motion on a vertical plane normal to the

shoreline — the undertow flow.

Both of the above formulations are simplifications of the fully three-dimensional
(3D) problem. A class of models describing a simplified 3D situation, known as
quasi-3D models, has been developed for shallow water flows in estuaries and coastal
waters (Davies, 1987; De Vriend and Stive, 1987; Svendsen and Lorenz, 1989; Jin
et al., 1991, among others). This concept makes use of the existing techniques both
for the 2DH and the 2DV current models. Complete 3D models have recently seen

some advances (Pechon and Teisson, 1994; Mayerle et al., 1994), although they



require considerably more computer time and memory than the quasi-3D models.

Thus, they are still in an early state of development.

The formulation of the quasi-3D models combines the depth-uniform horizon-
tal current with the vertically non-uniform flow. One of the first models utilizing
this concept is given by De Vriend and Stive (1987). These authors divided the
time-averaged horizontal current into two parts: a primary flow, defined as the flow
in the direction of the depth-averaged velocity and driven by the depth-invariant
part of the forces (e.g. the pressure gradient); and a secondary flow, which is driven
by the vertical non-uniformity of the wave-induced forces and primary flow acceler-
ations, and the surface wind shear stress (when present). The secondary flow model
(driven mostly by the wave motion) is based on the 3-layer concept, assuming differ-
ent regimes in the bottom boundary layer, middle layer and upper layer, but solving
only for the velocity in the central layer whereas the other layers interact by means

of shear stresses.

A slightly different quasi-3D model was presented by Sanchez-Arcilla et al.
(1990). The current velocity was split into a depth-invariant part and a vertical
variation with zero mean flow integrated over the central layer. However, these
authors kept in their derivation some of the terms that gave rise to the interaction
between the depth-averaged and depth-varying flows. The model also uses the 3-
layer concept and solutions were presented for a coupled solution of the middle and

bottom layers by Sanchez-Arcilla et al. (1992).

Similar to the previous model, Svendsen and Lorenz (1989) split the vertically
varying longshore and cross-shore currents with the assumption of (very) weak de-
pendence. However, unlike the previous authors, they did not need to integrate the
flow equations only up to the wave-trough level, but instead, over the whole water

column. Using a simple bottom shear stress boundary condition they studied the



motion only for the middle-layer. Their results showed that the total vertical cur-
rent, profile has a spiral shape, resulting from the combination of the (depth-varying)

undertow with the (depth-varying) longshore currents.

Svendsen and Putrevu (1990) formulated a steady-state quasi-3D circulation
model using analytical solutions for the vertical variation of the currents in com-
bination with a numerical solution of the depth-integrated 2DH equations. Later,
Putrevu and Svendsen (1992a) and Svendsen and Putrevu (1994) showed that the
coupling between the cross-shore current (undertow) and the longshore current is
rather important and it induces a mixing mechanism similar to the turbulence ef-
fect, but of much stronger magnitude. The steady-state model of Svendsen and
Putrevu (1990) with the current-current and wave-current interaction terms was
extended by Van Dongeren et al. (1994) to a time-dependent model, able to study
non-stationary phenomena. The extension of that model to a non-cylindrical coast
is given in Putrevu and Svendsen (1997) and Van Dongeren and Svendsen (1997b),
allowing the study of general nearshore phenomena such as surf-beat, edge waves,
longshore currents, shear waves and rip-currents. Furthermore, the vertical varia-
tion of these flows can be analyzed as well. In the present work we continue the
development of the model presented by the previous authors, named SHORECIRC,

with emphasis on the model closures.

In summary, over the last ten years we have seen the development of several
quasi-3D models. These are, in principle, able to describe the flow in general beach
topographies varying both in the cross-shore and longshore directions. Nevertheless,
most applications of these models have been so far for longshore uniform situations
(e.g., De Vriend and Stive, 1987; Rodriguez et al., 1994; Garcez Faria et al., 1995;
Van Dongeren and Svendsen, 1997b; Rakha and Kamphuis, 1997). Applications

to longshore non-uniform beaches introduce longitudinal gradients in the model
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Figure 1.1: Observed bathymetry on October, 10, 1990, during the DELILAH
field experiment at the Field Research Facility in Duck, NC.

equations and allow for the modeling of far more complex phenomena involving 3D
interaction between the short-wave averaged velocities. An example of such situation
is given by Sancho et al. (1996) for the simulation of a particular flow condition at
the Field Research Facility in Duck, North Carolina, observed during the DELILAH
experiment. The modeled bathymetry was strongly three-dimensional, exhibiting
oblique sand bars superposed over a longshore bar (Figure 1.1). The preliminary
results of those authors showed the ability of the present quasi-3D model to simulate

non-steady nearshore currents over a longshore non-uniform bottom.

Lastly, it will be shown in the derivation of the present quasi-3D model
(SHORECIRC) that few terms are neglected. Thus, compared to fully 3D mod-
els, the SHORECIRC model contains the same mechanisms and interactions that
account for the vertical variation of the flow. The simplifications of the model equa-

tions are only to a degree equivalent to that of simplifications also needed in a 3D
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model, such as (for example) the description of the short-wave related quantities.

1.2 Motivation and Objectives

From the studies mentioned above and others it is accepted that the processes
governing the nearshore currents are very complex and cover a vast spectrum of
frequencies. The dynamics of the vertical and horizontal nearshore circulation are
governed primarily by the breaking incident waves. High-frequency (turbulence) and
low-frequency motions usually play a secondary role. However, infragravity wave
motions, in particular, can play an important role as the currents can no longer
be considered quasi-steady. The interaction between wind-generated waves and the
currents is of importance too, specially at inlets where waves can meet strong tidal
currents. Wave groups generate surf-beat which can be observed as time-varying
currents. Inhomegeneities in the bottom topography can affect significantly affect
not only the short-wave motion but the nearshore currents as well. On natural
beaches, the bed is not fixed and the time-scale at which the topography can vary
is, sometimes, of the same time-scale at which the incident wave field changes and,

therefore, the nearshore current field.

It is therefore the objective of the present work to contribute to the under-
standing of the nearshore currents. We analyze in particular steady and non-steady
flows originated by a quasi-stationary incident wave field. Several simplifying canon-
ical beach configurations are considered, where we carry numerical simulations by
means of the quasi-3D numerical model SHORECIRC. The development of this
model is part of the work presented in this dissertation and also given by Van Don-
geren and Svendsen (1997b). We pursue our objectives by interpreting the model
results and analyzing the magnitude and importance of the various terms in the

model equations. In one example we expand the analysis given by Sancho et al.
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(1995) to a slightly different beach topography. In particular, we simulate and
examine the development of steady and non-steady rip-currents over a longshore
non-uniform barred beach. For waves coming obliquely at the same beach, shear

waves can be simulated depending on the choice of critical physical parameters.

To help on the verification and calibration of the model, and the physical
parameters it contains, we present an extensive comparison of the model results
against field data. Hence, the model is applied to simulate the flow characteristics
observed at times during the DELILAH experiment (for a summary of this data set
see Birkemeier et al., 1997). Furthermore, one of the objectives of this comparison
is to guide future research in the areas where it needs most. Hence, we can identify

mechanisms that require a better knowledge in order to properly simulate them.

1.3 Methodology

This work describes the nearshore circulation induced by the action of break-
ing waves over several beach geometries. The bottom is assumed fixed, but this
condition is not absolutely necessary as a sediment transport model could be cou-
pled to the present circulation model. We, therefore, intrinsically assume that there
are no topography variations during the simulated time. Regarding the model com-
parison with data this requirement is not always met, as sometimes the beach was
active even during periods of few hours. Thus, care should be taken with respect to

the interpretation of the results.

The coupled wave-current problem is separated by considering only the effects
of waves on currents, where the short-wave quantities are given by a wave-driver
model. This procedure results from the assumption that the time scale of the wave

transformation is much shorter than that related to the currents variation, and
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that the short waves are stationary. The wave-driver model should include the
most relevant physical processes that act as the waves propagate shorewards. In
the field, randomness of the short waves is an important property that should be
accounted for by the wave model. Refraction, shoaling and breaking induced by
variable depths are also of primary importance. Current refraction and breaking
can be significant when waves propagate onto strong currents such as rip-currents.
Several of these phenomena have, however, been simplified into our simulations. For
most calculations we neglect the action of current-refraction on the short waves. We
find in a field application example that current-refraction due to longshore currents
is minimal, and thus it is neglected for practical reasons. For waves propagating
against rip-currents, current-refraction is important though in the present study it
is neglected as well to center our interest on other processes. We further focus our

attention in the currents induced by a periodic wave field.

Due to the unavailability of reliable nonlinear 2DH wave models at the present
time, linear wave theory is used herein to describe the kinematics of the waves both
inside and outside the surf zone. The use of nonlinear theories could provide an
improved description of the flow prior to the breaking point, though for breaking
and broken waves no valid wave theory is available. The wave height and direction
on a general beach are estimated using the model REF /DIF1 (Kirby and Dalrymple,
1994). This model is based on a parabolic approximation of the mild-slope equation
including weak-nonlinearity (Stokes third order amplitude dispersion) in the wave
speed (Kirby and Dalrymple, 1983). It is, nevertheless, a linear wave model and
can account for current and depth-induced refraction, wave diffraction, shoaling,
breaking and bottom-induced energy dissipation. Wave reflection from structures
or the bottom is neglected, and therefore we limit the model applications to mildly-
varying beaches where reflection is minimal. The results from this model are used

to calculate the short-wave radiation stresses and wave-induced mass flux.
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The quasi-3D model SHORECIRC is formed by two components dependent

on each other:

1. A numerical module which solves the short-wave averaged equations of motion
for the depth-averaged values of the (time-dependent) currents (V) and mean

surface elevation (().

2. A second component that evaluates the analytical solutions to the vertical

distribution of the horizontal velocities in the time varying currents.

The model SHORECIRC makes use of the short-wave averaged quantities de-
termined by REF/DIF1. Several submodels (or closures) are included in SHORE-
CIRC, such as an eddy viscosity parameterization, and the bottom shear stress

formulation. A detailed description of these submodels is provided later.

The model equations of module (1) are solved numerically by a finite differ-
ence scheme. The horizontal domain of integration is discretized by a rectangular
grid with open boundaries everywhere except at the shoreline, which constitutes
the landward boundary. At the seaward boundary a generating-absorbing condition
is used (Van Dongeren et al., 1994; Van Dongeren and Svendsen, 1997a). At the
shore-normal lateral boundaries, a periodicity condition is implemented, which lim-
its the present applications to longshore periodic domains. In applications where
the lateral flow would be known, the current velocity could be specified along the
lateral boundaries, defining a well-posed problem. However, without the knowledge
of currents flowing into (or out of) the model domain, the use of periodic lateral
boundaries is likely to be a good approximation provided the regions outside the
model domain do not exhibit hydrodynamic or morphological features too different

from the ones within the model region.
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1.4 Outline of the present work

This dissertation is outlined as follows. In Chapter 2 we derive the governing
equations of the short-wave averaged nearshore current model. The 2DH model
interacts with the vertically-varying currents by means of integral terms that provide
a dispersive mixing. These terms are derived under certain assumptions, which we
discuss in detail. We finalize Chapter 2 giving the closure sub-models to completely

define our nearshore current model.

The solution method to our model equations is given in Chapter 3. Finite dif-
ferences are utilized to seek a numerical solution for these equations. The properties

of the numerical method are analyzed and discussed in detail as well.

In Chapter 4 we deal with the presentation and discussion of a simplified
model for longshore currents that accounts for the influence of the longshore pressure
gradient caused by the presence of a weakly longshore non-uniform bathymetry (this
model was originally given by Putrevu et al., 1995). A detailed comparison of that
model with a solution of the complete SHORECIRC model shows the range of

applicability and deficiencies of the simplified semi-analytical solution.

Several model applications are shown in Chapter 5 in order to illustrate var-
ious mechanisms that can exist in nearshore flows. We start with the study of shear
waves over a plane beach, and compare our results with those of Allen et al. (1996)
and Ozkan-Haller and Kirby (1997) for the same case. This comparison provides an
illustration of the dynamics of the shear waves, and also confirms the accuracy of
our numerical method. Furthermore, several experiments are given to examine the
sensitivity of the numerical model to the spatial and temporal discretizations. The
effect of the inclusion of the vertically-varying currents in the model equations over

a barred beach is analyzed in section 5.2. The interaction terms provided by the
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vertically-varying currents cause a dispersive mixing, and are seen to affect signifi-
cantly the development of shear instabilities of the longshore currents. In section 5.3
we show the formation of rip-currents over the same barred beach as in the previous
example, due to a modification of the incident wave field. The seaward moving
mass flux carried by the rip-currents is provided by longshore currents converging
towards the rip-channel. The importance of the longshore pressure gradient as a
driving force for these large longshore currents is also examined. We finalize Chap-
ter 5 with a brief example on the effect of the bottom shear stress, which illustrates

the need for a correct estimation of this quantity.

Having gained in Chapter 5 some insight on the model performance and the
physical phenomena we are modeling, in Chapter 6 we proceed with the simulation
of field conditions. We chose to model the situation observed at times during the
DELILAH 1990 nearshore field experiment at Duck, NC, where previous modeling
efforts have failed to predict the measured large longshore currents in the trough
region of a barred beach. The model results are compared with the field data, and
a discussion is provided on the importance and effect of the mechanisms that affect
the results. Using the default free parameters of the model (the bottom friction and
eddy viscosity coefficients), the results compare fairly well with the data. Unlike the
measured currents our model results indicate a maximum of the longshore current

over the bar-crest, though. Several reasons are pointed out for that discrepancy.

The summary and conclusions are provided in Chapter 7. We finish that
chapter by stating suggestions for future research in the areas we found it is needed
most. The model assumptions are re-examined, and further work is suggested to
prove their validity under certain applications. Especially, we find there is need
for further field and laboratory experiments, such that the model assumptions and

parameterizations could be assessed and improved.






Chapter 2

EQUATIONS OF MOTION IN THE NEARSHORE
REGION

In this chapter we will briefly rederive the dynamical conservation equations
for mass and momentum of a wave motion superimposed on a current field. We
follow the steps outlined in Svendsen and Putrevu (1996) and given in detail by
Putrevu and Svendsen (1991) for a depth-varying current, whose derivation is similar
to that presented by Phillips (1977) (pp. 60-63) and Mei (1989) (pp. 453-463) for a

depth-uniform current velocity.

A basic assumption underlying the following derivation is that the instan-
taneous velocity of the flow motion can be decomposed into different components
related to different time and length scales of the motion. We will separate the flow
into a mean part, describing a steady or slowly-varying current, and a fluctuating
part which corresponds to a rapidly-varying motion. The latter component encom-
passes both the short-wave motion (wind waves and swell) and the purely turbulent
fluctuations, which although conceptually different, can have scales of the same

order of magnitude (as e.g. in a breaking wave).

To be able to separate the wave motion from the “mean” motion we need to
assume that we know the time variation of the short-wave motion. In order to do so

we assume that the short waves are periodic, though they can be steady or slowly
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varying in time. For convenience, we also assume that the relative depth change
within one wavelength is small (Svendsen and Putrevu, 1996). This requirement
simplifies the problem in the sense that any conclusions drawn for a local constant
depth can be generalized for any location, had the water depth been constant every-
where with exactly the local depth. The advantage of this simplification is that it
allows us to use constant depth theories, such as Airy linear wave theory, to describe

the wave motion.

2.1 Depth and time-averaged equations of motion

In the following we will follow an Eulerian description of the flow, i.e., de-
scribe the time-variation of the flow properties of any particular spatial element.
We assume turbulent flow over a fixed bed for a fluid of constant density, p. For
convenience, the equations are given in Cartesian coordinates (z,, z), and tensor
notation is used for the variables in the horizontal dimensions (z,y) = x,: repeated
indices imply summation and d,4 is the Kronecker delta. The vertical coordinate is
represented by z, directed upwards with origin at the still water level (see Fig. 2.1).
The equations of motion are given in an inertial (or nonrotating) frame of reference.
Hence, we assume the time and length scales of the motion to be small enough such

that the Coriolis acceleration is negligible (Rossby number < 1).

The governing equations are then given by the Reynolds equations for con-

servation of mass

Oy ow
e = ) 2.1
I%a 0z (1)
and momentum
Oug Ouglig dugw 1 dp 1 (OTap 0T,
L N , 2.2
ot % 0z, v 0z p Oxg + o\ O, + 0z (2.2)
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a+83:a+8—z:*;§_g+; Oy, 0z
In here, u, and w are the ensemble-averaged (or turbulent-averaged) total particle
velocities in the horizontal and vertical directions, respectively; p represents the
pressure and 7,4 are the components of the combined turbulent and viscous stress
tensor, defined as:
—— .

Tali = = ty g +1°0°, (2.4)
where the overbrace indicates ensemble (or turbulent) averaging, defined such that
’;}: = 0 where u/, is the turbulent velocity component. The viscous stress tensor
7V%¢ is usually much smaller then the turbulent stress tensor for the type of flows

considered here, except in the boundary layer near the solid boundaries which is out

of the scope of this work. Hence, we neglect the viscous stresses in the following.

It is convenient to introduce the total volume flux @, defined by

¢
Qn e ~/—ha Ug dz, (25)

where —h, is the vertical coordinate of the bottom (h, is the still water depth), and
( is the instantaneous free-surface position. For clarity, refer to the definition sketch
in Fig. 2.1. Furthermore, we divide the total particle velocity (u,,w) into a “mean”
component — the current V,, —, and an oscillatory component u,,, corresponding to

the short-wave motion:
Uy =V + Uya ; W=W + w,. (2.6)

We note that the mean vertical component of the current W is usually considerably
smaller than the horizontal components. This is seen in the experimental data of,
e.g., Cox et al. (1995) for a plane beach profile. However, the order of magnitude

analysis given by Putrevu and Svendsen (1997) suggest that W cannot be neglected.
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Figure 2.1: Definition sketch of the relevant variables.

Before we describe the derivation it should be mentioned that a thorough
discussion of the role of the turbulent shear stresses defined by equation (2.4) is
given later. However, for the purpose of our derivation, it suffices to assert that we
model the turbulent Reynolds stresses using the eddy viscosity concept proposed by
Boussinesq. For such, it is assumed that the turbulent stresses are proportional to
the mean velocity gradients, which can be expressed by (e.g., Rodi, 1984):

oV, AV, 2
Tap = Pl (8:1,16 - 8:;3) o pgk:(saﬁ, (27)

and

Vs 2

o puta = p3k(52ﬁ, (2.8)

where 14 is the turbulent eddy viscosity and k is the turbulent kinetic energy per

unit mass defined as

1 [~ ~=~ -~
k= 5 (u"z + v? + m"}') : (2.9)

The value of v, is dependent on the turbulent characteristics of the flow and a closure
is needed to determine its value (see section 2.4.1). The energy k is just a scalar
like the pressure p and thus the second terms on the right-hand side of equations
(2.7) and (2.8) can just be absorbed by the pressure gradient terms in the governing

Reynolds equations.
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The derivation of governing equations for the mean flow, starting from the

Reynolds-averaged equations (2.1)-(2.3), is then summarized as follows:

i 8

We first integrate the mass conservation equation (2.1) and the horizontal
momentum equation (2.2) from the bottom —h, to the instantaneous free-

surface position ¢, and apply Leibniz rule to place the differential operators

2 outside the integrals.

0%

. We then introduce the kinematic boundary conditions at the free-surface and

the bottom, respectively given by

¢ ¢
- Uge— = —, 2.10
w(() — u oz, o1 (2.10)
oh
—h, thg—o 52 211
w(—h,) + u oz, (2.11)
into those equations to eliminate the terms that were evaluated at z = —h,

and z = (. We also make use of the dynamic boundary conditions which yield
the surface and bottom shear stresses 'rg and *rf, respectively. The dynamic

boundary condition at the free-surface z = ( reads

a¢
— (—pbap + Tap) 9. + g = Tg IVF| , (2.12)
and at the bottom z = —h, is given by
oh, _
Tﬂrgaf == Tzﬁ — Té} |VBl ’ (213)

x

where VF = (-, —%, 1) and VB = (—%e, —%;Q, 1). Furthermore, assum-

ing a small bottom slope and small mean free-surface slope we simplify the

right-hand-side (RHS) of equations (2.12)-(2.13) by:
75 |VF|m73 , (2.14)
73 |VB| =715 . (2.15)
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In the above we implicitly assume that the dynamic condition is not exactly
given at the bottom, but at the top of the bottom boundary layer. In doing
so, we avoid the difficulty of computing the details of the flow in the bottom
boundary layer, and account only for the shear stress the boundary layer flow
induces on the fluid above that layer (Putrevu and Svendsen, 1991). If we had
chosen to include the proper treatment of the bottom boundary layer, then

the kinematic boundary condition would read v, = 0 at the bottom.

. The third step of the derivation consists of the integration of the vertical mo-
mentum equation from a level z until the free-surface ¢ to obtain an expression

for the pressure p at that level z, which reads,

. T ) r<
p = pg(C—2z)—p (wﬁ, + w'z) - %/ pwdz (2.16)

¢
%/Z (pugw — 7o) dz.

This expression is then used in the depth-integrated equations to eliminate

+

the pressure term, which gives rise to contributions to the radiation stress
tensor. At the same time, we also evaluate the pressure at the bottom, which

is similarly used in the depth-integrated horizontal momentum equations.

. Finally, the depth-integrated equations are averaged in time over the short-

wave period 7'. This time-averaging is defined as (indicated by an overbar):

e 1
=z -d. (2.17)

Thus, we allow for a “mean” motion varying in a longer time scale than that
of the short waves, such as in an irregular or non-stationary short-wave field.
Furthermore, we assume periodicity of the short-wave motion over a “small”
time scale, so that g = (. This averaging is also done on the pressure evaluated

in the previous step, which yields

_ T o ¢
p = pg(C—2)—p (w;’;, + w' ) + W/ (PUa W — Toz)dz
Lo Jz
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_ o~
~ pg(C—2)—plw?+ w?|. (2.18)
In the above we neglected the last term because we expect that over several
wave periods each water column will support itself and not transfer net weight
to the neighboring columns. This step concludes the process of derivation of

the governing equations, which we present below.

After proceeding through steps 1-4 of the derivation outline above, we obtain

the depth and time-averaged continuity equation

a9 B
g + 0%/_10 iigds = D, (2.19)

as well as the depth and time-averaged horizontal momentum equation

9 ¢ o ;< s
'(9_t-/;!;ﬂ 'u,ﬁdz + E]_hn U g dz = —g (hﬂ -+ C)E

1 0 ¢ 1 , 1 @ &
=3 S i dz — 05—~ pgh® —— 5 4
p Oz, .[_u,,pr o '82'09 1] g p Oz, _,',.,,T o=
s B
ol g LB (2.20)

P P
where we kept the pressure term in terms of p for clarity, and h is defined as the

total mean water depth h = h, + C.

Before we present the final set of equations we apply the time-averaging
definition (2.17) to the depth-integrated volume flux @), defined by expression (2.5),
which yields

= € ¢ €
er = / Ug dZ = /! Vadz + /} uwctdz: (221)
—ho —hes —he
where we made use of the velocity partition given by equation (2.6). For a purely
oscillatory motion there is no mean transport below the wave trough level ¢;, so that

we can define:
Twa = 0 below trough. (2.22)
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Therefore, the time-averaged volume flux @), results from equation (2.21) as

3 ¢ vd 9.93
Qo= [ Vadz + Qua, (2:23)

where
¢
Qua = / U AZ . (2.24)
Gt

Qo represents the mean volume flux caused by the short-wave motion, integrated
from the surface-trough level (; to the instantaneous surface position (. It can be
evaluated by any short-wave theory and it is assumed a known value in our system

of modeling equations.

The depth-integrated and time-averaged equations of motion (2.19)-(2.20)
can then be rewritten in terms of the mean volume flux @Q,, and the wave 1y, and
current velocity V,, components. Introducing equation (2.23) into the continuity

equation (2.19) yields

o Q.

= ==
ot 0To s ()

Similarly, for the horizontal momentum equation we get

00Q o (< o ¢
=2 5o [, VaVadz + a_n;]c (twa Vs + s Vi) dz =
¢ 1 0 ¢ 1 :
1. @ .8 Tg Tf?
— _ - =, 2.26
p O0Tq /_ho Tap 47 + P p 4i%6)

Finally, we define the radiation stress tensor S,z as the term in square brack-

ets on the RHS of the momentum equation:

¢ 1 >
Scrﬁ - /’ (paaﬁ + P Uya “wﬁ) dz — 60:,[:’5 Py h*. (227)
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The radiation stress represent the “excess” momentum flux caused by the short
waves on the mean motion (Longuet-Higgins and Stewart, 1964). This term is
typically the main forcing responsible for the generation of the wave-induced currents

and infra-gravity waves in the nearshore surf zone.

The momentum equation (2.26) can then be written as

Q) o (< a ¢
% + BT Ca VﬁngZ + 3—L-/§ (“wavﬁ +uwﬁvﬂ)d‘?’ =

o¢ 1 0 ¢ \ 5 7
_g(hﬂ—FC)B—E% = ;gr [Snﬁ = . Tap dz| + *5‘ — “E“ ; (2.28)

This equation, together with the equation for conservation of mass (2.25), can be

used to calculate the currents V, and the mean surface elevation ¢ provided we
know the short-wave motion (through wu,, or Qu., and S,s) and the turbulent
characteristics (via the depth-integrated, time-averaged, turbulent stress tensor 7,4).
Equation (2.28) describes the balance between the time-averaged fluid accelerations
(in the LHS) and forces (in the RHS) acting on a vertical parallelepipedic water
column (or control volume) of unit base dimensions. On the LHS the first term
represents the local acceleration and the second and third terms are the advective
accelerations; on the RHS we have from the first to the last term: the pressure
gradient, the radiation stress gradient, the contribution of the turbulent stresses,
and the surface and bottom shear stresses, respectively. The governing equations

(2.25), (2.28) are so far exact, except for the assumptions of constant density, gently

sloping bottom and free-surface, and periodic short waves (g, = 0, g = 0). We

also neglected the viscous stresses in favor of the much larger turbulent stresses.
The integral terms in the governing equations explicitly require the knowledge
of the vertical variation of the horizontal velocities V,,, both below and above the

trough level. We therefore need to calculate the depth profile V,(z). Once that

is determined we can calculate the second and third terms in equation (2.28) by
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vertical integration of products of V,(z) and w,.(2z) (assumed known). We deal

with the determination of the depth variation of V,, in the next section.

2.2 Vertical variation of the horizontal currents

In order to determine the vertical variation of the horizontal currents V,, we
must recede the steps we did previously to determine the depth and time-averaged
governing equations for the fluid motion. The following derivation has been given
earlier by Svendsen and Lorenz (1989) and, more recently, in greater detail by
Van Dongeren and Svendsen (1997h). Therefore, we just give again the important

equations in this derivation and omit the details for brevity.

Performing the time-averaging operation onto the Reynolds equation (2.2),
and splitting the particle velocity into a current and wave component (defined in

equation (2.6)), we obtain:

0Vs I Vo V3 o IW' Vg " Oy ling % Ol 5 Wy

ot 0T, 0z 01, 0z
1 633 1 Braﬁ O'rzﬁ

.- T B 2
p Oxg o p ((’33:(, o 0z ) (2.29)

This equation can be rearranged through the substitution of the time-averaged pres-
sure p, given by equation (2.18), and the turbulent eddy viscosity model (see equa-

tions (2.7) and (2.8)). Hence, we get

oVy Vo Vp IWVj 0 — QW
ot 4 3:15,1 == 92 + 63-'0, (uwauwﬂ (505/1 ww) + 92 -
aC 0 oV, dVy 0 oV
R i = [wEEy 2.30
g Oz g ¥ 0T lyt (S:Eg W o, Ey 0z % 0z ( )



In order to find the depth variation of V,, we split the current velocity into a

depth-uniform V,, and a depth-varying part Vi, (Svendsen and Putrevu, 1996)

Va (#a:2) = Val2a) + Vial2), (2.31)
where V,, is defined as
e 1% B Qa
v, = Ej_h,, tadz = 22, (2.32)
and Vi, is such that
¢
; Viadz = _Qwa- (233)

So far, no other assumptions have been made. The separation of the current
velocity into two components is convenient for the following approximation of the

second term in equation (2.29)

VuVs /- (Vs + Vip)
B = (ki) (2.34)
- 0V - dVig Vs
—_ an 3.‘1,‘{, 4 1/(}: 6:_{:“ $ Vlﬂa:—nn' 3

where we assume that Vm%f is much smaller than all the other terms. In other
words, we assume that both V, and %%‘“ﬂ are small compared to V,, or gﬁ, hence we
neglect the product of two small quantities. The validity of this assumption is not

immediately obvious and a thorough discussion is given by Putrevu and Svendsen

(1997).

Equation (2.29) then becomes an equation for Vj,. We insert (2.31) into

(2.29) and use the continuity equation, which yields, after rearranging

My 0[O\ _ _, (T, O
ot 0z (Vt 0z ) = P ( dt ty Oz

Vg - Vi Vg
N o A, o _) 2' D
i v 0, w 0z [439)




where f33 is given by

J —
By = 7 — (Twaliup — apwl) +

0z 01, dzg 0z,

and % 1s the total derivative defined as

(2.37)

The term in parentheses in the RHS of equation (2.35) can be evaluated
using the depth-integrated, time-averaged momentum equation (2.28), divided by
h. Neglecting the depth-varying terms in equation (2.28), which leaves only the
leading-order terms, we can use (2.28) to replace the term in parentheses on the
RHS of equation (2.35). Once again, a discussion of the order of magnitude of the
terms in equation (2.28) given in Putrevu and Svendsen (1997) justifies the neglect
of the depth-varying terms in this step. This substitution yields

WVig 9 [ Wi\ Vs -~ Vi Vg
ot 0z (p‘t 8z | fo = Via 0T 4 Va 05 1 W W gz '’

where fg represents the combined action of the short-wave forcing and upper and

(2.38)

lower (in the water column) shear stresses:

1 0 € ) 75 — T4
— i Sy e | i -5 d e 2.39
T A ph Oz, (S p / —ho Tapd | + ph ( )

Using the definition for the radiation stress tensor and the depth-integrated
turbulent shear stresses, the function fz can be simplified somewhat. For linear long
waves, the short wave velocity u,s is independent of z and it turns out that so is fz.
This assumption is then utilized shortly in the depth integration of the horizontal

currents.

Following Van Dongeren and Svendsen (1997b) and Putrevu and Svendsen

(1997) we expand Vy4 as
Vipg = VI + v 2.40
1 18 18 ( . )
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with the assumption that Vl(é} < Vfg). This separation allows us to associate

VI(;P with the forcing fz, and Vl(é] with the second to fourth terms on the RHS of
equation (2.38), and at the same time it is assumed that the advective accelerations
represented by these terms are smaller that the local forcing. Therefore, introducing

equation (2.40) into (2.38) yields an equation for Vfg},

Mg _ 0 v Mg\ _ i (2.41)
ot oz \"az | P '
and another for Vl(;},
My _0(, ) _ _ywdl g M Vi
a oz \" oz ' Bry Y Ozg 9z '
These two equations are subject to the following boundary conditions:
avgy  f
B =B at oz =—h,, .
% R a 2 ) (2.43)
" V@ = - 2.44
5 TP az Qup (2.44)
for V,9; and
vy
% =0 at 2z=-h,, (2.45)
Z
<
, Vig'dz =0 (2.46)

for V1(;}) ;

In the following we consider the special case where the time scale for variations
in Vl{g) and Vl(;) is large enough so that the temporal acceleration terms in equations
(2.41) and (2.42) can be neglected (see Van Dongeren and Svendsen, 1997b for
details). Thus, for all purposes, we assume a local steady-state in the computation
of the depth variation of the horizontal currents. This is in many real situations a

good approximation since the vertical profiles do not change significantly anyway.
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Finally, it is convenient to assume that the eddy viscosity is constant over the
vertical, albeit this is not strictly necessary. As we shall see later, this assumption
is supported by the few experimental data available. Therefore, the steady state
version of equations (2.41) and (2.42) can be immediately integrated, subject to
the boundary conditions (2.43)—(2.46), which yields the governing equations for the

depth-varying profiles:

B B -
©_ oo 1(75 ] 8 (h ¢ _&]2_,_@“’5 92.47
Vis 20, & ¥ v ( p +lpi |2 + 2,01/,,(10 <) 61 : h |’ A7)

(1 r=

Vl(g) = VIEB'-}(C“) = ]z 3 Fgdzdz, (2.48)
where
. (0) (0)
_ oV 5 Wiy Vg 2.49
Fﬁ = Vla Oﬂfa Vo a:L'a o 0z ( ' )

In the above integration we utilized the fact that f3 = fs(z,y) only, i.e., it is not

a function of the vertical coordinate z. We also recognize that Vl(gj is a quadratic

function of z that can be rewritten through the variable transformation £ = z + h,
as the following

B
fa . 'rf fs . Ta h Qup

V(U):—-)'-l-— — | SRRy 8 . PR 2.50

18 21, ¢ Py ¢ 6 1y Py 2 h ( )

We note that the vertical velocity W can be derived by integrating the lo-

cal short-wave averaged continuity equation. To the order of accuracy needed in

equation (2.49), W can then be approximated by (Putrevu and Svendsen, 1997)

W = —(z+ho)% - V?:—

251
0, (251)

The expressions for the vertical variation of the horizontal currents, namely equa-
tions (2.50) and (2.48), are then used to evaluate the second and third terms of the

depth-integrated momentum equation (2.28) as seen in the next section.
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2.3 Coupling of the depth-varying and depth-integrated equations

We will here focus our attention on the second and third terms of the depth-
integrated, time-averaged momentum equation (2.28). We start by inserting the

velocity separation (2.31) into those terms, which yields

% g (¢
0 ./h Vﬂ Vﬁ dz + /C (Uum I/ﬂ 3 Uy Vn)dz =

D J- o
VoVgh 0 5
83:5 + -7 VieVigdz + e A ; (uwa Vg + twp Via) dz. (2.52)

The first term on the RHS represents the advective acceleration of a depth-uniform
current V3, whereas the second and third terms are the advective accelerations of

the depth-varying contributions. These integrals can be approximated by

¢ ¢
] 5 V—ln Vl A dz + f Uy ey Vl Jé) + Uyt Vla dz
—fla Cl

v ) .
~ f_; Via Vigdz + Vip($) Qua + Via(C) Qus , (2.53)

where we used the definition (2.24) for the short-wave volume flux. This implies
we also have assumed that the current velocity above ¢ is uniform and given by
Vi5(C). This is clearly an approximation as the current above the trough level is not
well defined. In this region there is water intermittently and thus the surface layer
is occupied by two phases. As shown by Brocchini (1996) the mean properties of

the flow in the surface layer are not uniquely determined, and can be related with

a intermittency factor, which is unity below trough and zero above the crest level.

Following the derivation given by Putrevu and Svendsen (1997) and Van
Dongeren and Svendsen (1997b) we can evaluate these integrals using the expression
for Vfi) found in the earlier section, but keeping the Vl(((:) variable explicitly. The
derivation is straightforward, but lengthy, and the details can be found in both

references above. The result can be written as

e _ _ -
Vlcz ‘/lﬂ dz =+ VL,B(C) an == Iflc‘u(‘.‘) Qwﬂ == M(sﬁ =+ Anﬁ'y Vry

—lg
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= h(D alﬁ" + Dy, gv + Bag E)V) ; (2.54)

¥ 8., o,
where the tensors A, B, D and M are defined by
¢ {1/ 0 = oh,
= = o (1[0 ® 4, _ O ,
AQIHT N —he Vla -[z 20 (a’}j,}, i V T/llﬁ a ) (dZ)
¢ sl (@ p ) Oh .
- (0) / L © ;. 1,0 0h " :
/—h., Vw z U (83_;,? _huvl dz — Vig oz ) (dz)*, (2.55)

By = 2Daﬁ——U A [“Vw (ho + ) (dz)?

’s
+ ] A f —VJSJ (ho + 2) (d2)?| , (2.56)
—hao z U
L 0 ¢
Dus = f . / > hav (d2)?, (2.57)
¢ .
Moy = WW$@+WWWM+W%WM. (2.58)

In the above no other approximations were made, except for using the previous
assumption that V(IJ < Vl(g). The tensor M,z can be related to the momentum

flux correction factor m,p due to the vertical variation of Vi, defined as

1 ¢ = o
map = 1+ == U V2 Vg dz + V() Qus + Vi3 (O) Qua| »  (259)
Vv(r‘/ﬁh —ho
which then simply reads
Map
g = 1 + == 2.60
Mag A7 PR ( )
Hence the terms on the LHS of equation (2.52) can finally be written as
a < g <€
a.’L'“ - Va Vﬂ dz + m / ( U V:{'l + Uwp V(!) dz =
0 - i oV v, v,
A i ¥ e o - Ik Dc\- o s . 61
Bz, lm p‘V Vgh-i-A ﬁ'YV'T h ( 78 Dﬁya B'ﬁé‘:r:q,)] (26 )

The tensors (or coefficients) A, B, D and M are expressed as a function of

Vlﬁ , which we determined earlier to be given by equation (2.47) or (2.50) under
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the assumptions of quasi-steady state and vertically constant eddy viscosity. The

equality given by (2.50) will then be used to evaluate explicitly the coefficients A,

B, D and M. For such, we can rewrite (2.50) conveniently as

where

VD = by € + b€ + by,

_Is
s 2u;°
B
"
b2 = ia
pf/!'
f,b’ 2 T,ég h’ Qwﬁ
by = —|=—1 — .
3 (61/,,L +,oy£2+ h

A similar expression can be written for the « direction:

Vl(::] = §2 + ax € + a3,

where a, , ay and ay are similar to by , by and bs.

(2.62)

(2.66)

Finally, we insert equations (2.62) and (2.66) into the definitions for A, B,

D and M and evaluate the depth integrals directly. Following Van Dongeren and

Svendsen (1997b) this operation leads to the following forms for the coefficients:

Aab"r

Bu,ﬁ

_l l@a] bl h? 4 (6(:,1 bg & 6(&2 b]) h.ﬁ

v | Ovy 63 0x. 0z, | 36

8&1 b:j 8(.!3 b] .ILS aﬂg bg '}f‘

O, Oy 15 Oz, 20

60,2 bg + 8(13 bg hq (90.3 b3 E

oz, O, 8 oz, 3]°

h? [ 4 ; h? h
_Z [éalbi h,'j + (a.lbg i ﬂﬂbl)ﬁ + (lgb-zﬁ*-{-‘
2 1
T (aybs + azby) h + 3 (ag by + az {)2)] ,
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The end result of the derivation above is that we determined the terms that
account for the depth variation of the horizontal currents which enables us to insert
them into the depth-averaged horizontal momentum equations. Equations (2.52)-
(2.54) show that the advective accelerations associated with the total depth-varying
currents Vi, lead to two distinct contributions to the momentum equation: (i) ad-
vective accelerations linked with the leading order depth-varying current VI(([:) and
the wave-induced volume flux (the first and second terms on the RHS of (2.54)),
and (ii) momentum dispersive terms (the term in parentheses on the RHS of (2.54))
that are similar in form to the turbulent stresses given by the eddy-viscosity model.
Therefore, the coefficients B, and D,z are the vertical mixing coefficients for mo-
mentum resulting from the depth-averaging process, similar to the mixing coefficient
found by Taylor (1954) on a turbulent flow in a long straight pipe. Similarly, Elder
(1959) analyzed the free-surface flow down an inclined plate, assuming a logarithmic
velocity profile, which when integrated over depth yielded a dispersion coefficient of

(typically) one order of magnitude larger than the eddy viscosity coefficient.

The equivalent, of these results for a long straight coast was presented by
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Svendsen and Putrevu (1994). They found that the term proportional to D,s ac-
counted for the largest contribution of the depth-varying terms and it was an order
of magnitude larger than the turbulent dispersion mechanism. Van Dongeren and
Svendsen (1997b) reached to a similar conclusion for the case of infragravity waves
forced by obliquely-incident wave groups, hence confirming the importance of ac-

counting for depth-varying currents in the study of nearshore flows.

