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1 Introduction

Wave blocking is a phenomenon in which the energy of propagating waves
is stopped by a strong opposing current. As waves propagate into opposing
carrents, their group velocity reduces leading to the waves shoaling on the
current. If the current is strong cnough then this group velocity could go to
zcro causing the waves to get blocked. This is fairly common at the entrances
ofriver inlets where tidal currents can hecome very strong. Oue such example
of wave blocking is shown in Figure 1. The photograph has been taken three
hours after high tide. aud thus, there is a strong current propagating oul of
the iulet. This strong current blocks waves that arce trving to propagate into
the inlet. Due to the sharp increase in wave steepniess prior to blocking, the
wave environment tends to become very rough, as can be seen in Figure 2.
This causes considerable navigational hazards and boats have heen known
to capsize trving to cross the inlets under such cireumstances.

There are many references in the literature on the dvnamics of strong
wave-current interactions. Bretherton and Garrebt (1969) have shown that
- the presence of a current it is the wave action that is conserved and
not the wave energy. However. this conservation principle is based on ray
theory approximations and fails close to the blocking point which is a caustic.
Smith (1975) obtained a uniform solution for the wave amplitade through the
blocking region. He showed that around the blocking region the amplitude
envelope is given by an Airy function, and away from the blocking region the
wave field consists of an incident wave and a much shorter reflected wave.
Peregrine (1976) obtained the same results with the help of stream [unctions.
Lately Shyn and Phillips (1990) and Trulsen and Mei (1993) have extended
the results to include the effocts of surface tension which, if the yeflected
waves are short enough. leads to the waves being reflected again from a
sccond reflection point.

Al these theories are based on the linear wave assumption and require
that the incident waves be very small. In inlets these conditions are rarely
satisfied and most waves break at or before the blocking point without getting
reflected. Even those waves which do not get blocked lose a considerable
amount of energy due to waves breaking on the strong currents. As opposed
fo depth limited wave breaking, there is a scarcity of experimental data to
study current limited wave breaking.  Lai cf al. (1989) have studied the
kincmatics of the strong interaction hetween waves and opposing currents
but do not give any results about the dyvnamics.
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Figure 1: Wave Blocking at Indian River Inlet, DE USA

Figure 2: Wave field close to the blocking point
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To develop a better understanding of the dynamics involved in the inter-
actions between waves and strong opposing currents, a series of experiments
have been conducted at the Center for Applied Coastal Rescarch. The study
is broadly divided into three parts -- monochromatic wave tests, random wave
tests using fairly broad TMA spectra, and narrow spectral tests which lead
to modulating wave trains. The tests range from conditions where the waves
arc blocked and reflected to conditions where there is steepness limited wave
breaking as the waves shoal on an opposing current.

The purpose of this report is to catalog all the experiments. The report
consists of a main part where the experimental setup and the different ex-
periments are described in details. The second part of the report consists of
the Appendices which contain the naming convention used for the different
experiments, the gage coordinate positions and the figures from all the tests.
Due to the voluminous nature of the report only the main section and the
two Appendices describing the naming convention and gage coordinates are
available in print form. The remaining Appendices containing all the figures
may be obtained by request or by anonymous ftp from coastal.udel.edu.
The report together with its Appendices is stored in pub/reports.

2 Experimental facility

The experiments were conducted in the Center for Applied Coastal Rescarch
atl the Umiversity of Delaware. The aim was to simulate the conditions expe-
rienced in inlets during the periods when there are fast tidal currents propa-
gating out of the inlet. Tidal currents arve turbulent and, compared to gravity
waves, vary over much longer time scales. Thus, in our experiments we gener-
ate turbulent currents with a constant mean velocity. Since we wish to isolate
the phenomenon of wave blocking, the experiments have been conducted in
one dimension only.

