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BOUSSINESQ MODELING OF WAVE
TRANSFORMATION, BREAKING AND
RUNUP. I: ONE DIMENSION!

A.B. Kennedy?, Q. Chen', J.T. Kirby!, and R.A. Dalrymple!

Abstract

Parts I and II of this paper describe the extension of the Boussinesq equa-
tions of Nwogu (1993) and Wei et al. (1993) to include surf zone phenomena.
Part I is restricted to one dimensional tests of breaking and runup, while part
IT deals with two horizontal dimensions. The model uses two main extensions
to the Boussinesq equations: a momentum conserving eddy viscosity technique
to model breaking, and a “slotted beach”, which simulates a shoreline while
allowing computations over a regular domain. Bottom friction is included us-
ing a quadratic representation, while the two dimensional implementation of
the model also considers subgrid mixing. Comparisons with experimental data

show good agreement for a variety of wave conditions.

1 Introduction

It has long been a goal of coastal engineers to produce a computational wave
model that is capable of simulating accurately wave motion from deep water
through the surf zone. To do this, a model would have to include, among
other things, nonlinear shoaling, refraction, diffraction, wave-wave interaction,

breaking and runup. As it is currently impractical to perform a full solution of
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the Navier-Stokes equations over any significant domain, approximate models
must be used.

One set of candidate models is the various Boussinesq-type equations (Pere-
grine, 1967; Madsen and Sorensen, 1992; Nwogu, 1993; Wei et al., 1995). These
can describe, to varying degrees of accuracy in representing nonlinearity and
dispersion, most phenomena exhibited by nonbreaking waves in finite depths.
However, as derived they do not include dissipation due to wave breaking and
thus become invalid in the surf zone. Accordingly, there have been attempts to
introduce wave breaking into Boussinesq models. Heitner and Housner (1970)
introduced artificial viscosity terms into momentum conservation equations in
order to capture the shock across a tsunami bore. These terms conserved over-
all momentum, which is very important for a breaking scheme. Tao (1983,1984)
used a crude nonconservative eddy viscosity term in order to model breaking.
Zelt (1991) used an eddy viscosity formulation which was somewhat similar to
that of Heitner and Housner together with a Lagrangian Boussinesq model to
study the breaking and runup of solitary waves. However, in the conversion,
the breaking term lost its momentum conserving form. Using a roller-based ap-
proximation, Schiffer et al., 1993, and Madsen et al., 1997a, (referred here as
DHI) have developed a comprehensive breaking and surf zone model based on a
flux version of the Boussinesq equations which can model breaking phenomena
such as wave height decay, wave-induced setup, and runup. Svendsen et al.
(1996) developed a breaking wave model that consistently includes rotational
effects caused by breaking in order to model dissipation. They also compared
their model with the DHI roller model, and a precursor to the model described
here (Wei and Kirby, 1996), and found similarities in all three techniques.

This and a companion paper (Chen et al., 1999) document the extension of

the fully nonlinear Boussinesq equations of Wei et al. (1995) and the extended
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Boussinesq equations of Nwogu (1993) to include surf zone phenomena related
to wave breaking and runup. In this paper. the surf zone model is introduced
and its performance for one dimensional breaking and runup is examined. Part
IT (Chen et al., 1999) considers surf zone modelling for two horizontal dimen-
sions. An additional, related, paper considers the Boussinesq modelling of a
rip current system (Chen et al., 1998).

The basis of the breaking scheme used here is a simple eddy viscosity-type
model, in contrast to some of the more complicated techniques available. This
is somewhat like the eddy viscosity formulation of Heitner and Housner (1970)
or Zelt (1991), but with extensions to provide a more realistic description of the
initiation and cessation of wave breaking. Comparisons are made with labora-
tory results for one dimensional breaking and shoreline runup, with generally
good results. The shoreline is treated using an improved version of the slot

method described by Tao (1983, 1984).

2 The Surf Zone Model

2.1 Breaking Model

Both the extended Boussinesq equations of Nwogu (1993) and Wei et al. (1995,
WKGS) are written in terms of a reference velocity ua= (ua, vs) at some ref-
erence elevation z,. The WKGS equation for conservation of mass may be

written as

n+V-M=0 (1)

where h is the still water depth, 7 is the free surface elevation and
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The associated momentum conservation equation is
uat+(ua'v) ua+qu+vl ‘l‘V? =0 (3)

where g is the downwards gravitational acceleration, and V, and V, are the

dispersive Boussinesq terms
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Nwogu’s equations are recovered by neglecting nonlinear dispersive terms.
The mass conservation equation remains in the form of (1), but with
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while the equation for momentum conservation becomes
2."0.2
Ua; + (Wa"V)ue + gV + =5 V(Vuar) + 2 V(V-(huay)) = 0 (7)

Linear dispersion properties vary with the choice of z,. Nwogu (1993) describes
an error-minimising condition which when applied to the range 0 < kh < 7
vields the result z, = —0.531h, which will be used in all calculations.

The above equations are only valid for nonbreaking waves, so some ad-
ditional approximation must be made to model wave breaking. In contrast
to some of the more complicated methods mentioned earlier, a simple eddy
viscosity-type formulation is used to model the turbulent mixing and dissipation
caused by breaking. The mass conservation equation (1) remains unchanged,
while, with the additional eddy viscosity terms, the equation for momentum
conservation becomes

Ugt+...— Rp = {8)
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By multiplying the momentum equations by h+7 and integrating over a break-
ing event, these additional terms may be shown to conserve overall momentum.
The model behaviour is thus consistent (in the region of a breaking wave crest)
with the momentum-conserving bore process in open-channel flow.

The eddy viscosity, v, which is a function of both space and time, is de-
termined in a similar manner to Zelt (1991), but with several differences. The

eddy viscosity is given here by
v = B&(h+n)n (11)

where & is a mixing length coefficient. From the results of many tests, it
is set here to a dimensionless value of §, = 1.2. Surprisingly, computations
are relatively insensitive to changes in this parameter. The quantity B varies
smoothly from 0 to 1 so as to avoid an impulsive start of breaking and the

resulting instability. It is given by

1! Tt Z 27}:
B=q B -1, ofancom (12)
0, m < 1

The parameter 7} determines the onset and the cessation of breaking. Use
of 7; as an initiation parameter ensures in a simple manner that the dissipation
is concentrated on the front face of the wave, as in nature. Zelt (1991) assumed
that parameters of this sort would have a constant value, but this is not in
accordance with reality. For example, in nature, spilling and plunging ocean

waves do not begin to break until the wave overturns, but, once the wave has
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broken, it will continue to break until it either reaches the beach, or arrives
at some smaller stable level at which it will reform (e.g. Horikawa and Kuo,
1966). A similar assumption was used in the breaking model of Schiffer et al.
(1993). In the present model, a breaking event begins when 7, exceeds some
initial value but, as breaking develops, the wave will continue to break even
if m¢ drops below this value. The magnitude of n; therefore decreases in time
from some initial value n}‘r) to a terminal quantity n,(F}. No strong evidence

exists for what form this decrease would take. so a simple linear relation is used

here to model the evolution of 5*. This becomes

) ', t>T*

= . " i (13)
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where T is the transition time, tg is the time that breaking was initiated, and

thus t — tp is the age of the breaking event, which is non-negative. The default

) (F)

values of n,“ and 7," ’ used here are 0.65\/gh and 0.15\/gh, respectively. The
default transition time used here is 7* = 5y/h/g. None of these quantities may
be regarded as universal values; they were chosen on the basis of multiple tests
with different parameter values to give good agreement with experimental mea-
surements for the WKGS and Nwogu equations. For use in other Boussinesq
models with different linear and nonlinear performance, care must be taken to
ensure that these parameters are appropriate.