For completeness, we write below the depth and time-averaged governing
equations where we use the expressions (2.52)-(2.54) in the momentum equation
given by (2.28). Thus, the continuity equation reads (where we repeat equation

(2:25))
o, 9

ot .

=0, (2.71)

and the horizontal momentum balance is given by

Qg L0 (QaQﬁ

+ Mag + Aapy 171,)

ot Oz, h
%, OV v, ov,\]
Oz, lh (D” O, + Do O, + Bag "61_»,,)] N

¢ 1 0 ¢ ) T8 T8
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The model formed by these set of equations is referred to as a Quasi-3D
model because it accounts for the depth variation of the currents, and constitutes
an extension of the 2D-horizontal models for depth-uniform currents. Due to the
complexity of this system of coupled partial differential equations no analytical
solutions exist for the general case, and thus a a solution by a numerical method is

sought for the applications in the later chapters.
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2.4 Closure sub-models
2.4.1 Turbulence closure

As introduced earlier, we use the eddy viscosity concept to model the turbu-
lent Reynolds stresses (see equation (2.7)). Although eddy viscosity models are one
of the simplest for turbulence modeling, they can still give good results provided
they allow for changes in the local turbulence structure. For example, the use of a
constant eddy viscosity »; cannot account for changes in the turbulence, thus one

should not expect it to describe correctly the details of the mean flow.

Generally we can consider v, = v (z,v, 2,t), but a very detailed representa-
tion of such a variable would require an accurate knowledge of the turbulent flow
under breaking and non-breaking waves, which is difficult to measure. However, it
seems important to have a good estimate of the turbulent eddy viscosity as the depth
averaged turbulent shear stresses can provide non-negligible horizontal mixing of the
surf zone currents, and more important, is the fact that the dispersion mechanism
described in sections 2.2 and 2.3 depends on the value of 1. Moreover, the local
vertical variation of the horizontal currents V,, is strongly dependent on the mag-
nitude of v, but somewhat indifferent to the vertical distribution of it (Svendsen,

1984a).

In our model for the description of the vertical variation of the horizontal
currents we decided not to include explicitly the bottom boundary layer, so that
effectively our bottom velocity V. and bottom shear stresses 'rf should be read as
if they were evaluated just above the bottom boundary layer, at z = § — h,, where
d is the boundary layer thickness. Thus, we analyze in this section the turbulent
related quantities v, and k just above the bottom boundary layer. We will also focus

our analysis solely on the turbulent shear stresses and neglect the turbulent normal



stresses, based on the small values of the magnitude of the turbulent kinetic energy

inside the surf zone (Svendsen, 1987).

Outside the breaking region, turbulence is mostly generated by the bottom
boundary, but at the free surface turbulence can also be produced by wind shear
(turbulent) fluctuations and interaction with the wave motion'. Inside the surf zone,
turbulence is mainly provided by the wave breaking process. On a plane sloping
beach, wave induced turbulent intensities increase after breaking to a maximum
at around h/h, ~ 0.6 — 0.8, where h; is the depth at breaking, and then decrease
towards the shore as showed in the experimental results of Nadaoka and Kondoh
(1982), Hattori and Aono (1985) and Okayasu (1989). Thus, a priori, it is clear that
to cover the nearshore region with a single model of the turbulent eddy viscosity
one should account for both bottom and wave generated turbulence characteristics.
Such formulations are used by De Vriend and Stive (1987) and Sanchez-Arcilla et al.
(1992)), and will be pursued in the present study. A brief review of the available

eddy viscosity formulations is given below.

Empirical models

Earlier models for the depth-averaged horizontal currents on a longshore
straight coast considered v, to vary with the cross-shore direction (e.g. Longuet-
Higgins 1970a, Thornton 1970) or to be constant (Bowen 1969a). However, in those
models empiricism and data fitting were used for the estimates of the eddy vis-
cosity, which were all dependent on the local depth or local wave properties. For

barred beaches Larson and Kraus (1991) and Smith et al. (1993) expressed the eddy

I For reference see Phillips (1977), p.117-134.
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viscosity by the empirical formulation
Vv = FUUH y (273)

where I' is an empirical coefficient adjusted by data fitting (I' >~ 0.1 — 1.0), u, is
the amplitude of the wave orbital velocity at the bottom, and H is the wave height.
This parameterization gives 1, decreasing towards zero in deep water, where the
turbulence levels are much smaller than in the surf region, but it does not account
for different mechanisms of turbulence generation nor the large sudden turbulent

levels encountered in the breaking region.

Turbulence under wave breaking

Although several experimenters and modelers have analyzed the turbulent
flow under and past breaking waves, turbulence generation, transport and decaying
mechanisms are far from being completely understood. Svendsen (1987) presented
a thorough review of the turbulence characteristics in the surf zone, analyzing inde-
pendent experimental results of Stive (1980), Stive and Wind (1982), Hattori and
Aono (1985) and Nadaoka and Kondoh (1982). Some important conclusions of his

review are the following:

1. The temporal variation of the turbulent kinetic energy k (defined by equation
(2.9)) over a wave period is fairly small, hence we can assume k constant over

the short wave period.
2. The turbulent kinetic energy varies slightly over the water depth which sug-
gests that a depth independent eddy viscosity 1, is a good approximation.
More recently, Cox et al. (1995) presented detailed results of waves and

bottom induced turbulence for spilling breakers on a gently sloping rough beach.
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Those authors find the local (t, z) inside the surf zone to increase from zero at the
bottom to a nearly constant value above mid-depth and up to the wave-trough level,
and to be nearly constant for all the wave phases, i.e. 14(t, z) is roughly independent
of time. Regarding the depth variation, 1, changes significantly in the bottom
boundary layer but away from it the variation is less significant. Therefore, based
on this study and the conclusions of Svendsen (1984a) and Svendsen (1987), we
assume for our turbulence closure that the eddy viscosity is depth-uniform and
time-independent. The magnitude of it is, however, still a matter of research but
it could be assessed through the estimation of the relevant turbulent length scale [

and turbulent kinetic energy k which are related to 1, by

v =1Vk. (2.74)

Using a best-fit estimate of an undertow model to match the data, Svendsen

et al. (1987) estimated the turbulent length scale [ to lie in the interval
025h <1<0.35h. (2.75)

This value seems appropriate as the turbulent length scale is related to the energy-
containing turbulent motion, which is seen to be smaller than both the water depth
and the wave height in the surf zone. Using the estimates given by Svendsen (1987)
for the wave averaged turbulent kinetic energy k, and the turbulent length scale [

above, the eddy viscosity v inside the surf zone can then be approximated by

v =~ (0.01 - 0.02) hy/gh. (2.76)

This result is similar to the earlier estimate of v, = 0.01h\/gh given by Stive and
Wind (1986). Not only is the turbulent eddy viscosity of the same order, but also

the turbulent length scale is given by 0.25h < [ < 0.5h, which is similar to (2.75).

An alternative estimate for 14 can be evaluated from the turbulence measure-

ments in the field by George et al. (1994). Those authors report that turbulence
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in the surf zone is only 1/4 to 1/2 of the laboratory values and their measurements
suggest u’'~0.01y/gh. Following (Svendsen, 1987) we assume then that the relative
strength of w2, w2 and v is the same as that of a plane wake. Hence the turbulent
kinetic energy can be determined by k~1.2u”2. Using the length scale I = 0.3h a
value for the eddy viscosity can easily be determined from equation (2.74) and the

estimates above, yielding
vy =~ 0.004 hy/gh . (2.77)

This estimate is indeed only 1/4 to 1/2 of the approximation (2.76), and it will be

used as a guideline for the turbulence levels in the surf zone under field conditions.

Battjes (1975), based on concepts of turbulent energy dissipation and the
energy cascade model, related the turbulent eddy viscosity with wave energy dissi-

pation by breaking. Namely, the eddy viscosity is written as
m=Ilgq, (2.78)

where [ is a turbulent length scale (or characteristic eddy size) and ¢ a turbulent
velocity scale. Battjes (1975) estimated [ ~ h, as this value being a limiting length

scale for the vertical eddies, and the turbulent characteristic velocity to be given by

0= (2P, (2.79)

where D is the energy dissipation rate per unit area. The combination of those two
scales yields the result:
1 —
Y= J?Mh(;)”5 ; (2.80)

2, Based on comparison with laboratory data,

where M is a constant of order one
and attributing all the surf zone mixing to turbulence, Battjes (1983) showed that

in the inner surf region ¢ =~ 0.8(D/p)'/3, i.e. M = 0.8.

2 Details of the derivation are omitted here for brevity.
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The above eddy viscosity model has been used in several turbulence closures
in nearshore hydrodynamics models (e.g. De Vriend and Stive, 1987; Sanchez-Arcilla
et al., 1992; Reniers et al., 1995; Ozkan-Haller and Kirby, 1996). However, the values
of M used by the modelers above cover a wide range from M ~ 0.025 — 1. This wide
variability is related to the fact that in depth-uniform current models the effective
turbulent eddy viscosity accounts also for the lateral dispersion mechanism induced

by depth non-uniform currents.

The formulation of Battjes (1975), however, assumes an immediate transition
from wave breaking dissipation into the smaller scales of turbulence where effectively
the energy dissipation takes place. Recent attempts have been made to introduce
a (space and time) lag between the production, due to breaking, of the turbulent
energy and its dissipation (Okayasu, 1989; Nairn et al., 1990). The observations
of a difference between the plunging point and the point where the wave set-up
commences lend support to that fact. So, the organized wave energy should not
be instantly converted to turbulent energy, but part of the organized wave energy
should be first converted into forward momentum flux carried by the surface roller
(as indicated by Svendsen, 1984b). To account for such transmission of energy from
the wave motion into the roller and then into turbulence a more detailed turbulence
model would have to be considered. It cannot be simply accomplished by an eddy
viscosity model. Therefore, in our turbulent model formulation we neglect this time

and space lag between the production and the dissipation of energy.

Turbulence outside the breaking region

Outside the surf region very little information is available about the turbu-

lence level and the associated eddy viscosity. We can quantify the eddy viscosity by
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taking into account only bottom generated turbulence, and implicitly assuming no

surface generated turbulence. For combined wave-current flows You (1994) finds
v = Ky, €, (2.81)

to be a good model for non-breaking waves, where & is the von Karman constant
(k£ =~ 0.4), u; is the wave friction velocity associated with the wave motion, and

¢ = (h + z) is the vertical coordinate with zero at the bottom. An estimate of the

wave friction velocity v}, is given by Nadaoka and Kondoh (1982):

Uk = 1/‘%”?1,0, (2.82)

where f, is the wave related bottom friction coefficient.

The model equation (2.81) might give too large values of v, near the surface,

hence a parabolic variation, such as (Coffey and Nielsen, 1984)

v, = Kuy, € (1 = %) , (2.83)

is more in agreement with the experimental data of Supharatid et el (1992), who
report a linear increase of v, from the bottom up to a certain level and then a
decrease towards the water surface. The data of Supharatid ef al. also suggests
that equation (2.83) should be multiplied by a constant of ©(0.1) in order to match
the data. Similar results to those of Supharatid et al. had been reported previously
by Sleath (1987), who finds that the constant of proportionality in equation (2.83)
differs from the von Karman constant x, and it varies between 0.06 and 0.08. Thus,
it is seen from the references above that a large uncertainty is associated with
the depth-varying models of 1, as well as to the magnitude of the proportionality

constant.

Contrary to the findings above, seaward of breaking, the data analysis of

Cox et al. (1995) shows that (¢, z) above the bottom boundary layer is even more
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independent of 2z and ¢ than shoreward of breaking, so that it is again reasonable to
assume 14 uniform over depth outside the surf region. The maximum values of v,

over the water column found by Cox et al. (1995) are

(0.01 — 0.02) h\/gh , inside the surf region
vy o~ (2.84)
2 x 1074 h\/gh , outside the surf region

which is in agreement with (2.76) inside the surf zone. The measurements of Cox
et al. (1995) and Nadaoka and Kondoh (1982) are some of the very few that contain
analysis of turbulence both inside and outside the surf region. Due to the lack of
more data, Putrevu and Svendsen (1993) quantified v, seaward of the breaking point
by qualitative arguments based on the experimental results of Nadaoka and Kondoh

(1982). Thus, Putrevu and Svendsen (1993) empirically assumed

4
vy = Ui [0.2 + 0.8 (%) ] (2.85)

where vy, is the eddy viscosity at the breaking point. However, due to the degree
of empiricism involved in the above estimate, we deem it more appropriate to use a
relation such as (2.81) or (2.83) integrated over the depth, which is closely related

to the turbulent flow characteristics at the bottom.

Combined model for turbulence inside and outside the breaking region

In the present model we use an eddy viscosity formulation that accounts
both for wave-breaking and bottom generated turbulence. Outside the surf zone
the model equations (2.81) and (2.83) are used as a guideline. Inside the surf zone
we apply a modified Battjes (1975) model (equation (2.80)). Therefore, combining

the depth-averaged equivalent of (2.83) with equation (2.80) yields

W D, ;.
v = C1h§ﬂ%!ﬂu h + Mh.(;]lf‘i, (2.86)
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where we introduced the relation (2.82) for u;,. The coefficient C; accounts for the
factor 1/6 that arises from the integration of (2.83) as well as for the uncertainty in

the proportionality constant in that equation (see discussion above).

The first term in (2.86) represents bottom induced turbulence and it is always
present, and the second term is only active in the region where breaking dissipation
occurs. A smooth transition between the breaking and non-breaking regions is used.
By comparing the eddy viscosity estimates from this equation with the experimental
results of Nadaoka and Kondoh (1982) and the values suggested by Svendsen (1987)
we use O;~0.2 and M ~0.2 (as suggested by the length scale estimated by (2.75)).

It is important to note that the local (depth-integrated) values of the eddy
viscosity enter in the evaluation of the dispersion coefficients A, B and D. The terms
in the momentum equations associated with these dispersion coefficients account for
most of the momentum dispersion in the model equations (2.71) and (2.72). All the
coefficients A, B and D are inversely proportional to », and thus we expect them
to be large in regions where »; is small. The same applies to the depth-varying
horizontal velocity Vl(g). We have found though that the use of the eddy viscosity
given by (2.86) gives reasonable values both inside and outside the surf zone for all

the quantities just mentioned.

Lastly, all the experimental data analyzed by Svendsen (1987) is for plane
sloping beaches, and no experimental data on the turbulence structure over and
past barred beaches is presently available. Nevertheless, we believe that equation
(2.86) contains the physics necessary for it to be valid both inside and outside the
surf region for any beach profile. It is also clear from the above review that there
is a need of experimental data of the turbulence properties both inside and outside

the surf region for a barred beach.
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2.4.2 Bottom shear stress

Similarly to the difficulties of finding a closure for the turbulent shear stresses
there is a great deal of uncertainty in the estimates of the bottom shear stress. A first
question to address is the definition of the bottom shear stress. For a steady current

flow the bottom shear stress can be expressed by means of a quadratic friction law:

1
TC - 2 .,9 .f(.

Vil Vi, (2.87)

where the subscript ¢ in 77 represents the “current” contribution, f, is the current
friction coefficient or drag coefficient, and 17,3, is the current velocity at the top of the
bottom boundary layer. Similarly, for the case of a purely oscillatory flow the wave

friction factor f,, can be defined by (Jonsson, 1966)
Tw = 5Pte |tio| o (2.88)

where wug is the short-wave maximum instantaneous particle velocity evaluated at

the top of the bottom boundary layer.

In the literature we find two alternative methods of defining the bed shear
stress in a combined wave-current flow. Christoffersen and Jonsson (1985) and

Myrhaug and Slaattelid (1990) assume

7B =78 L 75 (2.89)

[

and a second definition is suggested by Bijker (1967) (cited in Visser, 1986), Jonsson
et al. (1974), Liu and Dalrymple (1978), and Svendsen and Buhr Hansen (1988)
among others,

1
P e 5P feuw |idy | iy - (2.90)

where 1, is the total velocity at the bottom. In this expression f., represents the

combined wave-current friction coefficient. The first formulation (equation (2.89))
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separates the two flow constituents clearly and simplifies into the well studied cases
of waves alone or currents alone in the absence of one or the other component. It
has the disadvantage, however, that it assumes a linear superposition of the waves
and currents shear stresses alone, whereas it is well known that these do not add
linearly. Alternatively, the definition of the shear stress as given by equation (2.90)
does not assume a linear summation of effects, but it has the drawback of considering
a single friction factor f., that must account for the two different scales of the flow,
corresponding to the wave and current components. In the limiting cases of waves
or currents alone f., should then revert to the factors defined for those simpler
cases (Jonsson et al., 1974). As mentioned in Svendsen and Buhr Hansen (1988) the
important assumption behind equation (2.90) is that it applies to the instantaneous

shear stress and velocities with a constant friction coefficient f,.

Since in the nearshore studies considered here we will always have a combined
short-wave and current flow we follow the shear stress definition (2.90) without
troubling about the limiting cases of either of those flows alone. We will further
assume that f., ~ f, because in a wave and current motion the inner bottom
boundary layer close to the bed is dominated by the waves effect, and the outer
boundary layer is dominated by the currents. Hence, the shear stress at the bed 7.2

is dominated by the waves.

From dimensional analysis Jonsson (1966) showed that for pure wave motion
the wave friction coefficient f,, is generally a function of the flow Reynolds number
Re = % and the relative bed roughness %ﬂﬂ, where ag represents the amplitude of
the wave orbital motion in the horizontal direction at the top of the bottom boundary
layer, and kpy is the Nikuradse roughness. Additionally, for fully developed, rough
turbulent flows (which occur most frequently in nature) the wave friction factor

becomes only a function of the relative bed roughness: f, = fu (%) Under that



regime a semi-empirical expression for f, is given by Jonsson (1966). Here we prefer
to use here the explicit, more commonly used, formula proposed by Swart (1974) as

an approximation to Jonsson’s formula:

Ly

0.194
fo = exp [5.213 (r) . 5.977} | (2.91)
‘N

As confirmed by measurements, this expression shows that an increase in the ampli-
tude of wave orbital motion ay causes a decrease in the friction factor f,, whereas
an increase in the roughness ky provokes an increase in f,,. Note that the above
expression was calibrated using values of ag from linear wave theory, although break-
ing and broken waves vary considerably from linear waves. Thus, for consistency we
use here ag predicted by linear theory:

H g 1
2 cw coshkh’

(2.92)

iy =

where k is the short-wave wavenumber, w is the angular short-wave frequency, and

w

7 is the wave celerity. The same applies to the wave particle velocity wuy:

C =

H w

E m = gwdy . (293)

Uy =

We can approximate the friction coefficient for the combined wave and current

flow as few =~ fu, with f, given by equation (2.91). The effect of the currents on fe,
can be accounted empirically by an increase in the bed roughness as the results of
Simons et al. (1992) (1996) suggest. The results of these authors also indicate that
the friction factor is well predicted by Swart’s formula (2.91) in the case of waves

alone or waves superimposed on a current motion crossing at right angles.

For current flow alone the Nikuradse roughness ky is usually related to the

bottom roughness zy by the relation

:IGN = 30 20 . (294)
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Table 2.1: Typical values of the bottom roughness z, for different bottom types
(adapted from Soulsby, 1983)

Bottom type 2z (cm)

Silt /sand 0.005
Sand (unrippled) 0.04
Sand (rippled) 0.6
Sand/gravel 0.03

The ratio of the apparent bottom roughness z, in the case of combined waves and
currents relative to the bottom roughness 2y for currents alone is found by Simons
et al. (1992) to be within the range

i< <00, (2.95)

20

The above expressions apply to a fixed bed. For a movable bed in the presence
of waves and currents flow You and Nielsen (1996) suggest to determine the bed
roughness as

kn = 30 2 (1 + “";’T‘”) . (2.96)
b

However, the use of this formula implies the knowledge a priori of V, which is an

unknown in our problem. Thus, we do not find convenient to use this expression.

The bottom roughness z, can be estimated from experimental data by fitting
a logarithmic velocity profile for the current U(z) = % In (ﬁ) to data. In Table 2.1
we present some values of z; extracted from a compilation of data given in Soulsby

(1983).
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Kamphuis (1975) found that ky can be well predicted by the bottom sediment

size for a fixed bed when no bed-forms are present by
kny = 2dy , (2.97)

where dyg is the grain sediment diameter exceeded by 10% by weight of the sample.
A similar formula, ky = 2dso where dsy is the median grain diameter, is found by
Cox et al. (1995) to give good agreement with estimated values of &£y using equation
(2.94). In conclusion, throughout the present work we will compute ky using both
relations (2.94) and (2.97), and estimate the friction factor f., using Swart’s formula,

(2.91) with the most reasonable result for ky.

All the formulas for f.,, kx and z; above are mostly based on laboratory data,
and hence a direct extrapolation to prototype conditions should be taken cautiously.
Thus, we will also take guidance from measured field values of 2y (e.g., Garcez Faria
et al., 1996b). Our results for f., are also consistent with the values calibrated
by best-fit of modeled and measured longshore currents under field conditions (e.g.,
Thornton and Guza, 1986; Church and Thornton, 1993; Smith et al., 1993; Thornton
et al., 1995; Whitford and Thornton, 1996), which fall within the approximate
interval 0.003 < f., < 0.03. Given such a wide range of f., values the estimates

for the bottom shear stress 72

(4

can vary by one order of magnitude for the same
wave and current velocities. Hence, a proper estimate of the friction factor and
the bottom shear stress is very important in the prediction of longshore currents.
Due to a significant variability of the hydrodynamic and morphologic conditions
in the nearshore region, it also appears desirable to use a variable bottom friction

coefficient in the computation of nearshore currents.

Here we assume that the time-averaged bottom shear stress 72 can be de-

termined from equation (2.90). The details of the derivation are omitted here for
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brevity and can be found in Svendsen and Putrevu (1990). It follows straightfor-
ward from introducing the separation of the total velocity u, into a wave u,, and a
current component V, (see equation (2.6)) into the definition for the bottom shear

stress (2.90). After time-averaging we obtain

1
T.f = 5 P fcw Uy (ﬁl er + ﬁ2 ‘U-()“) 3 (298)
where (; and f; are defined as
Vi\® . Wi e
B = l(—b) + 2L cos0 cosp + cos? 9] : (2.99)
() Uy
2 1/2
Bs = cosf [(E) + 2Euos6‘ COS j1 + cos? 9] , (2.100)
Uy Up

and @ is the short-wave phase angle, 6 = wt — [ k - d-;';, and g is the angle between
the short-wave direction (given by the wavenumber E) and the current velocity at
the bottom. These expressions can be simplified for the special cases of strong
currents, }:‘B‘ > 1, and weak currents, % < 1, both for currents parallel (1 = 0) and

orthogonal (2 = %) to the wave direction (Liu and Dalrymple, 1978).

2.4.3 Steady-streaming induced by the bottom boundary layer

So far we have disregarded the vertical velocity variation in the bottom
boundary layer. We impose a slip velocity at the top of the bottom boundary
layer and calculate the bottom shear stress from expression (2.98). Since we are
not interested in the details of the velocity in the bottom boundary layer and the
thickness of the this layer is much smaller than the water column depth, we essen-
tially assume the thickness to be zero and translate the calculated velocity Vj, at

that height to the bed surface.

Inside the surf zone the undertow vertical velocity profile is largely dominated

by the forcing caused by the imbalance between the local radiation stress gradient
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and the set-up gradient (as the data analysis by Stive and Wind, 1986 suggests).
Outside the surf-zone, however, that imbalance is much smaller and other small
terms may affect the time-averaged velocity profile. Thus, in the following we ac-
count for the Reynolds shear stress evaluated just outside the bottom boundary layer
associated with the second-order wave-induced bottom streaming (Longuet-Higgins,

1956).

As mentioned by Putrevu and Svendsen (1993), in the shoaling region and

P
Sl U

outside the bottom boundary layer the terms —5*

ac . ol
and g-a—é; in equation (2.35)
are equally important. Inside the bottom boundary layer, however, those two terms
can be neglected and the velocity profile is linear. At the upper limit of the boundary

layer the shear stress is determined by

T8 = — pUpa Wy . (2.101)

This shear stress is designated by bottom-induced “steady-streaming”. Longuet-
Higgins (1956) determined this stress for the motion of a viscous flow in the bottom
boundary layer forced by a free-surface oscillatory wave with near-bottom orbital
velocity amplitude uy. Assuming linear long wave theory Longuet-Higgins finds that

the second-order steady-streaming shear stress is (generalized to 2D-horizontal)

T{;S'B _ p'ﬂwu Upe /w;m . (2.102)
! &

In the above equation vy, represents the (constant) eddy-viscosity inside the bottom

boundary layer, which is given by Svendsen ef al. (1987) from the analysis of

experimental data as
. fHY? e
vy =~ 0.08 f2, (F) ;‘5 (2.103)

The inclusion of this shear stress corrects the bottom boundary condition
given by equation (2.43) which now reads
4] v
8V1(ﬁ) TS — T4C

= at = —Ng. .
Ep r itz h (2.104)
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Hence, the horizontal velocity distribution given by equation (2.47) or (2.50) is
modified accordingly. For such we need only to substitute the bottom shear stress
74 in those equations by 7 — 77

by

B, Hence, for example equation (2.50) is replaced

B SB B SB
Ty = fi Ty — T h Qwi
vO _ f8 0 T8~ T8, (S84 TE —T5 B *’ 2.105
18 2;/56 T a2 ¢ 614 ¥k Py 2 ¥ h » 2

which implies also the corresponding modification of the coefficients by , by and b

(and a; , ay and a3) given by equations (2.63)—(2.65).

As shown by Putrevu and Svendsen (1993) for the case of normal incident
waves, the inclusion of the steady-streaming effect into the model equations outside
the surf zone brings the model results in agreement with experimental data. Their
results also show that within a wide range of variation of the ratio %j-f the predicted
shape of the vertical velocity profile is a robust feature which has the same trend as

the observations.

As shown later, it is found in the present work that the effect of the steady-
streaming term outside the surf zone is much less important for obliquely refracting
incident waves than for normally incident waves (which was studied by Putrevu and
Svendsen, 1993). Nevertheless, the velocity profiles do exhibit the same trend as
data both inside and outside the surf zone, and we still find it important to include
the steady-streaming shear stress. Furthermore, it was found that the relative im-
portance of including 7°7 in the calculation of the velocity profiles outside the surf
zone is strongly dependent on the values of (),, and 1;: the smaller the values of any

of these two parameters, the larger the effect of the steady-streaming shear stress.



2.4.4 Short-wave quantities

As mentioned previously, in the present work we use linear wave theory to
describe the short-wave quantities as it is the only theory readily available for 2DH
general topographies, from deep to shallow water. Furthermore, we also limit our
study to sea-state conditions characterized by a single monochromatic wave, and
hence the time-averaged wave properties can be represented by such a periodic

wave.

At any given location in the nearshore region with water depth i the wave
field can be characterized by the wave period 7', the wave height H, and the angle
o, between the wave orthogonal and the shore normal. For a given period T and
incident wave height H, at a seaward location of the nearshore region of interest
we calculate the wave field at a shoreward location using an appropriate short-wave
propagation model. For most applications in this study we use the model REF/DIF1
(Kirby and Dalrymple, 1994), which is based on the parabolic approximation of the
mild-slope equation, and accounts for refraction, diffraction, shoaling and breaking
phenomena (see also Kirby and Dalrymple, 1983). Other wave propagation models
can be used as well, depending on the complexity of the bathymetry and degree
of approximation desired. The results from this model are used to calculate the

short-wave radiation stress S,g and wave-induced volume flux Qq.

A physical description of the current driving mechanism is given below. The
gradient of the radiation stress tensor is the driving force for the mean wave-induced
motion. This force consists of two components: a irrotational part which is unable
to generate non-zero depth-averaged currents and balances the pressure gradient;
and a rotational part due to non-conservative forces, which is proportional to the
wave energy dissipation rate. The latter contribution is hence the one that is able

to generate wave-induced nearshore currents (Longuet-Higgins, 1972). Dingemans



et al. (1987) suggest computing the driving force directly from the energy dissipa-
tion, arguing that the numerical computation of the radiation stresses derivatives
can introduce spurious numerical errors that would affect the wave-induced currents.
However, in the present work we found the numerical differentiation of S,z not to
lead to spurious errors as long as the numerical grid spacing resolves accurately the

breaking point.

Using definition (2.27) the radiation stress tensor can be evaluated for any

wave theory. It can be written generally as
Sap = pg Pop HA, (2.106)
where for linear sinusoidal waves P,z is given by

1
= 6 [(1 + G) eap + Gag] - (2.107)

In the equation above e,s and G are given by

2 cos? oy, + 1 2 8N vy, COS vy,

€Cap = ) y (2108)
28in (v, oSy, 2sin?ay, + 1
2kh
~ sinh2kh’ (10m)

For waves propagating over relatively small water depths (% < 1) the coefficient G

tends to unity.

Similarly, the wave volume flux, which is equivalent to the Stokes drift, is

given by

H? k.,
. (2.110)
& Kk

where k, is the wave number vector component in the direction z,, ko = k(cos vy, Sin av,,)

Qwa = BU

and By is a wave-shape parameter. For linear long waves B, is given by

Bo = I (2.111)
° T H? '

=
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For sinusoidal waves By = 0.125, but it is clearly shown in the data analysis by
Hansen (1990) that the actual value varies considerably from 0.125. For non-linear,
non-breaking waves it is found that By ~ 0.06, and for broken waves 0.06 < By <
0.1. It can also be shown that for a “sawtooth”-shaped wave, which is a good

approximation to a broken wave, By = 0.083.

For shallow water waves the wave celerity is given by ¢ = /¢h and the wave

volume flux can then be written as

H? —k,
Qwu = Bﬂ ? H}? T . (2112)

A generalization of this result is given by Svendsen (1984a), who adds an extra term
to (0 in the surf zone that accounts for the effect of the mass of water transported
shorewards by the roller riding on the front of a broken wave. Hence, an extended

expression for the wave volume flux in shallow water reads

Qe = Pf—: gh (BU - % %) %, (2.113)
where A represents the area of the roller in the vertical projection. Okayasu et al.
(1986) found that A can be approximately expressed by 0.06 H L. A similar adjust-
ment, however, could be performed in the wave radiation stresses, but more research
is needed in this subject which requires a detailed analysis of the momentum and
energy transfers from the wave motion to the roller motion. As an example, Svend-

sen and Putrevu (1993) show that the radiation stresses in the surf-zone differ quite

considerably from the values given by sinusoidal wave theory.

Last, it should be noted that Putrevu and Svendsen (1992a) express the
dispersion coefficient in function of (), for a simple vertical current profile. Rakha
and Kamphuis (1997) find that the effect of the momentum dispersion due to the
vertical variation of the currents is very sensitive to the value of the short-wave

volume flux @,,. Hence it is relevant to estimate properly the value of @),.
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2.4.5 Wind-induced surface shear stress

On shallow oceans, seas and estuaries the wind shear stress can produce a
surface drift of the order of 3% or 4% of the mean wind speed measured at a height
of 10 m above the sea-surface (Banner and Phillips, 1974). The wind exerts a drag
force on the water surface that is mainly balanced by the surface pressure gradient
and bottom shear stress. The wind-induced currents are hence depth-varying with
the surface velocity larger than the bottom velocity and flowing in the direction
of the wind shear stress (neglecting the action of the Coriolis acceleration). In the
nearshore region, however, the wind-induced currents are usually much smaller than
the short-wave induced currents. Outside the surf region the wave forcing is zero,
and hence the wind stress becomes an important force able to produce currents,

although these currents are usually not locally generated.

The wind-induced surface shear stress is usually computed as (e.g., Church

and Thornton, 1993; Smith et al., 1993)
T(: = CD Pa |W| Wu 3 (2114)

where Cp is the drag coeflicient, p, is the air density, and W is the wind velocity at
the standard 10 m elevation. The wind drag coefficient Cp is calculated from the

formula recommended by the WAMDI Group (1988):

128755 1072, U < 7.5m/s
CD =2 (2115)
(0.8 + 0.065U) x 10~*, U > 7.5m/s.

Later, in chapter 6, the wind shear stress is taken into account for the direct com-
; I )

parison of modeled longshore currents versus measured in the field. It is found that
the inclusion of the wind stress brings the model results in slightly closer agreement

with data than without that effect.

oy §
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2.4.6 Tidal effects

The influence of tides on the nearshore currents have been neglected in most
studies. In the absence of wind and waves, astronomical tidal currents would be the
only acting currents in the nearshore zone. However, due to the continuous existence
of waves it is difficult in a typical nearshore environment to isolate the tidally forced
currents from the currents forced by other mechanisms. In open coastal regions
the tidal currents are much smaller than those observed close to embayments and
harbors, where the tidal currents can be as strong as the wave induced currents and

thus need to be accounted for properly.

In the present work we are interested in simulating the time-varying currents
in a region small enough such that the Coriolis acceleration can be neglected, and the
tidal currents are locally spatially constant. We also focus the model applications
on open coastal regions. Hence the effect of the barotropic tides is not automati-
cally accounted for in the present model equations and has to be forced through the
boundary conditions. The application of the simplified model of Clarke and Battisti
(1981) for the semi-diurnal tidal component in the Mid-Atlantic continental shelf
suggests that the longshore and the cross-shore coastal currents are of O(0.1 A) and
0(0.15 A), respectively, where A is the tidal amplitude. The longshore velocity is
found to be in phase with the tidal elevation and the cross-shore current in quadra-
ture. We note that these conclusions result from a simple barotropic model, and

were verified only for distances off the coast of O(10 Km).

Recently, Thornton and Kim (1993) and Feddersen et al. (1996) showed
clearly that in the field conditions observed at Duck, NC, the longshore currents
are strongly correlated with the tidal elevation. This correlation results from the
direct rise and fall of the sea level due to the semi-diurnal tidal oscillation, which

increases and decreases the water depths, and hence changes the local distribution



of the wave heights and consequently the nearshore currents. The phase dependence
of the wave heights and longshore currents on the tidal elevation is dependent on

the beach profile.

Based on these studies, we conclude that it is sufficient in the present model
applications to include only the local tidal elevation. The shelf tidal currents esti-
mated from the model of Clarke and Battisti (1981) yield values of O(5 cms™') which

are much smaller than the currents usually observed in the surf zone of O(1ms™1).



Chapter 3

NUMERICAL METHOD FOR SOLVING THE
GOVERNING EQUATIONS

Any numerical model encompasses the following steps: grid definition, do-
main discretization, application of a procedure to obtain a system of algebraic equa-
tions from the initial partial differential equations (p.d.e), and solution of the system
of equations. To convert the governing p.d.e. to a system of algebraic equations
the most common methods are: (i) finite differences, (ii) (Galerkin) finite elements,
and (iii) spectral methods. Any of these methods can be applied to our system of
governing equations (2.71)—(2.72), with both advantages and disadvantages. Due
to its simplicity and ease of interpretation we adopted here the use of finite differ-
ence methods to seek a numerical solution for those equations. The models using
finite difference methods are also traditionally computationally faster than those
with finite elements or spectral methods, which turns out to be an important factor
when performing simulations over time periods as large as 1000 times the short-wave

period.

In this chapter we will describe the numerical modeling scheme used to
solve the governing equations. We present the relevant details of the numerical
model SHORECIRC, which solves the depth and time-averaged equations of mo-
tion (2.71)—(2.72), described in the previous chapter. This model computes the

values of the time-averaged free-surface elevation ((z,y,t), and the wave-averaged
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velocity V,(z,vy, z,t) over an initially defined space, designated by model domain.
A previous version of this model is given in detail by Van Dongeren and Svendsen
(1997b). Here we present an updated version of that model, which includes a more

accurate numerical scheme,

The vertical variation of the horizontal currents is computed exactly analyt-
ically by equation (2.47). Thus, we need only to seek a numerical solution for the
flow variables in the 2D-horizontal space (z,y). Thus, the model equations (2.71)—
(2.72) are discretized on a fixed orthogonal grid (Fig. 3.1), where ¢, Q, and @, are
computed at each gridline intersection. Other flow variables, such as h,, are evalu-
ated at those same locations. The grid spacings in the = and y-directions, Az and
Ay respectively, are constant over the domain. Each grid position in the z-direction
is designated by 4, such that z = (i — 1)Az, and ¢ = 1,...,n,, where n, is the
total discretized number of points in the z—direction. Similarly, each grid location
in the y-direction is written as j, such that y = (j — 1)Ay, and j = 1,...,n,. The
temporal spacing At corresponds to the time interval between two consequent, time

instants t" of the discretized time domain, At = ¢+l — ¢»,

3.1 Finite difference equations

The partial derivatives in the differential governing equations are approxi-
mated by finite differences. The order of approximation of the partial derivatives in
the governing equations gives then the order of the finite difference scheme. This or-
der of approximation is given by the order of the remainder term in the Taylor series
expansion of the finite difference approximation to the partial derivative (Hoffman,
1992). Higher-order schemes, although computationally more intensive, have the
advantage of allowing for larger spatial and temporal spacings than the lower-order

schemes. For the same grid and temporal spacing, though, a lower-order scheme is
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Figure 3.1: Grid definition.

faster than a higher-order scheme. Hence, the choice of the finite difference scheme
and the grid spacings depends on both the requirement for the accuracy and the

computational performance.

Several finite difference approximations are easily found in textbooks (e.g.,
Hoffman, 1992). Since we have both time and spatial derivatives we can approximate
these by different orders if desired. We found that the second-order spatial scheme
used by Van Dongeren and Svendsen (1997b) was not accurate enough for some
applications studied here for a reasonable compromise between the total number of
grid points and the grid spacing. Similarly, we found a third-order time-derivative
scheme to be a good compromise between computational performance and accu-

racy. Hence, in the present version of the model SHORECIRC! the following finite

I Note that the version presented here is of higher order of accuracy than that
given by Van Dongeren and Svendsen (1997b).
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difference schemes are used:

e A third-order (O(A#*)) Adams-Bashforth predictor method in combination
with a O(At*) Adams-Bashforth-Moulton corrector method for the time deriva-

tives (Hoffman, 1992).

e Central spatial derivatives of O(Az?) and O(Ay*) in the z and y-directions,

respectively.

These finite difference schemes are then applied to the model equations (2.71)-(2.72).

To illustrate the procedure both of those equations can be symbolically written as

oE

where the time derivative was kept in the LHS and all the other terms of any of the
governing equations were put in the RHS. In equation (3.1) E is the vector quantity
given by E = [(, Q,, @Q,]" and F is the vector corresponding to the RHS of the

continuity and momentum equations (2.71)—(2.72).

In the predictor step, equation (3.1) is hence approximated by the Adams-

Bashforth scheme
E!; = B, + Atag (0 F}; + o FI5' + o3 FI5%) + O(AFY),  (3.2)
where
ap=1/12, oy =23, ap=-16, az3="5 . (3.3)
This equation yields the values of E = [, Q., @, ]" at the time level n + 1 (des-

ignated in the predictor step by %) for known values of ¢, Q., Qy and the function

F at previous time levels, for all the grid points ¢, j.

Similarly, at the corrector step the Adams-Bashforth-Moulton method reads
Efft = B + Athy (BiFY + BFE + FYY) + 0(A8),  (34)
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where
![50:1/121 [31:51 {3'2:81 ,6'3:_1 & (35)

In equation (3.4) we make use of the computed values of F at the time level ¥ = n+1
from the values of E*. We see then that an explicit method is used at the predictor
level and an semi-implicit method is used at the corrector step. The corrector step
could be applied several times consecutively until an error criterion was satisfied.
However, we found that satisfactory precision is obtained by applying the corrector

step only once.

