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ABSTRACT

A Boussinesq-type model has been developed to describe the wave transfor-
mation in the nearshore region. The model is fully non-linear up to O(u?) where
it is the wave length non-dimensionalized by the water depth. The model is de-
rived from the fundamental equations of continuity and momentum by assuming
that the motion in the surf zone is rotational. This leads to a formulation wherein
the terms in the momentum equation that describe breaking appear as functions of
the vorticity generated in the roller region of a breaking wave. Thus, in addition
to the wave height evolution, the model is able to predict the velocity field due to
the short wave motion in the surf zone. This feature is an improvement over the
existing formulations for breaking waves using Boussinesq equations.

The equations are solved numerically using finite-difference methods. A
fourth-order Adams-Bashforth-Moulton predictor-corrector method is used for time-
stepping and a combination of second-order and fourth-order scheme is used for
evaluating the spatial derivatives. An absorbing-generating boundary condition is
used at the offshore boundary to specify the incoming waves and to absorb the re-
flected /outgoing waves. A shelf with finite but very small water depth is used at the
shoreline. Breaking is initiated when the maximum of the slope at the front face of
the waves exceeds a certain limit. The boundary conditions needed to solve for the
vorticity are obtained from an analysis of weakly turbulent hydraulic jumps.

Comparisons to semi-analytical results are presented for the case of solitary
wave propagation and shoaling. Very good agreement between the model results
and experimental data is obtained for the wave heights, wave set-up, the velocity
field and the undertow. The model performance with regard to the wave mass flux,
the radiation stress, the wave speed, the development of vorticity in the surf zone

and the development of the roller is also presented.

xi



Chapter 1

INTRODUCTION.

Wave breaking is a natural phenomenon that is observed widely in the near-
shore region. By this process, energy is transferred from the organized wave motion
to a wide spectrum of frequencies that include both high frequency turbulence and
low frequency motions such as infra-gravity waves, long-shore/cross-shore currents
and shear waves. These low frequency motions are not always visible to the naked
eye, yet they play a very important role in the surf zone dynamics. Breaking waves
are also the primary agents for the sediment motions on a coast. To model all these
processes accurately, the process of breaking and the velocity field it creates in the
surf zone have to be modeled accurately.

Not all waves break when they reach the shoreline. If the wavelength (L) is
sufficiently large and the wave height (H) sufficiently small, they can be reflected
from the shoreline. Thus, whether a wave breaks (or reflects) as it approaches the
shore is a function of how steep the wave is (i.e., how large H/L is) and how gently

the beach slopes. Iribarren and Nogales (1949) used the parameter

hy
. (1.1)

vV Ho/Lo

where h, is the beach slope, Hy and Ly are the deep water wave height and wave
length respectively to determine the transition between wave reflection and wave
breaking as the waves approach the shoreline.

Observations and experiments suggest that the type of wave breaking is also

a function of the incident wave steepness and the slope of the beach. There is a



continuous spectrum of wave breaking patterns in the near shore region. However, it

was found by Galvin (1968) that the parameter I, as well as the inshore parameter

,  hyg
T Hb/gT21

(1.2)

where H, is the wave height at breaking, ¢ is the acceleration due to gravity and 7'
is the wave period, can be used to classify the breaking waves into four main types.
This classification is based on the physical appearance of the waves during breaking.

In a spilling breaker, a white cap manifests at the crest of a wave, which is
sometimes preceded by a small jet at the crest, and spills down the front face of the
wave. In a plunging breaker, a jet is formed near the crest of the wave which plunges
forward into the water causing a “splash-down” at the point where the jet meets the
water surface. A very prominent air pocket is created by this plunging jet. These
two types of breaking are characterized by the high intensity of the turbulence and
the formation of a quasi-steady propagating bore shortly after breaking has been
initiated. In a collapsing breaker, the crest is unbroken, while the lower part of
the wave front steepens and forms a mildly turbulent surface without the formation
of a bore-like feature. In a surging breaker, the crest again remains unbroken and
there is minor breaking as the base of the front face gets close to the shoreline.
The turbulent intensity in these two types is mild in comparison to the spilling and
plunging breakers.

Galvin (1968) found that in general the Iribarren number I, can be related

to the type of wave breaking as:

spilling when I. < 0.46
plunging when 0.46 < I, < 3.3

surging or collapsing when I.533

Battjes (1974) gave the transition point between spilling breakers and plung-
ing breakers as I, = 0.5.

A good description of the various mechanisms involved in the process of wave
breaking can be found in Peregrine (1983). Comprehensive reviews of the different

types of models to describe breaking waves in both deep water and in shallow water



can be found in existing literature (Battjes 1988; Hamm et al. 1993; Southgate 1993;
Svendsen 1999). These models can be classified into two main types: phase-averaged
models that cannot resolve the individual short wave motion and phase-resolving
models which directly simulate the short wave motion in the surf zone. The first
type includes spectral models, refraction-diffraction models, probabilistic models
and energy based models, to name a few.

The present study will focus on modeling spilling breakers in the shallow
water region using a phase-resolving model. A brief overview of models of this type

is presented below.

1.1 Phase-resolving models

Most of the phase-resolving models are based primarily on the assumption
that the wavelength of the short waves in the near-shore region is large in comparison

to the local water depth. These models can be classified into three categories:
1. models based on the non-linear shallow water equations (NSW models)
2. models based on the Boussinesq theory

3. models based on the full Reynolds equations

1.1.1 NSW models.
The origin of these models can be traced to Airy (1945) who studied long

waves of finite amplitude using the NSW equations. In one-dimension, these equa-

tions are

G+ (@(h +¢))z =0, (1.3)
Uy + Wi + gC = 0, (1.4)

where @ is the depth-averaged velocity, h is the local water depth and ( is the
instantaneous water surface elevation. Airy concluded that, even on a horizontal
bottom, long waves modeled by these equations would continuously steepen as they
propagate. This steepening would cause the waves to transform into “bores” or

“hydraulic jumps” (see also Benjamin and Lighthill 1954).



The NSW equations are essentially the continuity and momentum equations
simplified under the assumption that the waves are non-dispersive (which corre-
sponds to the assumption of hydrostatic pressure). The advantage of the NSW
equations is that they are simple to model and give a reasonably accurate repre-
sentation of the wave profile. Examples of simulations using this type of model
are given in Hibberd and Peregrine (1979), Packwood and Peregrine (1980) and
Packwood (1983).

The NSW equations do not include any mechanism to represent wave break-
ing. Thus, waves modeled by these equations will steepen, even on a horizontal
bottom, until the vertical accelerations can no longer be neglected. At this stage,
the basic assumption that the pressure is hydrostatic becomes invalid.

In the numerical solutions of the equations, a dissipative scheme is generally
used so that the wave front is frozen at some shape before the front face becomes
vertical. The choice of the numerical scheme can ensure that the numerical dissipa-
tion is equal to the dissipation in a bore of the same height. The dissipation as well
as the wave shape is strongly influenced by the grid sizes chosen for the simulations.
A further disadvantage is that the position at which the wave shape is frozen also
depends on the length of the computational domain. Thus, extreme care has to be
exercised so that the waves in the surf zone are modeled properly.

It turns out, however, that these types of models are very practical for an-
alyzing the full non-linear run-up in the swash zone, where dispersion effects are
minimal (see, e.g., Kobayashi et al. 1987; Kobayashi et al. 1989; Cox et al. 1994).

1.1.2 Boussinesqg-type models for breaking waves.

The past decade has seen the advancement of Boussinesq type models to
predict the nearshore characteristics of breaking waves. The classical Boussinesq
model (Boussinesq 1872; Mei and LeMehaute 1966; Peregrine 1967) is a weakly
non-linear and weakly dispersive wave model which represents shallow water waves

of moderate amplitude quite well. For a one-dimensional case, the equations can be



written as

G+ (@(h+¢)): =0, (1.5)
h?

I
uy + uy, + gc.'.z - %(hﬁt)mw - 'Eﬁa:mt = 0. (16)

The model is based on a coupled set of partial differential equations that are, as
in the NSW equations, the continuity and momentum equations. There are two
additional terms in the momentum equation, which correspond to the contribution
from the non-hydrostatic pressure due to the vertical acceleration.

The Boussinesq equations can also be derived in terms of the horizontal
velocity at any arbitrary location in the water column (Nwogu 1993; Wei et al.
1995). The characteristics of the models vary depending on the formulation used.

Substantial effort has gone into extending the validity of the classical equa-
tions to intermediate and deep water regimes by improving either the linear dis-
persion characteristics of the weakly dispersive model (Madsen et al. 1991; Nwogu
1993), or by including higher order dispersive terms (Madsen and Schiffer 1998b;
Madsen and Schaffer 1998a; Gobbi et al. 1999). Similarly, the shoaling charac-
teristics have been improved by including full non-linear effects up to the order of
dispersion retained (Wei et al. 1995; Madsen and Schéffer 1998a).

On the other hand, incorporation of wave breaking in such models has fol-
lowed fairly heuristic principles. In the Boussinesq models, unlike the NSW models,
as the wave fronts steepen, the amplitude dispersion balances the frequency disper-
sion. This feature of the models stabilizes the waves, allowing the waves to continue
shoaling until the computations break down. To incorporate breaking in such mod-
els, it is necessary to determine the way in which breaking is to be included and
how the associated energy dissipation changes those equations.

There are several ways in which the signature of the breaking has been in-
cluded in Boussinesq models. One concept was based on the inclusion of an artificial
eddy viscosity (Tao 1983). The other concepts use a roller model, based on the ob-
servations of Peregrine and Svendsen (1978) where the flow field was split into two
regions - the upper “roller” region having a high shear and the lower region with

potential flow.



Eddy viscosity formulations.

This is based on the concept of an artificial eddy viscosity term of the form
(v14,)5, which is added to the momentum equations (see for example Zelt 1991;
Karambas and Koutitas 1992; Wei et al. 1995; Kennedy et al. 1999). Different forms
of this term were used in an attempt to conserve the momentum in the breaking
region as well as to model the waves accurately. The value of the eddy viscosity
is calibrated with experimental data. With suitable choices for the eddy viscosity,
very good approximations to the wave height data can be obtained. However, there
is no physical justification for such a term, which essentially has the same form
as the turbulent normal stresses in the horizontal direction. Another disadvantage
is that the flow is still modeled as a potential flow. Therefore, the velocity profile
remains unchanged from the standard quadratic profile (or a higher order polynomial
depending upon the order of the terms retained in the Boussinesq theory).

Exzcess pressure formulations.

This approach is based on the concept of a surface roller. The breaking term
is incorporated in the model as an additional pressure term due to the weight of the
roller (Deigaard and Fredsoe 1989). Brocchini et al. (1992) used this approach to
describe wave breaking and found fairly good agreement with measurements.

Excess momentum formulations.

In these breaking models, the roller rides on the front face of the wave at the
speed of the wave (Schiffer et al. 1992; Schiffer et al. 1993; Madsen et al. 1997).
The velocity is assumed to have a constant value in the roller region equal to about
1.3 times the wave speed. This introduces a change in the velocity profile once the
waves break, and hence an excess momentum flux, which simulates wave breaking.
Similar to the previous methods, comparisons with experimental data show that the
results for the wave heights and set-up can be modeled quite accurately, although
the flow is essentially modeled as a potential flow. However, physically, the velocity
profile assumed in such models is unrealistic. In addition, the roller is modeled as
a solid body that travels with the wave. We know that this is not the case, as was

also shown experimentally by Lin and Rockwell (1994).



Verticity formulations.

In this method, the breaking terms are derived directly from the fundamental
equations by assuming that the flow field is rotational (Yu and Svendsen 1995;
Svendsen et al. 1996; Veeramony and Svendsen 1998). It turns out that both
the excess pressure and momentum terms appear in the momentum equation. The
vorticity generated by the breaking is determined by solving the vorticity transport
equation. The resulting velocity profiles are continuous everywhere and thus also

provide information about the flow field in the surf zone.

1.1.3 Modeling the complete Reynolds equations.

Recently, simulations of breaking waves have been performed by Lin and Liu
(1998a, 1998b). They solved the Reynolds equations for the mean flow and the & — ¢
equation for turbulent kinetic energy using the VOI method. The model results
and experimental data were found to be in excellent agreement. The advantage of
this type of modeling is that flow details such as turbulent intensities and shear
stresses can be directly evaluated from the model results. However, it takes about
48 hours of CPU time on a supercomputer to simulate one minute of real time for
the two-dimensional case (the 1D horizontal case). Hence, applications to practical

cases are limited.

1.2 Outline of the dissertation.

The aim of this study is to develop a model that can describe the wave
transformation in the near-shore region including the shoaling region and the surf
zone. In addition, the model should also be able to describe the velocity field
under the short waves in the breaking region. Following the approach of Yu and
Svendsen (1995), a fully non-linear Boussinesq-type model has been derived, which
has very good shoaling properties. The model also incorporates the development of
the vorticity due to the breaking process. This enables the model to describe the
velocity field in the breaking waves.

In Chapter 2, the governing equations are derived starting from the Reynolds
equations. The continuity and momentum equations are integrated over the depth.
‘T'he pressure terms are eliminated from the momentum equations yielding a coupled

set of partial differential equations with the horizontal velocity (u) and the surface



elevation ({) as the two dependent variables. The depth variation of u is obtained
from the equation for the stream function. This gives the velocity at any water depth
as a function of depth averaged horizontal velocity and the vorticity generated by
the breaking process. Substituting this expression of u into the continuity and
momentum equations yield a Boussinesg-type model for surf zone waves. Following
the approach of Madsen and Sgrensen (1993), the linear dispersion characteristic of
the model is improved. A Stokes-type perturbation analysis is performed to show
the analytical characteristics of the model on a horizontal bottom.

The equation that describes the vorticity distribution in the surf zone is
derived in Chapter 3. Instead of attempting to solve this equation numerically, an
analytical solution is obtained using an asymptotic expansion in J§, where § is the
ratio of the wave height to the water depth. The solution is obtained to the two
lowest orders in 4. The similarity between breaking waves and bores is used to
obtain the boundary condition for this equation from the analysis of experimental
data in hydraulic jumps.

The numerical solution to the governing equations is presented in Chapter
4. A fourth-order Adams-Bashforth-Moulton predictor-corrector method is used for
the time stepping and a combination of second- and fourth-order finite difference
scheme is used for the spatial derivatives. Based on the method of von Neumann, the
stability range for the linearized governing equations is evaluated. The absorbing-
generating boundary condition used at the offshore and the absorption mechanism
at the shoreline is also described. The boundary conditions for the vorticity, derived
from the analysis in Chapter 3, are also shown. The modeling of the start of the
wave breaking is described. The spurious short waves generated by the non-linear
interactions, which cause stability problems in the numerical model, are eliminated
using a numerical filter developed by Shapiro (1970).

In Chapter 5, the computational results are presented. The stability and con-
servative properties of the numerical scheme are illustrated by comparing the perma-
nent, form solution of the solitary wave to the solution given by Tanaka (1986). The
computations of solitary wave shoaling, which illustrates the non-linear properties

of the model are shown. These results are compared to the results from solving the



exact boundary value problem for irrotational motion (Grilli et al. 1994). The mag-
nitudes of the terms that describe breaking are discussed, along with the vorticity
distribution in the surf zone. The shoaling and breaking characteristics of the model,
with regard to the wave heights, the crest and trough elevations and the set-up, are
compared to both experimental data and the model of Kennedy et al. (1999). The
distinguishing feature of the present model in comparison to the other Boussinesg-
type models is that the velocity field in the surf zone can also be described. This
feature is illustrated by comparing the model results to the instantaneous velocities
under the waves in the surf zone and the measured undertow. The wave mass flux,
the wave radiation stress and the phase speed results are also presented.

Chapter 6 presents the conclusions of this study, along with some suggestions

for enhancements to the model.






Chapter 2

EQUATIONS FOR THE BREAKING MODEL.

In this chapter, a brief but comprehensive derivation of the governing equa-
tions that describe breaking waves is presented. The model is based on Boussinesq
type equations where the idea is to reduce the equations from two dimensions (hori-
zontal and vertical) to one dimension (horizontal) using shallow water assumptions.
Such types of equations have been used extensively in the shallow water region in
the nearshore with good results (see, e.g., Wei et al. 1995; Madsen et al. 1997;
Gobbi et al. 1999).

The scaling arguments for shallow water waves are introduced first (section
2.1). The depth integrated continuity equation is derived from the differential form
using the kinematic conditions at the bottom and at the surface. The pressure term
is eliminated from the depth-integrated horizontal and vertical momentum equations
yielding one equation for the conservation of momentum. The approximation for
depth variation of the horizontal velocity is then obtained from the equation for
stream function. Substituting this approximation into the momentum equation
then yields the equations for breaking waves (section 2.2).

Stokes type analysis is performed on both the weakly non-linear model and
the fully non-linear model (section 2.3). The analysis shows how, on a horizontal
bottom, the non-linear characteristics of the Boussinesq models with and without

dispersion enhancement compare with the results of third-order Stokes theory.
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2.1 The equations of motion.
The length scales associated with wave motion are the characteristic wave
amplitude, ag, the characteristic water depth, hy, and the characteristic wave num-

ber, ky. These scales yield a set of two independent, non-dimensional parameters
0 =ag/hy and p = koho. (2.1a)

The first parameter, d, describes the relative wave height which is a measure of
the degree of non-linearity of the wave. The second, i, describes the relative water
depth, which is a measure of dispersiveness of the waves. In this study, we restrict
ourselves to shallow water waves, u? < O(1). The classical Boussinesq equations
correspond to an additional restriction of weak non-linearity (6/p? = O(1)).

For shallow water waves, the independent variables are scaled as
z=ko#, z=2/hg, and t= ko\/ghot, (2.1b)

where the (A) represents the dimensional quantities. The dependent variables ¢ (in-

stantaneous water surface elevation) and 1) (stream function) are scaled as

¢=Clag and o =)/(6hor/gho). (2.1¢)

Using these scales, the non-dimensional horizontal velocity (u), the vertical velocity

(w) and the vorticity (w) are

i == gﬁ = 0/ ghou, (2.1d)
= —?g = 0p/ ghow, (2.1e)
. 0u 0w 6y/ghy (Ou 20w\  0v/ghg

YT 927088 he (E "R )T The ¢ (el

To the lowest order of approximation for irrotational motion, where w = 0,
Ou/dz ~ O(p?), i.e., u does not vary over depth. In the case of breaking waves,
the vorticity generated is quite strong. Therefore we can expect w ~ O(1) in the

surf zone. The presence of this vorticity is utilized to formulate and develop the

11



breaking model detailed in this study. In the following, the model is developed for
the two-dimensional case.
The beach slope, hs, is an additional independent parameter which, when

scaled using the arguments above, is
ha = ph, (2.1g)

giving h,L/h ~ O(2r), which is a very steep beach. Hence, it seems justified to
assume h; = O(pi?). This, in essence, implies that the scale for the relative change
in water depth is larger than the typical wave lengths considered. Later, it will be
shown using the computed results from the model that this assumption is not very

restrictive, particularly for waves shoaling on a plane beach.

2.1.1 Depth integrated continuity equation.

For a fluid with constant density, the two-dimensional differential form of the
equation for continuity is

o " ow

0o 0z

where @ and 1 are the velocities in the & (horizontal) and Z (vertical) directions,

=1, (2.2)

respectively. The still water line is at 2 = 0. Integrating (2.2) over the water column
(—=h < 2 < () gives
< i " A
= dz + W(¢) — w(—h) =0, (2.3)
O
where C is the instantaneous free surface elevation and 2 = —h represents the bot-
tom. In this present study, we only consider impermeable bottom where there is no

flow through the bottom boundary. This condition is expressed as

w(—h) = —'&(—fa)g%.

At the free surface, the particles on the surface stay at the surface, which gives the

(2:4)

surface boundary condition as

o) =2 +4()

¢
ot i’ (a5)
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Applying the Leibniz rule of differentiation of integrals to (2.3) and using the bound-
ary conditions given by (2.4) and (2.5) to eliminate the vertical velocities at the

boundaries yield

o o /'f
— = i =l 2.6
ot 0z J_j (2:6)
The instantaneous volume flux is defined as
. ¢
Q= f i dz. (2.7)
—h
With the scaling given by (2.1), the non-dimensionalized continuity equation is
a  aQ
=, 2.8
3" o (2:8)

2.1.2 Depth integrated momentum equation.

The differential form of the horizontal momentum equation is

on 04  Ouw 10p ((’)TN c')fﬂ)
— + )

U 2
ot il 0 0z p O (2:8)

- 9% | 03

Integrating over depth and using the Leibniz rule gives

é ~ -~
pY: fhudz+— ﬁﬁf&Z dZ — [ﬂ, (g€+u%—tu)]é—[ (u%-ﬂu)]_ﬁ

, A
L2 [ penns SRR 1 {(m)ﬁ(p m)cgcl
X oh
—%[(m)_ = (7 ha] (210)

The last two terms on the right hand side are the horizontal components of the forces

on the surface and the bottom respectively. Using (2.4) and (2.5) and defining

8 — E | - N & BC

T — P -(Ta:z)c + (f) T;-_;a:)g 9% l (211&)
~B — l - - i IR 4 @

T — p (Trl:z)_},_ (Ta:a:)_h_ (')'i? 3 (2111))
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results in the depth integrated horizontal momentum equation in dimensional form

{ .
_/ un{z-}--—/ dZ‘— )ah 861[ (_ﬁ+%mm)dé+R;_ff‘
h =

,0 o i
(2.12)

In this study, only the region from intermediate/shallow water depths to the shore-
line is considered. Then the effect of horizontal surface forces, such as due to wind,
is minimal. To further simplify the problem, we also choose to neglect the shear
stresses at the bottom at this time. This implies a free-slip condition at the bot-
tom. In addition, the small deviatoric normal stresses are omitted. Thus, the
non-dimensional form of the simplified equation corresponding to (2.12) is

: oh 9 [*
2 4, _ o o O
/ u® dz = p(—h) a4 pdz. (2.13)

The expression for pressure can be obtained from the depth integrated ver-
tical momentum equation. Again, proceed as before and start with the vertical

momentum equation in differential form

o oub  w®  10p l(arfm +3'?zz)

% B g

= i (2.14)

Integrating from the surface to a level Z and using the Leibniz rule along with

the boundary conditions (2.4) and (2.5) gives the expression for pressure, which in

dimensional form is

B2 _ .z ) — ? + R T g Y
T-g((—z— a[wdz+—£(uw—?)dz, (2.15)
where the small contributions from the vertical components of the forces at the
surface have also been omitted. Notice that formally, Z = Z(x) in the lower limit
of the integrals. The first term represents the hydrostatic pressure component, the
second term represents the contribution from the vertical fluid motion, the third
term is the effect of the vertical acceleration of the fluid column and the last term
represents the weight of the water column supported by the adjacent water columns.

