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ABSTRACT

The prediction and prevention of the deterioration of a rubble mound breakwater requires
an accurate numerical model for predicting the incident wave conditions at the toe of the
breakwater because the damage to the breakwater is very sensitive to the incident wave
height. Such a model needs to account for irregular wave breaking because most breakwaters
in the U.S. are exposed to depth-limited breaking waves during storms. The model must also
be efficient computationally because the prediction of the cumulative damage due to a series
of storms requires numerical simulation of a long duration. A numerical model satisfying
these requirements has been developed in this project to predict the incident wave conditions
required for the damage progression model developed by Melby and Kobayashi (1998).

The numerical model called CSHORE in this report is based on the time-averaged,
cross-shore continuity, momentum and energy equations including nonlinear effects such
as undertow, skewness and kurtosis. The hydrodynamic model is coupled with a nonlinear
probabilistic model that describes the probability distribution of the free surface elevation.
Empirical formulas are proposed for the skewness and kurtosis as well as the ratio of the
root-mean-square wave height to the mean water depth which increases rapidly near the still
waterline. The developed model is shown to be capable of predicting the measured cross-
shore variations of the mean, standard deviation, skewness and kurtosis of the free surface
elevation from outside the surf zone to the lower swash zone for three irregular wave tests
on a 1:16 smooth impermeable slope and two tests of quasi-equilibrium terraced and barred
beaches. The developed model will be expanded further to predict irregular wave runup and
overtopping on undamaged and damaged rubble mound breakwaters.
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1 INTRODUCTION

1.1 Background

The maintenance and repair of coastal structures such as breakwaters and jetties is an
important element in the nation’s rehabilitation of deteriorating infrastructure. Most of
these structures in the U.S. are constructed of locally available stone and exposed to depth-
limited breaking waves during storms. The conventional rubble mound structure has been
designed typically for no or limited damage to its armor layer during the peak of a design
storm. However, a new design procedure for aging and deteriorating infrastructure is required
to estimate the maintenance cost and repair frequency of the armor layer during its service
life. Such a design procedure will be probabilistic to account for sequences of future storms
and the variability of damage along the structure.

The stability of the armor layer of a rubble mound against wind-generated waves has
been designed using hydraulic model tests and empirical formulas. Hudson (1959) conducted
regular wave experiments and proposed an empirical formula which is now called the Hudson
formula. To apply the Hudson formula to irregular waves, the Shore Protection Manual
(1984) proposed the use of Hy/ig as a representative wave height of irregular waves, where
H 10 is the average height of the highest 1/10 of waves. For practical applications, it is more
straightforward to develop empirical formulas directly from irregular wave experiments (Van
der Meer 1988). Most previous regular and irregular wave experiments were conducted on
undamaged breakwaters in relatively deep water to reduce the number of parameters involved
in the resulting empirical formulas. Furthermore, the existing formulas for breakwater armor
stability are limited to constant incident wave conditions and water level.

As a first step to develop a probabilistic method for the maintenance and repair of rubble
mound breakwaters, Melby and Kobayashi (1998) conducted one 28.5-hr test and two shorter
tests, which were repeated twice, in a wave flume. Damage progression and variability were
measured on a conventional rubble mound exposed to depth-limited breaking waves in se-
quences of storms with varying irregular wave conditions and water levels. Measurements
were made of 16 or 32 damaged profiles every 30 min of irregular wave action. Each measured
profile was characterized by the eroded area, depth and length of the armor layer and the re-
maining cover depth. The mean and standard deviation of these statistical variables changed
with damage progression, whereas the probability distributions of the normalized variables
were practically invariant. The mean and standard deviation of the damage variables were
shown to be represented empirically by the mean eroded area alone. The damage variability
along the structure was significant even in the flume experiment because of the irregularity
of placed stone along the structure. This variability of damage along the structure was taken
into account in estimating the occurrence of the localized failure of the armor layer. Finally,
an empirical formula was developed to predict the mean eroded area in sequences of storms.
This formula was shown to be in good agreement with the three tests where the incident
waves measured in front of the structure were used as input to the formula. The incident
waves were represented by the significant wave height H; and the mean wave period T},
based on the zero-upcrossing method as well as by the spectral significant wave height H,,,



and the spectral peak period T},

To predict damage progression and variability on a conventional rubble mound in se-
quence of storms using the empirical formulas developed by Melby and Kobayashi (1998),
it is required to specify as input the time series of the pair of Hy and T}, or the pair of
H,o and T), in front of the structure. Such wave data do not exist for typical applications
because available wave data are normally given in relatively deep water such as 20-m depth.
It is hence necessary to compute irregular wave transformation from the location of offshore
wave data to the nearshore site of the structure. Various numerical models are now available
to compute the nearshore wave transformation as reviewed by Kobayashi (1998). Such a
numerical model should also predict irregular wave runup and overtopping on the structure
that determine the required height of the structure.

Time-dependent numerical models such as those based on the finite-amplitude shallow-
water equations have been shown to be capable of predicting wave runup and overtopping
on coastal structures (Kobayashi et al. 1987; Kobayashi 1995) as well as surf and swash
dynamics on beaches (Kobayashi et al. 1989; Kobayashi and Wurjanto 1992; Raubenheimer
et al. 1995; Raubenheimer and Guza 1996). However, time-dependent numerical models
require considerable computation time to resolve the wave profiles varying in time and space.
Moreover, a probabilistic model for the maintenance and repair of rubble mound breakwaters
will require a simpler model for irregular wave transformation that can be coupled more
easily with the empirical formulas for damage progression and variability proposed by Melby
and Kobayashi (1998). The time-averaged models for random waves represented by the
root-mean-square wave height (Battjes and Janssen 1978; Thornton and Guza 1983) or
expressed as the superposition of regular waves [e.g., Dally (1992)] are mush more efficient
computationally but may considerable underpredict the wave setup and root-mean-square
wave height near the still waterline (Cox et al. 1994).

A new time-averaged model called CSHORE is developed here to predict the cross-shore
variations of the mean, standard deviation, skewness and kurtosis of the free surface elevation
from outside the surf zone to the swash zone on beaches and coastal structures. The spectral
significant wave height H,,, is defined here as H,,, = 40 with ¢ = standard deviation of the
free surface elevation. This new model includes nonlinear correction terms in the cross-shore
radiation stress and energy flux that become important in very shallow water. Empirical
formulas are proposed for the skewness and kurtosis as well as the ratio of the root-mean-
square wave height, Hy,s = V8 o, to the mean water depth which increases rapidly near the
still waterline. The developed model is shown to be in agreement with three irregular wave
tests on a 1:16 smooth impermeable slope and two tests of quasi-equilibrium terraced and
barred beaches. The new model can predict the observed large increase of wave setup above
the still waterline. This time-averaged model may hence be applied to predict beach erosion
and recovery near the shoreline [e.g., Kriebel (1990); Hedegaard et al. (1992); Nairn and
Southgate (1993)]. The model will be compared with experiments in which measurements
are being made of irregular breaking wave transformation and runup on a stone revetment
fronted by a gentle slope.



1.2 Outline of Report

This report consists of two parts. Section 2 explains the numerical model CSHORE, new
empirical formulas, comparisons with five tests, and conclusions without reference to the
computer program. This part essentially corresponds to the paper written by Kobayashi
and Johnson (1998). Section 3 presents the details of the computer program CSHORE listed
in Appendix. The main program, subroutines, common statements, input and output are
explained sufficiently to alow modifications of the computer program without difficulties.

All users of CSHORE should read Section 2 and understand the limitations and capabil-
ities of CSHORE. To use CSHORE in its present form, it may be sufficient to read only the
input and output in Section 3. On the other hand, CSHORE may be expanded for various
applications in future by modifying the main program and adding subroutines. Section 3
provides detailed explanations for this purpose.

2 NUMERICAL MODEL CSHORE

A nonlinear time-averaged model is developed here to predict the cross-shore variations of the
wave setup, 7, and the root-mean-square wave height, H,,,,, from outside the surf zone to the
swash zone where Hyp, is defined as Hyms = v/8 ¢ with o = standard deviation of the free
surface elevation. The spectral significant wave height H,pn, is given by Hmo = V2 Hyms. This
model is based on the time-averaged continuity, momentum and energy equations derived
by time-averaging the nonlinear equations used in the time-dependent model of Kobayashi
and Wurjanto (1992). The time-averaged equations can be solved numerically with much
less computation time but require empirical relationships to close the problem. The time-
averaged rate of energy dissipation due to random wave breaking is estimated by modifying
the empirical formula of Battjes and Stive (1985) to account for the landward increase of
H,pms/h near the waterline where h = mean water depth. The skewness s and the kurtosis K
of the free surface elevation included in the time-averaged momentum and energy equations
are expressed empirically as a function of Hyms/h.

The developed model is compared with three tests conducted on a 1:16 smooth imperme-
able slope and two tests on quasi-equilibrium terraced and barred beaches consisting of fine
sand. This new time-averaged model is shown to be capable of predicting the cross-shore
variations of 7, Hymns, s and K of the free surface elevation from outside the surf zone to the
lower swash zone of frequent wave uprush and downrush. The model of Battjes and Stive
(1985) considerably underpredicts 7 and Hys near the still waterline. The new model will
need to be verified using additional experiments because the empirical formulas adopted in
the model are developed using the same five tests.



2.1 New Time-Averaged Model

The assumptions of alongshore uniformity and normally incident irregular waves are made
in the following. To account for nonlinear effects in very shallow water, use is made of the
time-averaged equations derived from the finite-amplitude shallow-water equations including
bottom friction. Assuming that the bottom is impermeable, the time-averaged continuity
equation with the overbar denoting time-averaging is expressed as

”U =0 (1)

where h = instantaneous water depth; and U = instantaneous depth-averaged horizontal
velocity. The time-averaged cross-shore momentum equation is written as (Kobayashi et al.
1989)

dSpe - dm _
with
P 1] —s
Sa:zc = p [h‘Uz + 59(?? _.ﬁ)z (3)
1 —
Ty = §be|U|U (4)

in which z = cross-shore coordinate taken to be positive landward; S, = cross-shore radia-
tion stress; p = fluid density; g = gravitational acceleration; 7 = instantaneous free surface
elevation above the still water level (SWL); 7 = time-averaged bottom shear stress; f, =
bottom friction factor. The bottom elevation z, given by z, = (7 — k) is assumed to depend
on z only. The time-averaged energy equation corresponding to (1) and (2) may be expressed
as (Kobayashi and Wurjanto 1992)

T o s
== (Er) =-=Dy—Dp (5)
with
- et
Er = 5phU%+pgnhU (6)
_ [ —
Dy = 5p hHlU|U? (7)

in which Ep = energy flux per unit width; “157 = energy dissipation rate due to bottom
friction; and Dp = energy dissipation rate due to wave breaking which needs to be estimated
empirically in this time-averaged model.

To simplify (1), (2) and (5), the instantaneous free surface elevation 7 is expressed as

n="7-+om (®)



where 77 and ¢ = mean and standard deviation of n; and 7. = normalized free surface
elevation with 77 = 0 and E: = 1. If wave reflection is negligible, linear long wave theory
may be used locally to relate the oscillatory components (n —7) and (U — U) inside and
outside the surf zone (Guza and Thornton 1980; Kobayashi et al. 1998). This relationship

together with (8) yields
U=ff—+1i%on* (9)

Eq. (9) is necessary to reduce the number of unknown variables in the time-averaged model
although the local reflection coefficient may not be negligible. Substitution of (8) and (9)
into (1) with h = (n — ) and h = (7 — 23) yields

U=-02y/gh ; ou= % (10)

which indicates that U is negative and represents return current (Kobayashi et al. 1989).
Although (10) does not account for the landward mass flux due to a surface roller (Svendsen
1984), it predicted the undertow measured at the mid-depth below SWL fairly accurately
(Kobayashi et al. 1997, 1998).

Substitution of (8) and (9) with (10) into (3) and (4) yields

Sie = % pgH?,, [(2:& = %) o Cs] i Home=Be (11)
T, = % p fo 0% gh Gy (12)
with
C; = 0.8—02 (13)
G = [ ol — o)), (14)

where s = skewness of  and 7, with E? = g; n = finite-depth adjustment parameter added
herein with n = 1 in shallow water; C; = nonlinear correction term for S,.; and Gy =
dimensionless parameter related to 7, with f(n.) = probability density function of n,. The
assumption of equivalency of the time and probabilistic averaging is made to obtain (14)
as explained by Kobayashi et al. (1998). For linear progressive waves in finite depth, n is
normally expressed as [e.g., Battjes and Stive (1985)]

'n:l 1+—-2kph_ (15)
2| sinh (2kph)

where k, = linear wave number corresponding to the spectral peak period T, outside the
surf zone. The cross-shore variation of T}, may be neglected in (15) because n = 1 in shallow
water for any reasonable representative wave period used to calculate k,. The cross-shore
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radiation stress S;, based on linear wave theory is given by (11) with Cy = 0 [e.g., Battjes
and Stive (1985)]. It will be shown that Cj is on the order of unity near the still waterline
and can not be neglected in the swash zone.

Substitution of (8) and (9) with (10) into (6) and (7) yields

—_— 1
Er = gpgHpnsnCyl+Cp) (16)
— 1 —\1.5
Dy = zrhol(dh)" G (17)
with
Cr = 530*(1-_0*)+§U*(K_5)+0* (]8)
Gr = /;oo | 7 — 0% | (4 — ‘7*)2f (m+) dne (19)

where C}, = phase velocity based on T}, with C, = {/gh in shallow water; Cr = nonlinear

correction term for Ep; K = kurtosis of  and 7, with n_,‘} = K; and Gy = dimensionless
parameter related to Dy. The finite-depth adjustment is included in (16) in the same way
as (11) where n C, in (16) is the group velocity based on T,. The cross-shore energy flux
Er based on linear wave theory is given by (16) with Cr = 0 [e.g., Battjes and Stive (1985)]
where Cr will be shown later to be on the order of unity near the still waterline.

The momentum equation (2) with (11) and (12) and the energy equation (5) with (16)
and (17) need to be solved numerically to predict the cross-shore variations of the wave
setup 7 = (h + 2) and the root-mean-square wave height Hyms = v/8 0. These equations
reduce to those used in the existing time-averaged models [e.g., Battjes and Stive (1985)] if
Ce=0,Cpr=0,7T; =0and ﬁf = 0. To estimate the nonlinear correction terms C; and
Cr using (13) and (18) with o, = o/h, the skewness s and the kurtosis K are assumed to
be expressed in the following empirical forms

s=fo (Hms/B) 5 K =fxls) (20)

where f; and fx = empirical functions which will be obtained using the five tests discussed
later.

To estimate the parameters Gy and Gy using (14) and (19), the probability density
function f(n.) with 7, = 0 and }E = 1 is assumed to be given by the exponential gamma
distribution which was shown by Kobayashi et al. (1997, 1998) to be capable of describing
the measured probability distributions of 7, from outside the surf zone to the lower swash
zone. The exponential gamma distribution for 7, depends on the skewness s only and is
limited to the range 0 < s < 2. This distribution reduces to the normal distribution for
s = 0 and the exponential distribution for s = 2. The analytical expressions of G}, and Gy
can be derived from (14) and (19) for the normal and exponential distributions. For the
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actual computation of G}, and G in Section 3.2.8, the normal distribution is assumed for
s < 0.15, whereas the exponential distribution with o, = 1 is adopted for s > 1.99 where
o4 = 1 for the lower limit of n, in the exponential distribution imposed by the bottom
elevation as explained by Kobayashi et al. (1998). For 0.15 < s < 1.99, (14) and (19) are
integrated numerically to obtain Gy, and Gy for given s and o,. Gy = 0 and Gy = 1.60 for
s =0 and o0, = 0, whereas Gy = —1.46 and Gy = 3.62 for s = 2 and 0, = 1.

Finally, the energy dissipation rate Dp due to wave breaking in the energy equation
(5) needs to be estimated. The empirical formula proposed by Battjes and Janssen (1978)
and calibrated by Battjes and Stive (1985) is adopted here for its simplicity. The formula
proposed by Thornton and Guza (1983) and improved by Lippmann et al. (1996) including
the effect of a surface roller may predict the distributions of breaking and nonbreaking
wave heights more accurately but requires additional empirical parameters. In the present
formulation, the exponential gamma function may be used to describe the probability density
function of 7 instead of wave heights after the cross-shore variations of 7, ¢ and s are
predicted (Kobayashi et al. 1997, 1998).

The calibrated formula by Battjes and Stive (1985) is given by

Dy=7p9frQH, (21)
with
=R ] )
Hp = % tanh (70%85) (23)
v = 0.5+ 0.4tanh (33 HTW‘:’”-) i Lp= % (24)

where a = empirical coefficient recommended as a = 1; f, = spectral peak frequency given
by fp = Tp']-; @ = local fraction of breaking waves in the range 0 < @Q < 1; H,, = local
depth-limited wave height; k, = linear wave number calculated using f, and h; v = empirical
parameter determining H,, = vh in shallow water; L, = deep-water wavelength based on
Tp; and Hymso = deep-water value of Hy.,, calculated using linear wave shoaling theory with
Ty, h and H,s specified at the seaward boundary of the numerical model.