2.1 Experimental setup

The experiments were conducted in a 30 m long recirculating flume, and a
schematic plan view of the setup is shown in Figure 3. Currents are generated
with the help of a pump which draws out water at the rate of 0.09 m?/s from
behind the wave paddle and puts it back into the flume at the other end. A
flow straightener has been placed in the flume to remove all the large scale



dnies perustrtiadxe oyl Jo mory uepd dnewWoODS ¢ 0INSL ]

w (¢
oy W g Wz
|
|
Q O OO0 O 0O 0O 0O 0 ¢ 0o 0O C 0000 00O 0O oOC0ODC0oO oOloo o cC _M

. , |
WOT0 | s SNOLLYOOTADVD R
w090 R
£
eyl
SIS

|

) i

1
dINNd




eddies that are generated when the water enters the flume. A perforated
“piston-type” wave paddle is used to generate waves in the tank. This allows
us to draw out the water from behind the wavemaker, and the vertical profile
of the current in front of the wave paddle remains unchanged. The width of
the Hume is 0.6 m and all the experiments are conducted in a water depth
of 0.5 m. The wave periods range from 1.2 — 1.6 s. Thus, the experiments
have been conducted in deep to intermediate water depths.

An inlet is constructed by narrowing the width over a section of the flume
with the help of a false wall. The width of the narrow channel is 0.36 m. The
channel expands slowly to the width of the flume to prevent How separation
in the expansion. Thus, the additional complexity of waves focusing on a
laterally growing jet are avoided. The mean current varies from 0.53 m/s
inside the inlet to 0.32 m/s away from the iulet. The experiments have been
designed such that wave blocking occurs close to the narrow part of the inlet.

An acoustic doppler velocimeter is used to measure the current velocities,
while capacitance wave gages arc used to measure the time series of the water
surface. The surface gage measurements extend from outside the inlet to the
end of the narrow part of the inlet and are shown in Figure 3.

2.2 Coordinate system

The origin is placed at the beginning of the narrow part of the inlet with the
r— coordinate axis pointing down the length of the flume and positive o the
direction of the waves. Thus, the inlet hegins at 0 = —2.8 m. and the narrow
part of the inlet extends from @ = 0 till - = 4.8 m. Due to svinmetry the side
wall of the flume becomes the center line of the inlet. The y— coordinate axis
points positive towards the false wall with 4 = 0 at the centerline (right wall
of the tank). The z— coordinate axis points positive upwards with = = 0 at
the still water level.

2.3 Data collection

Two different types of instruments have been used for collecting data. The
particle velocities have been measured with the help of an acoustic doppler
velocimeter (ADV). The velocimeter measures the horizontal velocities only.
Since the currents in the experiments are fairly strong there is very little noise
and the ADV works very well. The disadvantage with the ADV is that its
maximum sampling rate 1s only 25 hz and thus is not useful for studving the



turbulence structure of the current. Nevertheless, it gives very good mean
velocity profiles. Data collection for the ADV is done with the help of a PC.

Apart from the ADV, capacitance wave gages have also been used in the
experiments. These gages measure the time history of the water surface by
giving out a voltage which changes with water level. The gages ave calibrated
so as to be able to convert the time series from volts to centimeters.

Both the calibration and collection of data from the gages is done with the
help of a Concurrent 7200 data acquisition computer system. The computer
svstem contains 80 A/D channels which converts the analog signals from the
wave gages into digital signals. A Fortran program called Take_data is used
to retrieve the information from the channels at a particular sampling rate
and store them i individual data files. Unlike the ADV, there is no limit
to the rate at which data can be sampled, and the sampling rate tvpically
varied between H0 — 100 hz.