Using the scalings given by (2.1), (2.15) is

(2) =(C — 3) - 6p*w® + 2§—/J<udz+6 23/«5( d
p(z) = 3 T p,atz 0 'u(?.'cz uw dz
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B[ A
oz |, dpghyg

dz. (2.16)

The scaling for the turbulent stress term 7., is obtained noting that there is
no contribution from this term outside the breaking region. Inside the surf zone,
measurements indicate (see, e.g., Cox et al. 1995) that the eddy viscosity 7, =~

0.03h gﬁ. Therefore, the eddy viscosity is scaled as

Uy = phoy/ ghovs, (2.17)

which gives the scale for the turbulent shear stress as

ou  Jw ou o OW
Toz = U = = ) / }
Tz = Vi (8 s S 9% ) Hpgholy (3 +p 31‘) (2.18)
Substituting (2.18) into (2.16) and neglecting terms smaller than O(p?), the vertical

momentum equation reads
o [ o [%
p(z) =(¢ — -;-) — optw? + ;52-8—1{ /z wdz + 6;;2%‘/; uw dz

¢ 3
- ;52% [ uf,% dz + O(u*). (2.19)

Taking the derivative in z of this expression for pressure, integrating over the entire

water column and applying the Leibniz rule gives

¢ 8¢ ¢ a2 8¢
0 / pdz = (h+00)¢ — op? / %i dz + i / 0 / wdz dz
h z

dzot
+ o / /JC ww dz dz + p(— h)gh’
8¢
— /;n @‘/; Vta dz dz + O(u*). (2.20)
Substituting (2.20) in (2.13) results in the equation
i}? 65? /j: u? dz + (h+ 6¢)¢, — op? _6: 881 dz

€ g2 [ 8¢ aC
+ i pyry / w dz dz + 6 i f 92 [ uw dz dz
Sl Jz —h oz



o [ 8% [* Ou
—;szh pye [ Vig— dz dz = O(u?). (2.21)
= o2z

The vertical velocity in the above equation can be replaced with the horizontal

velocity using the continuity equation

w(z) = —% /hu dz, (2.22)

which gives the combined momentum equation in terms of the horizontal velocity

and the water surface elevation as

; % 0 52 € 9
— - dz d
+6 f u? dz + (h+ 60 — N az-atf fh'u.dz zdz

i€ 5 o [* 2 8¢ g2 % 8y
— 2 - — — —_— — -
o /.n g (ai./hu dz) dz — p [h 8:1:2/3 Vtaz dz dz
6C 62 o¢
_6;1,-[ 8:1:2_/,; uz}gfdhudzdzdz

2.1.3 The approximate equation for the horizontal velocity.

(2.23)

To solve (2.8) and (2.23), the depth variation of the horizontal velocity u must
be determined. In traditional Boussinesq models, the shallow water assumption is
utilized to represent the vertical variation of the velocity potential ¢, where u =
d¢/0z, by an infinite polynomial series. The coefficients of this polynomial are
obtained by solving the Laplace equation and applying the boundary condition on
¢. From this approximation of ¢, the depth variation of u is obtained. However,
in the surf zone, strong vorticity is generated by the breaking waves. Consequently,
the velocities can no longer be represented by a potential function. Instead, the

stream function v is used, which satisfies

i = %-"g and w = ~%2§, (2.24)
which implies
Yoz + sz = (2.25)
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or, in non-dimensional form
;52#’1‘3 =+ '4"2; = w. (226)

Analogous to the derivation of the classical Boussinesq equations, the depth variation
of both the stream function and the vorticity is represented by an infinite polynomial

series

(2 + )" (2, 1), (2.27)

<.
I
NgE

=
I
=

_— i(z Bl ) (2.27h)
Then, from (2.27a), -
= fjo(z R (W) + (2 D], (2.280)
Yw = 3 (6 B [Wndes + 200+ Dhalbusnde + (14 oot
. + (n+ 1) (n + 2)h2¢nia, (2.28b)
and
ber = 3z + WP [(n+ )+ Dol (2:280)
Substituting (2;}:), (2.28b) and (2.28¢) into (2.26),
S5+ B2 Wen + 220+ D Ghrs)a + 1200+ Dot
o + (n+1)(n + 2)Yni2(1 + p*h?) — w,] = 0, (2.29)

which gives the recurrence relation

Wy — ”2(1/)1;):5:1: o= 2,“’2(” g5 l)h‘:c(?!"ﬂ.-i-l):c - ”2(,“ + ]-)h:l:rl:'!/}n—l—l
(n+1)(n+ 2)(1 + p2h2) '

Using this relation and the boundary conditions for ¢, the individual terms in the

'l/)n+2 =

(2.30)

polynomial series for 1 (2.27a) can now be determined. The boundary conditions

are

P(z=—-h)=0 = =0, (2.31a)



Y(z=—h)=u = b =uy, (2.31b)

where wug is the velocity at the bottom (z = —h). The free-slip condition at the sea
bed implies that the vorticity at the bottom (wp) is zero.
Retaining only terms up to O(u?), consistent with the weak dispersion as-

sumption mentioned at the beginning, the recurrence relation (2.30) yields

b, B, o 2
Ve = (n+ IL;(ln +2) w (n +(1;()]2::+ 2) 2h n(n +(u1)())z:a +2)
= Wy + O), (2.32b)
el vy ey O e 1)5?{??3(11 e Tl}(li+ 2)
e WP +Out), n=34, - (2.32¢)

n(n+1)(n+2)

Substituting (2.32a) - (2.32¢) in (2.27a), the expression for the stream func-
tion is obtained as

2

1 .
Y =ug(z+ h) — E,U,z(z + h)?[2hguo, + hegtio) — %—ugm (z + h)?

o0

Wy, n
+ Z ( (z + h)"+?
n=

4 (n+1)(n+2)

[s 0]

9 (Wn)zz + 2(n + Dhe(wns1)z + (0 + 1D hgzwng
> RS R e e s (L

n=0

(2.33)

Notice that in the summation over w,, all terms are formally the same order of

magnitude. Hence the summation cannot be truncated. However, the summations

involving w,, are equivalent to integrals over the water column (from (2.27b)). Thus,
the expression for the stream function is

2
Y =up(2+h) — —;a‘!(z + h)?[2h,uo, + heztio] — 'u—ug” (z+h)?

ffwdzdz-,u/ / //wmdzdzdzdz+0( ).
h hJ— h

(2.34)
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An alternative derivation of the expression for v, by direct integration of (2.26), is
given in Appendix A.

From (2.34), the horizontal velocity is obtained by differentiation with respect
to z as

2

u = uy — p2(z + h)[2h,uy, + haztto] — -;—ugn(z + h)?

+/ wdz—p'zj / f Wae dz dz dz + O(ut). (2.35)
K —h J—hJ=h

This expression for the horizontal velocity is different from that obtained by
Yu (1996) in that the gradients of the slope do not appear explicitly in the terms
involving the vorticity. Notice that there are two basic components in the expression
for the horizontal velocity. The first three terms constitute the expression for the
horizontal velocity in the standard weakly non-linear, weakly dispersive Boussinesq
equations. The rest of the terms are associated with the presence of vorticity in the
flow field. In the region before breaking where there is no generation of vorticity
at the surface, these terms vanish. Thus, we define the potential component of the

velocity (u,) and the rotational component of the velocity (u,) as

2

up = g — p2(2 + h)[2hguo, + hagtio) — %U(} (z+ h)? + O(uh), (2.36a)

Up = f wdz — f f [ Wae dz dz dz + O(u*), (2.36b)
h h

so that the total velocity is
W = Uy + Uy (2.37)

The depth averaged potential velocity is then

ﬁth+5C/ Uy dz

2
= Uug — —;J, 2(h + 6¢) (hug) 2 + %UL +6¢)(h? - %)Hnu +0(u"), (2.38)

where Ay = §%¢% — 6Ch + h%. The velocity at the bottom is now expressed as

1 2
Uy = Tp + 5,{1,2(!1 + 8C) (hug) zx — %(h + 8¢ (h? — %)ug“ + O(ut). (2.39)
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Substituting (2.39) into (2.36a) and keeping terms only up to O(u?),

Ay Ay ;
Up =Ty + W (7 — 2) (W) 2z e 5 (?2 zz) Ui (2.40)

where Ay = ¢ — h. The total velocity can now be expressed in terms of the depth-

averaged potential velocity and the rotational velocity as

3

+] wdz—p f f / Wez dz dz dz + O(u*). (2.41)
h h

2.2 The breaking models.

2
U=p+ p (% — 2)(hp) s + > (ﬁ - 22) Up g

Using the expression for u given by (2.41), the momentum equation can be
reduced from a two-dimensional to a one-dimensional description of the flow. The
accuracy of the model is entirely dependent upon the order of the terms retained
both in ¢ and p. A weakly non-linear assumption, where O(d) ~ O(p?) yields the
classical Boussinesq equations in the shoaling region which is detailed in the first
part of this section. As will be shown later, depending on the form of the equations,
this assumption can lead to a significant misrepresentation of the wave heights close
to the breaking region. Extending the validity in this region involves retaining terms

which are higher order in 4.

2.2.1 Weakly non-linear breaking model.

From (2.23), keeping terms only up to O(4, %), the momentum equation is

oQ a [%
T +6B_$/ u? dz + (h+ 0¢) ¢, — 1 fha at/ 53"[ wdz dz dz

¢ o2 a¢
— / c / uau' dz dz = 0, (2.42)

and with similar approximation, the horizontal velocity given by (2.41) reduces to

h?

] 2
U =Ty, — ;52(—21: + 2) (W) gz + % (—

g~ z2) Uy, + ur + O(5p%, ). (2.43)
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The continuity equation remains unchanged from (2.8) and is exact. The terms
involving the integrals can now be evaluated. Notice that these terms are of O(d, 11?)
and therefore only terms of O(1) in u need to be retained. Thus,

5 8¢ _
/ u? dz = / (@, + u,)? dz + O(p?)

h —h

8¢
= f (@,* + 2Upty + Up?) + (2Upuy + 42 — 20,0, — U,2) dz + O(u?)
—h

¢
= (h+ 60)u® + / (u? —%,%) dz + O(u*)

—h
Q'z
T h+6l

where % and @ are the mean velocity over depth and the total volume flux, respec-

+ AM + O(p?), (2.44)

tively. Inside the surf zone, Q) includes the contribution from the depth averaged

component of the rotational part of the velocity. The momentum deficit AM is
defined by

¢
AM = / (u2 — u,?) dz, (2.45)

which is the contribution from the vertical variation of the rotational velocity. Notice
that for AM, the integration is carried out over the entire water column. The reason
for this is that the contribution to u, from the vorticity is mainly concentrated in

the upper flow region. Therefore, evaluating AM as

0
AM E/ (u? — u,%) dz
—h

would result in an underestimation of the momentum flux due to breaking. Similarly,

¢ 62 &¢ o
, B0t / fh u dz dz dz

B [!; dxot / ox /.h W ooz (AP)W +O(6, p ]

th 23 (Q) — (AP)_,, + O(4, %), (2.46)

h

8 o pz
AP = — f f / (ur — @r) dz dz dz. (2.47)
—~h Jz —h

where



And finally, if the shear stress is modeled using an eddy viscosity that is independent

of z, then
6¢ 32 a¢
f pes [ v,— dz dz

8¢ 2
-/ o [u00) ~u(2)] dz
S 52
= T 5 [ur(0C) — ur(2)] dz + O(i?)

(h+5g)3 e (06)) + 8552 (6] + 55 [ (6) 5 |

F .
= 357 i (h+80)]. (2.48)

Substituting (2.44), (2.46) and (2.48) in (2.42),
oQ 6( Q? B o i B Q
Bt +(h+60) =2 (mz)x Wy Quat + 17 | 3 .
+6 (AM), + p? (AP),,, — u*D, = 0. (2.49)

xxt

Equations (2.8) and (2.49) form the basis of the breaking model for the case
of weakly non-linear shoaling and is similar to the equations developed by Yu (1996).
However, the dispersion characteristic of this model is very poor for intermediate
and deep-water waves. Although it is not possible to obtain any significant im-
provement in these characteristics without including higher order dispersive terms;
a modest improvement can be obtained by enhancing the linear characteristics.
This enhancement also leads to a stabilization of the numerical scheme and helps
to reduce the high frequency waves generated by the breaking waves. Madsen and
Schiffer (1998b) suggested enhancement of the frequency dispersion by applying a
linear operator
L =1+ Buh® 3622

on the non-breaking terms in (2.49) and retaining terms of O(4, u?). B is a free

(2.50)

parameter, chosen such that the dispersion characteristic most closely resemble that

of linear theory. Thus, (2.49) becomes

oQ 8 Q? 2 1Y 207 (@
E"I"U +6C)_+d(_h+5q)x+” (B—i) h (Q)mt‘l—ﬁt E(E)mt
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+ @’ Bh? (hCz),, + 6 (AM), + p? (AP),,, — 2D, = O(8p?, pi*). (2.51)

Tt

The last three terms in (2.51) depend entirely on the vorticity field in the domain.
Thus, in the shoaling region where there is no generation of vorticity, these terms
vanish, and (2.51) reduces to the standard Boussinesq equations with dispersion
correction. On the other hand, inside the surf zone the vorticity terms are the only
signatures of breaking, as vorticity is generated due to the breaking process leading
to non-zero contributions from AM, AP and D,.

Equations (2.8) and (2.51) together constitute the weakly non-linear, weakly
dispersive form, with enhanced dispersion, of the equations for conservation of mass

and momentum for the breaking waves.

2.2.2 Fully non-linear breaking model.

As will be seen later, one of the major problems with the weakly non-linear
model is the fact that the shoaling is not predicted very well. For accurate pre-
dictions in the surf zone, this is a severe limitation. Furthermore, with the weakly
non-linear formulation, the Doppler shift associated with waves on a current has
to be treated explicitly (see, e.g., Yoon and Liu 1989; Chen et al. 1998) which
introduces additional terms in the equations.

It has been found by Wei et al. (1995) that including the higher order terms
in 0 in the Boussinesq equations result in a much better prediction of the wave
heights close to the breaking region. It also turns out that, if all terms of O(;?)
terms are retained (i.e., 6 ~ O(1)), then the additional terms needed in the weakly
non-linear equations associated with waves on a current are contained in the O(p%)
terms of the equations (Kirby 1997; Madsen and Schéffer 1998a).

The continuity equation is exact and hence remains unchanged from (2.8). On
the other hand, the momentum equation will have additional terms. The expressions
for the terms in the momentum equation were obtained using Maple (Kofler 1997).
For this case, where d ~ O(1) , we choose to use the ¢ — % formulation, as this form
of the equation become much simpler. Recovery of the ( — @ version of the model

is fairly trivial since
Q = u(h + 6¢). (2.52)
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Thus, the continuity equation is

a¢
5+ 5_[ a(h + 6¢)] = 0. (2.53)

All terms in the momentum equation (2.23) have to be retained and is restated here
for convenience:

oQ 0

a¢ i o i B 5 € 52 € 9
b S ol d i
5 + B'Lf u'dz+ (h+d0)C — /_h ('):L'Bt,/ / wdz dz dz

- d A
op f;; 31 ( f u z) zZ = /—n om0 /z Vi dz dz
5 3
s 2 o 9
o /;h Ox? /.z Yoz /;h udz dz dz

with » now being given by the full expression

A * fX
U= Up+ ,11,2(?1 — 2)(hp) 2 + % (—2 - zz) Upyp + Ur-

The first term in (2.54) is

9 gw _0
a_? = (h+60) 5 — T [a(h + 60))

The value of u? is found from (2.37) substituting (2.40) for wu,:

. , ; o o B
uw =0, +ul+ 2,{1,3(—2L — 2)ty (W) ez + 1 (—2 — 32) Uy Ty

3
A s (A :
+ 2,{.&2(71 — 2)uy (W) g + 12 (?2 - zz) Uy Ty, + O (')

; . A A
— ﬁpz -+ 'U-ﬁ -+ 2“2(71 - z)ﬁ(h-ﬁ?)ﬁ":l: + 0{52 (?2 - Zz) mIPTa'

A A .
+ 2;;,2(71 — 2) (U — ) (W) oz + 142 (?2 - zz) (Ur — Ty )Ty, + O(1*).

Note that the integral over depth of the third and fourth terms in (2.57) is zero
Thus, the convective term in (2.54) is

a [% . 0 , o [0 (
b | u?dz=— 7 3 _ 8
5 -[—n u® dz aw[(h + 0C)u”] + E):n/ (uz — @,°) dz

—h
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+ /., 2;&?(7 — 2)(uy — ) (W) 2z dz
9 - 2 Ay 2 — N
i Be X J (? -2 ) (u, — u,.)upm dz

o _ 9
=(h+ 50%—2 +ao—[a(h+80)] + (AM), + 1* (AMy),,  (258)

where

a¢

AMy = ~@)ee | [ e+ A ) o] 40 @59

—-h
since
a¢
(up — ) dz =0,
—-h

and AM is still defined by (2.45). In the fourth and fifth terms of (2.54), which
represents the vertical acceleration term, the O(p?) terms in the expression for

velocity u lead to O(u?) terms. Retaining terms up to O(u?) gives
u =0, +u, + 0(?) =T+ (v, — %) + O(u?). (2.60)

Thus, the fourth term in (2.54) becomes

€ 52 i 5 s i 92 a [
sl = — udzdz d
/. B:I:Stfz e /_hudzdzdz /h 8'1:31*/ pe / udz dz dz
i g2 o
/‘h Bmat/ a—f r—U,) dz dz dz

+O(1?) (2.61)

The first component of this term evaluates as

1 6 dz d 5¢

+ (h + 5(;)2 |:6Ca:£ﬁz =+ E’zf_hm -+ %ﬁth‘zm + 6Ca~ﬁmt i fﬁz’tw(&]
+ (h + 6C) [26C Ty + 0°Culity + 0CaTihy + 6UCuhy + 0The, G . (2.62)

Notice that the h,-terms have been retained in this evaluation. Later, the impor-

tance of these terms will be shown negligible for reasonably gentle beaches. Using
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the Leibniz rule to bring the derivatives outside the integrals, the second component

becomes

¢ 82 6C 9
/_h Bccé’tf /n. Uy — TUy) dz dz dz
¢ bl
81:& f [ /h ) dz dz dz + O(hy)
€ 5 [
= 3201 / f / (up — ) dz dz dz

= (AP),.i +O(hs), (2.63)

where AP, defined by (2.47), is

8 pdC pz
- [ f / (uy — Uy) dz dz dz.
J—h Jz J-h

The continuity equation (2.53) is used to eliminate the time derivatives of { in (2.62),

which gives

€ 2 i g ;
—k 8'1:3t f fh. Udzdz dz = (h' o 5C) [ 7 Uzt — 2§u'uum-:|

+ (h+ 0¢)? [ haligy + = hmut + 0Co Ty — 28Ry Wlgy — 40h T2
—2éh;gmuu$ — 0Py — 307G, — 8% Coa, ]
+ (h+ 0¢) [~46h2TWt, — 20hyhey® + ShyColiy — 02 hyy
— 5 §2(Coh, W, — 02 hep (02 — 6° ;) - (2.64)

In the fifth term in (2.54), which represents the contributions from the vertical fluid

motion, the O(p?) contributions to u can again be omitted which gives

€95 18 [* 2 wcadra rr_ .Y 2
;/;h. 8_1: (% /;h ! dz) = /-:-h % (g /:hu dz) bl Dm ! O(p’ ), (265)

with

_ 0 a [7 B o [* _ -
D, = Oz [(%[_h(ur — ) dz) T ./;h(u,+ur —,) dz} dz. (2.66)

The first part of this term evaluates as

%o (o (F__\  _2 ,
| | g U d = —(h '-)"—_,"'
-/—h Ox ((355‘ -/—h < Z) dz 3( v+ 6C) Ug U
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+ (h+68¢)? [u'u,x vz + 2Ry + Wiy hy ]
+ (h +6¢) [ZEZILzhm + 4@“}%@] +O0(p?). (2.67)

The turbulent shear stress term remains the same as given before by (2.48). The
final term in (2.54), which is the net shear stress along the vertical sides of the water

column due to the mean flow, becomes

a¢ 82 6C ¢ 32 a¢ a z
—_— —_ dz d = B— i
'/_'h 8:1:2j; n /'hu. z2dz dz = / 8:1:2/,_ uam'/:hudzdzdz

+ Dy + O(p?), (2.68)
with
¢ 52 ¢ bl z
D’u.w = [_h wl |:(U, ?l-?)a:r / udz
+(T@ + u, — )51 / (ur — ) dz] dz dz. (2.69)

The first part of this term is

a¢ 2 a¢ ] vz 1
o 922 / 'u.g u dz dz dz = (h+ 6¢)® [ﬁxﬁm + EW,,M]

"

+ (h+ 5()2 l?éﬁmcm +2(h + 6C) 2 + 20ty h., + %ﬁhmﬁ

1. :
+ 00Uy + Eﬁz hﬂ] + (h 4+ 8C) [00°Canha + 65U, h, T,
+0* ¢, + 200 henls] + O(1®). (2.70)

Substituting (2.56)-(2.70) into (2.54), the momentum equation becomes
= - g | Lia 1 2 i 2] Ao
Uy + 0Tty + Cp — p §h Ugpt + §h,hm'u.3 + hhytig | +op —gh Mg
S POURE AU 5 _
—hptyy + —h* Ul — —h(lUgyt — =hhe U, — —hhmxu — hh, .,
3 3 2
1 2,0
—Chygy — ho (ot — §Qh,mﬁt] + 6% [ o TR ~h§uxfu,m - —hum (¢a),
1
+h (Cﬁi)T ~3 (Czﬁ;ﬂ)x - ~h, (Ctyy), — Cohga @ — ChyUily, — E(;hmmﬂ?‘
3 4
_ﬁchfmwm = C'rhrm:r] + 63.\”‘2 [_gczw:r:r:r = C(::rma'a' + CC’nﬁi
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]. ¥
+~3-C2iizﬁm + [6 (AM), + 1 (AP),,, — 2Dy + 6p* (AM,),
+0pu° Dy, + 5,{521)““,} (h+8¢)~1 = O(uh). (2.71)
The linear dispersion characteristic of this model is the same as that of the weakly
non-linear model described in the previous subsection. As before, the enhancement

of the dispersion characteristics is obtained by applying the linear operator given

by (2.50). This leads to the enhanced momentum equation

1 1
Ty + 0T, + Cp + i [(B - 5) b, — —Q—hhmﬁ; = h,h,j_.ﬁm] + Bp?h*Coga

1 1 2
+ 5:”'2 [_ghzmmrx - hc:.-:ﬂzt + ghzﬁr?&m‘ - ghcﬁ'mt - %hhwmmm

; 1 .
—%hhmmﬁz — hhy Wy, — Chylpy — hyColly — 5( hyotiy + Bh? (Wr)w]
29|l L. __ 1. _ oy 1,
+ 0% GC 7 3h§umum Shum_,_. (Cu), +h (C'u,_?:)m 5 (C “‘“)m

2
_gh' (Cwa,x)g- - C:.':ha::r'ﬁz = Ch:cmxm - %Chmrmﬁz ™ gchmw—r T C’rhrwr]

- : , 1 .
+ 0% [*%C Wz — (Collaz + (Colly + gczﬁmam] +[6(AM), + 1* (AP)
— 2Dy + 6% (AMy), + 64* Dy + 88 Dy (h+6C) ™" = O(p?). (2.72)

wat

The continuity equation (2.53) along with the momentum equation (2.72) form the
fully non-linear (up to O(u?)) Boussinesq type model which includes the breaking

characteristics of the waves.