The empirical parameter 7 is uncertain in light of the field data by Raubenheimer et
al. (1996) but is estimated using (24) without any additional calibration. Relatedly, Battjes
and Janssen (1978) indicated that Dy given by (21) would underestimate the actual energy
dissipation rate and produce Hyns > H,, in very shallow water, although (22) with @ < 1
requires Hyms < Hy,. They recommended use of Hyps = Hy, when Hpps > Hp,. This
adjustment leads to Hyps = vh in very shallow water. However, Hys /E is not constant and
increases landward where Hpms /E ~ 2 at the still waterline for the SUPERTANK data of
Kriebel (1994). This landward increase of Hyps /E may be related to the landward increase
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of the local reflection coefficient (Baquerizo et al. 1997) but wave reflection is not accounted
for explicitly in this time-averaged model. As a result, (21) with (22)-(24) is assumed to
be valid only in the outer zone z < z; with x; = cross-shore location where @ computed
by (22) becomes unity and the still water depth decreases landward in the region = > z;.
The latter condition is required for a barred beach to allow @ < 1 landward of the bar crest
where @ = 1 may occur. For the inner zone z > z;, the ratio H, = Hyys/h is assumed to
be expressed as

Ho=q+@-Na ; so=—2t>0 (25)

Ts — T

where s = value of H, on the order of two at the still waterline located at z = z4; and § =
empirical parameter. The values of v, and 8 will be calibrated using the five tests discussed
later. Eq. (25) describes the landward increase of H, from H, =« at z = x; to H, = =y, at
x = zs > ;. For the inner zone z > z;, the momentum equation (2) and (25) are used to
predict the cross-shore variations of h and Hys, whereas the energy equation (5) is used to
estimate Dp which must be positive or zero.

The numerical model called CSHORE is developed to solve (2) and (5) with (11)—(25).
The seaward boundary of CSHORE is located at & = 0 where the values of T},, Hy.ns and 7 at
z = 0 are specified as input. The bottom elevation z,(z) in the region > 0 is also specified
as input and the location zs of the still water shoreline is found using z,(z = z;) = 0.
First-order finite-difference approximations of (2) and (5) are expressed as

Wiwt = Ty— [P g (E.:H"l +Ej)}—l {2 [(Sm:c)jH = (Sm)j] + Az [(bfb)j+1 ¥ (a'“b)j]}(%)

= = Az [ f— — = =

(Be) = (Br),~F (D7), + (1), + (D), + (Ds) 2)
where the subscripts (7 + 1) and j indicate the quantities at nodes located at z;41 and z;,
respectively, with Az = (241 — x;) being the nodal spacing. In the subsequent computa-
tions for the laboratory data, use is made of Az ~ 10 cm. For the known quantities at
node j, the unknown quantities at node (j + 1) are computed by solving (26) and (27) using
an iteration method starting from U?H computed using (27) with (Dy)j41 = (Dy); and
(DB)j+1 = (Dp);. The adopted iteration method is found to converge within several itera-
tions. The convergency is based on the differences between the iterated values of 0,41 and
E:."H being less than the specified small value €, where ¢ = 0.01 mm is used in the subsequent
computations. If @Q;41 = 1 and (dz/dz) > 0 for & > x4, the inner zone is reached and
T; = Tj4q Is set.

For the nodes located in the inner zone T > zj, (25) is used to obtain H, = Hyys/h and
o, = H,/V/8. Since the mean water depth h can become very small in the inner zone, (2)
with (11) and (12) is rewritten as

dh =dP de 1 9
‘ .2 2 - " 928
(2P +1) e h e beGbo* for z>z (28)
with 1
P:UE [(Zn—a) +0'*S—O'12(:| (29)



A first-order finite difference approximation of (28) between nodes j and (j + 1) yields

hjyi = (3P +Pi+ 2)_1{ (Pj+1 + 3P+ 2)B5 - 2 [(2)41 — (20);]

_%"’. [( fo Gy af)m + (£ G of)j]} (30)

Eq. (30) is solved using an iteration method starting from the value of n;4; involved in
Pj;1 calculated using h; where (04)j41, sj+1 and (Gp)j41 are known using (25), (20) and
(14), respectively. Since n given by (15) is essentially unity in shallow water, this interaction
method converges rapidly. After h;41 is computed, the energy equation (5) is used to obtain
(Dp )j+1. The computation is marched landward until Ej-{-]. <e.

2.2 Experiments and Empirical Formulas

Two different experiments were conducted in a wave tank that was 30 m long, 2.4 m wide,
and 1.5 m high. These experiments were explained in detail by Kobayashi et al. (1997,
1998). Irregular waves based on the TMA spectrum (Bouws et al. 1985) were generated
with a piston-type wave paddle. A rock beach of a 1:8 slope was located at the other end of
the wave tank to absorb waves. A divider was constructed along the center line in the tank
to conduct five tests in the 1.2-m-wide flume.

Three tests were conducted with a plywood beach of a 1:16 slope. The water depth in the
tank was 76.2 cm. For each test, 17 runs were performed to measure free surface elevations
using eight capacitance wave gages. Wave gages partially immersed in gage wells were used
for the free surface measurements near the still waterline. On the other hand, two tests were
conducted with a fine sand beach whose initial slope was 1:12. The sand was well-sorted
and its median diameter was 0.18 mm. These two tests with specified random waves were
conducted after the sand beach was exposed to the specified wave action for several days
and became quasi-equilibrium with the bottom elevation changes less than about 1 ¢cm/hr.
For each of the two tests, 21 runs were performed to measure free surface elevations using
ten wave gages. Wave gages near the still waterline were partially buried in the sand. The
duration of each run in these five tests was 400 s and the initial transient duration of 75 s
was removed. The sampling rate was 20 Hz.

Table 1 lists the wave conditions at the seaward boundary located at z = 0 for each
of the five tests where d = still water depth; 7 = wave setup or set-down; T}, = spectral
peak period; and Hyms = root-mean-square wave height defined as Hyms = V/8 0 with o =
standard deviation of the measured free surface oscillation. Tests 1, 2 and 3 are the 1:16 slope
tests described by Kobayashi et al. (1998), whereas tests 4 and 5 correspond to the sand
beach tests explained by Kobayashi et al. (1997). The wave setup or set-down is very small
at z = 0 outside the surf zone. The measured wave conditions at z = 0 include the slight
effects of reflected waves. The incident and reflected waves at z = 0 were estimated using a



Table 1: Wave Conditions at Seaward Boundary and Breaker Parameter v for Five Tests

d Ul Tp Hrms | Hine R i Z; Tg
Test | (¢cm) | (cm) [ (s) | (em) | (cm) (m) | (m)

1 75.0 | 0.03 [ 1.5] 124 | 12.2 [0.14 | 0.84 | 11.1 | 12.0

2 75.0 1 -0.32 | 2.8 16.9 | 15.8 [ 0.15 | 0.67 | 9.0 [ 12.0

3 76.2 | -0.24 [ 4.7 184 | 184 | 0.17 | 0.56 | 8.3 | 13.0

4 60.0 | -0.15 [ 1.6 | 12.8 | 12.9 | 0.19 | 0.83 | 13.3 | 13.8

5 60.0 | -0.12 [ 2.8 | 14.6 | 14.3 | 0.25 | 0.65 | 12.4 | 13.7

three-gage method by Kobayashi et al. (1997, 1998). Table 1 lists the estimated values of
the spectral root-mean-square wave height, Hine. = +/8my;i, with m,; = zero-moment of the
incident wave spectrum at z = 0, and the average reflection coefficient, R = /mor/Moi, with
Mer = zero-moment of the reflected wave spectrum at z = 0. The difference between Hy s
and H;y,,. is negligible except for test 2 with (Hpms — Hine)/Hrms = 0.065. The reflection
coefficient was in the narrow range 0.14 < R < 0.25 and slightly larger for tests 4 and 5 with
the foreshore slope of about 1:5 at the still waterline.

The measured values of 7, T}, and Hyps at z = 0 listed in Table 1 are specified as input
to CSHORE. The measured bottom elevation z,(z) in the region z > 0 is also specified
as input where Table 1 lists the cross-shore location z, of the still waterline for each test.
The bottom profile z,(z) will be presented in conjunction with the measured and predicted
cross-shore variations of 7 and H,ms. The breaker parameter v calculated using (24) and
the cross-shore location z; at the landward limit of the outer zone computed by CSHORE
are listed in Table 1. These computed values of z; are for the bottom friction factor f, =0
in (12) and (17) which is the value of f, used in the subsequent comparisons of CSHORE
with the five tests as explained later.

The measured values of H, = Hyms/h in the inner zone z > z; are used to calibrate
the new empirical parameters s and 8 in (25) for the five tests. Fig. 1 shows the measured
values of (H. —7)/(vs —7) with 75 = 2 as a function of z, = (z — z;)/(zs — x;) where the
values of 7y, z; and z, for each test are listed in Table 1. The trend of the scattered data
points for the five tests may be represented by (25) with v; = 2 and § = 2.2. Fig. 1 shows
that H, increases gradually from H, = v at . = 0 and more rapidly above the still waterline
located at z, = 1. It is noted that the large scatter in the region z, > 1 is caused partly by
the scatter of data points obtained in repeated runs due to the difficulty in measuring h and
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H, s accurately in the swash zone.

The measured values of H,, s and K in the entire region > 0 for the five tests are
analyzed to obtain the empirical relationships expressed by (20). Fig. 2 shows the skewness
s as a function of H, = HrmS/H. The trend of the scattered data points in Fig. 2 are simply
represented by three straight lines

8 = 2H, for 0.1<H,<05 (31a)
s=15-H, for 05<H,<1.0 (31b)
s=0.7H, —0.2 for 1.0<H.S5 (31c)

The skewness s increases initially with the increase of H, due to wave shoaling but decreases
after wave breaking. Both s and H, increase rapidly near and above the still waterline. On
the other hand, Fig. 3 shows the relationship between the kurtosis K and the skewness s
which may be expressed as

K =34 s%2 for 02<sS3 (32)

The empirical relationship between K and s proposed by Ochi and Wang (1984) yields similar
agreement as shown in Fig. 3. However, their expression is more complicated and (32) is
adopted here for its simplicity.

2.3 Comparisons with Five Tests

The numerical model CSHORE is compared with the five tests listed in Table 1 and used to
develop the empirical formulas (31) and (32) as well as (25) with v = 2 and § = 2.2. The
additional input parameter required for CSHORE is the bottom friction factor f, used in (12)
and (17). The bottom friction for the time-dependent model corresponding to CSHORE is
normally important for stone revetments and breakwaters (Kobayashi et al. 1987) but only
in the swash zone on beaches (Kobayashi and Wurjanto 1992). Raubenheimer et al. (1995)
and Raubenheimer and Guza (1996) used f, = 0.015 to obtain good agreement between
the measured and predicted wave runup on natural beaches. They also showed that the
computed runup was not sensitive to fj in the range of f; = 0.01-0.02.

The assessment of the bottom friction effect in CSHORE is not straightforward because
the empirical formula (25) for H, = Hyms/h used in the inner zone includes the bottom
friction effect implicitly. The energy equation (5) used to estimate Dp in the inner zone
includes this implicit effect in addition to the explicit energy dissipation rate ﬁf due to
bottom friction. As a result, the wave setup 7 computed using the momentum equation (2)
is used to assess the sensitivity to f;. Fig. 4 shows the computed cross-shore variations of
77 for f = 0, 0.01 and 0.02 for test 3 with the largest wave setup above the still waterline
among the five tests listed in Table 1. The straight line in Fig. 4 corresponds to the 1:16
slope. The data was limited to the region of the mean water depth h = 0.4 cm (Kobayashi et
al. 1998). Wave setup becomes tangential to the slope as explained by Bowen et al. (1968)
for regular waves. The computed wave setup increases slightly with the increase of fy. This
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trend is expected from (28) which indicates the increase of dﬁ/ dx with the increase of fj
where G}, is on the order of —1 in the swash zone. Since the computed setup is not very
sensitive to fp in the range f, = 0-0.02, the subsequent comparisons are made using f;, = 0.
The use of f; = 0 also facilitates the comparison of CSHORE with the model developed by
Battjes and Janssen (1978) and calibrated by Battjes and Stive (1985), which is referred to
as BJS model hereafter. The present model with f; = 0 reduces to BJS model if Cs = 0 in
(11), Cr = 0in (16), and 5 = 7 in (25).

The assumption of s = v in (25) cannot account for the landward increase of H, =
3 /E near the still waterline as shown in Fig. 1. To examine the assumptions of Cy = 0
and C'r = 0, Fig. 5 shows the computed cross-shore variations of n, @, Cs and C for test
3. The finite-depth adjustment parameter n included in (11) and (16) approaches n = 1 in
shallow water. The fraction Q of breaking waves estimated by (22) is used in (21) for Dp
and to find the landward limit z; of the outer zone where Q = 1 is plotted in the inner zone
in Fig. 5. The nonlinear corrections Cs and Cp included in (11) and (16) can be neglected
if C5 < (2n—0.5) and Cp < 1. Fig. 5 and the computed results for the other tests indicate
that Cy and Cp are on the order of unity in the inner zone. Consequently, the cross-shore
radiation stress Sz, given by (11) and the energy flux Ep expressed by (16) are increased
by the nonlinear corrections Cs and Cp in the inner zone.

Fig. 6 shows the computed cross-shore variations of S%, = Sz./pg, Efp = Er/pg and

% = Dp/pg for test 3. The inclusion of Cs and Cp and the use of 45 = 2 > v in CSHORE

allow the extension of BJS model into the swash zone where the still waterline is located at

z = 13 m in Fig. 6. The energy dissipation rate Dg in the outer zone = < z; estimated by

(21) is positive or zero. In the inner zone, Dp is computed using the energy equation (5)
with Dy = 0 for f = 0.

Figs. 7-11 compare the measured and computed cross-shore variations of 7, Hyns, s and
K for tests 1-5, respectively. The variations of 77 and H,,s computed by BJS model are also
plotted in these figures where BJS model does not predict the skewness s and the kurtosis
K of the free surface elevation. The bottom elevation z(z) above and below SWL is shown
in the first and second panels, respectively, in Figs. 7-11 to show the effects of the beach
profile on the wave setup 77 and the root-mean-square wave height H,.,s. The data points
from repeated runs in each test are presented without averaging to indicate the degree of
the data scatter which was apparent in the swash zone because of the difficulty in measuring
small water depth accurately (Kobayashi et al. 1997, 1998).

For tests 1-3 shown in Figs. 7-9, breaker types on the 1:16 smooth slope varied from
mostly spilling breakers for test 1 to predominantly plunging breakers for test 3. Corre-
spondingly, the inner zone became wider from test 1 to test 3 where (z; — ;) = 0.9, 3.0 and
4.7 m for test 1, 2 and 3, respectively, in Table 1. Comparing CSHORE and BJS model,
the computed variations of 7 and H,,s in the outer zone z < z; are practically the same
in view of the larger uncertainty associated with the empirical formula (21) with (22)—(24).
No attempt is made to calibrate v to improve the agreement for H,s in the outer zone for
test 2. In the inner zone z > x;, CSHORE is capable of predicting the larger increase of the
wave setup 77 and the more gradual decrease of the wave height H;,,s in the inner zone.
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Figure 5: Computed Cross-Shore Variations of n, @), Cy and Cp for Test 3.
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CHSORE also predicts the overall variations of s and K from outside the surf zone to the
swash zone, but the empirical formulas (31) and (32) are too simple to yield a good agreement,
for all the tests.

For tests 4 and 5 shown in Figs. 10 and 11, incident waves shoaled and broke on the small
bar at the edge of the terrace. Plunging breakers at the terrace edge were very intense in test
5. Wave breaking was reduced on the terrace before incident waves broke again in the swash
zone. BJS model is capable of predicting this wave transformation across the terrace except
for the detailed variations of H,.,s at the terrace edge. The differences between CSHORE
and BJS model are limited essentially in the narrow inner zone where (z; —z;) = 0.5 and 1.3
m for tests 4 and 5, respectively, in Table 1. CSHORE allows the extension of BJS model
into the lower swash zone. CSHORE also predicts the overall variations of s and K across
the terraced and barred beaches.

Tests 1-5 are limited to beaches without a coastal structure. Kennedy et al. (1997)
conducted two tests and measured the cross-shore variations of Hpns on a 1:35 slope in
front of a stone revetment with a 1:1.5 slope. They compared BJS model with the data and
obtained good agreement where reflection coefficients were less than about 40%. CSHORE
is expected to yield similar agreement with these two tests because the differences between
BJD model and CSHORE are practically limited to the region near the still waterline as
shown in Figs. 7-11.

2.4 Conclusions

A time-averaged model is developed to predict the cross-shore variations of the mean, stan-
dard deviation, skewness and kurtosis of the free surface elevation from outside the surf zone
to the lower swash zone. This time-averaged model derived from the time-dependent con-
tinuity, momentum and energy equations which were used successfully to predict irregular
wave runup on beaches and coastal structures includes nonlinear corrections terms in the
cross-shore radiation stress and energy flux. The correction terms involving the skewness and
kurtosis are shown to be important in very shallow water. The time-averaging of the time-
dependent equations reduces computation time considerably but creates a closure problem.
The energy dissipation rate due to wave breaking is estimated using an existing empirical
formula in the outer zone. In the inner zone near the still waterline, a new empirical formula
for Hy = Hyms/h is proposed to describe the landward increase of H,.. In addition, simple
empirical formulas are proposed to express the skewness and kurtosis as a function of H,.

The developed model is compared with three irregular wave tests on a 1:16 smooth
impermeable slope and two tests on quasi-equilibrium terraced and barred beaches. The
major improvements of the new model in comparison to existing models are that it is capable
of predicting the wave setup and root-mean-square wave height near the still waterline and
the overall cross-shore variations of the skewness and kurtosis from outside the surf zone to
the swash zone. Since the new empirical formulas are developed using the same five tests, the
new model will need to be verified using additional tests on beaches and coastal structures.
Coupling of the new wave model with a cross-shore sediment transport model may make
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it feasible to predict the erosion and recovery near the still water shoreline. Furthermore,
this model may be coupled with the empirical formulas by Melby and Kobayashi (1998) to
predict damage progression and variability on rubble mound breakwaters. It may also be
possible to extend the model to predict irregular wave runup and overtopping on coastal
structures.