For wave motion in one horizontal dimension, breaking events are well de-
fined. The quantity ¢o, the time when breaking was initiated, will in general
vary for different breaking events within a system, but it is a simple matter to
track any particular event as it progresses towards the shore, and thus to know
the age of each event. For example, in the outer surf zone a wave may have
begun breaking a short time before the present. The age of breaking t — to will

thus be small and 7 will be slightly less than n,(”. However, at the same time
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there may be another breaking event in the inner surf zone where t — to > T*
and thus n; = n}F).

For all breaking events, the eddy viscosity, v, is filtered for stability using a
three point filter before it is inserted into (9-10).

For two horizontal dimensions, the problem becomes slightly more difficult

and is detailed in Part II by Chen et al. (1999).

2.2 Moving Shoreline

For computations of wave runup, and for computing wave motion over natural
coasts, it is necessary for a wave model to be able to simulate the land-sea
interface realistically. To do this, a modification of the slot method of Tao
(1983, 1984) is used. In this, the entire computational domain is considered
active, but where there is very little or no water covering the land, modified
equations are solved. These equations assume that, instead of being solid, the
beach is porous, or contains narrow “slots”, so it is possible for the water level
to be below the beach elevation. Alternatively, this method may be thought of
as a “thin film” technique with a changed gravitational term, in which a very
thin layer of water covers “dry” areas.

Madsen et al. (1997a-b) utilized a variant of the slot technique in an ex-
tended Boussinesq model formulated in terms of volume flux and free surface
elevation, and demonstrated the effectiveness of the slot method for simulation
of wave runup on beaches. Although the agreement between the modelled and
measured swash motions on sloping fixed beds at laboratory scales was shown
to be reasonably good by Madsen et al. (1997a), a comparison with the ana-
lytical solution of wave runup on a solid slope (Carrier and Greenspan, 1958)

indicated that the slot method tended to underpredict the maximum runup



height with about a ten percent error even when a very narrow slot width was
used. This was because, before water could cover a previously dry area, the
slot first needed to be filled, decreasing slightly the overall volume available
for runup. Because the maximum runup height is very sensitive to the total
volume at the runup tip, runup is underpredicted. Thus, a slightly different
formulation is proposed, which ensures that when the water level is above the
top of the slot, there will be no net fluid loss at that location. Some small mass
loss still exists from water flowing into the slots where the water level is below
the top of the slot, but it is much reduced.

Figure 1 shows a schematic of a wave flume with a sloping bottom in the

presence of a narrow slot. The width of the wave flume is defined as

T §i> 2*

b(n) = (n=s*) (14)
5-|-(1-—5)ew"0 , n< 2t

in which 4 is the slot width relative to a unit width of beach; A is the shape
parameter that controls the smooth transition of the cross-sectional area from
a unit width to a narrow slot; z* denotes the elevation of the seabed where b
= 1; hg is a reference water depth that must be deeper than the water depth
at the lower limit of the swash zone; and 7 is the free surface elevation relative
to the still water level. Thus the cross-sectional area of the channel can be

expressed by

(7= 2%) + 8(z" + ho) + U= (1 — e AHRS)) - gy > o

A(n) = gzt (15)
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The equation for conservation of mass in the wave channel is:
A+ (AU), =0 (16)

where U is the depth-averaged velocity. Omitting the effect of a narrow slot on

the vertical distribution of the fluid particle velocity in the wave flume leads to



the mass equation formulated in terms of the velocity at the reference level z,
as follows

B+ M, =0 (17)

in which

—
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Here 8 = b(n) and A = A(n). Equation (17) with (18) will replace the one-
dimensional version of (1) and (2) for the simulation of wave runup using the
slot technique. Since the presence of a narrow slot does not alter the momentum
equations formulated in terms of velocity and surface elevation, the extension
of this treatment of a moving shoreline to the case of two horizontal dimensions
is straightforward. For detailed 2D applications, the reader is referred to Part
IT (Chen et al., 1999).

The fulfillment of mass conservation in the presence of an artificial slot
depends on the choice of 2* in the functions # and A. In Tao’s (1984) and
Madsen et al.’s (1997a) formulation, z* is chosen to be z = —h, the elevation of
the physical solid seabed. This leads to an effective loss of mass during runup, as
water must first fill the slots before it can wet the dry beach face. The opposite
phenomenon occurs during rundown. Here, we choose z* by specifying that,
once the water level is above the the top of the slot, the overall volume will be
identical to that if no slot existed. For 5 > z*, equating the cross-sectional area

with and without a slot leads to

(1 — 8)ho

=21 M) = - (19)
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Using a Taylor expansion of e’ Fo  around zero, and neglecting the second



order and higher terms, we obtain

" z 4 8ho ho
< = z T 20
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Since A > 1 as used in practice, (20) can be simplified as
.« 2 d 1
e L Sy 21)

The choice of z* as defined in (20) or (21) will lead to the improvement in the
prediction of maximum runup height as shown in the following section where

we shall discuss the optimal values of § and ).

3 Model Verification

3.1 Wave Breaking

To test performance of the breaking model, results were compared to regular
and irregular wave breaking experiments. Comparisons began with a series of
one dimensional regular wave tests on plane slopes. Five tests were chosen out of
a large series performed by Hansen and Svendsen (1979), for conditions ranging
from spilling to plunging breakers. Here, both experimental and computational
wave generators added a second harmonic to the input signals, with amplitude
and phase empirically chosen to minimise free second harmonics. Next, run 2
of the irregular wave tests of Mase and Kirby (1992) was simulated. In addition
to wave heights, time series of surface elevation and a wide range of statistical
parameters were compared for these tests. For both sets of tests, the breaking
parameters were set to the values given in section 2.1, and slot values were set

to A = 80 and § = 0.005.
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3.1.1 Regular Waves

Hansen and Svendsen (1979) reported on a large series of shoaling and breaking
tests involving regular waves. Waves were generated on a horizontal bottom at
a depth of 0.36 m, shoaled, and broke on a 1:34.26 planar slope. Measurements
of surface elevation were taken at a very large number of locations using an
automated, continuously moving trolley. For the purposes of the present study,
computed wave heights and setups were compared with the measured values
both seaward of and inside the surf zone.