Gage calibration is done by moving the wave gages up and down in still
water, and measuring the voltage at 1 cm intervals. To antomate the pro-
cess, stepper motors have been attached to cach gage wire. These stepper
motors are also controlled by the Concurrent 7200 computer system. Cali-
bration is done with the help of a Fortran program called Geal. To move
the stepper motors, Geal uses three A/D clocks. One of the clocks moves
the motors through the specified distance between calibration points. The
sccond clock collects the data at cach point (100 samples at 100 hz). And
the third clock changes the direction of the motors when the total number
of calibration points in a particular direction (as specified by the user) have
been completed. All the readings are taken with reference to the still water
level and a regression analvsis carried out. All the gages are sturdy and the
calibration curves are lincar. A tvpical calibration curve for 4 gages is shown
in Figure 2.3. Changes in water temperatures affect the calibration curves
shightly and calibration must be done at least once a day. In our experiments,
calibration of the gages was done every time the gages were moved so as to
ensure the proper functioning of the gages. Thus, typically calibration of the
gages was done 3 to 4 times a day.

The Concurrent 7200 computer system is also used to run the wavemaker.
[t has 4 D/A boards, and one of the boards is connected to the wavemaker.
A Fortran program Send_data converts a given paddle time series into an
analog signal at the required sampling frequency (specified by the user),
which then move the wave paddle. The sampling frequency for moving the
wavernaker was around 4000 hz for our experiments, eliminating the need for
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analog filtering of the command signal.

2.4 Current profiles

To determine the variation of the current in the flume, a detailed measure-
ment of the current vertical profile was done at various locations in the chan-
nel. At cach position the horizontal velocity in the o direction has been
measured as a time series with the help of the ADV. Data sampling has been
done at 25 hz for 330 s The mean current profiles are shown in Figures 4
- 8. where b refers to the chanuel width and U vefers to the mean velocity
defined by

U=<ult) > (1)

The measurements have been taken for two cases - when there are only
currents, and when there is a strong monochromatic breaking wave propa-
gating against the currents. The incident wave corresponds to the Test 6 case
for the monochromatic breaking wave tests. There is a considerable amount
of wave breaking but the wave does not get blocked by the current. The aim
is to check if the mean velocity profile varies across the channel both in the
presence and absence of large waves. From the figures we sce that there are
some variations in the y direction away from the inlet, but inside the inlet
this variation is minimal, particularly close to the narrow part of the inlet
where all the wave blocking takes place. We make the assumption that varia-
tions across the channel are negligible and integrate out the v dependency to
simplify our study. Apart from measuring the mean current, the turbulence
in the current was also determined. The turbulence has been defined as
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The vertical profiles of turbuleuce 7/U are given in Figures 9 - 13, There
arc more cross channel variations in the turbulence profile. Since the veloe-
ities due to wave motion have not heen separated from the total velocity,
the plots show much larger turbulence levels in the presence of waves. The
growth of the bhoundary laver as we move closer to the wavemaker can be
clearly observed. The frequency spectra plots of the velocity are given in
Appendix C. The spectra have heen smoothed via Bartlett averaging. The
spectra has 16 degrees of freedom and 6/ = (1.02 hz.

3 Monochromatic wave tests

The monochromatic wave tests have been divided into two parts - The break-
ing wave tests and the wave reflection tests. In both, the test cases consist of
a range of wave heights for different wave periods. In the breaking wave tests
the wave heights are larger, and most of the waves are breaking with very
little wave reflection. In the wave reflection tests the incident wave heights
are very small so that waves are reflected from the blocking point without
any wave breaking.
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3.1 Breaking wave tests

A total of 18 hreaking wave test cases were run. The tests have been divided
mto 3 groups. Each group consists of 6 cases in which the wave period is
kept constant and the wave height varied from small to large values. Data
has been collected 1 the form of a time series of the water surface with the
help of the capacitance wave gages. A total of 8 capacitance gages were used
and data was recorded for 256 wave periods. For each test a detailed data set
of 29 gage locations is obtained. This is done by keeping the first gage fixed
and moving the remaining 7 gages to 4 different locations and repeating the
experiments. The data set from the 4 different runs at the first gage (located
at = —5.2 1) is then used to determine the initial conditions (sce Table 1)
and also to test the repeatability of the experiments. Figure 14 shows the
Y% deviation in the mean wave heights at the first gage, and shows that the
experiments are fairly repeatable to within 6% crror.

