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Abstract

A source function method for the generation of waves internal to Boussinesq model
grid boundaries (Wei et al, [7]) is modified to eliminate waves propagating backwards
from the source region. The resulting modification to the technique greatly reduces the
extent of sponge layers or other absorbing layers needed on the upwave open boundary
in Boussinesq model applications. The method is also generalized to account for the
presence of a strong current, for application to wave-current interaction problems.

1 Introduction

The need to propagate waves across the seaward boundary of a model grid in a Boussi-
nesq model simulation presents us with a difficult problem, since the well-posedness of the
open boundary condition is often not established and the treatment of radiating waves
arriving from inside the domain is thus not well defined. Consequently, this problem is
often handled quite empirically, using a source function method to generate waves inter-
nal to the grid, coupled with extensive absorbing sponge layers to remove both unwanted
backward-propagating waves from the source as well as reflected waves radiating out of the
numerically-simulated region. This method was pioneered by Larsen and Dancy [4], and
can be made to work quite effectively if the wave-absorbing properties of the sponge layer
seaward of the source are treated carefully. The method has recently been extended to the
case of a spatially-distributed source of either mass or momentum, and a linearized solution
has been provided for Boussinesq models with O(kh)? dispersion by Wei et al [7]. Gobbi
and Kirby [2] (hereafter referred to as GK98) have provided the extension of the linearized
result to models with O(kh)* dispersion and corresponding higher order spatial derivatives
(up to 5th order).

In all the cases mentioned above, the wave source generates both forward and backward
propagating waves, and the presence of an extensive and carefully designed sponge layer
behind the source region is thus required. This problem can be handled quite adequately, but

the resulting damping region can be large and thus adds measurably to the computational



effort required during model simulations. In this note, we suggest an alternate formulation
which uses a mass and momentum source in tandem, and which eliminates the backward-
propagating component of the generated wave in the linear approximation. The resulting
generation mechanism is tested in the model of Wei et al [6] (hereafter referred to as WKGS).
The absence of a backward-propagating mode greatly reduces the need for an absorbing layer
behind the wave source.

As pointed out by Kirby [3], models such as WKGS which fall in the “fully-nonlinear”
category are capable of correctly simulating the dispersion of short waves riding on strong
currents, as the proper combination of terms giving a total derivative following the current
U,

d 0
PRy +0-v (1.1)

is retained in all higher-order dispersive terms. We therefore extend the method here to
include the effect of a specified O(1) current field, and test the resulting model for cases
involving steady currents. In the following section, we present the extensions to the O(kh)?
WKGS model. The more extensive development for the O(kh)* model of GK98 is given in
the Appendix.

2 Theory for the O(kh)? model

The WKGS model consists of a set of fully nonlinear Boussinesq-type equations which

simulate wave propagation. The governing equations in non-dimensional form are given by
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i = kh, and § = a/h are the dispersive and nonlinearity parameters respectively. Since the
linear form of the governing equations can be explicitly solved (using Green’s functions) to
obtain a transfer function between the source and the desired wave, we assume linearity
(6 <« 1) and constant water depth. Furthermore, since we are including O(1) currents, we

define the total velocity i by

b-;]r—t

where 17y, is the velocity due to wave motion. The current velocity U is assumed constant.

Substituting (2.2) in (2.1) and keeping terms up to O(d), we get

%?- + RV iy + B3V - [(a + %)V(V ~iiy)] =0 (2.3a)
diky +Vn+pu ah2d(V(v-ﬂ‘))=0 (2.3b)
Tt dt . '
where

1 Z
SR
Zq is a reference depth where 1, is defined, and is chosen to obtain appropriate dispersion
characteristics even in deep water (see WKGS).

Writing (2.3) in dimensional form and introducing source functions in both the conti-
nuity and momentum equations we get

dn

o Yy + ah3V3(V - ity) = f(z,y,t) (2.4a)

oy _g9P(s,,1) (2.4b)

duw +gvn+ah2vz( =

dt

where ay = a+ % Introducing a velocity potential ¢(z,y,t) for i@y, we can rewrite (2.4) as

one equation

e I ghV2¢p — a1gh3V?(V2¢) + ah®V?( 2‘35) —g(f + ﬁ) (2.5)

dt? dt? dt '
Taking a Fourier transform in the y spatial direction

B(z,9, 1) f Bz, A, 1) exp(iry)dx (2.6)

fat) =5 [ Tt exnini (2.6b)