Because of the moving trolley used in the experiment and the correspond-
ingly small sample size at any particular location, measurements showed con-
siderable scatter, especially in the surf zone. For this study, they were therefore
smoothed somewhat by averaging the results at any three adjacent measure-
ment locations, and rounding to the nearest mm for wave heights and 0.1 mm
for setup. Since the measurement locations were typically separated by only a
few cm, the evolution of a wave between adjacent locations was usually insignif-
icant, while the averaging process reduced scatter considerably. Even with this
reduction of data, there were still hundreds of measurements for each wave con-
dition, so the data set was further reduced to approximately 40-45 per wave,
which gave a good description of the wave shoaling and breaking. Further,
Hansen and Svendsen’s estimates of overall water volume showed that “a cer-
tain amount of water seems to be pumped to the inactive part of the flume
behind the sloping bottom during the test”. This resulted in a decrease in
mean water level over the active part of the flume. To compensate for this
loss of water, and because the experimental and computational wave tanks had
different total volumes, small offsets were applied here to some of the exper-

imental runs to match computed values of setdown in the deeper part of the
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tank.

Five cases were simulated here, covering a wide range of breaker types, and
serving as an necessary initial test for the surf zone model. Table 1 lists char-
acteristics for all waves tested. Breaker types are based on a surf similarity
analysis, initial wavenumbers are computed from linear theory, and wavenum-

bers at breaking are taken from Hansen and Svendsen (1979).

Case | T(s) | Ho(cm) Breaker type kh(ry | kh(py)
031041 | 3.33 4.3 plunging 0.369 | 0.18
041041 | 2.5 3.9 spilling-plunging | 0.501 | 0.24
051041 | 2.0 3.6 spilling 0.641 | 0.27
061071 | 1.67 6.7 spilling 0.791 | 0.41
A10112 | 1.0 6.7 spilling 1.58 0.76

Table 1: Experimental wave parameters for Hansen and Svendsen tests.

The first test, case 031041 as defined in Table 1, was well into the plunging
regime. Figure 2 shows computed and measured wave heights as the wave
propagates up the slope. Heights using the WKGS and Nwogu equations are
reasonable as the wave shoals and breaks. However, both sets of equations
appear to slightly underpredict the peak wave height at breaking. The setup
trend is predicted well. For this and many of the other waves tested, some
backwards-propagating short wave noise was generated during breaking. This
had the effect of increasing the measured crest-to-trough height, both in the
surf zone and offshore. For this particular test, this meant that matching
wave heights offshore may have led to an underestimate of the primary wave

height, and the consequent undershoaling. This test also shows clearly one of
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the two most significant sources of error. Although agreement is, on the whole,
reasonable, wave heights in the inner surf zone are overpredicted, a trend which
proved very robust to changes in the breaking parameters. It is unclear whether
this result derives from the breaking model, the Boussinesq equations used, or
some combination of the two.

The next breaker, case 041041, was somewhat shorter and was near the
plunging-spilling transition. Figure 3 shows computed and measured wave evo-
lution and setup. Once again, the WKGS equations give a good description of
wave shoaling and breaking, although wave heights are slightly overpredicted
as the wave shoals, and thus the computational wave breaks slightly early.
Computations using Nwogu’s equations show a similar trend, although the
overshoaling is further exaggerated. Comparing setup, both sets of Boussinesq
equations give good results, although setup begins slightly early, which follows
directly from the error in the breakpoint location.

Figure 4 shows computed and measured wave heights for case 051041. This
shows a similar trend to the previous case. Wave shoaling is again predicted
moderately well, but with overshoaling. Wave induced setup for this case also
appears reasonable, but a small difference in setdown slope may be discerned.

The observed overshoaling was seen to some degree in most tests and is
believed to be a result of the tendency of the WKGS and Nwogu equations to
overpredict the magnitude of nonlinear superharmonics somewhat in intermedi-
ate depths. For long waves, the WGKS equations provide very good predictions
of solitary wave shoaling to near the breaking limit, while Nwogu’s equations
predict reasonable, though somewhat large, wave heights (Wei at al., 1995,
Figures 4-5). However, for waves in intermediate depth, nonlinear errors in-
crease for both sets of equations. Figure 5.3 in Madsen and Schiiffer (1998)

shows that for dimensionless wavenumbers of kh < 1.5, which is approximately

13



the range considered in these tests, Nwogu's equations show a maximum of
about 20 per cent overprediction in the bound second harmonic of a second
order steady wave. In contrast, the WGKS equations have maximum errors
of around 10 per cent over this range. These bound second order harmonics
can not cause overshoaling; however, errors in third harmonics, which generally
follow the trend of second order solutions, will be noticed as overpredictions or
underpredictions of computed wave heights. This is believed to be the cause of
the observed overshoaling in some tests.

Figure 5 shows computed wave heights for case 061071, which was another
spilling breaker, with period 1.67 s and height 6.7 cm. Again, the trends are all
very similar to the previous cases, with overshoaling and somewhat premature
breaking. Overall agreement for wave heights and setup appears to be compa-
rable to the previous case. Once again, Nwogu’s equations have a slightly worse
prediction of setup than the WKGS equations shoreward of the break point.

The final wave tested from Hansen and Svendsen’s tests was a spilling
breaker with period 1.0 s and height 6.7 cm. This was designated case A10112.
Figure 6 shows wave heights. Once again, overshoaling occurs, but agreement
is better than the previous wave. No strong comparison may be made for setup
in this case, as there is little data shoreward of the breakpoint. From the
little available, computed setup using Nwogu's equations appears to increase
somewhat more quickly after breaking than measured values.

Overall, although agreement is, on the whole, reasonable, some general error
trends become clear. Wave heights in the inner surf zone are overpredicted, a
trend which proved very robust to changes in the breaking parameters. It is
unclear whether this result derives from the breaking model, the Boussinesq

equations used, or some combination of the two.
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3.1.2 Irregular Waves

For a test of model performance using irregular waves, the experiments of Mase
and Kirby (1992) were simulated. Experiments were performed on a 1:20 planar
slope using an incident Pierson-Moskowitz spectrum. Computational results
were compared with data from Run 2, which had a peak frequency of 1.0 Hz
and predominantly spilling breakers. Computations were initialised using a
time series of data at the deepest measurement location denoted wave gage
1 in Figure 7, which was assumed to represent linear, unidirectional incident
waves. A small offset was added to the experimental data to match computed
values of setdown at the deepest measurement location.