The wave height and wave period distributions for all the 18 tests are
shown in Figures 16 and 17. From Table 1 we can sce that Tests 1 to 6
have the same initial wave period with the wave height increasing from Test
[ to Test 6. The same hierarchy exists also for Tests 7 to 12 and Tests 13
to L8, but at different wave periods. The first two group of tests lie in the
regime where the waves are blocked in the lincar limit by the current. The
last group of tests lie just above the linear blocking limit. Except for Tests

13



[. 7 and 13, where the wave amplitudes are very small, wave breaking due
to strong opposing currents was observed in all the test cases. The shoaling
of the waves as they propagate into the narrowing channel can be clearly
obscrved, followed by the subsequent decay of wave energv in the narrow
part of the channel due to wave breaking and blocking. Fluctnations in the
water surface due to the turbulence in the current, are less than e and
make up the noise in the system. Thus, when the wave amplitude falls to the
order of these fluctuations, the wave period distribution becomes scattered.

In Tests 1 and 7, where the mitial wave amplitude was very small, wave
reflection from the blocking point was observed. In Test 13 the wave period
is just above the minimum required wave period for wave blocking and we do
not expect any waves to he blocked. However the scatter in the data sugeests
that there might be partial wave blocking (Stiassnie and Dagan, 1979). which
disappears for the larger wave heights. The amplitude dispersion effects on
the location of the blocking point can be clearly observed in the first group
of tests as the wave amplitude increases from Test | to Test G Similar
amplitnde effects can also be observed in the Tests 7 to 12, From Figure 17
we find that the wave shifts to a longer period in Tests 5 and 6. This shift
is due to the growth of side band instabilitics and is the reason why the
waves in these two test cases do not get blocked. These shifts also oceur in
Tests 9. 10, 11 an 12 but are not as prominent. In the Tast group of tests
there are no significant effects of the side bands. The evolution of the side
bhands through the domain can be seen in the [requency spectra plots for the
monochromatic tests (see Appendix D). The frequency spectra have been
plotted on a semilog scale. For cach case the frequency spectra have been
smoothed via Bartlett averaging, giving 12 degrees of freedom and o f ~ 0.012
hy.

3.2 Wave reflection tests

Wave reflection from the blocking point occurs only when the incident wave
is small enough such that there is no wave breaking at or before the blocking
point. Since wave cnergy cannot propagate bevond the blocking point, and
uo cnergy 1s lost due to wave breaking, the waves get reflected back. The
rellected waves are peculiar in the sense that their phase speed is still inoving
against the current, but their group velocity moves with the cirent. In other
words the wave energy is washed down by the currents. As the waves propa-
gate further away from the blocking region, they continue to get shorter and

14



shorter. The incident and reflected waves superimpose to form the typical
nodes and antinodes patterns in the amplitude envelope.

To study this phenomenon a total of 15 test cases were run. Just like in
the wave breaking experiment, the tests were divided into three groups. Each
group consisted of b test cases having a constant wave period and increasing
wave heights. The incident wave heights were gradually increased to study
the effects of nontinearity on the shape of the amplitude envelope. Wave

blocking occurred close to the narrowest part of the channel (r = 0). To
capture the variation in the amplitude shape close to the blocking region, 43
gage measurements were made between o = — 1.5 m and x = 0.8 m. At cach

gage location the time series have heen recorded for 256 wave periods. Similar
to the breaking wave tests a detatled data set was obtained by moving the
gages to different locations and repeating the experiments. This was done
G times. The initial conditions were obtained from a fixed gage kept at
o= —4.6 m, and is tabulated i Table 2. The repeatability tests (Figure 15)
show that the experimments are repeatable to within 4% error.