Representing a general variable in the 2-dimensional space (z,y) by f, then

the forth-order centered-difference partial derivatives are given by

of _ Jicag — 8fic1y + 8Ly — firzy A :
ox| . 12 Az i (3:6)
of| _ fij—2 — 8fij—1 + 8 fiju1 — fijez 4

A - = o). @67

These difference formulas are used to approximate the spatial partial derivatives in
the governing equations (2.71)-(2.72). For simplicity of writing we combine the two

partial derivatives into the expression

af ) |
0Ly AT

k

V-2 fr—a + Vo1 fee1 + T frr + Y2 freo] + O(AzE),  (3.8)

where k represents the sub-indexes ¢ or j for the partial derivatives in the z or

y-directions, respectively, and

§=1/12, y5=1, 7.1=-8, 1 =8, p=—1. (3.9)

These finite difference equations are applied to all the interior points of the
2DH model domain. The computational molecule corresponding to the finite differ-
ence scheme is shown in Fig. 3.2. The flow variables (, @), and @), are computed at

each grid point. At the boundaries, a different scheme has to be used because the
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Figure 3.2: Computational molecule of the predictor-corrector O(A#?, Az*, Ay?)
scheme of SHORECIRC.

scheme (3.8) is spatially centered. An account of the finite differences scheme used

at the boundary points is given later.

In the following section we analyze the stability criterion for the combined
O(A#, Azt Ay*, AtAz?, AtAy*) scheme used here. We suffice to say that the
present scheme is consistent, i.e. the difference between the partial differential equa-
tions and the finite difference equations vanishes as the spatial and temporal grid
spacings go to zero. Furthermore, the finite difference approximation is convergent

within the limits of stability given next.

3.2 Stability analysis

We presented in the previous section the basic difference formulas that we
use to build a finite difference approximation of the governing equations. Since these

are only an approximation to the analytic equations we must find the limiting grid
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spacings that produce a bounded solution for a set of conditions that we know to
produce physically bounded solutions (which correspond to the exact solution of
the governing equations). Stability analyses can only be performed for systems of
linear p.d.e’s, though the stability criterion obtained that way is usually also valid
for the nonlinear system of equations (Hoffman, 1992). Hence we will linearize our
governing equations and the respective finite difference equations. It can also be
seen in Van Dongeren and Svendsen (1997b) that the forcing terms of the governing
equations do not affect the stability analysis and hence we disregard them for this

purpose.

We apply here the same procedure as that presented by Van Dongeren and
Svendsen for the second-order spatial derivatives scheme. Furthermore, we extend
the stability analysis to the two-dimensional problem as suggested by Lapidus and
Pinder (1982). It turns out that the conclusions for the 2D problem can be inter-

preted as a geometrical extension of the 1D problem.

To abbreviate the algebra, we present only the main steps of the analysis.

Hence, we consider the governing equations

a¢ 0Qq

% = "’ (3.10)
0Qa _ ¢
5 = - Bo 9. (3.11)

Using the difference equation (3.2) for the predictor step the governing equations

can then be written as

" e BQQ n 6(éﬂ n—1 aQ& n—2
Gy = G — Oleg (ﬂl 5z, L + ay Bz, " + a3 D ’ , (3.12)
_a * ,  — Qa T,l.
1,7 7
86 n aé: n—1 OC n—2
= Nt aggho (m 3_3‘“ ” + g 6.’6{_,, " + oy 3.’120 i ) § (313)
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where we left the spatial derivatives in differential form for facility of reading. We
then apply the difference formulas (3.6)-(3.7) onto those partial derivatives and

obtain the finite difference equations for the predictor step.

In the corrector step we apply (3.4) to the governing equations which yields

. : 0Qu [ Q" . . Q"
ntl _ n _
Cig iy — At G ([31 D 5 + o B ;‘j+ Je Dz . , (3.14)
o~ [l = |n
Qa . e Qa e
i, i,
BC_ * ac— n aC—_ n—1
— At 509% (ﬁl -+ 52 . + ﬁ3 . ] (315)
0%al; ; O%al; ; Oz ;

where, once again, we kept the partial derivatives in differential form.

The finite difference equations for the predictor and corrector steps together
can be evaluated by inserting equations (3.12)—(3.13) into equations (3.14)—(3.15),
with the spatial finite differences already included too. The derivation is straight-
forward, but leads to lengthy equations that for reasons of space we do not present
here. The procedure is similar for all the governing equations and in Appendix A

we present the detailed derivation for the continuity equation as an example.

To determine the stability conditions of the our finite difference approxima-
tion we follow the von Neumann method (see, e.g. Hoffman, 1992). The numerical
solution of the finite difference equations is equal to the exact solution of the same

equations plus an error due to the numerical computation:

Chi = C_Eli,j + g s (3.16)
— T . AR n n
Qa|,, = Qal,;t ¢y, (3.17)

where the superscript £ is used for the exact solution, and 7 and ¢ are the errors at

each grid point 4, j and time level n. If the errors grow unbounded then the solution
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is unstable, otherwise it is stable. These errors can be represented by Fourier series
and because of linearity we only need to consider a general component of the Fourier

series representation:

il = ggelmthR-unan (3.18)
Galty = Qg TmTrthiy—weny) (3.19)

where z; = (2 — 1)Az and y; = (j — 1)Ay and I = /—1. For convenience we also

define the spatial phase functions
b =1knAz, 0, = Ik, Ay, (3.20)
and the Courant numbers
V=0 % ) Vg = Co ﬁ—; ) (3-21)
where ¢y = /gho.

We then introduce the Taylor series components of the errors 7;'; and qa|z’:j
at each grid location into the predictor-corrector equations satisfied by the errors.

The final set of equations can then be rewritten in matrix form as

"t = G2, (3.22)

where
Zn—H - [nu+1 , q:.+1 ’ q;,—}—l , n-n., f}: , q;z’ nﬂ.—l ; q:—l 1 q;l—l ]T ; (323)
¥ = [ Cal 5 S & ST . B
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The matrix G is called the amplification matrix, which is given by

(!111 912 913 914 915 916 g1z 0 0O \

g1 922 923 Y24 Y25 Y26 O gz g2

931 932 933 931 93 gz O gas g3

1 0 0 0 0 0 0 0 0

G = o 1 0 O 0 0 0 0 0 ) (3.25)

O o 1 o0 0 0 0 0 0

o o o0 1 0 0 0 0 0

o o o o 1 0 0 0 0
\ 0 0 0 0 0 1 0 0 0 )

where the coefficients g;; are given in Appendix B.

For an arbitrary Fourier component of the error to remain bounded in succes-

sive iterations we require

G|| < 1. This condition is satisfied if all the eigenvalues

A (p=1,...,9) of the amplification matrix G are bounded by unity:
Ml <1, (3.26)

Hence we determine the eigenvalues of the amplification matrix and check the mag-
nitude of their absolute value. As mentioned previously, a similar analysis was
presented by Van Dongeren and Svendsen (1997b) for a second-order spatial scheme
and in the 1D space, which had two free parameters in the amplification matrix:
vy and k,, Az. The present problem has four free parameters, v, k,, Az, vy and
k,, Ay, because of the addition of another spatial dimension. This makes the graphi-
cal representation of the values of |\,| more difficult. We choose therefore to present
first the results for the simplified 1D problem, which comes out trivially from the

amplification matrix (3.25) by setting the coefficients that multiply ¢, to zero.

The absolute value of the six resultant non-zero eigenvalues is shown in

Fig. 3.3. All eigenvalues satisfy the stability criterion for all Courant numbers and
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wave modes, except the eigenvalues A\; and Ay, which have identical behavior. The
stability limit of these two eigenvalues is best seen in Fig. 3.4, where we plot ||
versus v, for several wave numbers k,, Az. From this figure we estimate the stability
criterion

At
V1 = Cp E < 0.85. (327)

which corresponds to the least stable wave, with wave number k,, Az = . It should
be noticed that the same criterion would apply if considering the problem in the
spatial dimension ¥ instead of z as considered here, by replacing v, with vy and

kn Az by k, Ay.

For the 2D problem we must determine nine eigenvalues which are determined
numerically. As mentioned above a difficulty arises to show the stability limits given
the four degrees of freedom of |A,|. However, using the results of the 1D problem
we find that the least stable wave numbers are k,, Az = k, Ay = 7. Hence, we
fix k,, Az = k, Ay = % and find the surfaces corresponding to |\,| = f(rv1,12). A
perspective view of these surfaces for the nine eigenvalues is shown in Fig. 3.5. Once
again, the absolute value of the eigenvalues A\; and A, are equal, and they are the
only ones that exceed unity. For the first of these eigenvalues, we show in Fig. 3.6
the contour plot of |\;|, where only the contours corresponding to |[A\;| < 1 are
drawn. As expected by geometrical reasons, the stability limit is a circle of radius

C, < 0.85, where C, is the Courant number given by C, = y/v? + 2. Hence, the

stability criterion can be written as

Az + Ay
Cr=cAt ———— < 0.85. 3.28
‘ Az Ay - ( )
It should be noted that the stability criterion just derived is applicable only

for the interior points of the domain where each of the flow variables is calculated

from the discretized governing equations. At the 2DH domain boundaries we apply
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[Asl; (£) [As].
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Figure 3.4: Variation of the absolute eigenvalue || versus the Courant number
v, for several values of k,, Ax.

boundary conditions of the Dirichlet or von Neumman type, or a combination of
the two, as presented in the next section. Also, at the boundary points, and at the
points immediately adjacent to those, we apply a different set of finite difference
formulas for the spatial derivatives. For consistency of the order of the scheme, a
fourth-order skewed (non-centered) scheme should be applied at those points. How-
ever, we found that the use of a lower-order O(Az?, Ay?) scheme did not decrease
significantly the overall accuracy of the scheme, but it improved the stability range
of the model compared to that obtained by using fourth-order spatial derivatives at

the boundaries.

3.3 Boundary conditions

The SHORECIRC model can be applied to a variety of different physical
situations, such as the study of long waves in a flume, infragravity waves in a
laboratory basin (Van Dongeren et al., 1996), or nearshore currents under field
conditions (Sancho et al., 1996). Each of these different situations requires that we

specify the boundary conditions at the domain limits and also that we set the initial
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Figure 3.6: Variation of the absolute eigenvalue |A,| versus the Courant numbers
v, and v, for fixed wave numbers k,, Az, k, Ay.

condition. That is required because of the nature of the governing equations, which

are of hyperbolic type, and hence we have an initial and boundary value problem.

In the present work we address mostly the study of nearshore currents under
various conditions corresponding to a nearly long straight coast, using the topog-
raphy at Duck, NC, for example. The model domain is thus a stretch of a coast
with open boundaries at the cross-shore and seaward domain limits. The shoreward
boundary is placed either over dry land, allowing thus for a moving shoreline, or
is positioned fixed at a small water depth where a zero flux Dirichlet condition is

applied.

Seaward boundary
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At the seaward boundary we apply a generating-absorbing boundary condi-
tion developed by Van Dongeren and Svendsen (1997a). This condition makes use
of the governing equations described in characteristic form. It allows a prescription
of an incoming (plane) long wave along the boundary and allows the outgoing waves
to leave the domain with minimum reflection. The outgoing wave is calculated us-
ing the Method of Characteristics and substituting the linear long wave relationship

between the velocity and the surface elevation @ = ¢ (.

The boundary condition above applies to incoming and outgoing (long) waves.
For steady or unsteady currents that do not satisfy the long wave relation @ = ¢(
we must specify the currents at the boundary. This is because the problem is
of elliptic nature and thus requires the knowledge of the currents at the domain
boundaries. Since for most applications we know little about the currents at the
seaward boundary, as well as outside the model domain, we let them be zero at
that boundary. For that reason we also place the seaward boundary reasonably
far away from the surf zone region where the currents are the strongest. Based
on several computations it is recommended to locate the seaward boundary at a

distance [, > 3 z; from the shoreline, where z; is the surf zone width.

Cross-shore boundaries

The cross-shore boundaries of the physical domain are most often also open
and limit the longshore domain of the coast in study. Due to the elliptical nature
of the problem the currents should be specified at those boundaries as well. For the
study of currents in a wave basin it is possible to specify a no flux condition or the
currents measured by the recirculation system. On an open coast we need to know

the nature of those currents, especially at the upstream section. At the downstream
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%%1 = 0, could be used, but

section, a von Neumann boundary condition, such as
we need to know the main direction of the flow a priori. This condition means that
there is no longshore variation of the longshore current at the boundary, which is

an approximation.

To overcome the problem of specifying the currents at the lateral boundaries
on an open coast, and not knowing a prior: the main direction of the flow, the
domain is assumed longshore periodic so that the flow variables at one end (y = 0)

equal those at the other end (y = [,) in the longshore direction. That means

C_(I! U) == C_(:L': ‘Ey) ) (329)
Qal(z,0) = Qulz,ly). (3.30)
At the lateral boundaries, where the periodicity condition is used, we also apply the

partial derivative 3% across the boundary using the centered space scheme (3.7) and

the grid points at the other end of the domain.

In some of the examples shown later we specify the value of the currents
at the cross-shore boundaries, disregarding the assumption of longshore periodicity.
However, in order to have a global mass balance inside the model domain the total
volume flux of the upstream current must be equal to that of the downstream

current.

Shoreward boundary

At the landward boundary we apply the moving shoreline boundary condi-
tion given by Van Dongeren and Svendsen (1997b). This condition simulates the
inundation and drainage of the land as the mean water level moves up and down due

to long wave motions. This procedure does not account for the swash zone motion
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of the short waves though (Brocchini and Peregrine, 1996).

The moving shoreline method of Van Dongeren and Svendsen (1997b) essen-
tially accounts for the mass balance of water between the “wet” point closer to the
shoreline (designated here by last “wet” point) and the shoreline itself, and con-
siders a control volume around that “wet” node. At each time-step, the volume of
water stored between the last “wet” point and the extrapolated shoreline position
is calculated. This volume of water is added or subtracted by the amount of water
that enters or leaves the control volume. This additional volume flux increases or
decreases the free-surface elevation at the last “wet” node, and hence we determine
the new shoreline position by the intersection of the bottom surface with the surface
given by free-surface gradient determined at the last “wet” point and previous time
level. The position of the shoreline at the new time level will then control whether
other grid points get “wet” or “dry”. For details of the method see the reference
above. Finally, it should be noted that the model domain limit is actually located
landward of the maximum high water mark (the position of the maximum run-up)

and the flow variables are set to zero at those locations, which are “dry”.

A second type of shoreward boundary condition is often used throughout this
work. We set a fixed shoreline at a small water depth (typically of the order of 5 cm)

and prescribe a no-flux condition at that boundary:

Qu(leyy) =0, (3.31)

where 2 = [, is the shoreline location. For the longshore velocity V' (or the longshore
volume flux Qy) we specify Q,J(.!m, y) = 0 as well. This condition is an approximation
because at this boundary there could be a slip velocity. The specification of the
correct longshore current at this landward boundary would require knowledge of

the swash zone motion though, and it should include the contribution of the mass



and momentum fluxes due to this motion (Brocchini, 1996). In the present work,

however, we do not address this contribution.

Last, Ozkan-Haller and Kirby (1997) find that for the prediction of shear
instabilities of the longshore currents the use of a moving shoreline gives very simi-
lar results to those of having a fixed shoreline with the no flux boundary condition
(3.31). This means that the effect of the shoreline runup and rundown of the mean
flow properties away from the shoreline is negligible, and thus it is a good approxi-

mation to use (3.31).

Initial condition

As seen before, the governing equations (2.71)—(2.72) are time-dependent and
can describe time-varying phenomena (in a time scale much longer than that of the
short wave period). The SHORECIRC model gives time series of the dependent
variables for the period of simulation desired. Hence we can in principle describe
non-steady sea states, such as the evolution of a calm flow field (where the currents
are nearly zero) to a current condition correspondent to highly energetic waves (cold
start). This, however, would require the knowledge of the sea-state conditions aft

every moment in order calculate a time-varying wave forcing.

Instead, in the applications presented herein we consider a stationary wave
field for the period of time of the duration of the simulation. This simplification is
due to the present unavailability of a time-varying wave model to provide the wave
forcing in a general situation, and thus the use of a monochromatic wave model
(REFDIF) in our simulations. For most applications we use a single periodic wave
train, or the linear superposition of several sinusoidal waves, and compute the steady

short-wave induced forcing caused by that wave field.
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In order apply the numerical model we must start from an initial state. That
can, in principle, be any arbitrary state — the steady wave forcing will then cause
the flow to accelerate and adjust until it reaches an equilibrium between the driving
forces, the dissipative forces, and the flow accelerations. In a steady state solution
the local acceleration is zero, and in a global perspective of the nearshore region as

a whole the bottom friction over this region equals the total short-wave forcing.

In practice, the numerical solution of the equations of motion can diverge
from the physical solution if the initial condition is not well-behaved. The modeling
of a sudden impulse force on a body of water can cause accelerations that are so
large that numerical instabilities develop due to the nonlinear terms. Hence, to

avoid this type of problems we choose the initial condition:

¢ =i, = y=10 (3.32)

for every point in the model domain. We designate this condition as a “cold start”.
The wave forcing is also set equal to zero at the start of the computation, and then
is increased at a chosen rate until it reaches the representative value of steady wave
field we want to simulate. This “ramping” of the wave forcing induces a transient
motion in a form of a long wave that is absorbed at the seaward boundary by the
absorbing-generating boundary condition. After that transient propagates out of

the model domain the flow field approaches the conditions we want to model.

3.4 Numerical instabilities

The stability analysis in section 3.2 indicated a limiting Courant number
for which the numerical solution of the finite difference equations would be stable.
That limit was calculated from the linearized mass and momentum equations, and

assumes the governing equations to have a bounded solution. The last assumption

7



is, however, not valid if instead of considering the linear equations we model the non-
linear long wave equations (unforced and frictionless). These equations are known
to not have a permanent form solution as the waves will steepen and pitch forward
progressively as they advance in space. The forward pitching will eventually pass
the vertical position and at this stage the free-surface elevation is multivalued and

a single-valued solution no longer exists.

Due to the nonlinearity, high frequency harmonics are generated with the
steepening of the waves and become progressively more energetic. The high fre-
quency waves have a short wave length that could physically be smaller than the
Nyquist frequency associated with the spatial discretization. This situation poses
numerical difficulties and the numerical solution can become unstable as energy is
transferred into the high frequency waves. However, waves shorter than 2Axz or
(2Ay in the y-direction) can not be resolved by the grid system, but such waves can
be generated by physical (nonlinearities) or numerical (roundoff and truncation)
mechanisms. Since these waves can not be resolved numerically, their energy will
appear at longer wavelengths by aliasing (Shapiro, 1970). This process will transfer
energy that should not be transferred from high-frequency waves to low-frequency
waves. It is thus important to reduce the amplitude of the high-frequency spurious

waves, so that their energy is not moved back to the low-frequency components.

To prevent the growth of high-frequency waves we apply a numerical filter
that removes ideally only the shortest resolvable wave component. The details of
the numerical filter are given by Shapiro (1970) and we employ here that technique
to the computed values of ¢ and @, at every certain number of time-steps. The filter
presented by that author is considered a “quasi-ideal” low-pass filter as it removes
the 2Az wavelength components leaving at the same time the other wavelengths

almost unfiltered. If that were not accomplished then the successive applications of
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the numerical smoother would remove energy from unwanted physical wavelengths.

In brief, the filtered (smoothed) general variable Z is related to the original

unsmoothed variable Z by the response function p:

p=3 (3:33)

The “ideal” response function p is given for the 1D problem by (Shapiro, 1970):

; A:
p(\n)=1-—sin*" (?T T) ¢

: (3.34)

where A is the spatial wavelength of a sinusoidal component of Z, and n is the order
of the filter. The higher the order n, the closer p approaches unity for wavelengths
other then A = 2 Az; for this wavelength the response function is zero as desired.
The response function for the 2D problem is the product of the individual response

functions for each direction given by (3.34).

It should be noted that we do not find it necessary to apply the numerical
filter for every type of physical problem presented here. Hence, given any physical
problem simulated herein, we have attempted a simulation without the numerical
smoother and we redo the simulation applying the filter only if instabilities arise.
As a result of several tests, for the most unstable situations, we find it convenient
to apply the 16th-element filter operator (n = 8) in the cross-shore direction for the
Q, and Qy variables at every time-step. For the free-surface elevation ¢ we apply
the same filter only at every 10 time-steps. Since the gradients in the longshore
direction are usually smaller than the gradients in the cross-shore direction, we use
a lower-order filter (8th-element operator, n = 4) in the longshore direction. In this
direction we apply the smoother for ), and Qy at every time-step, and for ¢ at
every 10 time-steps. For more stable simulations we apply the 16th-element filter
in the z-direction, and the 8th-element filter in the y-direction, but less frequently

than stated above.
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Chapter 4

A SIMPLIFIED MODEL FOR CURRENTS OVER
WEAKLY LONGSHORE NONUNIFORM
TOPOGRAPHIES

On a longshore nonuniform beach the current patterns can be very compli-
cated due to nonuniformities of the topography and wave conditions, and larger scale
variations of the forcing mechanisms. The dominating flow is usually a longshore
current and various simplifying situations have been considered for the prediction
of such currents. The first longshore current models (shortciteNPBowen69,LH70a,
1970a; Thornton, 1970) assumed a longshore uniform bathymetry and a steady,
depth-uniform distribution of the longshore currents. The currents were a result
of a balance between the wave radiation stress, the bottom friction and turbulent
mixing. Later studies by Putrevu and Svendsen (1992a) and Svendsen and Putrevu
(1994) concluded that the nonlinear interaction between depth-varying cross- and
longshore currents causes a dispersive mixing effect, which largely dominates the
turbulent lateral mixing in the nearshore region. More recently, Kobayashi et al.
(1997) confirmed that the dispersive mixing is significant for regular waves, but they

also found it to be secondary for irregular waves.

A second class of longshore current models relaxed the assumption of long-

shore uniform topography. Mei and Liu (1977) considered normally-incident waves
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breaking on a bottom topography that varied weakly in the longshore direction and
analyzed the effect of those longshore bottom variations on the nearshore circula-
tion. An extension of that work was given by Wu and Liu (1984), who considered, at
second-order, the effects of the nonlinear inertial terms (the convective accelerations)
and studied waves incident at an oblique angle. Those authors found the effects of
the nonlinear convective terms to grow with increasing amplitude and angle of the

incident wave.

The work by Putrevu et al. (1995), (referred to as POS from here on) is
an extension of the work of Mei and Liu (1977). POS proposed a simple model
accounting for the terms analyzed by Mei and Liu (1977) — the wave forcing, the
bottom friction and the longshore pressure gradient — plus the effect of dispersive
mixing mentioned above. They also considered obliquely-incident waves and in their
examples it is shown that, for a weak longshore bottom variation and small angles
of incidence, the longshore pressure gradient becomes important and contributes
significantly to the forcing of the longshore currents. For larger angles of incidence,
however, the contribution of the longshore pressure gradient diminishes relative
to the wave radiation stress. Using the model equations of POS Reniers el al
(1995) also find that including the longshore pressure gradient, due to local longshore

bottom variations, greatly improves their model results agreement with field data.

In an example application of the SHORECIRC model (described in the pre-
vious section) for depth-uniform currents, Sancho et al. (1995) predicted that in
a barred beach with a rip-channel the longshore pressure gradient forcing is of the
same magnitude as the longshore radiation stress forcing. A similar situation had
been predicted in the simplified model for rip-currents given by Dalrymple (1978).
Further investigation of the longshore currents over a barred beach, and the role of

the pressure gradient will be pursued here.
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We analyze in detail the range of validity of the assumptions in POS by com-
paring the results from their semi-analytical solution with the results of SHORE-
CIRC. Two specific beach configurations are used to illustrate the accuracy and
limitations of the POS model. One is a plane beach with a longshore sinusoidal
modulation, and the other a barred beach with a variation in the bar height sim-
ulating a rip-channel. We also make use of the model SHORECIRC as a tool to
evaluate the importance of each term in the governing equations and assist us in
the understanding of their contribution to the nearshore flow. We find that, in the
cross-shore and longshore momentum equations for nearshore circulation, in general
the leading order terms are of different orders of magnitude and a new extension of
the POS model is presented here, which consistently includes all terms of the same

order.

4.1 Model equations

In the following we will nondimensionalize the governing equations (2.25)
and (2.28), prior to the coupling between the depth-varying and depth-integrated
equations, written in terms of the current velocities. For completeness, we rewrite

those equations explicitly in the z- and y-directions as

o o[ o (¢ :
% T 5 ( g P Q‘“") Ty (f_hﬂ e Q"”‘) =0

o (¢ 8 (T o ]
= ( [, vdz) + 5 ( [ UVdz + UQ)Quy + V() Q)
..l..

'R T 7
ox (/_hn U*dz + 3U(C)Qm) +9(ho+Q) 52

1 (0S;:  0Sys 10 (¢ 1B a8
= — ”:a', £ T — § 4.2
+p( 5z | oz ) + p Oy (,/—no v z) i p v (42)

7] ¢ & . “
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It is useful to first rederive the solution of POS while clarifying the assump-
tions for the benefit of the later discussion. For simplicity, the following assumptions

are introduced:

1) the flow is considered steady;
2) turbulent and surface shear stresses are neglected;

3) waves are assumed to approach the coast at a small angle oy, with the shore

normal, such that sin«a;, < 1 and cos ay =~ 1;

4) refraction is neglected in the wave height estimates due to assumption 3);

on
—

short-wave related quantities are determined by linear long wave theory.

The POS model is based on a set of nondimensional variables. We follow the
nomenclature of POS everywhere, except when otherwise noted. Thus, the following

nondimensional variables are introduced:

:
r = 'L-;,
y = -,

L?J
= 2
h.bj
v = 2L,
HCy
v ¥
K Cy



C‘I} wr

!
Qwa: - ,U. C hb 1
QJ‘ . wa
WY sinagephy
! TiB
T, 2 —0t—py
p fw b Cj
T; = Tf 7
p fwkcy
- &
C - n hb H
S = —S“'T*'
e pucthy’
S Say
W pusineg e hy’
S = 2
p ey hy

In the above we have not only chosen the nondimensionalization to try to
make all quantities @(1), but we have also chosen it to capture some relevant pa-
rameters: Ly, Ly, p1, £ and the characteristic water depth, hy, wave celerity, ¢;, and
wave angle sin oy, at the breaking point. Furthermore, note that we divided similar
variables such as @, and @, by different quantities, in order to accommodate
for waves approaching the coast with a small angle of incidence (sinc;, < 1 and

cos oy, =~ 1). Finally, we introduce f, as the bottom friction coefficient.

The scalars L, and L, are length scales that characterize the topographical
variations in the z and y directions, respectively. For a bottom topography that
varies weakly in the longshore direction we assume that %ﬂ < 1, and for a longshore

.)y -
uniform coast we get %‘L = 0. Thus, the ratio %L is an asymptotic parameter
¥ ot '}
which can go to zero, or be O(1) in the situation of equal length scales of the
bottom variations in the z and y directions (as on a beach with significant longshore

variations). For a nearly plane beach the ratio %-‘& can be simply related to the depth
“y
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oh | 0k

9/ oz However, for a barred beach with rip-channels, the

gradient ratio by %:— =
choice of the characteristic length scales, L, and L,, and their ratio is less obvious.

This 1s discussed later.

An additional small parameter v can be defined as

h,h
V= L—! 4 (44)

which for a planar beach is equivalent to the bottom slope, h,. Typical values are

of the order 0.01-0.1.

The nondimensional parameter x enters in the previous nondimensionaliza-

tion and it is related with the longshore velocity by

Vmu:r: o~ V ghb : (45)

Laboratory and field data (Putnam et al., 1949; Galvin and Eagleson, 1965; Visser,
1991; Reniers et al., 1995) indicate that the parameter « is essentially of O(sin ),
but depends on several variables related to the wave and flow field. For example, a
theoretical solution for steady uniform longshore currents (Longuet-Higgins, 1970b)

sin o

shows that K o< h,y T So, the parameter x tends to zero for nearly normal incident

waves or for h, going to zero.

The parameter p appearing in several of the nondimensional quantities above
is a small coefficient, g ~ 0.05—0.2, which differs from the other small parameters in
that it does not go to zero for known situations. The quantity j replaces the param-
eter & of the original POS derivation. A separate symbol is adopted here because,
unlike in POS (see their equation (14)), we do not want to link s (their §) with x: p
is a small number, whereas k is an asymptotically small parameter. The parameter
i formally accounts for the smallness of several dimensionless flow variables: an

example is @, = ,t,;cf",';j with gz ~ 0.1 — 0.2 (Svendsen, 1984a). Similarly, for typical
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values of the undertow we expect £ = 0(0.05 — 0.1) = O(p). For the maximum
setup Cnae at the shoreline, analysis of field data by Longuet-Higgins and Stewart
(1963) have shown that %’i‘—? ~ 0.15 = O(p). This result is also confirmed by the
theoretical analysis and laboratory data of Bowen et al. (1968), Stive and Wind
(1982) and Okayasu (1989). Finally, for the longshore component of the radiation
stress Sy, we find S;, ~ %2 p sin «¢? h, which means in this case j ~ 3; ~ ().06.

Hence, y is a number that typically has a magnitude of O(107").

Substituting the nondimensional quantities and the parameter v defined by
(4.4) into the (steady-state) governing equations (4.1)—(4.3) then gives those equa-
tions in nondimensional form expressed in terms of the parameters 7 E-E v, K, sin oy,

and the number p. For the continuity equation we get:

( L i
¢ /_ U dz + QW) GeEe 2 ( VidZ + L sin oy, Qwu) 0, (4.6)

ox' L, 1 oy
and for the z- and y-momentum equations we get, respectively,
,u,i /C’ Uzdz + 2U'((") Q!
Oz’ \d-hs o
+ &H}i ¥ U’V’dz’ o smabU’(C’)Q + V() Q!
L, oy K v e
BC’ BS" Ly . fw
’ L _
+ h £ + 31" + L, blllﬂ!b 3" T 0, (4.7)
(/ UV' 4! + V'(C') @y + = sinay U'(C) wy)
K
L,; 29 (T
+ —y % 3y (/_ V2dz + .sm o 2V'(C) w,’,)
oC! dS! L, 0S] K f
' oy Oy w s
i : ——=q7 =0, 4.
+ L —h o + sin 5 T I L, 0y + T 7y =0 (4.8)

This system of equations is equivalent to that of POS’s equations (17)—(19)
with & replaced by p. However, in contrast to the equations given in POS, the mo-

mentum equations here have been divided by a common factor, so that the relative
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magnitude of the terms in the two equations remains the same.

4.1.1 Lower-order equations for nearly longshore uniform topographies

The nondimensional governing equations above can be simplified in different
ways depending on the restrictions put on the parameters. In the following we will
recover the analytical model given by POS. First, based on the previous assessments,
we choose to consider situations where O(v) = O(k) = O(sin ), so that all these
asymptotic parameters can be represented simply by one of them (we choose v).
We also consider the friction parameter such that & -‘:;—” = O(sin ap), which results

: T 98,
from the balance between the radiation stress component =5** and the bottom shear

stress 7 in the simplest longshore current model of Longuet-Higgins (1970b). For

v

a nearly longshore uniform coast we typically have

L,
<L (4.9)

hence we assume Z= = (). Introducing these assumptions into the governin
I g

“¥
equations (4.6)—(4.8) we can rewrite them in terms of two single parameters, v and

i, the first going asymptotically to zero and second being just a small number of

@(0.1). Therefore the continuity equation reads

¢! ; v: 0 3 ,
Udz' + Q.| + — — Vidz' + pQy, | =0, (4.10)
—hl ‘ p Oy' \J-n, ;

9
dx'

and for the z- and y-momentum equations we get, reordering the terms by orders

of magnitude,

ac  as',

3] ¢ =
W + g +H [a— (/ D & 2”’(‘:')%) u }

; A ¢ _ as! .
g [ "/t ] Tt ! Yy
+ v lay"/_h;,Ude + V() m.)+ By’]

- 0 1~ J
+ "g“a—g(U (E1QL:] =9, (4.11)
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o (77 . gf as. ~— as!
LN AV4] i 1~ ! hay “uy !
¥ lalf (/;hu U V dz ¥ V (C) w:r) + ; au 8.’1;" £ ay.l' + TH

0 v 0 ¢
S et T 12 gt
-+ W"B:(U(C)Q )+ u By (/ﬁh:jl/ dz)

+ ;;38%(21/'(@) o) =0 (4.12)

Under these constraints we notice that the largest terms in the z-momentum
equation (4.11) are one order of magnitude larger than the leading order terms in the
y-momentum equation (4.12). This shows that for small angles of incidence and for
L, < L, the forces in the cross-shore direction are much larger than the longshore
forces. For this situation POS proposed a simplified model which retained only the
leading order terms of each equation. We then get (in dimensional variables) for the

continuity equation:

0 ¢
— Ud Gl | =15 4.13
ox ( = 2 +q ) ( )
and for the z and y-momentum equations:
=0 188
g(ho+0) 2 + = 222 g, (4.14)
der  p Ox

o < "
= ( / UV dz + V() Qz)

0% . BBw\ . 17 - 9C
i oL ) — =)}, .1
p(&n + 6y)+ : +g(ha+C)6y 0 (4.15)

which is equivalent to equations (25)-(27) in POS except for the Sy, term in equation

(4.15) that was left out.

By retaining only the terms of O(1) in the z-momentum equation (4.11) POS
neglected the terms of O(y:) in that equation, which is likely to be of the order of the
leading terms in the y-momentum equation (4.12), which are of O(v). Consequently,

these two equations are solved with different orders of accuracy.
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Secondly, we notice that at the leading order shown in (4.13) the simplified
continuity equation yields a solution of zero net averaged volume flux (Q, = 0) for
a zero cross-shore flux boundary condition at the shoreline. Thus, at this order, the
local short-wave averaged volume flux is completely balanced by the undertow return
current. However, as mentioned in POS, an approximation for the second term on
the left-hand-side of equation (4.6) can be determined and provide a correction to
the first order flow. This is done by using the solution of equation (4.15) to calculate
%, and hence the second term in the complete continuity equation (4.6). Then Q,

can be determined through the integration of that same equation yielding to second

order (in dimensional form):

N ¢ ) ¢
x = g a. v =] w 1: f ) A
Q.= [ Udz+@ fn 5 (/ﬂmt dz + Q _,,) dz (4.16)

where the boundary condition @, (0,) = 0 has been used. Note that the @, found
this way is a second order quantity satisfying the boundary condition of no flux at

the shore and equation (4.1) for the conservation of mass.

Lastly, based on the findings about the dispersive mixing effect due to depth-
varying currents (Svendsen and Putrevu, 1994), POS introduces the following ap-

proximation for the first term of the longshore momentum equation (4.15):

N 9 ov
- ( /_ UV dz + V() Q) = = (Dnh.a) (4.17)

where D, is a dispersion coefficient, which varies in the cross-shore direction, and
V is the depth-averaged longshore current. Svendsen and Putrevu (1994) estimated

that inside the surf zone D, could be given by:

Doz 020, yialy s (4.18)

Therefore, the model equation (4.14) is solved to determine the setup ¢, and
equation (4.15) with the first term represented by equation (4.18) is used to calculate

the depth-averaged longshore current V.
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4.1.2 Consistent lower-order model equations

It will be shown in a following section that the Putrevu et al. (1995) model
can give inaccurate predictions even at the lowest order. Hence, a new extension
of this model is presented which consistently includes all terms of the same order,
and it is shown that the results of this revised model compare favorably with the

complete SHORECIRC’s solution.

A model that retains all the terms in the governing equations correct to O(u)
and O(v, k), instead of retaining only the terms of O(v, ) as in POS, is given below.

This arises from the recognition that p is really not asymptotically small, but in

2

many cases still small enough to make “- in the continuity equation (4.10) of the

same magnitude as other v-terms.

Thus, we consider a revised model consisting of the following equations:

d(Uh) i d(Vh)

ox dy =0 .
oz g \lto or  p Ox p |
ovaR) 8 ([, OV 5
S s e (Dc._h, 8:1:) + g (ho + () By

1 {05y aSy.u TyB _

n( ax oy ) T e

These equations essentially correspond to the addition of the cross-shore bot-
tom shear stress and the cross-shore nonlinear advective acceleration terms which,
according to equation (4.11), both have a magnitude of p times the leading terms.
To be consistent we have also included the term of O(%’l) in the continuity equation

(4.10), which is the second term in equation (4.19) above. Note that the first term
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of equation (4.21) is already included in the POS model equation (4.15), although

it turns out to be zero because U = 0 at first order in the perturbation scheme

followed in the POS model.

The model given by equations (4.19)-(4.21) is referred to herein as the ex-
tended (POS) model. Although the terms added in this model equations (relative to
those of POS) are small, they are of the same order as some of the retained terms in
the longshore momentum balance and thus can be important under certain physical

conditions as shown later.

4.1.3 Simplified SHORECIRC model

In the following sections we present a comparison between the results of (i)
the POS model (see equations (4.14), (4.15)); (ii) the extended model (given by
(4.19)-(4.21)); and (iii) the results of a simplified version of the full SHORECIRC
model as follows. Rewritten in terms of ((:f ; 17), this version essentially corresponds

to the nonlinear shallow-water equations with dispersive mixing, which reads:

¢ N a(Uh) N A(Vh)

ot ox -l (4.22)
UM " d(U?h) a5 A(UVh)
ot Ox i Ay |
+ g(hy+0) g—i + % (aasr -+ 05;) + ; sl (4.23)
" e - g
+ y(ho+6)§§ T }1; (Bgf i ag;y) + % —0. (424)

This system is derived from the original model equations (4.1)—(4.3) by ne-

glecting the turbulent and surface shear stresses. In order to be able to compare
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with the POS model we have also assumed that the only contribution from the
depth-varying velocities is given as in that model. Thus, by keeping only the same
dispersive term as in the POS model, we focus the comparison between the two
models on the effect of the second order terms that depend only on the depth-
averaged quantities. This model is in this chapter referred to as SHORECIRC
model, although the equations (4.22)—-(4.24) only represent a simplified version of
that model. Since the numerical model SHORECIRC is time-dependent we continue

the computations until it reaches steady-state.

In order to establish a relevant basis for comparing the circulation models it
has been assumed that the short-wave forcing for both models is given by the same
simplified wave height calculation used in POS, even though this may not always
be realistic. Hence, we use the energy equation ,(% (F¢,) = D with the energy
dissipation rate determined as that in a bore. Similarly, we use the linear bottom
shear stress relation 72 = p f,, ug V, as in POS, with f,, = 0.01 in all computations

except when otherwise mentioned.

For simplicity POS further assumed that all the longshore bottom pertur-
bations occur inside the surf zone region only. The bottom variation is divided

into

ho(z,y) = hop () + €hy(z,y) , (4.25)

where € is a small parameter, (¢ < 1), and hgy, stands for a longshore uniform depth.
For both applications in this paper we restrict the longshore bottom perturbation

to the form
hi(z,y) = hor(z) Fr(z) Fy(y) , (4.26)

where F,(z) and F,(y) are arbitrary functions. In the following two sections we

apply the model equations described in this section to study the nearshore currents
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over a quasi-planar beach and a barred beach. All of the above models are solved

numerically through the finite difference method given in chapter 3.

4.2 Currents on a nearly plane beach

In the first example we compare the results of the simplified POS model to
the results obtained by the more complete SHORECIRC for the nearshore currents
over a slightly modified plane beach. This is the same example that was used in
POS with a topography given by a sinusoidally longshore varying plane beach. The
deviation from the plane beach with a 1/30 slope is characterized by the depth
variation parameter ¢ defined in equation (4.25), and is confined to the surf zone.

For the current application the depth as defined in equation (4.25) reads:

hop(z') = hy + he(z' — 2}, , (4.27)
ol ot \ 2
hi(z',y) = hor exp [—5 (J—;—Lﬂi) ] sin (@ + g) ; (4.28)
Y

Tar
where h, = 1/30 is the cross-shore depth gradient, the subscript b refers to the
breaking point, z' stands for the seaward oriented cross-shore direction with ori-
gin at the shore, and 2y, is the the position of the maximum bottom perturbation
amplitude. The parameters [, and [, are the cross-shore and longshore computa-
tional domain lengths, respectively. For the following computations we have chosen

sl
Ly
21‘1‘:'1

Typ= = 30hy, ly =3z}, =90h;, and [, =180h;. To obtain good computational
accuracy the grid spacings in the cross-shore and longshore directions are Az = hy

and Ay=2hy, respectively.