3 COMPUTER PROGRAM CSHORE

The computer program CSHORE is explained hereafter including the computational details
which have been excluded in Section 2 for the sake of readability. The main program performs
the computation marching landward from the seaward boundary node located at z = 0
with the aid of subroutines arranged in numerical order in the computer program. Double
precision mode is used throughout the program which is written in standard FORTRAN-77.
The metric units (m and s) are used in CSHORE.

3.1 Main Program

Before the computation marching landward from z = 0, CSHORE performs the following
groundwork:

e The name of the primary file containing all the input is read as follows:

WRITE(4,+) ‘Name of Primary Input-Data-File?’
READ(,,5000) FINMIN
5000 FORMAT(A10)

e Subroutine 1 OPENER (FINMIN) is called to open the input and output files.

e Subroutine 2 INPUT is called to read all the input from the input data file, FINMIN,
including 7 = wave setup at z = 0; Hys = root-mean-square wave height at = = 0;
and T, = spectral peak period which is assumed to be invariant in the cross-shore
direction. The node number j increases landward with j =1 at z = 0.

e Subroutine 3 BOTTOM is called to obtain Az = constant nodal spacing; z; = -
coordinate of node j; (2); = bottom elevation at node j which is positive above SWL;
0.5(fp); = half of the bottom friction factor f; at node j; (dzy/dx); = bottom slope at
node j; and jmae = upper limit of j corresponding to the number of cross-shore nodes
involved in the specified bottom geometry.

e Subroutine 4 PARAM is called to obtain the constants m, 2, V8 and g = 9.81 m/ s?
as well as the deep-water linear wave number k, = 27 /L, with L, = ngz /2m.

e Compute the standard deviation of the free surface elevation, 0 = Hypms/ V8, and the
mean water depth, h = (7 — 2), at node j = 1.
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e Subroutine 5 LWAVE is called to compute the finite-depth adjustment parameter n
given by (15) and the linear wave phase velocity C), based on T}, at node j = 1.

e Subroutine 6 SKEWKU is called to compute the skewness s and the kurtosis K for
the known value of H, = Hyys/h at node 7 = 1 using (31) and (32), respectively.

e Subroutine 7 CSFFSE is called to compute the nonlinear correction terms Cg and Cp
given by (13) and (18), respectively, with o, = o/h at node j = 1 as well as the values
of Fy and Fy at node 7 =1 where Fs and Fp are defined as

Fg = nCy(1+CF) (34)

Correspondingly, (11) and (16) are simplified as

5k = Se = o*F, (35)
P9
B = %:aZFE (36)

The values of S;, and E} at node j = 1 are obtained now.

e Subroutine 8 GBANGF is called if the bottom friction factor f, > 0 at node 7 = 1 to
compute Gy and Gy given by (14) and (19), respectively. In the computer program
CSHORE, (12) and (17) are rewritten as

% Th 1 9 =

T = —==fGyoih 37
b - sz b (37)
. Dy 1 s

Dj = —&=3hGrolyghh (38)

On the other hand, 7y = 0 and D} = 0 if f, = 0. The values of 77 and D} at node
j =1 are obtained.

e Subroutine 9 DBREAK is called to compute @ = local fraction of breaking waves given
by (22) and Dp = energy dissipation rate due to wave breaking given by (21) which
is rewritten as

Dp «a
D 8 H? 39
which yields the value of D% at node j = 1.
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The computation marching landward in the outer zone 0 < z < z; is performed using
(26) and (27) which are rewritten as

Tt = T = (Rin +B5) 7 {2 [(S2e)j1 — (Ska)s] + A2 ()00 + (15);]} (40)

Az ]

(BF)i1 = (BF); — = |(DPi+1 + (D})i + (Dh)is1 + (Dp); (41)

For the known values of 7;, hj, (Si;)i» (73)i, (ER)j,(D})j, and (Dp); at node j, the
unknown values of these variables at node (7 + 1) are computed using an iteration method.
It is required that JP1 = (§ + 1) < jmaz. If JP1 > jmasz, an error message is written and
the computation stops.

The initial estimates of o1 and .Ej+l are obtained in the following manner. First,
(41) with (Df);41 =~ (D}); and (Dpy)j41 =~ (Dp); is used to obtain (E%);41. Using (36),
0%, =~ (Ep)j+1/(Fg); which must be positive or zero. Otherwise, an error message is
written and the computation stops. Second, (35) is used to estimate (S}, )j+1 = 0%, (Fs);.
Third, (40) with hjq1 =~ h; a.ng (75)j+1 = (737); yields 774 aild hj+1 = [Mj41 — (26)j+1]. The
estimated values of 041 and hjy; are denoted by ojte and hite. These initial estimates are
improved iteratively where the maximum number of iterations allowed in the main program is

specified by MAXITE which is taken to be 100 in the DATA statement in the main program.

The iteration algorithm for the outer zone consists of the following steps:

e Subroutine 5 LWAVE is called to find the values of n and C), corresponding to Rite.

° Subroutine_ 6 SKEWKU is called to find the values of s and K corresponding to H, =
_(Hrms)'ite/hite with (Hrms)ite = \/§ Tite-

e Subroutine 7 CSFI'SE is called to obtain the values of Cy and Cp corresponding to
0+ = Oite/hite as well as Fy and Fg given by (33) and (34), respectively.

e Subroutine 8 GBANGF is called if f; > 0 at node (j + 1) to obtain G} and Gy. The
values of 77 and D} at node (7 + 1) are computed using (37) and (38), respectively.

¢ Subroutine 9 DBREAK is called to find the values of @ and D} given by (39) at node
(4 +1).

e Iiq. (41) is used to find 052-+1 = (E})j+1/Fe. If 02,, <0, an error message is written
and the computation stops.

e Eq. (35) yields (S3,)j+1 = _?—H. Fs. Eq. (40) with E;H—l = hite is then used to compute
M1 and hjp = [0 — (26)541]-
o If |0j41 — Oite] < € and IEj+1 = E;e| < €, the iteration is regarded to have converged

where € = 1075m is specified in the DATA statement in the main program. Otherwise,
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the iteration is continued using (041 + 0ite)/2 and (Ej+1 +E,;te)/2 as the new values
of oj1 and hj, to accelerate the convergence. If the iteration does not converge after
MAXITE iterations, an error message is written and the computation stops.

e The converged values of 041 and E-H are used to compute the corresponding values
of Hrms = V8 0, 04 = o/h, T = (h+ =), S;; ER, 75, Df, Q and Dy at node
(7+1) in a manner similar to the computation of these variables at node j = 1 for the
known values of o1 and hy. If hjy1 < € or (j + 1) = Jmaz, the landward limit of the
computation is reached and this is the end of the marching computation.

o If Qjy1 = 1.0 and (dz/dz)j; > 0 for jj = (j +1),..., Jmaz, the inner zone is reached.
The landward boundary of the outer zone is taken as z; = x4 and its nodal location
JXI = (j + 1) is stored. Otherwise, the computation marches to the next landward
node in the outer zone.

On the other hand, the computation marching landward in the inner zone z > z; is
performed using (30) with (29). Comparison of (29) with 0. = o/h and (35) with (13) and
(33) indicates

P=02F,=8*h"* (42)

In light of (37), it is convenient to introduce
1 2 s7—1
R=§bebJ*=Tbh (43)

In the main program, SXXH?2 = P and TBH = R are used because of (42) and (43),
respectively. For the computation, (30) is rewritten as

hjt1 = (3Pj41 + C1) 7 (Pjy1 + Co)hj — Cs] (44)
with

Ci = Pj+2 (45)

C, = 3Pj+2 (46)

Cs = 2[(z)j+1 — (%)j] + Az(Rj41 + Ry) (47)

For the known values of h;, P; and R; at node j starting from j = JXI, (44) is solved
iteratively to find the values of hjt1, Pj+1 and Rj41 at node (j 4 1). The bottom elevations
(26); and (2p);j+1 are known from the bathymetry specified as input. The values of P; and
R; at j = JXI are obtained using (42) and (43) with the known values of S;, and 7 at
node j = JXI.

The iteration algorithm for the inner zone consists of the following steps:
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e For the known location of zj;; at node (j + 1), (25) is used to find the value of
H, = Hyms/h at node (j + 1) where the landward boundary location z; of the outer
zone has been obtained at the end of the outer zone computation and the still waterline
location z; has been obtained from the bathymetry specified as input in Subroutine 3
BOTTOM. The value of y given by (24) has been calculated in Subroutine 9 DBREAK
before the landward marching computation when j7 = 1. The empirical values of v, = 2
and # = 2.2 are specified in the DATA statement in the main program.

e For the calculated value of H, = Hyms/h at node (j + 1), Subroutine 6 SKEWKU is
called to obtain the values of s and K at node (j+ 1) using (31) and (32), respectively.
Then, the values of C; and Cp at node (j + 1) are computed using (13) and (18),
respectively, where o, = o /h = H*/\/g.

e Subroutine 8 GBANGEF is called if f, > 0 at node (5 + 1) to compute the values of Gy
and G at node (j + 1) where G} and Gy depend on s and o, only. The value of Rj1
is calculated using (43) where R;j, =0 if f, = 0.

e The values of Cy, Cy and C3 given by (45), (46) and (47), respectively, are hence
obtained before (44) is solved in the following iteration method.

e The initial estimate of EJ-H is taken as hie = Ej. Subroutine 5 LWAVE is called to
find the value of n;41 corresponding to hite. The values of F, and P at node (j+1) are
computed using (33) and (42), respectively, and (44) yields hji1. If hjy1 < 0, hjp1 =0
is set and the landward marching computation is terminated. If [hjy1 — hite| < €, the
iteration is regarded to have converged. Otherwise, the iteration is continued using
Ej+]_ as the new value of hj,. This iteration method converges rapidly because Njy1 18
essentially unity in shallow water and does not depend on hjt. much. An error message
is written if the iteration does not converge after MAXITE iterations.

e After the iteration converges, the values of ¢ = how, Hyms = V8 0 and 77 = (h + z) at
node (j + 1) are calculated. If hjy1 < € or (j + 1) = jmaz, the landward limit of the
computation is reached and this is the end of the marching computation. Subroutine
5 LWAVE is called to find the values of n and C, for the converged value of Ej.H_.
Subroutine 7 CSFFSE is then called to find the values of Fy and Fg given by (33) and
(34) at node (j+1). The values of S}, and E}, at node (j+ 1) are calculated using (35)
and (36). The values of P and 7 at node (j + 1) are calculated using (42) and (43)
where R;1 has been obtained before the iteration. The value of D} at node (5 +1) is
calculated using (38) and Q;4; = 1.0 is set in the inner zone. Then the computation
marches to the next landward node in the inner zone.

After the landward marching computation is completed, the most landward node with
the mean water depth h > ¢ is identified by its node location JR where hjr > € but
hyrs1 < €. The z-coordinate and bottom elevation at node JR are denoted by XR = zjr
and ZR = (zp)sr. The energy dissipation rate due to wave breaking in the inner zone with
j=(JXI+1), ..., JR is computed using the energy equation (5) which is rewritten as
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* d * *
Dy = _E(EF) - Dj (48)
where use is made of (36), (38) and (39). Eq. (48) is approximated by

(DB); = —(242) " [(BF)j+1 — (BF)j-1] = (D}); (49)
except for 7 = JR for which use is made of

(Dp); = —(A2)"' [(BR); — (BR)j-1] - (D);  for j=JR (50)

The computed cross-shore variation of D} in the inner zone tends to exhibit rapid spatial
oscillations because the small irregularities in the computed cross-shore variation of E}. are
amplified greatly by the finite difference approximation of the gradient of E}, in (48). The
small irregularities in E}, given by (36) with (34) and (18) may have been caused partly
by the adopted empirical formula (31) for the skewness s which does not vary smoothly
with Hy, = Hpms/h as shown in Fig. 2. Furthermore, the cross-shore variation of @ is not
smooth in the vicinity of = x; as shown in Fig. 5. As a result, the computed cross-shore
variation of E}, for the domain 0 < z < X R is smoothed using cubic spline interpolation
with a reduced number of the computed values of Ej. Subroutines 10 SPLINE and SPLINT
from Numerical Recipes (Press et al. 1986) are called to obtain the second derivatives of the
interpolating function at the specified points and then to find the cubic-spline interpolated
values of E}, at j =1, 2, ..., JR. The computed and smoothed cross-shore variations of Ep,
are practically indistinguishable visually for the five tests in this report. The interpolated
values of E}, are used to compute (D}); using (49) and (50) where (D%)1 at j = 1 is not
smoothed. The smoothed D¥ is then used to reset JR so that the computed results only in
the region of the smoothed D} > 0 are stored in the output files. The smoothed cross-shore
variation of (D}); is practically the same as the computed variation of D} in the outer zone
and represents the overall variation of D} in the inner zone as will be shown in Section 3.5.
It is emphasized that this smoothing procedure is necessary only for Dy in the inner zone
which is not used in the computation of the rest of the variables in the inner zone.

Finally, Subroutine 11 OUTPUT is called to store the input and computed results.

3.2 Subroutines

All the subroutines called in the main program are explained in the numerical order used to
arrange the sequence of the subroutines.

3.2.1 Subroutine OPENER

This subroutine opens the input and output files listed in Table 2.

The names of the output files start with the letter “O” for easy identification. The
computed variables are stored with the nodal location z; to plot the cross-shore variations
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Table 2: Summary of Input and Output Files

Unit File Description

11 FINMIN input file containing all the required input to CSHORE
21 ODOC output containing a summary of input and output

22 OSETUP | zj, (2)j, 7; and h; for j=1, 2, ..., JR

23 | OWAVEHT | zj, (2)j, (Hrms); and (04); for j=1, 2, ..., JR

24 OSKEW ziand sjforji=1, 2, ..., JR

25 OCURTO | zjand K;forj=1,2,..., JR

26 ODISSIP i, Qj, (Gp); and (Gy); for j=1, 2, ..., JR

27 ONONLIN | z;, nj, (Cs);j and (Cg); for j=1,2, ..., JR

28 OITER zj and NUMITE(j) forj=1,2, ..., JR

29 | OMOMENT | z;, (S3;); and (7)) for j=1,2, ..., JR

30 | OENERGY | @j, (E})j, (Dp); and (D});for j=1, 2, ..., JR

31 | OENERSM | z; and smoothed (E%); and (Dj); for j=1, 2, ..., JR
40 OMESSG | output file containing all messages written during the computation

of the computed variables, NUMITE(]) is the number of iterations at node j performed
to solve (40) and (41) or (44). This information can be used to check the efficiency of the
iteration methods and improve these methods if necessary.

3.2.2 Subroutine INPUT

This subroutine reads all input required for CSHORE from the input file, FINMIN. The
input file is read in the following sequence:

e A header used by a user to identify a specific input file is read first

READ(11,1110) NLINES
DO 110 I=1, NLINES
READ(11,1120) (COMMEN(J), J=1,14)
WRITE(21,1120) (COMMEN(J), J=1,14)
WRITE(+,«) (COMMEN(J), J=1,14)
110 CONTINUE
1110 FORMAT(I8)
1120 FORMAT(14A5)

where NLINES is the number of lines containing the user’s comments.
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e The seaward boundary conditions required for CSHORE are read second

READ(11,1150) TP, HRMS(1), WSETUP(1)
1150 FORMAT(3D13.6)

where TP = spectral peak period T}, in seconds at z = 0; HRMS(1) = root-mean-
square wave height H,.,s in meters at z = 0; and WSETUP(1) = wave setup (+) or
set-down (—) 7 in meters at z = 0.

e The number of spatial nodes, JSWL, along the bottom below SWL is read third

READ(11,1110) JSWL
1110 FORMAT(I8)

The constant nodal spacing Az is obtained in Subroutine 3 BOTTOM using Az =
xs/JSWL where x4 is the cross-shore distance between the seaward boundary z = 0
and the still waterline defined as z, = 0 at = x;. The integer JSWL must be chosen to
be so large that the computed cross-shore variations of the time-averaged quantities do
not depend on Az. For the five tests compared in this report, use is made of Az ~ 0.1
m on the order of Hyps.

e The bathymetry in the computation domain consisting of linear segments of different
inclination and roughness is read last

READ(11,1110) NBINP
READ(11,1150) XBINP(1), ZBINP(1)
DO 140 J=2, NBINP
READ(11,1150) XBINP(J), ZBINP(J), FBINP(J-1)
140 CONTINUE
1110 FORMAT(I8)
1150 FORMAT(3D13.6)

NBINP is the number of points used to describe the input bathymetry where the points
are connected by straight lines in Subroutine 3 BOTTOM. The maximum number of
input bottom points allowed in CSHORE is specified by the integer NB in the PA-
RAMETER statement where NB = 100 in the computer program listed in Appendix.
If NBINP > NB, an error message is written and the computation stops. The number
of linear segments is given by (NBINP-1). XBINP(1) is the z-coordinate of the seaward
boundary which is taken as z = 0 in CSHORE. ZBINP(1) is the z-coordinate (positive
above SWL) of the bottom elevation at the seaward boundary. For J = 2, ..., NBINP,
XBINP(J) and ZBINP(J) are the z and z-coordinates of the landward point of linear
segment (J-1), whereas FBINP(J-1) is the bottom friction factor f; associated with
linear segment (J-1). In this way, it will be possible to include smooth (low f;) and
rough (high f3) slope segments in the computation domain. XBINP(NPINP) is the
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landward Emit of the bathymetry which must be landward of the computation limit
based on h = e. XBINP(J) and ZBINP(J) with J = 1, 2, ..., NBINP must be given
in meters.

