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Abstract

We examine the formally small terms appearing in the modified mild-slope equation
(MMSE) of Massel (1993) and Chamberlain & Porter (1995). By expanding the Hamil-
tonian for the problem with respect to small variations about a constant-depth reference
state, we develop a leading-order mild-slope equation which retains some but not all of
the previously identified additonal terms appearing in the MMSE. The results indicate
that the usual leading-order mild-slope equation (MSE) of Berkhoff (1972) is incorrect
as a consistent approximation for wave motion over a slowly-varying bed, which may
account for some of it’s apparent shortcomings. The results also differ from recent re-
sults of Miles and Chamberlain (1998), which identify the usual mild-slope equation as
the first approximation in a heirarchy. Numerical examples which illustrate the effect
of included and neglected terms are shown and indicate that the model suggested here
is a robust predictor of wave reflection in relevant cases.

1 Introduction

The mild-slope equation (MSE) for surface wave propagation in water of slowly varying
depth has a long and important history, both as a direct method for performing wave field
calculations using the full elliptic boundary value problem, and as the basis for the deriva-
tion of asymptotic methods for forward-propagating waves in the parabolic approximation
(Kirby, 1986a; Martin et al, 1997). The basic MSE model, developed initially by Berkhoff
(1972) and elaborated by Smith & Sprinks (1975), has long been accepted as a means
for obtaining a useful representation of topographic wave scattering processes, with Booij
(1983) suggesting that the model is useful and accurate for predicting reflection from depth
transitions having slopes up to 1:3. However, more recently, one class of bottom configu-
ration has been found for which the original MSE proves to be completely inadequate: a
bottom with undular, regularly spaced bed forms. For this case, Kirby (1986b) derived an
extended mild-slope equation (EMSE, so named by O’Hare & Davies, 1993) by expand-
ing the bottom boundary condition about a slowly-varying mean bed level, developing the
model coefficients with respect to this mean level, and retaining the leading order effect
of the perturbation representing the rapid portion of the bed undulation. This extension

was found to provide an accurate picture of the resonant Bragg scattering process for a



seabed consisting of a single dominant wavelength, but it was found to be inadequate for
describing super- and subharmonic Bragg scattering in the case where the bed contains a
superposition of more than one wavelength (O’Hare & Davies, 1993).

In their initial discussion of the MSE model, Smith & Sprinks (1975) obtained two
residual terms which, in the final equation, are seen to produce terms proportional to |Vh|?
and V2h. The first term is typically argued to be small, since it is second order in the bottom
slope and is thus taken to be a second order term in the expansion implied in the derivation
of the equation. (Note that, in most cases, no explicit ordering or expansion technique is
employed. The model is obtained essentially as a Galerkin approximation to the boundary
value problem, using the depth dependence of a constant depth progressive wave as the
trial shape function). Smith & Sprinks also argued that the second term, based on bed
curvature, should be negligibly small in most cases. Historically this has been the standard
assumption, with the only clear candidate for a topography violating the assumption being
the undular bed case.

Recently, Massel (1993), Chamberlain & Porter (1995) and Porter & Staziker (1995)
have rederived the MSE formulation and have essentially proceeded by retaining the extra
terms described by Smith & Sprinks (1975) as an integral part of the model equation.
(Massel and Porter & Staziker have also extended the model to include the effect of non-
propagated modes. The effect of this extension is not considered in the work described
below). As a result of testing the model equation with the extra terms retained, it has been
clearly demonstrated that the so-called modified mild-slope equation (MMSE) provides a
description of most of the cases in which either or both the original MSE and Kirby’s EMSE
fail: undular beds with one or several wavelengths, and in the steep transition asymptote of
the depth-transition problem. Chamberlain & Porter further show that Kirby’s EMSE can
be obtained as an approximation to the MMSE model, and that the term describing the
bottom curvature effect plays a dominant role in correcting the predictions of the original
MSE.