Fig. 4.1 shows the bottom contours for the bathymetry defined above, with a
depth variation parameter of ¢ = 0.1. At a constant cross-shore position, the water
depth is the largest at y = 0 and y = [, and the smallest at the middle section

y = l,/2. The (z,y) = (0,0) is the seaward-upstream boundary point in the model
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domain. z = 0 is the seaward boundary, where the absorbing-generating boundary
condition is used. We also impose V = 0 at that boundary, in order to find a solution
to the POS model equation (4.15). The shoreline boundary is at z/l, = 1, where we
follow POS and use a zero velocity condition U/ = V = 0. Finally, for the numerical
solution, we use periodicity at the cross-shore boundaries y = 0 and y = [,. This

means we basically simulate an infinite coast with a spatially periodic domain.

2o
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Figure 4.1: Depth contours of the nearly plane beach for a longshore depth vari-
ation parameter € = (.1.

The ratio of the characteristic length scales L, and L, can be clearly identified

_ 0h /oh

for a nearly plane beach in function of the depth gradients as L, /L, = 57 3y Using

equations (4.25)—(4.28) the maximum depth gradients can be estimated as h, = ffi*

b
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and h, = eho(zy) fT”” Hence for the present choice of values, the above depth

gradients are related by h, = ﬂ"—( hy,, which for € = 0.1 yields L, /L, = 20. This ratio

indicates that the basic assumption of the POS model L, < L, is valid.

In Fig. 4.2 (top panel) we show the normalized wave height variation, [%,

inside the surf zone against the normalized cross-shore location, %, at four longshore
locations (y =0, y = %1'1, 7= g . = %ﬁ’-) for the depth variation parameter ¢ = 0.1.
The bottom panel of Fig. 4.2 shows the bottom variation at the same longshore
positions. The wave height to water depth ratio at breaking is v = 0.5, and the
short wave period is T' = 15.664/h,,/g, which corresponds to 7' = 5 s for hy = 1 m.
The results show that at the position of the crest (y = %) of the longshore bottom
perturbation, wher.e the water depth is smaller, the energy dissipation by breaking
is larger than at the other sections and thus the wave height is smaller. The inverse

happens at y = 0.

Fig. 4.3 and 4.4 show the results of the comparison between the steady-
state solution of SHORECIRC and POS of setup and longshore current variation
for an incident wave angle o, = 5°, and bottom friction coefficient f,, = 0.01.
Fig. 4.3 shows the setup ¢ (top panel) and longshore current V (bottom panel)
predictions at the same four longshore positions as the wave height distribution
(y =0,9= %‘-, = %’-, Y= %‘L) The lines correspond to the results of POS model,
and the symbols correspond to SHORECIRC results. Both models predict the same
qualitative variation of the setup: higher setup in the shallower depth at y = Ej-
and lower setup in the deeper longshore location at y = 0. The longshore surface
elevation gradient, ghf—,g, is nearly the same in both models, but a higher mean
setup is predicted by SHORECIRC at all longshore locations. This turns out to be

due to the contribution of second-order terms in the z-momentum equation (4.11)

as explained later. The largest second-order term in the z-momentum equation is
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Figure 4.2: Wave height and bottom cross-shore variations over the nearly plane
beach for a depth variation parameter ¢ = 0.1. The four longshore

positions are y = 0, y = E,iia Yy = 52”“, Y= o'—f,"'- (see Figure 4.1 for depth

contours).

the bottom shear stress, 77, which acts in the same direction as the cross-shore
component of the wave radiation stress. Thus, as 77 reinforces %, the cross-shore
pressure gradient term is larger in the presence of 77 (given by SHORECIRC results)
than its value when 77 is neglected (as given by POS results). The resulting larger

cross-shore pressure gradient then induces a higher overall mean setup.

In the bottom panel of Fig. 4.3 we see that both models predict a significant
deviation from a longshore uniform current profile. This is mainly due to the effect

of the longshore pressure gradient. The maximum and minimum of the longshore
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Figure 4.3: Comparison between the POS model (lines) and the SHORECIRC
model results (symbols) for a depth variation parameter e = 0.1 and
incident wave angle o:b = 5°. The four longshore positions are y = 0,
o= id Y = 2, y = 2. Top panel: mean surface elevation (; bottom

panel: dept.h-cwerage(l longshore currents V.
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currents are slightly overpredicted by the POS model, relative to the predictions
of SHORECIRC, but the overall good agreement indicates that, in this case, the
simplified POS model include all the important terms of the governing equations. A
careful analysis of the differences between the two models indicates, however, that
at y =0 and y = 521 the longshore pressure gradient is zero in both models and the
observed differences between the two model predictions are due to an inertial effect

of the nonlinear accelerations.

In Fig. 4.4a and 4.4b we show the resulting spatial distribution of the depth-
averaged velocity vectors, ‘7, as predicted by the POS model and the SHORECIRC
model, respectively. These figures give an overview of the flow and the effect of the
longshore pressure gradient. Closer inspection of the longshore currents estimated
by both models shows that SHORECIRC’s results are more longshore uniform than
those from the POS model. Also, there is a longshore phase shift of the current ex-
trema predicted by SHORECIRC relative to the POS model calculation: the maxi-
mum (and minimum) longshore currents shoreward of z; predicted by SHORECIRC
are shifted downstream relative to that predicted by the POS model. These results
confirm the earlier findings of Wu and Liu (1984) on the uniformizing effect of the

nonlinear convective accelerations.

We also performed similar tests for stronger longshore sinusoidal bottom
perturbations, with the depth variation parameter ¢ = 0.2 and ¢ = 0.3, and for
larger angles of incidence, such as 6, = 20°. The agreement between the two models
for this larger angle is similar to that found for the case of 6, = 5°. These tests
showed that the deviation between the POS model and the SHORECIRC in the
prediction of the mean surface elevation ¢ are relatively independent of ¢ and 6y,
and are caused mainly by neglecting the bottom shear stress in the z—momentum

equation in the POS model. Conversely, the differences in the estimation of V grow
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Figure 4.4: Depth-averaged current vectors V over the nearly plane beach for a
depth variation parameter ¢ = 0.1 and incident wave angle «y, = 5°:
(a) POS model results; (b) SHORECIRC model results.
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both with increasing € and decreasing 0.

In Fig. 4.5 we present the comparison between the depth-averaged current
vectors, 17, determined by the modified POS and SHORECIRC models for a bottom
perturbation ¢ = 0.3, which implies that L, /L, ~ 6, and an incident wave angle
ay, = 5°. Although € = 0.3 is not small, it is noted that the current pattern predicted
by the two models is quite similar. Both models show a relatively strong backwards
current in a region near the shore (see Fig. 4.1 for similar topography). However,

one can also see that the extrema are slightly accentuated in the POS solution.

In conclusion, for a nearly planar beach with a longshore sinusoidal modula-
tion the results indicate that even for a relatively large longshore bottom variation
parameter (¢ = 0.3) the POS model performs well against the SHORECIRC model.
The POS model includes the longshore pressure gradient term, ghgg, and the long-
shore gradient of the longshore radiation stress, 8—3;3, which can be fairly important
in the estimation of the longshore currents. The nonlinear advective accelerations,
and the bottom shear stress in the z-momentum direction are formally second-order

terms that can locally cause the linear solution of POS to deviate from the solution

of the complete nonlinear shallow water equations.

4.3 Currents on a nearly longshore uniform barred beach

As a second example we analyze the nearshore currents over a longshore
varying barred beach. The longshore bottom perturbation is characterized by a
slight depression in the bar crest, similar to the formation of a rip-channel. The
bottom topography used in the present example is analogous to that used by Sancho
et al. (1995), except that the rip-channel is smaller, and it is also similar to the

barred beach often encountered at the FRF experimental station in Duck, NC (see,
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Figure 4.5: Depth-averaged current vectors V over the nearly plane beach for a
depth variation parameter ¢ = 0.3 and incident wave angle oy = 5°:

(a) POS model results; (b) SHORECIRC model results.
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e.g., Thornton and Kim, 1993; Reniers et al., 1995). By curve fitting to measured
bathymetric profiles at that beach, the depth of the longshore uniform section of

the beach can be given by the following analytical expression:

0.55 133 (X' — 12)%% — Ry, 0125 < X' < ke
hon(X) =4 g o papial. (4.29)
hor | g e —0-060 (2 —X")—F, 0<X'<0.125
with )
L (30 _; 1-X'
"= 150 (I+Y) exp ——15(1__%&) ; (4.30)

where X' = % is a normalized seaward oriented cross-shore coordinate with origin at
the shoreline, [, is the bar crest position relative to the shoreline, and [, is the cross-
shore domain length. For the following computations we use I, = 120 m, [, ~ 3.171,
(380 m), and I, ~ 3.33 1, (400 m). The depth at the crest of the bar is h, ~ 1.18 m,

and the numerical grid spacings are Az ~ 4.24h, (5 m) and Ay ~ 8.48h, (10 m).

The longshore topography-variation functions F, and F,, defined in equation

(4.26), are given by:

Bla) = exp lb (“"M—_I)zl | (4.31)

Thy
l

F,(y) = sech [a, (y— Ey)l . (4.32)
with 2, >~ 0.92 1. (110 m) and b = —12. Several topographies are examined with

different values of a.

A perspective view of the beach configuration for the example with € = 0.1

is shown in Fig. 4.6. (As before, € is the parameter controlling the strength of the

longshore bottom perturbation). The rip-channel is located at y = Y and across

2
the bar crest. As a further illustration, the bottom panel of Fig. 4.7 shows the

cross-shore profiles of the barred beach at the longshore straight section, y = 0,
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Figure 4.6: Perspective view of the longshore varying barred beach for a longshore

depth variation parameter ¢ = 0.1, and a = 41;5 corresponding to

Ey 2425 L.

and at the rip-channel, y = %. The maximum absolute longshore depth variation
is Ah = 0.1h |z = 0.1h, at 2’ = z,. Physically, this corresponds to a very small
bottom variation over a reasonable longshore length scale: in a typical case (at
Duck) with h, = 1.2 m the absolute longshore depth variation of the rip-channel is
only Ah =~ 0.12 m, which is of the same height or even smaller than that of a sand

mega-ripple.

In order to discuss the applicability of the POS model it is convenient to
briefly discuss the length scales associated with this bathymetry. The width w, of
the rip-channel is dependent on the parameter a in equation (4.32). From F,, we can
define a characteristic longshore length scale L, based on the maximum longshore

depth gradient and vertical extent of bottom variation. The result gives L, = 2

a?
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hence the width of the rip-channel is defined as w, = 2L,.. For the example shown in

Figure 4.6 we have chosen a = ”ti'
C

, which implies L, =~ 0.42[.. The cross-shore length
scale L, can be defined in multiple ways. The crest-to-trough distance (roughly I./2),
or the surf zone width (z}) are two examples. However, to be consistent with the
definition for L, we can also define L, based on the depth variation of the rip-channel
and the cross-shore depth gradient in that region, which gives L, ~ 1.67¢l,. Hence,
for e = 0.1 that gives L, ~ 0.17l. and so the horizontal length scales are related by
L, >~ 2.5L,. Note that we chose the length scales consistently, but if we had chosen

L, as the crest-to-trough distance (~ 0.5.) then we would have obtained L, ~ L,.

The assessments above indicate that the bathymetry with ¢ = 51;} has a
ratio of length scales given by 1 < %‘: < 2.5, depending on the definition for L,.
Hence, it does not strictly satisfy the requirement of the POS model that L, > L,
although it has a minor longshore depth variation (~ 0.12 m) over a large longshore
distance (~ 100 m). This topography is relevant, however, since we are interested

in determining the applicability of the POS model for a realistic barred beach.

Again, the wave conditions have been chosen so that the breaker line is
longshore uniform seaward of the bar crest as shown by the dashed line in Fig. 4.7.
The important variables are =}, ~ 1.42[. (170 m), i = 0.55, hy ~ 1.78h, (2.1 m) and
Hy, = 0.5 hy. The wave height variation along two cross-shore sections at y = 0 and
Y= %L, for an incident short wave of period T = 14'4\/}?/9 (5 8), is given in the top
panel of Fig.4.7. Note that the wave height decays rapidly over the bar-crest, and
then remains nearly constant over the bar-trough until it reaches shallower depths,
where strong energy dissipation again occurs. Thus, the radiation stresses forcing

is strong over the bar-crest and at the beach face, and very weak over the trough.

In the computations of the longshore currents over this beach the dispersion

coefficient, used is slightly different, from the one given by equation (4.18). In order
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Figure 4.7: Wave height and bottom cross-shore variations over the barred beach
at two longshore positions (y = 0, y = 5}), for a depth variation
parameter € = 0.1, and a = 38, L, ~ 2.5 L,.



to represent the fact that the vertical variation of the currents is smaller outside the
surf region we use an empirical distribution that decays outside the breaking point

(similar to the one for the eddy viscosity given by equation (2.84)):

2
Dey [0.2 +0.8 (%) ] , ' >}
0.1h+/gh, 2< 7z}

D= (4.33)
with D, the dispersion coefficient at breaking, ' = zj. Note that to get realistic
vertical profiles for the barred beach, in the computation of the dispersive mixing
we have reduced the coefficient 0.2 in equation (4.18) to 0.1. The bottom friction

coefficient used for these computations is f,, = 0.01.

The spatial distribution of the depth-averaged velocity vectors, as predicted
by the POS and the SHORECIRC models, for an incident wave angle «y = 5°, is
presented in Fig. 4.8. We see that contrary to the first example, the current patterns
calculated by the two models for the present topography are surprisingly different
from each other. The modified POS model (with the second order correction for
Q.) predicts a strong rip current of U,,q, =~ 3 ms™!, whereas SHORECIRC estimates
Upnaz = 0.06 ms™! only. The strong rip predicted by the POS model results from the
concentration of mass flux at the rip-channel, caused by longshore flowing currents
towards that location. The SHORECIRC results in Fig. 4.8b show longshore cur-
rents that dominate over the cross-shore currents, and are nearly longshore uniform.
At the rip-channel and slightly downstream of it there is a noticeable cross-shore

current component, but it does not resemble a rip-current.

In Fig. 4.9 we present the results of the POS model without the (second
order) correction for @Q,. Comparing Fig. 4.9 and 4.8a with 4.8b we can conclude
that both versions of the POS model give results that are radically different from

the results of the more complete SHORECIRC model. Furthermore, the values of
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Figure 4.8: Depth-averaged current vectors V over the barred beach for a depth

variation parameter € = 0.1, a = "!3 Ly, ~ 2.5 L,, and incident wave
angle oy, = 5°: (a) POS model results; (b) SHORECIRC model results.

aQ : i 5 v
s_ff calculated from the POS solution are not small as the nondimensional equation

(4.10) suggests.

Inspection of the setup predictions for the present computations (see top
panel of Fig. 4.10) shows that the POS model predicts a setup that varies some-
what in the longshore direction, which results in a longshore pressure gradient much
stronger than that of the SHORECIRC model. In the latter, the setup is mostly
longshore uniform. This is better illustrated in Fig. 4.11 (top panel) which shows
the longshore variation of the setup at 2’ = 0.294z). The equivalent variation of the
longshore currents at the same cross-shore location is shown in Fig. 4.11 (bottom
panel), and we see that the strong pressure gradients in POS cause a reversion of the
longshore currents on the downstream side of the rip-channel, whereas SHORECIRC
results are unidirectional and nearly longshore uniform. It turns out that the dif-

ferences in the setup calculations are all due to the different cross-shore momentum
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Figure 4.9: Depth-averaged current vectors V over the barred beach for a depth
variation parameter ¢ = 0.1 and incident wave angle o, = 5°: POS
model results without cross-shore flow.

equations of each model.

A numerical experiment for the same bottom configuration (¢ = 0.1), but
a larger angle of incidence, #, = 20°, shows a flow pattern similar to the previous
example, except that the overall longshore currents are larger due to an increase
in the longshore forcing. We have also conducted a numerical experiment with a
perturbation in the bar corresponding to ¢ = 0.02 only, and found a similar trend as
for € = 0.1, though naturally weaker. This confirms the conclusions of the past sec-
tion that, within the range € < 0.3, the amplitude of the bottom perturbation does
not affect the performance of the POS model when compared to the SHORECIRC

model.

As a second example we choose a case with a longer value of L,, where the
application of the POS model does not generate a rip-current. This case corresponds

to a = %fi, which means L, ~ 1.1[/.. The cross-shore length scale is the same as
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Comparison between the POS model (lines) and the SHORECIRC
model results (symbols) over the barred beach at four longshore po-
sitions (y = 0, y %’f—), for a depth variation
parameter € = 0.1, a = 3=, L, ~ 2.5 L;, and incident wave angle
o = 5° (top) mean surface elevation ¢; (bottom) depth-averaged
longshore currents V.
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Figure 4.11: Longshore variation of i and ¥ at 2/ = 0.294 x,, predicted by the
POS model (solid line) ‘md the SHORECIRC model (dashed line),
for a depth variation parameter ¢ = 0.1, a = 47}, Ly =~ 2.5 L,, and
incident wave angle ¢, = 5°.

before, L, ~ 1.67¢l., which for ¢ = 0.1 gives L, ~ 0.17[, and so the horizontal
length scales are related by L, ~ 6.6L,. We note that the rip-channel width w, =~
2.21, is quite large, though comparable with that of surveyed bathymetric profiles
(e.g., Sancho et al., 1995).

The results for the flow predicted by the two models for the smoother long-
shore bottom variation (i.e., over a longer length scale) is given in Fig. 4.12. Note
that for this simulation the longshore domain length is /, = 10/, , and [, = 3.17 [, as
before. The comparison between the depth-averaged velocities in Fig. 4.12 indicates
that even for a barred beach with a milder rip-channel the POS model still predicts
the formation of a rip-current due to an excessively large longshore pressure gradient
(compared to that from SHORECIRC), whereas the SHORECIRC model predicts

again a nearly longshore uniform flow. The differences between the two models are
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concentrated over a distance approximately equal to 31[., which is larger than the

rip-channel width.

The example just shown indicates that the POS model can not be applied
to study the longshore currents over a barred beach with a realistic longshore bot-
tom perturbation. The key to the large differences between the two models is that
the POS model overestimates the longshore pressure gradient, which locally causes
excessively large gradients in the longshore currents and hence large cross-shore
currents. This pattern is seen in all the examples and is attenuated with the in-
crease of the ratio %f} Conversely, mainly due to the contribution of the convective
accelerations, the flow predicted by SHORECIRC appears to ignore local bottom
perturbations. It is therefore relevant to analyze the predictions for the barred beach
of the extended (POS) model, given by equations (4.19)—(4.21), which consistently

retains all the terms in the governing equations at the same order.

In Fig. 4.13 and 4.14 we show the nearshore currents obtained for the same
physical situation as that presented in Fig. 4.6-4.11, with the model equations
(4.19)—(4.21) of the extended model, which include the above mentioned terms.
These results should be compared to those in Fig. 4.8-4.10 which correspond to the
full SHORECIRC and the POS models. It is clearly seen that the addition of the two
small terms in the z—momentum equation dramatically changes the predicted flow
pattern. The results from the extended model in Fig. 4.13 agree much better with
those of SHORECIRC than the results of the POS model shown in Fig. 4.9. The
flow around the rip-channel exhibits similar features as predicted by SHORECIRC,
although there is a slightly larger longshore variation in the flow. As Fig. 4.14 shows
this change between the behavior of POS and the extended-POS model is associated

with a greatly reduced longshore variation in the setup and hence, in the longshore
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Figure 4.12: Depth-averaged current vectors V over a smoother barred beach
(Ly = 1.11.) for a depth variation parameter ¢ = 0.1, a = ifi,
L, ~ 6.6 L,, and incident wave angle 6, = 5deg: (a) POS model

results; (b) SHORECIRC model results.
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Figure 4.13: Depth-averaged current vectors V over the barred beach for a depth
variation parameter € = (0.1, a = 4{%3, L, ~ 2.5 L;, and incident wave
angle ay, = 5° results of extended (POS) model, which includes all
second-order terms.

pressure gradient. Thus, the inclusion of the O(y) terms in the z-momentum equa-

tion greatly improves the predictions when using SHORECIRC as a reference.

The comparison between the results of the SHORECIRC model and the ex-
tended set of equations shown in Fig. 4.13 also indicates that there are still con-
siderable differences in the longshore velocities near the rip-channel. Hence, we
find that, even for a seemingly small realistic bottom perturbation, the lower order
terms that are neglected in the extended-POS model relative to the SHORECIRC
model equations can be locally important. Specifically, the results indicate that
the depth-averaged convective acceleration in the y-momentum equation (4.21) is
not negligible, and it turns out to be of the same order as the longshore pressure

gradient term.
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parameter € = 0.1, a = » s g 2 5 L., and incident wave angle

o, = 5°: (top) mean surface elevation ¢; (bottom) depth-averaged
longshore currents V.
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4.4 Discussion

The causes for the sensitivity and potential inaccuracy of the POS model
turn out to be subtle. It appears from the computations that the POS model is
particularly prone to give misleading results in the case with a barred beach with a
(even gentle) rip-channel, but also that the depth of that channel is less important

than its width.

It is believed that one factor contributing to this is that the forces (i.e.,
the terms) in the longshore direction are an order of magnitude smaller than the
cross-shore forces (see equations (4.11) and (4.12)). This is further enhanced by
the fact that the longshore pressure gradient %5 in equations (4.12) and (4.15) may
be even € times smaller than the other terms in the y-momentum equation, as is
also illustrated by the longshore (-variation shown in Figure 4.11. A final factor
then comes from the way in which g—fr is determined in the POS model. The -g—g
term in (4.15) is calculated as the y—derivative of ¢, which itself is determined by
the cross-shore integration of equation (4.14) (see POS equations (B4) and (B5)).

These equations can be written as

= 1 185, _ >
((z,y) = — ;r,; T dz + ((zp), (4.34)
and )
oC 1 t d (1 0Ss. _ ”
gg—*ﬂéba—v(ﬂ—*ax ) d.L, (430)

Since here the values of ¢ are much larger than the longshore variation in ¢, that
means that g§ is determined as a small difference between two relatively large num-
bers. That yields high sensitivity to small innacuracies, that can come from the
simplified way in which the cross-shore wave height variation is determined. As
the results in Figures 4.3 and 4.10 show, such relatively small (O(3-5%)) errors do

occur in the values of . In particular, on the barred beach these errors create values
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of gf; over the trough which are 5-10 times larger than the correct values. At the
same time, the longshore wave forcing over the trough is nearly zero due to lack of
wave breaking, which means that the longshore pressure gradient is the dominat-
ing driving force. The consequence is the unrealistic convergence of the flow in the
trough towards the rip-channel predicted by the POS model that creates the strong
rip-current (see Figures 4.8 and 4.10). Hence, the inaccuracy occurs primarily in the
trough behind the bar, which may also explain why the depth of the rip-channel is

less important, and why a good agreement was obtained for the quasi-planar beach.

For the barred beach it turns out that both the nonlinear inertial terms and
the bottom shear stress in the cross-shore direction can affect the cross-shore momen-
tum balance of equation (4.14) significantly. The effect of these terms is sufficient to
suppress the rip-currents that are predicted by the POS model. These terms lead to
a local increase of the set-up in the neighborhood of the rip-channel, which reduces
the longshore pressure gradient that would otherwise have been predicted. The
correction to the momentum equations provided by these seemingly small terms,

however, improves the accuracy of the model predictions quite noticeably.

It should be noted that there is no advantage in using the model equa-
tions (4.19)—(4.21) as an alternative to using the full model equations (4.22)—(4.24).
The use of the system (4.19)-(4.21) also precludes the derivation of a simple semi-
analytical solution as in POS because these equations can no longer be decoupled
as was done by those authors. The important feature about the extended model is
that it shows that including consistently second-order terms greatly improved the

POS model prediction ability.

In all the examples analyzed in this chapter the wave height was calculated
using the simplified energy equation given by POS, with the energy dissipation rate

calculated by the bore dissipation model. Although for a quasi-planar beach the
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use of the bore dissipation model has proven to be satisfactory (Svendsen, 1984b),
its validity has not been confirmed for a barred beach. Since the radiation stress
gradients are directly proportional to the energy dissipation rate, a different wave
breaking model could yield a different distribution of the wave forcing. A local
modification of the radiation stress alters the local ratio between the gradient of
that stress and the local pressure gradient and thus, the response of the flow to
these forcing mechanisms may be changed if a different wave model is used. The
results in this chapter are based on the assumption that the angle of incidence o,
is small. For larger «; the wave forcing will be stronger and the longshore pressure

gradient has a more limited effect on the longshore flow.

Based on the results presented here, we conclude that even when the basic
assumptions of gentle longshore variations of the semi-analytical POS model seem
to be satisfied the predictions of that model may be grossly inaccurate. In the next
chapter we will further explore some of the ideas analyzed here. We will continue the
study of nearshore currents on weakly longshore varying barred beaches, and show
that several different flow situations can occur for slight variations of the topography

and/or the hydrodynamic conditions.
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Chapter 5

NUMERICAL EXPERIMENTS ON THE EFFECT OF
SOME PHYSICAL MECHANISMS

In this chapter we present several numerical tests aimed to emphasize the
role of some mechanisms in the nearshore currents. In the past chapter we showed
by comparison with the semi-analytic model of Putrevu et al. (1995) that the long-
shore pressure gradient can be quite a substantial force for the longshore currents
in the nearshore region, in addition to the forcing provided by the radiation stress
gradients. These forces were mainly balanced by the bottom friction and the disper-
sive mixing due to the vertical variation of the currents. In this chapter we analyze
in greater detail the separate effects of the longshore pressure gradient, the bottom
friction, and the dispersive mixing in the prediction of the nearshore circulation over

a longshore varying barred beach.

Another issue that is relevant in nearshore currents is whether, on a beach
of a general topography, the observed (or predicted) longshore currents are stable
or unstable, which in the latter situation can lead to the so-called shear waves
(Oltman-Shay et al., 1989; Bowen and Holman, 1989). Several recent analytical and
numerical studies addressed this mechanism with various degrees of complexity of
the problem (e.g., Putrevu and Svendsen, 1992b; Dodd et al., 1992; Church et al.,
1992; Allen et al., 1996; Ozkan-Haller and Kirby, 1996, 1997). These studies gave

insight into the shear wave dynamics, and comparisons with field data collected
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during the SUPERDUCK experiment showed a good agreement of the predicted
versus the observed range of frequencies and wavelengths at which these motions

were stronger (0.001-0.01 Hz, and 100-500 m, respectively).

It was also found that shear waves contribute significantly to the lateral
mixing in the surf zone (Putrevu and Svendsen, 1992b; Church et al., 1992; Ozkan-
Haller and Kirby, 1996). In a comparison of model predictions against field data
for the SUPERDUCK experiment, Ozkan-Haller and Kirby find that shear waves
provide a mixing mechanism similar to that of the Reynolds stresses (averaged over
the time-scale of the infra-gravity wave motions). Hence, the effect of shear waves
on the time-mean longshore currents is essentially similar to that of the dispersive
mixing. However, whilst the dispersive mixing is likely to be present all the time
due to the depth variation of the currents, the mixing associated with the shear
waves is only effective when these are present. We are thus interested in examining

the lateral mixing provided by these two conceptually different mechanisms.

In order to address the study of shear waves over a longshore non-uniform
barred beach we find convenient though to first investigate the dynamics of these
motions over a longshore uniform plane beach. The example pursued in the following
section shows the results from SHORECIRC for same plane beach as that studied
by Allen et al. (1996) and Ozkan-Haller and Kirby (1997). Furthermore, we use
this example to test the accuracy of our numerical model versus the results of other
modelers for an unsteady motion. Hence, the plane beach is considered a “bench-

mark” test for the performance of SHORECIRC.
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5.1 Shear waves on a plane beach

Shear (or vorticity) waves are perturbations (instabilities) of the longshore
currents. Bowen and Holman (1989) suggest that these waves are unstable pertur-
bations of the cross-shore shear of the mean longshore current. The perturbation of
the current leads to a longshore progressive wave, where the restoring force is the
potential vorticity. The free-surface displacement associated with these perturba-
tions is usually limited to the O(1 c¢m) for typical beach topographies (Ozkan-Haller
and Kirby, 1997). The speed at which shear waves propagate in the direction of the
longshore currents have been observed (and predicted) to be between 30% and 70%
of that of the maximum mean longshore current (Oltman-Shay et al., 1989; Bowen
and Holman, 1989; Putrevu and Svendsen, 1992b; Dodd et al., 1992). Hence they

are found to be dynamically dependent of the mean longshore current.

Shear waves are also seen to be slightly dispersive, with the waves of longer
wavelengths traveling slower than the waves of shorter wavelengths. Observations
of Oltman-Shay et al. (1989) indicate that the free-surface displacement and the
cross-shore velocities in the frequency range of shear waves are in phase, but the

longshore and cross-shore velocities are near quadrature.

Although most natural beaches can exhibit complicated bottom contours, it
is interesting to analyze the development and propagation of shear waves on a plane
beach, as some of the aforementioned features can be predicted on such a simpler
topography. Hence, we choose to investigate the nonlinear shear instabilities on a
1/20 sloping beach, with the same characteristics as that studied by Allen et al.

(1996) and Ozkan-Haller and Kirby (1995, 1997).
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5.1.1 Model equations

The model equations for the present test are the forced nonlinear shallow-

water equations for depth-uniform currents,

o 9 - 8 ;- .
B-t' + % (Uh) + a—y (Vh.) — U., (dl)
0 8 s B s
E(Uh,) + %(U%) + B_f,:( Vh)
~ B
+g(hf,+c)%+%(aifx+%’iﬁ)+%:o, (5.2)
%(?h) + (f—x (OVh) + % (V2h)
> B
+ g(%+5)%+%(%+%{”’)+%=0, (53)

which are easily retrieved from the time-averaged and depth-integrated equations
of motion derived in section 2.1. Note that these equations are the same as (4.22)-

(4.24) without the dispersion mixing.

We consider a longshore uniform beach such that Qg-jji = Qg;“i = 0. Fur-
thermore, for the purpose of the comparison with the results of Allen et al. (1996)
and Ozkan-Haller and Kirby (1997), we first assume the short-wave forcing in the
cross-shore direction to be in balance with the setup gradient, and in the long-

shore direction it balances the bottom shear stress associated with the time-mean

longshore current Vg by a linear model ('r!f; = puVy):

105,

P 8:1, = —g (h,p ~+ CS) a—.l. ; (54)
1 68-"??} = 7}1?5 — A 4
Fi el ia (5:6)

121



In the above expressions the subscript S in (s and *r,f{ stands for the time-steady
components of ¢ and 'rf . The time-steady components are the contribution to the

total variables that are in balance with the short-wave forcing. Hence, defining

= (s + 1, (5.6)

= Bk T (5.7)

=l vy
I

=

and using the longshore uniformity of the forcing, the governing equations (5.2)-

(5.3) can be rewritten as:

9 /- 8 /- d /r- onp 1B r
= (O1) + 5= (0%h) + - (OVh) + ghﬁ + ==, (5.8)
B B
—g(f/h) + % (OVn) + (%(172;;) + gh,g—z s % =0. (5.9)

Following Ozkan-Haller and Kirby (1997) we neglect the contribution of the
steady setup (s to the mean water level in the equations above, so that h = h, + 7
is the total water depth excluding the setup'. For simplification, the bottom shear

stresses are assumed linear functions of U and V

72 = pul, (5.10)

2 = pp(V-Vs), (5.11)
with a constant friction coefficient p = 0.006. Hence, we are at first solving exactly
the same model equations as Ozkan-Haller and Kirby, and a slightly modified set of

that solved by Allen et al. (1996), who further introduce the rigid lid approximation.

! This was observed by those authors not to alter the pattern of the flow anywhere,
except close to the shoreline.
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The steady current Vg is the result of the balance between the longshore
component, of the radiation stress and the bottom friction Tﬁq. Like the previous

modelers, Vg is an input parameter and is assumed to be given by

o\ 3
Vs =Ca™ exp l— (i) ] ;
o

where 2’ is the seaward oriented cross-shore axis, and C' and « are chosen such that

(5.12)

the maximum of Vi is 1 m/s and occurs at 2’ = zj, = 90 m.

5.1.2 Results for standard grid values

In this section we present the results of SHORECIRC over a plane beach, us-
ing the set of equations (5.1), (5.8) and (5.9). The beach slope is h, = 1/20, and we
choose the longshore domain length equal to that of the most unstable wavelength
calculated from linear instability theory, [, = 5z} (Allen et al., 1996). At the lateral
boundaries we use longshore periodicity. In the cross-shore direction the domain
length is [, = 4z). At the seaward boundary ' = [, we set the absorbing-generating
boundary condition, and at the shoreline z’ = 0 we place a no flux boundary con-
dition at a small water depth h, = 0.01 m. We note that a similar treatment of
the shoreline is utilized by Ozkan-Haller and Kirby (1997), as those authors found
minor differences between the results obtained by including the shoreline runup and

those from calculations with a wall boundary at the shore.

The initial condition is given by:

i = i, (5.13)
U = €U, (5.14)
V = Vg + eV, (5.15)

where U’ and V' are the velocities from the computed linear instability analysis using

the solution of Putrevu and Svendsen (1992b), and € = 4.5 x 10~2. We point out that
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we found through our computations that the nonlinear shear wave instabilities, after
the initial development, were rather insensitive to the initial condition. However,
the simulation time for those instabilities to grow depends on the initial condition.
As an example, for a random perturbation of the initial velocities U" and V', it was
found that the time for the shear waves to reach the same energetic motion as that

for the linear unstable perturbation of U' and V' was four times as large.

The grid spacings for the present calculations are the same as those used
by Allen et al., namely Az = Ay = % =5 m. We choose the time spacing At
corresponding to the Courant number C, = 0.8, which is lower than the limiting

Courant number C, = 0.85 calculated in section 3.2.

I'ig. 5.1a shows the current vectors of the initial velocity field, with the maxi-
mumV =1 m/s at i =0.75. The solid dots represent the location of the grid-points
for which time series are shown. Notice that the velocity perturbations eU’ and eV’
from the basic state are so small, that they are imperceptible at this scale. Fig. 5.1b
shows the instantaneous current vectors at t ~ 3.5 hr. The comparison of the two
plots evidences the growth of the instabilities into shear waves, which cause the

currents to meander and form vortices.

Time series of 5, U and V at - = 0.75 and f’; = 0.5 are given in Fig. 5.2.
It is seen that the amplitude of the shear waves grows quasi-exponentially in about
3.5 hr, and then remains quasi-steady, oscillating around a mean value. This mod-
ulated amplitude is clearly seen for all the three variables, but it is stronger for
the velocity components than for the free-surface variation. It is also visible that
the higher amplitude disturbances have larger periods, which confirms previous ob-
servations. The free-surface oscillations have an absolute maximum around 5 mm,
hence confirming the validity of the rigid-lid assumption used by Allen et al. (1996).

In Fig. 5.3 and 5.4 we present the time series at the same location obtained by
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Figure 5.1: Depth-averaged current vectors over a plane beach at two instants of
time: (a) ¢ =0 hr; (b) # ~ 3.5 hr.

Ozkan-Haller and Kirby (1997) and Allen et al. (1996), respectively. Though they
differ in some details, the similarity between our results and those of Ozkan-Haller
and Kirby is encouraging. It should be mentioned that Ozkan-Haller and Kirby use
a pseudospectral numerical model, which has a zero truncation error for the spatial
derivatives. The solution presented here and that of Ozkan-Haller and Kirby differ
mainly on the initial time for the disturbance to grow, and also exhibit slightly
different values of the peak period. The period of the oscillations in our solution
(T ~ 870 s) is slightly smaller than that predicted by those authors (7' ~ 920 s),
which suggests that our shear waves travel faster (since the wavelength in these

computations is determined by the fixed longshore domain length).

A closer comparion of Fig. 5.2 and 5.3 shows that the low-frequency oscil-

lations are the same in both cases. Second, we notice that the cross-shore and
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Figure 5.4: Time series of U at & = 0.75 and £ 5 for different values of the

friction factor from Allen et al. (1996) 51mula1;10115 (courtesy of H.T.
Ozkan-Haller).
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longshore velocities are skewed in the same direction in the results of the two mod-
els. The differences between the time series of the two simulations after the initial

growth is that both U and V are slightly more regular in Fig. 5.3.

The time series of U predicted by Allen et al. (1996) for the same friction
value pt = 0.006 are shown in the second panel (from the top) of Fig. 5.4. The period
of those shear waves is estimated as 7' ~ 800 s. It also appears that the cross-shore
velocity amplitudes are slightly smaller than those calculated by SHORECIRC and
Ozkan-Haller and Kirby. Nevertheless, the overall magnitude and time variation
of the velocities are seen to agree fairly well. We recall that the model of Allen

et al. (1996) uses the rigid-lid assumption, which from this comparison appears to

influence the predictions of U.

The frequency spectra corresponding to the time series of n,U and V at
=075 and {;— = 0.5, from the present model computations, are shown in Fig. 5.5.
The spectra are obtained from a 12.1 hr record starting at t ~ 4.8 hr, using a Bartlett
smoothing with five segments, each of them with 4096 points and a sampling rate
of 10At = 2.128 s. The spectral estimates indicate that the peak frequency is
fp, = 0.00115 Hz, or T = 870 s. Note that the vertical axis scale for the surface
elevation spectrum S(7) is 1000 times smaller than the axis for the velocity spectra,
S(U),S(V). The energy associated with V at the peak frequency is slightly larger
than that of U. This means that the amplitude of the shear waves in the cross-shore
direction is smaller than that in the longshore direction (this observation can also be
inferred from the time series in Fig.5.2). We note, however, that this is not always

true for other locations in the model domain: S(U) is larger than S(V') for locations

some distance seaward from the maximum longshore velocity at = = 0.75.

It has been suggested (Bowen and Holman, 1989) that the phase spectra

between the measured time-series of 1,U and V' at a given location can be used
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to identify the presence of shear waves. Therefore, next we will briefly analyze the
phase difference spectra between the signals corresponding to 5(t), U(t), V (t). For a
stationary random process the cross-correlation between two generic time sequences

f1 and fy is defined as (Newland, 1993)

Cia(7) = (fi(t) fa(t + 7)) , (5.16)

where () represents the expected value operator. The cross-spectral density function
is given by

o0

Bp(w) = f Cu(r) e dr = Fi(w) B), (5.17)

where F} and F, are the spectral densities of f, and f;, and # represents the complex

conjugate. We define the transfer function H(w) as

Py (w)

H(w) = 7‘1)11(1;;) "

(5.18)

where @, (w) is the autocorrelation spectrum. The phase difference ¢(w) between
two signals at each frequency can be calculated from the transfer function as

¢(w) = arctan (%) : (5.19)

Before presenting the phase spectra, it should be remarked that the coherence
between the time series of measured (in the field) U and V is much stronger than
that with surface elevation records (Oltman-Shay et al., 1989). Hence it is more
relevant to examine the coherence and phase difference between the two velocity
records, though we start first with the analysis of the phase spectra between 7 and
U, and n and V. The phase difference between the free-surface elevation 7 and
the cross-shore velocity U is shown in Fig.5.6 (top panel). In the frequency range
0.0005 < f < 0.003 Hz where the time-series are coherent (coherence larger than 0.8)
we observe that 1 and U are nearly in phase or at most 45° out of phase. This phase

relation is in agreement with that calculated by Oltman-Shay et al. (1989) from
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the analysis of field data. Conversely, the phase difference between the free-surface
elevation 77 and the longshore velocity V, shown in Fig.5.6 (center), is between 90°

and 180° and at the peak frequency is approximately 140°.