3.2.3 Subroutine BOTTOM

This subroutine calculates the z and z-coordinates of spatial nodes located on the bottom
from the input bathymetry read in Subroutine 2 INPUT. First, the z-coordinate of the still
waterline, XS = z;, is found from the intersection between the still water level (SWL) at
z = 0 and the linear segment crossing SWL. If no intersection exists, an error message is
written and the computation stops. The constant nodal spacing, DX = Az, is then given by
Az = z,/JSWL where the integer JSWL has been specified as input. It is possible to modify
CSHORE to allow the cross-shore variation of the nodal spacing but this will increase the
required input. Since CSHORE is very efficient computationally, use has been made of the
constant spacing Az on the order of H, .

The maximum node number, JMAX = jqz, for the most landward node is determined
such that (jmaz — 1) < [XBINP(NBINP)/[Az] < jmaz- The maximum number of nodes
allowed in CSHORE is specified by the integer NN where NN = 2000 is given in the PA-
RAMETER statement in the computer program listed in Appendix. If jne: > NN, an
error message is written and the computation stops. The z-coordinate of node j is given
by z; = (j —1)Az for j =1, 2, ..., jmaz. After finding the location of node j on the in-
put bathymetry consisting of linear segments, the bottom elevation (z);, the bottom slope
(dzp/dz); and the bottom friction factor (f;); at node j are obtained. CSHORE uses FB2(j)
= (f»/2); in light of (37), (38) and (43). Finally, the landward boundary location z; of the
outer zone is tentatively set as z; = z, until z; is found in the main program where z; < z;
in (25).

3.2.4 Subroutine PARAM

The subroutine calculates the following constants and parameter: Pl = 7 = 3.14159; TWOPI
= 2 m; GRAV = g = 9.81 m/s?; SQR8 = /8; and WKPO = k, = (Zﬂ)z/(ng) = deep-water
wave number based on the spectral peak period T,

3.2.5 Subroutine LWAVE

This subroutine calculates linear wave quantities for the known mean water depth, WD =
h, and the spectral peak period T}, specified as input. The dispersion relationship based on
linear wave theory is written in the following form (Goda 1985)

(kyh) — (koh)/ tanh(kph) = 0 (51)

which is solved using the Newton-Raphson iteration method to obtain the wave number,
WKP = k,, based on T,. The initial estimate of k, in (51) is taken as the value of k,
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computed on the previous call of this subroutine except for the first call at the seaward
boundary node j = 1 for which use is made of kyh ~ (k,h)/[tanh(k,h)]'/2. After k, is
obtained, the value of WN = n is calculated using (15) and the phase velocity CP = C), is
given by Cp, = 2 /(kp T}).

3.2.6 Subroutine SKEWKU

The subroutine calculates the empirical values of the skewness, SKEW = s, and the kurtosis,
CURTO = K, for the known value of HSTA = H,. To facilitate modifications for future
applications, the empirical formula (31) is rewritten as

& = S H, for s<Y1 (52a)
s = AYl-B(H,-Y1) for Yl<e<Y2 (52b)
s = AY1-B(Y2-Y1)+C(H.-Y2) for Y2<s (52¢)

where A = 2.0, B =10, C = 0.7, Y1 = 0.5 and Y2 = 1.0 are specified in the DATA
statement in this subroutine. After s is obtained, the corresponding value of K is calculated
using (32).

3.2.7 Subroutine CSFFSE

The subroutine computes the nonlinear correction terms CS = Cy and CF = CF given by
(13) and (18), respectively, for the known value of SSTA = o, in this subroutine, where the
values of s and K are transmitted through the COMMON statement. The corresponding
values of Fy and Ff are then calculated using (33) and (34), respectively.

3.2.8 Subroutine GBANGF

This subroutine computes the values of Gy and Gy given by (14) and (19), respectively, for
the known values of SIGSTA = o, and SKEW = s. To compute G}, and Gy, (14) and (19)
are rearranged as

Gy, = 2I—(1+0?) (53)

Gy = 2I;+30,+02—s (54)
with

o= [ -0 fn)dn. (55)

ig = fa w (e — 02)° f(n ) (56)
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where use is made of

o= [ nfdn =0 (57)
o= [ ot =1 (58)
® o= [ adtadn=s (59)

The probability density function f(7.) is assumed to be expressed by the exponential
gamma distribution (Kobayashi et al. 1998)

f(ms) = [D(@)] ™" /¥'(a) exp(—ay — ™) (60)

y =¥ (a) n —¥(a) (61)

where a = shape parameter; I' = gamma, function; 1 = digamma function; and ¢’ =
trigamma function. The relationship between s and a is given by

s = —9"(Q)' (@) (62)

where ¥” = tetragamma function. The gamma and related functions are explained in
Abramowitz and Stegun (1972) and tabulated by Gran (1992).

with

For the skewness s = 0, (60) reduces to the Gaussian distribution

- 2
flne) = \—/,;:Wexp (—%) for s=0 (63)
Substitution of (63) into (55) and (56) yields
2
Iy = %(1. +0?) erfc (%) = _;2*_11 exp (—02—*) for s =0 (64)
2 2
Iy = 2\-/'-%* exp (—%) - ?2—*(3 + 0?) erfc (%) for s=0 (65)

where erfc = complementary error function.

For the skewness s = 2, (60) becomes the exponential distribution

F(nx) = exp(—n« — 1) for s =2 (66)
which is limited for the range n, > —1. Substitution of (66) into (55) and (56) yields

Iy = 2exp(—o,—1) for &=2 (67)

It = 6exp(—o.—1) for s =2 (68)
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For the range 0 < s < 2, (55) and (56) need to be integrated numerically. To find a for
the known value of s, (62) is rewritten as (Gran 1992)

Ins = F(a) = In[—¢"(a)] — 1.5In[y'(a)] (69)
To solve (69) using the Newton-Raphson iteration method, the first derivative of F'(a) with

respect to a is required
dF _¢"(a) 3 ¥"(a) (70)
da  9"(a) 2 (a)
where 9" = pentagamma function. The initial estimate of a for the iteration is taken as
a~1.16(2—s) for s > 1 and a ~ (0.5 + s72) for s < 1 on the basis of the relationship
between a and s plotted in Fig. 1 of Kobayashi et al. (1998). The iteration is continued
until |Ins — F(a)| < DELTA where DELTA = 1079 is specified in the DATA statement in

this subroutine.

The gamma and related functions for the given value of a are computed as follows. First,
the gamma function is computed using Function GAMMLN(a) = In[I'(a)] for @ > 1 listed
in Numerical Recipes (Press et al. 1986) where use is made of In[I’(a)] = In['(a@ + 1)] — Ina
for 0 < @ < 1. The poly-gamma functions ¥(a), ¢'(a), ¥"(a) and ¥"(a) for a > 10
are computed using Functions DIGAMM, TRIGAM, TETRAG and PENTAG, respectively,
which are based on the expressions given by Gran (1992). For a < 10, the following recurrence

formulas are applied

10—n

Pa) = P)— ), (z—i)" (71)
i=1
10—n ’

P'(@) = Y@+ ), (z—19)? (72)
=1
10—n

P'@) = P'(z)— > 2z—i)® (73)
i=1
10—n

Y"(@) = ¢"(@)+ ) 6(z—i)™* (74)
=1

(75)

where n is the integer satisfying (a — 1) < n < a and z = (10 + a — n) is in the range
10 < 3<11.

Egs. (55) and (56) with (60) are integrated numerically using the extended Simpson’s
rule [e.g., Press et al. (1986)] where the upper limit of the integration in (55) and (56) is
replaced by (54 4s) because f(n.) ~ 107 at n, ~ (5+4s) in (63) and (66). The odd number
of points used for the numerical integration is given by NUM where NUM=31 is found to be
sufficient and given in the DATA statement in this subroutine.

Figs. 12 and 13 show G and G as a function of o, for s = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,
1.4, 1.6, 1.8 and 2.0, respectively. G} decreases monotonically with the increase of o, for
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given s and with the decrease of s for given o,. On the other hand, the variations of Gy with
respect to o, and s are more complex as shown in Fig. 13. G increases with the increase
of s for given o, ~ 0 but the trend is opposite for given o, =~ 1. These figures indicate
-1.85< Gy <047 and 1.60 <Gy <4.18for 0 <o, <land 0 <s< 2.

For the actual computation of G and Gy in this subroutine, (64) and (65) for s = 0 are
used for s < SMIN, whereas (67) and (68) for s = 2 are used for s > SMAX. The values
of SMAX = 1.99 and SMIN = 0.15 are given in the DATA statement in this subroutine.
These limits are necessary because I'(a), ¥(a), 9'(a), ¥"(a) and 9"'(a) become infinite at
a = 0 corresponding to s = 2, whereas a becomes infinite at s = 0. Figs. 12 and 13 show
that Gy, and Gy vary little with s within the ranges 0 < s < 0.15 and 1.99 < z < 2.0. The
complementary error function in (64) and (65) is computed using Function ERFCC given in
Numerical Recipes (Press et al. 1986). Furthermore, for the case of s > SMAX, Gp and Gy
are computed using (53) and (54) with (67) and (68) where s = 2 and o, = 1 are assumed
to be consistent with the exponential distribution whose lower limit imposed by the bottom
elevation (Kobayashi et al. 1998). These approximations affect only G} and Gy involved in
7y and D} given by (37) and (38). The comparisons shown in Figs. 7-11 are based on the
bottom friction factor f, = 0 for which 7' = 0 and D} = 0 for any Gy and Gj.

3.2.9 Subroutine DBREAK

This subroutine computes the local fraction of breaking waves, QBREAK=Q), and the corre-
sponding energy dissipation rate, DBSTA=D7}, for the known root-mean-square wave height,
WHRMS = H,ms, and mean water depth, D = h. When this subroutine is called at node
4 = 1 before the landward marching computation, the empirical breaker parameter, GAMMA
=, is computed using (24). The deep-water, root-mean-square wave height H,,s, based
on linear wave shoaling theory is given by [e.g., Shore Protection Manual (1984)]

. Qkp E 1/2 '
Hrmgo = dyrms {tanh(kp h) [1 + m] } (76)

where k;, = linear wave number based on the spectral peak period T}, at the seaward boundary
=0

For the computation of @Q; and (Dp); at node j in the outer zone with j =1, 2, ...,
JXI, the local depth-limited wave height H,, is calculated using (23). Eq. (22) is rewritten
as

Homs

1—Q+(H—m)2 nQ =0 (77)

If (Hyms/Hm)? < 0.99999, (77) is solved to find @ using the Newton-Raphson iteration
method starting from Q@ =~ (Hyms/Hm)?/2. Otherwise, @ = 1 is set because @ = 1 for
Hyms = Hyp, in the formula by Battjes and Stive (1985). The value of D} is calculated using
(39) where f, = T;;! has been calculated in Subroutine 2 INPUT and a = 1.0 is specified in
the DATA statement, ALPHA = 1.0, in this subroutine.
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Gb integrated numerically
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Figure 12: G} as a Function of o, for s = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8
and 2.0.
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Gf integrated numerically
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Figure 13: Gy as a Function of o, for s = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8
and 2.0.
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3.2.10 Subroutines SPLINE and SPLINT

These subroutines for cubic spline interpolation, which are double-precision versions of
SPLINE and SPLINT listed in Numerical Recipes (Press et al. 1986), are used to smooth
small irregularities in the computed cross-shore variation of E7, after the landward marching
computation as explained in Section 3.1. These subroutines are explained clearly by Press
et al. (1986) and their explanations are not repeated here.

3.2.11 Subroutine OUTPUT

This subroutine stores the input and computed results in the output files listed in Table 2.

First, the following quantities are stored in File 21 ODOC whose printout will be pre-
sented in Section 3.5:

WRITE(21,1000) TP, FP, HRMS(1), WSETUP(1)
WRITE(21,1100) 0.D0— ZBINP(1), NBINP-1, JSWL, DX, JMAX
WRITE(21,1200) XBINP(1), ZBINP(1)

DO 140 J=2, NBINP
WRITE(21,1200) XBINP(J), ZBINP(J), FBINP(J-1)

140 CONTINUE
WRITE(21,1300) ALPHA, GAMMA, GAMMAS, BETA, XS, XI
WRITE(21,1400) EPS1, MAXITE
WRITE(21,1450) JR, JXI, JMAX, XR, ZR, H(JR)

where TP = T, = spectral peak period in seconds; FP = f, = spectral peak frequency given
by fp = T, L. HRM(1) = root-mean-square wave height H,,s at the seaward boundary
z = 0 in meters; WSETUP(1) = wave setup (+) or set-down (—) 77 at z = 0 in meters;
—ZBIN P(1) = still water depth at = 0 in meters; (NBINP-1) = number of linear segments
used to describe the input bathymetry; JSWL = number of spatial nodes below SWL used
to compute Az = z,/JSWL; DX = Az = constant nodal spacing (m) used for the finite
difference method; JMAX = maximum landward node corresponding to the landward extent
of the input bathymetry; XBINP(1) = z-coordinate (m) of the seaward boundary taken
as ¢ = 0; ZBINP(1) = z-coordinate (+ above SWL) of the seaward boundary in meters;
XBINP(J) = z-coordinate (m) of the landward end point of linear segment (J—1); ZBINP(J)
= z-coordinate (m) of the bottom point at = XBINP(J); FBINP(J-1) = bottom friction
factor fy of linear segment (J — 1); ALPHA = a = empirical parameter in (39) specified
as @ = 1 in Subroutine 9 DBREAK; GAMMA = ~ = empirical parameter given by (24)
and computed in Subroutine 9 DBREAK; GAMMAS = ~, and BETA = g are the empirical
parameters introduced in (25) and specified as 75 = 2 and 8 = 2.2 in the main program;
XS = z, = z-coordinate (m) of the still waterline on the input bathymetry; XI = z; =
z-coordinate (m) of the landward limit of the outer zone; EPS1 = e = allowable error for
the converged mean water depth (m) for the iterations in the main program which specifies
€ = 107® m; MAXITE = maximum number of iterations allowed for each step during the
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landward marching computation where MAXITE = 100 is specified in the main program;
JR = most landward node of the computation based on the smoothed Dy > 0; JXI = most
landward node in the outer zone; JAX = maximum landward node on the input bathymetry;
XR. = z-coordinate (m) of node JR; ZR = z-coordinate (m) of node JR; and H(JR) = mean
water depth % (m) at node JR.

The computed cross-shore variations are stored in Files 22 OSETUP, 23 OWAVEHT,
24 OSKEW, 25 OCURTO, 26 ODISSIP, 27 ONONLIN, 28 OITER, 29 OMOMENT, 30
OENERGY, and 31 OENERSM as follows:

DO 160 J=1, JR
WRITE(22,1500) XB(J), ZB(J), WSETUP(J), H(J)
WRITE(23,1500) XB(J), ZB(J), HRMS(J), SIGSTA (J)
WRITE(24,1500) XB(J), SKEW (J)
WRITE(25,1500) XB(J), CURTO(J)
IF (FB2(J).GT.0.D0) THEN
WRITE(26,1500) XB(J), QBREAK(J), GB(J), GF(J)
ELSE
WRITE(26,1500) XB(J), QBREAK(J)
ENDIF
WRITE(27,1500) XB(J), WN(J), CS(J), CF(J)
WRITE(28,1510) XB(J), NUMITE(J)
WRITE(29,1500) XB(J), SXXSTA(J), TBSTA (J)
WRITE(30,1500) XB(J), EFSTA(J), DBSTA(J), DFSTA(J)
WRITE(31,1500) XB(J), EFSM(J), DBSM(J)

160 CONTINUE

1500 FORMAT(4F17.9)

1510 FORMAT(F13.6,18)

where J = node number; XB = z = cross-shore coordinate (m) of node J; ZB = 2, = bottom
elevation (m) at node J; WSETUP = 7j = wave setup or set-down (m); H = h = mean water
depth (m); HRMS = H,,.s = root-mean-square wave height (m); SIGSTA = o, = o/h
with o = Hmw/\/g; SKEW = s = free surface skewness; CURTO = K = free surface
kurtosis; QBREAK = @ = local fraction of breaking waves; GB = G} = dimensionless
parameter related to the bottom shear stress 7p; GF' = Gy = dimensionless parameter
related to the energy dissipation rate due to bottom friction, Ef, where GB and GF' are
computed only if the bottom friction factor f, > 0; WN = n = finite-depth adjustment
parameter with n = 1 in shallow water; CS = C; = nonlinear correction term for the cross-
shore radiation stress S,,; CF = Cr = nonlinear correction term for the cross-shore energy
flux Ep; NUMITE = number of iterations made to obtain the converged solution at node J;
SXXSTA = S*_ = Syz/p g(m?); TBSTA =73 = T4/p g(m); EFSTA = E} = Ep/p g(m?/s);
DBSTA = D% = Dg/p g(m?/s) with Dg = energy dissipation rate due to wave breaking;
DFSTA = D} = Dy¢/p g(m?*/s); EFSM = smoothed Ej(m?/s) which must be essentially
the same as EFSTA apart from small irregularities; and DBSM = smoothed D} computed
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using the smoothed F7.

3.3 Common Statements

The parameters and variables included in the COMMON statements in the main program are
explained in the following so that a user may be able to comprehend the computer program
CSHORE and modify it if necessary.

/PERIOD/ contains the spectral peak period and related parameters.
TP = T, = spectral peak period specified as input.
FP = f, = spectral peak frequency given by f, = Tp'l.
WKPO = k, = deep-water wave number given by k, = (271')2/(9'.1”3).

/PREDIC/ contains the unknown variables predicted by CSHORE.
HRMS(j) = root-mean-square wave H,, at node j.
SIGMA (j) = standard deviation o of the free surface elevation at node j.
H(j) = mean water depth & at node j.
WSETUP(j) = wave setup or setdown 77 at node j.
SIGSTA(j) = ratio, 0. = o /h, at node j.

/BINPUT/ contains the input bathymetry consisting of linear segments.
XBINP(k) = z-coordinate of the seaward and of segment k.
ZBINP (k) = z-coordinate of the seaward end of segment k.
FBINP(k) = bottom friction factor fi, associated with segment k.
NBINP = number of points used to specify the input bathymetry.
JSWL = number of nodes below SWL which is the same as the number of nodal
spacings between the seaward boundary and the still waterline.