Figure 8 shows a typical time series of computed and measured surface
elevations at the other 11 wave gages using the WKGS equations. Agreement
is in general quite good, but deteriorates as the waves progress towards shore.
This was to be expected, as the assumption of linear, unreflected incident waves
used to generate the waveforms could only be an approximation to reality.

Overall statistical parameters can provide a more detailed picture of the
breaking model performance. Figure 9 shows standard deviations of measured
and computed surface elevation, and wave setup. Agreement is reasonable,
although, once again, wave heights near the shoreline become too large. Com-
puted setup appears quite good, especially using the WKGS equations.

Wave asymmetry, a measure of left-right differences in a wave, and skewness,
a measure of crest-trough shape, are computed from time series of surface
elevation at chosen locations, and are shown in Figure 10. Asymmetry is defined

H 3
. <<n£;")"’> .

where H denotes the Hilbert transform, ( ) is the mean operator, and the mean
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has been removed from the time series of surface elevation. Skewness is defined

as

Sk= (g}ii (23)

using the zero mean surface elevation. Asymmetry is seen to increase steadily as
the wave approaches the shoreline, corresponding to the well known steep front
and gentle back slopes of highly nonlinear shoaling and breaking waves. Both
sets of Boussinesq equations predict this parameter very well. The trend of
wave skewness is also predicted well, increasing as the wave shoals and breaks,
and then decreasing near the shoreline. Positive skewness here corresponds to
narrow crests and flat troughs. Both sets of equations tend to slightly overpre-
dict maximum skewness, likely because of the tendency towards overshoaling

noted earlier.

3.2 Wave Runup

3.2.1 Non-breaking Long Waves

A standard test of a numerical scheme for shoreline runup is the solution of a
nonlinear long wave on a sloping bottom. Carrier and Greenspan (1958) pro-
vided an analytical solution which was reproduced closely by Ozkan-Haller and
Kirby (1997) using a numerical model based on a Fourier-Chebyshev colloca-
tion method. We shall verify our numerical results against those computed by
Ozkan-Haller and Kirby’s model.

For convenience of comparison, the test case of a non-breaking long wave
on an impermeable slope as used by Madsen et al. (1997a) is repeated here.
We consider a 10 s wave train with an initial wave height of 0.006 m in a wave
channel containing a 1:25 slope. In the flat portion of the channel, the still

water depth is 0.5 m. Wave runup and run-down on the slope result in a
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standing wave form in the channel. Figure 11a-b shows the comparison of the
spatial and temporal variations of the free surface and the horizontal shoreline
motion computed by the present model with the slot technique and by Ozkan-
Haller and Kirby’s (1997) model. The full lines represent the present results.
We notice that the improved slot scheme as described in the preceding section
predicts well the maximum runup height and surface depression as well as
the standing wave form in comparison with the exact solution denoted by the
dashed lines. A slight deviation is observed, however, in the antinodal free
surface displacement between the first two nodes and the peak of the horizontal
shoreline motion because of the approximate nature of the slot scheme. In this
simulation, § and A are chosen to be 0.002 and 80, respectively. As suggested
by Madsen et al. (1997a), a filter localized in the swash zone on the basis of
a five-point weighted average is also used in order to suppress noise near the
shoreline due to the use of the slot. We chose the grid size and time step to be
0.1 m and and 0.04 s, respectively. The Boussinesq terms are also switched off
for consistency with the nonlinear shallow water equations.

The improvement in the prediction of maximum shoreline excursion by the
corrected slot scheme retaining mass conservation is illustrated by Fig. 1lc.
In the figure, two curves respectively represent the computed maximum shore-
line excursion as a function of the slot width taken relative to a unit width
of beach by the use of the new and original definitions of z*. We normalized
the computed maximum shoreline excursion by the exact solution. The circles
denote the numerical results of the present runup scheme with equivalent cross-
sectional area while the stars are those using Tao’s (1983) or Madsen et al.’s
(1997a) scheme. Apparently, the proposed correction leads to much faster con-
vergence in comparison with the results based on the original version of the slot

technique. For example, with § = 0.005 and A = 80, the improved slot scheme
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predicts the maximum runup height with less than 5 percent error while the

original one gives about 15 percent error in this test case.

3.2.2 Bichromatic waves

In a study of frequency downshift in the swash motion, Mase (1995) presented
experimental results of bichromatic wave train runup on a slope. The exper-
iments were conducted using the same wave flume and experimental setup as
those in Mase and Kirby (1992) described in the preceding section. Mase’s lab-
oratory measurements, including shoaling, breaking and swash motion, provide
good test cases for the verification of the runup scheme in combination with
the wave breaking model.

We chose two typical test cases from Mase's (1995) series of experiments.
Each of them represents a different kind of wave group pattern. The first one,
named WP1, contains fives waves in each wave group with a mean frequency
f=0.6 Hz, while in the second case WP2, each wave group consists of ten
waves with f = 1.2 Hz. In both cases, the nonlinear interactions of wave com-
ponents and the variation of breaking point in the wave train, among others
cause considerable low frequency swash oscillations. Unlike the simulation of
Mase-Kirby’s (1992) experiment, we use the Boussinesq model incorporating
the improved slot scheme and the breaking model to simulate these two test
cases.

Incident waves are generated using the source function technique developed
by Wei et al. (1998). The measured time series of the free surface at Gauge 1
near the toe of the slope is used as an input to the model. As in the physical
experiment, no effort is made to include bound second harmonics in the incident
waves. Due to the presence of the slot inside the dry beach, the whole channel is

an active computational domain with closed boundaries at each end of the wave
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flume. To be able to resolve superharmonics in the wave train, the grid size
and the time step is chosen to be 0.02 m and 0.01 s, respectively. With respect
to the wave breaking model, the parameters are kept the same as those in the
preceding simulations. For the slot scheme, we use § = 0.005. and A = 80.

Comparisons of computed and measured surface elevation for the two test
cases are presented in Figs. 12 and 13, including 11 wave gauges along the slope
and a runup gauge. The dashed lines represent the computed results while the
full lines are the measurements. Generally good agreement is found in both
test cases.

First of all, we notice that the nonlinear shoaling of the bichromatic wave
trains is well predicted by the Boussinesq model. Near the shoreline where
wave breaking occur, although a slight discrepancy is observed, the overall
agreement is satisfactory between the computed surface elevation and Mase's
(1995) data. Moreover, the modelled swash motions are in good agreement with
the measurements. The frequency downshift of the swash motion in comparison
with the frequency of the incoming waves is well reproduced by the present
model as illustrated in Fig. 14 where dashed lines denote the amplitude spectra
offshore while solid lines are those in the swash zone. The good agreement
demonstrates that the present Boussinesq model with the incorporation of the
wave breaking model and the improved slot technique works reasonably well

for the simulation of wave shoaling, breaking, and swash oscillation.