More relevant, though, is the phase difference between U and V shown in
Fig.5.6 (bottom panel). In the frequency range 0.0005 < f < 0.003 Hz where the
motions are coherent, U and V are out of phase by 140°, with U lagging V. We
note that this phase relation is different from those observed by Oltman-Shay et al.
(1989), who indicate a near quadrature (90°) phase between U and V. One possible
reason for this difference is that (as we will see later) the phase difference changes
with the cross-shore position. Therefore, since the beach topography in the present
simulation and that of Oltman-Shay et al. are very different, it is equivalent to say
that the relative locations of the points at which the time-series are taken are also
different. Second, the results of Oltman-Shay et al. are from the analysis of field
data where other mechanisms such as the dispersive mixing are also present, which

maybe responsible for changing the relative phase spectra.

The phase difference between U and V can also be calculated from the results
from the linear stability analysis. As mentioned above, the initial perturbed veloc-
ities are calculated using the solution of Putrevu and Svendsen (1992b). We can
therefore reconstruct a time series for that solution for the velocities corresponding

to a given amplitude, which contains the phase information, as:

1 (&
V’ = E ?R(’. [% eg("-ﬂ—wt)‘l . (520)
U'=-— %?Re [ikgpeitky=wn] (5.21)
]

where 1)(z) is the complex function related with the stream function ¥(z,y,t) by

U = Re [1})(.1:](4’: “"?"_‘”] . (5.22)
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For each location (x,y) and a given wavenumber k and angular frequency w we
determine the time series of U’ and V', which are just sinusoidal functions, and then
calculate the phase difference between the two. Thus, we find that at = =0.75 and
fﬁ = 0.5 the phase difference between U and V for the wavenumber corresponding
to the maximum instability (k = 1.4 x 1072m™!, w = 9.084 x 107%s7!) is —10°,

with V lagging U. Hence, there is a considerable difference between the phase lag

predicted by the nonlinear model and the linear stability model.

To further illustrate the growth and propagation of shear waves we also
present in Fig.5.7 the time series of 7, U and V at - = 0.875 and {f; = 0.5, which
corresponds to a point located halfway between the shoreline line and the position
of the maximum of Vi seen in Fig.5.1. The range of the vertical scales in the three
time series is the same as that for the time series shown in Fig.5.2. Comparing
the two plots, we notice that the amplitudes of both U and V are smaller at the
location = = 0.875 than at % = 0.75. Hence, the shear wave energy is consider-
ably smaller in the region corresponding to the inner surf zone. At this location
the results also exhibit a modulation of the amplitudes. The phase spectra at this
same location is shown in Fig. 5.8. At the peak frequency, the free-surface elevation
leads the cross-shore velocity by 50°, and lags the longshore velocity by 50°. The
longshore and cross-shore velocities are nearly in quadrature, with a phase lag of
100°. Hence, the phase difference between the three time series at a point inside
the surf zone (& = 0.875) is somewhat different from that at the position of the
maximum initial velocity (;= = 0.75). We also note that at this location the phase
difference between U and V from the linear stability model is —85°, which means

that it is approximately 180° out of phase from the nonlinear model predictions.

The time series of the free-surface elevation, and cross-shore and longshore

currents at a third location, = = 0.625 and f—:: = 0.5 are shown in Fig. 5.9. This
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point, shown in Fig. 5.1, is located seaward of the maximum of Vs. This is where
the largest shear on the cross-shore profile of the longshore current occurs and we
expect a stronger shear wave energy. As noted by Putrevu and Svendsen (1992b),
the strength of the instability increases with increasing shear on the seaward face.
Comparing the results in Fig. 5.9 with those in Fig. 5.2 we observe that both the free-
surface displacement and the cross-shore velocity at {* = 0.625 are more energetic
than those observed at ;= = 0.75 and at = = 0.875. The amplitude of the longshore
current at ;= = 0.625 is comparable with that at ;= = 0.75. Thus, the conclusions

reached by Putrevu and Svendsen (1992b) and others are confirmed by our results.

For completeness, the phase spectra at the same location, -f: = 0.625 and f:- =
0.5, are shown in Fig. 5.10. Once again we find the phase relations between the three
time series at this location different from those at the other cross-shore locations in
particular for the free-surface elevation. Focusing on the relation between U and V,
the phase difference at the peak frequency is 150°, which should be compared to the
—60° calculated by the linear stability model. It is interesting to note that the phase
angle of the nonlinear model at this location (150°) is quite similar to that found at
the position of the maximum longshore velocity, ;= = 0.75 (140°). However, this is
likely to be fortuitous as the results from the linear analysis do not show the same

feature.

In brief conclusion, due to the nonlinear nature of the motion, our results
indicate that there is not a simple relationship for the phase difference between U
and V at different locations. Therefore, contrary to the suggestion of Bowen and
Holman (1989), this indicates that it is not sufficient to analyze phase spectra in

order to extract from field data information on the shear wave motion.

Given this detailed view of the shear wave motion over a plane beach it is

interesting also to analyze the effect it produces on the mean longshore current. The

135



initial longshore current profile is described by equations (5.12) and (5.15), which
form a quasi-uniform flow in the longshore direction as seen in Fig. 5.1a. As the
instabilities grow in amplitude, energy is transferred from the mean motion to the
shear waves. Hence, the instantaneous plot of the currents can deviate consider-
ably from the longshore uniform situation as seen in Fig. 5.1b. This transfer of
energy occurs continuously, and as the meandering currents grow in amplitude they

eventually release vortices that detach from the background current.

The transfer of energy from the mean motion to shear waves is associated
with a transfer of momentum. This is identical to the situation found in a turbulent
motion where energy and momentum is converted to the small scale eddies. Hence,
shear waves cause a dispersion of momentum which will modify the background
time-mean (averaged over the duration of the simulation) longshore current profile.
In Fig. 5.11a we plot the initial cross-shore profile of longshore current at fi = 0.5
(solid line) versus the current profile obtained by time-averaging V over the entire
period of simulation (¢ = 12 hr), (dashed line). The maximum of the time-averaged
V is approximately 20% smaller than that of the initial current distribution. The
time-mean current seaward of f—z- < 0.65 is larger than the initial current, indicating
that there is a transfer of mean momentum from the region of the maximum of the

Vs to the offshore.

In Fig. 5.11b and 5.11c we show the cross-shore distribution of the terms of
the time-averaged x and y—momentum equations. These are obtained from equations
(5.8)—(5.9) averaged over the period of simulation. When interpreting this figure it is
recalled that we have assumed that the cross-shore gradients of the radiation stress
and mean setup balance each other. Hence these large terms do not appear in the
balance in Fig. 5.11. In the cross-shore direction, the main terms that balance each

other are the pressure gradient ghz—g and the convective acceleration 5"5 (U 2??,), which
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were zero at the initial condition. Due to the development of shear instabilities these
two terms contribute to the mixing in the cross-shore direction. In the longshore
direction, we essentially have % (ff 17!1) + Iﬁi = I“Ei = 0, where the overbar represents
the time-averaging over the period of the simulation where the shear waves had
become quasi-stationary (i.e., £ > 4 hr). The balance in the y-momentum equation
means that the forcing represented by —I-‘;S- is balanced by the bottom friction If?
and the mixing provided by the shear wave motion T?? (ﬁf"h) We note that the
motion at the end of the simulated time (for the time-averaging calculation) is not
the same as that at the beginning, and thus a question arises whether the time-
averaging procedure is valid. It can be seen that the time-averaged terms in the
momentum equations sum to nearly zero which validates the concept of analyzing
the time-mean values over the simulation time. Therefore, the terms ghg—:} and
3"—; (172!1,) in the longshore momentum equation are nearly zero because the motion
is nearly periodic in time (and in the longshore direction, which implies 5—; ~ 0),
and we averaged over a long enough number of periods such that the residual time

derivative is negligible.

From Fig. 5.11c it can be seen that the mixing due to the shear wave mo-
tion transfers momentum from the forcing in the region f: > 0.65 (positive sign of
o (I}ﬁ'h)) to the region ;= < 0.65 (negative sign of & (ffViz)). This accounts for
the increase in the longshore current seaward of 7 = 0.65 as seen in Fig. 5.11a.
A similar conclusion is reached by Ozkan-Haller and Kirby (1997) by looking at

the longshore average of the momentum equations, after reaching an equilibrium

periodic shear wave motion.

In summary, we analyzed the development of shear waves on a plane beach,
which compared well with the results of Ozkan-Haller and Kirby (1997) and Allen

et al. (1996) for the same physical situation. For a standard grid size our model
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results agree favorably with those of Ozkan-Haller and Kirby, who solve the same
set of equations. The agreement with the simulations of Allen et al. is not as good,
and one explanation could be that these authors assume rigid-lid in their model
equations, which we believe can influence some details in the development of the in-
stabilities. In the next section we check the accuracy of our numerical computations
by showing through examples the effect the grid size has on the predicted currents

for the physical conditions simulated here.

5.1.3 Variation of the spatial and temporal resolution

To examine the numerical accuracy of the scheme, and sensitivity of the sim-
ulations to the grid size it is convenient to use the simple setting of the model equa-
tions and physical domain of the previous example. First, we reduce the temporal
spacing relative to that used for the previous results, and then we change the spatial
grid dimensions using the combinations listed in Table 5.1. The physical domain,
model equations, initial and boundary conditions for the present computations are

the same as in the previous section.

Simulation A in Table 5.1 corresponds to the model parameters used in the
examples in the previous section, which we designated by “standard grid” simula-
tion. We will compare here the time series of U and V from simulations B-F at
the location = = 0.75 and f& = 0.5, with those of the results for the standard grid
(simulation A). Simulation B is obtained for the same model parameters as A, ex-
cept for the value of the Courant number C), which is halved. The results indicate
that the time series of the simulations A and B (not shown) are indistinguishable
from each other, and thus we conclude that halving the Courant number, i.e., the

time-spacing At, does not change the accuracy of the computations.
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Table 5.1: Values of the parameters used in numerical accuracy tests for the sim-
ulation of shear waves over a plane beach

r ")

Simulation Az (m) <t Ay (m) %‘5 Gy
A D 18 5) 18 0.8
B 5 18 5 18 04
C 2.9 36 2.5 36 0.8
D 0 9 10 9 08
E 5 18 10 9 08
F 2.5 36 5] 18 0.8

In Fig. 5.12 we show the comparison between the time series of I/ and V for
the results of simulation A (thick line) and simulation C (thin line). The spatial
grid-spacings in simulation C are 1/2 of those for the standard simulation (A). It
can be seen in Fig. 5.12 that there are small deviations between the two time series,
but the overall agreement is good, which suggests that a further reduction of the
grid size will not increase the accuracy. Conversely, the results of simulations A
(thick line) and D (thin line) shown in Fig. 5.13 are quite different from each other.
The spatial grid-spacings for simulation D are twice as large as those of A, and
four times the spacings used in C. It is seen in Fig. 5.13 that the largest deviations
occur for the longshore currents: the period of the shear waves from simulation D is
slightly shorter than that from A, and the period of the amplitude modulation is also
different. Thus, we conclude from this comparison that doubling the grid spacing

relative to the standard grid results changes the dynamics of the shear waves.

The results for simulations E and F, versus A, are presented in Fig. 5.14 and

5.15, respectively. Both computations E and F have a grid-spacing in the longshore
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Figure 5.12: Time series of U and V at i =0.75 and { = 0.5 from simulation A

(thick line) and simulation C (thin line), (;;ee Table 5.1 for details of
parameters).

Figure 5.13: Time series of U/ and V at - =0.75 and fﬁ = 0.5 from simulation A
(thick line) and simulation D (thin line), (see Table 5.1 for details of
parameters).
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direction (Ay) which is twice the spacing in the cross-shore direction (Az), (refer
to Table 5.1). Simulation E has Az equal to the value used in A, and simulation
F has Ay equal to the value used in A. The comparison between the results from
simulations E and F with the results from A shows once again a different dynamical
behavior of the shear waves at ;> = 0.75 and fi = 0.5. The time series of U and V in
Fig. 5.14 are quite similar until £ ~ 4.5 hr, but after this time the two series diverge
with the modulation period of E much larger than that of A. For the comparison
in Fig. 5.15 the agreement deteriorates after about 5 hr of simulation, where the

largest differences are also in the modulation period.

A non-negligible discrepancy is found between the results from simulations
A and F (5.15), which is somewhat inconsistent with the good agreement between
A and C (5.12). Also, we find no particular pattern for the differences between sim-
ulations A and D, E. A possible explanation is that shear waves are an instability
phenomena, which can have different growth rates depending on the simulation con-
ditions, which are intrinsically different for all computations because the numerical

discretization is different.

Overall, for all the time series corresponding to simulations A-F and shown
in Fig. 5.12-5.15, we find the shear wave period to be quite consistent, and varying
between 830 and 900 s. The shear wave propagation velocity c¢g for all computations
is within the interval 0.5 < ,.—fs“-?; < 0.54, where Vg is the maximum of the initial
longshore current profile. This result is consistent with the values found by Allen
et al. (1996) and Ozkan-Haller and Kirby (1997). Therefore, though the details of
the shear waves vary with the grid spacing, the global properties of the physical

solution are identical for all the simulations.
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Figure 5.14: Time series of U and V' at ;= = 0.75 and {* = 0.5 from simulation A

(thick line) and simulation E (thin line), (svo Table 5.1 for details of
parameters).

Figure 5.15: Time series of U and V at = = 0.75 and £ = 0.5 from simulation A
(thick line) and simulation F (thm line), ('-:cc Table 5.1 for details of
parameters).
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5.2 Mixing mechanisms on a barred beach

We have so far either neglected, or utilized a simplified model, to account
for the dispersion effect due to the vertical variation of the horizontal currents. In
this section we study in detail the effect of including in the model equations the

interaction terms linked with the three-dimensionality of the problem.

In the example analyzed here, we choose to consider the longshore varying
barred beach with a small rip-channel studied in section 4.3, and we also extend the
computational region in the longshore direction. For the example studied in that
section the dispersive terms were approximated by an enhanced turbulent viscosity.
In the following application we model the complete governing equations (2.71)-(2.72)

with and without the vertical interaction terms.

The present situation differs from those given by Svendsen and Putrevu
(1994), Rodriguez et al. (1994), Garcez Faria et al. (1995) and Van Dongeren
and Svendsen (1997b), among others, who included the vertically-induced momen-
tum mixing but considered only a longshore uniform coast of a small dimension.
Their solutions (except the one of Van Dongeren and Svendsen) were steady, which
means that they do not account for shear wave motions. The conditions simu-
lated by Van Dongeren and Svendsen corresponded to infragravity waves forced by
obliquely-incident wave groups on a longshore uniform plane beach. Conversely,
Ozkan-Haller and Kirby (1996) studied the nearshore motion over a long straight
barred beach with a length long enough for shear waves to develop, but approx-
imated the 3D dispersion mechanism by an enhanced eddy viscosity model. The
study of Deigaard et al. (1994) does include a longshore varying barred beach of
a dimension long enough to allow for shear wave disturbances, and their model is

only 2DH (depth-averaged currents only).
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The present simulation bridges several of the above studies as we apply the
fully quasi-3D model to a longshore nonuniform barred beach, which stretches for a
considerable longshore distance. The role of the mixing induced by the vertically-
varying currents is studied and compared with the mixing provided by the shear

waves.

5.2.1 Model equations

The governing equations and closure models for the subsequent example are
briefly given as follows. The equations for conservation of mass and momentum are
identical to equations (2.71)—(2.72), without the surface shear stress, which then
read

=0, (5.23)

aQﬂ + J (Qa Qﬁ

ot 0%, h + Map + Aapy V"’)

o [h, (D I 5oy 0% 4. B, W‘*’)l =
O

5 |\ P 5 s
—{ha—g—li S, —/C Tap A2 —ﬁ (5.24)
. Oz p On, i iy > p '

where the tensors Augy, Bag, Dap and M,y are dependent of the vertical variation
of the horizontal velocities and given by equations (2.55)-(2.58) or (2.67)—(2.70). As
discussed in sections 2.1 and 2.4.1 the turbulent shear stresses are given by
oV, 0Vp
Tag = PV o] 4
L (8:55 0z,

and the eddy viscosity v, is calculated by

u = 0 mf%’un h + Mh,(%)m. (5.26)
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In this expression we choose M = 0.1 and C) will vary with the simulations and is
thus given later. The bottom shear stress is computed according to

iy = %Pf cw Uo (B1 Voo + F2u0a) , (5.27)
where ug is wave orbital velocity at the bottom determined from linear wave theory
(see equation (2.93)), and the friction factor is fe,, = 0.006. The radiation stresses
Sap are determined using linear wave theory from equations (2.106)—(2.109), and
Qua 1s evaluated by equation (2.113) with A = 0.07 HL and B, = 0.125, which
corresponds to the use of linear wave theory. Note that a better representation for
By in the surf zone implies the use of a lower value (see discussion in section 2.4.4),
but we chose to use the value By = 0.125 in order to be consistent with the use of

linear wave theory. The wave field is obtained from the REF/DIF1 model.

5.2.2 Results without dispersive mixing

We are interested in discussing the strength of the dispersive mixing versus
that of the shear wave mixing. Therefore, we start with the presentation of the
results of a simulation without the dispersive mixing terms in the model equations
(5.23)—(5.24), i.e., we consider the situation where A,gy, Bag, Daps and Mg are all
equal to zero. Hence, for this simulation, the only terms in the model equations that
are able to provide mixing are the turbulent shear stresses’. These are modeled by
equation (5.26) with C; = 0.75, which is slightly larger than the expected values
Cy ~ 0.2. (Note that lower values of C'; will be used later). Also, because we consider
depth-uniform currents, then Vj, in equation (5.27) is equal to the depth-averaged

current V.

2 The shear wave action is only seen as a mixing term when we look at the time-
averaged quantities over a long period of time.
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We consider the longshore currents over the barred beach, with a small long-
shore perturbation similar to a rip-channel, that was considered in section 4.3.

Hence, the still water depth h, is given by
h‘o(ﬂ::y) = h’I]L (1 7 fI;‘.‘I': Ey) ) (528)

with hor, F, and F), defined by equations (4.29)—(4.32). As for the case in section
4.3, we choose z, ~ 0.921,, a = %, b= —12, and € = 0.1 (refer to that section for

definitions of the variables).

The relevant parameters to define the bathymetry and domain size are the
crest to shoreline distance [, = 120 m, and the domain lengths in the cross-shore
and longshore directions, [, = 4/[., and [, = 16/., respectively. The depth at the
crest of the longshore uniform section of the bar is h. ~ 1.18 m, and the numerical
grid spacings are Az ~ 4.24h, (5 m) and Ay ~ 8.48h, (10 m). The time step At
is calculated from the Courant number C, = 0.8. For the present simulation we use
periodicity at the lateral boundaries y = 0 and y = 16 [,., the generating-absorbing
condition (without incoming waves) at the seaward boundary z = 0, and a zero
velocity condition (V = U = 0) at the shoreward boundary (z = 41[,) at a small
water depth fi = 0.025. The initial condition for the simulations is a “cold start”,
and the short-wave forcing is “ramped” smoothly until it reaches the steady state

value in approximately ¢t = 400 s.

A perspective view of the beach configuration given above is shown in Fig. 5.16.
Although barely noticeable, there is a rip-channel located at f’- = 8 and across the
bar crest. In dimensional units, the maximum absolute longshore depth variation is
only Ah ~ 0.12 m, which is of the same height or even smaller than that of a sand

4

mega-ripple. As defined in chapter 4, the width of the rip-channel is w, = % = 0.84 [,

a

(100 m). The existence of this longshore variation in the bar geometry will, as seen
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Figure 5.16: Perspective view of the barred beach for the computational example
in section 5.2.

later, enhance the growth of shear waves. It can also contribute to significant mod-

ifications of the wave field as will be demonstrated in section 5.3.

The incident wave conditions are chosen so that the wave height at the sea-
ward boundary (z = 0) is H, = 0.9 h. (1.06 m) and the incident wave angle is
o = 7.5° with the shore normal direction z. The wave period is T = 14.4m
(5 8). The wave field is calculated using REF/DIF1, where a breaking criterion
Hy/hy = 0.78 is used. A contour plot of the predicted wave heights and wave angles
for the given incident wave conditions and bathymetry is given in Fig. 5.17. For
reference the bathymetric contours are also given. Fig. 5.18 shows the cross-shore
variation of the normalized wave height H/H, (top panel) at the longshore uniform
beach section (y = 0) and over the rip-channel (y = 81.). Both figures show that
the wave field is nearly longshore uniform with breaking occuring at z/l. = 2.75 (or

in the seaward oriented coordinate system z'/l, = 1.25). The short-wave angle at
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Figure 5.17: Contour plots of: a) wave angle a,(°); b) wave height H/H,; and c)
still water depth h,/h,.
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Figure 5.18: Wave height and bottom cross-shore variations over the barred beach
at two longshore positions: y = 0 (solid line) and y = 8/, (dashed
line).

the breaking point is a, ~ 5°. Wave breaking is intense just before and over the
bar crest, and then the waves reform slightly past the bar-crest and propagate over
the bar-trough before a second breaking occurs at the foreshore slope of the beach
face. Thus, the radiation stresses forcing is strong over the bar-crest and at the

beach face, and essentially zero over the trough, where no dissipation takes place.

Fig. 5.19 shows the instantaneous depth-averaged velocity vectors at four
different times during the simulation. The first three pictures are at early stages
of the computation, and show how the growth of shear waves starts at the rip-
channel location. Looking consecutively at plots (a), (b) and (c) shear instabilities
develop continuously at y = 81, where the small channel is, and propagate with the

longshore current downstream. The longshore periodicity is clearly seen in plot (b),



where the initial shear instabilities have moved past y = 16 [, and are at that instant
located at y ~ 1[,. Between subplots (c¢) and (d) there is a significant time lapse
(3.6 hr). We see that during this time the predicted predominant wavelength of
the shear waves has increased considerably, which means that vortices have merged.
This frequency downshift is similar to that observed by Ozkan-Haller and Kirby
(1997) of subharmonic transition between shear wavelengths. The increase in wave-
length is accompanied by an increase in the shear wave period as it will be seen in
the time series plots. To further illustrate the dynamics of the shear waves, Fig. 5.20
shows the plots of the vorticity density (¥ = f,—‘:’c’ — %) The light shadings indicate
positive vorticity and the dark areas negative vorticity. In Fig. 5.19(c) and 5.20(a)
it is seen that the vortices at ¢ = 1680 s are very periodic and concentrated near the
bar-crest. In fact, the vortices at ¢ = 1680 s have larger vorticity (in absolute value)
than at the latter stages. At ¢t = 14693 s, when vortex pairing has already occured,
the nearshore currents and the associated vorticity are significantly more irregular,
and we notice that the vortices extend further shorewards and seawards from the
bar-crest than at the early stages. The linear stretches of the vorticity that can be
seen in some longshore locations in Fig. 5.20(b) are an indication of a typical long-
shore current profile at those locations. It is interesting to note that Ozkan-Haller
and Kirby (1997) have found for most of their computations that the vortices re-
leased by the shear instabilities travel further seawards than in the present situation.
This is most likely to be caused by the lower friction values used by those authors
relative to ours. Other computations (not shown here) for the present topography

with lower friction coefficients indicated that the vortices extended further offshore,

in a similar fashion with the results of Ozkan-Haller and Kirby.

Time series of the normalized cross-shore velocity U /c. and longshore velocity
17/(:,,, at different locations are given in Fig. 5.21 and 5.22, where ¢, = /gh, =~

3.4 m/s. The first of these two figures depicts times series at three locations along



a)t=840s

Figure 5.19: Depth-averaged current vectors at four instants of the simulation, for
the case without dispersive mixing.
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(a) t=1680 s

Figure 5.20: Density plots of the vorticity at two instants of the simulation, for
the case without dispersive mixing. (Negative and positive vorticities
correspond to dark and light shadings).
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the rip-channel (seaward of the bar-crest, over the bar-crest and over the bar-trough),
and the second shows the time series at the same cross-shore locations, but at y = 0,
which corresponds to the mid-distance between multiple rip-channels (because of the
lateral periodicity condition). Focusing on the time series of U /c. in Fig. 5.21 it is
first observed that the velocity magnitudes at the different cross-shore positions are
different, indicating that shear waves are more intense seaward and over the bar-
crest. Second, we notice that the predominant shear wave period changes around
t = 4000 s, and that even after that time the shear waves have a broad frequency
band. Third, is appears that the predominant period at the seaward location z =
2.51, is significantly larger than that at the trough location z = 3.5[.. Hence, the
dynamics in those two regions appear to be different. The time series of 17/(:,, shown
in Fig. 5.21 confirm the above observations. It is also seen that the magnitudes of

the deviations from the mean of V' /c, are comparable to those of U /c,.

Turning the attention to Fig.5.22, we notice the same features as in Fig.5.21.
However, the dynamics of the shear waves at this location (y = 0) are somewhat
different from those at y = 81,, indicating that the shear waves did not merely
propagate downstream from y = 8!.. Because the present shear waves are very
dynamic, vortices are formed and destroyed along the meandering currents, which

change the local signature of these instabilities.

From the time series and frequency spectra (not shown) of U and V we can
estimate the peak period of the shear disturbances. For the present simulation we
find that at y = 0, x = 3/, the peak period is approximately within the range
700 < T < 1400 s. The shear wavelength can also be approximately estimated from
Fig. 5.19 and the values are within 2.3/, < L < 3.2[.. Hence, we can estimate the
shear wave velocity as cg = % which gives cg ~ 0.08-0.12 ¢, or (in dimensional units)

cs =~ 0.27—0.40 m/s. Note that the maximum time-averaged longshore current is
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Figure 5.21: Time series of U /c. (3 upper plots) and V /e, (3 lower plots), where
ce = (g he)"® ~ 3.4 m/s, for the case without dispersive mixing, at
gy =81, and: (a),(d) == 28435 (b);(e) & =31, (2)(f) & = 35l
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Figure 5.22: Time series of U/c, (3 upper plots) and V /¢, (3 lower plots), where
ce = (ghe)"® ~ 3.4 m/s, for the case without dispersive mixing, at
y =0 and: (a),(d) z = 2.5 (b),(e) z =31 (c),(f) z =3.51,.
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Vir = 0.18¢,, and hence the ratio of the shear wave celerity and the maximum
longshore current is between 0.44 and 0.67, which is comparable to that suggested

by field measurements (Oltman-Shay et al., 1989; Dodd et al., 1992).

Time-averaged properties of the flow field are shown in Fig. 5.23. The time-
averaging is performed over the period of time starting at ¢ = 4000 s until the
time at the end of the simulation (see Fig. 5.22 for reference). The depth-averaged
velocity vectors shown in Fig. 5.23a indicate a slight variation of the flow at the
region of the rip-channel (y = 81[.). This is confirmed by the velocity contours of
U/c, and V /¢, in subplots (c) and (d), respectively. The maximum depth-averaged
cross-shore velocity is oriented seaward and has a magnitude of 0.025 \/¢ h., which in
dimensional units is ~ 0.10 m/s. Note that the depth-averaged cross-shore current
away from the rip-channel is zero, which means that the wave-induced shoreward
mass flux is locally balanced by the return current (undertow). The results show
that even a small rip-channel is able to disturb the otherwise longshore uniform
flow significantly. Last, Fig. 5.23b shows that the longshore variation of the mean

free-surface elevation ;i- is negligible.

It is relevant to point out that, although there is a slight depression in the
bottom topography simulating a rip-channel, rip-currents are not predicted for the
current, conditions. This is due to the fact that the wave field as well as the mean
surface elevation are very homogeneous in the longshore direction. It will be seen
in section 5.3 that a change in the above properties will cause the formation of

rip-currents over the rip-channel.

The cross-shore profiles of the time-averaged mean surface elevation, cross-

shore and longshore (depth-averaged) velocities at four different longshore locations
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Figure 5.23: Time-averaged flow field for the case without dispersive mixing: a)
depth-averaged velocity vectors. (b), (c), (d) Contour plots of: b)
mean free-surface elevation (/h, ; c) cross-shore velocity U/c, ; d)
longshore velocity V /¢, .
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(=0, =7, L=8,{=09) are shown in Fig. 5.24. The mean free-surface ele-
vation is fairly longshore uniform, but the profiles of I/ and V vary with the loca-
tion. The largest variations are observed, as expected, around the the rip-channel
but are more pronounced slightly downstream of it due to the inertial acceleration
as demonstrated soon. The figure for the longshore current shows the “classical”
double-peaked distribution caused by the breaking over the bar and at the foreshore,
but it also shows a significant current in the trough where the wave-induced forcing

is zero. It turns out that this non-negligible current is forced by the redistribution

of the wave-induced forcing by shear waves.

It is therefore interesting to analyze the contribution of each of the terms
in the momentum equations (5.23)-(5.25), not accounting for the dispersive mixing
terms. For such, let us consider the momentum balance of the time-averaged (over
the period of simulation) governing equations, as we did in section 5.1. Fig. 5.25
shows the cross-shore distribution of the magnitude of each of the terms far away
from the rip-channel (y = 0), in the z-momentum equation (top) and y—momentum

equation (center). For the z-momentum balance the only two significant terms are

the wave-forcing %d—sf and the pressure term gh2S. In the y-momentum balance

there are other important contributions, though. In the region of breaking over the
bar the wave-forcing i%"— is balanced by the bottom shear stress and the mixing

provided by the shear waves, which is represented by the time-averaged convective

ay \ h h p
which means that most of the mixing is provided by the interaction between U and

accelerations -2 (93) and % (%) The magnitude of % (9—31) is quite large,

V; the contribution of the interaction of V with itself is much smaller due to the
quasi-longshore uniformity of the motion studied here. In the trough region all the
terms are relatively small, but the momentum mixing due to the shear waves is able

to transfer momentum from the breaking zone to the trough region.
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The cross-shore distribution of the terms in the time-averaged momentum
balance at the rip-channel (y = 81.) is shown in Fig. 5.26. At this longshore location
the wave-forcing is nearly the same as at y = 0, but the distribution of the convective
accelerations in the y—momentum is quite different. The term % (%i) is no longer
negligible compared to % (g}?”-), although it has the opposite sign, and thus the
sum of these two terms at this cross-section is similar to that at ¥ = 0. Hence, the
bottom shear stress profile at y = 81, is only slightly different from that at y = 0,
which means that the longshore current is similar (as depicted in Fig. 5.24). This
change in the distribution of the convective accelerations from one longshore location
to the other is due to existence of the rip-channel, which enhances the contribution
of the longshore gradients (%) of the flow variables. Last, we notice that at both
cross-sections the longshore pressure gradient ghgg is negligible. We find though
that at y = 71. (not shown) the magnitude of the longshore pressure gradient in the
trough region is comparable to that of the bottom friction and shear-waves induced

mixing.

In summary, we have seen in this example that, without the dispersive mixing,
strong shear waves are predicted for the present conditions. For the chosen incoming
wave characteristics on the barred beach the longshore current (cross-shore) profile
has a double peak, and a relatively weak but not negligible current in the trough

region caused by the mixing provided by the shear waves dispersion.

5.2.3 Results with dispersive mixing

A second set of simulations was then carried out where the dispersive terms,
which account for the depth variation of the horizontal currents, were no longer
neglected. Thus, in this subsection we use the full SHORECIRC model to study

the nearshore currents over the same barred beach with a rip-channel, and governed
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by the complete set of equations (5.23)—(5.25). The turbulent mixing and bottom
shear stress are modeled as before, with C; = 0.75 and f.,, = 0.006. The bathymetry
and wave field variables are given in Fig. 5.16-5.18. The results presented in the
following should be compared with those in the previous subsection, and show the

changes caused by the dispersive mixing.

The instantaneous velocity field of the depth-averaged currents at four dif-
ferent times is shown in Fig. 5.27. As in Fig 5.19 a perturbation of the longshore
velocity is started at the rip-channel. However, at ¢ = 1680 s (see Fig 5.19¢, and
Fig 5.27b) the magnitude of the shear waves is seen to be much smaller than in
the case without dispersive mixing. Even at ¢{ = 2519 s the shear waves have not
developed yet all over the domain. Hence, there is an initial growth of shear waves
triggered by the rip-channel at the initial stages of the simulation. This growth
only continues up to a certain point and it takes a longer time for the present case
for shear waves to be formed everywhere. A comparison of the velocity vectors at
t = 14693 s for the two simulations reveals that the shear waves for the case with
dispersive mixing remain quite regular and periodic, whereas in the case without the
dispersion the shear wave motion develops into a flow pattern that could resemble

large scale turbulence.

Times series of the nondimensional cross-shore and longshore depth-averaged
velocities at the rip-channel axis (y = 81,) and three cross-shore locations are given
in Fig. 5.28. Notice that the velocity range in these plots is slightly less than one-
half of that for the plots in Fig. 5.21. Hence, comparing the two figures, we confirm
that the magnitude of the shear waves predicted for the case with dispersive mixing
is considerably smaller than that for the case without. Second, we notice that the
amplitude of the variations in the longshore velocity ]?/Cc at x = 2.5 is much

smaller than that at # = 3/.. This result is in contrast with the similar magnitudes
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Figure 5.27: Depth-averaged current vectors at four instants of the simulation, for
the case with dispersive mixing.
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of the velocity variations found previously at the same locations for the case without
dispersive mixing (Fig. 5.21). Thus, the shear waves for the case with dispersive
mixing are almost non-existent seaward of the bar crest, which means they are
concentrated over the bar crest. From Fig. 5.28 it is also observed that the shear
waves in the presence of dispersive mixing are very periodic, unlike the results in
Fig. 5.21. The period of the shear waves is T' =~ 530 s, and the wavelength is L ~ 21,
which means that the shear wave celerity is ¢g ~ 0.13 ¢, or (in dimensional units)
¢s ~ 0.45 m/s. The ratio of the shear wave celerity over the maximum depth-
averaged longshore current is then {,f{— ~ (.65. In summary, these plots show that
the inclusion of the vertical dispersive mixing limits the growth of the shear wave

instabilities.

It is therefore interesting to look at the distribution of the time-mean variables
(averaged over the period of simulation). The contour plots of the flow variables
are similar to those shown in Fig. 5.23, and thus we turn to the more revealing
cross-shore profiles shown in Fig. 5.29. From the top to the bottom the graphs
represent the cross-shore variation of ¢ [he, U /e, U /cc and h,/h. at the longshore
locations =0, =7, =8, =9. This figure indicates that the longshore velocity
is quite longshore uniform with the largest variation slightly downstream of the rip-
channel location. The longshore current profile exhibits a double-peak, but also a
non-negligible velocity in the trough region. The maximum is located at = ~ 2.851,,
which is slightly shoreward of the breaking point location (z = 2.751.). The latter
location coincides with the position of the minimum set-down, (REF/DIF1 does not
account for any “spatial-lag” transition between the transfer of momentum from the

short-wave motion to the mean flow motion).

A comparison between the time-averaged, depth-averaged longshore current,

f//cm for the case with and without dispersive mixing is shown in Fig. 5.30. In
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Figure 5.30: Cross shore distribution of (time-averaged) V /¢, with the dispersive
mixing at > =0 (—) and }* =9 (= ), and without the dispersive
mixing at } =0 (—o—) and £ =9 (=x-).

this figure is plotted the cross-shore distribution of V /¢, at two longshore locations
(£ =0, =9). First, we notice the overall similarity between the current profiles
for the two situations. In one case, the mixing is solely provided by the shear wave
motion, which is very energetic. In the second scenario, the mixing is provided by
the vertical variation of the currents and by a weak shear wave motion. Second, it
can be seen that the depth-averaged velocities for the case with the 3D-mixing are
larger than those for the case without, except near the shoreline. Hence, it appears
that the cross-shore integrated longshore flow in one situation is larger than in the
other, which could seem to contradict the global balance of forces over the entire

domain:
& el
/ Say(0,y) dy = / ] ! TyB dz dy . (5.29)
0 o Jo

Closer analysis of the longshore velocities for the case with the dispersive mixing
reveals that because they vary over the depth, the velocity at the bottom Vj is
smaller than the depth-averaged velocity V. It therefore requires a larger value of

V to generate the bottom shear stress required to satisfy (5.29).
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The vertical variation of the horizontal currents has been used to calculate
the dispersive mixing terms. At a first approximation, the vertical profile Vl(g}(z)
of the horizontal currents is given by expression (2.47), where depth-uniform eddy
viscosity and local steady-state were assumed. Equation (2.47) is therefore valid
at each time-step, but it can also be used to compute the time-averaged (over the
whole simulation) vertical profile from the known time-averaged values of V., and

the bottom shear stress.

The local depth variation of time-averaged (over the period of simulation)

(
current V, = V, + Vl(::) (normalized by ¢, = /g h.) at several locations along the
middle of the rip-channel (y = 81.) is given in Fig. 5.31. For reference the breaking
point is indicated as “B.P.”, and the dashed line represents the mean free-surface
elevation. As mentioned previously, the current velocities are not defined above the
wave-trough level, but we assume that the value at the trough can be extended up to
the mean free-surface elevation. The top-panel of Fig. 5.31 shows “typical” undertow
profiles in the bar-crest region. In the trough region the cross-shore velocities are
sheared with the (absolute) maximum close at the free-surface. Seaward of the
breaking region the undertow profiles show less vertical variation those given by
(Putrevu and Svendsen, 1993), which means that the contribution of the steady-
streaming is smaller here. The vertical profiles of the longshore current (shown in
the bottom panel) are almost depth-uniform, but still exhibit a slight vertical shear
from the bottom to the top in the direction of the mean longshore flow. Hence,
as mentioned above, the velocity at the bottom is smaller than the depth-averaged
velocity. It is convenient to mention that the vertical variation at the same and

other longshore locations of the time-averaged and the instantaneous velocities are

similar to those just presented.

The cross-shore distribution of the terms in the time-averaged momentum

170



"8 =1fiye’/A pue %2/ (peSeiese-ouiry) Jo sa[goid [@III8A 3} JO UOIJRLIRA BIOYS-SSOI) :[E'G 9In3Ig

1/x

G/'€ 9¢ 62¢ ¢

GL'¢ G¢ Ge¢ GL'L ge'tL

T

= r 1 I e — - |.~r.ll i F
= sty = g g =T TR e = e e e b — — — — — & — =40

1 1 1 I di 1 1 1 1

/A
- . - A2 . .
G/€ GE 4§2¢ e GL¢ G¢ 69dc¢ GL'l Gc'l

T T T T T T T T T

= , 1y
o 1o
1o |_udo\|\\\\lr||l.|llll
i 10 E\\\Lﬂ. —4€
- ot Jg s
Lo E...uc 10 10 o e ;

= ) 1 I + . j —-
\;Iﬁ:w”tll - - - - - - - — ", [ & — =0

| 1 | ] dif 1 1 | 1

171



balance at y = 0 is shown in Fig. 5.32. Note that the terms in the momentum equa-
tions that are generated by the depth variation of the currents are here combined
together as a single term, which we designate by dispersive mixing term. For the
z-momentum we notice that the dispersive mixing gives a small contribution around
the two breaking points, but the main balance is still governed by the cross-shore
component of the radiation stress and pressure gradient. In the y—momentum four
terms are important: the wave-forcing i%—’-, the bottom friction fﬁi, the dispersive
mixing, and the shear wave mixing given by the term % (QLEE) Compared to
Fig. 5.25 it is observed that the shear wave mixing is reduced in the present simula-
tion and is partly replaced by the dispersive mixing. In the trough region, a detailed
analysis of the magnitude of the terms reveals that the bottom shear stress and the

dispersive mixing are the two dominating terms, which means that the shear wave

mixing is negligible in that region.