/BPROFL/ contains the bathymetry used for the computation.
DX = constant nodal spacing Az.
XB(j) = z-coordinate of node j.
ZB(j) = bottom elevation z, at node j.
FB2(j) = value of f/2 at node j.
DZBDX(j) = bottom slope, dz,/dz, at node j.
JMAX = maximum node number at the landward limit of the input bathymetry.

/CONSTA/ contains constants.
GRAV = gravitational acceleration, g = 9.81m/s?.
SQRS8 = constant value of v/8 used in Hyms = V/80.
PI = constant value of m = 3.14159.
TWOPI = constant value of 2.

/LINEAR/ contains local quantities based on linear wave theory.
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WKP = wave number k, based on the spectral peak period which is calculated at each node.
CP = phase velocity C) based on the spectral peak period given by C) = 27/(k,T)).
WN(j) = finite-depth adjustment parameter n at node j given by (15) such that n C,, is

the group velocity.

/NONLIN/ contains the skewness and kurtosis which are not included in linear models.
SKEW(j) = free surface skewness s at node j.
CURTO(j) = free surface kurtosis K at node j.

/FRICTN/ contains dimensionless parameters related to bottom friction.
GB(j) = parameter G} at node j given by (14).
GF(j) = parameter G at node j given by (19).

/WBREAK/ contains quantities related to wave breaking.

ALPHA = empirical parameter a in (21) where a = 1 is specified in Subroutine 9 DBREAK.

GAMMA = empirical parameter v computed using (24) in Subroutine 9 DBREAK.

QBREAK(j) = local fraction @ of breaking waves at node j computed using (22) in the outer zone
whereas (2 = 1 in the inner zone.

DBSTA(j) = computed value of D}y = Dp/p g at node j where D = energy dissipation rate due
to wave breaking.

DBSM(j) = smoothed value of D} at node j obtained after the landward marching computation.

/BRKNEW/ contains new parameters for wave breaking in the inner zone.
GAMMAS = empirical value of 4, corresponding to Hy, = Hyns/h at the still waterline where
vs = 2 is specified in the main program.
BETA = empirical parameter 3 in (25) where § = 2.2 is specified in the main program.
XS = z-coordinate z, of the still waterline used in (25).
XI = z-coordinate z; of the landward limit of the outer zone.

/MOMENT/ contains terms involved in the cross-shore momentum equation.
CS(j) = nonlinear correction term Cy at node j given by (13).
F'S = parameter F defined by (33) at each node.
SXXSTA(j) = computed value of S%, = Sz./p g at node j where S, = cross-shore radiation stress.
TBSTA(j) = computed value of 7 = 7}, /p g at node j where 7}, = corss-shore bottom shear stress.

/ENERGY/ contains terms involved in the corss-shore energy equation.
CF(j) = nonlinear correction term Cp at node j given by (18).
FE = parameter Fg defined by (34) at each node.
EFSTA(j) = computed value of E}, = Er/p g at node j where Ep = cross-shore energy flux.
DFSTA(j) = computed value of D} = Dy/p g at node j where Dy = energy dissipation rate due
to bottom friction.
EFSM(j) = smoothed value of E}, at node j obtained after the landward marching computation.

/ITERAT/ contains parameters for the iteration method in CSHORE.
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EPS1 = allowable error € for the converged mean water depth at each node where € = 107° m
is specified in the main program.

MAXITE = maximum number of iterations allowed at each node where MAXITE = 100 is specified
in the main program.

NUMITE(j) = number of the iterations performed at node j which can not exceed MAXITE.

/RUNUP/ contains parameters for the computational landward limit.
XR = z-coordinate of the landward limit of the smoothed D > 0.
ZR = bottom elevation z, at x = XR.

JR = node number corresponding to z = XR.

The size of the vectors containing the quantities at node j is spceified by the integer NN
where it is required that NN > JMAX. The size of the vectors containing the quantitites for
the input bathymetry is specified by the integer NB where it is required that NB > NBINP.
In the computer program CSHORE listed in Appendix, NN = 2000 and NB = 100 in the
PARAMETER statements in the main program and subroutines.

3.4 Input
The input required for CSHORE has been explained in Section 3.2.2 for Subroutine 2 INPUT.

Two examples from the input files used for the comparisons of CSHORE with tests 1-5 in
Section 2.3 are presented in the following.

Table 3: Input File for Test 3.

3 <-- NLINES

Comparision of CSHORE with Test 3 August, 1998

4.7 .1840 -.0024 <--TP, HRMS(1),WSETUP(1)
128 <—-JSWL

3 <--NBINP

0 -0.762

0.808 -0.762 0.00

22.6 0.6 0.00
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Table 3 lists the input file for the comparison of CSHORE with test 3. For test 3, T}, =
4.7 8, Hypps = 0.184 m at £ = 0, and 77 = — 0.0024 m as listed in Table 1. The number of
constant nodal spacings between the seaward boundary = = 0 and the still waterline located
at s = 13 m is taken as JSWL = 128. The nodal spacing given by Az = z,/JSWL is hence
Az = 0.102 m. The number of points used to describe the input bathymetry is NBINP = 3.
The first linear segment is horizontal and located at z, = — 0.762 m in the still water depth
d = 0.762 m. The horizontal length of this segment is 0.808 m. The slope of the second
linear segment is (0.6 + 0.762)/(22.6 - 0.808) = 1/16. The landward end at z = 22.6 m and
zp = 0.6 m of the input bathymetry is taken well above SWL to ensure that the computed
mean depth A becomes less than € = 10~° m sufficiently landward of the landward end of the
1:16 slope. The bottom friction factor f, for these smooth impermeable segments is taken
to be fi = 0 as explained in relation to Fig. 4.

On the other hand, Table 4 lists the input file for the comparison of CSHORE with test
5. For test 5, T, = 2.8 8, Hypps = 0.1459 m, 77 = — 0.0012 m and d = 0.60 m at z = 0. The
use of JSWL = 201 results in Az = 0.068 m and gives a sufficient spatial resolution near the
still waterline as shown in Fig. 11. The measured equilibrium beach profile shown in Fig.
11 is represented by NBINP = 34 points and 33 linear segments. The bottom friction factor
fo = 0 for all the segments.

3.5 Output

The output produced by CSHORE has been explained in Section 3.2.11 for Subroutine 11
OUTPUT. For example, the printouts of File 21 ODOC for the comparisons of CSHORE
with tests 3 and 5 are listed in Tables 5 and 6, respectively, where the corresponding input
files have been listed in Tables 3 and 4. The printout of File 21 ODOC is self-explanatory
where the symbols have been explained in Section 3.2.11.

On the other hand, the output files containing the computed cross-shore variations are
listed in Table 2 and explained in Section 3.2.11. Files OSETUP, OWAVEHT, OSKEW and
OCURTO for tests 1-5 have been used to plot Figs. 7-11 where b = (7 — z) and oy = o /h
with ¢ = Hyms/v/8 have not been plotted in these figures for brevity. Files ODISSIP and
ONONLIN for test 3 have been used to plot Fig. 5 where GB = Gy and GF = G are not
computed for the bottom friction factor fi, = 0 because (37) and (38) yield 777 = 0 and
D% =0 for fi = 0 for any Gp and Gjy.

The number of iterations, NUMITE(j), performed at node j is stored in File OITER.
Fig. 14 shows the cross-shore variations of NUMITE for tests 1-5. Fig. 14 indicates that
the iteration methods adopted in the outer and inner zones normally converge within several
iterations.

Finally, Files OMOMENT, OENERGY and OENERSM for test 3 have been used to plot
Fig. 6 where 77 = 0 and D} = 0 for fi = 0 specified as input. The smoothed cross-shore
variations of E} and D} have been plotted in Fig. 6. Fig. 15 compares the computed and
smoothed cross-shore variations of E}, and D} for test 3 where the smoothing procedure
after the landward marching computation has been explained in relation to Egs. (48)—(50).



Table 4: Input File for Test 5.

.3800
.5000
.8500
.3500
.8500
.3500
.8500
.3500
.8500
.3500
.8500
.3500
.6000
.8500
.1000
.3500
.6000
.8500
.1000
.3500
.6000
.8500

.1000
.3500
.6000
.8500
.5500
.2500
.6500
.7900
.9300
.0700
.0700

-0.6000
-0.6000
-0.6000
-0.5810
-0.5640
-0.55650
-0.5280
-0.5010
-0.4720
-0.4260
-0.3750
-0.3170
-0.2360
-0.2110
-0.2130
-0.2250
-0.2310
-0.2330
-0.2310
-0.2220
-0.2140
-0.2110
-0.2070
-0.1970
-0.1830
-0.1660
-0.1550
-0.1390
-0.1120
-0.0239
0.0170

0.0352

0.0711

0.4287

O 0O 0000000000000 O0DO0O0DO0OO0DO0OO0DO0O0O0O0OO0DO00O0OO0O0O O OO

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
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Table 5: Output File ODOC for Test 3

Comparision of CSHORE with Test 3 August, 1998

INPUT WAVE PROPERTIES:
Peak wave period (sec)
Peak frequency (1/sec)
Root-mean-square wave height

at seaward boundary (m)
Wave setup at seaward boundary (m)

0.470000E+01
0.212766E+00

0.184000E+00
-0.240000E-02

INPUT BOTTOM GEOMETRY
Depth at seaward boundary (m) = 0.762000

Number of linear segments = 2
Number of spatial nodes below
SWL used to find DX = 128
Node spaceing, DX (m) = 0.101563
Maximum landward node JMAX = 223
X (m) Zb (m) Friction factor
0.000000 -0.762000
0.808000 -0.762000 0.000000
22.600000 0.600000 0.000000
EMPIRICAL PARAMETERS FOR WAVE BREAKING
Alpha = 1.000000
Gamma = 0.558245
Gammas = 2.000000
Beta = 2.200000
Xs(m) = 13.000000
Xi(m) = 8.3281256
ITERATION PARAMETERS
Allowable relative error in iterated depth(m) = 0.000010
Maximum iterations allowed = 100
WAVE RUNUP OR COMPUTATION LIMIT
Most landward node of computation JR = 153
Most landward node in outer zone JXI = 83
in comparision with JMAX = 223
X-coordinate of JR (m) XR = 16.437500
Z-coordinate of JR (m) ZR = 0.152344
Mean water depth of this node (m) H(JR) = 0.000672
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Table 6: Output File ODOC for Test 5.

Comparision of CSHORE with Test b August, 1998

INPUT WAVE PROPERTIES:
Peak wave period (sec)
Peak frequency (1/sec)
Root-mean-square wave height

at seaward boundary (m)
Wave setup at seaward boundary (m)

0.280000E+01
0.357143E+00

I

0.145900E+00
-0.120000E-02

INPUT BOTTOM GEOMETRY

Depth at seaward boundary (m) = 0.600000
Number of linear segments = 33
Number of spatial nodes below
SWL used to find DX = 201
Node spaceing, DX (m) = 0.068317
Maximum landward node JMAX = 236
X (m) Zb (m) Friction factor
0.000000 -0.600000
0.380000 -0.600000 0.000000
0.500000 -0.600000 0.000000
2.850000 -0.581000 0.000000
3.350000 -0.564000 0.000000
3.850000 -0.555000 0.000000
4,350000 -0.528000 0.000000
4.,850000 -0.501000 0.000000
5.350000 -0.472000 0.000000
5.850000 -0.426000 0.000000
6.350000 -0.375000 0.000000
6.850000 -0.317000 0.000000
7.350000 -0.236000 0.000000
7.600000 -0.211000 0.000000
7.850000 -0.213000 0.000000
8.100000 -0.225000 0.000000
8.350000 -0.231000 0.000000
8.600000 -0.233000 0.000000
8.850000 -0.231000 0.000000
9.100000 -0.222000 0.000000
9.350000 -0.214000 0.000000
9.600000 -0.211000 0.000000
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Table 6: Continued

9.850000 -0.207000
10.100000 -0.197000
10.350000 -0.183000
10.600000 -0.166000
10.850000 -0.155000
11.550000 -0.139000
12.250000 -0.112000
13.650000 -0.023900
13.790000 0.017000
13.930000 0.035200
14.070000 0.071100
16.070000 0.428700

EMPIRICAL PARAMETERS FOR WAVE BREAKING

Alpha = 1.000000
Gamma = 0.646164
Gammas = 2.000000
Beta = 2.200000
Xs(m) = 13.731809
Xi(m) = 12.433778

ITERATION PARAMETERS

O OO0 OO0 0O 000 oo

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
-000000

Allowable relative error in iterated depth(m) =

Maximum iterations allowed =

WAVE RUNUP OR COMPUTATION LIMIT

Most landward node of computation

Most landward node in outer zone
in comparision with

X-coordinate of JR (m)

Z-coordinate of JR (m)

Mean water depth of this node (m)

100
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The computed and smoothed cross-shore variations of E7. are practically the same except
for small irregularities in the inner zone x > z; = 8.3 m listed in Tables 1 and 5. The cross-
shore variation of D} computed using (49) and (50) with the computed E}, exhibits rapid
spatial oscillations caused by the small irregularities in the computed E%. The cross-shore
variation of D} calculated using the smoothed ET. does not exhibit rapid spatial oscillations
in the inner zone and appears more realistic. In short, the smoothing procedure is applied to
minimize the oscillations of D} in the inner zone without modifying the rest of the computed
results by CSHORE.
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APPENDIX: Listing of Computer Program CSHORE

e Main Program

e Subroutine 1 OPENER
e Subroutine 2 INPUT

e Subroutine 3 BOTTOM
e Subroutins 4 PARAM

e Subroutine 5 LWAVE

e Subroutine 6 SKEWKU
e Subroutine 7 CSFFSE
e Subroutine 8 GBANGF

Subroutine INTGRL
Function GAMMLN
Function DIGAMM
Function TRIGAM
Function TETRAG
Function PENTAG
Function ERFCC

e Subroutine 9 DBREAK
e Subroutines 10 SPLINE and SPLINT
e Subroutine 11 OUTPUT

o
o
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The purpose of each of 11 subroutines arranged in numerical order
is described in each subroutine and where it is called.

All COMMON statements appear in the Main Program. Description of
each COMMON statement i1s given only in Main Program.

OO A4 4 4 At A A A MATN PROGRAM kb h 4 a4 4 48 kb 40 800 4 48 3 S04 4

Main program marches from the offshore boundary node to the
shoreline using subroutines.

PROGRAM CSHORE

IMPLICIT NONE

INTEGER NN, NB

PARAMETER (NN=2000, NB=100)

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

PRECISION TP, FP, WKPO

PRECISION HRMS, SIGMA, SIGMAZ2, H, WSETUP, SIGSTA
PRECISION XBINP, ZBINP, FBINP

PRECISION DX, XB, ZB, FB2, DZBDX

PRECISION GRAV, SQR8, PI, TWOPI

PRECISION WKP, CP, WN

PRECISION SKEW, CURTO

PRECISION GB, GF

PRECISION ALPHA, GAMMA, QOBREAK, DBSTA, DBSM
PRECISION GAMMAS, BETA, XS, XI

PRECISION CS, FS, SXXSTA, TBSTA

PRECISION CF, FE, EFSTA, DFSTA, EFSM
PRECISION EPS1

PRECISION XR, ZR

PRECISION DUM, C1, C2, C3

PRECISION SIGITE, HITE, HRMITE, HSTA, SXXH2 (NN),
PRECISION ESIGMA, EH

PRECISION XBDEC (NN), EFDEC(NN), EF2(NN)

INTEGER MAXITE, NUMITE

INTEGER JSWL, NBINP, JMAX, JR, JXI
INTEGER J, JJ, ICHECK, JPl, ITE, COUNT
CHARACTER*10 FINMIN
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ol cRoRoRcErRoRoRoReleRole Nallolleills s dnl o0 s

5000

nnNnaoa QN

@]

Name Contents
/PERIOD/ Quantities at the spectral peak period
/PREDIC/ Unknowns predicted by CSHORE
/BINPUT/ Input bottom geometry
/BPROFL/ Discritized bottom geometry
/CONSTA/ Constants
/LINEAR/ Linear wave values
/NONLIN/ Skewness and kurtosis
/FRICTN/ Dimensionless parameters related to bottom fri
/WBREAK/ Wave breaking quantities and constants
/BRKNEW/ New wave breaking parameters in inner zone
/MOMENT/ Terms in momentum equation
/ENERGY/ Terms in energy equation
/ITERAT/ Iteration loop parameters
/RUNUP/ Parameters for landward computation limit

COMMON /PERIOD/ TP, FP, WKPO
COMMON /PREDIC/ HRMS(NN), SIGMA(NN), H(NN), WSETUP (NN),

ction

SIGSTA (NN)

COMMON /BINPUT/ XBINP(NB), ZBINP(NB), FBINP(NB), NBINP, JSWL
COMMON /BPROFL/ DX, XB(NN), ZB(NN), FB2(NN), DZBDX(NN), JMAX

COMMON /CONSTA/ GRAV, SQR8, PI, TWOPI
COMMON /LINEAR/ WKP, CP, WN(NN)
COMMON /NONLIN/ SKEW(NN), CURTO (NN)
COMMON /FRICTN/ GB(NN), GF (NN)

COMMON /WBREAK/ ALPHA, GAMMA, QBREAK(NN), DBSTA(NN), DBSM(NN)

COMMON /BRKNEW/ GAMMAS, BETA, XS, XI
COMMON /MOMENT/ CS(NN), FS, SXXSTA(NN), TBSTA(NN)

COMMON /ENERGY/ CF(NN), FE, EFSTA(NN), DFSTA(NN), EFSM(NN)

COMMON /ITERAT/ EPS1, MAXITE, NUMITE (NN)
COMMON /RUNUP/ XR, ZR, JR

DATA EPS1, MAXITE /1D-5, 100/

DATA GAMMAS, BETA /2.D0, 2.2D0/

WRITE (*,*) 'Name of Primary Input-Data-File?'
READ (*,5000) FINMIN
FORMAT (A10)

Subr. 1 OPENER opens input and output files.