4 Discussion and Conclusions

A surf zone model has been developed for the fully nonlinear Boussinesq equa-
tions of Wei et al. (1995) and extended Boussinesq equations of Nwogu (1993)

using a modified eddy viscosity model and a slot technique to represent the
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moving shoreline and dry land. Comparisons with experimental data show
generally good agreement, although systematic differences do exist.

The model has shown itself to predict accurately wave transformation in
the surf and swash zone. Breaking phenomena are predicted both qualitatively
and quantitatively for a variety of one dimensional tests. Of all tests, the great-
est errors are seen for monochromatic wave shoaling and breaking on a planar
beach. Here, waves heights are somewhat overpredicted before breaking. This
overprediction of shoaling waves appears to be due to the the intrinsic nature
of the Boussinesq equations used, which show nonlinear error in intermediate
depths. Further work with higher order equations may be needed to resolve
this drawback. Runup tests, on the other hand, show good agreement with ex-

perimental results for all cases considered, although some error is again visible.
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ABSTRACT

In this paper, we focus on the implementation and verification of an extended Boussi-
nesq model for surf zone hydrodynamics in two horizontal dimensions. The time-domain
numerical model is based on the fully-nonlinear Boussinesq equations (Wei et al., 1995). As
described in Part I (Kennedy et al., 1999), the energy dissipation due to wave breaking is
modelled by introducing an eddy viscosity term into the momentum equations, with the vis-
cosity strongly localized on the front face of the breaking waves. Wave runup on the beach
is simulated using a permeable-seabed technique. We apply the model to simulate two lab-
oratory experiments in large wave basins. They are wave transformation and breaking over
a submerged circular shoal (Chawla and Kirby, 1996), and solitary wave runup on a conical
island (Liu et al., 1995). Satisfactory agreement is found between the numerical results and

the laboratory measurements.
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INTRODUCTION

An accurate model for wave-induced nearshore circulation is essential to predicting sed-
iment and pollutant transport in coastal regions. Most of the existing numerical models for
breaking-generated surf zone currents are based on vertically-integrated, time-averaged (over
a short-wave period) conservation laws of mass and momentum (see Svendsen and Putrevu,
1995 for a review). The accuracy of such type of models depends on the quality of the wave
transformation and breaking model that provides radiation stresses as a forcing to a circu-
lation model. Recent advances in both computer technology and dispersive, nonlinear long
wave theory (e.g. Madsen and Sgrensen, 1992; Nwogu, 1993; Wei et al., 1995; Madsen and
Schaffer, 1998; Chen et al., 1998) now permit the use of Boussinesq wave models for large
nearshore regions and allow the averaging of model results to predict wave-induced mean
flows if wave breaking is incorporated into the model. Literature reviews on advances in
Boussinesq modelling of nearshore surface gravity waves can be found in Kirby (1997) and

Madsen and Schéffer (1999).

The swash zone is the interface of the seawater and the land. Wave runup on the beach
results in swash oscillations which are believed to cause significant sediment transport (e.g.
Kamphuis, 1991). On the other hand, predicting wave runup on an open coast is important
in estimating the area affected by storm waves and tsunamis. Liu et al. (1995), Titov and
Synolakis (1998), among others developed numerical models for tsunami runup on the basis
of nonlinear shallow water equations. Those models were tested against physical experiments
carried out by Briggs et al. (1995) on solitary wave runup on a conical island. Although
generally good agreement was obtained for the case of non-breaking waves, discrepancies
exist in the case of broken-wave runup as shown by Liu et al., and Titov and Synolakis.
This calls for models taking into account the non-hydrostatic pressure and wave breaking.

Recently, Kobayashi (1998) provided a thorough literature review on wave runup on beaches



and coastal structures, and pointed out the need for research on two-dimensional shoreline

runup.

The objective of this study is to implement and validate an extended time-domain Boussi-
nesq model for wave transformation resulting from combined refaction and diffraction, wave
breaking, and wave runup in two horizontal dimensions. The model is based on the fully

nonlinear Boussinesq equations introduced by Wei et al. (1995).

This paper is organized as follows. Firstly, we describe the extension of the breaking
and runup schemes constructed by Kennedy et al. (1999, hereafter referred to as Part I)
to two horizontal dimensions. Next, the model is tested against Chawla and Kirby’s (1996)
physical experiment on wave propagation over a submerged circular shoal with and without
breaking. Then, we use the measurements from Briggs et al.’s (1995) laboratory experiment
of solitary wave runup on a conical island to validate the numerical model with respect to two

dimensional shoreline runup. The results and findings are summarized in the final section.

MODEL FORMULATION

Governing Equations

The extended Boussinesq equations of Wei et al. (1995) are formulated in terms of the
velocity vector u,= (uq,vs) at a reference elevation z, in the water column and the free
surface elevation 7 relative to the still water level. The equation for conservation of mass

may be written as

B+ V-M =0 (1)



where

2 6
% (za + %(h - n)) v (V. (h,uq))] (2)

L2
M = A[uﬁ(“‘* —l(hz—hwnﬂ)wv-:ﬂ)

in which h is the still water depth, the subscript ¢ denotes time differentiation, and V is the
horizontal gradient operator. In addition, # and A are introduced to account for the moving
shoreline using the permeable-seabed technique. The detailed expressions of 3 and A can be

found in Part I.

The equations for momentum conservation read
U + (WeV)ua +gVn+Vi+ Vo+ R — Ry — R, =0 (3)

where g is the gravitational acceleration, and V; and V, are the dispersive Boussinesq terms
(see Wei et al., 1995 and Part I for details). In comparison with the original momentum
equations of Wei et al. (1995), there are additional terms, Ry, Ry, and R,. They are
introduced for the treatment of bottom friction, wave breaking, and subgrid lateral turbu-
lent mixing, respectively, and will be discussed in the following sub-sections. It is worth
mentioning that R, and R, basically act as local momentum mixing due to wave breaking
and unresolved turbulence. Neither of them alters the global momentum conservation. A

discussion of additional model parameters may be found in Part 1.
2-D Wave Breaking

Following Part I, we model the energy dissipation due to wave breaking in shallow water
by introducing the momentum mixing terms Ry which are related to the second derivative
of momentum flux. The associated eddy viscosity is essentially proportional to the gradient

of the horizontal velocity and is strongly localized on the front face of the breaking wave.



Two empirical parameters are used to determine the onset and cessation of breaking. De-
tailed formulation of the breaking term can be found in Part I. In comparison with the
1-D breaking model, the implementation of the breaking model in two horizontal dimensions

requires the determination of wave direction in order to estimate the age of a breaking event.