2.3 Stokes-type analysis for horizontal bottom.

The characteristics of the various formulations of the Boussinesq type models
on a horizontal bottom and in the shoaling region have been analyzed extensively by
various researchers (see, e.g., Madsen and Sgrensen 1993; Wei and Kirby 1998; Mad-
sen and Schiffer 1998a; Gobbi et al. 1999). The analyses include linear shoaling
properties, energy transfer to the higher harmonics, triad interactions and wave-

current interactions. In this study, the primary focus is on modeling the shallow
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water breaking waves and therefore an extensive analysis of the deep-water char-
acteristics is not performed. The analysis below shows some of the shallow water
characteristics (before breaking) of the model described above.

Stokes-type perturbation analysis has been utilized by various researchers
(see, e.g., Madsen and Sgrensen 1993; Madsen and Schéffer 1998a; Gobbi et al.
1999) to analyze the behavior of the equations of wave propagation. For shallow
water models such as the Boussinesq type models, it has become customary to
perform such an analysis to establish the deep-water limit of applicability of the
particular form of the equations. Furthermore, although the Stokes theory is known
not to be particularly suited to describe shallow water waves, it provides a clear
indication of how the different formulations of the Boussinesq equations differ from
each other.

A perturbation approach yields expressions for the amplitudes of the second
and third harmonics as well as that of the amplitude correction to the linear dis-
persion for the particular set of equations. These are then compared to the results
from the third-order Stokes theory. Madsen and Schéffer (1998b) as well as Gobbi
et al. (1999) show that retaining terms up to O(u?) result in an extended domain of
applicability (up to kh ~ 6) for the Boussinesq type equations. Further, they also
show that such a model is more accurate in the shallow water regime than a model
which only retains terms up to O(y?).

In the present case, the primary interest was in modeling of breaking waves
in shallow water. Hence, only terms up to O(p?) have been retained. On the other
hand, it is still relevant to establish the region of validity for the sets of equations
under consideration here. It is also noted that in order for the Stokes approximation
to be valid, this type of analysis is actually based on the assumption that O(§) < 1
and p? ~ O(1).

The Stokes third-order theory for regular waves gives the water surface ele-

vation as
¢ = ay cos O + day cos 20 + 6%az cos 36, (2.73)

where 0 = kx — wt, a, is the amplitude of the primary wave, a, is the amplitude of

the second harmonic and a3 is the amplitude of the third harmonic. The first-order
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dispersion relation is the one given by linear theory, which in non-dimensional form

is
;
Wy tanh x
o ’ 2.74
k2h K (2.74)
where k = pkh. The Padé [2,2] expansion for (2.74) (Madsen and Schiffer 1998a) is
2 14 k2
S0 o T 15 (2.75)

k2h 1+ k2
The results of the third-order Stokes theory are (Skjelbreia and Hendrickson 1961;
Whitham 1974)

1 2
ay = Z%m(:othﬁ.(S coth’k — 1), (2.76a)
3 a} ,(1+8coth’k)
a3 = ===k 2.76b
YR sinh’s \2:760)
1 a? ,(9 tanh®x — 10 tanh®k + 9)
. Eﬁéh} tanh*s ’ (&)

where wq3 is the third order amplitude correction to the first order dispersion rela-

tion, so that the dispersion relation reads

The series expansions for ay, az and w3 from k£ = 0 obtained from (2.76a)-
(2.76¢) are

3af 1 2 , 7 4 6
g = ZEE (1 T gﬁl + ZG‘K. —I—O(h’. ) ) (277‘3')
27a3 1 5 64
T e 1 = R e 6 ; b
as 64}22&4( + 3kt -|-O(.=:)), (2.77b)
_9ai1 2, 113 4 6
W13 = 167373 (1+ g T 3" +O(k") ) . (2.7%e)

For the Boussinesq type equations, following the procedure given by Madsen

and Schéffer (1998b), weakly non-linear solutions of the form

¢ = ay cos O + day cos 20 + §*az cos 30, (2.78a)
U = uy cos 0 + duy cos 20 + §%u; cos 30 (2.78b)

are sought. U stands for the volume flux in the weakly non-linear equations and the

depth-averaged velocity in the fully non-linear equations.
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2.3.1 Analysis of the weakly non-linear equations.

The continuity and momentum equations for the case of no wave breaking
and horizontal bottom is, from (2.8) and (2.51),

G+ Qz =0, (2.79a)
Q?
Qe+ (h+8C) +6 | ==
+ pi (B — %) h2Q ot + 12 Bh3Cpun = O(82, 014%). (2.79b)

Substituting (2.78) into (2.79) results in the following asymptotic system of equa-

tions in 4:

(urk — ayw) sin 0 + 26 (ugk — agw) sin 20 + 36% (uzk — azw) sin 30 = O(6%), (2.80a)

1 ; By 7
[ulw —a1kh — (B .- 5) pruwplkih? + Bﬂ.l;azk%,a] sin 0

1 k1
+ 4 [Q'ugw —8 (B — 5) ugwplk*h? — 2a9kh + 8Bayu’k*h® — ulf_ — Ea?k] sin 26
!

P k3
N { [3'u3w — 3askh + 27Basp’k*h® — 27Bugwp’k*h? — 31.;12.525 — §a1a2k

5 . & k k 3 1
+9uswp’kh? + Zalu?-}ﬁ] sin 360 + [—ulugﬁ + Zu:fal}% — §a1rf.2k] sin 9}
= 0(6%). (2.80b)
The coefficients of the powers of § in (2.80a) gives the relation between wuy, uy, us

and ay, ay, az. Substituting these relations in (2.80b) and equating like powers in §

gives, at the lowest order, the linear dispersion relation

2 2

wg 1- Bk

- = —. (2.81)
Comparing this result with (2.75) indicates that B = —1/15 gives an exact match

between the result from the Boussinesq theory and the Padé [2,2] approximation of
the result from the Stokes linear theory. Figure 2.1 shows the ratio of the result from
the Boussinesq theory and the exact result given by (2.74) for the case of B = 0

and for B = —1/15. It is evident that B = —1/15 does indeed yield a much better
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Figure 2.1: Ratio of the linear dispersion relation from the Boussinesq equations
to the linear theory for B =0 (— ——), B = —1/15 ( ) and for
Nwogu (1993) (--—-- ).

agreement. At kh = 3, the error is only about 2% whereas for the classical version
of the Boussinesq equation where B = 0, the error is about 13%.

The figure also shows the linear dispersion relation for the extended formu-
lation of Nwogu (1993) which is a different form of the Boussinesq equations. This
model is based on the velocity u, at the reference depth z, in the water column.
The reference depth is chosen such that the dispersion relation most closely approx-
imates the dispersion relation using linear theory. The linear dispersion relation
given by the ¢ — u, model is

Wi _1-(a+1/3)w?
k%h 1— axk?

(2.82)

where @ = 22/2 + z, = —0.39 yields the best fit to the linear dispersion relation.
This relation is also valid for the fully non-linear model of Wei et al. (1995). It is
seen that the dispersion characteristics of the ( —u, model is better than that of the

¢ —u model. Further improvements to the dispersion characteristics of both models

32



can be obtained by retaining terms up to O(u*) (Madsen and Schéffer 1998a; Gobbi
et al. 1999).
At O(9), (2.80b) gives the amplitude of the second harmonic as

Jat 1 1 9

At O(6?) in (2.80b), secular terms exist. These terms are eliminated by accounting

for the amplitude correction to the dispersion relation as given by (2.76d), which

gives
9a21 [14+2(3-B)s*+ (1 - B)* & Bl
W ... : .
T 16h%k2 |1+ (L -2B) w2+ B(B-1) &t
The series expansion, with B = —1/15 reads
9 a2 1 Ly . @8 4
S R s == PN 2 8['
Y137 16 12 k2 ( o™ T 105 \2-86)
Finally, the non-secular terms give
27 a3 1 1 a1 o
efaml ) afl _pla.(l_gp 2.86
9= 64 h? Kt [ ¥ (9 )}(h " (9 ) = (450}

Comparing (2.83), (2.85) and (2.86) for B = —1/15 to the Stokes solutions given by
(2.77) show that the results from the Boussinesq equations are correct only to the
lowest order. The coefficients of x? are significantly smaller for all cases (see also
Madsen and Sgrensen 1993).

Figure 2.2 shows the comparisons between the full expressions for the weakly
non-linear case and the results from the Stokes expansion, for the case of B = 0.
For kh ~ 0.5, the error, when compared to the third order Stokes theory, in the
estimate of ay and agz is about 15% and for wy3 it is about 30%. This implies that
the energy transferred to the higher harmonics will be significantly less in the case of
the weakly non-linear Boussinesq equations. The magnitudes of the errors increase
dramatically for waves in deeper water. No significant improvement in the non-linear
characteristics is noticed even for the enhanced (B = —1/15) weakly non-linear

equations (figure 2.3). It should be noted here that the non-linear characteristics of
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Figure 2.2: Non-Linear characteristics of the weakly non-linear Boussinesq equa-
tions in comparison to the third order Stokes theory. ay/aj ( )

az/a3 (— ——) and wyz/wi; (--—-- ).

the weakly non-linear { — @ model differ substantially from that of the weakly non-
linear ( — 7 model, which have also been derived by Madsen and Schéffer (1998b).

The perturbation analysis of the enhanced weakly non-linear ¢ — % model give the

expressions
3a? 1 17 16
=2 |1+ —Kk>+ —x! 2.87
e 4!m2[+15’“+225”]‘ \&8rs)
27 a3 1 142 1483
= ——— |14+ —K%2+ —* + O(°® 2.87b
9= 64 h2 ki [ st TO )]’ \AuBTR)
9 a? 1 5, 14 , )
q = —— — J— o |- 2.87c
“13 = TR 8 [ hgh tagt Tols .

2.3.2 Analysis of the fully non-linear equations.

We proceed as in the previous case and look for a perturbation solution that

result in an asymptotic system of equations. Only the results are shown for this
case. Substituting (2.78) into (2.53) and (2.72), omitting the terms which describe
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Figure 2.3: Non-Linear characteristics of the enhanced weakly non-linear Boussi-
nesq equations in comparison to the third order Stokes theory. ay/aj

(—), as/aj (— ——) and wiz/wly (—-—--).

breaking, and proceeding as before yields the second and third order characteristics

as
~3a} 1 1 . 5 1 i
27a3 1 2 9 1 35 g\ .4 s
9a?1 |1+ (2-6B)k*+ (& — YB+9B?%) k' + O(x°)
13 T3 3 ‘ T ; (2.88c)
16 h? K2 1+(§ﬁ3),€2

With B = 0, which corresponds to the fully non-linear Boussinesq model based on

, the series expansions for (2.88) around k = 0 are

3a? 1 1

g = ZFE [1 -+ gf‘ﬂ :! y (2898')
2743 1 g, 1., 6

Gy ey [1 + 3" + " +O(k )] , (2.89b)
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9 a?1 1, 8
a1 f, 1., 8 4. o508 9.89¢
16 12 2 g g+ o) (2.86¢)

Figure 2.4: Non-Linear characteristics of the fully non-linear Boussinesq equations
in comparison to the third order Stokes theory. as/a ( ), a3/ a}
(——-) and wiz/wiy (----- )-

Comparing to the Stokes results given by (2.77), it is seen that the results
from the fully non-linear equations are slightly better than that from the weakly
non-linear equations even though formally they are accurate only up to the lowest
order. This is illustrated in figure 2.4 which show the comparisons between the full
expressions given by (2.88) for the case of B = 0 and (2.77). For kh ~ 0.5, the error
now in the estimate of ay is about 8%, of az, about 12% and of w3, a little more
than 20%. In effect, the error is about halved for smaller values of kh when using
the fully non-linear version (up to O(z%)) of the Boussinesq equations even without
the enhancement. Madsen and Schéffer (1998a) show results for the case when only
terms up to O(dpu?) are retained. The variations of ay, az and w3 are quite similar.
However, slightly better results are obtained by retaining the O(6%4?) terms. Also

worth mentioning is the fact that the O(6*4?) terms in the equations do not enter
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into the analysis here. These terms only contribute to the fourth harmonic (a4)
which is not considered here.
With B = —1/15, the series expansions for (2.88) become

3402 1 2., 1
=t [T Sgl g, 2.
iy 4hn2l+3& +25r€l, (2.90a)
27&?1 O 439
= o ——— 1 = e 4 'ﬁ : b
a3 64}12%4[ +3m +675m +O(H)], (2.90b)
9 a1 2 . 997
g b | Tl iRt (RS | 2.
W13 = 7575 3 [ tgf tees + (K )] (2.90c)

Figure 2.5: Non-Linear characteristics of the enhanced fully non-linear Boussi-
nesq equations in comparison to the third order Stokes theory. as/aj

( ), as/aj (— — —) and wiz/wiy (--—-— ).

The results from the enhanced equations are formally accurate up to O(x?).

Figure 2.5 show the comparisons between the full expressions given by (2.88) for
the case of B = —1/15 and (2.77). In this case, the agreement is very good up to
kh < 0.5, with the error reaching only about 5% even for w;3. In contrast to the
situation for the weakly non-linear equations, there is a significant improvement, in

the second and third order solutions.
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Figure 2.6: Non-Linear characteristics of the enhanced fully non-linear Boussinesq
equations (without using continuity equation to replace ¢, in the mo-
mentum equations) in comparison to the third order Stokes theory.

az/a; ( ), as/aj (— ——) and wiz/wiy (—-—-— i

The applicability of the analysis can be pointed out effectively by considering
the fully non-linear momentum equation when the time derivatives of ¢ are retained

in (2.62). Mathematically, the resulting equation is exactly equivalent to (2.53).

However, the perturbation analysis for the enhanced equations (B = —1/15) gives
ay = %%{é [1 + %mz + 2—17,»<.“] : (2.91a)
az = gg—i—q [1 + %e? + ;[l};gn" + O(K,G)] , (2.91b)

wig = f—ﬁz—ié [1 + %ﬁ:g + %n’i + O(}cﬁ)] . (2.91c)

In this case, the results are very different from (2.90). The coefficients of k2,
although very close to that in (2.77), are formally wrong. Figure 2.6 show the results.
It is obvious that the higher order results (especially for a;) have much larger errors

than that is seen in figure 2.5. Thus, the form of the equations influences the results
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drastically. Therefore, it stands to reason that deep-water characteristics of the
model can be improved by modifying the form of the equations in a mathematically
consistent manner. Such improvements have been obtained for Boussinesq equations
accurate to O(u') by Madsen and Schéffer (1998a).
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Figure 2.7: Non-linear characteristics of the Wei et al. (1995) equations in com-
parison to the third order Stokes theory. ay/aj ( ), az/ai (——
—) and wy3/wiy (—-—-— J

Finally, figure 2.7 show the results from the fully non-linear model of Wei
et al. (1995). This model, as mentioned before, is based on the ¢ — u, formulation,
where u, is the velocity at some location inside the water column. This location
is chosen such that the linear dispersion characteristic matches that given by linear
wave theory as closely as possible (figure 2.1). For this model, the energy transfer to
the higher harmonics is larger than that predicted by the Stokes third order theory
and the amplitude correction to the dispersion relation is smaller.

Figures 2.2-2.7 show that the  — @) and the { — % versions of the Boussinesq
equations transfer less energy to the higher harmonics than the ¢ — u, version. The

consequence of this is that the shoaling of the waves is under-predicted by the present
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model and is over-predicted by the Wei et al. (1995) model. However, as shall be
seen later for the fully non-linear equations, this inaccuracy in the representation
of the shoaling waves is very small even at the location where breaking starts in

shallow water.
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Chapter 3

EVALUATION OF THE BREAKING TERMS.

In the previous chapter, the governing equations that describe waves which
shoal and break were derived. The terms in the equations specific to the break-
ing process are functions of the vorticity generated by the breaking waves. The
distribution of vorticity has to be determined before these terms can be evaluated.

The process of breaking for quasi-steady breakers has been documented by
Lin and Rockwell (1994). It was found that the breaking causes an abrupt change
in the slope of the free surface at the toe of the “roller”. In this region, there is a
sudden change in the velocity profile, which represents a change from the flow in
the interior region of the wave. The discontinuous slope of the free surface, along
with the flow separation serves as a source of vorticity. Essentially, we can say that
the vorticity is generated by the “roller”, which rides along on the front side of
the wave crest. This vorticity then spreads downward and backward in the water
column to the interior region of the wave. This spreading results in an increase in the
magnitude of the instantaneous orbital velocities, especially in the front part of the
wave. The equation that describes this process is the vorticity transport equation,
which can be solved if the proper boundary conditions can be specified.

Yu (1996) arrived at a parameterized vorticity distribution based on the mea-
surements of Lin and Rockwell (1994) for the vorticity in a spilling breaker. This
distribution was then applied at the mean water line. While consistent with the
Boussinesq approximation, this turns out to be a major source of inaccuracy. Fur-
thermore, the measurements of Lin and Rockwell (1994) give only a few instanta-
neous vorticity patterns for a quasi-steady roller, which is not enough for a reliable

calculation of the ensemble averaged vorticity in the breaking wave. A numerical
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calibration, which is likely to depend on different wave conditions, was therefore
used to determine the magnitude of the vorticity at the boundary.

Ideally, a larger set of measurements for multiple wave conditions is necessary
to avoid these problems. At present, such a data set is lacking. Therefore other
methods have to be used to obtain the boundary condition for the vorticity.

When viewed in a coordinate system moving at the wave speed, we do know
that breaking waves have flow patterns, especially around the roller region, that are
very similar to that observed in hydraulic jumps (see, e.g., Peregrine and Svend-
sen 1978; Madsen and Svendsen 1983; Svendsen and Madsen 1984). The absolute
velocities and the bottom boundary layer would of course be different under this
coordinate transformation. On the other hand, the turbulent stresses, the surface
profile, the velocity profile and the vorticity do not change with the change in coor-
dinate system,

One of the difficulties has been to obtain reliable measurements of the flow
inside the jump, which, particularly in the turbulent front, usually includes strong
entrainment of air bubbles. One of the pioneering studies by Rouse et al. (1959)
bypassed this problem by conducting the measurements in a wind tunnel in which
the free surface was replaced by a smooth wall with the shape of the mean water
surface in a jump. Though this also removed the important effect of gravity and
surface penetrating turbulence, the study gave useful results and insights, and its
careful analysis of the measurements set the standards for many later investigations.
Rouse et al. (1959) used the then novel technique of hot wire anemometry. Later,
improved versions of this experimental technique made it possible to also obtain
measurements in real jumps in water (see Resch and Leutheusser 1972; Resch et al.
1976).

Also, Laser Doppler Velocimetry has been used both in regular hydraulic
jumps (Kirby et al. 1995) and in the closely related problem of breaking waves
trailing hydrofoils (Battjes and Sakai 1981). The technique of Particle Image Ve-
locimetry (PIV) was pioneered for waves breaking behind an airfoil by Duncan
(1981) and later used for the same problem by Lin and Rockwell(1994, 1995), and

for the flow far downstream of a hydraulic jump by Hornung et al. (1995).
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The similarity between hydraulic jumps and breaking waves was the original
motivation for the experiments of Bakunin (1995). Since this similarity only exists
for jumps of relatively small Froude number, the experiments were carried out for
relatively weak jumps with F = 1.38, 1.46 and 1.56. Thus, these measurements
provide an excellent set of data from which the breaking wave parameters can be
obtained.

In this chapter, the vorticity transport equation is derived in section 3.1 and
the solution method is described. The experimental setup for the measurements in
the hydraulic jumps is briefly described in section 3.2 along with some of the basic
analysis of the experimental results. The final section of the chapter discusses the
results for the roller thickness, the shear stresses, the vorticity and the eddy viscosity

in the jumps. A more detailed analysis can be found in Svendsen et al. (1998).