CALL OPENER (FINMIN)

Subr. 2 INPUT gets input wave and bathymetry information
from the input file, FINMIN.

CALL INPUT

PREPARATIONS FOR TIME MARCHING COMPUTATION
Subr. 3 BOTTOM computes bathymetry at each node.
CALL BOTTOM

Subr. 4 PARAM calculates constants and parameters.
CALL PARAM
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SIGMA(1) = HRMS(1) /SQRS8

H(l) = WSETUP(1l) - ZB(1l)
(8
[ Subr. 5 LWAVE returns the linear wave number and ratio of group
C velocity to phase velocity for the peak frequency.
CALL LWAVE(1l, H(1))
C
e Subr. 6 SKEWKU returns skewness and kurtosis of the free surface
2. using empirical formulas.
CALL SKEWKU(1,HRMS (1) /H(1))
C
C Subr. 7 CSFFSE computes CS, CF, FS, and FE involved in
C cross-shore radiation stress and energy flux.
SIGSTA(1l) = SIGMA(1l)/H(1)
CALL CSFFSE(1,SIGSTA(1))
C
SIGMA2 = SIGMA(1l)**2.DO0
SXXSTA (1) = SIGMA2*FS
EFSTA (1) = SIGMA2*FE
C
C Subr. 8 GBANGF returns numerically integrated values for the
C Gb and Gf factors used in calculating bottom
[ shear stress and bottom dissipation if bottom
C friction coefficient is positive.
IF(FB2(1).GT.0.D0) THEN
CALL GBANGF (1)
TBSTA(1l) = FB2(1)*GB(1l)*SIGSTA(1l)**2.DO0*H(1)
DFSTA(1l) = FB2(1l)*GF(1)*SIGSTA(1l)**3.DO*DSQRT (GRAV*H(1))*H(1)
ELSE
TBSTA(1l) = 0.DO
DFSTA(1l) = 0.DO
ENDIF
&
C Subr. 9 DBREAK computes the fraction of breaking waves and
e the associated wave energy dissipation and
C returns DBSTA (1) .
(84
CALL DBREAK(1l, HRMS(1l), H(1l))
C
C —rmrmmmrrm e ——— e m e ———— MARCHING COMPUTATION —-—-=-=——————m—mmmmm e m—m e
Cc
C Computation marching landward from seaward boundary, J = 1
NUMITE(1) = 0
J =0

100 0 =30 + 1
Jpl = J + 1
IF(JP1.GT.JMAX) THEN
WRITE(*,2900) JMAX
WRITE(40,2900) JMAX

STOP
ENDIF
2900 FORMAT ('ERROR: JP1l is greater than JMAX = ',6I3)
c
IF(XB(JPl) .LE.XI) THEN
DUM = (EFSTA(J) - DX* (DFSTA(J) + DBSTA(J)))/FE
C
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IF(DUM.LE.0.D0) THEN
WRITE(*,2901)J
WRITE(40,2901)J
STOP
ENDIF
2901 FORMAT(/'ERROR: '/
+ 'Square of sigma is negative at node ',61I3)
c
SIGITE = DSQRT (DUM)
110 SXXSTA(JPl) = FS*SIGITE**2.DO0
@
WSETUP (JP1) = WSETUP(J) -
+ (SXXSTA(JP1l) - SXXSTA(J) + TBSTA(J)*DX)/H(J)
HITE = WSETUP(JP1l) - ZB(JPl)

Begin iteration for adopted implicit finite difference method

[pNP NP

DO 200 ITE = 1, MAXITE

CALL LWAVE (JP1l, HITE)
HRMITE = SIGITE*SQRS
SIGSTA(JPl) = SIGITE/HITE

CALL SKEWKU(JP1l,HRMITE/HITE)
CALL CSFFSE(JP1,SIGSTA(JP1))

IF(FB2 (JP1) .GT.0.D0) THEN
CALL GBANGF (JP1)
TBSTA (JP1)=FB2 (JP1) *GB (JP1) *SIGSTA (JP1) **2 .DO*HITE
DFSTA (JP1) =FB2 (JP1) *GF (JP1) *SIGSTA(JP1) **3.D0 *

+ DSQRT (GRAV*HITE) *HITE

ELSE
TBSTA (JP1) 0.D0
DFSTA(JP1l) = 0.DO

ENDIF

CALL DBREAK (JP1, HRMITE, HITE)

DUM = (EFSTA(J) - DX/2.DO0*( DFSTA(JPl) + DBSTA(JPl) +
+ DFSTA(J) + DBSTA(J) ))/FE
IF(DUM.LE.0.DO) THEN
WRITE(*,2901)J
WRITE(40,2901)J
STOP
ENDIF

SIGMA (JP1) = DSQRT (DUM)
SXXSTA (JP1) FS*SIGMA (JP1)**2.D0

WSETUP (JP1) WSETUP (J) - (2.D0* (SXXSTA(JP1l)-SXXSTA(J)) +
+ DX* (TBSTA (JP1) +TBSTA(J)) )/ (HITE+H(J))
H(JPl) = WSETUP(JPl) - ZB(JPl)

Check for convergence

anNn
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ESIGMA = DABS(SIGMA(JPl) - SIGITE)

EH = DABS(H(JPl) - HITE)
c
IF(ESIGMA.LT.EPS1.AND.EH.LT.EPS1) GO TO 210
e
C Averages of new and previous values are used to accelerate convergence
SIGITE = 0.5D0* (SIGMA(JPl) + SIGITE)
HITE = 0.5D0* (H(JPl) + HITE)
I
200 CONTINUE
C
WRITE(*,2903) MAXITE, EPS1l, JPl
WRITE(40,2903) MAXITE, EPS1l, JPl1
STOP
2903 FORMAT (/'ERROR: Convergence was not reached after MAXITE = ',I4/
+ ' iterations with relative error EPS1 = ',E7.5/
+ ‘at node JP1 = ',6I4)
o :
210 NUMITE(JPl) = ITE
SIGSTA(JPl) = SIGMA(JP1l)/H(JP1)
HRMS (JP1) = SQR8*SIGMA (JP1)
WSETUP (JP1) = H(JP1l) + ZB(JP1)
IF(H(JP1l) .LT.EPS1.0R.JP1.EQ.JMAX) GO TO 400
CALL LWAVE(JP1l, H(JP1))
CALL SKEWKU(JP1, HRMS (JP1)/H(JP1))
CALL CSFFSE(JP1l,SIGSTA(JP1l))
SIGMAZ2 = SIGMA(JP1l)**2.D0O
SXXSTA(JP1l) = SIGMAZ*FS
EFSTA (JP1l) = SIGMA2*FE
IF(FB2(JP1) .GT.0.D0) THEN
CALL GBANGF (JP1)
TBSTA (JP1)=FB2 (JP1l) *GB (JP1) *SIGSTA (JP1) **2 .DO*H(JP1)
DFSTA (JP1)=FB2 (JP1l) *GF (JP1) *SIGSTA (JP1) **3 .D0 *
+ DSORT (GRAV*H (JP1) ) *H(JP1)
ELSE
TBSTA (JP1l) = 0.D0O
DFSTA (JPl) = 0.D0O
ENDIF
CALL DBREAK (JP1,HRMS(JP1),H(JP1))
Q
[ o Check whether the inner zone 1s reached
IF(QBREAK (JP1l) .EQ.1.0D0) THEN
ICHECK = 0

DO 220 JJ = JPl, JMAX
IF (DZBDX (JJ) .LE.0.D0) ICHECK = ICHECK + 1
220 CONTINUE
IF (ICHECK.EQ.0) THEN
XI = XB(JP1)

JXI = JP1
ENDIF
ENDIF
[
GO TO 100
C
ENDIF

C****************************End of IF(XB{JPl] .LE'XI) deode o de e de e e ok de ok e e e ok ok ke ke ko ke ke
C
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C

IF(XB(JP1l) .GT.XI) THEN

If XB(J) = X(I), compute SXXH2(J) and TBH(J)
IF (XB(J) .EQ.XI) THEN

SXXH2 (J) = SXXSTA(J)/H(J)**2.D0

TBH(J) = TBSTA(J) /H(J)
ENDIF

C Empirical formula for HSTA = HRMS/H for region for XB.GE.XI

Cc

300

310

HSTA = GAMMA + (GAMMAS - GAMMA) * ( (XB(JP1l) - XI)/(XS - XI))**BETA
SIGSTA (JP1) = HSTA/SORS
CALL SKEWKU(JP1, HSTA)
DUM = SIGSTA(JPL)**2.D0
CS(JP1) = SIGSTA(JP1l)*SKEW(JP1l) - DUM
CF(JP1) = 1.5DO*SKEW(JP1)*SIGSTA(JPL)*(1.DO - DUM) +
+ 0.5D0*DUM* (CURTO (JP1) - 5.D0) + DUM**2.DO
IF (FB2(JP1l) .GT.0.D0) THEN
CALL GBANGF (JP1)

TBH(JP1) = FB2(JP1l)*GB(JP1l) *DUM
ELSE
TBH(JP1l) = 0.DO
ENDIF
Cl = SXXH2(J) + 2.DO0
C2 = 3.DO*SXXH2(J) + 2.DO
C3 = 2.D0*(ZB(JP1) - ZB(J)) + DX*(TBH(JPl) + TBH(J))
HITE = H(J)

DO 300 ITE = 1, MAXITE
CALL LWAVE(JP1l, HITE)
FS = 2.DO*WN(JP1) - 0.5D0 + CS(JP1)
SXXH2 (JP1) = DUM*FS
H(JP1l)= (3.DO*SXXH2(JP1)+Cl)**(-1.D0) *

® ( (SXXH2 (JP1) +C2) *H(J) -C3)

IF(H(JP1l) .LE.O0.DO) THEN
H(JP1) = 0.DO
GO TO 310
ENDIF
IF(DABS((H(JP1) - HITE)).LT.EPS1l) GO TO 310
HITE = H(JPL)
CONTINUE

WRITE(*,2903) MAXITE, EPS1, JPl
WRITE(40,2903) MAXITE, EPS1, JP1

STOP

NUMITE (JP1) = ITE

SIGMA (JP1l) = H(JP1l) *SIGSTA(JP1)
HRMS (JP1) = SQRB*SIGMA (JP1)
WSETUP (JP1) = H(JPl) + ZB(JP1)

IF(H(JP1) .LT.EPS1.0R.JP1.EQ.JMAX) GO TO 400

CALL LWAVE (JP1, H(JP1))
CALL CSFFSE(JP1, SIGSTA(JP1))
SIGMA2 = SIGMA(JP1l)**2.DO0

SXXSTA (JPl) = SIGMA2*FS
SXXH2 (JP1) = SXXSTA(JP1l)/H(JP1l)**2.D0
EFSTA (JP1) = SIGMA2*FE

61



C

L 6

C****************************End Of IF (XB(JPl] .GT.XI) e e o de e de e e o e ok de e e ke ke ke ke ke ke e
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TBSTA (JP1)=TBH (JP1) *H(JP1)
IF(FB2(JP1) .GT.0.D0) THEN
DFSTA (JP1)=FB2 (JP1) *GF (JP1) *SIGSTA (JP1) **3.D0 *
DSQRT (GRAV*H (JP1) ) *H(JP1)

ELSE

DFSTA (JP1) = 0.DO
ENDIF
QBREAK (JP1) = 1.DO
GO TO 100
ENDIF

The iteration has converged but H(JPl) is less then EPS1(m) or
JP1 = JMAX. Regard this location as the landward limit of
computation.

JR = J
XR = XB(J)
ZR = ZB(J)

Calculate the energy dissipation due to breaking

DO 430 J = JXI+1, JR-1

DBSTA(J) = - (1.D0/(2.DO*DX))*(EFSTA(J+1) - EFSTA(J-1))
~ DFSTA (J)
CONTINUE
DBSTA(JR) = - (1.D0O/(DX))* (EFSTA(JR) - EFSTA(JR-1))
- DFSTA(JR)

Decimate computed energy flux to smooth out small irregularities

COUNT = 0
DO 440 J = 1,JR
IF( (DFLOAT (COUNT) *XR/10.D0 - XB(J)).LE.DX/2.D0) THEN
COUNT = COUNT+1

XBDEC (COUNT) = XB(J)
EFDEC (COUNT) = EFSTA(J)
ENDIF
CONTINUE

Fit a cubic spline using Subroutines SPLINE and SPLINT
in Subrs. 10 to decimated energy flux

CALL SPLINE(XBDEC, EFDEC, COUNT, 0.D0O, 0.D0O, EF2)
DO 450 J = 1,JR

CALL SPLINT (XBDEC, EFDEC, EF2, COUNT, XB(J), EFSM(J))
CONTINUE

Calculate the energy dissipation due to breaking based on the

the smoothed energy flux and limit the computed results to
region of non-negative dissipation.
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DO 460 J = 2,JR-1

DBSM(J) = - (1.D0/(2.DO0*DX))* (EFSM(J+1) - EFSM(J-1))
+ - DFSTA(J)
460 CONTINUE
DBSM (1) = DBSTA(1l)
DBSM(JR) = -(1.D0/DX)* (EFSM(JR) - EFSM(JR-1))
+ - DFSTA(JR)

DO 470 J = JXI+1,JR
IF(DBSM(J) .LT.0.D0O) THEN

JR = J-1
XR = XB(JR)
ZR = ZB(JR)
GO TO 480
ENDIF
470 CONTINUE
Subr. 11 OUTPUT stores input and computed results
480 CALL OUTPUT (JXI)
END
-00-————————————————— END OF MATN PROGRAM ———ccccemcmmmccm——————

HFOLH#HH#SH#H# S #4444 ##  SUBROUTINE OPENER  #iHH#daaHdt i st de b 4 b 4
This subroutine opens all input and output files
SUBROUTINE OPENER (FINMIN)

IMPLICIT NONE
CHARACTER*10 FINMIN

OPEN (UNIT=11,FILE=FINMIN, STATUS='OLD',6 ACCESS='SEQUENTIAL")

OPEN (UNIT=21,FILE='0ODOC',6 STATUS='UNKNOWN',6 ACCESS='SEQUENTIAL")
OPEN (UNIT=22,FILE='0OSETUP', STATUS='UNKNOWN',6K ACCESS="'SEQUENTIAL')
OPEN (UNIT=23,FILE='OWAVEHT', STATUS='UNKNOWN',6 ACCESS="'SEQUENTIAL")
OPEN (UNIT=24,FILE='OSKEW', STATUS='UNKNOWN',6 ACCESS='SEQUENTIAL')
OPEN (UNIT=25,FILE='OCURTO', STATUS='UNKNOWN',6K ACCESS='SEQUENTIAL")
OPEN (UNIT=26,FILE='ODISSIP',6 STATUS='UNKNOWN',6 ACCESS='SEQUENTIAL")
OPEN (UNIT=27,FILE='ONONLIN', STATUS='UNKNOWN',6ACCESS="'SEQUENTIAL')
OPEN (UNIT=28,FILE='OITER', STATUS='UNKNOWN',6 ACCESS='SEQUENTIAL')
OPEN (UNIT=29,FILE='OMOMENT',6 STATUS='UNKNOWN',6K ACCESS='SEQUENTIAL')
OPEN (UNIT=30,FILE='OENERGY',6 STATUS='UNKNOWN',6 ACCESS='SEQUENTIAL")
OPEN (UNIT=31,FILE='OENERSM',STATUS='UNKNOWN',6 ACCESS="'SEQUENTIAL')
OPEN (UNIT=40,FILE='OMESSG', STATUS='UNKNOWN',6 ACCESS='SEQUENTIAL"')

RETURN
END

~0l-mmmm—mm e END OF SUBROUTINE OPENER —--—=-=-==—=-—=——=————
FO24 4 A F SUBROUTINE INPUT i fabdeabb it b db e bt b b

This subroutine reads data from primary input data file

nnNnNnaoana

SUBROUTINE INPUT

0

IMPLICIT NONE
INTEGER NN, NB
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PARAMETER (NN=2000, NB=100)

DOUBLE PRECISION TP, FP, WKPO

DOUBLE PRECISION HRMS, SIGMA, H, WSETUP, SIGSTA
DOUBLE PRECISION XBINP, ZBINP, FBINP

INTEGER NLINES, JSWL, NBINP, J, I

CHARACTER*5 COMMEN (14)

COMMON /PERIOD/ TP, FP, WKPO

COMMON /PREDIC/ HRMS (NN), SIGMA(NN), H(NN), WSETUP(NN), SIGSTA (NN)

COMMON /BINPUT/ XBINP(NB), ZBINP(NB), FBINP(NB), NBINP, JSWL

...... COMMENT LINES

NLINES = number of comment lines preceding input data
READ (11,1110) NLINES

DO 110 I = 1,NLINES
READ (11,1120) (COMMEN(J),J=1,14)
WRITE (21,1120) (COMMEN(J),J=1,14)
WRITE (*,*) (COMMEN(J),J=1,14)
CONTINUE

...... INPUT WAVE PROPERTIES

TP = spectral peak period in seconds

HRMS (1) = root mean square wave height at seaward
boundary in meters

WSETUP (1) = wave setup at seaward boundary in meters

READ (11,1150) TP, HRMS(1l), WSETUP(1)
FP = 1.D0O/TP

...... COMPUTATIONAL INPUT DATA

JSWL = number of spatial nodes along the bottom below
SWL used to determine nodal spacing DX for
given bottom geometry.