Assuming a primarily-progressive wave field, the application of the Sommerfeld radiation

condition on a locally-constant water depth leads to an estimate of the wave direction

§= TAN"I(%{) (4)

where 6 is the wave incident angle relative to the = direction. Accordingly, the wave celerity
vector may be written as
UG
€ = —m—————\/ 5
A (5)
This is in agreement with the estimate of wave celerity in Madsen et al. (1997). With
the knowledge of wave direction, the model can estimate the age of a breaking event at a

given location by tracking the breaking history at the grid points along the wave ray. The

remaining of the breaking model is essentially identical to the 1-D model as detailed in Part I.

There are four empirical coefficients in the breaking model. Among them are 7™, the
transition time from breaking to a fully-developed bore, ?';g[) and 'qt(F) which determine the
onset and cessation of a breaking event. The ranges of typical values for these parameters
are respectively 0.35v/gh — 0.65v/gh, 0.08/gh — 0.15\/gh, and 24/h/g — 5\/%. The lower

limit of the coefficients is found to be more suitable to bar/trough beaches while the upper

limit gives optimal agreement for waves breaking on monotonic sloping beaches.
Wave Runup

Instead of tracking the moving boundary during wave runup/run-down on the beach, we

treat the entire computational domain as an active fluid domain by employing an improved

5



version of the slot or permeable-seabed technique for simulation of wave runup. The original
slot technique was proposed by Tao (1984). A variant of Tao’s scheme has been used by
Madsen et al. (1997) in a Boussinesq model formulated in terms of mass flux and free surface

elevation.

It was shown by Madsen et al. (1997) that, even though a very narrow width of slot is
used, there is still about a ten-percent error in the computed maximum runup in comparison
with the analytical solution by Carrier and Greenspan (1958). This is attributed to the
additional cross-sectional area introduced by the narrow slot because the maximum runup
is very sensitive to the total volume of mass at the runup tip. In contrast to the original
formulation that did not conserve mass in the presence of a slot, we retain an equivalent
cross-sectional area of a unit width of beach, leading to the improvement in the simulation
of one-dimensional runup, as shown in Part I. The extension of the runup scheme to two
horizontal dimensions is straightforward. This is done by replacing the solid bottom by a
narrow-slot network in the x and y directions. The resulting terms, # and A, in the mass

equation remains identical to those in the 1-D case.

Subgrid Turbulent Mixing and Bottom Friction

In large-eddy simulation of atmospheric turbulent flow, Smagorinsky-type eddy viscos-
ity models have been widely used to account for the contribution of unresolved small-scale
motions as described in Mason (1994) and Ghosal et al. (1995). It is well known that the
flow in the surf zone is characterized by eddies and turbulence generated by wave breaking.
The extension of Boussinesq models based on vertically-integrated Euler equations of motion
to the surf zone requires the inclusion of the turbulence effects. In addition to the energy
dissipation term due to wave breaking, which is assumed to be strongly localized on the front

face of the breaking wave, a parameterization of the Reynolds-like stresses resulting from



subgrid-scale turbulent processes associated with surf zone eddies may become an important
factor influencing the flow pattern of the wave-generated current field. In the absence of a
subgrid model in the governing equations, the underlying current field generated by wave
breaking may become so chaotic that no realistic flow pattern can be recognized as observed
in our numerical experiments of rip current generation on a barred beach. we therefore uti-
lize a Smagorinsky-type subgrid model (Smagorinsky et al. 1965) to account for the effect
of the resultant eddy viscosity on the underlying flow. The detailed formulation is given in

Chen et al. (1999).

The bottom friction is modelled by the use of the quadratic law

f

By = h+n

Ua|u,| (6)

where f is the bottom friction coefficient. In the literature, the value of f varies significantly.
For instance, the coefficient used by Zelt (1991) in his Boussinesq model for solitary wave
runup on a 1:20 sloping bottom is two orders of magnitude smaller than the coefficients used
to compute longshore currents generated in laboratories (e.g. f & 1.0 x 1072) in Kobayashi
et al. (1997). Numerical experiments indicate that the present model is not very sensitive to
the choice of friction coefficient in the simulation of rip current generation on a barred beach
with rip channels (Chen et al., 1999). Care should be taken, however, when chose bed shear
stress coefficients for modelling wave-induced alongshore currents. Under field conditions,
owing to the variability of hydrodynamic and morphologic characteristics, spatially-variable
friction coefficients (e.g. f & 1.0 x 107 to0 5.0 x 107?) are likely to be used, as shown by
Whitfor and Thornton (1996) who inferred the bed shear stress coefficients for longshore

currents over a barred profile on the basis of momentum balance in alongshore direction.

Following Wei et al. (1995), quasi fourth-order finite difference schemes are used to solve
the governing equations described above. An analysis of the linear stability and other prop-

erties of the numerical scheme can be found in Wei (1997).
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WAVE TRANSFORMATION OVER A CIRCULAR SHOAL

Model Set-up

A series of physical experiments for wave transformation over a circular shoal was con-
ducted by Chawla and Kirby (1996) in the directional wave basin at the University of
Delaware. Their measurements provide good test cases for model/data comparison. Fig-
ure 1 shows the plan view of the wave basin with the transects of wave gauge locations.
The physical wave basin is approximately 18 m long and 18.2 m wide. A circular shoal was
placed on an otherwise flat bottom in the basin. For detailed description of the experiment,

the reader is referred to Chawla and Kirby (1996).

Accordingly, the numerical wave basin is chosen to be 20 m long and 18.2 m wide. On
the western boundary, monochromatic waves are generated by the source function technique
developed by Wei et al. (1999). Near the eastern wall of the wave basin, a 3 m wide sponge
layer is used, which represents a sloping stone beach in the physical experiment. The center

of the shoal is located at # = 5 m and y = 8.98 m. The perimeter of the shoal is given by
(z —5)* + (y —8.98)* = (2.57)? (7)
and the water depth on the submerged shoal is given by
h = ho+8.73 — v/82.81 — (z — 5)% — (y — 8.98)? (8)

in which h, is the water depth of the wave basin.

Chawla and Kirby’s (1996) laboratory experiments consist of test cases of regular waves
and directional random waves, including breaking and non-breaking cases. To verify the ba-

sic properties of the Boussinesq model with respect to combined refraction/diffraction and

8



wave breaking in two horizontal dimensions, only the data sets of monochromatic waves are

used in the present study. Emphasis will be given to the test case with wave breaking.