Last, it is of interest to evaluate the magnitude of the dispersive coefficients
D, and B,g in equation (5.24). The terms containing these coefficients were found
by Svendsen and Putrevu (1994) and Van Dongeren and Svendsen (1997b) to give
the largest contribution to the momentum mixing. Furthermore, the studies of
Van Dongeren and Svendsen suggest that B,, and D,, are the largest and thus
we compare the magnitude of them with the value of the turbulent eddy viscosity
v®. Therefore, in Fig. 5.33 we have plotted the cross-shore distribution of Hf,_D\/L;T’

B . 1, g . .
- and —%— at several longshore positions 2 [, apart, and at a given time of
ho £/ g ho ho v/ g ho & I ey ! 5

the simulation. First, we notice that the eddy viscosity v; is one order of magnitude
smaller than the mixing coefficients D,, and B,,. Inside the surf zone, the ratio

D,.. /v, is approximately 5, which is of the same order, but smaller than, the estimate

% Note that Van Dongeren and Svendsen find that the terms associated with Mg
can also be important, but the tensor M,z can not be directly compared with
D,s and B,g because it has different dimensions.
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Figure 5.32: Cross shore distribution at y = 0 of (time-averaged): (a) Terms in

or . " a‘-_‘ = ﬁ
the :lelnl balance: gh3s (+), 1082 (—), 1;_33_ (o), 2 (%)
(x), % (ijg ) (*): — turb. mixing (—), ‘tf? (—-—), = dispers.iye mixing
(---); (b) Terms in the y—momentum balance: gh% (+), %%ﬂ- (—),

a5. %Y () I (T Ny "
i—ail (), F?;} (_;f' (%), gag (%‘) (), — turb. mixing (= ), %

(==), — dispersive mixing (-); (¢) bottom variation (—), and mean
surface elevation (— —) .
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D,, =~ 2014 given by Svendsen and Putrevu (1994). However, the ratio D,, /v, is
approximately 50 in the bar-trough, due to the fact that the eddy viscosity in that
region does not have a wave breaking contribution. Second, the results show that
D, is about the same value as B,, over the bar-crest, and larger over the trough.
The coefficient B,, has a local maximum near the shoreline, in the location where
the second breaking occurs. This suggests that the dispersive mixing is stronger
nearer the shoreline, which is confirmed by inspecting the vertical current profiles at
those locations. Furthermore, we notice that all the coefficients vary little with the
longshore location, despite the fact that these are instantaneous values and hence

reflect some longshore variation due to the shear wave motion.

In summary the present simulation indicates that the inclusion of the depth
variation of the currents provides an effective mixing in the breaking region, that
carries momentum from there to the bar-trough region where breaking is absent,
and to the region outside the surf zone. Using an eddy viscosity parameterization
estimated from the turbulence due to breaking and the bottom friction, we find
reasonable values of the mixing coefficient compared to the values found by other
authors. This conclusion strengthens the importance of accounting for the depth-
varying currents in a nearshore current model. We also find that the action of the
depth-varying currents is to provide some mixing which reduces the dynamics of

shear waves.

5.2.4 Sensitivity analysis to variations in the eddy viscosity

The eddy viscosity is one of the parameters in the computations to which a
significant uncertainty is attached. It is therefore important to examine the influence
of the eddy viscosity values on the estimates of the vertical profiles Vi, of the

currents, and thus on the estimates of the dispersive mixing. An example identical to
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the examples presented in subsections 5.2.1-5.2.3 is shown here, where the coefficient
(' in the eddy viscosity formula (5.26) is changed from C, = 0.75 to 0.25, whereas
M remains equal to 0.1 as before. This means that v; is reduced approximately 20%
in the region where breaking occurs, and thus we expect the dispersive mixing to
increase in that region. In fact, the choice C; = 0.25 is closer to the estimates based
on the physical processes discussed in section 2.4.1, whereas C, = 0.75 is slightly

larger than the expected values.

The time series of the non-dimensional current velocities, obtained from
SHORECIRC for the present parameters, at three cross-shore locations and at
y = 81, are shown in Fig. 5.34. The velocity scales are the same as those in Fig. 5.28,
and, as expected, the comparison between the two figures indicates that the shear
waves for the present simulation are less energetic than those for the case with
C1 = 0.75. Thus, we conclude that an apparent small change in the eddy viscosity
coefficient (which affects mainly the non-breaking region) can affect significantly the

dynamics of the nearshore currents.

The time-mean cross-shore profiles of the the mean surface elevation ¢/h,., the
depth-averaged cross-shore current U /c., and the depth-averaged longshore current
v/c{, at four longshore locations are shown in Fig. 5.35. The general trend is similar
to that observed in Fig. 5.24 and 5.29, but the maximum of the longshore current
(see third panel) is slightly larger than the maxima for the previous simulations,
due to a greater vertical variation of the longshore current and thus the bottom
velocity is smaller than the depth-averaged velocity. Hence, it can be expected
that the dispersive mixing is larger for the present case with C; = 0.25 than for
the simulation with C'; = 0.75. This can be seen in Fig. 5.36, where we plot the
magnitude of the terms in the (long) time-averaged momentum equations. In the z-

momentum equation, we find again that the balance is mainly between the radiation
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stress gradient and the setup gradient, with a small but not negligible contribution
due to the dispersive mixing. In the y—momentum balance the dispersive mixing
is seen to be locally quite large in the region where breaking first occurs, and the
magnitude of it is comparable with that of the bottom shear stress. In the bar-
trough region, these are the only two active terms (in the time-averaged sense).
Comparing Fig. 5.36 with Fig. 5.32 we notice that the dispersive mixing is larger for
the present case, and the shear wave mixing is substantially smaller. The bottom

friction has similar magnitudes.

A better quantification of the dispersive mixing effect can be seen in Fig. 5.37,
where the cross-shore distribution of the mixing coefficients D,.., B,, and v, at eight
longshore locations are shown. The mixing coefficients D,, and B, for the present
simulation are, in the surf zone, approximately twice as large as the correspondent
mixing coefficients for the case with €', = 0.75, shown in Fig. 5.33. This variation
contrasts with the variation of just 20% in the value of 1, over the crest from one
case to the other. Inside the surf zone, the ratio D,, /v, for this case is 10, which
is closer to that of Svendsen and Putrevu (1994). Over the bar-trough that ratio is
Dy /vy = 200. It is also convenient to point out that based on their results, Svendsen
and Putrevu suggested that D,, ~ 0.2 h, /g h, inside the surf zone. For the present
simulation this can be seen to be a good approximation over and shoreward of the
bar-crest. Seaward of the bar-crest the value of D,, is about 25% of the value in

the surf region, which validates the expression (4.33) used in chapter 4.

Fig. 5.33 and 5.37 give an indication of the dependence of D, and B, on the
values of 14, and also show that innacuracies in the estimates of v; will reflect on the
values of the mixing coefficients and thus, on the total amount of dispersive mixing
provided by the vertical variation of the currents. It is therefore quite important to

have a good model for the eddy viscosity parameterization, and more data is needed
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Figure 5.36: Cross shore distribution at y = 0 of (time-averaged): (a) Terms in
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for the turbulence levels over barred beaches in order to validate our eddy viscosity

model.

For a value of C; = 0.1 we find that shear waves are still predicted and that
D, =~ 12, inside the surf zone. Hence, we find a certain stability of the ratio D, /1,
for a reasonable range of the values of C;. Another test was performed where we
chose C; = 0.25 as before, but M = 0.05 in equation (5.26) instead of M = 0.1. This
implies that we reduced the eddy viscosity to one-half in the breaking region, and
thus v, ~ 0.1h, /g h,. Under these circumstances the dispersive mixing turns out
to be large enough to completely eliminate the generation of shear instabilities. The
vertical velocity profiles also exhibit a larger curvature mainly over the bar-crest,

both in the cross-shore and longshore directions.

Thus, in summary, the development of shear instabilities is seen to be strongly
dependent on the value of »; through the amount of mixing provided by the disper-
sion due to the vertical variation of the currents. We point out that these results
indicate that the mixing provided by shear waves in the absence of dispersion is
equivalent to the mixing provided by the dispersion mechanism only (when present),
or the combined mixing provided by the two effects. It will also be seen in chapter
6 that a combination of mixing from the shear instabilities and vertical dispersion
dominates the total mixing for the simulation of currents under field conditions.
We find that the present eddy viscosity formulation seems to be fairly realistic in
face of the values estimated from field or laboratory data, and moreover, to give a

reasonable variation of the current velocities over the depth.
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Figure 5.37: Cross shore distribution, at several longshore locations 2 [, apart, of:
7

_DII_ . _Bﬂ_ .
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5.3 The effect of the wave field and the longshore pressure gradient:

prediction of rip-currents on a barred beach

It was demonstrated in chapter 4 that the inclusion of the longshore pressure
gradient in a simple (one-line) longshore current model (Putrevu et al., 1995) could
have a dramatic effect in the velocity field. Conversely, the use of the complete
SHORECIRC model illustrated that the longshore pressure gradient was overesti-
mated in the model of Putrevu et al., and that the nonlinear advective accelerations
and bottom shear stress can affect the flow even in a simple case of a quasi-longshore
uniform topography. The flow pattern predicted by SHORECIRC under that situ-

ation was mostly uniform in the longshore direction.

For the same quasi-longshore uniform barred beach the results in the previous
section showed other dynamics of a predominantly longshore uniform flow. Only
minor deviations of longshore uniformity in the time-averaged flow are seen in, e.g.,
Fig. 5.23. In contrast, a very uneven longshore current was predicted by Sancho
et al. (1995), which was attributed to the existence of a large longshore pressure
gradient. That is seen to drive a longshore current with the maximum over the
bar-trough, unlike the double-peaked current profile we obtained in the examples
in the section 5.2. The results of Sancho et al. also illustrate the formation of a
rip-current, which is not seen for the examples analyzed here so far. The longshore
variation in the topography of the example used by Sancho et al. is substantially
larger than that of the examples in section 5.2. Thus, a few questions arise: Can
rip-currents be predicted for the topography studied in section 5.2 (see Fig. 5.16)7
Can the longshore pressure gradient also cause a substantial modification of the

longshore current profile for such weaker topographic longshore perturbation?

Notice that in the literature we find several references to the formation of rip-

currents caused by the longshore pressure gradient due to longshore uneven wave
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fields (Arthur, 1962; Bowen, 1969b; Sonu, 1972; Haller et al., 1997). Therefore,
in this section we link our previous findings to the formation of rip-currents and
discuss the importance of the longshore pressure gradient relative to that of other

mechanisms.

The model equations for the following example are the same as for the exam-
ples in section 5.2, namely, equations (5.23)-(5.27). We first present the results for

depth-uniform currents (no dispersive mixing) and then for depth-varying currents.

5.3.1 Depth-uniform currents

The beach topography is also the same as the previous (Fig. 5.16), but ex-
tended seaward, and is given by equations (4.29)-(4.32) with I, = 120 m, 2/, ~
0.921, a =792 b=-12,¢=0.1 and w, = 2 = 0.84/, (100 m). The domain size
is I, = 61, and [, = 16, which means that we extended the previous bathymetry
further offshore in order to accommodate for the formation of rip-currents flowing
over a larger cross-shore distance. The grid sizes are Az ~ 4.24h, and Ay ~ 8.48h,,

where h, ~ 1.18 m is the depth at the bar-crest. The Courant number C, is 0.8

(At ~ 0.488 s). The boundary conditions are the same as used in section 5.2.

The wave field is obtained from the model REF/DIF1. The initial wave
height is chosen such that wave breaking occurs over the bar everywhere except
over the rip-channel, where the water depth is larger and thus the waves break only
on the beach face itself (see Fig. 5.38). At the seaward boundary (z = 0) the wave
height is H, = 0.64h,. (0.76 m) and the incident wave angle is ay,o = 8°, which
gives a wave angle o, = 5° at the breakpoint over the bar. The wave period is
T =14.4y/h./g (58). The results from REF/DIF1 shown in Fig. 5.38 and 5.39 also

indicate that refraction is important around the rip-channel, modifying the initial
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incident wave direction by +15°.

The cross-shore profile of the wave height over the bar (at y = 0) and over
the rip-channel (y = 81.) is given in Fig. 5.39. The breakpoint for the current wave
conditions over the linear portion of the bar is at 2’ =1, — x=I,, whereas over the
rip-channel breaking only starts at 2’ = 0.21,, i.e., it only occurs over the last 25 m
on the beach face. These two figures indicate the difference in wave conditions over
the rip-channel and over the bar, which is likely to induce a strong differential in
wave forcing. Note that although the wave model predictions may not be accurate,
a similar trend in the wave height variation over the channel and the bar has been

observed in laboratory experiments (Haller et al., 1997).

Time-averaged properties of the flow

We will discuss first the time-averaged characteristics of the predicted flow.
The time-averaged (over a period of 2.1 hr) flow is illustrated in Fig. 5.40, where
we present the spatial distribution of the depth-averaged currents Ve (top panel),
and the below-trough mean current V,,, (bottom panel). The later corresponds to
the total mass flux minus the wave-induced mass flux, averaged over the depth,
and hence is representative of a measured current below trough level. These results
correspond to a simulation with a bottom friction coefficient of f., = 0.006 and the

eddy viscosity parameters C; = 0.75 and M = 0.1%,

Focusing on Fig. 5.40(a), we notice that two circulation cells form around
the rip-current, centered at the bar-crest. The width of the rip increases slowly
towards offshore, as the result from a small turbulent dispersion as well as the

dispersion caused by fluctuations of the rip (see later). Notice that for this particular

4 These are the same values as used for the test in subsection 5.2.2.
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Figure 5.39: Wave height and bottom cross-shore variations over the barred beach
at two longshore positions: y = 0 (solid line) and y = 81, (dashed
line).

simulation the rip-current is small but not negligible next to the seaward boundary,
suggesting that boundary effects may be limiting the progression of the rip-current
further offshore. Also, the rip-current axis makes a small angle with the shore
normal direction due to the obliquely incoming short-waves. At each side of the rip,
water flows onshore forming a closed circuit (for mass conservation). The longshore
current flows towards the rip-channel at both sides of the rip, even though waves
are approaching at an oblique angle of incidence locally against the currents (note
in Fig. 5.38 that & = —10° and 20° at the upstream and downstream sections of the
rip-channel). A smaller circulation cell is present close to the shoreline at y = 71,
due to a local peak in the wave angle and hence in the radiation stress forcing. In
subplot (b) we observe classical undertow currents away from the rip-channel, and

other features similar to the previous plot.
For reference, Fig. 5.41 shows the spatial distribution of the time-averaged
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flow variables ¢,U, V. The maximum velocity at the rip-current is 0.2 /g he (0.70
m/s). The longshore currents (see subplot (c)) vary substantially in the longshore
and cross-shore directions and can be quite large over the trough. The top panel
of Fig. 5.41 shows the distribution on the mean surface elevation /he. From this
figure it can be inferred that there is an appreciable longshore variation of the surface
elevation in a region of width ~ 2/, centered at the rip-channel. Consequently, the
longshore gradient of the mean surface elevation will be an important term locally

around the rip.

The cross-shore variations of the normalized, time-averaged ( ,5’ .V at four
longshore locations (=0, £ =7, =8, £ =9) are plotted in Fig. 5.42. First, we
observe that ¢ away from the rip-channel (solid line) is much larger than C in the
region of the rip-channel, indicating clearly the existence of a longshore pressure
gradient. At the center of the rip (dashed line) the mean free-surface increases
almost linearly from =5 to =5.8, and then rises sharply towards the shoreline.
Over the bar, ¢ presents the typical “terraced” variation of a double breaking region.
Notice that a similar trend for the mean surface elevation over and away from the
rip-channel has been measured in laboratory conditions (Haller et al., 1997). Subplot
(b) shows that the variation of U/c, has a maximum (in magnitude) along the rip-
channel axis, and over the bar crest. The rip-current is nearly constant seaward of
the location z = 3.51[, until the proximity of the seaward boundary. Away from the

rip-channel the depth-averaged cross-shore velocity is nearly zero suggesting that

the short-wave induced mass flux is carried seaward by the undertow current.

The variability of the longshore velocity profiles at the four cross-sections
predicted for the present conditions (Fig. 5.42c) contrasts with the quasi-longshore
uniform profiles seen for the previous examples (see e.g., Fig. 5.24c). Here, at y =0

(solid line) the longshore current velocity profile exhibits the “classical” double-peak
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shape, whereas at the sections immediately downstream (y = 71[.) and upstream
(y = 91,) of the channel the velocity profiles have a peak in the direction of the
rip-channel over the trough region, and a secondary, narrower, maximum in the
opposite direction close to the shoreline. (Note that the secondary peak at y = 71,

is caused by the local vortex next to the shoreline observed in Fig. 5.40).

The change in shape of the longshore current profile with the distance from
the rip-channel is best seen in Fig. 5.43. The currents upstream of the rip are
represented in the top panel, and downstream of the rip in the lower panel. Focusing
on the upstream cross-sections, and progressing in the downstream direction, we
notice that it is not until y = 6. that pronounced differences can be observed in
the current profiles. At that section the velocity over the trough is significantly
larger than at the other sections. Over the rip-channel (y = 61.) the longshore
current is not zero due to the oblique angle of incidence of the incoming waves. At
the downstream locations (subplot (b)), the velocity profiles change dramatically
with the position. At y = 10/, there is a small peak over the crest, a counter-
current (negative) over the trough, and a large sharp peak near the shoreline. At
y =121, and y = 141, the peak over the bar-crest is significantly larger than at the
other locations, and the second peak at the shoreline is of comparable magnitude. At
y = 16 [, the current profile has almost reached the quasi-longshore uniform solution,
which appears to be recovered at the locations 2 < ff < 4 where the current profile
is nearly constant. For all positions, the sharp peak near the shoreline in the current

velocity profiles is due to intensive wave breaking in that region (see Fig. 5.39).

Still considering time-averaged motion only, Fig. 5.44 shows the cross-shore
variation of the terms in the 2 and y-momentum equations at the section further
away from the rip-channel (y = 0) and over the rip-channel (y = 81.). Notice the

difference in order of magnitude of the vertical scales of the figures for the z and
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y—momentum terms. In the z—momentum at y = 0 the main balance is between the
wave radiation stress and the cross-shore pressure gradient. In the y-momentum the
primary terms are the radiation stress (o), the bottom friction (= —), and a mixing
provided by the time-averaged, depth-uniform convective accelerations®. Thus, at
this location the effective terms are the same as seen previously. At y = 81, (lower
subplots) we notice first that the magnitude of some terms in the y-momentum,
namely the time-averaged convective accelerations and longshore pressure gradient,
is quite large seaward of the bar-crest, where the rip-current forms. The wave forcing
is seen to be important only close to the shore. In the z—momentum the magnitude
of the bottom shear stress (——) is seemingly small, but a closer analysis reveals that
it has the magnitude 4 x 10~? m?/s?, which is of the order of the largest terms in the
y—momentum equation. This picture demonstrates the complexity of the balance in

the momentum equations next to a rip-current.

In order to evaluate the importance of the longshore pressure gradient over
the trough we present in Fig. 5.45 the terms in the momentum equations at y = 61/,
and y = 10[.. For the first location (upstream of the rip-channel), the longshore
pressure gradient is negative and with a significant magnitude over the trough, con-
firming that it is an important driving force for the large longshore currents observed
over the trough. The convective accelerations are equally large, and appear to nearly
cancel each other in that region, and hence the main balance is between gh,gg and
ff—, which supports the conjecture of the importance of the pressure gradient. How-
ever, at the downstream location (lower panel) the inverse situation is observed:
the longshore pressure gradient is positive and drives a current towards the rip over

the trough, in the direction opposite of the main longshore current. Notice that at

this location the longshore current is nearly zero (see bottom panel of Fig. 5.43),

5 It will be shown later that this mixing originates from the existence of shear
wave motions, in a similar fashion to the examples in the previous section.
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and hence the bottom shear stress is quite small. This means that the longshore
pressure gradient in this region does not generate a strong longshore current, and is
balanced by the convective accelerations. These are seen to be large and are linked

to the large variations in direction of the mean flow seen in Fig. 5.42.

Time-varying properties of the flow

We have so far looked at the characteristics of the mean flow. However, the
current velocities for the present simulation are very dynamic and exhibit different
patterns at different locations. Fig. 5.46 and 5.47 show the time series of the cross-
shore and longshore (depth-uniform) velocities respectively, at five locations along
the shore and over the bar-crest (z = 51l.). Both the cross-shore and longshore
velocities are seen to vary dramatically with the position, depending whether this
is located upstream or downstream of the rip-channel. At the closer sections down-
stream of the rip (y = 10/, and y = 12[.) we observe that the motion is steady.
Further away (y = 0), somewhat periodic shear waves have developed, which appear
to become more unstable and irregular at y = 61.. Secondly, the magnitude of the
cross-shore velocity disturbances (Fig. 5.46) is equivalent to that of the longshore
perturbations (Fig. 5.47), although the two figures have slightly different vertical
scales. At y = 0 the period of the shear waves is initially ~440 s, and later a sub-
harmonic transition occurs and the period is ~800 s. The shear waves are seen to
travel with a speed of cg ~ 0.05—0.07 ¢., which corresponds to ¢g ~ 0.17—0.25 m/s

in dimensional units. Notice also the irregularity of both U /¢e and V/cc at y =61l

The time series of the cross-shore and longshore velocities at several locations
along the centerline of the rip-channel (y = 81.) are shown in Fig. 5.48 and 5.49,

respectively. These figures illustrate that the predicted rip-currents are unsteady
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and somewhat periodic. The most energetic periods are seen to range between
400 < T' < 450 s, but there are also appreciable variations in the time series at a
much lower frequency. The lower frequency oscillations are more significant at the
rip-current “head” (positions z = 31, and = = 4[.) than at the rip-current “neck”
(positions z = 4.51, and z = 51.). A detailed analysis of the spatial variations of the
currents over the time reveals that the higher frequency oscillations are associated
with a meandering motion of the rip-currents (see Fig. 5.50), which are initially
nearly steady (see the time series in subplots (d) and (e) in Fig. 5.48 between
1000 < t < 2500 s) and then get unstable. In contrast, the longer period variations
are related to a “side-to-side” shift of the rip-current, and with the passage of vortices

released by the unstable rip over a certain location.

Fig. 5.50 shows three “snapshots” of the depth-averaged current velocities.
In the first plot (¢ = 1950 s) the rip-current has not developed fully, but we notice
already vortex shedding at the sides of the rip, and even the generation of vortices
that separate from the rip and travel independently. At this stage shear waves have
begun to form and exhibit a short wavelength (together with the shorter period as
seen previously). At ¢ = 5860 s a meandering rip-current is fully developed and
vortices are seen at each side. The shear waves have a longer wavelength which
indicates that a subharmonic transition occurred. The flow at ¢ = 9760 s presents
similar characteristics as at £ = 5860 s, though a larger longshore current is observed
at the seaward boundary. The two lower plots show clearly that the motion is steady
downstream of the rip-channel until y = 14/, and then shear waves start to form,
due to the strong seaward-shear of the longshore current profile. For all plots the
flow over the trough, in the region adjacent to the rip-channel, is towards the rip
from both sides which confirms the importance of the longshore pressure gradient

as a driving force in that region.
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The plots of the time series (Fig. 5.48 and 5.49) and the instantaneous veloc-
ities (Fig. 5.50) show that the rip-current is very dynamic and exhibits several fea-
tures common with the shear waves. Results from other computations with slightly
different model parameters showed a similar pattern, and we found that the shorter
period of the rip-currents oscillations was mostly constant and around T = 450 s.
For the shear waves though, (Fig. 5.46 and 5.47) we observe a downshift of the
period from 7" = 440 s to T" = 800 s, which is similar to the period observed for
the simulations in section 5.2 with a different incident wave field. A hydrodynamic
instability mechanism is common to the two flow types — the shear waves and the
rip-currents. For the shear waves a linear analysis of the instability mechanism is
given by Bowen and Holman (1989), whereas the rip-currents are similar to a jet
flow and a linear instability analysis can be found in Drazin and Reid (1982) for
certain simplifying situations. Long period oscillations of rip-currents have also been
observed by Shepard and Inman (1950), Sonu (1972), and Haller et al. (1997). The
observations of Shepard and Inman were conducted at the Scripps Beach at La Jolla,
CA, and the authors indicated the presence of “major fluctuations in the onshore-
offshore current ...on an average of 7.8 min (480 s) ...”. Other phenomena such
as wave groupiness, wave-current interaction, and obliquely incident multiple wave
trains can also provide a mechanism for unstable rips, but the present computa-
tions show that for a steady wave forcing and no wave-current interaction, unstable
rip-currents can be formed as well. Also, the fact that the period of both the shear
waves oscillations and the rip-currents predicted in our simulations is of the same

order of magnitude suggests that these phenomena have a similar origin.

Similar to the shear waves “mixing” (in the long time-averaged sense), it
is suspected that the meandering rip-currents can also induce a mixing. In the
following, the time-averaging designation refers to an averaging over the period of

the simulation (several hours). (The second overbar in the expression below indicates
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the long time-averaging). The shear stress (mixing) caused by the meandering rip-
currents can be computed from the difference between the time-averaged convective
accelerations in the momentum equations and the similar terms computed from the

time-averaged values, namely:
_ o (@) _o(q
% = 8z \h oz \ h

L0 () 9 (9.,
oy h oy h

for the z—momentum, and similar for the y-momentum. It turns out that o, is very

(5.30)

small (O(10~*) m?/s?) for the present situation, which indicates that the mixing
along the axis of the rip-channel is negligible. This leads to the conclusion that the
magnitude of the advective accelerations seen in Fig. 5.44 are not associated with
a mixing, but solely with the flow acceleration necessary to change the direction
and magnitude of the currents in that region. This result is in agreement with the
simplified analysis given by Arthur (1962), who gives an account of the effect of
the inertial forces along a rip-current. The effect is to decrease the width of the
rip as the water depth increases, due to conservation of potential vorticity (in the
absence of dissipation, which is not the case here). In the presence of friction we
can expect that the inertial accelerations will still be important, but the rip-current

can broaden.

In this section we saw that the modification of the wave field over the bar
promoted the generation of rip-currents over the rip-channel, forced by a longshore
pressure gradient that drives the longshore “feeder” currents towards the rip. Shear
waves and unstable rip-currents are seen to be predicted, which suggests that a
complexity of multiple flow types can be present simultaneously in field conditions
(as documented by Sonu, 1972). Over the rip-channel, the velocity fluctuations

are much smaller than just upstream of it, which means that the existence of the
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rip-current destroys the structure and development of the shear waves. Finally, it
should be noted that we did not include the effect of wave-current refraction in the
wave model REF/DIF1. It is clear that for the present situation it is likely that
waves will refract in strong opposing currents. However, for this particular situation
of waves propagating on strong opposing currents a more suitable wave model is
needed. This could change the results of the present computations, but the overall

conclusions are expected to remain valid.

5.3.2 Depth-varying currents

It is interesting to examine the results of the full quasi-3D model for the case
just studied, where we assumed depth-uniform currents. Hence, for the following
study, the wave conditions and beach geometry are the same as in the example
of the previous subsection, and we introduce back into the governing equations the
terms that account for the dispersive mixing. Therefore the model equations are now
the complete set (5.23)-(5.27), with the same parameters as those in the previous
example, and in the example in subsection 5.2.3, i.e., C; = 0.75, M = 0.1 and

ew = 0.006.

We documented in subsection 5.2.3 that the inclusion of the dispersive mixing
reduced significantly the onset of shear instabilities of the main flow. For the present
simulation our results converged to a steady state solution, whereas previously both
the rip-currents and the longshore currents became unstable. Thus, Fig. 5.51 shows
the steady, depth-averaged, velocity vectors for the present simulation. The maxi-
mum cross-shore velocity at the rip is U = 0.2 ¢, (0.7 m/s), which is equal to that
observed for the previous case. The maximum longshore velocity is also equivalent
to that seen previously, and thus cross-shore profiles of V are not shown. However,

comparing Fig. 5.51 with Fig. 5.40, the rip-current is considerably narrower and
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Figure 5.51: Total depth-averaged velocity vectors, V for the simulation with
depth-varying currents. (See Fig. 5.38 for the wave field properties).

more directed downstream than in the previous situation. It is suspected that the
results close to the offshore boundary can be affected by the presence of it, as the
absorbing-generating boundary condition used here only absorbs propagating plane
waves, and not an unknown steady current. Fig. 5.51 shows also the presence of
converging longshore currents towards the rip-channel in the bar-trough region, and
a shoreward mass flux at each side of the rip. The current at the beach face is

always directed downstream.

The vertical variation of the cross-shore and longshore currents along the
rip-channel axis, and at y = 0 is shown in Fig. 5.52 and 5.53. For both figures we
note that the longshore velocities are nearly depth-uniform, whereas the cross-shore
velocities vary significantly with the depth, mainly in the region over the bar-crest.
More interesting is it that along the rip-channel the cross-shore velocity is sheared
vertically seawards, whereas away from the rip, at y = 0, the cross-shore velocity
shows the “classical” undertow profile. The vertical shear of U/c. at y = 81, is

caused by the large bottom shear stress that acts to retard the rip-current. To the
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author’s knowledge, very few observations of the vertical structure of the velocities
along a rip-current have been reported. One of such (Shepard and Inman, 1950)
indicates a similar trend to the one predicted in our computations. Conversely,
the descriptive accounts given by Shepard et al. (1941) indicate that the cross-
shore velocity in a rip-current can be the strongest both at the surface and below
it. Hence, further verification of vertical variation of the velocities along a rip is

needed.

Finally, we show in Fig. 5.54 the magnitude of the terms in the cross-shore
and longshore momentum equations along the rip-channel axis (y = 81.). From this
plot we extract that the dispersive mixing (—e—), both in the z and y-momentum
balance, is only significant in the breaking region. Over the bar-crest, it appears
to be a small term even though this region is where the vertical variations of the
currents are more pronounced. At other cross-sections though, we observe that the
dispersive mixing can be locally large, such as that observed in Fig. 5.36 in the
example in section 5.2.4. For example, slightly downstream of the rip-channel the
dispersive mixing is a very significant term. Once again (see Fig. 5.44 for com-
parison), the inertial accelerations are the dominant terms in the y-momentum
equation, together with the longshore pressure gradient. Nevertheless, the presence
of the seemingly small dispersive mixing term has the effect of stabilizing the pre-
vious unstable meandering rip-currents. Note that some care must be taken in the
interpretation of the results with the dispersive terms, as the underlying assumption
that Vj, and %?f@ are small compared to V, or %/E may not hold in the region around

.

the rip-current, where rapid variations in the flow field can be present.

In conclusion, the results for the present simulation suggest that a fine bal-
ance can exist between the various phenomena that can be present in nearshore

flows. Several mechanisms are present at all times, such as turbulent dissipation,
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Figure 5.54:
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momentum dispersion and bottom friction, which are all interrelated. The conser-
vative (pressure gradient) and inertial forces respond to the bottom configuration
and the driving forces (radiation stress gradients). Flow instabilities can occur for

sufficiently low values of the dissipative and dispersive mechanisms.

5.4 The effect of the bottom friction

It Chapter 2 we discussed the formulation and characterization of the bottom
shear stress. Throughout our studies we have kept the nonlinear formulation given
by equations (2.98) (repeated in (5.27)). For the simulations in sections 5.2 and 5.3
the bottom friction coefficient was chosen as f., = 0.006, which is within the range

of values typically used in prototype situations.

Several studies related to steady and unsteady phenomena in the nearshore
region have made use of a linear friction formulation. Linear relations can be recov-
ered from the nonlinear relation used here for the limiting cases of weak or strong
currents relative to the magnitude of the wave orbital velocity (:{ﬁ < 1and }:‘; 1)
From the results of several simulations with SHORECIRC with both the linear and
nonlinear formulations we confirm that it is only required to use the nonlinear for-
mulation when the assumption the linear formula is no longer valid. Though this
result is obvious, what it is not so apparent is that in order to find out whether
those assumptions are valid or not, we would need to simulate the same physical
situation with the nonlinear expression, and thus there would be no need to use the
linear formulation. Also, in complex geometries, such as a longshore non-uniform
barred beach, the validity of the limits :—:‘UL <L 1lor {g > 1 can be local, i.e., it will be
valid in certain regions but not all over the domain. Therefore, we conclude from
our studies that it is important to use the nonlinear formulation in cases where the

assumptions to use the linear model are not valid everywhere.
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More important than the use of the linear or the nonlinear formulations is
the proper estimation of the bottom friction coefficient. An increase of the bottom
friction will slow the current velocities, but it will also affect the onset and devel-
opment of flow instabilities as seen in the following example. Thus, in this section,
we recover the physical situation and model equations used in subsection 5.3.1 for

depth-uniform currents (no dispersive mixing).

Fig. 5.55 shows the depth-averaged velocity vectors at three instants of time
(the same as in Fig. 5.50) for a simulation identical to that in subsection 5.3.1, but
with a larger bottom friction coefficient, i.e., f., = 0.008 instead of f., = 0.006. The
intercomparison between Fig. 5.55 and 5.50 demonstrates that an increase in the
bottom friction coefficient altered the development of both longshore currents and
rip-currents instabilities. For the case of larger friction, at ¢t = 1950 s the instabilities
have barely started to develop, whereas at the same time for the smaller friction
coefficient the motion is noticeably unstable. At the latter stages we notice that
the vortex shedding along the rip-currents is also significantly larger for the smaller
friction simulation (Fig. 5.50), and also that the shear waves do not undergo a
subharmonic transition for the present case (Fig. 5.55). For the present situation
the shear waves are characterized by 7' ~ 500 s, L ~ 1.1[,, and ¢; ~ 0.075 ¢,
(s >~ 0.25 m/s). The rip-currents happen to oscillate at the same frequency, but
it does not seem appropriate to define a wavelength as the flow is not periodic in
space. Both the shear waves and unstable rips are less dynamic and more regular
for the higher friction coefficient, which is a property observed by, e.g., Ozkan-Haller
and Kirby (1997) for the case of shear waves alone over a barred beach. For larger
friction coefficients we find that the motion eventually becomes steady, which is
similar to the trend observed due to the inclusion of dispersive mixing (see section

5.3.2).
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a)t=1950 s

Figure 5.55: Depth-averaged current vectors at three instants of the simulation
for the case with higher friction (f., = 0.008). (See Fig. 5.38 for the
wave field properties).
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The overall time-averaged current velocities are also slightly smaller as ex-
pected, with the largest differences near the shoreline peak (see Fig. 5.43 for similar
results). Over the bar-crest we find that the velocity profiles are essentially unmod-

ified from the ones shown in Fig. 5.43.

In summary, this one simple example confirmed that a small variation of the
bottom friction coefficient, which is a parameter we know with great uncertainty,
can significantly modify the dynamics of the flow properties. We have dealt here
with a constant friction coefficient over the whole domain, but in field applications
it is likely that the friction coefficient can change by 30-50% of the mean value,
but this variation is also not known accurately. Hence, the overall uncertainty
around the values of the bottom friction coefficient, and the sensitivity of the model
predictions to the value of it, suggests that further research should be conducted in

this direction.



Chapter 6

MODEL SIMULATION AND COMPARISON WITH THE
1990 DELILAH FIELD DATA

In the present chapter we apply the model SHORECIRC to simulate the
conditions observed at certain times during the 1990 DELILAH nearshore field ex-
periment, at Duck, NC (see Fig. 6.1 for location). We focus our modeling efforts on
the simulation of three different hydrodynamical conditions, two of them on 10th
of October of 1990 at different tidal stages, and one other on the 19th of Octo-
ber for incoming waves from a different sector. Several previous modeling efforts
(e.g., Smith et al., 1993; Church and Thornton, 1993; Reniers et al., 1995; Karjadi
and Kobayashi, 1996) have failed to predict the maximum of the longshore current
velocity in the trough behind the bar. As an example Fig 6.2 shows the results
of the application of the longshore current model of Church and Thornton (1993),
where longshore uniformity of the topography and wave conditions were assumed.
The comparison between the lines and the solid circles clearly indicates that the
model predicts a bi-modal current profile, with the maximum over the bar-crest,
whereas the data suggests a maximum of the longshore current over the trough.
This fact motivated us to apply the more complete model SHORECIRC (relative to

the previous models) to study those conditions.

The results from Sancho et al. (1995) show that the longshore pressure

gradient can be a dominating force in the trough behind a bar, which can induce
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Figure 6.1: Location of the Field Research Facility. (Adapted from Birkemeier et
al., 1997).
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Figure 6.2: Model predictions and observations of longshore currents for
DELILAH, 10th Oct. (Results from Church and Thornton, 1993).
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a longshore current with the maximum in that region. In Fig. 6.3 we reproduce
partially the results from those authors, where it is seen that in a region far away
from a rip-channel (y = 0 m) the longshore current is bi-modal (i.e., it has two
maxima), but as the distance from the rip-channel is reduced (see lower plots)
the current profile exhibits a single-peak, located over the trough. Hence, in this
chapter we are interested to find out if a significant longshore pressure gradient
can be present for the conditions observed during DELILAH, and if so, whether
that longshore pressure gradient is the primary force for the observed single-peaked

longshore current profile.

Several other studies (e.g., Allender et al., 1978; Greenwood and Sherman,
1986) also indicate the presence of a single-peak of the longshore currents over the
trough. However, recently, Feddersen et al. (1996) compiled several longshore cur-
rent, measurements during the experiment DUCK94, and found that the maximum
of the longshore current is located mostly slightly shoreward of the bar crest, and
at times near the shoreline. They also found that frequently the current profile
is bi-modal. These authors confirmed the findings of Thornton and Kim (1993)
that the longshore currents are strongly tidally correlated: at high-tide the current
maxima, is mostly located shoreward of the bar-crest (z' ~ 0.81,), and at low-tide
Vinas 18 near the bar-crest. Hence, the observations of these studies suggest that the

conditions observed at DELILAH can be sporadic.

More than just a comparison effort, this chapter combines several of the ideas
exposed in the previous chapters. The simulated beach corresponds to the surveyed
topography and exhibits a longshore nonuniform bar. Observations and field data
analysis (Church et al., 1992) suggest that shear waves were present on the 10th of
October. The model results of SHORECIRC are compared with the field data, and a

discussion is provided on the importance and effect of the mechanisms that affect the
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Figure 6.3: Longshore current velocities and depth profiles over a longshore
nonuniform barred beach, at four cross-sections, for an obliquely inci-
dent wave. (Adapted from Sancho et al., 1995).
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results. A discussion is given on the effect of several variables and parameters that
affect our predictions, such as the wave climate, the possible existence of external

incoming lateral currents, and the friction and eddy viscosity coefficients.

6.1 Experiment overview and test conditions

The DELILAH (Duck Experiment on Low-frequency and Incident-band Long-
shore and Across-shore Hydrodynamics) experiment was conducted during the fall
of 1990 at the US Army Engineer Waterways Experiment Station, Coastal and Hy-
dralics Laboratory, Field Research Facility (FRF) located in Duck, NC (Fig 6.1).
This experiment was a cooperative effort of several institutes, and the aim was to
measure the wind and wave-forced three-dimensional nearshore hydrodynamics. An
extensive overview of the project is given by Birkemeier et al. (1997), and briefer
descriptions have been presented in several of the works mentioned above. In the

following we will compile the most relevant information for this work.

Nineteen electromagnetic current meters were deployed at the beginning of
the experiment and data was collected at 8 Hz sampling frequency. Nine gauges form
the “primary cross-shore array”, which are designated by CM10-CM90 (see Fig 6.4),
and the other ten gauges form the secondary arrays. Of those, four current meters
were located slightly seaward of the bar-crest position (CM71-CM74) and thus form
the “crest sub-array”, five were positioned over the trough (CM31-CM35) and form
the “trough sub-array”, and the last one (CM54) was located such that it formed the
“secondary cross-shore array” in combination with two other sensors. (Please note
that the coordinate axis in Fig. 6.4 is rotated —3° from the FRF coordinate axis).
Along the primary cross-shore array (monitored by the Naval PostGraduate School)

at each location there was a Marsh-McBirney current meter, a Paroscientific pressure
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gauge!, and a Setra strain-gauge pressure sensor. The pressure. sensors for wave
height measurements were only positioned along the primary cross-shore array, and
data was also sampled at 8 Hz. At the other locations there were 5 Marsh-McBirney,
and 5 Scripps Open Frame electromagnetic sensors (from the Scripps Institution of
Oceanography). At the positions designated by CM71-CM74 and CM54 were the
5 Open Frame sensors, which proved to be significantly affected by the growth
of biofouling. According to Birkemeier et al. (1997), “data collected using Open
Frame sensors should be used with caution”, as the the response function of these
sensors was significantly attenuated throughout the duration of the experiment. The
results of the pre- and post-calibration (before and after the data collection) of the
instruments is given by Birkemeier et al.. The data set was found to be of highest

quality between the 6th and the 16th of October.