Note : JSWL should be so large that delta x between two
adjacent nodes is sufficiently small.

READ (11,1110) JSWL

...... BOTTOM GEOMETRY

The bottom geometry is divided into segments of
different inclination and roughness starting from
seaward boundary.

NBINP = number of input bottom points
XBINP(J) = horizontal distance to input bottom point (J)
in meters where XBINP(l) = 0 at the

seaward boundary

ZBINP(J) = dimensional vertical coordinate (+ above SWL)
of input bottom point (J) in meters
FBINP(J) = bottom friction factor for segment between

points (J) and (J+1)

READ (11,1110) NBINP

IF (NBINP.GT.NB) THEN
WRITE(*,2900) NBINP, NB
WRITE(40,2900) NBINP, NB
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STOP

ENDIF
2900 FORMAT (/'Number of Input Bottom Nodes NBINP = ',I8,' ;NB = ', I8/
+ 'Increase PARAMETER NB. ')
C
c Point J = 1 has no corresponding friction factor.
READ (11,1150) XBINP(1l), ZBINP(1)
XBINP (1) = 0.DO

DO 140 J = 2,NBINP
READ (11,1150) XBINP(J), ZBINP(J), FBINP(J-1)
140 CONTINUE

CLOSE (11)
1110 FORMAT (I8)
1120 FORMAT (14A5)
1150 FORMAT (3D13.6)

END

~02-==——mm——mmm e END OF SUBROUTINE INPUT ~-------———mmmm—oeee
HO3 4 A e SUBROUTINE BOTTOM  hdbdbdh bbb dhab bbb b dh dh b b dh b b bk

This subroutine calculates the bottom geometry and
DX between two adjacent nodes

AaoOMnDAaaQ

SUBROUTINE BOTTOM

9]

IMPLICIT NONE

INTEGER NN, NB

PARAMETER (NN=2000, NB=100)

DOUBLE PRECISION SLOPE (NB)

DOUBLE PRECISION XBINP, ZBINP, FBINP
DOUBLE PRECISION DX, XB, ZB, FB2, DZBDX
DOUBLE PRECISION GAMMAS, BETA, XS, XI
DOUBLE PRECISION CROSS, DUM, DIST, XCUM
INTEGER JSWL, NBINP, K, J, JMAX

COMMON /BINPUT/ XBINP(NB), ZBINP(NB), FBINP(NB), NBINP, JSWL
COMMON /BPROFL/ DX, XB(NN), ZB(NN), FB2(NN), DZBDX(NN), JMAX
COMMON /BRKNEW/ GAMMAS, BETA, XS, XI

XS = dimensional horizontal distance between
seaward boundary and initial shoreline at SWL

The structure geometry is divided into segments of different
inclination and roughness.

NBINP = number of input bottom points
For segments starting from the seaward boundary:

SLOPE (K) slope of segment K(+ upslope, - downslope)

FBINP (K) bottom friction factor

XBINP (K) dimensional horizontal distance from seaward boundary
' to the seaward-end of segment K
dimensional vertical coordinate (+ above SWL)
at the seaward-end of segment K

Il

ZBINP (K)

I

GROaaRARNaaRaR 8

DO 120 K = 1,NBINP-1
SLOPE(K) = (ZBINP(K+1)-ZBINP(K))/(XBINP(K+1)-XBINP(K))
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120 CONTINUE
CALCULATE GRID SPACING DX BETWEEN TWO ADJACENT NODES

The value of JSWL specified as input corresponds to
number of nodes along the bottom below SWL.

aaaAQOa

K=20
900 CONTINUE

IF (K.EQ.NBINP) THEN

WRITE(*,2900)

WRITE(40,2900)

STOP

ENDIF
K = K+1
CROSS = ZBINP(K)*ZBINP (K+1)
IF (CROSS.GT.0.D0) GOTO 900

XS = XBINP(K+1l) - ZBINP(K+1)/SLOPE(K)
DX = XS/DFLOAT (JSWL)
2900 FORMAT (/'Bottom is always below SWL.'/
+ 'There is no still water shoreline.')
[
C ... CALCULATE BOTTOM GEOMETRY AT EACH NODE
C
C JMAX = landward edge node corresponding to maximum node number
o] XB(J)= horizontal coordinate of node j where XB(1l) = 0
[ ZB(J)= vertical coordinate of bottom at node j (+ above SWL)
C SLOPE (K) = tangent of local slope of segment K
C
DUM = XBINP (NBINP) /DX
JMAX = INT (DUM)+1
IF (JMAX.GT.NN) THEN
WRITE (*,2910) JMAX,NN
WRITE (40,2910) JMAX,NN
STOP
ENDIF
2910 FORMAT (/' End Node =',I8,'; NN =',6I8/
+ ' Bottom length is too long.'/
o+ ' cut it, or change PARAMETER NN.')
C
DIST = -DX
K = %
XCUM = XBINP (K+1)
DO 140 J = 1,JMAX
DIST = DIST #+ DX
IF (DIST.GT.XCUM.AND.K.LT.NBINP) THEN
K = K+1
XCUM = XBINP(K+1)
ENDIF
ZB(J) = ZBINP(K) + (DIST-XBINP(K))*SLOPE(K)
XB(J) = DIsST
DZBDX (J) = SLOPE(K)
FB2(J) = 1.D0/2.DO*FBINP (K)
140 CONTINUE
C
c Set XI = XS until XI is found in Main Program.
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c
RETURN
END
c
C ~03-—rmmmmmm e END OF SUBROUTINE BOTTOM === mmmm =

C HO4HHHFHFHHHFHFHAHHHAHIHF  SUBROUTINE PARAM kb db bbbk b b b 4h k4 o 4 4 20
£

C This subroutine calculates parameters used in other subroutines
e

SUBROUTINE PARAM

(]

IMPLICIT NONE

DOUBLE PRECISION TP, FP, WKPO

DOUBLE PRECISION GRAV, SQR8, PI, TWOPI
COMMON /PERIOD/ TP, FP, WKPO

COMMON /CONSTA/ GRAV, SQR8, PI, TWOPI

.. CONSTANTS and PARAMETER

PL
TWOPI
GRAV
SQORS8
WKPO

3.14159

2.D0 * PI

acceleration due to gravity

Sgrt(8)

deep water wave number for the peak period

(o ol oo I o O & Ml 1 o M s 1 2 1 T2

PI = 3.14159D0

TWOPI = 2.DO*PI

GRAV = 9.81D0

SOR8 DSQRT(8.D0)

WKPO (TWOPI) **2.D0/ (GRAV*TP**2.D0)

1}

e
C =04-—=mmmmmmmmmmmeo END OF SUBROUTINE PARAM ~-—-—==——mmomommmooe
C HOSHEHBHEEH#HH#HHFR#44#  SUBROUTINE LWAVE S #4411
c

c This subroutine calculates quantities based on linear wave theory
c
SUBROUTINE LWAVE (J, WD)
&
IMPLICIT NONE
INTEGER NN
PARAMETER (NN=2000)
DOUBLE PRECISION X, XNEW, D, WD, COTH
INTEGER J
DOUBLE PRECISION TP, FP, WKPO
DOUBLE PRECISION GRAV, SQR8, PI, TWOPI
DOUBLE PRECISION WKP, CP, WN
COMMON /PERIOD/ TP, FP, WKPO
COMMON /CONSTA/ GRAV, SQR8, PI, TWOPI
COMMON /LINEAR/ WKP, CP, WN(NN)
c
&
C ... LINEAR WAVE PARAMETERS
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TP = peak period specified as input

FP = peak frequency

CP = phase velocity of peak frequency

WN = ratio of group velocity to phase velocity

D = WD*WKPO
IF(J.EQ.1) THEN
X = D/DSQRT (DTANH (D) )
ELSE
X = WKP*WD
ENDIF
10 COTH = 1.D0/DTANH (X)
XNEW = X - (X-D*COTH)/(1.DO+D* (COTH**2.D0-1.D0))
IF (DABS(XNEW - X).GT.1.D-7) THEN
X = XNEW
GOTO 10
ENDIF
WKP = X/WD
WN(J) = 0.5D0*(1.D0 + 2.DO*X/(DSINH(2.DO0*X)))
CP = TWOPI/WKP/TP

|| R —— END OF SUBROUTINE LWAVE —---—m==-——m—m——mm e
FOOHFHHHEESHFA#FHHHFH#4H#H  SUBROUTINE SKEWKU  #¥HfHHdd#ddeidt ddedtd d a b f

This subroutine calculates skewness and kurtosis for given HSTA
SUBROUTINE SKEWKU (J,HSTA)

IMPLICIT NONE

INTEGER NN

PARAMETER (NN=2000)

DOUBLE PRECISION SKEW, CURTO, HSTA
DOUBLE PRECISION A, B, C, Y1, Y2
INTEGER J

COMMON /NONLIN/ SKEW(NN), CURTO (NN)
DATA A, B, &, Y1, ¥z 7 2.D0, 1.00; 0.7D0; 0.500; 1.D07

SKEWNESS AND KURTOSIS OF THE FREE SURFACE

HSTA = ratio of root-mean-square wave height to mean water depth
SKEW(J) = skewness of the free surface
CURTO(J) = kurtosis of the free surface

IF (HSTA.LE.Y1) THEN

SKEW(J) = A*HSTA
ELSEIF (HSTA.LE.Y2) THEN

SKEW(J) = A*Y1l - B* (HSTA - Y1)
ELSE

SKEW (J)
ENDIF
CURTO(J) = 3.D0 + SKEW(J)**2.2D0

A*Y]1 - B*(Y¥2 - ¥l1l) + C¥(HSTA - Y2)
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R END OF SUBROUTINE SKEWKU —=-======m—memmmmeeee
FOTH A #4444t SUBROUTINE CSFFSE  #####H##44daH#atddidadt

This subroutine computes CS, CF, FS, and FE

SUBROUTINE CSFFSE(J,SSTA)

IMPLICIT NONE

INTEGER NN

PARAMETER (NN=2000)

DOUBLE PRECISION WKP, CP, WN

DOUBLE PRECISION SKEW, CURTO

DOUBLE PRECISION CS, FS, SXXSTA, TBSTA
DOUBLE PRECISION CF, FE, EFSTA, DFSTA, EFSM
DOUBLE PRECISION SSTA

INTEGER J

COMMON /LINEAR/ WKP, CP, WN(NN)

COMMON /NONLIN/ SKEW(NN), CURTO (NN)

COMMON /MOMENT/ CS(NN), FS, SXXSTA(NN), TBSTA (NN)

COMMON /ENERGY/ CF(NN), FE, EFSTA(NN), DFSTA(NN), EFSM(NN)

CS(J) = SSTA*SKEW(J) - SSTA**2.D0
CF(J) = 1.5DO*SKEW(J)*SSTA*(1.D0 - SSTA**2.D0) +
¥ 0.5D0*SSTA**2.D0* (CURTO(J) - 5.D0) + SSTA**4.D0

FS = (2.DO*WN(J) - 0.5D0) + CS(J)
FE = WN(J)*CP*(1.D0 + CF(J))
RETURN
‘END

B e e END OF SUBROUTINE CSFFSE —-----m-mmmmmccm——mee

HOBHHH#ARHHHHAHA##HEEH4$  SUBROUTINE GBANGE 4t d# 4 a4 4 4#
This subroutine calculates GB and GF related to bottom friction
SUBROUTINE GBANGF (J)

IMPLICIT NONE

INTEGER NN

PARAMETER (NN=2000)

DOUBLE PRECISION HRMS, SIGMA, H, WSETUP, SIGSTA
DOUBLE PRECISION GRAV, SQR8, PI, TWOPI

DOUBLE PRECISION SKEW, CURTO

DOUBLE PRECISION GB, GF

DOUBLE PRECISION IB, IF

DOUBLE PRECISION A, AA, XX, Gl, G2, G3, G4
DOUBLE PRECISION GAMMLN, DIGAMM, TRIGAM, TETRAG, PENTAG
DOUBLE PRECISION GAM, DIM, TRI, TET, PEN

DOUBLE PRECISION C1, C2, C3, F, Fl, ERROR, DELTA
DOUBLE PRECISION ONE, TWO, SMAX, SMIN, ERFCC
INTEGER J, NUM, N, I
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COMMON /PREDIC/ HRMS (NN), SIGMA(NN), H(NN), WSETUP(NN), SIGSTA (NN)
COMMON /CONSTA/ GRAV, SQR8, PI, TWOPI

COMMON /NONLIN/ SKEW(NN), CURTO (NN)

COMMON /FRICTN/ GB(NN), GF (NN)

DATA DELTA, NUM /1.D-6, 31/

DATA ONE, TWO, SMAX, SMIN /1.0D0O, 2.0D0, 1.99D0, 0.15D0/

GB at node J
GF at node J

GB (J)
GF (J)

OQaoOnNoaa

IF (SKEW(J) .GE.SMAX) THEN
. . . EXPONENTTIAL DISTRIBUTION

Assume SIGSTA(J) = ONE
SKEW(J) = TWO

NN nNo

IB TWO*DEXP (-ONE - ONE)

IF = 6.DO*DEXP(-ONE - ONE)

GB(J) = -(ONE + ONE**TWO) + TWO*IB

GF(J) = 3.DO*ONE + ONE**3.D0 - TWO + TWO*IF

an

ELSEIF (SKEW(J) .GT.SMIN) THEN

. . . EXPONENTIAL GAMMA DISTRIBUTION

00

Determine 'a' parameter based on approximate relation between s and a
IF(SKEW(J) .GE.1.D0) THEN
A = 1.16D0*(2.D0 - SKEW(J))
ELSE
A = 0.5D0 + 1.DO/SKEW(J)**2.D0
ENDIF
300 Gl 0.D0
G2 0.D0
G3 0.DO0
G4 = 0.DO

1l

IF (A.LE.1.D0O) THEN
GAM = DEXP(GAMMLN (A + 1.D0) - DLOG(A))
ELSE
GAM
ENDIF

DEXP (GAMMLN (A) )

IF (A.GE.10.D0) THEN
XX = A
ELSE
N = IDINT(A)
XX = 10.D0 + (A - DFLOAT(N))
DO 30 I = 1, (10-N)
AA = XX - FLOAT(I)
Gl = G1 - 1.DO/AA
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30

G2 G2 + 1.DO/AA**2.DO0
G3 = G3 - 2.D0/AA**3.D0
G4 = G4 + 6.D0O/AA**4.DO
CONTINUE
ENDIF

aaon

3

DIM = G1
G2
G3
= G4

DIGAMM (XX)
TRIGAM (XX)
TETRAG (XX)
PENTAG (XX)

oo 3
= E
Z2H3H
oo
+ 4+ + +

F = DLOG(-TET) - 1.5D0*DLOG (TRI)
F1 = PEN/TET - 1.5DO*TET/TRI

A =A + (DLOG(SKEW(J)) - F )/F1

ERROR = DABS (DLOG (SKEW(J)) - F)

IF (ERROR.GT.DELTA) GOTO 300

cl
Cc2
€3

DSQRT (TRI) /GAM
DSQRT (TRI)
DIM

1

CALL INTGRL (SIGSTA(J),SKEW(J),A,Cl1,C2,C3,NUM, IB, IF)

GB (J)
GF (J)
ELSE

- (ONE+SIGSTA (J) **TWO) + TWO*IB
3.DO*SIGSTA(J) + SIGSTA(J)**3.D0 - SKEW(J) + TWO*IF

.. .GAUSSIAN DISTRIBUTION

ci
c2
IB

ERFCC (SIGSTA (J) /DSQRT (TWO) )
DEXP (-SIGSTA (J) **TWO/TWO)
0.5D0* (ONE+SIGSTA (J) **TWO) *C1 -
SIGSTA (J) /DSQRT (TWOPI) *C2
IF= (TWO+SIGSTA (J) **TWO) /DSQRT (TWOPI) *C2 -
STGSTA (J) /TWO* (3 .D0+SIGSTA (J) **TWO) *C1
GB(J) = - (ONE+SIGSTA (J)**TWO) + TWO*IB
GF (J) 3.DO*SIGSTA(J) + SIGSTA(J)**3.D0 - SKEW(J) + TWO*IF

ENDIF

RETURN
END

C******************************************************************************

SUBROUTINE INTGRL (SIGSTAR,SKEW,A,Cl1,C2,C3,NUM, IB, IF)
IMPLICIT NONE
INTEGER NP
PARAMETER (NP = 1000)
DOUBLE PRECISION SIGSTAR, SKEW, A, Cl1, Cc2, C3, IB, IF
DOUBLE PRECISION UPPER, DFS, ETAST, Y
DOUBLE PRECISION FIB(NP), FIF(NP), SEIB, SOIB, SEIF, SOIF
INTEGER I, NUM
UPPER = 5.D0 + 4.D0 * SKEW
DFS = (UPPER - SIGSTAR)/FLOAT((NUM-1))
DO 100 I = 1,NUM
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ETAST = SIGSTAR + DFS*FLOAT((I-1))
Y = C2*ETAST - C3
FIB(I) = (ETAST - SIGSTAR)**2.DO0*C1l*DEXP(-A*Y - DEXP(-Y))
FIF(I) = (ETAST - SIGSTAR)**3.D0*C1*DEXP(-A*Y - DEXP(-Y))
100 CONTINUE
SEIB = FIB(2)
SOIB = 0.DO
SEIF FIF(2)
SOIF = 0.DO0
DO 200 I = 2, (NUM-1)/2
SEIBR = SEIB + FIB(I*2)
SOIB SOIB + FIB(I*2 - 1)
SEIF = SEIF + FIF(I*2)
SOIF = SOIF + FIF(I*2 - 1)
200 CONTINUE
IB = DFS/3.D0* (FIB(l) + 4.DO*SEIB + 2.D0*SOIB + FIB(NUM))
IF = DFS/3.D0* (FIF(1l) + 4.DO*SEIF + 2.DO0*SOIF + FIF (NUM))
RETURN
END
C'k**********************-ir******************'k****************************
FUNCTION GAMMLN (XX)
DOUBLE PRECISION COF(6),STP,HALF,ONE, FPF,X, TMP, SER, XX, GAMMLN
DATA COF,STP /76.18009173D0,-86.50532033D0,24.01409822D0,
+ -1.231739516D0, .120858003D-2,~-.536382D-5,2.50662827465D0/
DATA HALF,ONE,FPF/0.5D0,1.0D0,5.5D0/
X = XX - ONE
TMP = X + FPF
TMP (X+HALF) *DLOG (TMP) - TMP
SER = ONE
Do 11 J = 1,6
X = X + ONE
SER = SER + COF(J)/X
11 CONTINUE
GAMMLN = TMP + DLOG (STP*SER)
RETURN
END
C*********************-k*******************************************************
FUNCTION DIGAMM (XX)
DOUBLE PRECISION XX, ONE, TWO, ONEXX, OXXTWO, DIGAMM
DATA ONE,TWO/1.D0,2.D0/
ONEXX = ONE/XX