Plz,4,t) = %/ P(z, )\, 1) exp(iy)dA (2.6¢)

and subsequently a Fourier transform in ¢

d(z, A\ t) = %/_ d(z, A, w) exp(—iwt)dw (2.7a)
flz,\t) = % [w f(z, M\ w) exp(—iwt)dw (2.7b)
Plz, \1) = % /.00 P(z, )\, w) exp(—iwt)dw (2.7¢)

yields a fourth order ordinary differential equation
AW + BF® + 0¢P + DV + B = g(f + UPW —i(w — AV)P) (2.8)

d” - o
where ()" = aﬁ(), and U = iU + 3V. The constants are given by

A = aygh® — ah?U? (2.92a)
B = 2i(w — A\V)Uah? (2.9b)
C = gh+ (w— AV)2ah? + N2 (U%ah? — 2a,gh®) — U? (2.9¢)
D = 2iU (w — AV) [1 — a(\h)?] (2.9d)
E = (w—AV)*[1 — a(Ah)?] — ghX?[L — a1 (AR)?] (2.9¢)

The homogeneous solution for (2.8) is of the form
(f) ~ exp (il:c)

where [ satisfies the Doppler-shifted dispersion relation of the Boussinesq equations

[1 - e1h?(\2 + 12)]
[1— ah2(A2 +12)]

(w=AV —1U)* = gh(X? + 1) (2.10)

To obtain a particular solution for qB, and subsequently a relationship between wave

amplitude and source function amplitudes, we use the method of Green’s functions.



2.1 Green’s function

Consider a Green’s function G(,z), such that

*G(¢, x) PG(¢,z) G (¢, x) 9G (¢, )
# Ozt =i Ox3 +E oz? =& oz

where §(( — z) is a delta function.

+EG(,z) =0(C — 1) (2.11)

Imposing radiating boundary conditions we can write G(¢,z) in the form of the homo-

geneous solution for ¢ in the region z # ¢

G z) =aexplil(z —¢)] for z>¢ (2.12a)

G(¢,z) = aexplil(( —z)] for z<( (2.12b)

where [ satisfies (2.10), and [ satisfies the same equation but with the opposite sign for U.

Substituting in (2.11) we get

Al* +iBP —C2—iDi+E=0 for z>¢ (2.13a)

Al* —iBP —CI?+iDI+E=0 for z<¢( (2.13b)

In the absence of currents (2.13) gives two roots

. (C—CT—TAE\}
=1 ( — ) (2.14a)

- C+VC2%2—-4AE\;
L=l ( = ) (2.14b)

where [; is a real root and [y is an imaginary root.

On the other hand in the presence of currents there are two other distinct roots in
each case. These roots correspond to waves arising due to reflection on a current and can
be ignored (Peregrine [5]). Thus, in the presence of currents (2.13) is solved numerically
using the Newton-Raphson technique with (2.14) as initial conditions to obtain a real and

a complex root. We can therefore construct the Green’s function as

G(¢,z) = aj exp [?fl(:.r: - C)} + ag exp[z'fg(:z: - ()] for z>¢ (2.15a)

G(¢,z) = ay exp[ili (¢ — )] + agexp[ily(¢ —x)] for z<( (2.15b)
Integrating (2.11) from z = ¢ — 0 to z = ( + 0, and assuming continuity of G, C;G, nd

2
%g-, we get the following set of matching conditions

g s =1 (2.16a)



O0G |6+0
Elg_u =0 (2.16b)
92G |¢+0 -
5:5_2|g—0 N (2.16¢)
BGK+ 1
WL_U ~ i (2a164)
Substituting (2.15) in (2.16) and solving gives
= (2.17a)
A(ly — L) + L) (L + 1)
5 i
P — _ (2.17b)
A(lz = h)(l2 + L) (l2 + 12)
i
a, = - - (2.17c)
A(ly = ) (L + 1) (h +12)
i
az = (2.17d)

Alz = L) (g + 1) (I + 1)

Eq. (2.15) together with (2.17) gives a Green’s function G({, z) which satisfies (2.11) over

the entire domain,

2.2 Solution for ¢

We can now solve for (f) in terms of the known function G({,z) and consequently obtain the
required source function such that waves of a desired wave amplitude move in one direction
only.

Multiplying G(¢,«) with (2.8), integrating from & = —oo to £ = oo, and using (2.11)

together with the properties of a delta function we get

X ¢ s 0P -
WeoN =g [ G(F+UG —iw=AV)P)ds
e oz
% e @GP .
+g] G(f+Ua—I—a(w—/\V)P)dm (2.18)
q
~0%2@ 100 5 s
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In the absence of a current the boundary terms in (2.18) cancel out. In our solution we
shall neglect these boundary terms as they turn out to have negligible effects on the final

solution.