Throughout the experiment the current meters CM10 and CM20 were, at
times, moved vertically to account for changes in water depth. Nevertheless, these
current meters were exposed at certain times which is identified by foul readings.
Unfortunately, we were not able to find out the true vertical positions of the sensors
at all times, and thus the positions at the beginning of the experiment are used
for the data comparisons here?. Some of the current meters were lost or stopped
working along the experiment, namely, CM60 after the 10th, and CM30 around the
14th.

The gauge locations and vertical positions are identified in Table 6.1. The
positions are relative to the FRF coordinate system that, as mentioned above, is

rotated 3° relative to the coordinate axis in Fig. 6.4. This figure also shows the

L' These sensors were designed to measure mean surface elevation, but it was later
found that they did not provide accurate readings.

2 Note that this can give misleading errors in the model to data comparison, as
we will calculate velocities at the presumed vertical position of the sensors.
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Figure 6.4: Location and numbering of the DELILAH array and depth contours
for the 10th Oct. (Adapted from Birkemeier et al., 1997).
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bathymetric contours for the 10th Oct. (referenced to the National Geodetic Vertical
Datum, NGVD). The cross-shore dashed lines at y = 730 m and y = 1300 m delimit
the region where daily surveys were collected, which is designated as the “mini-grid”
region. The surveyed data is then interpolated and mapped onto the desired grid,
where we chose Az =5 m and Ay = 10 m for our calculations (these spacings were
found to be a good compromise between the length scales of the problem and the
desired computational speed). The areas northward and southward of the mini-grid
were artificially extended in order to use periodicity at the lateral boundaries. The
depths at y = 640 m and y = 1340 m match each other, and thus the longshore
domain length used for the computations (of the 10th Oct) is I, = 700 m. (A
similar transformation from the surveyed data points to a computational grid was

performed for the 19th of October).

During the experiment the beach morphology varied significantly within days.
The topography exhibited initially a rhythmic bar, which slowly migrated seawards
and became more linear. At the 10th of October the bar was mostly linear, but
rhythmic longshore nonuniformities of crescentic type were still present as it can be
seen in Fig. 6.4 and 6.5. (Note the sensors marked by solid circles in the perspective
plot). The latter figure shows that a longitudinal bar is present with the crest located
at x &~ 150 m, and a trough at z ~ 100 m. The most seaward-northward location
of the grid in Fig. 6.4 (z = 400, y = 1340 m) is identified at the (0,0) coordinate
for our calculations, with the new z—axis directed shoreward and the new y-axis
directed southward. All data and model results are from now on referenced to the

new coordinate axis.

We decided to study the conditions observed during the 10th and 19th Oc-

tober in order to compare our model results with those of Reniers et al. (1997).
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Table 6.1: DELILAH array current meter locations and gauge numbering (adapted
from Birkemeier et al., 1997)

Gauge Name Longshore Cross-shore Depth* Gauge Depth*

m m m m
CM10 985.95 125.06 -0.28 0.07
CM20 985.94 144.99 -1.39 -0.77
CM30 985.61 169.97 -0.87 -0.66
CM40 985.95 188.94 -1.32 -0.82
CM50 985.88 207.41 -1.88 -0.98
CM60 986.08 226.25 -2.33 -1.02
CM70 985.91 245.00 -3.03 -1.05
CM80 985.97 295.21 -3.68 -1.66
CM90 986.11 370.12 -4.25 -1.68
CM31 967.22 169.57 -0.94 -0.82
CM32 936.44 168.68 -1.86 -0.78
CM33 926.17 168.21 -1.88 -1.67
CM34 856.09 166.06 -1.60 -0.82
CM35 806.37 164.87 -1.58 -0.92
CM54 855.87 210.37 -2.09 -1.02
CMT71 966.04 244.36 -3.02 -0.93
CM72 936.08 243.65 -3.07 -1.01
CM73 926.06 243.16 -3.11 -1.04
CM74 856.05 240.88 -3.21 -1.27

* Depths relative to NVGD at start of DELILAH
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Figure 6.5: DELILAH: Beach bathymetry for the 10th of October.

Offshore directional wave spectra were estimated from an array of 16 pressure sen-
sors mounted at the 8 m depth contour, and centered around the 800 m longshore
line. Spectra were measured every 3 hours and provide the wave conditions for the
forcing of SHORECIRC. Wind speed and direction were measured at the end of the
FRF pier, and were then transformed to the standard 10 m height in order to cal-
culate the wind shear stress by equation (2.114). The wind stress computed in this
way is then applied uniformly all over the model domain, and is assumed constant

over the simulated time.

For the comparison with field data, following Wu et al. (1985), random waves
are approximated by a single representative monochromatic wave, with period equal
to the peak period of the wave spectrum, and height equal to that of the “root mean
square” wave height (H,,s). The wave direction is given by the peak angle of the

directional spectrum, determined at the 8 m depth array. This direction is then
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transformed from the 8 m depth contour to the depth at the seaward gridline of
our domain using Snell’s law. This procedure is equivalent to assuming that the
bottom contours are parallel between the 8 m depth contour and the contour at
the offshore location of the model domain. It should be noted that we have no
information about the predominant wave angle further inshore than the 8 m depth
array, and thus this assumption can introduce errors in the wave angle and the
radiation stresses estimates. Hence, in one test, we will analyze the sensitivity of

our predictions to the incident wave angle.

The wave height is calculated using the model REF/DIF1 and the results are
used to compute the radiation stresses. This model is a monochromatic wave height
model, and we found it necessary to modify the breaking criterion and the energy
dissipation coefficient 7 (see Kirby and Dalrymple, 1994 for details of the model) in
order to use the model for the “root-mean-square” wave height. This is so because
the breaking index for a random sea is in average much lower than that for a single
wave. Hence, those model parameters were tuned to give a good agreement between

the measured and predicted wave heights.

Table 6.2 shows the properties of the wave and wind climates that characterize
the conditions observed at the given times. Each time for a certain date corresponds
to the initial time of a period of three hours, for which the given values are the mean
values. The incoming wave conditions were nearly stationary over the three hour
periods, as we can see in Fig. 6.6 for one of the simulated periods. The waves were
mostly narrow banded for the 10/10/90:0351 and the 10/10/90:1022 periods, though
by the end of the three hour record for this last period the local wind had increased
significantly. For the 19/10/90:1221 period the offshore spectrum indicates that the
wind-sea component is quite significant, which is confirmed by the large wind speed

w.
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Table 6.2: Observed wind and wave conditions for the given periods during the
DELILAH experiment.

Date 10 Oct 10 Oct 19 Oct

Time 0351 1022 1221
How [a)® [8 m array] 0.80 0.84 0.88
aw(®) 1 [8 m array] -35 -37 41

T (8) 10.7 9.7 7.6

W (m/s) 2.5 6.5 8.0
sténd(o) T -65 -60 135
Hypps (m)f [CM90] 0.70 0.68 0.66
Hers (1) [REF /DIF1] 0.74 0.74 0.64
ay(®) 1 [REF/DIF1] -26.5 -29 31
Tidal level® (m) -0.26 0.51 -0.35
Hy/hy [REF/DIF1] 0.50 0.45 0.50

y [REF/DIF1] 0.30 0.30 0.30
AH.o= mo/ V2, where H,, is determined from the energy spectrum.

t Angles relative to the cross-shore direction in our rotated coordinate system with
origin at the seaward-northward location.

I Hyms = V802, where o2 is the variance of the surface elevation record.

* Levels relative to NVGD.

We note (see Table 6.2) that there is a difference between the measured wave
height at the 8 m depth array and the wave height at the most seaward sensor
in the primary cross-shore array (CM90). This difference can not be explained by
linear wave shoaling and refraction (see also Smith et al., 1993). The wave heights
and angles used for the REF/DIF1 model input are also given in Table 6.2, as well
as the breaking criterion and dissipation parameter y that give the best agreement
for the wave heights along the primary cross-shore array. Thus, an uniform plane
wave with H = H,,, is specified at the offshore row of the domain for REF/DIF1

calculations.
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Figure 6.6: Time series of the surface elevation from the pressure sensor PW90 for
the 10/10/90:0351 record. (Data given by J. Oltman-Shay).

The mean tidal levels during the 3 hr records are also given in Table 6.2.
The records for the chosen periods are close to the high and low tides, and thus the
influence of the tidal variation on the pressure and current measurements is minimal.
At high and low tide the tidal currents are close to zero, which also minimizes the
influence of these in our model to data comparison. Note that at other tidal stages
there is not only a stronger tidal current, but moreover, a significant variation in
the wave height and wave-induced currents during the 3 hr record due to the local

variation in water depth (Thornton and Kim, 1993).

Church et al. (1992) reported the presence of significant energy in the far-
infragravity frequency range that can be attributed to shear instabilities. Fig. 6.7
shows the time series of the (band-passed) cross-shore and longshore current ve-
locities over the 3 hr record 10/10/90:0351 at the location CM30. Each data point
corresponds to a 64 s average of the original data sampled at 8 Hz. This figure shows
that there is a considerable variation of both the cross-shore and longshore current
velocities on a time scale much longer than that of the short waves. It appears that
most energy is in the 500 < 7" < 1000 s range, but there is also energy at lower and
higher frequencies. In general, Church el al. show that the oscillations for periods

larger than 200 s are due to shear waves.
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Figure 6.7: Time series of the low-frequency pass cross-shore and longshore ve-
locities at CM30 for the 10/10/90:0351 record. (Data given by J.
Oltman-Shay).

Next we will present the results of the model simulations for the conditions
at the different dates. We will focus primarily on the time-averaged values of the
simulations and compare with the time-averaged values (over 3 hr) of the data.
Time series of the velocities and wave heights at the primary cross-shore array for
the period between the 6th and 16th of October, and averaged over 5 min, were
ceded to us by E. B. Thornton. Raw time series of the data sampled at 8 Hz for

each of the three hour records at all gauges were provided by J. Oltman-Shay.

6.2 Simulations for the 10/10/90:0351 period
6.2.1 Standard model results

The topography for this period of simulation has already been shown in

Fig. 6.4 and 6.5. The total still water depth is given by the depth referenced to the
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NVGD subtracted by the tidal level of -0.26 m. Other input conditions are given in
Table 6.2.

For the present simulations we found minimal differences between compu-
tations with the moving shoreline, and computations without. Therefore, all the
results given here are for the case of a fixed shoreline placed close to the still water
level, such that the minimum still water depth is h, = 0.05 m. At this fixed shore-
line a zero flux boundary condition is used. The grid points that extended further
inshore from this boundary are excluded from the model domain, which then has
dimensions I, = 340 m and [, = 700 m. For the model simulations the northward-
seaward point in Fig. 6.4 is the (0,0) coordinate, the cross-shore z—-axis is directed
shoreward, and the longshore y—axis is pointed southward. The grid spacings are
Az = 5 m and Az = 10 m, which reflect the fact that the cross-shore variations
of the flow are typically much larger than the longshore variations. Computations
with smaller grid spacings did not show appreciable variations from the simulations
presented herein. The Courant number is C, = 0.7. At the lateral boundaries we
use the periodicity condition, and at the seaward boundary the absorbing-generating

condition with zero incoming flow.

The bottom friction is calculated from Swart’s formula (2.91), and we chose
to compute the Nikuradse roughness as ky = 10 dgg, instead of equation (2.97), to
account for a larger bottom roughness due to the combined presence of waves and
currents®. The cross-shore variation of the sand mean grain diameter, at the 15th of
October, is given by Thornton et al. (1996). Hence, we assume here dg to be equal
to the mean grain, and then estimate a continuous cross-shore distribution of the

sand diameter and ky. These values are used to compute f.,. The eddy viscosity

3 This increased bottom roughness can also be justified by the presence of sand
mega-ripples observed during the experiment (see Birkemeier et al., 1997).
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is calculated from equation (2.86), with the values of €| = 0.25 and M = 0.1,
which was seen in section 5.2.4 to yield reasonable vertical variations of the current
velocities. Fig. 6.8 shows the cross-shore distributions of dsq, ky, few and v;/h\/gh,
for the longshore position closer to the primary cross-shore array (y = 340 m). Note
that in the region 320 < x < 340 m the values of f, are out of the plotting range,
and the maximum value is f., = 0.033 at the shoreline. The large values of f., in
this region is caused by the increase of the bottom roughness and by the decrease of
the wave orbital amplitude in the very shallow depths. Nevertheless, it is probable
that the friction factor is much larger closer to the shoreline than at the other
locations. The distribution of the eddy viscosity v,/h /g h, has a relative maximum
of 0.016 over the bar associated with wave breaking in that region, and a larger peak
next to the shoreline due to the secondary breaking. (Note that this second peak of

vi/h /g he is caused by the nondimensionalization).

The results for the wave height H,,,, and angle «,, distributions over the
model domain are shown in Fig. 6.9. Waves refract almost uniformly towards the
beach, except behind the bar where the wave angles change considerably. The
depth contours in Fig. 6.9¢ correspond to the actual still water depth taking into
account the tidal level. The crosses indicate the location of the gauges, and the
bar-crest is located at z ~ 260 m. Fig. 6.9b shows that the wave height is mostly
longshore uniform, but small deviations can be found in the trough behind the bar.
It also shows that there is a first breaking line at z ~ 230 m, and a secondary
breaking much closer to the shore (at z ~ 310 m). In the trough region between
the two breaking zones the wave height is nearly uniform, which means that wave

reformation is predicted.

The existence of two distinct breaking regions is confirmed by video time

exposures, averaged over 10 min, of the wave conditions taken during the experiment
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Figure 6.8: Cross-shore profiles of fe.y, kn, dso, /h\/gh, and h, at the primary
cross-shore array, for the 10/10/90:0351 simulation.
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Figure 6.9: Contour plots for the 10/10/90:0351 simulation of: a) wave angle
ay(°); b) wave height H,,,, (m); and c) still water depth h, (m).
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Figure 6.10: Video time exposure (averaged over 10 min) of the wave conditions at
DELILAH during the 10th October at mid-tide level. (Adapted from
Birkemeier et al., 1997). The primary cross-shore array is located 1/4
of the picture size down from the top.

(Fig. 6.10). The depicted conditions correspond to the 10th of October at a mid-tide
water level. This video technique helps to identify the breaking locations and the
position of the bar (Lippmann and Holman, 1989). The video camera is pointed
towards the mini-grid area that we are simulating and the regions in white indicate
wave breaking. It is observed that the breaking line is sinuous at the foreshore slope,
and mostly uniform over the bar, which is also predicted by REF/DIF 1. Note that
the primary cross-shore array is located approximately along a horizontal line 1/4
down from the top of the picture. Though wave breaking occurs in two regions, we
notice in particular the existence of a wide white region over the bar, next to the
cross-shore array, which suggests that the breaking region extends further shoreward
than the model predicts. If breaking does occur in that region than it will provide

a local forcing for the longshore currents in the region past the bar crest.
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The depth and time-averaged (over a simulation period of 2 hr) current ve-
locity vectors predicted by SHORECIRC for the conditions at the 10/10/90:0351
are shown in Fig. 6.11. It appears that the predicted currents are uniform in the
longshore direction, though slight deviations from this state can be noticed. We also
note that the depicted currents correspond to the total volume flux (including the
short-wave induced flux). As it can be seen the depth-averaged cross-shore currents
are small, which means that at any cross-section the short-wave induced mass flux
is almost in balance with the below-trough return current. The maximum longshore
and cross-shore velocities are Vy; = 1.07 m/s and Uy = 0.12 m/s, respectively.
The current velocity magnitudes can be distinguished better, though, in the two
lower panels of Fig. 6.12. Although not appreciable, there are longshore variations
in both U and V which are associated with the longshore topographic variations.
The contour plot of the (time-averaged) mean surface elevation ¢ (see subplot (a))
clearly defines the line of wave breaking, which coincides with the line where the
setup initiates. This figure indicates that the setup is longshore nonuniform, and
thus it is likely that the longshore pressure gradient can be an important force for
the longshore currents. The cross-shore and longshore profiles along the alignments

of the current meters are presented next.

Fig. 6.13 shows the predicted and measured values of the main variables
along the primary cross-shore array for the 10/10/90:0351 simulation. The top panel
shows that H,,s computed by REF/DIF1 with the parameters given in Table 6.2
matches the data very well, especially if we consider that the random wave field is

approximated by a single monochromatic wave®.

The second to fourth subplots in Fig. 6.13 show the mean surface elevation

* We recall that the measured values for the velocities are averaged over a 3 hr
record, and the H,,,, is computed from records of the same duration.
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Figure 6.11: Depth and time-averaged current velocity vectors for the
10/10/90:0351 simulation.

and the cross-shore and longshore velocities, respectively. Note that the current
meter CM10 was emerged, and thus the measured currents are zero at that location.
The variation of the mean surface elevation is in accordance with the wave height
(and radiation stress gradient, 2322) variation. For the cross-shore currents, we have
plotted the data measured at a certain depth (*), against the computed values at the
same depth U,4qa (o), the computed depth-averaged U (= =) and the below-trough
averaged U, (—) velocities. The below-trough averaged velocity corresponds to
the total minus the short-wave induced volume flux Q,, divided by the mean water
depth. Thus the difference between the solid and dashed lines corresponds to the
local depth-averaged wave-induced velocity. The existence of a non-zero U is the
result of the longshore nonuniformity of the flow. It is seen that U,, is much larger
than U, which leads to the conclusion that the below-trough cross-shore velocity is
largely dominated by the short-wave induced mass flux, and thus an error in the

estimate of this quantity will reflect in an error in the prediction of U,,.
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Figure 6.12: Time-averaged flow field for the 10/10/90:0351 simulation. Contour
plots of: a) mean free-surface elevation ¢ ; b) cross-shore velocity U ;
¢) longshore velocity V' .
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The comparison between the model and data results indicates that we un-
derestimate the cross-shore currents over the bar-crest and overestimate it over the
trough. This suggests that the wave-induced mass flux @,,, which is calculated ac-
cording to equation (2.110), is too small in the first breaking region and too strong
over the bar. This result is somewhat contradictory to the fact that the use of linear
wave theory generally overestimates Q,, prior to breaking, and the interpretation of
the present results implies that we are underestimating (), using linear wave theory.
Hence, the existence of large cross-shore velocities in the data might be associated
with mechanisms other than the short-wave induced return flow. The data records
of U over the duration of the experiment at the positions CM70 and CM90 indicate
the existence of an offset error (Birkemeier et al., 1997), which could also contribute
to explaining the deviations observed at those locations between the predicted and

modeled currents.

Focusing on the longshore currents, we first notice that there are minimal
differences between V,,, V and V.data, Where “zdata” refers to the model prediction
at the same depth as the measured currents. The predicted longshore current profile
is seen to deviate considerably from the measured one at CM30. The maximum of
the predicted longshore currents is at the top of the bar, whereas the measured
maximum is over the trough, around the position CM30. The measured currents
also suggests that there is a strong mixing that causes the longshore currents to be
appreciable seaward of the breaking point at the locations CM70 and CM80. The
predicted currents in this region are smaller than the measured, which indicates
that either the model can not yield such a large mixing, or that other mechanisms
are responsible for the large measured currents. One possible reason for the larger
velocities of the measured longshore currents seaward of the bar is the mixing due to
the existence of random waves, which is not accounted for in our model, though the

agreement for the H,,,s is quite good. Random waves break at different locations
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Figure 6.13: Cross-shore distribution at the primary cross-shore array for the
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in time and space, and thus a moving breakpoint would introduce a time-varying
forcing. We recall that this mechanism is likely to had been present during the
measurements, as the existence of a widespread breaking region in Fig. 6.10 may

indicate.

Qualitatively, our model predictions for the longshore currents compare well
with those of Reniers ef al. (1997) without the forcing caused by the local longshore
pressure gradient. The main difference between the two models (for longshore uni-
form beaches) is the inclusion in the model of Reniers et al. of a forcing mechanism
due to the wave-roller in the computation of the radiation stresses, such that their
wave-induced forcing in the trough is larger than ours. The model of Reniers et al.
can account for the effect of a longshore pressure gradient in a similar fashion to that
of the model of Putrevu et al. (1995). However, based on the discussion in Chapter
4 regarding the accuracy of the Putrevu et al. model, the results of Reniers et al.
including gh,gg determined from that model gives results that should be interpreted

with caution.

Conversely, if we compare with the results of Church and Thornton (1993)
(see Fig. 6.2), who calculate the short-wave forcing from linear wave theory as well,
our model results clearly demonstrate that the inclusion of the three-dimensionality
of the problem can induce significant currents in the trough behind the bar. Note
that the bottom friction coefficient for the nonlinear shear stress used by Church
and Thornton is Cy = 0.006, which is related to fu, by few = 2C; = 0.012, and it
is seen to be very similar to the friction factor used for the present calculations (see

Fig. 6.8).

The comparison between the model and field results along the secondary
cross-shore array is shown in Fig. 6.14. We note that the current meters CMb54

and CM74 are Scripps Open Frame sensors and the CM34 is a Marsh-McBirney,
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and that there were no pressure gauges mounted at these locations to estimate
the wave height. The beach profile exhibits a terrace feature and we first notice
that, according to the model, wave breaking is slightly more continuous than at the
primary cross-shore array line. Consequently, the setup is also more gradual. The
cross-shore depth-averaged velocity U is now positive, meaning onshore flow, though
the below-trough averaged velocity U, is still in the offshore direction. It is also seen
that U,gq. computed at the sensor depth is equal to the mean U,, below-trough. We
suspect a deficiency in the U measured at CM74 because it is unlikely such a large
current can exist at that location for the observed topography and wave conditions®.
For the longshore currents, we notice a reasonable agreement at the trough gauge
CM34, but a poorer match at the more seaward sensors. The similarity between
the field data of V' at the two seaward locations is also suspicious. Comparing the
cross-shore variations at the primary and secondary arrays (Fig. 6.13 and 6.14) we
notice a larger maximum of the current at the secondary array line, and also that
that maximum is shifted nearly 20 m further shorewards. This is mostly due to
the fact that the breaking point at the secondary array is also approximately 20 m
shoreward than that at the primary array. This is qualitatively confirmed by the

video image in Fig. 6.10.

The longshore variation of the predicted and measured quantities along the
trough and crest sub-arrays are shown in the left and right panels of Fig. 6.15,
respectively. The comparison between the predicted and measured longshore and
cross-shore currents indicates an overall fairly poor agreement. The longshore cur-
rent V along the crest sub-array is satisfactorily predicted, though the data shows
a larger variability than the model results (all these current meters are the Open

Frame type). The field data of U at both sub-arrays is quite irregular, whereas the

% In fact the data records over the duration of the experiment indicate there is an
offset error (Birkemeier et al., 1997) for that sensor.
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model predictions are fairly regular. However, we notice once again the detection
of offset errors in the measured cross-shore velocities for the CM70, CM71, CM73
and CM74 gauges, which have not been corrected. Hence, at the crest sub-array
the only current meter that has been indicated to give reliable readings in the cross-
shore direction is CM72, which turns out to be accurately predicted. The currents
at the vertical position of the gauges (U,gata and Vgua) were not calculated for
the present comparison, and the vertical location of the sensor CM33 can not be
accurate because it appears that this sensor would then be covered by sand. Last,
we notice that the measured readings of V' along the trough sub-array seem to be
very consistent (these are Marsh-McBirney sensors) and are invariably larger than
the predicted values. Hence, we conclude from the time-averaged results that our
model fails to predict the large velocities observed over the trough, and consistently

predicts the maximum of the longshore currents over the bar-crest.

It is interesting to determine the vertical variation of the horizontal currents.
Thus, Fig. 6.15 shows the vertical variation of the time-averaged values of U and
V calculated by the model (—), versus the measured values at the gauge depth
(+—). The estimated vertical profiles of the cross-shore velocities exhibit the same
trends as the profiles of data measured at some other days (Smith et al., 1992). The
largest differences between those trends are over the trough, where the measured
cross-shore velocities are consistently very small, and the results of our predictions
for the 10/10/90:0351 show velocities of the order of 20 cm/s at the positions CM20
and CM30. Note that vertical profiles of the currents in the field were not obtained
for the 10th of October. For the longshore velocities, our results show an almost
vertically uniform profile, though data at other days and experiments (e.g., Garcez

Faria et al., 1996b) displays a slightly larger variability over the water column.

Iig. 6.17 shows the cross-shore distribution of the magnitude of terms of the
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(time-averaged) momentum equations along the primary cross-shore array align-
ment. Hence, it indicates what mechanisms are responsible for the generation of

longshore (and cross-shore) current profile seen in Fig. 6.13. In the cross-shore mo-

mentum equation, we notice the main balance between 1% and gh2s, with all

other terms being much smaller everywhere. The dispersive mixing term is locally
important in the regions where ﬁa—ggﬂ and gh%& are zero. In the longshore mo-
mentum, we first notice that the largest terms are nearly one order of magnitude
smaller than the largest terms in the z-momentum balance (which is consistent
with the arguments given in Chapter 4). Second, it is seen that the largest term
in the y-momentum balance is the short-wave forcing }%%i, and then all terms
are significant, except for the turbulent mixing and the surface (wind) shear stress.
Seaward and over the bar-crest, the inertial accelerations are quite significant, as
well as the second wave forcing component i%}a and the pressure gradient. In
the trough region ghg—g is the dominant force, seconded by 3:!?, which is inevitably
important where there is any forcing mechanism. For the present case it turns out
that the dispersive mixing is small, though not negligible. Overall, this analysis
allows us to conclude that most of the terms in the complete momentum equations
can be locally important, especially in the longshore momentum balance, and hence

the use of simplified longshore current models, such as those that assume longshore

uniformity, is prone to misinterpretations.

The computational results for the present simulation also show the presence
of shear instabilities. Thus, we find that the convective acceleration terms depicted
in Fig. 6.17 are the sum of the contribution of the mixing due to the unsteady mo-
tion (the shear waves), and the contribution of the steady part associated with the
local (time-averaged) spatial acceleration of the flow. Note that in the following
the term “time-averaging”, which is represented by the second overbar, means over

the period of the simulation, not just the short-wave motion. Fig. 6.18 shows the
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difference between the total time-averaged convective accelerations and the convec-
tive accelerations determined from the time-averaged variables, which represents a
mixing due to shear waves that can be written as the shear stresses (see equivalent

equation (5.30))

ENCANEN 2
S %(h) _E(T)‘
) e

for the z and y—momentum, respectively. We notice in Fig. 6.18 that the stresses
due to the unsteady motion are of the same order in both the 2 and y—momentum
equations and also that the cross-derivative terms are the smallest. The magnitude
of the a% (Q’HQH) difference-terms in the longshore momentum equation is also seen
to be comparable to that of the other terms in the total momentum equation shown

in Fig. 6.17 (bottom panel), which means that shear waves dispersion is an effective

mechanism in the momentum balance.

To illustrate the dynamics of the shear waves, the time series of U and V
at several of the gauge locations along the primary cross-shore array are shown in
Fig. 6.19 and 6.20, respectively. We notice first that the amplitude of the perturba-
tions are similar for both U and V. Second, that amplitude is seen to be larger at the
locations over and shoreward of the bar-crest (CM20-CM50), where the longshore
currents are the largest, than at the other seaward locations, where the amplitudes
diminish gradually offshore with the distance from the surf zone. At the two surf

zone locations CM20 and CM30 the shear instabilities are somewhat regular with a

248



x107°

1 I | 1
50 100 150 200 250 300
o

Figure 6.18: Cross-shore distribution at the primary cross-shore array of the

o

a (Q2Q 0 (Q.Q, : g [ Q2 o [@
(—), & (&) -2 (—rr*) (= b) 5 ("E‘) =% (“‘f

2 (22 (:’ (=)

B b el =
stresses associated with the unsteady motion: a) 2 (%%) -2 (%’-)

[
—_—
\-|_J

Lou

h

249



period of T" ~ 480 s. At the next two locations (CM40 and CM50) the time series
start to exhibit instabilities at shorter and longer periods especially in the longshore
direction (Fig. 6.20), and at the position CM70 the time series of V has a peak pe-
riod of 7'~ 1000 s. These oscillations are within the range 500 < 7" < 1000 s where
the most energetic shear instabilities were observed (Church et al., 1992). However,
a more detailed analysis of the frequency and wavenumber range analogous to that
performed by Ozkan-Haller and Kirby (1997) would be necessary to compare the
observed shear wave motions with the predicted ones. Nevertheless, we point out
that the time series of the low-frequency pass cross-shore and longshore velocities
at CM30, depicted in Fig. 6.7, show a velocity variation with an amplitude approx-
imately equal to 0.2 m/s. Though clearly more regular, the predicted shear waves
at CM30 exhibit also oscillatory velocities with amplitudes of the order of 0.2 m/s

(Fig. 6.19b and 6.20b), which is in agreement with the data results.

The most energetic predicted shear wave length is found to be L ~ 230 m, and
thus the speed at which the shear waves propagate is ¢g =~ 0.46 m/s, or equivalently
cg ~ 0.48 VM, where 17M = 0.96 m/s is the predicted maximum time-averaged
longshore velocity at the primary array. Last, it turns out that the cross-shore
velocity fluctuations are all in phase at the different locations of the primary array,
whereas the longshore fluctuations change of phase (relative to each other) with the

cross-shore location.

6.2.2 Discussion

We shall in this section examine some of the forces and mechanisms that
could be responsible for the observed maximum peak of the longshore current over
the bar-trough. We will mainly focus on the discrepancy between the predicted

and measured longshore current profiles at the primary cross-shore array shown in
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Fig. 6.18, which can not be explained by malfunctions of the sensors. This discussion
also includes some other results for the simulation of the 10/10/90:0351 period, with

different model parameters.

Large-scale forces

First, due to the completeness of the physical mechanisms already included
in the model SHORECIRC, it is tempting to attribute the discrepancies between the
measured and predicted longshore current profiles to external flows. This category
includes motions that are not accounted for in our simulations due to the limiting size
of the model domain, such as tidal currents, wind-driven currents on an area much
larger than our model domain (which could include the influence of the Chesapeake

Bay north of the FRF location), and other shelf-zone processes.

We performed several model simulations over the same limited region where
(to enhance the effect of the wind shear stress) we assumed short waves to be absent.
Hence, the only forcing mechanism in that hypothetical situation is the wind shear
stress, which is then balanced by the bottom shear stress in the longshore direction
and the setup gradient in the cross-shore direction. Assuming constant the wind
direction given in Table 6.2 (Pyina = —65°), we found that under these conditions
it would require a wind velocity of W = 10 m/s (instead of the measured 2.5 m/s)
to induce a locally generated longshore current of approximately 10 cm/s. In the
presence of waves, however, the effective bottom friction is increased significantly

and thus the same wind velocity would only induce a current of 3-4 cm/s.

These results are all for a constant wind forcing over the model region only,
and thus do not account for the possible extra currents that could be induced by

differential mean surface elevations at different locations of a larger region. The
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possible approach of a dynamic wind field can generate a storm surge that is also
dynamic, and has different water elevations at different locations. The resulting
longshore pressure gradient of this new scenario could potentially generate a long-
shore flow that could add (or subtract) to the short-wave induced currents. This
mechanism will only have an effect if there is such a longshore pressure gradient,
which we have no measurements for. Though a possible mechanism, we would then
expect an overall increase (or decrease) of the longshore current profile (though not
necessarily uniformly across the shore), and not a shift of the location of the max-
imum of the longshore currents. Hence, such effect could explain the discrepancy
between the model results and data at the offshore arrays, but it appears unlikely
that it would cause the peak of the measured longshore current profile to be over

the trough.

The possible existence of other external mechanisms is not ruled out, but for
the same reason as a wind-induced differential setup could force an almost cross-
shore uniform longshore current for the present bottom profile, it is not very plausible
that other motions of larger scale (such as tides) would shift the location of the
maximum of the longshore current. For a deeper bar-trough the same reasoning
would not apply as a “river-type” flow could be formed behind the bar. However,
since the present topography has a mild bar, a longshore current forced by other

mechanism would not necessarily be “trapped” behind the bar.

In order to check the effect of the existence of a possible stronger “feeder”
longshore current in the bar-trough, a test was performed with forced current profile
at the lateral boundaries, similar to the profile measured at the main array. This
test can also help to answer the question: what happens in a situation when a
current profile not in balance with the local wave forcing is specified at the model

boundaries? Thus, indirectly it enables us to examine the influence or the necessity
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Figure 6.21: Depth and time-averaged current velocity vectors for the
10/10/90:0351 simulation with forced longshore currents at the lat-
eral boundaries.

of knowing the incoming currents to the model domain, and how far we need to place
the model lateral boundaries to avoid “contamination” of the boundary conditions
in the results in the region of interest. We assumed the existence of an incoming
and outgoing longshore current at the upstream and downstream model boundaries,
respectively, with a profile equal to that of the measured currents at the primary

cross-shore array.

The depth and time-averaged current velocity vectors predicted under those
conditions are shown in Fig. 6.21. It can be seen that the strong longshore current
over the trough at the upstream boundary is slowly shifted towards the bar-crest.
This is more explicitly illustrated in Fig. 6.22, which shows the variation in the
longshore current profile at seven longshore locations from the upstream boundary
to the downstream boundary. The solid lines represent the results for the present

computation, and the dashed lines show the results for the previous simulation in



section 6.2.1 with periodicity at the lateral boundaries. Moving in the downstream
direction (from top to bottom of Fig. 6.22) we notice that the largest differences
between the current profiles are between y = 700 m and y = 500 m, and then again
at the downwave boundary y = 0 m. Between y = 400 m and y = 100 m the current
profiles differ mainly in the magnitude of the maxima over the bar-crest, and at the
offshore region. It turns out that for the present simulation with specified up and
downstream boundary conditions there is much less shear instabilities than in the
previous case. In here, the limited length of the model domain hampers the growth
of the shear waves that would otherwise develop on the infinitely long beach (when
lateral periodicity is used). Shear waves are locally generated, but because they are
a hydrodynamical instability phenomenon a reasonable length in space (and time)
is required for the instabilities to grow. Since the present boundary conditions are
constant in time, and the domain size is limited, then shear waves can only develop
to a certain extent. The comparison shown in Fig. 6.22 indicates that approximately
200-300 m downstream of the section with longshore forced currents (y = 700) the
currents have nearly adjusted back to the distribution found with the periodicity
condition. Further downstream, between ¥ = 100 m and ¥ = 0 m the currents are
seen to adjust to the profile of the forced lateral current. Thus, as expected, the
distance over which the boundary conditions affect the local currents is larger at the

upstream boundary than at downstream.

The cross-shore variation of the flow properties for this simulation at the
primary array location is shown in Fig. 6.23, where we have also plotted for com-
parison the data-interpolated longshore current profile that is forced at the lateral
boundaries. Comparing the present results with the previous ones, where lateral
periodicity was used (see Fig. 6.13), we notice that the maximum of V is at the
same location, but the current profile is narrower for the present simulation due to

the limited development of the shear waves pointed above. In fact, we find that the
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Figure 6.22: Cross-shore distribution of V at several locations from the upstream
(top) to the downstream (bottom) boundaries. Simulations for the
10/10/90:0351 with: periodic lateral boundaries (— =), and fixed
lateral boundaries (—).
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computed maximum amplitude of the shear waves is just 0.07 m/s at the location of
CM40, which should be compared with the previous amplitude of nearly 0.35 m/s
predicted at the same location for the previous simulation (see Fig. 6.19 and 6.20).
The period of the shear waves in the present simulation is 7" ~ 280 s, which should
be compared to the previous value 7' ~ 480 s. This variation of the period of the
shear waves from one situation to the other confirms that the period and wavelength
of simulated shear instabilities are fairly dependent of the domain size (ézkan-Haller

and Kirby, 1997).

In summary, we have found that the modifications imposed to the up- and
downstream boundaries do not penetrate to the main cross-shore array, which in-
dicates that the predicted currents in that region are dominated by local forcing
mechanisms. The boundary effects are significant in the regions adjacent to the
boundaries but appear to be minimal in the middle of the model domain. Though we
forced a flow with the “correct” longshore current profile, that flow is not sustained
unless a forcing mechanism can exist to support it. Therefore, we can conclude that
the measured longshore current profile must be generated by forces that have a local
contribution, though that local contribution could be generated by large external

(to the model region) mechanisms.

Local forces
SHORT-WAVE FIELD

In general, the most important forcing mechanism in the nearshore region
is the short-wave action. Although the predicted and measured wave heights H,.,,,
compare well, it was mentioned in section 6.1 that there are some uncertainties

about the estimates of the wave direction. In particular, we not only assumed a
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single principal wave direction, but we have also assumed Snell’s law to be valid
in the region between the 8 m depth array and the offshore gridline of our model
domain. The effect of some of these uncertainties in the SHORECIRC predictions

was then assessed as follows.

In one situation, we used the linear spectral model REF/DIF S to calcu-
late the “root-mean-square” wave height and representative direction based on the
energy and radiation stresses spectral estimates (Chawla et al, 1997). The input
directional spectrum had the same directional spreading as that estimated from the
pressure sensors at the 8 m depth array, and the mean direction given in Table 6.2.
It turned out from this computation that the wave height and mean angle distri-
butions did not differ significantly from the previous results with REF/DIF1, and

thus the predicted nearshore currents were also similar to those already presented.

A second situation is examined here in greater detail in order to check the
effect of an error in the incoming mean wave angle. Fig. 6.24 shows the results of the

mean flow quantities from SHORECIRC for a simulation where the incident wave

angle at the offshore gridline is a,, = —18°, which corresponds to a reduction of
30% in the incoming wave angle relative to the previous value (v, = —26.5°). The

model results in Fig. 6.24 indicate that the decrease in the mean wave angle caused
a proportional reduction of the short-wave forcing in the longshore direction, and
thus the longshore currents are correspondingly smaller than those calculated before
(Fig. 6.13). It is seen that the location of the maximum of the longshore current
remained over the bar-crest, which means that, though the short-wave forcing is
smaller in the present simulation, it is still the predominant mechanism for the

longshore currents in the surf zone.

We have mentioned previously that the model results given by Reniers ef al.

(1997) for the case of longshore uniformity happened to be similar to ours. The
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Figure 6.24: Cross-shore distribution at the primary cross-shore array for the
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radiation stress term %ﬁ’- in the model equations of those authors include also a
forcing from the wave-roller, which was not accounted for here. Several authors
(e.g., Svendsen, 1984b; Okayasu, 1989; Nairn et al., 1990; Osiecki and Dally, 1996)
have discussed that the presence of the surface roller in a breaking wave is able
to increase the radiation stresses in the surf zone. In particular, the inclusion of
the momentum transported by the roller in the governing equations seems to be
able to shift shorewards the maximum of the total (short-wave plus roller) radiation
stress forcing. We note that the analysis of field data by Feddersen et al. (1996)
confirms that there is a spatial lag in the maximum of %ﬁ and the maximum of
V. Therefore it is likely that this mechanism alone could create a stronger forcing

for the longshore currents in the trough region, and a better short-wave driver is

needed to account for it.

In addition to the absence of a roller contribution in the present radiation
stresses formulation, we pointed out previously from the video image of the breaking
region (see Fig. 6.10) that breaking appears to exist even past the bar-crest. This
is likely to be caused by a moving breakpoint which is not represented by the use
of the wave model REF/DIF 1. The existence of breaking in the trough is therefore
an indication of an additional force for the large longshore currents observed in that

region.
BOTTOM SHEAR STRESS

We have discussed in this work the uncertainties associated with the speci-
fication or calculation of the bottom friction coefficient. For the results in section
6.2.1 we estimated the friction factor f., from Swart’s formula with the Nikuradse
roughness ky = 10ds. Fig. 6.8 shows that the resulting friction factor is ~ 0.011
at all cross-shore locations, except close to the shoreline. Since it is known that

the magnitude of f., can affect the model predictions significantly we did further
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numerical tests with different distributions of f,,.