Wave height and period distributions for all the 15 test cases are shown
i igures 18 and 19, Scatter in the wave period distribution, at low wave
amplitudes occurs due to the noise in the system. Apart from this scatter,
the wave period remains coustant for all the test cases. This is hecause the
wave heights are too small to develop any side band instabilities. The change
i the shape of the amplitude envelope, with incrcasing wave amplitude, is
clearly visible when we move from Test 1 to 5, and then again for Tests 6 to
10 and Tests 11 to 15, In the case of Test 11, according to lincar theory, no
blocking should oceur. But partial wave reflection still ocenrs because the
required blocking current is close to the maximum current (Stiassnic and Da-
gan. 1979). With increasing amplitude. the required blocking current moves
firther away from the maximum current, and no wave reflection pattern is
observed.  The frequency spectra for all the test cases are shown in Ap-
pendix E. The frequency spectra have been plotted on a semilog scale. For
cach case the [requency spectra have been smoothed via Bartlett averaging.
giving 12 degrees of freedom and 6 f ~ 0.012 hz.



Table 1: Parameters for monochromatic breaking wave tests determined at
= -52m

Test No. | T (s) | H (m) | Sampling freq (Hz)
1 1.2 0.012 83.333
2 1.2 0.018 83.333
3 1.2 0.033 83.333
4 1.2 ().066 83.333
) 1.2 0.095 83.333
6 1.2 0.126 83.333
7 1.3 0.014 76.923
8 1.3 0.029 76.923
9 1.3 0.057 7G.923
10 1.3 0.084 76.923
11 1.3 0.104 76.923
12 [.3 0.130 76.923
L3 1.4 0.016 71.129
14 1.4 0.026 71.4129
15 1.4 0.071 71.429
16 1.4 0.096 71.429
17 1.4 0.117 71.429
18 1.4 0.141 71.1429

6 5]

|

o
£ .

| o

1

|

0(1) é 10 ?‘5 20

Test Runs

Figure 14: Repeatability for monochromatic breaking wave tests
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Table 2: Parameters for monochromatic wave reflection tests determined at
= —4.6 m

Test No. | T (s) | H (m) | Sampling freq (Hz)
1 1.2 0.012 83.333
2 1.2 0.013 83.333
3 1.2 0.014 83.333
1 1.2 0.015 83.333
) 1.2 0.016 83.333
6 1.2 0.013 83.333
7 1.3 | 0.0156 76.923
8 1.3 0.018 76.923
9 1.3 0.021 76.923
10 1.3 0.024 76.923
11 1.3 0.015 76.923
12 1.3 0.020 76.923
13 1.1 0.025 71.429
14 1.4 0.032 71.429
15 1.4 0.038 71.429
4.5[ i — A
3.5%’
S o o
25
2 o ¢ |
1.50 2 4’1 f‘i 8 1‘0 1‘2 1‘4 1‘6 18
Test Runs

Figure 15: Repeatability for monochromatic wave reflection tests
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4 Random wave tests

The motivation for conducting random wave tests was to study the dynamics
of the wave field under blocking and current limited breaking conditions. To
do this 20 spectral design conditions were used. The aim was to use TMA
spectra for all our cases, but this was not possible because, due to the strong
current, all the high frequency components were blocked at the paddle itself.
The experiments were initially designed such that there were 5 groups of 4
test cases. In cach group the peak frequency was kept fixed and the cnergy
of the spectrum varied. But, the spectrum evolves as it moves against the
current, and the spectrum measured at the first gage showed that the peak
frequency shifted depending upon the wave energy of the spectrum. As a
result, the initial spectral quantities for our experiments were determined
from the first gage which was fixed at & = —4.6 m. The results are shown
in Table 3 in terms of the significant wave height (H,) and significant wave
period (7}), determined with the help of a zero-uperossing method.  The
initial test spectra are also shown in Figures 21 and 22.