3.1 The 2-D vorticity transport equation.

The Reynolds equations in two dimensions are

i + i Vi + 'm@ = sl + Ofas | Ofus (3.1a)
ot oz 0% p O oz 0% o

0w 0w ow 1op l Oy . BT

— il D s o b
ot “or  V8r oz (a:r: % az) (3.1b)

where 4 and 1w are the ensemble averaged horizontal and vertical velocities, p is the
ensemble averaged pressure and 7., and 7,, are the Reynolds stresses based on the
ensemble averaged velocities. If we express the Reynolds stress 7;; in terms of an

eddy viscosity 7, then 7;; can be written as

8:1,3 c')u,j 2,

where k is the turbulent kinetic energy and d;; is the Kronecker delta. The pressure

p is eliminated from equations (3.1a) and (3.1b) to give
ow 0w ow 1] 02 0 9?
~r — = = | (Tas = T) — | = == ] Tz | - 3.3
A TR T [8:?:82 (Taz = 722) (8:1:2 Bz") ! ] (34)
If we assume the eddy viscosity #, is a constant, (3.3) reduces to
oW & ”(')d) n waa 0w N 0w
ot 3 0z 052 ' 0%

= (3.4)
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At the free surface, in the region that does not include the roller, we neglect
the small vorticity due to viscous effects. In the roller region, the measurements
from hydraulic jumps shown in the later sections of this chapter indicate that the
free surface vorticity will also be close to zero. However, strong vorticity is generated
inside the roller region. We approximate this vorticity generated by the vorticity at
the “dividing” region between the roller and the interior. This situation is illustrated

in figure 3.1.

X
Figure 3.1: Sketch of boundary conditions for the vorticity.
Then, the boundary conditions for vorticity are
Wz = t) = @4, 1), (3.5a)
@(2 = —h,f) =0, (3.5b)
and the initial condition is
o(z,t=0)=0, (3.5¢)



where (, is the lower edge of the roller. Note that in the region where there is no
roller, we have ¢, = (. This also implies, from the discussion above, that w; = 0
when (. = (. As mentioned before, the bottom boundary condition of zero vorticity
is consistent with the assumption of free-slip at the bottom. The values of (. and
w, (the vorticity at (,) are discussed later in this chapter. The effect of assuming
constant eddy viscosity will be discussed later in conjunction with the model results.

The scales given by (2.1b)-(2.1f) are used to non-dimensionalize (3.4) and we

get

2 2
Ow Ow G_wzlft( Noa aw). (3.6)

oI Sl e 2
ot o oz e 0z M ox?2 022

Finite-difference methods can be used to solve (3.6) numerically. However, the water
depths in the surf zone are quite small. To resolve the vorticity distribution over the
water column without the use of sophisticated techniques, very fine grid sizes are
required. This in turn influences the size of the time steps required for the finite-
difference scheme used to solve the Boussinesq equations. Rather than attempt to
adapt more efficient numerical methods in this study, we try to obtain analytical
solutions to (3.6).

In the surf zone, we generally have y < O(1) and therefore we omit all terms
of O(y%) in the vorticity equation. Furthermore, it will be shown later that the h,
terms in the O(p?) non-linear terms can be omitted with very little effect on the
wave shoaling (see also section 1, Chapter 2). The same can be expected for the
breaking terms. Therefore, in the following considerations, we limit ourselves to the
case where h, ~ O(u?).

To obtain the analytical solution, we first change the coordinate system from

(%,2,t) to (z,0,t) where

h+2
=, t=1, g = m, (37)

which transforms the domain from —h < z < (, to 0 < ¢ < 1. Then, in the new

coordinate system

Oow dodw  Ow b0 0C Ow  Ow

% — ®mocTa — hisCotdse o )
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Ow do Ow 1 Ow

9z~ 0200  h+0( 00 (&:8h)
Pu _ (d0\e _ 1w -
022 0z) 0o (h+6()%do?’ '
ow do dw = Odw do 00w Ow

B E%*{“ B — “hti Bz 5{;4-%—1-0(.’%). (3.8d)

Equations (3.8a)-(3.8c) are now substituted into (3.6), which gives

8“8z htol. oz 0w
+6 w ow v, 0w
h+0C| 0 (h+0C.) 802

B_w_‘_a o 0C B_w 56w_62 uo 8(8?_3
ot h+ 8¢, Ot

+ O(1?, hy). (3.9)

The boundary conditions (3.5a)-(3.5¢) in the new coordinate system are

o= 1,8 =zt (3.10a)

w(o =0,t) =0, (3.10b)
and the initial condition is

w(o,t=0)=0. (3.10¢)

The governing equation for vorticity (3.9) with the boundary conditions (3.9)-(3.10c)
is easier to solve if the boundary conditions can be homogenized. This is accom-

plished by redefining the dependent variable w
w = Q + ow. (8:11)

Equation (3.9) then transforms to

@Jrgc')ws_é W0 %—6 o OCB_ w @er
ot ot h+ d6¢, Ot h+6C 0t h+d| \ 0o ’
o0 0 0? 1)
[/ - .
4 fus + Sug =2 = . ot 0%, 1%, h.),

oz or  (h+4¢.)? do?

and the new boundary conditions are

e =1.1) =0, (3.13a)



Qlo=0,t) =0, (3.13b)
and the initial condition is
Qle,t =0)=0. (3.13c)
We now assume {2 to have a solution of the form
Q=wW 4+ 0w® 4 520 4 ... (3.14)

Now, (3.14) is substituted into (3.12) and terms of the same order in § are collected.

This gives the following first and second order boundary value problems in §:
O(1) problem:

Aw™) 92w Ow,
& e - Tam elin)

where £ = 14/h?, with the boundary conditions

w(o=1,t) =0, (3.15b)

wW (g =0,t) =0, (3.15¢)
and the initial condition

w®(o,t = 0) = 0. (3.15d)

The solution to this system of equations is obtained by first expressing the right
hand side of (3.15a) in term of a half-range sine expansion so that
Ow, =

i Z FY sin nro, (3.16)

n=1

which gives

+ 8
F\t =2 / 02 sinnmo do
Jo ot

a 2 O
=

(3.17)
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We now look for solutions to w™ of the form
w) = Z G sin nmo. (3.18)
n=1

Note that (3.18) satisfies the boundary conditions. Equations (3.18) and (3.16) are

substituted into (3.15a), which gives

%) 8G£11)
> R kn?r2GY) — FY | sinnmo = 0, (3.19)
n=1

which, to be true for all o, implies that

Llel

— kn’m?G) — F =0, (3.20)

The solution to the ordinary differential equation (3.20), after substituting for FY
from (3.17), is

i
P = (-1 = [ Beentetn

, ™4 dr. 3.21
nw J, OT 4 ( )

O(d) problem:

At this order the governing equation can be written as

Aw@ 92w(?) @

Eraalrw = N (3.22a)
where
2,1 ) ¢ OwV) Hw) Ow.
2) _q, e 0w 00 00w 0w ) Ows
e i g Y e Y Tl e ™ Ba " Yo
M /9w
w W
= .._h_. ( 80 _|_w3) y (3221))

with the superscripts on u and w referring to the solutions obtained from the first

order equation. The boundary conditions are

0, (3.22¢)
w® (o =0,t) =0, (3.22d)
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and the initial condition is
w®(o,t =0) =0. (3.22¢)

The solution to (3.22) is obtained as in the O(1) case,

w?® = i G? sinnro, (3.23)
n=1
where
GP = / t F®em'msr=t) gr, (3.24)
0
F3 =2 /1 F® sinnro do. (3.25)
0

In the expression for F\2, F® is evaluated from the solution to the O(1)

equation. Thus, the total expression for vorticity is

[ o]
w = ows + Z: [GE,I) + GS?)} sinnwo, (3.26)

n=1
from which the expressions for the breaking terms are calculated (Appendix B).
Now, to obtain a solution for the breaking waves, the magnitude w, of the vorticity
generated by the breaking process, the boundary where it is applicable and the
magnitude of the eddy viscosity is needed. This is obtained from the analysis of

measurements in hydraulic jumps detailed below.

3.2 Analysis of hydraulic jump data

The measurements used in this study were reported by Bakunin (1995). The
experimental set-up is shown schematically in figure 3.2 which also shows the defi-
nition of the basic geometrical parameters for the jumps. In the following the depth
hy refers to the minimum depth in front of the jump where depth averaged velocity
is U;. The depth hy refers to the depth sufficiently far downstream of the jump
where the conditions are largely uniform and Ay is the water depth at the first mea-
surement location. The coordinate system is defined such that z = 0 at the bottom

and x = 0 at the toe of the roller.
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The jumps were generated downstream of an undershot weir in a closed circuit
hydraulic flume by adjusting the discharge, the downstream overflow weir, and the
height of the undershot weir. The bottom was made of smooth steel and the walls

of glass.
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Figure 3.2: Sketch of experimental setup for the hydraulic jump measurements
and definition of parameters.

Measurements were taken with a 2D Laser Doppler Velocimeter (LDV) placed
outside the glass walls and operated in back scattering mode. The signal was pro-
cessed using burst spectrum analyzers, leading to an average data rate of 1000 Hz,
which was subsequently bin-averaged to a 200 Hz rate.

The surface elevation was measured simultaneously by means of a capaci-
tance wave gage, sampled at 100 Hz. The outer diameter of the wire was 1mm,
which is believed to be small enough to make the surface disturbances generated
around the wire, by the wire itself, negligible in comparison to the elevations in the
jump. The vertical lines in figure 3.2 indicate verticals along which a large number
of measurements were taken. In the following analysis the origin of the horizontal
z-axis was placed at the toe of the turbulent front and the distances of the mea-
suring sections from the toe are as indicated in the figure. The position of the toe
was determined by measuring the average distance to the measuring station at .

Further details of the experimental setup may be found in Bakunin (1995).
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Detailed measurements were performed for three different jumps. The mea-
sured identification parameters for the jumps (the depth hy at the only measuring
section in the front of the jump, and the mean velocity Uy at hg) are given in Table

3.1. For the third hydraulic jump, no measurements were taken at z/hy = 0.25.

Table 3.1: Measured identification parameters for the jumps.

Jump | hy Uy
No. | (m) | (m/s)
1 0.072 | 0.95
2 0.064 | 1.06
3 0.059 | 1.16

As will be seen shortly, the jumps correspond to relatively small values of
the Froude number (F = 1.38, 1.46, 1.56). These small values were chosen because
they correspond to ratios between maximum and minimum depths in the jumps
that are similar to the depth ratios for surf zone waves. Hence, such jumps provide
the best similarity with nearshore breaking waves which was an important part of
the motivation for the experiments. For completeness we notice that these values
were large enough to make all the jumps turbulent. Only the smallest of the jumps
showed a weak tendency of undular behavior downstream of the turbulent front.

The scale of the experiments was also chosen small enough to minimize the
entrainment of air bubbles at the turbulent front, which highly facilitated the LDV
measurements and made it possible to measure well into the surface roller. As
indicated by Banner and Phillips (1974) and later by Peregrine and Svendsen (1978)
the generation of turbulence at the front of a hydraulic jump or breaking wave can
exist without air entrainment. On the other hand the jumps were large enough and

the turbulence strong enough to render capillary forces negligible.

3.2.1 Volume Flux and Froude Number
The first goal is to ensure that the interpretation of measured velocities satisfy

the conservation laws for mass and momentum throughout the jump. In order to



achieve this an analytical curve-fit is developed for the measured horizontal velocities
along each of the verticals in the dataset. The verticals were divided into four regions

and the following approximations used:

1. In the wall region, from the bottom (z = 0) to the first measurement location

in the vertical, z = z; (~1 mm above the bottom), we used

u(z) = ul(zz—l)lﬁ. (3.27)

2. In the boundary layer z; < z < §, where § is displacement thickness deter-
mined from the data,

uw=u +C log(i), (3.28)

21
where C is found by least square fit to the measured values in the boundary

layer.

3. In the middle region, § < z < 2z, the velocities are nearly constant. This
region constitutes the largest part of the depth. A fourth-order polynomial
was used in a least squares fit subject to continuity constraints in velocity and

velocity gradients at the boundaries to region (2) and (4).

4. In the upper region, z; < z < h, which includes the roller region a third-order
polynomial was used. This is the region with the largest velocity variation. As
mentioned, the constraints in the least square fit were continuity in velocity
and velocity gradient at the connection to region (3) and zero gradient at the

mean free surface corresponding to zero (or small) shear stress there.

The original measurement values and the corresponding curve-fitted velocity
profiles are shown in figure 3.3. At each vertical section, the figure also shows the
measured position of the mean free surface (marked with a +) and the lower limit
of the roller (marked with a o), which is to be determined later.

It is seen that the curve-fitted profiles represent the measurements with high
accuracy. In the following, this is further verified by using the measured velocities

to determine the mean volume flux (Q) in the jump

B/2 h
f f u dz dy, (3.29)
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02



F = 1.38
1.6F7 T T T T T 3
1.0 mis ¢ ¢ & @
| I I | I
, 1f@ [ I | I I | i y
oy I | | I | i I | I
to I | | I | I I | I
0.5 | | I | | | I I 7
] | ] I | I I | I
1 a | 1 1 | 1 1 I 1
-0.139 0.25 0.5 0.75 1 5 2 4 8
F="46
T T 1 T
1.6 1.0m/s $ ¢ $ -
| | | 1
® i | | I |
z B |
T e I I | I | | I |
10 | I I | | | | I |
0.5F1 | | | | | | | | =
| I I | | i | I |
1 1 a 1 | 1 | L 1 |
-0.15625  0.25 0.5 0.75 1 15 2 4 8
F =1.56
I 1 T T T
1.0m/s ‘P ?
15) 3 + i | | E
i T ] | ; : : :
ho I | i i I I | |
0.5F | | | | | | | | -
I | I | I I I |
1 | 1 | 1 1 L /]
-0.373 0.5 0.75 1 2 4 8

Figure 3.3: Measured horizontal velocities (o) and curve fits to the velocity
( ), the mean water surface (+) and the calculated location of
the dividing streamline (o) for all three jumps.

where B is the total width of the channel. No measurements of the lateral velocity
variations were taken during the experiments, but it was found that the boundary
layers along the glass side walls gave non-negligible reductions in the total volume
flux. This effect was compensated for by assuming that the side wall boundary
layers are similar to the boundary layer along the smoothly painted steel bottom.

Hence, the integral over the cross-section in (3.29) was evaluated as

Q = (B —20) /: u dz, (3.30)

where 6 was determined from the vertical profiles. Figure 3.4 shows the variation of

the total discharge in the three jumps found by (3.30). We see that for each jump



the value for the discharge stays within 0.05% of a mean value. Knowing that @ is

a constant we therefore define the mean volume flux as

— 1
Q=1 fL & i, (3.31)

where L is the length of the jump. In the following, this mean value is used as the

discharge for each jump. These values are
Jump No. 1: @ = 20.801/s

Jump No. 2: @ = 20.54 1/s
Jump No. 3: @ = 20.32 /s
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Figure 3.4: Variation for computed volume fluxes Q(z). + is for F = 1.38, x is
for F = 1.46 and o is for F = 1.56.

With @ known, it is possible to calculate the Froude number

. Q
}_—(B—Qé)h\/ﬁﬁ (3.32)




for the jump, which however requires specification of A. In the experiments, the
jumps were generated behind an undershot weir. The contraction of the cross section
at the weir created a weak depression in the water surface which resulted in a
minimum water depth at some distance downstream of the weir (see figure 3.2).
From this minimum position, the water surface again curved slightly upward so
that the surface had a non-zero slope at the mean position of the actual toe of the
jump. The first cross-section where measurements were taken (z = z, in figure
3.2) was at distances of 10 mm, 10 mm and 22 mm, respectively, upstream of the
mean position of the toe for jumps 1, 2 and 3, respectively. The water depth at
that position was hy (table 3.1). The slope of the mean water surface at this first
measurement section can be estimated from the values of the vertical mean velocities
w at the point. They are shown in figure 3.5. We see that even at the surface the
vertical velocity w at section xy is small in comparison to the horizontal velocity
shown in figure 3.3.

Since the actual measurement position in front of the jump is somewhat
arbitrary, we choose to use the minimum depth (h,) as the reference depth for each
jump. This makes it possible to determine the deviation from hydrostatic pressure
in the front of the jump and the effect this has on the momentum balance. The
depth h; was not measured directly. Therefore, it was estimated by assuming that
the mean water surface between the weir and the toe can be approximated by a
second order Taylor expansion of the surface elevation around the minimum at z;.
The slope of the free surface at & = x, is zero. Therefore, this expansion can be
written as
(x — x1)?

2R, '’
where R is the radius of curvature of the surface at x;. The non-static pressure

h(z) = h(z,) + (3.33)

gives rise to a relatively small correction (1.7% — 6.3% in the momentum balance,
see table 3.4). Thus, it is expected that this is a sufficiently accurate approximation.
The values of R, and x; will be determined from the measurements at z, as follows.

The surface slope dh/dx at the first measuring section (zg) is determined by

the value

1h
;i; = tanf = wy/u, at z=hy (3.34)
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Figure 3.5: Measured values of the vertical velocities w (). The solid lines indicate
w = uzh,/h (Equation 3.47).

using a best fit for the measured values for w. Here wy and ug denote the surface
values of u and w. Then R, between the weir and the toe of the jump is given by
- Tp — I

= (3.35)

and we get
1 s
hl = h;g — 5(3:{) — :L'-l)i. (336)

g

The values of hg, R, and hy are shown in Table 3.2.

The values of F(Q) calculated on the basis of @ and h; are shown in Table
3.3 (column 1) along with the Froude number F,(Q) obtained by using the mea-
sured depth hy at zy directly (column 2). We see that the two values of F differ

substantially, which indicates the importance of the difference between hy and h;.
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Table 3.2: Values of the depth at the measuring location in front of the jump (hy),
the radius of curvature of the surface (R,) and the estimated minimum
depth in front of the jump (hy).

Jump | hy R hy
No. | (m) | (m) | (m)
1 0.072 | 1.087 | 0.063
2 0.064 | 2.437 | 0.060
3 0.059 | 5.894 | 0.057

Table 3.3: Measured and calculated Froude numbers for the jumps using equation
(3.32) with h = hy (column 1), with h = hg (column 2), equation (3.37)
with A = h; (column 3) and equation (3.43).

Jump
No. | F(Q) | R@Q)| F | F(3.43)
1 1.378 | 1.128 | 1.416 1.371
2 1.464 | 1.326 | 1.500 1.472
3 1.562 | 1.484 | 1.652 1.621

3.2.2 Momentum Balance in the Jump

Determination of the correct Froude number is also of interest in connection
with the overall momentum balance in the jump. The momentum balance gives the
connection between the Froude number and the conjugate depth (h;) and the depth
far downstream of the jump (hy). In classical hydraulics, the assumptions of depth
uniform velocities and hydrostatic pressure at both h; and hy lead to the well known

expression
g 1

where & = hy/hy. The results for 7’ determined from the calculated value of hy and
the measured value of hy (at z/hy = 8) are also given in Table 3.3. These values

again differ substantially from the value of F determined by (3.32). The reason is
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that the two basic assumptions behind (3.37) are not satisfied. The velocity u is not
uniform over depth and the pressure is not hydrostatic, in particular not at z;.
To determine the correct expression for the momentum balance, we introduce

the Reynolds decomposition
1 1
w=u+u, U= —f u dt, (3.38)
T Jo
1 i
w=w+w, W= —f w dt, (3.39)
T Jo

where T is the length of the time series. The momentum equation for constant
density in the general form for a control volume covering vertical sections at h; and

hs then becomes
/;1. [,0 (ﬁ2+;’3) —I—p} n‘fz’-l—/):1

where % represents the ensemble averaged velocity, u' is the turbulent fluctuations

[,o (@+ Eﬁ) 4 p] dA — / (B +28)n de =0,

2 Ty

(3.40)

and 7, is the bottom friction. In the following, we will omit the () over the ensemble
averaged velocity except where ambiguous. There are no measurements available to
estimate the side wall friction directly. However, the estimates of the volume flux,
based on the assumption that the side wall friction is equal to the bottom friction,
show that this assumption is reasonable.

Introducing a momentum correction factor («) and a pressure correction
factor (k) defined by

_ A 2w .
= @ /f; (’U. -+ U ) dA (341d)
and
=2 [ pd (3.41b)
n_pgh?B,Aj'z '

respectively, where A = hB, (3.40) can be written

=2 2
1 @ 1.1 4.,

L g @ Lol 42

Djlgrh.?B2 g™ lt]Qgh;fB2.§ 2@{ T (42)



where

Ty
T = #[ (B +2h)m, dz.
JE] Sy

Solving with respect to F? = @2/ (gh?B?) then gives

_1 &2(52—H1+T!

‘?:2
27 € -

(3.43)

Svendsen et al. (1998) showed that 7/, the contribution from the bottom
friction, is negligible for the present measurements. Evaluation of F from (3.43)
requires determination of the o and x coefficients. The o’s are determined directly
from the definition (3.41a) by assuming the integration across the channel can be

approximated by

i h
f (u,? & u’2) dA ~ (B — 25") ] u? dz, (3.44)
! A 0

where ¢’ is the momentum thickness determined for the vertical profiles and defined

by

§ = /:% (1 = %) dz, (3.45)

where the contribution from ' is neglected. The curve-fitted velocities are used for
the evaluation of (3.44) and the values are shown in table 3.4.

The pressure coeflicient x, is determined by realizing that

) — 9 h =
p(z) = pglh—2)—p ('wz + w’z) 5 [f p (uw + 'u,’*tu’) dz] : (3.46)

It turns out that in (3.46) the contributions from the turbulent fluctuations are
negligible.
The assumption of the linear variation of w/u in the region in front of the

jump gives

w z dh dh  ©—m

?L_H?’L" E““ Rs .

(3.47)
where Ry is given by (3.34). Introducing the dynamic pressure pp defined by
pp=p—pglh—2) (3.48)
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and substituting (3.46) and (3.47) in (3.48), we can write pp as

92 2
e Bl (B B (L gigs. . R
po(2) == pU% 15 ( ) + (thU (W = 2%) -

dx dx
2 2 <<l g
= = I3 E @ 1 Q_(_f h — z @
== h? (dﬂ" ) TP B B dnil” (3.49)

We then get, after some algebra

A 1 Q° d (1dh
O WY i .
/D po(e)dz = sopsh o (hd:c) (3-8

and hence from (3.41b)

==
. .2Q d(1dn
e +3,ghsz@(}; d_) 5

At hy we have dh/dz = 0 and, as (3.47) shows, d*h/dz* = R;' so that k; becomes

K = 14 gf E (352)

It is emphasized that this result assumes (3.47) applies, which we see from figure
3.5 is not the case in the central part of the jump. This will be discussed in further
detail later in connection with the analysis of the momentum variation between
sections 1 and 2.