The usefulness of the additional correction terms in the MMSE formulation has been
clearly demonstrated from a practical point of view, and yet there is no clear basis for
understanding why the additional terms (particularly the curvature term) should play a
central role in correcting the model predictions. In this note, we attempt to provide such
a basis. Using a Hamiltonian formulation together with the general notion of a canonical
perturbation, we argue that the term appearing in the Hamiltonian which produces the
final curvature term correction in the MMSE is actually of leading-order importance, if the
unperturbed Hamiltonian is taken to be the Hamiltonian for the constant depth progressive

wave problem. From this point of view, it is concluded that the added curvature term is
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a fundamental part of the leading-order MSE, and that the original model developed by
Berkhoff (1972) (and used extensively in practice today) is actually incorrect without the
retention of this term. We denote this new revision of the mild-slope formulation as the
mMSE or slightly-modified mild-slope equation. We also provide additional computational
examples illustrating the accuracy of the modified mild-slope equation in its various forms

described below,

2 Mild-Slope Equations

In order to provide context for the present derivations, we repeat the derivation of the
MMSE, following Chamberlain & Porter but utilizing a Hamiltonian framework. The de-
pendent variables in the problem are surface displacement 7(x,%) and velocity potential
¢(x, z,t), where x denotes horizontal position, z denotes distance up from the still water
level, and t denotes time. The Hamiltonian may then be defined as the sum of potential

and kinetic energies,
H= f Hdx (1)
x
where

H= o0 +5 [ {96:-Vo+ (97} dz )

and where V denotes a gradient in the horizontal plane. The local still water depth is
denoted by h(x). Following Miles (1977), H may be rendered in canonical form H (7, p(),
where 1) represents the canonical coordinate and p( represents the conjugate momentum,
with ((x,t) = ¢(x, z = 5,t). We invoke a linear approximation (or, restrict the Hamiltonian

to quadratic terms) and introduce the approximation for the velocity potential ¢

$(x, z,t) = fo(z; h(x))d(x, 1) (3)

with
fo=cosh™!(kh) cosh[k(h +2)];  fo(0)=1 (4)

This choice corresponds to an a priori elimination of non-propagating modes. Massel (1993)
and Porter & Staziker (1995) have described model systems which retain non-propagating
modes. It is clear from the linearization that the integral in (2) may be taken from —h to 0,
and that p¢ is an adequate approximation for the canonical variable. The local contribution

to the Hamiltonian may then be written as (retaining all small terms)

o= %pgff + % [11 (V) + (Io + I4)¢* + 213 - &vé] ®)



where

0

B = fide=y9g 00, (6)
—h
0

h = /h(-fD,Z)z z =g (w* ~ K*CC,) (7)
0 0

I = / anfD(IZZf fofidzVh=u,Vh (8)
-=h —h
0 0

& = / (Vfo)2dz= [ f2dz|Vh|? = I}|Vh|? 9)
—h —h

where fi(z,h) = 0fo/0h. Expressions for fi,u; and Ij are given in the appendix. The

results (6) and (7) follow from the dispersion relation

2 _ B O=Y. _3_“"_9( ﬂ_)
w* = gk tanh(kh); C= Cyi= % 2 1+ Sinh (2kh) (10)

where w is the angular frequency, k is the wavenumber, C' is the phase speed, and C| is the

group velocity.

2.1 The modified mild-slope equation

The modified mild-slope equation (MMSE), derived by Smith & Sprinks (1975) and de-
veloped more fully by Chamberlain and Porter (1995) and Massel (1993), is obtained by

developing the canonical evolution equations given by

_
T 509 =
oP = 5 (12)

where ¢ denotes variational derivatives. The resulting system of equations is given by

m = —V-(LV)+ (Io+ 1L -V -I3) (13)
b = —gn (14)

or, after elimination of 5 and use of (6) and (7),
it =V - (CCV) + (w* ~ KCCy+ gIa ~ gV - 13)$ = 0 (15)

This form of the model equation is equivalent to the time-dependent model presented by
Smith & Sprinks, and to the elliptic model presented by Chamberlain & Porter in the case

of purely time-harmonic motions. The connection may be established by noting that