For each test case, 36 gage measurements were made between @ = —4.6
m and @ = 4.61 m. The detailed measurement sct was obtained by moving
the gages and repeating the experiments 5 times. Figure 20 shows that the
experiments were repeatable to within 3% for all the test cases. The record
length at each gage was 1000 scconds, and sampling frequency was fixed at
o0 hz. The significant wave heights and periods were obtained with the help
ol the zero-upcrossing method, and are shown in Figures 23 to 26. The tests
vary from most of the spectrum getting blocked, to almost no blocking. In all
the tests wave breaking was observed. The frequency spectra plots for all the
test cases are given in Appendix F. The spectra have been sioothed using
a Bartlett averaging technique, giving 24 degrees of freedom and 6 f = 0.012.
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Table 3: Spectral parameters for random wave tests determined at 7 = —4.6

11

Test No. | Ty (s) | H, (m)

1 1.09 0.037
2 1.12 0.047
3 1.17 0.06
4 1.19 0.066
) 1.18 0.035
§ 1.2 0.048
7 1.24 0.066
8 1.25 0.082
9 1.25 0.045
10 1.27 0.066
11 1.3 (0.084
12 1.31 .099
13 1.3 0.043
14 1.32 0.061
15 1.33 0.08
16 1.36 ().098
17 1.37 0.036
18 1.42 (.054
19 1.46 0.071
20) 1.47 0.086

3,5‘

2.5¢ °

54

Figure 20: Repeatability for random wave tests
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5 Narrow banded wave spectra

Experiments were also conducted with narrow banded wave spectra. These
tests were divided into two parts - Wave groups (obtained from a bichro-
matic spectrum) and wave packets (obtained from a normally distributed
spectrum). The aim was to see the effects of a moving blocking point due to
a modulating wave train.

5.1 Wave group tests

Wave groups were constructed by superposing two monochromatic waves
having the same amplitude but slightly different frequencies. The difference
between the frequencies determining the number of waves in a group. In all
3 different sets of wave groups were used. Hach set consisted ol 4 different
energy levels, making a total of 12 tests. The test particulars are given in
Table 4. Similar to the random wave tests, 36 gage measurements were made
for cach test between & = —4.6 m and 2 = 4.61 m, by moving the gages and
repeating the experiments 5 times. Figure 27 shows that the experiments
were repeatable to within 3% for all the test cases.

The frequency spectra at the first gage (@ = —4.6 m) for all the test
cases are shown in Figure 28. From the figure it is obvious that the initial
spectra is not bichromatic. For the larger wave amplitude tests, wave energy
is transferred to the side bands. There is also an extra wave component at a
frequency slightly greater than 1 hz. The closer the frequency of one of the
design wave components to 1 hz, the greater is the energyv at this undesired
wave component. The cause for this anomalous behavior is ciurently being
studied. The corresponding time series for these tests are shown in Figures 29
and 30. The evolution of the frequency spectra and corresponding time series
for all the tests is given in Appendices I and J.

5.2 Wave packet tests

Wave packets have been generated with the help of Gaussian shaped fre-
(quency spectra. For our experiments 12 design test conditions were gener-
ated. Just like in the case of the wave group tests, these tests have been
divided into 3 sets. Each set consisting of 4 different test conditions with
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Table 4: Paramecters for wave group tests determined at 2 = —4.6 m

Test No. | Ty (s) | T (s) | Hy (m) | Sampling freq (hz)
1 1.06 1.2 0.028 88.889
2 1.06 1.2 0.054 88.889
3 1.01 1.3 0.028 87.912
4 1.01 1.3 0.054 87.912
) L.15 1.3 (0.025 82.061
6 1.15 1.3 0.053 82.0561
7 1.06 1.2 (.068 88.839
8 1.06 1.2 0.098 88.889
9 1.01 1.3 0.068 8§7.912
10 1.01 1.3 0.083 87.912
11 1.15 1.3 0.074 82.051
12 1.15 1.3 0.089 82.051