The values of &, calculated from (3.52) are also shown in Table 3.4.

For the section at hy (z/hy = 8), we have no information from which ks can
be determined. However, since this is far downstream of the jump where dh/dz is
close to zero, we assume ko ~ 1.0.

The values of the correction factors along with the measured values of £ (also
listed in Table 3.1) are then used to determine F7 from (3.43) and these values
are also given in Table 3.4. We see that these results for F; are in much closer
agreement with 7, values determined directly from the measurements using (3.32).
The results for jumps 1 and 2 are, in fact, remarkably similar. The agreement
between F by (3.43) and F by (3.32) gives basis for expecting that (3.43) includes the

major mechanisms active in the jump. On the other hand, the significant difference
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Table 3.4: Values of £, oy, g, k) and Ks.

Jump | £ =12 o Quy K1 Ko

Ty
No.

1 1.565 | 1.0129 | 1.0194 | 1.063 | 1.00
2 1.680 | 1.0127 | 1.0260 | 1.037 | 1.00
3 1.889 | 1.0124 | 1.0360 | 1.017 | 1.00

between these values and F' determined from the classical expression (3.37) indicates

that effects of non-uniform velocities and non-hydrostatic pressure are important.
In all, these results underscore the importance of the seemingly small de-

viations in the experiments from the ideal conditions usually assumed in classical

hydraulics.

3.2.3 Momentum variation inside the jump

In general, we should expect the momentum flux M to be constant through
all vertical sections of the jump. When integrating over depth to determine the mo-
mentum flux, notice that the turbulent fluctuations of the free surface are included
so that the instantaneous depth h(z,t) = h(z)+h'(z,t). A related problem has been
discussed recently by Brocchini and Peregrine (1996) when defining mean shorelines
of waves on beaches. Hence the velocity part of the momentum flux becomes

—_——
—_——

h-t-h! oo~ h’
/ (i +u')2 dz = (@ +w?) dz + / (i + u')? dz. (3.53)
0 0 h

—

Here the last term can be approximated by 2iu'h! + h'u'® where the value of the
variables are taken near the surface. Not enough information is available to precisely
assess the value of these terms. However, we know that 7' < h even near the toe of
the roller. Furthermore «' which gives the main contribution to the turbulent part
of the first integral in (3.53) is smaller at the surface than near the lower edge of the
roller. Hence it is expected that these terms will be smaller than fﬂﬁ ';}—é dz, which

in turn gives negligible contributions to the overall momentum flux, as we will see
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shortly. Hence in the following we omit the terms due to the turbulent fluctuations
of the free surface.

Omitting the () over the ensemble averaged quantities except when ambigu-

ous we can write the total momentum flux as
h(z) — h(z)
M(z) = f p (u2 - u’r“) dz + / pdz, (3.54)
0 0

where pu'? is the turbulent normal stress. We use the term M; for the momentum

flux through the section at h; and M(z) should then satisfy

M(z) = M, — / (1 + %) Tw AT. (3.55)

T

Here the wall friction 7,, has been determined by a simple friction factor

formula
1 P)
I — 8 pfU?, (3.56)

where f is the friction coefficient. Since the roughness of both the bottom and the
sides of the flume is very small, f is set to 0.01 (see, e.g., Henderson, 1966).

Estimates of the contribution from the wall shear stresses show that the term
involving 7,, in (3.55) is O(1073 - pU?h,) for all three Froude numbers. Hence, the
wall friction is negligible in comparison to the other contributions to M.

For the calculation of M, the pressure p(z) is determined from (3.46). In
that expression, w, w', uw and u'w' were measured directly. The contribution to p
from w/'w' is small but that is not the case for uw near the front of the jump. The

total contribution from p can be written

() 1 : h ~ h o h o
/0 pdz= Epgh(:z:)z _]u. P (102 + 'w”) dz+/n 3 (/z (puw + u'w') dz) dz.
(3.57)

Here the inner integral in the last term can be evaluated directly from mea-
sured quantities, but only along the verticals where measurements were taken. In
order to obtain the z-derivatives in that term, spline approximations were developed

for the values of the integral of uw + w/w' in (3.57).
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Figure 3.6 shows the contribution from the main terms in (3.54), with (3.57)
substituted, for the x positions where measurements were taken. We see that by
far the most important terms are the 4? and the p-contributions, whereas the effect
of the turbulent normal stresses is only about 1%. The w'w' contributions to the
pressure variation turn out to be small. On the other hand the w? and the ww

contributions to p(z) are of some importance, in particular in the roller region.
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Figure 3.6: Calculated momentum flux M(z)/M, along the jump where M, is
the momentum flux at z/hy = 8. 0O is the total momentum, x is
the pressure contribution, o is the velocity contribution and + is the
turbulent normal stresses.

The values of M(xz) itself are also shown and we see that M is constant to
within 5%, with the largest errors occurring in the roller region.
A possible reason for the inaccuracies in M is associated with the fact that

the measurements of h(x) plays an important role in the results for M, and there
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is no information as to how the capacitance wave gages function for a surface with
large turbulent fluctuations as in the front of the jump.
So for all practical purposes, the momentum flux M may be approximated
by
2

M = pafa) s + goam()h(o)’, (3.58)

where «(z) and k(z) represent the local values of the momentum and pressure
correction factors defined by (3.41a) and (3.41b), respectively. The values of «(x)
and k(z) found by the procedure described above are shown in figure 3.7. It is
emphasized that while the a(z)-values in this are fairly accurate, various checks

show that the values of x(z) are somewhat less accurate.
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Figure 3.7: « (o) and  (x) values for the three hydraulic jumps.
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It is essential for the connection to breaking waves to realize that (v —1) and
(k — 1) represent the difference between the actual flow and the flow according to
a non-linear shallow water (NSW) model. This difference is obviously generated by
the turbulent front with the roller, in addition to the vertical accelerations repre-
sented by the curvature of the streamlines. In the NSW model, the momentum flux
anywhere between the vertical sections 1 and 2 is smaller than the actual momentum
flux. This momentum deficit AM defined by

AM=M — MNS‘W (359)
is therefore determined as
_ Q@ 1 2
AM =p ((a 1) 7(@) +39 (k —1) h(z)* ). (3.60)

The AM is generated by the breaking front and is just large enough to make M
constant through the jump and hence prevent the front from steepening further. If
we imagined a situation where the combined effects of e and k were insufficient to
create the necessary enhancement of the momentum, the NSW-model would obvi-
ously cause the front to steepen further. This would increase the breaking intensity
and hence AM (see also Svendsen and Madsen 1984). The principle of artificially
adding AM has been used by Schéffer et al. (1992) to establish a Boussinesq model
for breaking waves. It can also be shown that the effect of adding an artificial eddy
viscosity term to the Boussinesq equations is the same as that of adding the AM
term (Svendsen et al. 1996).

The variation of AM determined from the measurements is shown in figure
3.8 along with the surface elevation ¢. The horizontal coordinate is 2/hy and we see
that while the maximum of AM is close to the toe and inside the roller region, the
magnitude of AM remains large much further downstream of the end of the actual
roller. It has been shown (see, e.g., Svendsen et al. 1996) that this shape of AM,
with a maximum inside the roller region, is essential for a wave model to simulate

breaking,.

3.2.4 Variation of the roller thickness.
The accurate curve-fits for the horizontal velocity profiles combined with the

information about the volume flux in the jump make it possible to determine the
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Figure 3.8: The variation of the surface elevation i (e) and AM (o) along with
the location of the dividing streamline (+) and the calculated water
depth at the toe of the jump (o).

lower limit of the roller, because the net volume flux over the roller is zero. Hence,

the height h, of the roller above the bottom satisfies the equation

hy
Q= f u dz. (3.61)
0
The thickness of the roller is accordingly given by
e=h-—h,. (3.62)

The values of e(z) found this way have been used to indicate the lower boundary of

the roller o’s in figure 3.3.
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An approximate value for the length £, of the roller can be obtained by
interpolation between the verticals. Figure 3.9 shows that there is a reasonable
similarity for the variation of e(z)/hg\/€ versus z/f, for all three jumps. It is
interesting to notice that the roller ends well before the depth reaches its maximum

downstream value.

01} " -
008 |

0.06 -

e(z)
hz\/g

0.04 =

0.02 =

Figure 3.9: Non-dimensional roller thickness e(z)/hy/€ versus z/f,. o jump no
1, X jump no 2, % jump no 3.

Another important aspect of the flow is the generated turbulent stresses.
The measured data provide information for @ for all the same points for which
mean velocities were obtained. Figure 3.10 shows the measured values of u/w'. As
expected, the stresses are particularly large in the region underneath and inside the
roller. Although measurements were not obtained from the uppermost part of the
roller itself, we can get a fair estimate of the 7,,-variation by assuming the shear
stresses along the mean water surface are close to zero.

Figure 3.11 shows, when measured in terms of pU? versus z//,, the shear

stresses along the dividing streamline in the three hydraulic jumps largely exhibit
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Figure 3.10: Measured values of u'w/' (e), the curve fits for the velocity (
the mean water surface (+) and the dividing streamline (o).

the same variation over the length of the roller. This similarity is equivalent to the
similarity found for the variation of the vertical roller thickness e (see figure 3.8)

and may not apply for jumps with significantly larger F values.

3.2.5 Vorticity, Stresses and Eddy Viscosity
It is also of significant interest to analyze the development of the vorticity in
the flow. The vorticity

w @ - QE (3.63)

- 0z Oz

is obtained from the curve-fitted measured velocities. Since measurements were
obtained only along a few verticals, it requires some care to determine dw/dx.

However, the vertical velocities are small and vary relatively slowly in the x direction.
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Figure 3.11: Non-dimensional shear stresses along the lower limit of the roller for
all three jumps. o jump no 1, X jump no 2, * jump no 3

Therefore, the values of dw/0x were negligible in comparison to du/dz. Figure 3.12
shows the vorticity along the verticals where measurements were taken.

Qualitatively, these results confirm the patterns for the breaking waves be-
hind a hydrofoil found by Lin and Rockwell (1994) (for those of their cases where
capillary effects are negligible). A quantitative comparison is difficult because gen-
erating conditions for the two flows are very different.

It is clear that vorticity generation is initiated at the toe of the turbulent front
where the high speed flow along the incoming free surface streamline meets the fluid
slowly moving down along the surface of the roller. Because of its high speed, the
incoming flow seems to continue undisturbed over a short distance underneath the
roller. By careful observation, one gets the impression that the first very short part

of the roller essentially floats on the incoming high speed fluid over what seems to be
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Figure 3.12: The vorticity distributions determined from the measurements.

a very thin highly aerated layer where all the shear is located. Another interesting
feature, apparent from the figure, is that the vorticity generated by the roller and
by the bottom boundary layer are clearly demarcated except far downstream of the
jump. For a wave, the boundary layer is expected to be smaller than that observed
in steady hydraulic jumps (see Cox et al. 1995). Thus, by omitting the effects of the
bottom boundary, as we have in the model, no significant error would be introduced
in the breaking model.

The momentum balance for the flow around the toe was discussed by Svend-
sen and Madsen (1984). They pointed out that, in spite of the fact that theoretically
the shear at the toe becomes infinitely large, the shear stress must for dynamical
reasons remain bounded at the toe (and in fact must go to zero as e — 0). This

can be accomplished by assuming that the effective (turbulent) viscosity v, goes to
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zero faster than the shear. In accordance with the fact that both the length scale ¢
and the kinetic energy & per unit mass must start at zero values at the toe, we can
think of v, as being (k.

A small distance further into the roller, the incoming flow becomes unstable
and the mean incoming streamline becomes the center in a flow pattern that has
resemblances of a mixing layer (Peregrine and Svendsen 1978). As the mixing de-
velops, the magnitude of the fluctuations develop to a size that is comparable to the
thickness of the roller and they start interacting with the free surface. This occurs
in the central part of the roller which is undoubtedly the area where the strongest
production of turbulence takes place.

It is interesting that, along the streamline that divides the roller with re-
circulating flow from the rest of the essentially unidirectional flow, the vorticity in
all the three jumps seems to follow the same dimensionless variation. This is il-
lustrated in figure 3.13 which shows values of w' = why€/U; versus x /¢, where £,
is the roller length. The value of w’ increases rapidly from the toe to a maximum
which is reached already about 10% of ¢, into the roller. From there the vorticity
decreases almost linearly to the zero value at the end of the roller where the dividing
streamline meets the free surface.

To some extent this confirms that the flow has many resemblances with a
shear layer positioned along the streamline. We see from figure 3.10 and figure 3.12
that along most of the roller both the shear stresses and the vorticity are maximum
along the dividing streamline. This leads to the interpretation that the center for
vorticity generation is along the dividing streamline that forms the lower limit of the
roller. Figure 3.13 indicates that the strength of that generating process decreases
linearly over most of the roller length. From this generating source of decreasing
strength the vorticity would spread downward (and upward) by diffusive mechanisms
(mainly turbulent mixing). We therefore expect that from some point downstream
the maximum vorticity would be found at a level below the dividing streamline (i.e.
“inside” the flow). This is confirmed by the measurements. Towards the rear of the
roller the maximum values of both w (figure 3.12) and w'w' (figure 3.10) occur below

the lower limit of the roller. Notice that the reason why no equivalent maximum
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Figure 3.13: Dimensionless vorticity w’' = why&/U; versus z /¢, along the lower
limit of the roller for all three jumps. o jump no 1, X jump no 2, *
jump no 3.

forms above (i.e. inside the roller) is probably because the roller turbulence is so
strong that equilibrium between the source strength and the zero vorticity along the
free surface is established almost instantly.

Hence, this model differs from a traditional shear layer in that vorticity gen-
eration essentially stops at or before the end of the roller. Downstream from that
point. the vorticity distribution is essentially formed by the diffusion of vorticity
away from the maximum inside the flow towards both the surface and the bottom
boundaries and upward from the bottom boundary layer. Eventually - sufficiently
far downstream - the flow will attain the characteristics of a (nearly) uniform open
channel flow dominated by the bottom generated turbulence and friction. Note
however from figure 3.12 that even at z/h; = 8 this point of equilibrium is not quite
reached. There is still residual vorticity from the roller, and the bottom boundary

layer still has only spread over 40-50% of the full depth.
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While the results for the vorticity for the upper part of the roller are based
on the extrapolations of the curve-fitted velocity profiles, we see that the variations
of w over the roller are reasonable. In particular, the assumption of a zero velocity
gradient at the surface, which lead to a zero vorticity there, appears in accordance
with the vorticity profiles as a whole. In reality, neither the velocity gradients
(i.e. the vorticities) nor the shear stresses will be exactly zero at the mean water
surface. This is due to the turbulent fluctuations of the free surface which give
non-zero contributions to the averages at the mean surface. This problem was
discussed by Brocchini and Peregrine (1998) but the available measurements do not
provide sufficient information to analyze the details. Even so, it is expected that the
contributions are relatively insignificant in comparison to the stresses and vorticity
in the lower part of the roller.

It is also seen that in spite of the smooth bottom, the bottom boundary layer
produces a fair amount of vorticity, and a fair amount of turbulent kinetic energy.
Finally, with the shear stress at the bottom of the roller scaling as 7/pU? and the
vorticity being close to Ou/0z and scaling as why&/U;, one may expect that the
eddy viscosity along the roller bottom scales as v,/U;ho€. Figure 3.14 shows that
there is considerable variability in the magnitude of v;. Such variability for related
quantities such as the turbulent kinetic energy and the turbulent length scale has

been observed in the surf zone (Cox et al. 1995). We can also express 14 as

Dy = VUho€ = V| FE2hy\/ghy, (3.64)

-~

where the () denotes the dimensional quantity. Traditionally, the eddy viscosity is

scaled as

oy = viha/gh, (3.65)

which gives v, ~ v, F&% For surf zone waves, & ~ 2 which gives a Froude number
F ~ 1.75. Thus, v, obtained from the hydraulic jump measurements is 0.021h+/gh
and 0.046h+/gh which is the same range usually obtained in the surf zone (Cox et al.
1995).

It is also possible from the measurements of velocities and shear stresses to get

an estimate for a value of the eddy viscosity v, over the entire vertical at each x where
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Figure 3.14: The dimensionless eddy viscosity v, /U ho€ versus x /£, along the lower
limit of the roller for all three jumps. o jump no 1, + jump no 2, %
jump no 3.

measurements were taken. Assuming v, is defined by the equation 7., = pr,0u/0z
we get the values shown in figure 3.15 for ;. To avoid the singularities at 7 = 0
in the computation for this figure, we have set v, = 0 when 7 becomes sufficiently
small. There is no clear relationship for the vertical distribution of eddy viscosity,
which can be discerned from the figure. It does indicate that the value is reasonably
constant in the region where significant shear stresses are present and decreases with

the magnitude of the shear stress.
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Chapter 4

NUMERICAL SOLUTION TO THE GOVERNING
EQUATIONS.

In the preceding chapters, the modified Boussinesq equations that describe
waves breaking in shallow water were presented. These equations are non-linear
partial differential equations involving three variables. No analytical methods have
been developed thus far to solve these equations. Instead, numerical methods have
to be employed to get approximate solutions.

A variety of numerical methods is available to solve these types of equations.
In general, finite-difference schemes are preferred over other methods. This is in

part due to the ease of implementation for practical purposes.

Peregrine (1967) used a simple second-order finite difference scheme for Boussi
nesq equations to study the propagation of solitary waves. The scheme used central
difference techniques to evaluate the spatial derivatives and a simple forward step-
ping scheme for the time derivatives. The truncation errors that result from this
scheme have the same form as the dispersive term in the equation. Hence, small
values of the grid spacing Az and time step At were required to obtain accurate
results.

Abbot et al. (1973) developed a more sophisticated scheme to solve the
Boussinesq equations. This method (System 21, Jupiter) used a second-order time-
centered implicit scheme. The truncation errors due to the finite differencing, which
have the same mathematical form as the terms in the original equations, are substi-
tuted back into the model. This back-substitution technique improved the accuracy
of the scheme. Subsequently, adaptations of this method have been used by various

researchers (see, e.g., Karambas et al. 1990, Madsen et al. 1991).
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A space-staggered and time-staggered scheme was used by Brocchini et al.
(1992). This scheme involved calculation of the variables at staggered half-steps
in time. The method is also a mixture of an explicit scheme (for the continuity
equation) and an implicit scheme (for the momentum equation).

Wei et al. (1995) used a predictor-corrector scheme based on the third-
order Adams-Bashforth predictive method and the fourth-order Adams-Moulton
corrective step. The spatial differencing is such that the truncation errors do not
have any third derivatives. This means that back substitution is not necessary to
improve the accuracy of the model. This scheme was adapted by Yu (1996) to
solve the Boussinesq equations with wave breaking. Gobbi et al. (1999) extended
this scheme to a fifth-order predictor and a sixth-order corrector scheme to solve
Boussinesq equations accurate up to O(u*).

In all these models, at each time step a tridiagonal matrix system is used to
solve for either the volume flux (or velocity) in the momentum equation or the surface
elevation in the continuity equation. The use of a tridiagonal system stabilizes the
scheme without affecting the computational time,

For the model described herein, the predictor-corrector scheme of Wei et al.
(1995) is adapted. This is an explicit scheme; hence more convenient to apply. The
numerical scheme is described in the first section. A linear stability analysis is also
performed for the particular form of the Boussinesq equations used here.

For actual applications of the model, boundary conditions are required at
both the offshore and shoreward boundary. Again, a number of methods are avail-
able for incorporating these boundary conditions, each with its own particular ad-
vantages and disadvantages. In the present version of the model, we have a shelf
at the shoreward boundary with a small water depth and a sponge layer to absorb
the breaking waves at this location. The boundary conditions are described in the
next section. This includes the generation mechanism at the offshore boundary, the
absorption mechanism close to the shoreline and the boundary conditions for the

vorticity transport equation.
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4.1 The finite difference scheme.

The first- and third-order spatial derivative terms are discretized using the
standard five-point central difference scheme in the interior of the domain. For the
first-order derivatives, this leads to truncation errors of O(Az*/u?) relative to the
dispersive terms, where Az is the size of the spatial grid. The dispersive terms,
which are third-order derivatives, give truncation errors of O(Az?) relative to the
original dispersive terms.

The governing equations are written in a form that makes it convenient to
apply the numerical scheme. The continuity and momentum equations are written

as
¢ =E (4.1a)
U, =F (4.1b)

For the weakly nonlinear model (which is a ( — @ version) given by (2.8) and
(2.51)

E=-Q,, (4.2a)
. o
U=Q+ (B - %) P (Q) e + % (%) ; (4.2b)
. HH
P =yl O = (g~ BOFh G)ox = (AM), ~ (BP)os+ Dut P
" (4.2¢)

where F, is the term that includes the effect of the absorbing boundary at the
shoreline. This term will be discussed later in this chapter. For the fully non-linear
model (which is a ¢ — @ version) given by (2.53) and (2.72)

E=—[h+0)7],, (4.3a)
U=u-+ KB - %) h2tg, — %h_hmﬁ — hhyi, | , (4.3b)
F =F'(¢,0) + FY¢, ) + F* + Fyp, (4.3c)

where
F' = — Wi, — (s — Bp*h*Cone
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1 . 3 1 .
ghzmﬂrz - ghzﬁzﬁxr it ih‘h.?:mmm + “zﬂh“!lmzrrnﬁz + h'h':nw:c:c

— Bh? (wa,),, + %h@ﬂmﬁm + %hﬂﬂ (cm),— k{ia) + %h (Citys),

1 3
+ C’L‘h"L‘TEz i i Chtu_a'r'c + Q‘Ch':r'c'cﬁz + §Ch'm:wm + C:.-:hmmm

+ é—cim + (G, — (TS — %czﬁmﬁm, (4.3d)
F' =h{u, + ghc(m)m — Chy () g + ool + %Chmﬁ!