I

OXXTWO = ONE/XX**TWO

DIGAMM = DLOG(XX) - ONEXX* (ONE/TWO + ONEXX* (ONE/12.D0 -
+ OXXTWO* (ONE/120.D0 - OXXTWO* (ONE/252.D0 -
+ OXXTWO* (ONE/240.D0 - OXXTWO/132.D0)))))

RETURN

END

c*******************'Jr***************'k***********************************

FUNCTION TRIGAM (XX)

DOUBLE PRECISION XX, ONE, TWO, ONEXX, OXXTWO, TRIGAM
DATA ONE,TWO/1.D0,2.D0/

ONEXX = ONE/XX

OXXTWO = ONE/XX**TWO

TRIGAM = ONEXX* (ONE + ONEXX* (ONE/TWO + ONEXX* (ONE/6.DO0 -

+ OXXTWO* (ONE/30.D0 - OXXTWO* (ONE/42.D0 -
+ OXXTWO* (ONE/30.D0 - OXXTWO*5.D0/66.D0))))))
RETURN

72



C*****ETE***************************************************************
FUNCTION TETRAG (XX)
DOUBLE PRECISION XX, ONE, TWO, ONEXX, OXXTWO, TETRAG
DATA ONE,TWO/1.D0,2.D0/
ONEXX = ONE/XX
OXXTWO = ONE/XX**TWO
TETRAG = -OXXTWO* (ONE + ONEXX* (ONE + ONEXX* (ONE/TWO -

+ OXXTWO* (ONE/6.D0 - OXXTWO* (ONE/6.D0 -

+ OXXTWO* (3.D0/10.D0 - OXXTWO*5.D0/6.D0))))))
RETURN

END

C***********************************************************************

FUNCTION PENTAG (XX)

DOUBLE PRECISION XX, ONE, TWO, THR, ONEXX, OXXTWO, PENTAG
DATA ONE, TWO,THR/1.D0,2.D0,3.D0/

ONEXX = ONE/XX

OXXTWO = ONE/XX**TWO

PENTAG = ONE/XX**THR* (TWO + ONEXX* (THR + ONEXX* (TWO -

+ OXXTWO* (ONE - OXXTWO* (4.DO/THR -
+ OXXTWO* (THR - OXXTWO*10.DO0))))))
RETURN

END

C**********************************************************************

FUNCTION ERFCC (X)

DOUBLE PRECISION X, Z, T, ERFCC

Z=DABS (X)

T=1.D0/(1.D0+0.5D0*Z)

ERFCC=T*DEXP (-Z2*Z-1.26551223D0+T* (1.00002368D0+T*(.37409196D0+
* T*(.09678418D0+T* (-.18628806D0+T* (.27886807D0+T* (-1.13520398D0+
* T*(1.48851587D0+T* (-.82215223D0+T*.17087277D0)))))))))

IF (X.LT.0.D0) ERFCC=2.D0-ERFCC

RETURN

END
C*******************************************i**************************
C 08— END OF SUBROUTINE GBANGF —ceccccocemmomemamee——
C HOOHHHHHFHHHFHHFHHH#H#### SUBROUTINE DBREAK ittt
5
c This subroutine calculates QBREAK and DBSTA for wave breaking in
c region of XB < XI
&

SUBROUTINE DBREAK(J, WHRMS, D)
c

IMPLICIT NONE

INTEGER NN, NB

PARAMETER (NN=2000, NB=100)

DOUBLE PRECISION WHRMS, D, HM, B, QBOLD, SO

DOUBLE PRECISION TP, FP, WKPO

DOUBLE PRECISION WKP, CP, WN

DOUBLE PRECISION ALPHA, GAMMA, OQBREAK, DBSTA, DBSM
DOUBLE PRECISION GRAV, SQR8, PI, TWOPI

INTEGER J

COMMON /PERIOD/ TP, FP, WKPO

COMMON /LINEAR/ WKP, CP, WN(NN)

COMMON /WBREAK/ ALPHA, GAMMA, QBREAK(NN), DBSTA(NN), DBSM(NN)
COMMON /CONSTA/ GRAV, SQR8, PI, TWOPI

DATA ALPHA/1.DO/
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n

IF(J.EQ.1l) THEN
S0 = WHRMS*TWOPI/ (GRAV*TP**2.D0) *
+ DSQRT (DTANH (WKP*D) * (1.D0 + 2.DO*WKP*D/DSINH(2.DO*WKP*D)))
GAMMA = 0.5D0+0.4DO*DTANH (33.D0*S0)
ENDIF

FRACTION OF BREAKING WAVES AND ASSOCIATED DISSIPATION

OBREAK (J)
DBSTA (J)

Fraction of breaking waves at node J
Time averaged normalized energy dissipation due to wave
breaking at node J

HM = 0.88D0/WKP*DTANH (GAMMA*WKP*D/0.88D0)

B = (WHRMS/HM) **2.D0
IF(B.LT.0.99999D0) THEN
QBOLD = B/2.DO0
QBREAK (J) = QBOLD - (1.D0-QBOLD + B*DLOG (QBOLD) )/ (B/QBOLD-1.D0)
IF (QBREAK(J) .LE.0.D0) QBREAK(J) = QBOLD/2.DO
IF (DABS (QBREAK (J)-QBOLD) .GT.1D-6) THEN
OBOLD = QBREAK(J)
GOTO 10
ENDIF
ELSE
QBREAK(J) = 1.D0
ENDIF

DBSTA(J) = 0.25DO*ALPHA*QBREAK (J) *FP*HM**2.D0

RETURN

————————————————— END OF SUBROUTINE DBREAK —=-—===—==—-—mm— e

#LO##H##HH######4## SUBROUTINES SPLINE and SPLINT ## bbbt db it

These subroutines for cubic spline interpolation are double
precision versions of those listed in Numerical Recipies

SUBROUTINE SPLINE(X,Y,N,YPl,YPN,6Y2)

IMPLICIT NONE

INTEGER N, NMAX

PARAMETER (NMAX=100)

DOUBLE PRECISION YP1, YPN, X(N), Y(N), Y2(N), U(NMAX)
DOUBLE PRECISION SIG, P, QON, UN

INTEGER K, I

IF (YP1.GT..99D30) THEN

Y2(1)=0.D0
U(1)=0.D0
ELSE

Y¥2(1)=-0.5D0
U(1)=(3.D0/(X(2)-X(1)))*((¥Y(2)-Y(1))/(X(2)-X(1))-YP1)
ENDIF
DO 110 I=2,N-1
SIG=(X(I)-X(I-1))/(X(I+1)-X(I-1))
P=SIG*Y2(I-1)+2.D0
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Y2 (I)=(SIG-1.D0)/P
U(IL)=(6.DO* ({Y(I+1)-Y(I))/(X(I+1)-X(I))-(¥(I)-Y(I-1))
* J(X(I)-X(I-1)))/(X(I+1)-X(I-1))-SIG*U(I-1))/P
110 CONTINUE
IF (YPN.GT..99D30) THEN
QN=0.D0
UN=0.DO0
ELSE
ON=0.5D0
UN=(3.D0/ (X(N)-X(N-1)))*(YPN- (Y (N)-Y(N-1))/ (X(N)-X(N-1)))
ENDIF
Y2 (N)=(UN-QN*U(N-1) )/ (QN*Y2 (N-1)+1.DO0)
DO 120 K=N-1,1,-1
Y2 (K)=Y2 (K) *Y2 (K+1) +U(K)
120 CONTINUE
RETURN
END
C********************************************fr***************************
SUBROUTINE SPLINT (XA,YA,Y2A,N,X,Y)
IMPLICIT NONE
INTEGER N, K, KHI, KLO
DOUBLE PRECISION XA (N),YA(N),Y2A(N)
DOUBLE PRECISION X, Y, H, A, B
KLO=1
KHI=N
110 TIF (KHI-KLO.GT.l1l) THEN
K= (KHI+KLO) /2
IF (XA (K) .GT.X) THEN
KHI=K
ELSE
KLO=K
ENDIF
GOTO 110
ENDIF
H=XA (KHI) -XA (KLO)
IF (H.EQ.0.D0) PAUSE 'Bad XA input.'
A= (XA (KHI) -X) /H
B=(X-XA (KLO) ) /H
Y=A*YA (KLO)+B*YA (KHI) +
+ ((A**3-A)*Y2A (KLO) + (B**3-B) *Y2A (KHI) ) * (H**2) /6.D0
RETURN
END
e B END OF SUBROUTINES SPLINE AND SPLINT------—--——————=—=——
C #1144 SUBROUTINE OUTPUT bt abdtdtdt skt b d et bk
e
(@ This subroutine stores computed and input quantities
2
SUBROUTINE OUTPUT (JXI)

0

IMPLICIT NONE

INTEGER NN, NB

PARAMETER (NN=2000, NB=100)

DOUBLE PRECISION TP, FP, WKPO

DOUBLE PRECISION HRMS, SIGMA, H, WSETUP, SIGSTA
DOUBLE PRECISION XBINP, ZBINP, FBINP

DOUBLE PRECISION DX, XB, ZB, FB2, DZBDX

DOUBLE PRECISION WKP, CP, WN
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DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
INTEGE
INTEGE

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

WRITE

+ 4+ 4+ + +

WRITE

PRECISION SKEW, CURTO
PRECISION GB, GF
PRECISION ALPHA, GAMMA, QBREAK, DBSTA, DBSM
PRECISION GAMMAS, BETA, XS, XI
PRECISION CS, FS, SXXSTA, TBSTA
PRECISION CF, FE, EFSTA, DFSTA, EFSM
PRECISION EPS1
PRECISION XR, ZR

R MAXITE, NUMITE

R J, JSWL, NBINP, JMAX, JR, JXI

/PERIOD/ TP, FP, WKPO

/PREDIC/ HRMS (NN), SIGMA(NN), H(NN), WSETUP(NN), SIGSTA (NN)
/BINPUT/ XBINP(NB), ZBINP(NB), FBINP(NB), NBINP, JSWL
/BPROFL/ DX, XB(NN), ZB(NN), FB2(NN), DZBDX(NN), JMAX
/LINEAR/ WKP, CP, WN(NN)

/NONLIN/ SKEW(NN), CURTO (NN)

/FRICTN/ GB(NN), GF (NN)

/WBREAK/ ALPHA, GAMMA, QBREAK(NN), DBSTA(NN), DBSM (NN)
/BRKNEW/ GAMMAS, BETA, XS, XI

/MOMENT/ CS(NN), FS, SXXSTA(NN), TBSTA (NN)

/ENERGY/ CF(NN), FE, EFSTA(NN), DFSTA(NN), EFSM(NN)
/ITERAT/ EPS1, MAXITE, NUMITE (NN)

/RUNUP/ XR, ZR, JR

INPUT WAVE PROPERTIES
TP = spectral peak period in seconds

HRMS (1) = root mean square wave height at seaward
boundary in meters
WSETUP (1) = wave setup at seaward boundary in meters

(21,1000) TP, FP, HRMS(1l), WSETUP(1)

1000 FORMAT (/ 'INPUT WAVE PROPERTIES:'/

'Peak wave period (sec) =',E13.6/
'Peak frequency (1l/sec) =',E13.6/
'Root-mean-square wave height '/

J at seaward boundary (m) =',E13.6/
'Wave setup at seaward boundary (m) =',E13.6)

OUTPUT BOTTOM GEOMETRY

The bottom geometry is divided into segments of
different inclination and roughness starting from
seaward boundary.

NBINP = number of segments

XBINP(J) = horizontal distance from seaward boundary
to landward-end of segment (J-1) in meters
ZBINP(J) = dimensional vertical coordinate (+ above SWL)

of the landward end of segment (J-1) in meters
FBINP(J) = bottom friction factor
(21,1100) 0.D0-ZBINP(1), NBINP-1, JSWL, DX, JMAX

1100 FORMAT (/'INPUT BOTTOM GEOMETRY'/

+
oo
o+

'Depth at seaward boundary (m) =", F13.6f
'Number of linear segments s
'Number of spatial nodes below'/
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i SWL used to find DX =* . T8y

'Node spaceing, DX (m) ="', F13.6/

'Maximum landward node JMAX =',I8//

! X (m) Zb (m) Friction factor')

WRITE (21,1200) XBINP(1), ZBINP(1)
DO 140 J = 2,NBINP

WRITE (21,1200) XBINP(J), ZBINP(J), FBINP(J-1)

140 CONTINUE

1200 FORMAT (3 (F13.6,5X))

... EMPIRICAL PARAMETERS FOR WAVE BREAKING

WRITE (21,1300) ALPHA, GAMMA, GAMMAS, BETA, XS, XI

1300 FORMAT (/'EMPIRICAL PARAMETERS FOR WAVE BREAKING'/

+ o+ o+ o+ o+

'Alpha = ',F13.6/
'Gamma = ',F13.6/
'Gammas = ',F13.6/
'Beta =: 1 P13.6/
'Xs(m) = ',F13.6/
530 () = 4 ;FP13:8)

... ITERATION PARAMETERS

WRITE (21,1400) EPS1l, MAXITE

1400 FORMAT (/'ITERATION PARAMETERS'/

+
4+

'Allowable relative error in iterated depth(m) =',6F13.6/
'Maximum iterations allowed = ',I8)

.. .WAVE RUNUP OR COMPUTATION LIMIT

WRITE(21,1450) JR, JXI, JMAX, XR, ZR, H(JR)

1450 FORMAT (/'WAVE RUNUP OR COMPUTATION LIMIT'/

o+ o+ o+ o+ o+

'Most landward node of computation dR ="', I8/
'Most landward node in outer zone JRL =Y, I8¢
! in comparision with JMAX =',I8/
'X-coordinate of JR (m) ¥R =", Pl3.8/
'Z-coordinate of JR (m) ZER: =V TR w6/
'Mean water depth of this node (m) H(JR) =',F13.6/)

... WAVE PROPERTIES AT EACH NODE

OPEN (UNIT=11,FILE=FINMIN, STATUS='OLD',ACCESS='SEQUENTIAL")

OPEN (UNIT=21,FILE='0DOC',STATUS='UNKNOWN',6 ACCESS='SEQUENTIAL")
OPEN (UNIT=22,FILE='OSETUP', STATUS='UNKNOWN',6K ACCESS="'SEQUENTIAL")
OPEN (UNIT=23,FILE='OWAVEHT', STATUS='UNKNOWN',6K ACCESS="'SEQUENTIAL')
OPEN (UNIT=24,FILE='OSKEW',6 STATUS='UNKNOWN',6K ACCESS="'SEQUENTIAL')
OPEN (UNIT=25,FILE='OCURTO', STATUS='UNKNOWN',6 ACCESS="'SEQUENTIAL")
OPEN (UNIT=26,FILE='ODISSIP', STATUS="'UNKNOWN',6K ACCESS="'SEQUENTIAL')
OPEN (UNIT=27,FILE='ONONLIN',6STATUS='UNKNOWN',6K ACCESS="'SEQUENTIAL')
OPEN (UNIT=28,FILE='OITER', STATUS='UNKNOWN',6K ACCESS='SEQUENTIAL')
OPEN (UNIT=29,FILE='OMOMENT',6 STATUS="'UNKNOWN',6K ACCESS='SEQUENTIAL')
OPEN (UNIT=30,FILE='OENERGY',STATUS='UNKNOWN',6K ACCESS="'SEQUENTIAL')
OPEN (UNIT=31,FILE='OQOENERSM', STATUS='UNKNOWN',6K ACCESS='SEQUENTIAL')

iy



OPEN (UNIT=40,FILE='OMESSG', STATUS='UNKNOWN',6K ACCESS='SEQUENTIAL")
DO 160 J = 1, JR
WRITE(22,1500) XB(J),ZB(J),WSETUP(J), H(J)
WRITE(23,1500) XB(J),ZB(J),HRMS (J),SIGSTA(J)
WRITE(24,1500) XB(J),SKEW(J)
WRITE(25,1500) XB(J),CURTO(J)
IF(FB2(J) .GT.0.D0) THEN
WRITE(26,1500) XB(J),QBREAK(J),GB(J),GF(J)
ELSE
WRITE(26,1500) XB(J),QBREAK (J)
ENDIF
WRITE(27,1500) XB(J),WN(J),CS(J),CF(J)
WRITE(28,1510) XB(J),NUMITE (J)
WRITE(29,1500) XB(J),SXXSTA(J),TBSTA(J)
WRITE(30,1500) XB(J),EFSTA(J),DBSTA(J) ,DFSTA(J)
WRITE(31,1500) XB(J),EFSM(J),DBSM(J)

160 CONTINUE
1500 FORMAT (4F17.9)
1510 FORMAT(F13.6,1I8)

RETURN

END
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