For large positive values of ( the solution approaches

N ¢ . & .
e, X =5 /_ G(f + U ~i(w — AV)P)da (2.19)

o0

Substituting (2.15) in (2.19) and noting that /2 being complex leads to exponentially de-

caying terms, we get

-

5 ; ® i or . ;
(¢ w,\) = gay exp(?,h(:) /_w(f - U(’?—::: —i(w — )\V)P) exp(vzll:z,)d:c (2.20)
for (— oo
Proceeding along similar lines we can also obtain {33 for large negative ¢
(¢, w, ) = gay exp(—ﬂ_lg‘) f_w (f' + U?fi_i —i(w— )\V)IS) exp(z'fl:n)d::: (2.21)
for (— —o0
Setting (2.21) to zero we get
g ®p 8P . ; P
/ fexp(ilyz)dz + f [UE —ife— AV)P] exp (il z)dz = 0 (2.22)

Eq. (2.22) gives the required relationship between the two sources f(z) and P(z) to generate
forward propagating waves only.

To solve (2.20) and (2.22) we need to know the form of f(z) and P(z). The choice is
arbitrary and we choose a smooth Gaussian shaped profile to obtain exact solutions for the
integrals in (2.20) and (2.22).

f(z) = Dy exp(—pa?) (2.23a)

P(z) = Dow exp(—pz?) (2.23b)

where /3 is an estimate of the source width and is determined in the same way as in Wei
et al [7]. Dy(\,w, ), and Dy(A,w, §) are the unknown amplitudes of the source functions
which have to be solved for. Figure 1 shows the shape of the two sources as a function
of z. We have chosen a symmetric shape for f(z) and an antisymmetric shape for P(z).
This symmetry-antisymmetry between the two sources is needed because otherwise, in the
absence of a current, (2.22) would cancel out wave motion both in front of and behind the
source region.

Substituting (2.23) in (2.22) and solving we get

. .. (2.24)
i(w— AV +1LU)
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Figure 1: Source as a function of x. Solid line corresponds to % and dashed line corre-
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To obtain a relation between the source function amplitude and wave motion amplitude,

we Fourier transform the linear momentum equation of (2.3) in y and ¢
gh = — [—z’(w —AV) + Uﬁ-] [1 + ah,z(f- - ,\2)]& (2.25)
ox Oz? )
Since we are considering progressive wave motion, we take

i(z) = no exp(iliz)

where 1 is the wave amplitude. Substituting for ¢ from (2.20) and for the source functions
from (2.23) and (2.24), we get

12
. —im exp(z5) (2.26)
1= T zl({.{)—‘AV—I]_U) 2(72 2 .
oy [ [1+ e (0= AV — L) (1l (3 + 30

where a; is obtained from (2.17).
Thus, with the help of (2.26) and (2.24) we can obtain the amplitudes of the source

functions in the mass and momentum equations such that they cancel all wave motion



behind the source region, and add up in front of the source region to give the desired wave

motion.

3 Numerical examples

We shall now test our modified source function model derived in the previous section with
the help of the 1-D version of the fully nonlinear WKGS model. A schematic view of the
test condition is shown in Figure 2. The total length of the domain is L, = 30m and water
depth h = 0.5m. The center of the source is at z; = 5m. A fairly large sponge layer has

been provided at one end of the domain to absorb the wave energy.

o AV
h
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Figure 2: Computational domain

Figure 3: Snapshot of surface elevation 7, T = 1.5 sec, H = 0.02m, Fr = 0

We consider monochromatic waves with T' = 1.5sec and H = 0.02m. These are small



waves and the aim is to see whether in the linear limit our source function method is able
to reproduce the desired wave height. The grid size used in the model is Az = 0.025m
and At = 0.00458sec. Figure 3 shows the snapshots of the surface elevation 7n(z) at various
times. The two sources method works really well in creating waves of a desired wave height

along one direction only. There are no currents in this simulation.

T T T T T

Figure 4: Snapshot of surface elevation n, T = 1.5 sec, H = 0.02m, Fr = -0.15

While developing our model we had claimed that the boundary terms in (2.18), which
do not cancel out in the presence of a current, are small and can be neglected. To test this
claim we considered the case of the monochromatic wave moving over a strong opposing
current (Figure 4), and also a strong following current (Figure 5). In both cases the desired
wave is reproduced very well. Thus the boundary terms do turn out to have negligible
effects.

The source function method has been developed using linear wave theory and is expected
to exhibit errors for large wave heights. To test the limits of this theory a comparison
between the measured wave height (obtained from the WKGS model at z = 10m) and the
desired wave height, for different values of d is shown in Figure 6. The error is very small
(£2%) up to § = 0.11, and increases for larger values of § due to nonlinear effects. Note

that no attempt is made to directly generate higher harmonics in this simulation.
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Figure 5: Snapshot of surface elevation 7, T = 1.5 sec, H = 0.02m, Fr = 0.15

4 Conclusions

In this note we have suggested an alternate formulation for generating waves using two
spatially distributed source functions. This formulation generates waves traveling in one
direction only as opposed to the method used by Wei et al [7] and GK98. The formulation
also allows for the existence of an underlying O(1) current field.