Model/Data Comparison: Non-breaking Waves

In the case of non-breaking wave transformation over submerged shoals, the Boussinesq
model based on the fully-nonlinear equations introduced by Wei et al. (1995) was verified
against the laboratory experiments of Berkhoff et al. (1982) and Chawla and Kirby (1996).
Excellent agreement between the model results and measurements has been found (see Wei,
1997). For illustration, we present the comparison of the model results with one of the

Chawla and Kirby’s (1996) tests (Test 4).

The wave height at the input boundary is 1.18 em and the wave period is 1.0 s. The flat
bottom of the basin has a water depth h, = 45 em leading to h = 8 em on the top of the
circular shoal. We choose the grid spacing to be 0.05 m and 0.1 m in the = (incident wave
direction) and y directions, respectively. The time step is 0.01 second. The model is run for
40 seconds and the wave field reaches a steady condition. We compute the root-mean-square
wave heights (H,ms) based on the time series of the last 10 seconds of data although the
waves are mainly periodic. Figure 2 shows the comparison of the modelled and measured
H,,., along seven transects covering most the areas of the submerged shoal and behind the

shoal (see Fig. 1). Excellent agreement is observed.

In Fig. 2, solid lines represent the Boussinesq model results while circles are the measure-
ments, which are normalized by the incident H,.,. Along the longitudinal transect A-A (y
= 8.98 m), the Boussinesq model predicts very well the wave shoaling and focusing and the
decrease of wave height after the shoal. In comparison with Berkhoff et al.’s (1982) elliptic

shoal which is placed on a sloping beach, the topography in Chawla and Kirby’s (1996) ex-



periments leads to much stronger wave focusing. For instance, the maximum amplification
factor of wave height reaches about 2.7 on top of the shoal in the present simulation. We
notice that the Boussinesq model also correctly simulates the transverse variation of the
wave field resulting from the effects of combined refraction/diffraction as shown by the good
agreement along the transects from B-B to G-G. Owing to a slight off-centering of the shoal
position (slightly closer to one of the side walls), the distribution of the wave height in the y
direction is not symmetric. This signature of asymmetry is also accurately predicted by the

Boussinesq model.

Model/Data Comparison: Breaking Waves

A more demanding test for the Boussinesq model is wave propagation and breaking over
a submerged shoal. We choose another test case from Chawla and Kirby’s (1996) experiment
with wave breaking to verify our model. In this case, the water depth h, is 39.5 em. The
input monochromatic wave has 2 em wave height and 1 s period. As the front face of a
breaking/broken wave becomes very steep, finer grid size in comparison with that for the
case of non-breaking is required in order to resolve the wave. Thus we reduce the grid size in
the @ direction to 0.025 m, leading to about 20 grids per wave length on top of the submerged
shoal, while the grid increment along the y axis and the time step remain identical to those

in the case of non-breaking waves.

The Boussinesq model is run for 50 seconds of simulated time. To remove the effects of
transients associated with the cold start of wave field and the wave breaking, we compute
the H,,,, using the last 20 seconds of numerical results and the collected data. The empirical
parameters for the wave breaking model are chosen to be the lower limit of the values indi-
cated in the preceding section. Figure 3 presents the comparisons of the modelled results and

measurements along the longitudinal transect (A-A) with respect to the normalized H,,,s,

10



skewness and asymmetry. The computed H,,,, and third-moments agree fairly well with the

laboratory data.

The bottom topography along the A-A transect is shown by Fig. 3d. Several interesting
phenomena are observed from Fig. 3. First, we notice that the wave height does not reach
the largest on top of the shoal but on the downward slope instead. This is attributed to the
focusing effect of wave refraction on the shoal. However, the wave skewness and asymmetry
appear to be the maximum near the crest of the shoal, as indicated by both the numerical
and measured results. It is known that skewness and asymmetry are a measure of wave
nonlinearity. Apparently, the degree of wave nonlinearity at the focusing point with the
maximum wave height is weaker than that on top of the shoal where the water depth is
the minimum. Secondly, both depth-limited wave breaking and wave de-focusing reduce the
wave height. The combined decrease of wave height is much faster in comparison with the
case of non-breaking waves. Consequently, the large gradient of radiation stresses will drive

horizontal circulations around the submerged shoal.

Figure 4 depicts the data/model comparison of normalized H,,, along six transverse
transects. On top of the shoal (i.e. F-F), agreement is fairly good. On the downward slope,
the Boussinesq model captures the focusing effects very well as shown by E-E transect. Fur-
thermore, the de-focusing and diffraction of the broken waves behind the shoal (i.e. B-B to

D-D) are also predicted reasonably well by the Boussinesq model.

A computed wave field at the end of the simulation is shown in Fig. 5a where the gray
areas represent the modelled wave crests while the dark areas are the wave troughs. Wave
crests become very peaky (narrower and brighter in the figure) on the top of the shoal due
to nonlinear shoaling effects. Secondly, wave refaction over the shoal is clearly shown by the

bending of wave crests on top of the shoal. Wave diffraction is also visible by the variation
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of wave crests in the transverse direction. It is worth mentioning that secondary wave crests
are observed behind the submerged shoal due to the release of superharmonics generated by
nonlinear shoaling. However, their phases may be inaccurate because of the large wave num-
bers of the higher harmonics at those locations. Model equations with Pade [4,4] dispersion
properties applicable to kh = 6 (e.g. Chen et al., 1998, Madsen and Schaffer, 1998, Gobbi
et al., 1999) would permit a better estimate of the released, free, higher harmonics in these

two test cases.

There is no measurement of breaking-induced circulation in Chawla and Kirby’s (1996)
experiments. However, a strong jet associated with wave breaking on top of the shoal was
visually observed during the experiment. Information on wave-induced circulation in the
simulation can be extracted using a short averaging window to filter out the orbital wave
motion. Figure 5b illustrates the underlying current field generated by wave breaking over
the shoal after 50 seconds have elapsed in the simulation. The current field is obtained by
averaging the instantaneous fluid particle velocity at the reference level z, over two wave
periods. In connection with the simulation of breaking-induced currents, the bottom friction
coefficient of f = 1.0 x10™* and a subgrid mixing model is used. Notice that the jet-like
current tends to be unstable and vortices are likely to appear as shown by the meandering
of the computed current and the vortex pair. An account of the instability of jet-like rip

currents and the mechanism of vortex generation is given in Chen et al. (1999).

WAVE RUNUP ON A CONICAL ISLAND

Briggs et al.’s (1995) laboratory experiment on solitary wave runup on a conical island
has served as a benchmark for the verification of tsunami runup models (see e.g. Liu et
al., 1995; Titov and Synolakis, 1998). We shall use the measurements from their physical

experiment to validate our runup schemes for two horizontal dimensions. In the case of one
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dimensional runup, the present model was tested against an analytical solution by Carrier
and Greenspan (1958) and a wide range of experimental data including irregular waves.