= %Cz(ﬁt)m + % ((@)z), » (4.3e)
F* = — (AM); — (AP)agt + Dy — (AMi); + Dy + Duw. (4.3f)

Notice that in the numerical scheme for the fully non-linear set of equations, the
linear terms involving @/dt are included in U in the numerical scheme, whereas
the non-linear terms involving 9/t are retained (F*) in the right hand side of the
numerical equation. This facilitates the use of a tridiagonal system to solve for ,
at every time step, using the value obtained for U. As mentioned before, the use of
this tridiagonal system makes the numerical procedure more stable.

The fourth-order Adams-Bashforth-Moulton (ABM) (Press et al. 1992) time-

stepping scheme at the predictor stage reads, for (4.1),

Pl = (P 4 % [23E} — 16E}" + 5B, (4.4a)
UPHL =y % [28F — 16F + 5F?] (4.4b)
At the corrector stage, the equation reads
G = + 57 OB + 1087 — 5B + B, (4.52)
Ut = U + % [9F7+! + 19F] ~ 5P + FP7]. WLEk)

This time stepping scheme is accurate to O(At)? at the predictor stage and up to
O(At)* at the corrector stage. Notice that in the fully non-linear model, the time
derivatives of @ in F"* are solved explicitly. Consistent with the accuracy of the ABM
scheme mentioned above, the u; term in F} is evaluated at the predictor stage as

1
(@) = T [3u} —4ul ! + a2, (4.6a)
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Et)?—l = é’A—t [’U.t — U, _2] (4ﬁb)
. 1
(Et)? 2 —_ _'E [3—” -2 4—:1 l -—-;],] , (46C)
and at the corrector stage
n 1 a7 i —— = —

@)t = = Af [11mp — 18u} + 9ul~! — 2ul~?] | (4.7a)
(@) = [2‘"+1 + 3w — 6up !t +ur Y], (4.7b)

— yn—1 —n—1 —7 — 4
(@) = n [2u~2 + 3w~ — 6ul +upt], (4.7c)

- 1 g

(@)} 2 = ~ 5K [1137~2 — 187~ + 9u} — 2upt!] . (4.7d)

The truncation errors for the time derivatives in the predictor step are O(At?) and
at the corrector step O(At?). At the corrector stage, the value of F* has to be
computed anew at every iteration.

For the spatial derivatives in the interior region, a five-point central difference
scheme is used to calculate the first- and third-order derivatives and a three-point
scheme is used to calculate the second-order derivatives (Anderson et al. 1984). For
the continuity equation, one-sided schemes are used to evaluate the derivatives at

the boundary. Thus, if N is the total number of grid points in the domain,

1

(wg), =E-A— [—2bw, + 48wy — 36ws + 16wy — 3ws) , (4.8a)

Wy —3wy — 10wy + 18w; — 6w, + ws 4.8b
% 12A

(wg); :ﬁ [—wita + Bwip1 — 8wi—y + wi_a], (4.8c)

(i=3,4,--- ,N—3,N—2),
1
(We)yy =— ToAs [—3wy — 10wn_1 + 18wN_2 — 6wy_3 + WN_4], (4.8d)

() = [—25wn + 48wy — 36wy_g + 16wn_3 — 3wn_4],  (4.8¢)

T 12Az
where w = (h+ {)u. The truncation errors in this scheme are O(Az*). However, in
the momentum equation, use of the one-sided schemes leads to instabilities in the
results after a short time. This is true especially for the fully non-linear equations

when the incoming waves at the boundary have high non-linearity. Therefore, a
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lower order spatial difference scheme is used at the boundary for the momentum

equation. Thus,

(wz), =ﬁ [Bwi — 4w, + ws), (4.9a)

(wz), :%r [ws — w1 ], (4.9b)

(wg); :ﬁ [—wite + 8wipr — 8w + wi_s), (4.9¢)
(=8,4,ve¢ N =3 N=2),

(we)y-y = —ﬁ [wy—2 — wnl], (4.9d)

R ﬁ T . | (4.9¢)

where w denotes the variables {¢, %, h} subject to finite differencing. The truncation
errors are O(Az?) at the boundaries and O(Az?) in the interior region. For the
second derivatives, a three-point finite difference scheme is used in the interior region

and four-point one-sided schemes are used at the boundaries.

ey ) I — - 2wy — dwy + 4wz — wy|, 4.10a
1 )2
T
1
(Weg); :m [wit1 — 2w; + w;—q], (4.10Db)
(‘i:2131"° 1N'_2:N_1)1
1
(Waz)y = — (Ba)’ 2wy — bwy_1 +dwy_g — wy_3]. (4.10c)

The truncation errors are of O(Az?) in the entire domain. And finally for the third-

order derivatives, five-point schemes which have truncation errors of O(Az?) are

1
(tWizaa)i =(Ar;;)2 [(wg)1 — 2(wg)2 + (wg)3), (4.11a)
1
("Ummm)g :(A—‘E)? [(wi).i - 2("”1‘)2 # (w:.c)l] ) (411b)
(Weaa); ZQAI? (Wi — 2wWip1 + 2wi—1 — wi—a), (4.11¢)

(i=3,4,--- ,N—3,N —2),
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(Waze) y_1 =w [(we) N — 2(we)N—1 + (we)N_2], (4.11d)
1
(Wawa) n :W [(we)n — 2(we)N-1 + (Wz)N-2] . (4.11e)

The value of U at each time level is obtained from the solution to the mo-
mentum equation. Once U is determined, we then need to solve (4.2b) or (4.3b) to
obtain @ or @ respectively. For the fully non-linear model, we discretize the ODE
(4.3b) using (4.10) for the second derivative of % and a simple three-point central

difference scheme for the first derivative of @ to give

UMt = Al + Bapt! + Cipult, (4.12)
where
1\ h?  hi(h): .

A= (B = —) A T o, (4.13a)
B | Lttt te) =5 B =2 i (4.13b)

ik 2 i ET )1 3 A:L'z’ *

1\ h? hz-(hm)g- \
— = 3 4,13c
Ci= (B ) Az? 2Ax ( °)

This tridiagonal system is solved using the LU-decomposition method (Press et al.
1992). Equation (4.12) is solved at each time step (n+1) to give the value of {z*'}.
This value of @ is used to calculate the water surface elevation from the continuity
equation. The procedure to obtain @ from (4.2b) for the weakly non-linear equations
is exactly the same.

In the momentum equation, the value of % is prescribed at the boundaries.
Therefore, U is evaluated only fori = 2,3,--- | N—2, N—1. The continuity equation

gives the water surface elevation at every point including the boundaries.

4.1.1 Time-integration of the vorticity solution.

The analytical expression for the vorticity was given previously by (3.26) as

W= ows + Z C(l) + C{z | sinnro, (4.14)
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where GQ ) and G,(r;z) are integrals in time. These integrals have to be solved at each

time step. The general form for either quantity is written as
i
Gall) = / E, e ™84 dr. (4.15)
J0
At time t + dt,
tdt \
Gr(t+dt) = [ Fpe® © srid) g
v 0
2,2, L4-dt s
=g TG (1) f B e nrbd) gy (4.16)
2

The second term is integrated numerically. The direct trapezoidal method for dis-
crete integration is quite inaccurate for evaluating this expression. The reason for
the inaccuracy is that in that method, the entire integrand would be approximated
with a linear polynomial between ¢ and ¢ + di. To use more points for increased
accuracy implies that the values at the previous time steps will have to be stored.
Instead, a more efficient integration scheme is used in which only the quantity F), is

approximated by a linear function
Fo(t) =mr +ec. (4.17)

We now substitute (4.17) into the integral in (4.16) and solve to get

e—ﬂg(t—l—dt) t—l—(ﬂ,
Gn(t +dt) = e "Gy (t) + T a2 [e7 (e Fu(T) — m)];
2
F.(t+dt) — F,.(t) —
— e—a-zdth(t) s ( 2) m . e—agdt a( )2 771’ (418)
o, vy

where ay = n?m?k and m = (F,(t + dt) — F,(t))/dt. This expression is evaluated at

each time step to update the vorticity at each z-location.

4.1.2 Linear stability analysis.

The governing equations are a system of non-linear partial differential equa-
tions and the discretization scheme is complex. The classical methods for stability
analysis are not sufficient in this case. Yu (1996) chose to determine the stability

of the scheme by numerical experiments. Linear stability analysis for the ¢ — u,
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model was performed by Wei and Kirby (1998) for the same scheme given above.
The model equations are slightly different in this case and some insight into the
model can be gained by performing a linear stability analysis. The stability analy-
sis, obtained by applying the method of von Neumann (Twizell 1984), is performed
on a horizontal bottom for the ( — % version of the model. The linearized governing

equations are

¢ = B = Wi, (4.19)
Uy = F = —g¢; — Bgh*Cazz, (4.20)
where
U = U+ ah’l,,, (4.21)
b= % (4.22)

The range of stability for the predictor scheme and corrector scheme taken
separately will be different than that obtained by a combination of the two. Fur-
thermore, the range of stability also depends on the number times the corrector step
is performed for one time step. For actual applications of the model, the number
of iterations is a function of the relative error at any given time, and hence may be
different at each time step. The stability range is expected to be larger for more
number of iterations, i.e., if the corrector step is used more than once. In this
study, the stability analysis is performed for the case of one predictor stage and one
corrector stage.

At the predictor stage, the discretized equations are expressed as

C 'l'l,+1 =z Cﬂ, At

P = + = [ZBF“ 16F" + 5F17] (4.24)

[23E“ 16E;~" +5E;7%], (4.23)

where (n + 1)* corresponds to the predicted values; n, n — 1 and n — 2 are the
temporal locations at which the values of ¢ and % are available. At any given point

in space and time, ¢ and @ are expressed in terms of their Fourier component
GG = Coexp [i(kjAz — wnAt)], (4.25)
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w; = Ty exp [i(kjAz — wnAt)],

(4.26)

where j and n refers to the spatial and temporal grid points, i = /—1, k is the wave

number and w is the frequency. From (4.25) and (4.26),

U;l ; + A (“‘J-l-l _‘t‘;'l—l)
=Ty |1 b ¥ sin —kAIB
o Aa 2 ’
— \TL 1 - - - —n
(?Lm)j = 12Ax ["uj‘+2 + S‘Mj+1 =" 8'“'3‘-—1 -+ U‘j—z]
= E%%‘i) [4 — cos (kAz)] @,
o 4sin (kAx) -
(Cw)j ks [4 — cos (kAz)] &
n 1 T =Tl
(Gosa)j = 73 [@2, — 200,y + 20}, — W) _,)
4isin (kAz) . . "
= — [% sin® (kAz) | (7.

Substituting these expressions into (4.23) and (4.24) results in

¢t = (1t p (46 — 320" + 1002,
.fI(n+l)* - ﬁ;“ & q (46CJ 32Cn 1 ) lﬂcu 2) ,

j
where
_ ihAt 4 — cos (kAzx)
P= i, sin kAx [f] ,
= igAt sinkAz [4 — cos (kAz) 4Bh? sin? kAx
1= "2ans 3 Az? 2 4]
4ah? . , (kAz
pe=1= Ao sin (—2—) .
The corrector step is
At
n+1 7 (n-+1)x no__ n—1 n—2
¢ —1+24[E +19B] — 5B + B2
At

Ut =ur+

—_ ﬁ?1+1)* n n—1 n—2
24[9& +19F7 — 5P + 77

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
(4.32)

(4.33)
(4.34)

(4.35)

(4.36)

(4.37)



where (n+ 1)* corresponds to the value obtained from the predictor step. Following

the same procedure as for the predictor step gives

n-l—l — Cj +p (gu(n"i- )* s 19,ur E’I‘; 1 —{—ﬂ;"_2) : (438)
w =+ g (9" +19¢ - 5¢ N +(12), (4.39)

where p and ¢ have been previously defined. We now substitute (4.31) and (4.32)
into (4.38) and (4.39) which yields

=i+ + s + 28 — Spa !+ pu (4.40)
ﬁ}‘“ = iUy + roty + 13ty + 28qC; — 5qC; T L4 C;f‘_2, (4.41)

where
1 = 1+ 414pgq, ry = —288pq, rs = 90pq. (4.42)

Equations (4.40) and (4.41) are now combined into one matrix equation

(I)n+l A(I)n (443)
where
(I,n—H {<n+l —n+1 Cn)—njcn—l—nwl} (4.44)
(I) ={Cn’ﬁn’gn—liﬁn—l,cn—{ﬁﬂ—Z} ; (445)
and
1 28p o, —Bp oy p
28¢ ™ —5¢ T2 q T3
1 0 0 0 0 0
A= (4.46)
0 v 0 0 0 0
0 0 1 0 0
0 0 0 1 0 0

is the amplification matrix. For any given values of p and ¢, A has six eigenvalues

(Ak, & = 1,---,6). The condition for stability is that the magnitudes of all six
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eigenvalues of A (|\i]) should be less than one. The eigenvalues are functions of
the three parameters: the ratio of the water depth to the grid size h/Az, the
Courant number C, = y/ghAt/Az and the dimensionless wave number kAz. It is
not very convenient to obtain analytical expressions for the eigenvalues. Therefore,
the stability range is obtained numerically.

Figure 4.1 shows the variation of the magnitudes of the eigenvalues as a
function of the Courant number and the wave number for h/Az = 1. It is clear that
only the first two eigenvalues, which are complex conjugates, leads to instabilities
and that too only for certain values of the parameters C,., kAz and h/Az. Therefore,
to assess the stability range at this point, we will concentrate on the first eigenvalue.

Figure 4.2(a) shows the variation of |\;| at four different cross sections in
figure 4.1(a). The value of h/Axz is fixed at one and the four lines correspond to the
values kAz/m = 1/5,2/5,1/2 and 3/5. The value of |\;| reaches its maximum when
kAz/m = 1/2. Therefore, the region where |\,| is less than one for kAz/m = 1/2 is
the range for which the scheme is stable. Figure 4.2(b) shows the value of |A| for
kAz/m = 1/2 and values of h/Az corresponding to 0.01, 0.1, 5, 10. For C, < 0.9,
the value of |\ is less than one. The stability range does not change much when
h/Auz is decreased from 0.1 to 0.01. So we can conclude that the scheme, when one
predictor step and one corrector step is used, is stable for C, < 0.9. This value is
slightly different from the one obtained by Wei and Kirby (1998) where the stability
range was C, < 0.8.

Note, however, that this range is valid only for the linearized governing equa-
tions. Furthermore, the analysis above only accounts for the interior of the domain,
where central difference schemes are used to compute the derivatives. At the bound-
aries, where one-sided schemes are also used, the stability criteria may be different.
Thus, this analysis only provides a necessary condition for the stability of the nu-
merical scheme. In actual applications, where the non-linear terms are included and

the corrector scheme is used more than once, the scheme appears stable for C, < 0.6.

4.1.3 Iteration scheme.
The linear stability analysis showed that the numerical solution technique is

stable for the linearized governing equations provided that a Courant number less
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Figure 4.1: Magnitudes of the six eigenvalues Az, k = 1,---,6 as a function of the
Courant number (C,) and the dimensionless wave number (kAz) for
hilkz =1,
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Figure 4.2: Magnitudes of the first eigenvalue A, as a function of the Courant
number (C,): (a) h/Az = 1, kAz/m = 1/5 ( ), kAz/m = 2/5
(—=-), kAz/r=1/2 (==~ ), kAz/m =3/5 (------ ). (b) kAz/m =
1/2, hj/Az =001 {

than 0.9 is used. The analysis assumed that for every predictive step, there is only
one corrective step. In real applications using the non-linear equations, the range
of stability is drastically reduced if the corrector step is used only once. Therefore,
an iterative scheme is used so that the corrector step is repeated a number of times.
To provide a bound on the number of times the step is iterated, an relative error

estimate is defined as

N, — w?
e, = Ei:l |w3 ws |, (447)

N
izt |wil

where N is the total number of grid points in space and w is the dependent variable

and w* denotes the previous calculated value using the corrector step. The error is
calculated separately for the dependent variables ¢ and w. The scheme is iterated

until the relative error is less than 10~* for both of the dependent variables. In
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the event that the denominator is zero, the absolute error is used to determine the
number of iterations required.

Typically, for the weakly non-linear solutions, the error is less than the maxi-
mum specified after using just one corrector step. For the fully non-linear equations,
the number of iterations is dependent on the Courant number. If a Courant number

of 0.5 is used, generally the solutions converge after about three iterations.

4.1.4 Numerical filtering.

The non-linear terms in the equations cause generation of high frequency
noise during the solution procedure. The noises are wave-like with a wave length of
2Ax where Az is the spatial grid size. These high harmonic waves, if left unchecked,
can grow very large and eventually destabilizes the computations. Various methods
have been used to control the growth of these waves.

In this study, the numerical filtering technique of Shapiro (1970) is used. For
a one dimensional model, Shapiro (1970) starts with a simple smoothing element

Zy = %Z.:_l +(1-98)Z; + —';Zi“, (4.48)
where the Z,’s are the smoothed values, the Z;’s are the raw values and S is the
weight. The amplification factor for this filter is obtained by expressing the the raw

values in terms of it Fourier components
Z; = Acos (k.’ﬂ?; -+ i;f?) (449)

and obtaining the amplitude of the smoothed function(A) from (4.48). The ampli-
fication factor is then

=1 — 28 sin’ %. (4.50)

| s

R(k) =

It is easily seen that the choice of S = 1/2 gives R = 0 for waves of length 2Az.
The amplification factor (— — —) is shown in figure 4.3. Unfortunately, using this
three-point scheme also damps some of the longer waves in the domain. Using (4.48)
as the basis, higher order schemes can easily be constructed (see Shapiro (1970) for
more details). In the computations shown, a five-point filter defined by

1

AL
16

(—[ZH_Q = Zi_gl = o 4[Zt'+l = Zi—l] + 102@) ; (451)
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Figure 4.3: Amplification factors for a 3-point Shapiro filter (— — —) and a 5-point
Shapiro filter ( ).

which has the amplification factor

4 kAz
2

A

is used ( , figure 4.3). This filter is applied twice every wave period for both

¢ and u which is enough to check the growth of the spurious high frequency waves.

4.2 Boundary conditions.

Boundary conditions are necessary for any numerical model. Regardless of
the validity of the model, use of inappropriate boundary conditions will yield incor-
rect results from the model. In this model, waves are input at the left boundary and
absorbed at the right boundary. In addition, the inclusion of wave breaking in the
model implies that there is a third boundary where the vorticity is generated. In
our case, this boundary is the lower edge of the roller, which is prescribed separately

for the breaking waves. The parameters for this boundary are obtained from the
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hydraulic jump measurements detailed in the previous chapter. In this section, all

three boundary conditions are discussed.

4.2.1 The absorbing-generating boundary.

For practical applications, any wave propagation model will have to account
for waves traveling in either direction. This could be the result of waves reflecting
from a sloping bottom, higher harmonics generated due to wave breaking or waves
reflecting off a wall. Specifying only the incident waves at the generating bound-
ary invariably results in the wave field becoming rapidly distorted, frequently with
catastrophic results. There are a number of ways to solve this problem.

Wei et al. (1995) and Yu (1996) used a simple absorbing-generating boundary
condition to take out the outgoing waves. This mechanism was based on linear
theory and was found not very effective. Larsen and Dancy (1983) proposed a
method based on mass conservation to add and subtract mass at a given point in
the 2-dimensional domain. Wei et al. (1999) extended this method for Boussinesq-
type equations using a spatially distributed source function inside the domain. The
waves propagate in either direction and sponge layers at both ends of the domain is
used to absorb the waves.

Hibberd and Peregrine (1979) used the method of characteristics to derive a
boundary condition for the non-linear shallow water equation. Here the incoming
Riemann variable was specified and the outgoing wave is calculated. For simulta-
neous absorption and generation of waves at the boundary, the incoming variable is
not known apriori. Kobayashi et al. (1987) solved this problem by using the outgo-
ing characteristic and substituting a linear long wave relation between the velocity
and surface elevation to calculate the outgoing wave. Van Dongeren and Svendsen
(1997) extended this method to equations of continuity and momentum locally dom-
inated by the terms corresponding to the non-linear shallow water equations. The
performance of this absorbing-generating boundary condition was shown superior
to the classical Sommerfeld radiation condition.