D L
V e 13 = I4 = ?'(h,) = 5 ng*fgdz = Vh. L (ngf[)) l_.h (16)



where the notation r(h) is taken directly from Chamberlain & Porter. Restricting attention

to time-harmonic motion

¢ = p(x)e* (17)
gives the reduced wave equation
V- (CCyVP) + (K2CCy+ gr(h)) =0 (18)

which is (2.12) in Chamberlain & Porter. Utilizing Chamberlain and Porter’s notation

further, we may write r(h) as
r(h) =V - (w1 Vh) — I4 (19)

Chamberlain & Porter and Massel have shown that a retention of the terms involving
I3 and Iy provides a much more robust model equation for studying either waves over
fairly large slopes or waves over undular beds, where terms in the square of the bed slope
or terms in the bed curvature may be respectively large. However, as mentioned in the
introduction, it is unsettling that both the evolution equations and the Hamiltonian retain
terms to second order in a small bottom slope parameter, when the model wave potential is
only accurate to zeroth order in the same parameter. This concern leads to the truncation

usually employed to obtain the original mild-slope equation.

2.2 Original mild-slope equation

The original mild slope equation follows by neglecting terms involving I3 and I4 in (13)-(14)
or (15), or, correspondingly, the same terms in the Hamiltonian (5). The resulting evolution

equations are

g = -V (CCyVP) + (w? - k2CC,)¢ (20)

¢ = —gn (21)
which reduce to the time-dependent model of Smith & Sprinks
bt — V - (CCyeVP) + (w? — K*CCQ)p =0 (22)
and the elliptic model of Berkhoff
V- (CC,VP) +k*CCydp =0 (23)

after assuming a purely periodic motion. As will be seen below, this is too severe a trunca-

tion of the original Hamiltonian.



2.3 Model based on a truncated Hamiltonian

The reduction to the usual mild-slope equation follows from eliminating all terms which
are apparently second order in a bottom slope parameter (i.e., I5 and I) in the evolution
equations (13)-(14) or (15), or correspondingly, the term r(h) in (18), following Smith &
Sprinks (1975). In derivations of the model equations using Galerkin methods or Green’s
Identities, there is little or no guidance which would tell us if there is any basic distinction
between the added small terms. However, we note that the term I3 results from a term
in the Hamiltonian which is only first order in the small bottom slope parameter, and is
hence a possibly important contribution to the estimate of the Hamiltonian at the order of
approximation retained in the final evolution equations.

We approach this problem by proceeding in the spirit of a canonical perturbation ex-
pansion of H (see Goldstein (1980), Chapter 11), but without proceeding to the actual
averaging problem or a determination of the action-angle variables. The usual approach is

to write the Hamiltonian as the sum of an unperturbed and a perturbation Hamiltonian,
H =Ho+ oH (24)

where Hj is the Hamiltonian for a solvable problem and éH represents deviations from
that solvable case. The simplest solvable case in the mild-slope context is the case of
wave propagation over some region with a constant characteristic depth hy at position xq.

Denoting quantities evaluated at depth hg with subscript 0, we write

11 dl
I (x) = Lo+ (;—hl) Vh-(x—x0) +0(Vh)% I(x) = I+ (d_hz) Vh-(x—xg)4+0(Vh)?
0 0
(25)
We then take the unperturbed Hamiltonian to be
1 P z
Ho = 5;”9?32 + g (Ilo(Vﬁﬁ)z 7+ 1204’2) (26)
which is the Hamiltonian for the Klein-Gordon equation
bu — (CCp)oV2h + (w? = (K2CCy)o) § =0 (27)
or, in the case of purely harmonic motion, the Helmholtz equation
V2 + k2p=0 (28)