35
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Figure 27: Repeatability for wave group tests
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Figure 29: Time series at @ = —4.6 m for Tests 1 — 6 (wave group tests)
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Figure 30: Time series at x = —4.6 m for Tests 7 — 12 (wave group tests)
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Table 5: Parameters for wave packet tests determined at x = —4.6 m

Test No. | T, (s) | Hiper (m) | «
1 1.125 0.0175 0.08
2 1.125 0.035 0.08
3 1.137 0.013 0.15
4 1.137 0.02 0.15
5) 1.219 0.017 0.08
6 1.219 0.032 0.08
7 1.125 0.07 0.08
8 1.125 0.094 (.08
9 1.137 0.031 0.15
10 1.137 0.05 0.15
11 1.219 0.054 0.08
12 1.219 ().084 0.08

varying cnergy content. The equation for the design spectra was given by

S(f) = B (‘,X])(—().S—A(f — fp)Z) (3)

27y o2

where, f, is the peak frequency, and v and « arc coefficients determining the
cnergy content and width of the spectrum. The larger the value of «v, the
lesser the number of individual wave components in the packet.

The time series of the wave paddle motion for the 12 cases are shown
in Figures 31 and 32. Unfortunately, by the time the wave packet reached
the first gage (r = —4.6 m), the packet had diffused out, leading to much
smaller wave heights (see Figures 33 and 34). This is specially true for Test,
3. where the signature of the wave packet has been all but lost in the noise
of the water surface. The test particulars for the wave packet tests are given
in Table 5. H,p4, is the maximum wave height in the wave packet. T, is the
peak period and o is the parameter used in (3). The modulation of the wave
packets as they travel through the blocking region, and their corresponding
frequency spectra are given in Appendices K and L. The sampling frequency
for all the tests is 100 he.
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Figure 31: Time series of the wave paddle motion for Tests 1 —6 (wave packet
tests)

36



Test 7

10 u T ,

10

S (cm)
(@]

-10

T

1 O T T T T T T T

S (cm)
o

-10 1 I 1 1 I 1 1
Test 10

T T T T T T T

10f -

S (cm)
(@)

_‘1(_)# B

1 | 1 i | 1 b
Test 11
10 T T T T

S (cm)
(@

-10 I 1 L !
Test 12

T T T T

10

T

S (cm)
(@]

1 1 1 1 1 i

30 35 40 45 50 55 60 65 70

Figure 32: Time series of the wave paddle motion for Tests 7 — 12 (wave
packet tests)
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A Naming convention used for the data files

Both the ADV and the wave gage data have been stored in an ASCIT format.
The wave gage data is stored as a time series of the water surface in cm. The
ADV data is stored as a time series of the velocity in cm/s.

The naming convention for the wave gage data for the different experi-
ments is based on the dates on which the experiments were started and is
given by

glgage noj_c.[date]t][test no

where, [gage no} signifies the gage location, [test no] the test and [date]
the particular set of experiments.

Monochromatic breaking wave tests These experiments are denoted by
date = maylh. There are 18 different tests and each test consists of 29
Zage measurenents.

Monochromatic wave reflection tests These experiments are denoted by
date = augs0. There are 15 different tests and cach test consists of 43
gage measurements.

Wave group tests These experiments are denoted by date = sepl8. There
arc 12 different tests and cach test consists of 36 gage measurements.

Wave packet tests These experiments are denoted by date = sep26. There
are 12 different tests and cach test cousists of 36 gage measurements.

Random wave tests These experiinents are denoted by date = oct09. There
are 20 different tests and cach test consists of 36 gage measurements.