For our case, which is a one-dimensional model, we extend the absorbing-
generating boundary condition of Van Dongeren and Svendsen (1997) to the Boussi-

nesq model. The criteria that the continuity and momentum equations is locally
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dominated by the linear and non-linear terms is satisfied since O(p%) < 1. The equa-
tions for a horizontal bottom with no wave breaking, which is a subset of (2.53) and

(2.72), can be written as

a 8. -

5t T 55 BB+ Q] =0, (4.53)
ou . o  _ou

7 tilig + i =G, (4.54)

where G represents the O(p*) terms, including the non-linear terms for the fully
non-linear model. If we define d = h + (, (4.53) and (4.54) can be expressed in

matrix form as

of  ,9f i
Tt AS'{; G, (4.55)

f=[f], A=[af] and G:[O] (4.56)
U g 1 g

We write the equations in characteristic form by realizing that the eigenvalues

where

of A are @ + +/gd which are always real. Therefore, a modal matrix P can be

constructed from the eigenvectors such that P! AP is diagonal, which gives

_ m—ﬁ/_g - T g/ld 1
P—[ 1 1 ] and P 2[—\/9/_0!1]' (4.57)

Equation (4.55), can then be re-expressed as

P“I% + P‘lAPP‘I% = PG, (4.58)

which yields a set of two equations in terms of @ and ¢,

G+ (50 V) 5 - (19
L (BN ""fi =g. (4.60)

Here 8+ = % + 2y/gh is the incoming characteristic and = = @ — 2/gh is

the outgoing characteristic. The information about the waves that are propagating
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away from the shoreline is given by #~. We now have to assume something about
the interaction between the incoming waves, which are specified and the outgoing
waves which are unknown. Following Van Dongeren and Svendsen (1997) we utilize
that the linear terms in the equations are O(1) and the O(d, ;%) terms are considered
small. We can divide both the volume flux and the surface elevation into incoming

and outgoing components
T=%+% and (=G+G, (4.61)

where the subscript ¢« denotes quantities coming into the domain and the subscript

r represents the outgoing components. Now, the expression for 57 is, keeping terms

up to O(6?)
g~ =u;+ 4, — 2\/gh. (1 . s 9%1)

: ; 2
=u; + T, — 2+/gh (1 + G ;f" _ G ;rhc’“) ) +0 (6%). (4.62)

We now express the water surface elevations ((; and ¢,) in terms of the velocities

(w; and %,) utilizing the relation

cG; - iy e=glh+ G +G). (4.63)

Uy = m; T —ma

After some algebraic manipulations, the water surface elevations (; and (, can be

expressed in terms of the velocities as

G w17 ¢}

. R W V) Mt 2, 4.64
h cu+2cg+265 +0 h? (154)
Cr Uy 1 ﬁ2 Uiy C3

=4 - o= 4.65
h Co 4 28 ¥ 2¢k " hd )’ (4.65)

where ¢y = y/gh and both (;/h, (;/h ~ O(§). Substituting (4.64) and (4.65) into
(4.62) gives

B~ 1w 3uwm, U 1u?
st s il e 2— — ——, 4.66
Co ded 2 ¢ * co 4¢c )
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Solving this equation with respect to ,, the outgoing component is calculated as

7 s 2 U ~
“_"z(-3-‘5+4)i2\/2?—‘;-—63+4—(ﬁ—+2). (4.67)

Cp Cp Cp Cp Cp

The still water condition is

Hy =10, ;=0 and i— +2=0, (4.68)
0

which gives the positive root as the spurious root, which leaves

T U 2 u; =
L. (—3ﬁ + 4) = 2\/2"‘—‘;— o ({{_ - 2). (4.69)
Cp Co Ch Co Co

The value of f~ at the boundary is calculated from (4.57) using the ABM scheme

at each time step. During the solution of the Boussinesq equations the values of @
and ( are calculated at the next time step at all interior points of the computational
domain. At the boundary, the incoming wave (%;) is specified. The expression (4.69)
then gives the value of %,, and hence @ at the boundary. The continuity equation
gives the value of ¢ at the boundary.

Van Dongeren and Svendsen (1997) tested this boundary condition for very
long waves. For the present model, short waves are used as input to the model for all
practical applications. Figure 4.4 shows the performance of the boundary condition
for two wave conditions. For both cases, the initial condition is no waves in the
domain (¢ = 0 everywhere in the domain). Waves are generated at the boundary
during ¢ = 0 — 67". The waves are tapered with a hyperbolic tangent function to
suppress transients during the first and last period. The waves propagate up to a
wall where they are reflected. The reflect waves then pass through the absorbing-
generating boundary at # = 0. The length of the wave tank (A\) was 5.0 m for the
first case and 20 m for the second.

Figure 4.4(a) shows the time series at the absorbing-generating boundary at
@ = 0 for a long wave of T'\/g/h = 26 and L/\ ~ 2, where L is the wave length. The
waves reflected from the wall boundary reaches the absorbing-generating boundary
while waves are still being generated and sent into the domain. As a result, standing

waves are present in the domain for most of time the waves are in domain. Due
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Figure 4.4: Time series of the water surface elevation at the boundary (z = 0)
for the fully non-linear model, showing the effect of the absorbing
generating boundary condition. (a) long waves (T'\/g/h = 26) (b)

short waves (T'\/g/h = 10.5).

to the dispersive nature of the equations, there is a tail of very short waves for the
reflected waves. These small waves propagate slowly out of the domain. It is seen
that still water condition is recovered quickly.

Figure 4.4(b) shows the time series at the boundary (z = 0) for a much
shorter wave of T'y/g/h = 10.5 and with L/\ ~ 0.2. After about ten wave periods,
the reflected waves reach the absorbing-generating boundary. Again, the dispersive
nature of the model transforms the wave packet and at the boundary, the reflected
waves are groupy in nature. The recovery of still water conditions takes a longer
time in this case, probably also as a result of the length of the domain in comparison
to the wave length. Overall, the performance of this boundary condition is very good
for regular waves. The performance of this boundary for random waves has not yet

been tested.
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4.2.2 Wave absorption at the shore.

Instead of modeling a moving shoreline, the present version of the model uses
a shelf of finite but very small water depth close to the shoreline. When the breaking
waves reach the shelf, the wave heights are small. Even so, a wall boundary at the
end of the domain will reflect these waves back into the domain causing disturbances
in the wave field. These reflected waves are eliminated by a sponge layer close to the
boundary which takes out the energy from these waves (Israeli and Orszag 1981).

For a sponge layer which extends from = = x, to = =z, the corresponding

dissipation term in the model is defined as

F,, = W (z)a, (4.70)
where
0, T <&,
W(z) = e (4.71)
ay f(z). 0 L,

The value of W (z) is set to zero outside the sponge layer. To avoid possible re-
flections from the sponge layer, the value of W (z) is increased gradually from the
starting location of the sponge layer (z = x;) to the end of the sponge layer (z = z;).
Therefore, in (4.71), the value of f(z) increases gradually from zero to one. The
coefficient «; determines the strength of the sponge layer. The function f(z) is

given by

n P "
rlo) = o e um
The value of n in f(z) has to be larger than one to ensure a smooth transition into
the sponge layer. In the computations given later, the value used is n = 2. The
value of ey needs to be monitored to prevent wave reflections. In general, the value
used in the model ranged from a; = 5 to oy = 10. The shelf depth (k) used in the

model is 0.01 m and the length of the sponge layer (z; — x)/hy =~ 200.

4.2.3 Boundary conditions for wave breaking.
Once the wave starts breaking, a recirculating region is formed at the front

face of the wave. This region, commonly called the “roller”, moves with the wave.
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The physical process was identified and explained in the previous chapter where the
measurements from hydraulic jumps were also presented. In this section, we discuss
how these measurements can be applied to waves.

One of the difficulties lie in the fact that in reality, the flow inside the roller
as well as the size and shape of the roller keeps changing as the wave propagates
towards the shore. At present, not much is known about this process. The analysis
of the roller development is still an ongoing study (see, e.g., Brocchini and Peregrine
1998) and is beyond the scope of the present work. Here, the vorticity generated in
the roller region is approximated by specifying the vorticity at the mean lower edge
of the roller.

In the present model, we use the equivalence established between breaking
waves and hydraulic jumps. As mentioned in Chapter 3, breaking waves viewed in
a coordinate system moving with the waves have flow patterns similar to that in
hydraulic jumps. The turbulent stresses, the surface profile and the vorticity are
invariants under such a transformation. Therefore, the thickness of the roller and
the magnitude of the vorticity are obtained from the measurements in the hydraulic
jump analyzed in Chapter 3. These quantities are approximated by using a curve
fit through the data points (figure 4.5).

The non-dimensional roller thickness can be represented by the curve

" 2
= afty (L _ T
¢ = 0.78e¢ ( 7 eg) (4.73)

and the non-dimensional vorticity values is well represented by the linear fit

1
ws = 15.75 (1 — Z) :

It turns out that the numerical computations are eased somewhat if this is replaced

by the expression

wy = 15.75 (1 — e'0%/*) (1 —~ Pi) , (4.74)

which is shown as the solid line in figure 4.5b. This avoids the sharp discontinuity
at 2/¢, = 0. The expressions of (, and w, from (4.73) and (4.74) are used in the

solution to the vorticity equation.
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Figure 4.5: (a) The non-dimensional thickness of the roller for the hydraulic jumps:
Data for Froude numbers 1.38(0), 1.46(x), 1.56(*) and least-squares fit
( ). (b) Non-dimensional vorticity at the lower edge of the roller
with least squares linear fit (— — —) and according to (4.74)( 5

Note that the non-dimensionalization of the roller thickness involves the
depth ratio & = hy/hy where h, is the depth far downstream of the jump and h; is
the minimum depth in front of the jump. The non-dimensionalization for the vortic-
ity also involves the velocity U; at the minimum depth A,. The equivalence between
these quantities in the hydraulic jump and that in a wave has to be determined.

The maximum depth hy can easily be approximated to the total depth at the
crest of the wave h, and the minimum depth h, is associated with the depth at the
wave trough h;. The equivalent velocity is approximated as follows: The speed of a

bore is given by
1
¢ = 5gmE(E+1). (4.75)

The bore moves into quiescent water, whereas the breaking wave has an opposing

velocity of the wave trough in front of it. This opposing velocity u,, if the wave has
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constant, form and there is no net mass flux, is
(4.76)

where ¢, is the wave speed, h is the still water depth and (; is the trough elevation

(which is negative). Then, we have
Cy — Ug = Cp. (4.77)

If we substitute the expressions for ¢, and u; from (4.75) and (4.76) into (4.77) and

use the equivalence for the depths mentioned, we get

& s (h—‘t)zg(gﬂ) (4.78)
“Au 29 t h ) "

where & = h./h and hy = h+ (. In the wave model, these relations are used to get

the dimensional values of the vorticity and the roller thickness.

4.2.4 Initiation of breaking and development of the roller.

The Boussinesq equations will not directly lead to wave breaking in shallow
water due to the inclusion of the dispersive terms in the equations. The frequency
dispersion will tend to balance the amplitude dispersion, thus stabilizing the wave
profile. Hence, any modeling of surf zone waves using Boussinesq-type equations
necessitates explicit specification of the location where the waves start breaking.

During the initial stages of breaking, the waves undergo a rapid transforma-
tion from organized motion to turbulent motion. One of the important phenomena
that occur during this stage, in addition to a rapid decrease in wave height, is the
development of a roller at the front face of the wave. After some time, these breaking
waves reach a quasi-steady state, forming a propagating bore.

The development of the roller in breaking waves is a complicated process. A
mathematical formulation for this process has not been developed yet. A relatively
simple method, based on geometrical considerations, was given by Deigaard (1989)
for determining the point of initiation of wave breaking and the length of the roller.
Schiffer et al. (1993) adapted this method for waves in the surf zone based on the

following considerations: As the waves approach the shoreline, the local steepness at
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the front face of the waves become large leading to instabilities and the wave breaks.
The critical slope at the toe of the roller tan « (see figure 4.6) found by Deigaard
(1989) in the inner surf zone was o = 10°. Schiffer et al. (1993) contended that
at the point of initiation of breaking, this slope can be much larger. Thus, an

exponential variation

t—1
tan o = tan o + (tan oy — tan ag) exp [— In2 ( 7 b)] ; (4.79)

st
where ag = 10° is the value of the slope at the toe of the roller in the inner surf zone
found by Deigaard (1989), cg = v, is the angle at which wave breaking is initiated,
T, is the time during which the roller develops, t; is the time at which the breaking
start. Thus, the development of the roller follows an exponential curve. The end of
the roller was determined by using a linear extrapolation from the toe of the roller
to the surface of the wave as shown in figure 4.6(a). The shape of the roller (figure
4.6(a), — — —) was then determined by multiplying the thickness e(z) by a shape
factor. This method has been used with good success by Madsen et al. (1997) and
Yu (1996). A similar method is used in the model of Kennedy et al. (1999), which
is an extension of the Wei et al. (1995) model

For the present model, the location of the toe of the roller and the devel-
opment of the roller is determined using the same method. However, the roller is
assumed to end at the crest of the wave (figure 4.6(b)). The reason is that in the
present model, the breaking terms are calculated from the vorticity distribution.
There is residual vorticity even after the roller has passed by. This is not the case
for Schiiffer et al. (1993), where the breaking term is active only in the region where
the roller exists. The start of wave breaking is defined as the location where the
front face of the wave exceeds a particular angle ay. The roller slowly develops dur-
ing a specified period Ty, which essentially models the transition region. The wave
transforms into a fully developed bore during this time frame. For most natural
beaches where there are no longshore bars, the wave does not stop breaking until
the shoreline is reached. Where the wave breaks on a bar, the breaking may stop
when the wave propagates into the deeper water behind the bar. This is modeled
by stopping the breaking when the maximum angle at the front face of the wave is

less than .
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Figure 4.6: Determination of the position of surface roller.

For the weakly non-linear model, the inception point for wave breaking is
when o > 20°. Recent experiments by Duncan et al. (1999) show that the time
scale for the development of the roller is about Ty, = 0.257 where 7' is the wave
period. The model results shown use the value T, = 0.27". The value of aig was found
not to have much influence on the wave breaking on a gentle slope and the value
used was ap = 10°. All values were calibrated by comparing the wave height results
to one data set. For subsequent comparisons, these values were left unchanged.

For the fully non-linear model, the starting point for wave breaking used is
oy > 32°, which is an increase from the value used in the weakly non-linear model.
The reason for this increase is that the wave shape predicted by the fully non-linear
model is steeper than the weakly non-linear formulation. Hence, using the same
criteria for the fully non-linear model causes the waves to break very early. The

other two parameters (g and T},) retain the same value.
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Chapter 5

COMPARISON OF MODEL RESULTS WITH DATA.

To demonstrate the performance of the model described in the previous chap-
ters, tests have been conducted for monochromatic wave conditions with different
wave heights and periods ranging from long waves to waves in the intermediate wa-
ter depth. First, the model is tested for the case of solitary wave propagation on
a horizontal bottom as well as on plane beaches. These tests are compared to the
previously available results from the fully non-linear Boussinesq model of Wei et al.
(1995) and Kennedy et al. (1999), and the full potential flow model (Wei et al.
1995).

Next, the vorticity distribution in breaking waves, the shape of the roller and
the magnitudes of the different terms that represent breaking are discussed. Then,
the present Boussinesq-type models are compared to wave height and set-up data
of Hansen and Svendsen (1979) for waves shoaling and breaking on a gentle slope.
A spectral solution to the weakly non-linear equations is used as input to the model
for all studies of breaking waves. The differences between the weakly non-linear
and the fully non-linear model are shown along with available results from Kennedy
et al. (1999) model.

The model results are then compared to the surface profile and velocity mea-
surements of Cox et al. (1995). Again, the weakly and the fully non-linear models
are compared to the data. The results from the model can then be used to calculate
the undertow profiles. Two sets of comparisons are shown: one with the data of Cox
et al. (1995) and another with the results of Ting and Kirby (1994). The difference

between using the present model and a potential flow model is also illustrated.
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The availability of the velocity profiles from the model also makes it possible
to calculate other wave-averaged quantities such as the wave mass flux, the cross-
shore wave radiation stress. These quantities cannot be measured directly. The
estimates of these quantities are presented. The phase speed of the waves in the

breaking region is also discussed in this context.

5.1 Solitary wave propagation and shoaling.

First, we look at propagation of solitary waves over a horizontal bottom. This
test indicates the stability and conservative properties of the numerical scheme.

Analytical closed form solutions of solitary waves have been derived for some
approximate equations such as the KdV equations and Serre equations. Very accu-
rate solutions can be obtained by solving the full potential problem using Boundary
Element methods (Grilli et al. 1994). It is possible to obtain spectral solutions (as
shown in appendix C for monochromatic waves) for solitary waves. However, soli-
tary waves are infinitely long and a large number of terms would have to be retained
for the spectral solutions to be reasonably accurate.

Approximate solutions have been derived for the weakly non-linear ¢ — u,
equations by Wei et al. (1995). Even using these solutions as the input condition for
the numerical model, Wei et al. (1995) found that the wave heights and wave shape
changed constantly during the initial stages of the computation. This change in
solitary wave profile even on a horizontal bottom is due to the approximate nature
of the solution even for the weakly non-linear equations (whereas they use a fully
non-linear model). Also, differences between the solution to the numerical equations
and the solution to the actual equations cause the solitary wave to change shape.
Small oscillatory tails with a smaller phase speed than the primary wave were found
to develop and lag behind. The primary wave stabilized after some time, i.e., the
wave shape remained constant, indicating that the permanent form solution to the
numerical equations had been attained. Once the form of the waves stabilized, it
propagated without change of shape over very long distances. The height of this
wave, however, was different from that of the approximate solution input at the
boundary. Therefore, a trial-and-error method was used wherein the height of the

solitary wave input to the model was adjusted until a stable solitary wave with the
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desired wave height was obtained. The shape and height of these solutions were
then compared to the solution obtained by Tanaka (1986) to show the accuracy of
the model.

It is also possible to obtain the permanent form solution to the numerical
equations using the solution to the KdV equation by the same process of trial and
error. The solution to KdV equations are simpler, and hence is the method of choice
here. The solitary wave solution to the KdV equation (see, e.g., Dean and Dalrymple
1991) is

’ 3
((z,t) = a sech? {% (}%) (z—Ct— :::U)} ; (5.1a)
with

(5.1b)

C=¢g7a(1+ "’),

2h

where a is the amplitude of the wave. The stable form of the solitary wave corre-
sponding to the fully non-linear ( — % model is obtained similar to the procedure
used by Wei et al. (1995).

Figure 5.1 shows the comparison between this stable solitary wave form ob-
tained for the present version ({ — %) of the fully non-linear model described in the
earlier chapters and the closed form solution of Tanaka (1986) for three different
values of non-linearity (6 = a/ho= 0.2, 0.3 and 0.4). The solitary wave forms given
by the present model closely match Tanaka’s solutions. For the case of 6 = 0.4, the
result from Wei et al. (1995) is also shown. Using the ¢ — version of the Boussinesq
equations (present model) gives a slightly wider profile for the water surface eleva-
tions compared to Tanaka’s solution whereas using the ¢ — u, version (Wei et al.
(1995) model) gives a slightly narrower profile for waves with higher non-linearity.
This shows that the fully non-linear ¢ — % model can predict the form of the solitary
waves propagating on a horizontal bottom with an accuracy comparable to the that
of the Wei et al. (1995) model.

We now look at the case of solitary wave shoaling. Near the breaking region,
solitary waves generally attain a larger wave height to water depth ratio than in the

case of monochromatic wave trains. Thus, this test demonstrates the performance
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Figure 5.1: Comparison of solitary wave shapes for § = 0.2, 6 = 0.3 and § = 0.4 of
the present model (— — —) with results from Tanaka (1986) ( )
and Wei et al. (1995) (----- ).

of the model in the region of high non-linearity. Furthermore, this test gives an
indication of the speed of propagation of waves predicted by the model, in the
absence of extra influences like, for example, wave reflection.

Figure 5.2 shows the computational domain for this case. Permanent form
solitary wave solutions are obtained, as mentioned before, by propagating an ap-
proximate solution over long distances. These stable solitary wave solutions are used
as the input at the offshore boundary where the constant depth is hy. The waves
are propagated on to a beach slope of 1:m. The coordinate is set such that the toe
of the slope is & = 0 and ¢t = 0 when the wave crest reaches the toe. The depth at
the shelf close to the shoreline is hy = 2 em for these computations.

Four different cases are presented here with different wave conditions on

different beach slopes corresponding to the results shown in Wei et al. (1995).
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Figure 5.2: Schematic computational domain used for solitary wave shoaling com-
parisons.

The fully non-linear potential flow (FNPF) model solves the exact boundary value

problem for irrotational wave motion in incompressible, inviscid fluid given by

oz + 0. =0 —h<z<( (5.2)

by + hyppy =0 z = —h, (5.3)

9C+ it 590 + (6] =0 s, 54)
G+ Cotbe — b =0 el (5.5)

using Boundary Element methods. Grilli et al. (1994) showed that the the FNPF
model gives very accurate results for the case of solitary wave shoaling. Very close
to the breaking region, the error between the FNPF model and experimental data
was about 1%. Therefore, in this section, the results from the FNPF model are
used as the reference. To compare the present model to the Wei et al. (1995) model
and the FNPF model, the input wave has to match as closely as possible. For the
FNPF model, the exact solution, using the method of Tanaka (1986), was used as
input, whereas for the present model as well as for the model of Wei et al. (1995),
the numerically stable solutions were used as the input. The results from the ¢ — %
model are compared to FNPF model and the Wei et al. (1995) model.

The comparisons between the three models are shown in figure 5.3. The

four sub-plots (a)-(d) correspond to four different slopes of 1:100, 1:35, 1:15 and 1:8
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Figure 5.3: Comparison of surface elevations for solitary waves shoaling on plane
beaches at four different times after the start of the computation.

FNPF ( ), the Wei et al. (1995) model (—-—-- ) and the present
model (— — —).

(a) s=1:100, §=0.2, t; = 39.982, t, = 53.191, t3 = 61.131 and t; =
66.890.

(b) 8=1:35, §=0.2, t; = 16.243, t = 20.64, t3 = 24.032 and t4 = 25.936.
(c) s=1:15, 6=0.3, t; = 3.23, t = 6, t; = 8.401 and t; = 11.32.

(d) s=1:8, 6=0.2, t; = -0.739, ty = 2.575, t3 = 5.576and t, = 6.833.
The last profile in (a)-(c) corresponds to the theoretical breaking point.
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respectively. These slopes range from a very gentle beach to a very steep beach. The
value of § at the constant depth section is 0.2 for (a), (b) and (d) and is 0.3 for (c).
Four different spatial profiles corresponding to different times (scaled as t1/g/ho) are
shown in each of the sub-plots. The profiles, obtained from each of the model at the
same time after the crest of the wave has reached the toe of the slope, are compared
to each other. The last profile (corresponding to #4) is the theoretical breaking point
defined here as the location where the wave front has a vertical tangent in the FNPF
model. We expect to have the largest effects of non-linearity at this location.

For the first case, where § = 0.2 and slope is 1:100, the predictions of the
Boussinesq models agree well with the FNPF solution at ¢ = ¢;. However, as the
wave propagates shoreward, the Wei et al. (1995) model tends to over-estimate
the wave height and the present model tends to under-estimate the wave heights.
The FNPF model shows a decrease in wave height just before breaking which is not
represented by either of the two Boussinesq models. Of the four cases shown, the
differences between the Boussinesq models and the FNPF model are most evident
in this case. In the other three cases, although not very visible in this plot, the Wei
et al. (1995) model consistently over-estimates the height of the wave crest, whereas
the present model consistently under-estimates the height of the wave crest.

In addition, the wave profiles from the two fully non-linear Boussinesq models
are also slightly different from that given by the FNPF model. The Wei et al. (1995)
model gives a slightly narrower crest and the present model gives a slightly wider
crest. Another point of interest is that the wave celerity predicted by the two
Boussinesq models is larger than that given by the FNPF model. This is observed
from the location of the front face of the wave predicted by the Boussinesq models
compared to those predicted by the FNPF model at the same time.