If we now consider perturbations to this motion in the neighborhood of the depth hgy, we

may take the perturbation potential to be

6H = Vh- { [(%)0 (Vé)? + (%)Uqfﬁ] (x — %o) + 2u10¢3vg?,} +O(Vh)? (29)
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It is apparent then that the I3 term will contribute to the distortion of the wave field
at the same order as the effect of local variations in the original coefficients I; and I,
and that contributions to this local distortion from I4 terms are an order smaller. The
contributions of I are thus of leading-order importance in the extension from the constant-
depth to the mild-slope problem, and must be retained in order to provide a consistant
leading-order approximation for variable water depth. Retaining the I term but reverting
back to a more general expression retaining the full expressions for I, Iy and I3 yields the
approximate Hamiltonian

Ho = 5pg + 5 [L(V9)? + B + 215 - §v]] (30)
which should account for all leading order local effects distorting the wave field at each

depth. The corresponding evolution equations are given by

m = —V-(1VP)+ (Io— V-I3)é (31)
d = —gn (32)

or, after elimination of 7,
b — V - (CCVP) + (w? — K2CC,y — gV -T3)p =0 (33)

The corresponding time-harmonic equation in a notation similar to Chamberlain & Porter’s

would then be
V- (CCyV ) + (K*CCy+ gry(h))d =0 (34)

where ry(h) is a truncated r(h) given by
ri(h) =r(h)+ I3 =V - (11 Vh) (35)
Expanding the expressions (19) and (35), we obtain

0
r(h) = wVh+uy(VR)?%  ug(h) = uj — fffdz (36)

ri(h) = wV2h+ uy(Vh)? (37)

where u{ denotes the derivative of u; with respect to h. The model of the present section,
denoted subsequently as the mMSE or slightly-modified mild-slope equation, is identical to
the MMSE in the term proportional to the curvature of the bed. Following the development
in Chamberlain & Porter (1995), it follows that the mMSE also contains the EMSE of Kirby
(1986) as an appropriate limit. We thus do not expect the present simplification of the
theory to change any existing estimates of reflection from an undular bed obtained using
the MMSE.
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Figure 1: Variation of second order coefficients in modified mild-slope equations. Solid line,
hug in Chamberlain & Porter (1995). Dashed line, hu}. Dotted line, —h [°, fdz.

In contrast, the two models differ in the term related to the square of the bottom
slope. Numerical values of the original model coefficient uy and the two contributions u}
and ffh fidz are shown in Figure 1 for a range of kh values. It is seen that the two
contributions to the term in the MMSE tend to cancel each other to a certain extent, and
that the contribution from the I term in the original Hamiltonian is not terribly small

relative to the contribution from the I3 term.

3 Numerical Examples

3.1 Linear Depth Transition

Since the reduction of the MMSE to the mMSE obtained in the previous section changes the
term related to |Vh|?, we consider here whether this change has a marked effect on prediction
of wave reflection for wave propagation over a relatively steep transition. The example
considered is the linear depth transition studied by Booij (1983) and further considered by
Massel (1993), Chamberlain & Porter (1995) and Porter & Staziker (1995). We use the
geometry and parameters considered by Suh et al (1997), who performed additional finite
element calculations in order to provide greater detail in the mild-slope limit.

The bottom geometry is defined as



hy; <0
h(z) =< hy—mae; 0<az<B (38)
ho; z> B
where B is the horizontal length of the transition. We take h; = 0.6m and hy = 0.2m in
the present calculations. The bed slope m in the transition region is given by
hl - hz
B

m= (39)

and ranges from 0.04 — oo in the calculations discussed below. The bed slope may be

represented in this case by the piecewise-continuous function
hy = —m (H(z) — H(z — B)) (40)

where H(z) denotes a step function, while the bed curvature is represented by a set of delta
functions
haye = 6(2) — 6(z — B) (41)

This represents a somewhat pathological choice of geometries for evaluating the present
model system, as the critical model term representing bed curvature at the ends of the
slope takes on finite values only in the finite-difference approximations used for the numer-
ical treatment. This problem may be circumvented by solving separately for each region
indicated in (38) and then matching across the boundaries between regions (Chamberlain
and Porter, 1995; Porter and Staziker, 1995). However, in practice, finite difference solutions
treating the entire domain without regard for the slope and curvature discontinuities are
found to converge well, and we thus do not use any special treatments for the discontinuities
in the caleulations below.