The method was tested with the WKGS model both in the presence and absence of
strong currents and found to work very well. Even though the method uses the linear wave
approximation it reproduces the larger wave heights with reasonable accuracy.

The advantage of this method is that it eliminates non-physical backward propagating
waves, thus greatly reducing the required damping layer behind the source region. This
potentially saves a considerable amount of computational effort specially when working

with 2D Boussinesq models.
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A Appendix: Theory for the O(kh)* model of GK98

The set of governing equations in non-dimensional form for the linear version of the O(kh)*
model of GK98 is given by

3
B i+ 122 o~ 1/3) V2 (v.18)
A.la)
h® —1/5 (
ﬂflz [’n (m—1/3) - (%_6/_)] v (V2 (V-ﬁw)) =0
diiy, h? d .
::t + V7 +p2?('n - I)E{V(V.uw)}
ht (2—1)14d (A:1h)
4 2 — i
where ; and v, are given by
1
1= g5 B +2)" + (1= 9) (b + )] (20
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1114 Blh+za)" + (1 B) (h +2)" (A.2b)

and 1, is defined by weighting the velocities at the reference depths z, and z,

—

Ty = Pig + (1 — B)ts (A.3)

3,24 and z, are chosen to obtain appropriate dispersion characteristics even in deeper waters
(see GK98).
Writing the equations in dimensional form, using a potential function ¢(z,y,t) and

introducing source functions we get a combined equation of the form

2
&Y TP gh C1V2V2p — gh CoVAV2V2¢ + CV2(d2¢)
dt? 2 4 dt? (A.4)
ht d*¢ dpP '
+40v2v2(dt2) —g(f+E)
o _ B (2 —1/5) 1/5) B _ B
where C; = v — 1/3,C2 = y1(y1 — 1/3) — g =y —1land Cy =v(yn—1) —
(y2—1)

6
Taking a Fourier transform along both y and ¢ yields the following ordinary differential

equation

A® + B® + c¢® + DF®) + EP + F)

. A ) (A.5)
+K¢=g(f + UPY) —i(w — A\V)P)
where
5 4
A= ngl — C4U2h (A.6a)
hd
B =2i(w - AV)UCi (A.6b)
h 3 2.9 2h2 h4 2412
C=yg ((_;*1 — 5CX%h ) — C3U%— + C4—((w AV)2 4 2X%02) (A.6c)
D =i(w — AV)UK%(C3 — A2h%Cy) (A.6d)
- 2 2 .13 3 212 h2 2 2772
E = gh—U? - X\%gh*(C1 — = 2?h Cg)+03?((w—)\V) + 3?U?)
4 5 (A.6e)
—Cap N (2(w = AV)? + NU?)
F=2i(w - AU - A2+ 2% (A.6f)
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h3 h2
I = [~ XV —ghX* + ,\49?(01 + )\2-—2—~C’2)

it
2

Once again using the method of Green’s function and following the steps given before,

(A.6g)

2
~2(w— AV)2—(C; — 04)\2{"2—)

we obtain
G(¢,x) = ayexplili (z — ¢)] + agexp[ila(z — ¢)]

B (A.7a)
+ag exp [1'13 (z - C}] for = >(

G(¢,z) = a; exp [ill (¢ - :r)] + ag exp [ilg(C - 'r)]

(A.7b)
+agexplils(¢ —z)] for z<(

where I and [; are real and 32,33,32,13 are complex. The coefficients are obtained from a set
of matching conditions similar to the O(kh)? solution and are given by

i

Q] = ———————= = = A.
“ A(ly = 13)(I2 — L) (h + L) (I + L2) (L + 13) (A.82)
. . S (A.8b)
Aly — L) (I3 — la)(lo + L) (I2 + I2) (I2 + 13)
a3 = e — . - - A.
03 A(lz — 1) (2 — l3) (I3 + ) (I3 + l2) (I3 + 13) A
= I ) _ A.8d
= A(ly — )(Is — L) (I + 1) (I + 2) (I + 13) B
i &= e ; (A.8e)
A(ls —13)(ly — 1) (l2 + 11)(lo + 12)(l2 + 13)
a3z = - (Agf)

A(ly — ) (l2 — l3) (I + 1) (ls + I2) (I3 + I3)

From here on the solution follows the O(kh)? solution very closely, and thus, the inter-
mediate steps have been omitted. The final relationship between the wave amplitude 7o

and source function amplitude Dy is given by

. 2
—WUCKD(E)
Dy = ,
™ 51(&)—»\V—£1U) hz 9 h2
=itz > AV =1U) 1= = (12 + )2)(C3 — B-Cy(12 + N2
. ﬁ[ Il(w—/\V+llU)](w ) [1 = 5 (@ +22) (G5 = '5.Cat + 32)

(A.9)

with (2.24) remaining unchanged.
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