First, we realize that the use of a constant ratio between the bottom roughness
and sediment size over the whole domain will not distinguish regions with different
bottom forms. In fact, sand mega-ripples were present in the trough behind the
bar, which would in face of the present knowledge contribute to an increase of the
roughness and hence the bottom friction. Since the current velocity is inversely
proportional to the friction factor, then an increase of f., in the trough would
cause a corresponding decrease of V' over the same region, which would enhance the
discrepancy already observed between the model predictions and the measurements.
Therefore, we did not try to correct the friction factor to account for the possible

existence of different bottom forms along the beach.

Second, instead of using a varying f., such as that shown in Fig. 6.8, simu-
lations were performed with a constant friction factor over the whole domain. The
results of a computation with a constant f., = 0.011 were only minimally different
from the ones given previously, with the largest variations in the region adjacent
to the shoreward boundary (z > 320 m). At the other cross-shore positions the
differences were imperceptible, which indicates that local variations of the friction

coefficient within 5-10% do not change the shape of the longshore current profile.

Having examined the cross-shore distribution of f.,, it is relevant to analyze
and discuss a variation in magnitude of f.,, where we chose to decrease f., in an at-
tempt to improve the longshore current prediction over the trough. Fig. 6.25 shows
the computed and measured mean water level and current velocities for a simulation
where the Nikuradse roughness is computed by the traditional formula ky = 2 ds,
which implies that f., =~ 0.008 everywhere except near the shoreline. Hence, the re-
sults presented in Fig. 6.25 correspond to depth-averaged velocities determined with

a friction factor approximately 70% of the friction factor for the results in Fig. 6.13.
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Figure 6.25: Cross-shore distribution at the primary cross-shore array for the
10/10/90:0351 simulation, with f., =~ 0.008, of: (a) H,,s model
(—), data (x); (b) ¢ model; (c) Uy, model (—), U model (— =),
U.data model (o), data (%); (d) V;, model (—), V model (—=), Vzdata
model (o), data (*); (e) h, (—), (= =), and gauges position (+).
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It is seen that the agreement between the predicted and measured longshore cur-
rents for the present computations is fair. In fact, the conformance is good in the
trough region at sensors CM20 and CM40, but less accurate in the surf zone over the
bar-crest. We further notice through the inter-comparison of the model predictions
between the two simulations (Fig. 6.13 and 6.25) that the shape of the longshore
current profile remained unaltered. Hence, the reduction in the magnitude of the
bottom friction induced an almost spatially constant increase in V over the active
surf zone. For the lower friction case, the shear instabilities are more energetic, and
thus the mixing induced by the shear waves is responsible for the larger currents
computed seaward of the position CM60 (relative to the case with larger friction). It
turns out that at CM40 the maximum variation of the velocity perturbations is now
0.5 m/s, which should be compared with the previous value of 0.35 m/s. The energy
frequency band of the shear instabilities is also wider for the present simulation with
a smaller friction factor, which is in agreement with the findings of other studies on
shear waves (e.g., Ozkan-Haller and Kirby, 1997). However, assuming that we can
trust all the gauges in the main array, we still find that the predicted cross-shore

variation of V differs from the measured profile.

Last, we find that the vertical profiles of the longshore and cross-shore veloc-
ities show the same trends as those seen in Fig. 6.16 (and thus are not presented).
In summary, we have examined the influence of a reduction of the friction factor and
found out that the shape of the longshore current profile is largely unaffected. An
increase in the friction factor similarly conserves the predicted shape. We conclude
that it would require a large uneven decrease in f., at the trough, which can not
be justified on the present information, in order to change the computed longshore
current profile to a profile with a peak over the trough by changing the friction

factor.
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DISPERSION

A third mechanism that can influence the distribution of the depth-averaged
nearshore currents is the dispersion of momentum due to the vertical variation of
the currents. Though the vertical profiles of the time-averaged currents shown in
Fig. 6.16 appear to have the correct trends, it is convenient to evaluate the sensitivity
of the results with respect to a variation of the eddy viscosity, which is a free
parameter of the model. The dispersion is the largest in the regions where the
vertical variation is also the largest, which happens to be in the regions where
breaking is more intense, i.e., over and slightly seaward of the bar-crest, and near
the shoreline. Therefore, the dispersion is already acting to spread the large short-
wave forcing existent in those regions. Nevertheless, the dispersive mixing was seen
(Fig. 6.17) to have a relatively small magnitude in the total y-momentum balance,
and hence in the following test we study a situation where the dispersive mixing is

larger than previously.

The cross-shore distribution of the eddy viscosity coefficient for the new test
is given in Fig. 6.26. This coefficient is computed with C| = 0.25 and M = 0.075
in equation (2.86) instead of the previous C; = 0.25 and M = 0.1. Essentially, this
means that the mixing coefficient due to breaking waves is reduced by 25%. This
change is fully within the range of uncertainty associated with the estimation of the
eddy viscosity. The time and depth-averaged current velocities along the primary
array for a simulation with the above distribution of the eddy viscosity is given in
Fig. 6.27. Comparing this figure with Fig. 6.13, the shape of the modeled V has
similar characteristics in both computations. The maximum of V is slightly larger
and shifted shorewards for the present situation, which means that the agreement
with the data improved behind the bar, but only minimally, and deteriorated offshore

of the bar. In general, the maximum of V in Fig. 6.27 is slightly narrower than for the
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Figure 6.26: Cross-shore profile of v, /h /g h, at the primary cross-shore array, for
the 10/10/90:0351 simulation with C} = 0.25 and M = 0.075.

previous case shown in Fig. 6.13, which means that the total mixing is smaller here.
It turns out that, similarly to the examples examined in sections 5.2.2-5.2.4, the
difference between the mixing in the two simulations is not only due to the dispersive
mixing, but also due to different amplitudes of the shear wave motion. For the
present simulation the dispersive mixing is stronger, but is somewhat compensated

by a weaker shear wave mixing.

This simulation allows us to conclude that, though we increased the dispersive
mixing in the breaking region so that it could enhance the magnitude of the longshore
current over the trough, the shear wave mixing became proportionally smaller, and
thus the overall profile of the longshore velocity remained essentially unmodified.
Hence, it emerges from this analysis that an alteration of the eddy viscosity can
affect the current profile to some extent, but it does not seem to be a plausible

mechanism to affect the location of the maximum of V.

In conclusion for all the model simulations for the 10/10/90:0351 wave con-
ditions, we failed to predict the observed maximum of the longshore currents over
the trough. The pressure gradient is seen to be an important force in that region,
but other mechanisms must be present as well. It appears that the existence of a

nonsteady, random, wave field with a varying breakpoint is an effect likely to be
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Figure 6.27: Cross-shore distribution at the primary cross-shore array for the
10/10/90:0351 simulation, with M = 0.075, of: (a) H,,, model (—),
data (%); (b) ¢ model; (c¢) U, model (—), U model (= =), Usdata
model (o), data (x); (d) V;, model (—), V model (—=), Vzdata model
(0), data (); (e) hy, (—), ¢ (= =), and gauges position (+).
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responsible for the measured strong currents over the trough. In addition to the
varying breakpoint, the proper representation of the forcing to the mean currents
induced by the roller could have an effect of reducing the discrepancy between the

measured and predicted currents over the trough region.
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6.3 Simulations for the 10/10/90:1022 period

In this section we apply the model SHORECIRC to simulate the conditions at
the 10th of October at a high-tide level, for the 3 hr period starting at 10:22am. The
input wave conditions for this simulation are very similar to those for the previous
case (see Table 6.2), as the wave field was nearly stationary until the end of this

period.

The beach topography for the present simulation is given in Fig. 6.4 and
6.5. The model region is, once again, limited by the most seaward location in
Fig. 6.4 and a no-flux boundary condition at a fixed location at the shoreline with
still water depth h, = 0.05 m. For the present simulation, the dimensions of the
model domain are [, = 350 m and [, = 700 m, which is just 10 m larger in the
cross-shore direction than the domain for the previous simulations to account for
the beach inundation due to the increase in tidal level. The boundary conditions at
the other boundaries, and the grid spacings are the same as before. Likewise, the
eddy viscosity parameters are the “default” values used often throughout this study
(Cy =0.25, M = 0.1), and the bottom friction coefficient is calculated from Swart’s
formula with kx = 10dsg, which yields the distribution of f., shown in Fig. 6.28.
This figure shows that the computed f, for the present case (f., ~ 0.0125) is larger
than that for the simulation of the 10/10/90:0351 period (see Fig. 6.8), due to a
decrease in the wave orbital motion near the bed (which is caused by a raise in
water depth). The cross-shore distribution of 1;/h+/g h, along the primary cross-
shore array is also shown in Fig. 6.28. Minor differences can be found between this

variation and that for the 10/10/90:0351 period.

Though the incident wave conditions are similar for the two periods at the
10th of October, the local variations in water depth due to the tide can affect sub-

stantially the nearshore wave field. This can be seen through the comparison of
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Figure 6.28: Cross-shore profiles of f.,, v/h+/gh, and h, at the primary cross-
shore array, for the 10/10/90:1022 simulation.

Fig. 6.29 for the present case with Fig. 6.9 for the low tide situation. The most
interesting differences are in the wave height field (center panels). Whereas previ-
ously H,,,s =~ 0.4 m over the trough, we now observe that for the high-tide situation
H,..s ~ 0.6 m in the same region. Breaking is now a lot more intense over the beach
face and barely evident over the bar-crest (see also the cross-shore distribution in
Fig. 6.31). In the top panel of the two figures we also notice that there are no

appreciable differences in the computed wave angle for both cases.

The depth- and time-averaged (over a period of 2 hr) predicted current veloc-
ities for the present case are given in Fig. 6.30. The depicted currents are essentially
longshore uniform, which is confirmed by the fact that the maximum depth-averaged
cross-shore velocity is smaller than 0.10 m/s (it would be zero for a longshore uni-
form beach). The longshore currents appear to be fairly uniformly distributed over

the region between the bar crest and the beach face. A perspective plot of the mean
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Figure 6.29: Contour plots for the 10/10/90:1022 simulation of: a) wave angle
oy (°); b) wave height H,,,, (m); and c) still water depth h, (m).
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Figure 6.30: Depth and time-averaged current velocity vectors for the
10/10/90:1022 simulation.

surface elevation (not shown) indicates the existence of longshore variations of that

quantity, which it will be seen later to drive the currents in the trough region.

Fig 6.31 shows the cross-shore variation of the time-averaged flow variables
along the primary cross-shore array. First, we notice that the predicted H,,,s does
not compare so well with the data as for the 10/10/90:0351 period (Fig 6.13), despite
several attempts with various combinations of the breaking-related parameters in
REF/DIF 1 to produce a better agreement. Nevertheless, the agreement between
the predicted and measured H,,,; is considered satisfactory. Second, it is seen that
the breaking over the bar is much weaker for the present high-tide case, which means
that only part of the wave energy (and momentum flux) is released in that region.
Therefore we expect a greater concentration of the currents closer to the shore,

which is seen in both the data and model results for V.

The measured cross-shore currents at the primary cross-shore array are seen
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Figure 6.31: Cross-shore distribution at the primary cross-shore array for the
10/10/90:1022 simulation of: (a) H,ns model (—), data (x); (b)
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to be fairly well predicted by the model at most locations except at CM20 and
CM90°. It is also seen that the predicted below-trough averaged current U,, is
similar to the current at the gauge vertical location (U,gaa), and thus is a good
representative value of the magnitude of the cross-shore currents. The good agree-
ment between U,, (or U,4a.) and the data also indicates that the estimate of @, by
equation (2.110) with By = 0.125 (linear wave theory) happens to be good. Again,
this fact contradicts the expectancy that the use of linear wave theory overestimates

the values @), in the breaking region.

Focusing in the longshore current velocities at the primary cross-shore array
(Fig. 6.31) the model still predicts a bi-modal current profile, whereas the data
suggests the existence of a maximum over the trough. The discrepancy between
modeled and measured V is the largest at CM20 and CM40, and also at the offshore
gauges. In particular, the measured currents seaward of CM50 are fairly constant
and relatively large (V =~ 0.2 m/s), which contrasts with the model predictions
that decay to nearly zero seawards of the CM60 location. This large velocities at
the offshore locations can not be simply explained by the wind shear stress which
induces a longshore current of only 5 cm/s. Overall, we fail to predict the shape of

the longshore current profile, but not the magnitude of the maximum velocities.

The vertical variation of the simulated time-averaged current velocities at the
primary array is given in Fig. 6.32. As before, the vertical profiles for the cross-shore
velocities are a lot more pronounced than for the longshore velocities. In fact the
profiles of both U and V exhibit the same trends as the profiles often measured in
field conditions (Rodriguez et al., 1994). Recall also that we are not solving for the
bottom boundary layer, and thus we expect the given profiles to change considerably

close to the bottom if we had included a solution for the governing equations in that

6 Recall the existence of an offset error of U at CM90.
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region.

As before, the magnitude of the ferms in the momentum equations (time-
averaged over a 2 hr period) along the primary array alignment for the period of
10/10/90:1022 is given in Fig. 6.33. In the z-momentum equation the same main

balance between gh,gi and %ngl is visible. In the y—momentum equation the wave
forcing is bi-modal despite the weak breaking over the bar, and more important, is
that most of the forcing in the trough is caused by the longshore pressure gradient.
In fact, this term is also large at the beach face and over the crest, but with opposite
sign to that of the wave forcing, which means that the longshore pressure gradient in
those regions is contributing to a reduction of the longshore currents. The convective
accelerations are again not small, though most of this contribution turns out to be
due to the time-averaged currents, and only a small component is caused by shear
wave motion. As in the 10/10/90:0351 simulation, we find that the dispersive mixing
is small but not negligible for the present results. Comparing these results with those
in section 5.2.4 (see fig. 5.36) for a nearly longshore uniform barred beach with a
rip-channel, it appears that the dispersive mixing is smaller here, in the presence of

larger topographical variations in both the longshore and cross-shore directions.

Time series of the depth-averaged current velocities (U, V) from SHORE-
CIRC at the positions CM20, CM40 and CM60 are given in Fig. 6.34. These loca-
tions are representative of the conditions over the trough, over the bar-crest and on
the seaward slope of the bar, respectively. These time series show the prediction of
velocity fluctuations on a time scale identified with the presence of shear instabili-
ties. Note that the velocity fluctuations are not so intense as those for the previous
case (Fig. 6.19 and 6.20). The peak period of the velocity fluctuations is 7" ~ 750 s

and the wavelength is approximately L ~ 230 m, which implies a propagation speed
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Figure 6.33:
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of ¢s ~ 0.31 m/s, or cg ~ 0.39 17M, where f/M = 0.80 m/s is the maximum long-
shore velocity at the primary cross-shore array alignment. Hence, the shear waves
for the 10/10/90:1022 period are predicted to propagate slower than those for the
10/10/90:0351 period (cs =~ 0.46 m/s). Also, for the 10/10/90:1022 period, the es-
timated frequency-wavenumber spectrum from the secondary crest sub-array given
by Church et al. (1992) indicates the existence of shear waves traveling at a speed
within the range 0.40 < cg¢ < 0.50 m/s, which is slightly faster than the speed
predicted in our computations for the same case. One possible reason for this dis-
crepancy is the limited domain dimensions in our computations, which affects the

wavelength and the propagation speed of the shear waves.

For completeness, the comparison between model and data results at the
secondary array and the trough and crest sub-arrays is indicated in Fig. 6.35 and
6.36. Recall that it is known from the data analysis that the cross-shore velocity
records at CM70, CM71, CM73 and CM74 have an offset error. Focusing first on
the cross-shore profiles we note large differences between the variations of all the
quantities, except for the longshore velocities (V and V,,), at this alignment and
at the primary cross-shore array (Fig. 6.31). This indicates that there is a strong
longshore variability in the flow properties, which was not apparent in Fig. 6.30.
The comparison with the data is not very informative for the lack of more current

meters.

At the trough sub-array (left panel in Fig. 6.36) we find a fairly good agree-
ment between the model below-trough averaged U,, and the data. In the longshore
direction, the measured velocities are also seen to be reasonably well predicted by
the model results. In fact, there are locations in the trough where the model predic-

tions are even larger (in absolute value) than the measured currents, which seems
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Figure 6.34: Time series of the predicted U (3 upper plots) and V (3 lower plots)
for the 10/10/90:1022 simulation at three locations along the primary
cross-shore array: (a,d) CM20, z = 305 m; (b,e) CM40, = = 265 m;
(c,f) CM60, z = 225 m.
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Figure 6.36: Cross-shore distribution at the trough (left) and crest (right) sub-
arrays for the 10/10/90:1022 simulation of: (a) H,,s model; (b) ¢
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to indicate that for the present simulation the model is able to predict the rela-
tively large currents observed over the trough. The comparison of U at the crest
array (right panel in Fig. 6.36) is deceptive, because as mentioned previously all the
gauges gave false readings except the CM72, which is matched by the model results.
For the longshore velocities, the predicted currents at most locations are lower than
the measured currents. No explanation is found for this discrepancy. It appears
though that a mixing mechanism of larger magnitude than the ones included in the
model (such as that due to random waves) is responsible for those (relatively) large

longshore currents measured seaward of the bar crest.

In summary, through the comparison of the results in this section (for high-
tide) with those of the previous section (for low-tide) we have confirmed the findings
of other authors that the nearshore currents are strongly tidal modulated. The
change in water level modifies primarily the wave field, which consequently modifies
the distribution of the wave force and the longshore currents. At the primary cross-
shore array location, we find that at low-tide the predicted longshore current profile
is strongly double-peaked (Fig. 6.31), whereas at high-tide the current profile is
nearly uniform in the region between the bar and the beach face. In both cases the

longshore pressure gradient is an important driving force, though.

6.4 Simulations for the 19/10/90:1221 period

We chose to analyze a third situation at DELILAH observed during the 19th
of October, between 12:21 and 15:21. The beach topography changed considerably
from that seen in the 10th of October, due to the passage of a “southeaster” storm
on the 11th and the proximity of the Hurricane Lili on the 13th. Around the 12th of
October, a prominent topographical feature, similar to a secondary bar, appeared at

the southern end of the mini-grid surveying area, which remained permanent until
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Figure 6.37: DELILAH: Beach bathymetry for the 19th of October.

the 19th, though with slight changes in form. This can be seen in Fig. 6.37 around
the 700 and 800 m longitudinal mark (in a coordinate system rotated -3° from the
FRF coordinate system). It should be noted that in order to use periodicity at the
lateral boundaries we had to artificially match the surveyed cross-shore profile at the
south end of the mini-grid with that at the north end of the mini-grid. Therefore, the
original mini-grid area of length [, = 570 m is extended in the longshore direction
for 190 m in order to provide that match, yielding the total domain length for the
calculations of I, = 760 m. Though this procedure is likely to introduce errors in
the simulation, we find it acceptable in view of the findings in section 6.2.2 about
the small effect of the lateral boundary conditions on the simulated currents at the

primary cross-shore array location.

The topographical feature we pointed out in Fig. 6.37 is likely to be poorly

represented due to the lack of information outside the mini-grid area. Nevertheless,
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it is also unlike to affect our results significantly because that feature is downstream
of the array locations for the wave direction observed on the 10/10/90:1022 period

(see Table 6.2).

Fig. 6.38 shows the contour plots of the computed wave angle «,, and “root-
mean-square” wave height H,,,, for the incident wave conditions given in Table 6.2.
The bottom panel shows the depth contours (for the present low-tide case), where
the largest topographical variations are observed over the trough at the right (down-
stream) of the sensor locations. (Note that these plots are given in the computational
grid coordinate system, with origin at the northern-seaward point of the domain).
The wave angles are positive, which means that waves are coming from the north-
east sector, instead from the south-east sector as it was seen for the simulations in

the 10th of October.

The simulations with SHORECIRC for the present conditions predict again
the presence of shear waves. The friction factor is calculated as before from Swart’s
formula with ky = 10dsy and it turns out to give f., =~ 0.0125, which is similar
to that found for the 10/10/90:1022 simulation. The eddy viscosity parameters
are also the “default” values C'; = 0.25 and M = 0.1. We are more interested
in analyzing the time-averaged (over the period of the simulation) flow properties.
However, it is also interesting to provide an instantaneous “picture” of the flow
field to better understand the type of phenomena simulated herein. Fig. 6.39 shows
the instantaneous (subplot (a)) and the time-averaged (subplot (b)) depth-averaged
velocity vectors for the present conditions. The instantaneous flow field (after 1 hr
of simulation) has several vortices at different locations, which are associated with
flow instabilities that propagate with the longshore current. The vortices are created
by the shear instability mechanism, but also by the convergence and divergence of

the streamlines around prominent topographical features. Rapid accelerations of



Figure 6.38: Contour plots for the 19/10/90:1221 simulation of: a) wave angle
oy (°); b) wave height H,,,, (m); and c) still water depth h, (m).
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the flow can even be seen in the time-averaged velocity vectors (see bottom panel

of Fig. 6.39 at y ~ 600 m).

The cross-shore variation of H,,,,, ¢, U and V along the the primary cross-
shore array and at the trough and crest sub-arrays are given in Fig. 6.40 and 6.41,
respectively. Notice that at the primary array, the sensors CM30 and CM60 were out
of order, and the sensors CM70 and CM90 have offset errors in the measurements of
U. The measured cross-shore velocities in Fig. 6.40 are fairly well predicted by the
model results, with exception of the position CM80. For the longshore velocities,
we find again a bi-modal current structure predicted by the model. The data shows
velocities much larger than the predicted seaward of the bar, and slightly larger in the
shoreward slope of the bar crest (positions CM40 and CM50). The latter indicates
that the forcing predicted by the model in that region is lower than the existent,
which can probably be due to an improper modeling of the radiation stresses in the

breaking region.

At the trough array (left in Fig. 6.41) we find a fairly good agreement between
the predicted and measured below-trough cross-shore and longshore velocities (solid
lines). (CM30 is out of order). This is somewhat consistent with the results for the
10/10/90:1022 period (section 6.3), where we also found a relatively good agreement
at the trough array. For the crest array, the predictions seem poor, but we recall
that CM72 is the only reliable sensor for the cross-shore velocities. For the longshore
velocities we have no confirmation whether the sensors are faulty or not, but it is
likely that some of them can be malfunctioning due to the large variability of readings

for a series of sensors no more than 50 m apart (CM70-CM74).

During the experiment, vertical profiles of both U and V' were measured with
an instrumented sled (Smith et al.,, 1992; Birkemeier et al., 1997). The sled was

towed offshore of the breaker line once a day, starting on the 16th of October, and
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Figure 6.39: Depth-averaged current velocity vectors for the 19/10/90:1221 simu-
lation: (a) instantaneous flow field at ¢ = 3790 s; (b) time-averaged

flow field over a period of 2 hr.
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then it was pulled back to shore in steps of 20 m. At each stopping position (which
were close to the primary cross-shore array gauge locations), data were collected for
34 min. The interval between the starting acquisition time at consecutive locations
was approximately 40 min. The data were obtained with five electromagnetic current
meters mounted at 0.35, 0.60, 1.00, 1.35 and 1.75 m above the bed. During the 19th
of October six vertical profiles were collected between 12:30 and 16:30. Here, we will
assume for model to data comparison that these profiles are representative of the
time-averaged currents over the 3 hr period starting at 12:21. Essentially, the period
between 12:30 and 16:30 starts (and finishes) slightly before (and after) low-tide.
Therefore, the variation of the cross-shore and longshore currents due to differences

in water depth (and thus wave conditions) is assumed to be minimal over this period.

Fig. 6.42 shows the comparison of the measured currents at each sled position
(averaged over 34 min) with the predicted currents at the same location (averaged
over 2 hr of the model simulation). Note that the longshore alignment of these
measurements is just 20 m North of the primary cross-shore array alignment. It
can be seen that the cross-shore currents are relatively well represented, though
large variations can be observed at the location # = 245 m. This is likely to be
due to a low value of the estimated wave mass flux ), in that region, even though
that value is determined using linear wave theory (By = 0.125) and a contribution
from the wave roller. For the longshore currents, we find that the maximum of
the measured currents is clearly over the bar and not over the trough. Second, the
comparison between the data and the model estimates is fairly good everywhere
except at the location z = 225 m, just before the bar-crest. Moreover, the sled-
measured longshore currents at the locations parallel to those of the gauges CM40
and CM50 (z = 260 and = = 245 m, respectively) indicate a depth-averaged value

lower than that measured by those gauges (see Fig. 6.40)". We also notice that the

" This can be an indicative of some error in the readings of those gauges too.
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predicted vertical profiles compare well with the measured profiles, and both are
nearly uniform along the vertical. The data shows a slightly larger variation of V
along the vertical than the model, and we further notice that the currents at the
second and third sensors from the bottom are systematically lower than at other

positions. No explanation is found for this observation.

Last, the cross-shore variation of the magnitude of the terms in the time-
averaged momentum equations along the primary cross-shore array is given in
Fig. 6.43. Several important features are worth noticing. First, the convective
accelerations in the longshore momentum equation are the largest terms in most
regions. A more detailed analysis of the flow reveals that a partial contribution
(nearly 40%) to these large values of the convective accelerations comes from the
mixing induced by shear waves. However, the contribution of the steady convective
acceleration is the largest (60%) of the two, which means that a seemingly small
change of direction of the flow (see Fig. 6.39b) is associated with large convective
accelerations. Second, we find that for this example the time-averaged longshore
pressure gradient is a small term at all cross-shore locations. Finally, the disper-
sive mixing is also small in the y—momentum balance, but locally important in the

z-momentum balance.

In conclusion, for the simulation of the 19/10/90:1221 data set the model
results are consistent with the results for other periods. Due to several failures of
the fixed current meters during the experiment, fewer data are available for com-
parison for this date. The comparison between the estimated depth-profiles of the
(time-averaged) current velocities with the measured profiles from sled-mounted in-

struments indicates good agreement.
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Figure 6.43: Cross-shore distribution at the primary cross-shore array of the terms
in the time-averaged momentum equations for the 19/10/90:1221
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

This thesis covers the simulation of multiple nearshore phenomena with en-
gineering interest to the coastal community. The governing equations are derived
from the conservation of mass and momentum principles, integrated over the depth
and over the short-wave and turbulent motions. The turbulent Reynolds stresses
are modeled using the eddy viscosity concept, which is further assumed to be con-
stant in time and in the vertical direction. The eddy viscosity model provides a
simple closure to determine analytical profiles for the vertical variation of the hori-
zontal currents. A second closure in the model equations is provided by a nonlinear
formulation for the wave-current bottom shear stress. The model equations are
solved numerically using a high-order finite difference scheme, which is proven to
give accurate results compared with the model of Ozkan-Haller and Kirby (1997).
The numerical scheme given here is implemented in a new version of the model

SHORECIRC.

Svendsen and Putreva (1994) identified a mechanism of momentum disper-
sion induced by the depth integration of the nonlinear terms in the horizontal mo-
mentum equations. Here we follow the procedure of Van Dongeren and Svendsen
(1997b) to calculate the dispersion terms induced by the depth-varying currents.

The analytical evaluation of the local vertical profiles hinges on the calculated value






for the eddy viscosity coefficient. In this work we introduced an eddy viscosity for-
mulation which includes a contribution to the turbulent stresses from the bottom
boundary layer, and one from the turbulence generated by surface breaking waves
(following e.g. De Vriend and Stive, 1987). The eddy viscosity formulation is thus

characterized by two free parameters ', and M, which are both of O(0.1).

We find in several applications that the vertical profiles of the horizontal
currents are reasonably estimated with the chosen eddy viscosity parameterization.
It appears, though, that the vertical variation of the longshore currents is slightly
underestimated in several cases, which can be corrected through changes in the
local eddy viscosity. The results also suggest there is a need to perform detailed
physical (or field) experiments on the turbulence levels over barred beaches, both
inside and outside the breaking region, in order to validate the turbulence closure
in the SHORECIRC model. Nevertheless, the comparison of the modeled with
the measured (during DELILAH) vertical profiles of the cross-shore and longshore
currents indicates good agreement, which leads to the conclusion that the present
eddy viscosity formulation seems to capture the correct variations of the turbulence

in the nearshore zone.

The accuracy of the simplified longshore current model given by Putrevu
et al. (1995) is examined against the more complete SHORECIRC model equations.
It is found that the model of Putrevu et al. overestimates the contribution of
the longshore pressure gradient for the forcing of the longshore currents over a
barred beach with a small longshore bottom variation similar to a rip-channel. The
mechanisms responsible for the innacuracies are analyzed and found to be due to
several factors. One important factor contributing to the observed discrepancy
is that the largest forces (i.e., terms) in the longshore direction are an order of

magnitude smaller than the largest cross-shore forces. It is also found that including
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consistently all terms up to the same order in the z- and y-momentum equations
greatly improves the simplified model predictions. We conclude that the Putrevu
et al. model is limited to extremely smoothly-varying bottom contours, and it should

not be used under conditions where the basic assumptions are not strictly satisfied.

The model SHORECIRC is also applied here to examine the development and
propagation of shear instabilities over a longshore uniform plane beach. Our results
compare well with those of previous authors (Ozkan—Hallcr and Kirby, 1995; Allen
et al., 1996), and we confirme the conclusions of the first authors that shear waves
provide a mixing mechanism for the longshore currents in the surf zone. We further
conclude that, contrary to the suggestion of Bowen and Holman (1989), there is not
a simple relationship for the phase difference between the cross-shore and longshore
velocity fluctuations (associated with the shear wave motion) calculated at the same
location. This seems to limit the possibility of extracting information of the shear

wave motion from phase spectra analysis of field data.

Shear waves over a barred beach are predicted for several different incident
wave conditions. In a study of the currents over a longshore nonuniform barred
beach with quasi longshore-uniform incident waves, it is found that shear waves can
be initiated by a topographical variation in the form of a small rip-channel. In the
absence of dispersive mixing the shear instabilities are very energetic and present
different signatures at different cross-shore locations. The mixing provided by the
shear wave motion is reduced, though, with the inclusion of the dispersive mixing
(depth-varying currents) in the model equations. In the latter case we find that
the shear instabilities became less energetic, exhibiting more regular wave-like vari-
ations than in the former case. In general, we conclude that the final time-averaged
longshore current (cross-shore) profile is the same in the presence or absence of the

dispersive mixing, due to the respective decrease or increase of the mixing provided

207



by the shear waves such that the total mixing is identical in both situations. It
appears that a critical balance exists between the dispersive and the shear wave
mixing, which is dictated by the parameters C, and M chosen for the eddy viscosity

formulation.

For a barred beach under wave conditions such that there is a strongly long-
shore variability of the wave field in the neighborhood of the rip-channel the model
results indicate the formation of rip-currents. Longshore currents converge to the
rip-channel and “feed” the rip-currents. It is found that the largest driving force
for the longshore currents in that region is the longshore gradient of the mean sur-
face elevation. For sufficiently low values of the bottom friction coefficient and the
dispersive mixing mechanism, both shear waves and meandering rip-currents are
formed, suggesting that these two phenomena are “two faces” of a similar hydrody-
namic instability phenomena. The meandering rip-currents oscillate at a frequency
of the same order of magnitude to that of the shear waves, and release vortices
that detach at times from the rip-current. We conclude that the largest terms of
the (time-averaged) momentum equations along the rip-channel axis are the con-
vective accelerations, which gives support to the mechanism for the occurrence of

rip-currents discussed by Arthur (1962).

Finally, we apply the model SHORECIRC to simulate the conditions observed
at certain times during the DELILAH 1990 field experiment. The comparisons
between the model predictions and the data suggests that we fail to predict the
large longshore current measured over the trough region for the 10th of October.
The local longshore pressure gradient included in the model equations is found to
be a significant term to drive the currents in that region, though it is not strong
enough to justify the large measured currents. It is also found that all the terms

in the longshore momentum equation are important, and thus the use of simplified
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models even for nearly longshore uniform conditions may not capture some of the

important mechanisms responsible for the longshore current distribution.

The possible existence of a larger scale longshore pressure gradient (such
as tidally-induced or a gradient caused by differential wind-induced setup) during
DELILAH is discussed, and found to be a possible driving mechanism. A second
mechanism that could explain the discrepancy between the data and the model
predictions is the too simplistic representation of the wave forcing provided by the
wave-driver used herein (REF/DIF 1), that does not predict wave breaking in the
region behind the bar crest. Real waves are random and thus the breaking location
is variable, which is not modeled by the present wave-driver. The use of a nonlinear
wave-driver with a proper account of the wave breaking mechanism is likely to
provide a better estimate of the radiation stresses gradients and thus the wave
forcing in SHORECIRC. A second, more simplistic approach, is to account for a
delay in the transfer of momentum from the short waves to the mean flow in a

similar fashion to that of Nairn et al. (1990), Smith et al. (1993), and others.

Despite the deficiencies mentioned above, we find that the use of the nonlinear
formulation of the bottom shear stress, with a variable friction coefficient determined
by the formula proposed by Swart (1974), gives the correct order of magnitude of
the currents in the surf zone. We also find that the use of linear wave theory, plus a
contribution of the wave-roller in the breaking region, for the estimate of the short-
wave induced volume flux @, gives a reasonable prediction of the return current.
This conclusion contradicts the accepted knowledge that the use of linear theory

overestimates @0, in the breaking region.

For all three dates simulated here of the conditions during DELILAH we
predict the existence of shear wave motions. The restricted dimensions of the model

domain does, however, limit the growth of shear wave energy at the lowest spatial
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and time frequencies. A more extensive comparison of the shear wave regime should
be possible for a larger domain. We find that the predicted shear waves contribute
to the mixing for the longshore currents, and that the dispersive mixing contributes
less significantly. It can also be concluded that dispersive mixing over strongly
longshore-varying topographies is generally smaller than that for similar conditions

over a longshore uniform beach.

Based on the conclusions of this thesis, suggestions for future work are out-

lined as follows:

e Improvement of the short-wave predictions in the surf zone. We recommend
the use of Boussinesq-type models with a sufficiently accurate description of
the wave breaking to calculate the short-wave induced mass and momentum
flux. Such a wave-driver would also enable the simulation of non-stationary
random waves with a variable breakpoint, which can be important for the

study of field conditions.

e An alternative approach to the above method is the development of an appro-
priate parameterization of the wave-induced volume flux @,,, and nondimen-
sional radiation stress tensor P,g, valid in the surf zone. Such a parameteri-
zation would intrinsically include the effect of the wave roller in the breaking

region.

e In this study we intentionally neglected the effect of the currents on the short-
wave field. In situations where rip-currents are formed, this approximation is
definitely erroneous (e.g. Birkemeier and Dalrymple, 1975). Therefore, the
use of Boussinesq-type models, or the complete wave-current energy equation,

to accurately predict the wave field is desired.
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e We found little information on the turbulence field outside the breaking region
and over barred beaches. Hence, we point out the need to perform detailed
measurements of the turbulent properties of the flow for both monochromatic
and random waves in order to calibrate or improve the turbulence closure used

here.

e Similar suggestions apply to measure the bed shear stress in combined wave
and current flows, over various regimes and bottom profiles, in order to prop-
erly estimate the bottom friction coefficient. A detailed characterization of
the bed friction coefficient in the surf zone for several bottom forms is desired
as well. For example, a relation for the ratio ky/ds at different cross-shore

locations could be useful in estimating f...

e Finally, it has been observed in several occasions that the beach morphology
can change in a time scale of a few hours, which is equivalent to that of some
of the simulations performed herein. Therefore, it can be desirable to include
an equation for the conservation of sediment in the model equations, where

the sediment transport rate would be related with the flow velocities.
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Appendix A

FINITE DIFFERENCE CONTINUITY EQUATION

In this Appendix we put together the finite difference equations (3.13) and
(3.14), which corresponds to get the finite difference form for the combined predictor
and corrector steps. We show only the procedure for the continuity equation, and
we suffice to mention that the same procedure is applied to get the finite difference

equations for the z and y-momentum balance.

For convenience, we repeat the difference equations (3.12)-(3.13) for the pre-

dictor step

™ i 8@,1 i BQ& n—1 SQQ n—2 .
v = Gy — Ata (041 04 i e 0% i T8 Ozq |; ; )
2al.. = Qal..
0] iy
aC_ i ac— n—1 ac‘ n—2
— Atc ¥ —— — g —m 2
g g ho (r}:, B, - + s T " + a3 oz . y (A.2)
and (3.14)—(3.15) for the corrector step
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For simplicity we will designate @), by @ and @, by P. The partial derivatives
in equation (A.2) can be substituted by the difference formula (3.8). Hence, we

obtain for @

o At
= i ~gh0a05~£

[ @ (v_zc_?;g,j + 91+ + _:Ef.z,j)

%3
Y

+ay ('Y—z (o Tl + iy + ® _;1+_2%j)
tos (120 + 11 3% + 85 + »ay)] . (A8)

and for P
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Equations (A.3) and (3.8) are then used to get a finite difference equation

for ¢/ in the corrector step, which reads:
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We can now insert the values of @Q* and P* determined by equations (A.5)

and (A.6) at the various grid positions (i,7) into equation (A.7) for ('. This

]

step gives the combined predictor-corrector continuity equation, which contains the

unknown (;;

Fntl
7

n+l

on the LHS and all known quantities on the RHS:
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This equation is utilized in Chapter 3 to obtain the amplification matrix to

find the stability limits of the numerical scheme.
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Appendix B

AMPLIFICATION MATRIX FOR THE STABILITY
ANALYSIS OF THE FINITE DIFFERENCE SCHEME

In this Appendix we present the coefficients of the amplification matrix G

given by equation (3.25) in Section 3.2. This matrix is repeated here for convenience:

(.fhl G12 Q13 910 915 g6 Gz 0 0 )
921 G22 Go3 924 925 Y26 0 Gas g29
g3t 932 933 93 935 g O g3 g3
1P 0o 0 O O O O 0 0
G=|0 1 0 0 0 0 0 O
o o 1 0 0 0 0 0
o 0o 0 1 0 0 0 0
o o o0 o 1 0 0 0
\ o 0o o o o 1 0 0 0 )

In order to write the matrix coefficients it is convenient to define

= i O D

L —40 —30 —0

8 = e T e T oy g N o

5 e —30 —20 0

o = W oB Tt LAy BT L A Fal
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and

rno= yoet®? 4y 1e3% 4 yem? 4y,
g = Ya@ E bqre R gy e,
r3 = Y2€” % + y + me2” + 7,637,

Ty = -2 + ¥ (3,02 -+ Y1 '3302 il Yo 6492 .
where v_5, 7_1, 71, 72 are given by equation (3.9), and ¢, and 0, are defined by (3.20).

Using the coefficients ay, (i, d defined by the equalities (3.3), (3.5) and (3.9),

the coefficients of the amplification matrix are then given by
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gis = — 605?[33 (’}1_23 203 o4 Y_1€ L ST " e 4 Yo EM‘)
0
v, » .
Jig = — [30 fs C_: [33 (’Y_z € 20, + Y_1€ 02 I " 692 + Y2 ({2 32)

gt = Poayg 6% By a3 Vf (Y-281 + Y-192 + 71 83 + Y254)
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g21

922

923

924

926

G28

929

31

g3z

033

Bo o 8 Py vz V% (Y—271 + V=172 + N1 T3 + YaTa)

g ho 12

g1

Bo g 6% By ey vy 1y (=271 + Y=172 + M 73 + Yors)

9 ho 915

Bo cg 02 By cva 1’12 (7-281 + Y-152 + Y183 + Y254)

Bo o 6% By ez vy v (V=271 + Y-172 + Y173 + Yars)

Po g 6% B s Vf (y—281 + Y=182 + 71 83 + Y2 54)

Bo 6% Byaziy v (Y_ary + Y172 + N1 73 + Y2T4)

g he g13

Bo g 0% By ey vy v (y—281 + Y-152 + 7183 + Y254)
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g = ghogis

g3 = Poagd®Pragvyve(y-281 + Y-182 + 1183 + Y254)

gss = [oapnd® Py ay V;z (Y—2rm1 + Y-172 + N1T3 + YaTa)

gz = PBocwd®Prazvivy (Y281 + Y-182 + 7183 + Y284)

g9 = Poagd® Prasvi(y_ari + Y_172 + Y173 + YaTa)
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