The wave period for the present computations is taken to be T = 2s and is the same
as in Booij’s and Suh et al’s finite element calculations. This leads to dimensionless depth
values of kyhy = 0.8646 in the incident wave region with depth hy and kohy = 0.4642 in
the transmitted region with depth hy. Referring to Figure 1, it is seen that this choice of
parameters minimizes the difference between the MMSE and mMSE in this example, since
the slope-squared terms have similar magnitude. The models could be made more different
by choosing relatively larger depths, but we would expect to get correspondingly smaller
reflections. We retain the present parameters in order to compare to previously published
results.

Slope lengths B from 10m to 0.05m (corresponding to slopes ranging from 1:25 to the
steepest case of 8:1) were used for numerical calculations based on the MSE, MMSE, mMSE,
and an arbitrarily truncated mMSE which neglects all [Vh|? effects. All calculations were

done using a centered, second-order accurate finite-difference approach, leading to a simple



tridiagonal system. Model results are plotted along with the finite element results of Suh et
al (1997) in Figure 2. The abscissa and vertical axes represent the dimensionless horizontal
length of the plane slope kB and a reflection coefficient R, respectively. Circles denote
finite-element results, whereas the solid line, the dashed line and the chain dotted line
represent the MSE, MMSE (with all the I3 and I contributions), and the mMSE (retaining
only the I3 contributions), respectively. The dotted line represents results with only the
curvature term retained in the mMSE.

It is seen that the MMSE and mMSE results agree well with the finite element results.
For steeper slopes, mMSE results obtained using the added curvature term alone deviate
markedly from the MMSE results, while the full mMSE predicts results which are indistin-
guishable from the MMSE model results. The MSE is unable to correctly estimate reflection
even from the very mildest of slopes, as is evident from the deviation of MSE results from
both the finite-element and MMSE or mMSE model results over the entire range of water
depths. Note that the values near the right edge of the plot correspond to bed slopes on
the order of .04 or 1:25, which is well within the range of slopes that would normally be
thought of as being applicable in the original MSE formulation. The original finite-element
calculations of Booij (1983) did not cover this range of mild slopes, and so the inability of

the model to predict accurate results here was not uncovered.

3.2 Smooth Depth Transition

In order to avoid the singularities in model coefficients associated with the presence of slope
discontinuities in the previous example, we consider here a smooth depth transition given

by

hl; <0
h(z) =4 hy—gha(z— Bgin2m2), 0<e<B (42)
s x> DB

where hy, hy and B are defined as before. The bottom slope and curvature are shown in
Figure 3, and represent continuous and piecewise continuous functions of z respectively.
The resulting transition is thus relatively smooth compared to the linear transition studied
previously, and reflection coefficients are expected to decay nearly exponentially rather
than algebraically in the limit as the bed slope goes to zero. Results for this case are
shown in Figure 4 for the same set of model configurations as in Figure 2. The uniform
deviation between MSE and either the MMSE or mMSE results are again apparent over
the full range of water depths, although it is less severe in the mild-slope limit than in the
E

previous example. The influence of terms proportional to |Vh|? is again apparent in the

short transition limit, as is the overall agreement between MMSE and mMSE results.

10



e

a-b.b})\

10
kB

Figure 2: Comparison of model predictions of reflection from a linear depth transition (38).
Solid line - MSE; Dash line - MMSE; Dash-dot line, mMSE, Dotted line, mMSE without
slope-squared terms.

x=0 x=B

Figure 3: Bottom slope (solid line) and bed curvature (dashed line) for the smooth transi-
tion.
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Figure 4: Comparison of model predictions of reflection from a smooth depth transition
(42). Solid line - MSE; Dash line - MMSE; Dash-dot line - mMSE; Dotted line - mMSE
without slope-squared terms.
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Figure 5: Comparison of mMSE model predictions of reflection R from the linear (dashed
line) and smooth (solid line) depth transitions.
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3.3 The Asymptotic Limit : A Vertical Step