The ADV data measurements were made in the form of vertical profiles
of the horizontal current. The naming convention for the ADV data is as
follows

JUL[pos nolS[prof no].VEL

where [pos no| denotes the vertical position of the measurcment in a
profile, and [prof no] denotes the particular profile. There are a total of 26
profile measurements and their particulars are given in Table 6. Each profile
consists of 14 vertical measurement locations, and their elevation from the
still water surface is given in Table 7.
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Table 6: Profile Particulars of the ADV measurements

prof no | & pos. (m) | y/b velocity field
1 -4.2 0.25 current only
2 -4.2 0.50 current only
3 -4.2 0.75 current only
4 -4.2 0.75 | waves and current.
) -4.2 0.50 | waves and current
6 -4.2 0.25 | waves and current,
7 -2.7 0.25 current only
8 -2.7 (.50 current only
9 =27 (.75 current only
10 -2.7 0.75 | waves and current
11 -2.7 0.50 | waves and current
12 -2.7 0.25 | waves and current
13 -1.2 (.28 current only
11 -1.2 0.50 current, only
15 -1.2 0.72 ciarent only
16 -1.2 0.72 | waves and current
17 -1.2 0.50 | waves and current
18 -1.2 (.28 | waves and current
19 -0.2 0.34 current only
20) -0.2 .66 current, only
21 -0.2 0.34 | waves and current
22 -0.2 0.66 | waves and current
23 0.8 0.36 current only
24 (.8 0.64 current only
25 0.8 0.36 | waves and current
20 0.8 0.64 | waves and current

Table 70 Vertical measurement positions for cach velocity profile

Pos 10. 1 2 3 4 ) 6 7
z/h -0.17 1 -0.23 1 -0.29 | -0.35 | -0.41 | -0.47 | -0.53

POS no. 8 9 10 11 12 13 14
z/h -0.59 | -0.65 | -0.71 | -0.77 | -0.83 | -0.89 | -0.95
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B Gage positions for the different experiments

Table 8: Gage positions for monochromatic breaking wave tests

sage I 2 3 1471 5 6 718 9 [0
v pos (m) | 5.2 [ -4.83 | 44| 4] 361|320 | 2824|203 -1.7

sage I 12 | 3714 15 ] 16 [17]18] 19 [ 20
2 pos (m) | -1.4 | -1.11 | -0.81 | 0.5 | -0.25 | -0.03 [ 0.3 | 0.6 | 0.89 | 1.19

gage 21 122 1 23 |24 |25 ] 20 27 1 28 1 29
xpos (m) L5 1.8 121726 3 [3.39]3.79 43|48

Table 9: Gage positions for monochromatic wave reflection tests

gage 1 2 3 4 ) § 7 8 9 10
apos (m) | -4.6 [ -1.4]-1.35 | -1.3 | -1.25 | -1.2 | -1.15 | -L.1 | -1.05 | -1
gage 11 12 13 14 15 16 17 18 19 20
2 pos (m) | -0.95 1 -0.9 ] -0.85 | -0.8 | -0.75 | -0.7 | -0.65 | -0.6 | -0.55 | -0.5
gage 21 22 23 24 25 26 27 28 29 |30
£opos (m) | =045 | =041 -0.35 | -0.3 | -0.25 1 -0.2 | -0.15 | -0.1 | -0.05 | 0
gage 31132 33 | 34| 35 3G 1 37 $h 39 40
wopos (m) [ 0.05 0.0 005 0.2 10250031035 041 1046 | 0.51
gage 41 42 43
x pos (m) | 0.56 | 0.61 | 0.66
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Table 10: Gage positions for random wave, wave groups and wave packet
tests

gage 1 2 3 4 5 6 7 8 9 10
rpos(m) | -4.6]-29]-26]-23{-21-1.7]-1.39|-1.09 | -0.79 | -0.59
gage 11 12 713714 115016 17 118} 19 | 20
2w pos (m) [-0391-0210 102[04[06|08] 1 1214

gage 21 | 22 23 24 2D 260 27 1281 29 | 30
xpos (m) | 16| 1.79 ] 1.99 1 2.19 1 239|259 2.8 | 3 | 3.2 3.4
gage 31 32 33 34 35 30
apos (m) | 3.6 | 3.81 | 4.00 | 4.21 | 4.41 | 4.61
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