Good agreement has been obtained as shown in Part I.

A schematic view of the wave basin for Briggs et al.’s (1995) experiments is shown in
Fig. 6 where solitary waves are generated on the western boundary and propagate toward
the eastern boundary. The wave basin is 25 m long and 30 m wide. A conical island with
a slope of 1:4 is placed on an otherwise flat bottom in the basin. The center of the island
is located at @ = 13 m and y = 15 m. The diameters of the island on the bottom, at the
still water line, and on the top are respectively 7.2 m, 4.64 m, and 2.2 m. The water depth
of the basin is 0.32 m. Further information about the experiment set-up can be found in

Briggs et al. (1995) and Liu et al. (1995).

There are three test cases with available data sets including measurements of maximum
runup height and free surface elevation around the island. The initial conditions for the three
cases have e = 0.05, 0.1 and 0.2, respectively, where € denotes the height-to-depth ratio of
the incident solitary waves. The water depth remain the same in all three cases. We set
up our numerical model by choosing the grid size to be 0.1 m in both # and y directions.
A 0.02 second is used as the time step. We generate solitary waves by defining the initial
conditions for the model based on the analytical solutions to the Boussinesq equations with
a constant water depth (see Wei, 1997). The crest of the solitary waves at t = 0 is located

at @ = 0.0. At the four lateral boundaries, closed boundaries are imposed.

Figure 7 presents model/data comparisons of the maximum runup heights around the is-
land for the three test cases. The full lines represent the numerical results while stars denote
the data measured by Briggs et al. (1995). The horizontal axis is the angles between the

radius and the center line of the island in the incident wave direction, 0 degrees correspond-
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ing to the front side of the island while 180 degrees corresponding to the lee side. Runup
heights are normalized by the height of the incident solitary wave. As the measurements
show that the maximum runup heights are not perfectly symmetric about the center line of
the island, we compare the numerical results with the average of the data on both sides of
the center line aligned with the incident wave direction. Good agreement between the model
predictions and the measurements is observed. The runup scheme captures the signature of
two dimensional runup as shown by the correct variation of the runup heights around the
island. As mentioned in the introductory section, Case 3 is a challenging test because of
inaccurate prediction by non-dispersive models without the consideration of wave breaking.
Although a slight discrepancy is found on front side of the island in the comparison of Case

3, the overall agreement is as good as for the non-breaking cases.

In addition to the distribution of maximum runup heights, we compare the computed
time series of free surface with the measurements at five locations. Gauge 3 is located close
to the input boundary while the other four gauges are around the island near the still water
shoreline. Figures 8, 9 and 10 show the comparisons corresponding to Cases 1, 2 and 3,

respectively.

First, we notice that the computed primary waves agree reasonably well with the mea-
surements for all three cases. The Boussinesq equations give a better description of the
solitary wave than the non-dispersive shallow water equations do. This becomes more clear
in Case 3 when we compare our model with Titov and Synolakis’ (1998) numerical results
that had remarkable discrepancies compared with the measured time series of free surface.
For instance, secondary crests on the back side of the leading waves as predicted by the
non-dispersive model are absent in gauges 3-16 of both the measurements and Boussinesq
model results. Secondly, the present model predicts reasonably well the free surface on the

lee side of the island as shown by Gauge 22. In contrast, the non-dispersive model tends
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to under-estimate the leading wave height behind the island as demonstrated by Titov and

Synolakis (1998).

The present model with permeable-seabed technique for shoreline runup, however, ap-
pears to under-predict the depression of the free surface, or the reflected waves by the island.
This is shown by the model/data comparison of Gauge 9 located in front of the island. The
discrepancy is attributed to the slight loss of wave energy and momentum because of the
presence of the narrow slot. Owing to the very steep slope of the island (1:4) and the high
nonlinearity of the solitary waves in Cases 2 and 3, a slot width ten times larger than the
optimal values as found in Part I. are used here for the concerns of numerical instability. A
low pass filter localized in the swash region is also utilized to suppress possible noise due to
the use of a slot. It is worth mentioning that phase differences between the computed and
measured free surface at Gauge 1 in Cases 1 and 3 are due to a slight variation of the gauge

location in the physical experiment as described in Briggs et al. (1995).

As discussed in Liu et al. (1995), a collision of the trapped solitary waves on the lee side
of the island could lead to a runup height which can exceed the maximum runup on the front
side of the island. Figure 11 illustrates the collision process in Case 2. The time sequence
of the computed free surface shows the scenario of head on collision of the trapped solitary
waves on the lee side of the island. Figure 12 depicts the maximum runup on the lee side of
the island in Case 3 with a larger incident solitary wave in comparison with the other two
cases. It is noticed that the computed maximum water surface elevation which is considered
as the maximum runup height in Case 3 is separated from the island slope. This separation
does not occur in Cases 1 and 2. As observed in the physical experiment, the collision of
the trapped waves on back side of the island in Case 3 caused wave breaking and very rough
water surface. The breaking model is not expected to be able to simulate the mixing of a

backward propagation bore on the lee side of the island. Nevertheless, the generally good



agreement of comparisons in this section demonstrates the capability of the model for the

simulation of shoreline runup in two horizontal dimensions.

SUMMARY AND CONCLUSIONS

A numerical model based on the fully-nonlinear Boussinesq equations (Wei et al., 1995)
has been extended to include wave breaking and moving shorelines for the simulation of
nearshore wave transformation with wave breaking, two-dimensional swash motion, and
wave-induced horizontal circulation. Fully-coupled wave/current interaction is taken into
account by the Boussinesq equations. The model not only predicts the nearshore propaga-
tion of nonlinear surface gravity waves, but also gives the underlying unsteady flow generated
by wave breaking. The current field is obtained directly by time averaging the computed

instantaneous fluid particle velocity over a certain period of time.

The model results are compared with the measurements from two large scale laboratory
experiments on wave transformation over a submerged circular shoal with and without wave
breaking (Chawla and Kirby, 1996), and solitary wave runup on a conical island (Briggs
et al., 1995). Generally good agreement is observed between the laboratory data and the
numerical results, including spatial variation of root-mean-square wave heights and distri-

bution of maximum runup heights.

The numerical model predicts well the combined refraction and diffraction of nonlinear
waves with wave breaking over rapidly varying bathymetry. Model/data comparisons also
show that, for shoaling and runup of solitary waves, the Boussinesq model gives better pre-
dictions than do non-dispersive models based on nonlinear shallow water equations in the
literature. The two dimensional version of the breaking and runup schemes work reasonably

well. This model has been successfully used by Chen et al. (1999) to simulate a rip current
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system on a barred beach with rip channels in the laboratory. Good agreement has been
found between numerical predictions and measurements, including wave height, mean water

level, and alongshore and cross-shore currents.
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