Both MMSE and mMSE computations for the previous examples apparently have equivalent
asymptotes at the left of Figures 2, 4 or 5. This corresponds to an approach to a sudden
transition in depth from h; to hy or a slope m = oo, although the largest slope studied
numerically was m = 8. In order to investigate the validity of the MMSE and mMSE in
the limit of large bottom slope, reflection from a vertical step was studied. The reflection
coefficient R was calculated using a matched-eigenfunction method (Takano, 1960; Kirby
& Dalrymple, 1983). In this limiting case, R was found to be 0.2291, whereas the mMSE,
for a slope length of B = 0.05 or slope m = 8 gives R = 0.2346 for the linear transition,
corresponding to an error of 2.4%. The asymptotic limit of the mMSE prediction thus
matches the sudden depth transition result very well, indicating that the MMSE and mMSE

models are able to predict reflection even from very steep slopes quite satisfactorily.

4 Discussion

The present work does not provide any new results illustrating the difference between clas-
sical MSE and more recent MMSE predictions. Rather, the goal here has been to suggest
that the classical MSE formulation is not the correct leading-order approximation for the
variable depth problem, and that the mMSE model (31)-(32), (33) or (34) should be taken
to be the leading order approximation based on a derivation that retains leading-order cor-
rections to the flat bottom problem in a truncated Hamiltonian. The present mMSE model
(31)-(32) or it’s variants (33) or (34) is capable of making correct predictions of reflection in
situations where the classical MSE loses accuracy, and reproduces essentially all the predic-
tions of the newer MMSE of Chamberlain and Porter and others, which we argue consists
of the mMSE plus additional small terms.

Recently, Miles and Chamberlain (1998) have considered the derivation of the MSE
heirarchy, and have considered approximate models resulting from various levels of trunca-
tion of an averaged Lagrangian. In addition to approximations resulting from a trial function
of the form (3), they have considered a further-extended form corresponding to a potential
which satisfies the bottom boundary condition to leading order in VA. In their results, the
resulting system would lead to an elliptic mild-slope formulation including derivative terms
to fourth order. Neglecting the terms in the trial function proportional to Vh leads to the
Lagrangian formulation giving the MMSE, as in Chamberlain and Porter (1995). A further
truncation of the system to give a Lagrangian for the classical MSE (see their derivation
from (2.13) - (2.16) ) involves the neglect of terms which are proportional to both (Vh)?

and V?h and are not of the same apparent order as in the present derivation. It is noted
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here that similar extensions of the mild-slope equation to include slope-dependent effects in
the trial function have been attempted by Kirby (1983) and Zhang (1996). It is not known
whether these extensions improve the predictive capability of the mMSE or MMSE relative
to the fairly typical results shown here.
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Appendix. Expressions for various model equation coefficients

The term f;(h) defined in (20) is given by

fi(h) = 6—‘%—?};—@ = k'(h)(cosh(kh)) ™! (zsinh(k[h + 2]) — k™" sinh(kh) sinh(k2))  (43)

where &’(h) is obtained from the dispersion relation (10) and is given by

k' (h) = dt}g”) = —2k?*(K + sinh(K)) ™! (44)

where I = 2kh. The coefficient u; defined in (20) is given by

(sinh(K) — K cosh(K))
4 cosh? (kh) (K + sinh(K))

uy(h) =

The derivative u} appearing in (28) and (29) is given by

d“’} ;(Lh) — —(4 cosh?(kh) (K + sinh K)®)~! (K sinh K) [K sinh K (K + sinh K)+
i

(sinh K — K cosh K') {sinh K (K + sinh K)/(1+ cosh K) + 1+ cosh K}] (46)

huy = h
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Finally, we note that "
Ii= [ fidz(vhy (47)
The integral is given by

3sinh K — 3K — K?(kh)
6

— sinh(kh) [2[kh)2cosh(kh) — K sinh(kh)| + sinh? (kh) (sinh K — K))48)

0
fidz = k(cosh?(kh)(K + sinh K)?)~! (
—h

The expression u) — f_oh fidz is equivalent to the expression for uy given below (2.16) in

Chamberlain & Porter,
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