It was mentioned in Chapter 2 that the slope terms are small and hence can
be neglected in the non-linear terms of O(d?). Figure 5.4 shows the results for the
solitary wave shoaling for the same situations as in figure 5.3, this time comparing
the present model with and without the h,, h,, and h;., terms to the FNPEF model.
As is evident, there is no significant difference, even for a very steep beach of 1:8.

Therefore, we can deduce that the h, terms are indeed small and can be neglected
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Figure 5.4: Comparison of surface elevations for solitary waves shoaling on plane
beaches between the FNPF model ( ), the fully non-linear ¢ — @
model with the slope terms included (— — —) and the fully non-linear
¢ — u model without the slope terms (—-—-— ).
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for the breaking terms as well.

5.2 Model characteristics.

Before the model results are presented, we first look at some of the charac-
teristics of the breaking model. First, we look at the vorticity field in the breaking
waves. The model domain is similar to that shown in figure 5.2. For this case, the
beach slope is 1:35, the wave height at the constant depth section is 12.5 ¢m and
the wave period is 2.2 secs. These values correspond to the experimental conditions
of Cox et al. (1995) described later. Figure 5.5 shows the vorticity contours, with
5.5(a) showing the contours just after wave breaking starts, 5.5(b) a little distance
into the surf zone and 5.5(c) well into the surf zone. Figure 5.6 shows the vertical
profiles of the vorticity at these same locations concentrating more in the region of

the roller.

.2 0.3 0.4 0(5( ) 0.6 0.7 0.8

Figure 5.5: Contours of the vorticity under the wave at three locations in the surf
zone. The vertical axis is 2’ = (2 + h)/h and the horizontal axis is the
time normalized by the wave period. (a) h/hy ~ 1 (b) h/hy = 0.9 (c)
h/hb =05
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Figure 5.6: Profiles of the vorticity under the wave at three locations in the surf
zone shown in figure 5.5. Again, the vertical axis is 2’ = (2 + h)/h

and the horizontal axis is the time normalized by the wave period. (a)
h/hy ~ 1 (b) h/hy =0.9 (c) h/hy = 0.5

Observations of waves in the laboratory (see, e.g., Lin and Rockwell 1994)
show that the vorticity produced in the roller is convected downward and towards
the back of the wave. This feature is also seen from the measurements in hydraulic
jump (see Chapter 3). As is expected, the figures show the same feature. Also, for a
wave that is a fully developed breaker, the absolute maximum of the vorticity in the
wave occurs very shortly after the toe of the roller has passed by. Along each vertical
section, it is only close to the toe that the maximum of the vorticity is close to the
lower edge of the roller. From approximately halfway through the roller region, the
maximum of the vorticity is found below the lower limit of the roller. The maximum
vorticity remains well below the surface as the vorticity decays downstream of the
roller on the back side of the wave. This result is similar to that observed in hydraulic
jumps (figure 3.12) and Lin and Rockwell (1994). Thus, this important feature of

the vorticity is also captured by the model.
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Figure 5.7: Variation of AM/M ( ) in surf zone waves (a) h/hy ~ 0.84 (b)
h/hy = 0.67 (¢) h/hy = 0.5 (d) h/hy = 0.35. The water surface (/h (—
— —) and the roller {./h (--—-- ) are also shown.

Figure 5.7 shows the variation of of the normalized excess momentum flux
AM/M as the breaking waves propagate towards shore. One feature is that the
magnitude of AM decreases towards the shore line. The maximum value of AM/M
in the cross-shore direction is about 0.25 which is slightly smaller than the values
calculated from the hydraulic jump measurements (figure 3.7). Another feature is
that the maximum of AM is in front of the wave crest. As shown by Svendsen et al.
(1996), this is important for the decrease in wave height in the breaking region. This
feature is also seen in the hydraulic jumps (figure 3.7). It was shown by Svendsen
et al. (1996) that if the maximum of AM is behind the crest, the wave heights
increase in the breaking region.

Figure 5.8 shows the magnitudes of the breaking terms at h/h, = 0.67, where
AM is again the excess momentum due to the roller, AP is the effect of the excess
pressure due to the roller, D, is effect of the vertical motion of the fluid, D,,, is the

effect of the mixing term and Dy is the shear stress term. The figure shows clearly
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Figure 5.8: Magnitudes of the breaking terms in surf zone waves at h/h, = 0.67.
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that the major contributions to the breaking comes from the excess momentum
(AM) term and the excess pressure (AP) term. The contributions from the roller
area is included in the AM term. However, it turns out that the major effect of
this contribution comes about as a shift in the location of the maximum of AM
with respect to the crest. Including the contribution from the roller area shift the
maximum of AM farther to the front of the wave crest, which enhances the breaking
somewhat (Yu 1996).

It is seen from the figure that the breaking terms of O(du?), which include
the mixing terms and the turbulent stress terms, are negligible in comparison to
the two main effects of excess momentum flux (AM) and the effect of the vertical

acceleration due to the roller (AP,.;).
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Table 5.1: Wave parameters from Hansen and Svendsen (1979) at the toe of the
beach.

Case No. | T (secs) | H (em) | & |T+/g/ho| I,
wh031041 | 3.3333 4.3 0.12 17.4 0.65

wh041041 2.5 3.9 0.11 13.0 0.48
wh051041 2.0 3.6 0.10 | 10.44 | 0.38
wh061071 1.0 6.7 0.19 5.22 0.23

5.3 Comparisons with regular wave data.

In this section, the performance of the present model (both the fully non-
linear and the weakly non-linear versions) in the shoaling region and in the surf zone
is compared to experimental data for regular waves. The comparisons are shown for

the wave heights, the wave profiles, the velocity field, the set-up and the undertow.

5.3.1 Wave heights.

Wave heights and set-up measurements for monochromatic waves are avail-
able from the experiments by Hansen and Svendsen (1979). Those experiments were
conducted in a wave flume with a plain beach of slope 1:34.26. The water depth
at the start of the slope was hy = 0.36 m. Seventeen tests were conducted with
five different wave heights and seven different wave periods. The wave heights and
set-up for each case were measured at a number of locations. Comparisons will be
shown for four cases for which sufficient measurements were available in the surf
zone. Table 5.1 presents the wave period and the wave height at the start of the
slope for each of the cases shown here.

The wave periods chosen for these comparisons range from fairly long waves
(T+\/g/ho = 17.4) to fairly short waves (T'\/g/hy = 5.22). The computational
domain is as shown in figure 5.2. The Iribarren number (equation 1.1) gives an
indication of the breaking characteristics of these waves. For the first case (I, =
0.65) we expect plunging breakers and in the last two cases (I, = 0.38, 0.23) we
expect spilling breakers. The second case, where I,, = 0.48, could be either plunging

breakers or spilling breakers depending on whether the value given by Galvin (1968)



is followed (I, < 0.46 = spilling breakers) or that given by Battjes (1974) is followed
(I, < 0.5 = spilling breakers).

Figure 5.9 shows the computed relative wave heights (H(z)/hg) versus the
non-dimensional water depth (h(z)/ho) compared to the data for the four cases. In
these computations, the present breaking models based on the weakly non-linear
and the fully non-linear Boussinesq equations use a spectral solution to the weakly
non-linear equations (Appendix C) as input at the offshore boundary. A maximum
of fifteen Fourier components are used for describing the incoming wave for each
case. The cut-off point N for the number of Fourier components was chosen so that
the Fourier amplitude of the (N +1)st component was less than 1.8, The Kennedy
et al. (1999) model, which is an extension of the Wei et al. (1995) model, uses a
sinusoidal wave corrected for the second harmonic as the input wave condition.

In the initial shoaling region it is seen from figure 5.9 that the wave heights
predicted by the weakly non-linear Boussinesq model (—-—-— ) compare well with
the data (¢). However, as the waves get closer to the breaking point, the computed
results start deviating from the measured values. The model under-predicts the
wave heights close to the breaking point. This misrepresentation is smallest for
5.9(a) where the wave period is the largest (i.e., for the longest wave) and the errors
are largest for 5.9(c) (the shortest wave for which computations from weakly non-
linear equations are shown). As mentioned in section 4.2.4, breaking in the weakly
non-linear model is initiated when the maximum slope at the front face of the wave
exceeds 20°. In the outer surf zone, the difference between the computed results
and the data get smaller. In the inner surf zone, the agreement between the model
and the data is very good.

While the assumption of weak non-linearity may be true during the initial
stages of shoaling, the non-linear effects start to dominate as the waves approach
breaking. Thus, this basic assumption becomes invalid close to the region of wave
breaking. Once the waves start breaking, the wave heights predicted by the model
decrease. The energy dissipation due to wave breaking is proportional to H*. There-
fore, the energy dissipation in the model is smaller than that for the data and hence

so is the decrease in wave height. Once the wave heights computed by the model
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Figure 5.9: Comparison of wave heights with experimental data from Hansen and
Svendsen (1979) (o), for waves shoaling and breaking on a gently slop-
ing beach, using the weakly non-linear model (--—-— ), the fully non-
linear model (———) and the Kennedy et al. (1999) model (— — —).
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are close to those given by the data, the energy dissipation is also equivalent. This
results in a better prediction of the wave heights in the inner surf zone.

The performance of the present fully non-linear model ( , figure 5.9)

is very good throughout the computational domain. The wave heights are slightly
under-predicted just before breaking is initiated. As mentioned in section 4.2.4, wave
breaking for the fully non-linear model is initiated when the maximum slope at the
front face of the wave a4 exceeds 32° which corresponds to {, = 0.63. In general,
the start of wave breaking in the model is at a slightly small water depth than for
the data. The wave heights are slightly over-predicted in the surf zone, especially in
the region just after breaking starts. This discrepancy is the largest for the first two
cases, where we can expect plunging breaking. The main reasons for this mismatch
are the misrepresentation of the start of breaking and that limited information is
available about the development of the roller immediately after breaking starts.

With the fully non-linear Kennedy et al. (1999) model (— — —, figure 5.9),
the computed wave heights are slightly larger than the data in the region just before
breaking. For this model breaking was initiated when the maximum slope at the
front face of the wave was larger than ¢, = 0.65 (o, ~ 33°). For this model, the
start of wave breaking is at a slightly larger water depth than that in the data. In
general, we see that the prediction of wave heights in the surf zone is poorer for this
model than for the present fully non-linear model.

In all four cases, the value of the eddy viscosity used in the computations is
v, = 0.04h+/gh in the surf zone for both the weakly non-linear and the fully non-
linear models. However, the value of this parameter is uncertain (see figures 3.14,
3.15 and also Cox et al. (1995)). The value of eddy viscosity chosen here corresponds
to the value that gave the best undertow profile to the weakly-nonlinear model
compared to the data of Cox et al. (1995) (discussed in the next part). Experiments
by Cox et al. (1995) show that the average magnitude of the eddy viscosity in the
surf zone in those measurements is about v, = 0.03h+/gh. To illustrate the effect of
a smaller value of v, figure 5.10 shows the wave height variation for v, = 0.03h+/gh.
This decrease in v, results in a decrease in the strength of breaking and leads to larger

wave heights in the surf zone. However, it is seen that this increase in wave height
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Figure 5.10: Comparison of wave heights with experimental data from Hansen and
Svendsen (1979) (o) and the fully non-linear model: v, = 0.03h+/gh
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is within the uncertainty of the measurements. Thus, the wave height predictions
are to some extent not very sensitive to variations of the eddy viscosity as long as
the magnitude of the eddy viscosity used is within the range that can be justified

on the basis of our present knowledge.
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Figure 5.11: Comparison of wave crest elevations ( ) and trough depres-
sions (— — —) with experimental data (o and ¢) from Ting and Kirby
(1994).

Figure 5.11 shows the comparison between the model and the data of Ting
and Kirby (1994). These experiments were conducted on a plane beach of slope 1:35.
Cnoidal waves of height H = 12.5 em and wave period T' = 2.0 secs were generated
at the wave-maker. The toe of the beach is at = 0 m. The Iribarren number
was around 0.2, which indicates that the waves are spilling breakers. The breaking
depth in the measurements was given as h = 19.6 ¢m. The eddy viscosity used in the
computations is v, = 0.04hy/gh. The figure compares the crest and trough elevations

at different locations in the wave tank. Again, we see that the representation of the
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data is very good. The maximum error in the prediction of the crest elevations
(approximately 8%) occur just before the model predicts breaking (at h ~ 21 em).
In the breaking region, the crest elevations are represented extremely well. On the
other hand, for the trough elevation, the errors in the prediction is much larger
(approximately 40% close to breaking) and the agreement is not good compared to

the agreement in the crest elevations.

5.3.2 Surface profiles.

Next, the surface profiles are compared to the data of Cox et al. (1995).
The experiments were conducted in a wave flume with a plain beach slope of 1:35.
Cnoidal waves were generated at the wave-maker with height Hy = 11.5 ¢m and wave
period Ty = 2.2 secs. The water depth at the toe of the beach was hy = 0.40 m.
The Iribarren number is approximately 0.23, which indicates that these waves are
spilling breakers.

Measurements were taken at the six locations shown in table 5.2. The first two
measurement locations were outside the breaking region with the second location
very close to the breaking point. The third location was in the transition region
where the breaker is not fully developed into a bore form. The last three locations

were in the inner surf zone where the breakers are quasi-steady.

Table 5.2: Location of measuring lines for the data of Cox et al. (1995)

Line No. | L1 L2 L3 L4 L5 L6
h (em) | 28.0|21.14 | 17.71 | 14.29 | 10.86 | 7.43

Figure 5.12 shows the wave profiles from the data ( ), the computed
wave profiles from the fully non-linear breaking model (— — —) and the weakly non-
linear model (----— ). At the first location, (figure 5.12(a); h = 28.0 ¢m) which is in
the shoaling region, the model predictions compare well with the data. The weakly
non-linear model under-predicts the crest height slightly and has a slightly wider
crest. In contrast, the fully non-linear model gets the wave shape almost exactly

correct,
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Figure 5.12: Comparison of surface profiles between the weakly non-linear break-
ing model (—-—-— ), the fully non-linear breaking model (— — —) with
experimental data from Cox et al. (1995) ( ).
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At the next location (figure 5.12(b); h = 21.14 ¢m) where the data show
that the waves are just about to break, the model results do not match very well.
The front face of the wave profiles shown by the data has much steeper slopes than
those computed by the model. The weakly non-linear model gives a much wider
crest than the fully non-linear model. Also, the crest height prediction is better
with more non-linearity included.

In the “transition” region (figure 5.12(c); h = 17.71 e¢m) where the waves
are breaking but have not completely transformed into quasi-steady bore forms, the
crest height representation by the weakly non-linear model is good. The fully non-
linear model predicts a larger crest height at this location. On the other hand, the
wave shape is much better predicted by the fully non-linear model.

As the wave propagate towards the shore (figure 5.12(d)-(e); h = 14.29 em,
10.89 e¢m and 7.43 c¢m), the fully non-linear model starts to represent the wave
profiles better than the weakly non-linear model. However, the slopes on the wave
fronts predicted by the model never really come close to that seen in the data.

This feature, that the wave shape described by the model has a wider crest
than that observed from the data, was also noticed in the first section (where the
solitary wave shoaling results were presented). We expect that this feature can
be corrected to a large extent by keeping all terms up to O(u?) in the Boussinesq
equations (see, e.g., Gobbi et al. 1999; Madsen and Schéffer 1998a).

5.3.3 Velocity profiles.

Cox et al. (1995) also measured the horizontal velocities at the six locations
shown in table 5.2 using a LDV, with a Burst Spectrum Analyzer. The velocity
measurements were obtained at a number of vertical locations up to the mean water
level, and the data were available up to the still water level.

Figure 5.13 shows the comparison between the model results and the mea-
sured velocities. For reference, the water surface elevation from the model and the
data are reproduced. In addition, the dotted lines mark the phase at which the
velocities are measured, as well as the zero of the velocities at that phase. The hori-
zontal line at the top right of each plot is the wave speed at that location, calculated

from the model. The calculation of the wave speed from the model computations

123



0.05

model (--—-— ) with experimental data from Cox et al. (1995) () at
11 phases. Water surface elevation: Model (— — —), data ( )
The horizontal line at the top right of each sub-plot is the magnitude
of the wave speed. The ordinate z' = z — h is zero at the bottom.
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is shown in the next section. The abscissa in the figure is normalized by the wave
period.

The agreement between the computed and the measured velocities are ex-
cellent in most of the region. Under the wave crest, the model tends to predict a
slightly larger velocity. This difference is likely caused by two factors. The first
factor is that the predicted wave surface is different from the measured surface ele-
vation. Figure 5.13(a) shows that, at least in the shoaling region, when the surface
elevation is predicted well, the velocity predictions follow suit. In the surf zone
(figures 5.13(c)-(f)), it is again noticed that at the phases where the surface profiles
determined by the model matches that in the data, the velocity predictions are also
good.

The second factor is the assumption of a constant eddy viscosity over the wa-
ter column. Measurements in hydraulic jumps (figure 3.15) as well as in monochro-
matic wave fields (Cox et al. 1995) show that the magnitude of the eddy viscosity
decreases from the surface to the bottom. This assumption of a constant eddy
viscosity diffuses the vorticity generated by the roller downward into the water col-
umn faster than if the eddy viscosity was decreasing towards the bottom. This, in
turn, causes an increase in the rotational component of the velocity (which is always
positive for a positive vorticity) in the lower part of the water column.

Figure 5.14 shows the computed horizontal velocities from the weakly non-
linear model for the same data set. As in the case of the fully non-linear model,
the computed velocities compare well with the measured velocities at the locations
where the surface profiles match. However, for the weakly non-linear model, the
agreement between the surface elevations is worse than that computed using the
fully non-linear model. Therefore, the computed velocities are off-target at more
locations. In addition, the predicted particle velocities at the surface are smaller

than that observed in the fully non-linear model.

5.3.4 Set-down and set-up.
Another important gauge for the model performance is the prediction of wave
set down and set-up. The results from the three Boussinesq models (the present

fully non-linear model, the weakly non-linear model and Kennedy et al. (1999)
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Figure 5.14: Comparison of velocity profiles between the weakly non-linear break-

ing model (—-—-— ) with experimental data from Cox et al. (1995) (e)
at 11 phases. Water surface elevation: Model (— — —), data ( S
The horizontal line at the top right of each sub-plot is the magnitude
of the wave speed. The ordinate 2z’ = z — h is zero at the bottom.
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model) are compared to the data of Hansen and Svendsen (1979). The parameters
of this data set were given in table 5.1.

Figure 5.15 shows that the set-down as well as the set-up predicted by the
present version of the weakly non-linear model (—-—-— ) is good in comparison to the
data for the case of the longest wave (figure 5.15a). In the other two cases, the mean
water level is over-predicted by this model. The deviations between the computed
results and the data can be deduced by looking at the wave height comparisons in
figure 5.9. The decrease in wave height during the early stages of breaking in the
present model is somewhat smaller than in the data. The cross-shore radiation stress
Szs is proportional to H?. Hence, the cross-shore gradient of the radiation stress
computed by the model will be smaller than for the data. The relation between the
mean water level and the radiation stress for steady state in the absence of bottom
friction is

0 _ 3%

= e =4
e = pghaz (5.6)

where ( is the mean water surface. Thus, the smaller shoaling predicted by the
weakly non-linear model implies a smaller gradient in the set-down computed by
the model. Similarly, the smaller decrease in wave height in the outer surf zone
leads to a smaller gradient in the set-up in this region.

Figure 5.15 also shows the mean water level predicted by the present fully
) and the Kennedy et al. (1999) model. The results from

the fully non-linear models represent the results from the data better than the weakly

non-linear model (

non-linear model.

5.3.5 Undertow profiles.

In contrast to other Boussinesq breaking models, the present model has the
capability to predict undertow, as well as other wave averaged quantities. To es-
timate these quantities, the vertical distribution of the velocities is required. In
this section, this feature of the model is demonstrated by comparing the computed

results to two sets of data mentioned before: Cox et al. (1995) and Ting and Kirby
(1994).

127



1 1 1 1 1 1 1 1

0.4 0.5 0.6 0.7

Figure 5.15:

Comparison of mean water level with experimental data from Hansen
and Svendsen (1979) (¢), for waves shoaling and breaking on a gently
sloping beach, using the weakly non-linear model ( —-—-— ), the fully
non-linear model ( ) and the Kennedy et al. (1999) model ( —

- ).
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When starting the computations of the waves from a cold start (i.e., there
are no waves in the domain), a significant surge is initiated in the tank. After this
surge has settled, there is a strong seaward mass flux near the bottom, which is
called the undertow. The undertow is particularly pronounced inside the surf zone.

The total horizontal velocity « can be separated into an oscillatory component
ty, and a current component V. This current component is a constant over a wave
period. The total mass flux over a wave period is then given by

e
' Yy

U= f_ * (V) dz (5.7)

h

N
where the () represents the averaging over a wave period. The oscillatory (or
wave) component is defined such that the average velocity “u, ~ below trough is
zero. This also implies that the mass flux due to waves below the trough level is

zero, and therefore

¢ ¢

~ =

Q =/ Uny dz+/ Vdz (5.8)
Gt ~h

where the first integral on the right is the mass flux /é: due to the wave motion.
The undertow V' (z) is then calculated as the wave averaged value of u at any vertical
location below trough.

Figure 5.16 shows the model results from the weakly non-linear (— — —) and

) models and the data of Cox et al. (1995). The results are

fully non-linear (
shown for the measurement locations where the waves in the data are breaking, up
to the wave trough limit in the vertical direction. Figure 5.16(a) is the comparison
in the transition region. The computed results in this region are affected by the fact
that the start of breaking is different in the model in comparison to the data. Even
so, the model gives a good representation of the undertow profile. Figure 5.16(b)-(d)
are in the inner surf zone and in this region, the results from the model agree well
with the data. Recall that in the present version of the breaking models, the effect
of bottom friction is not accounted for. Therefore, a finite velocity is obtained at

the bottom in the model predictions.
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Figure 5.16: Comparison of the undertow profiles between the fully non-linear
model ( ), the weakly non-linear model (—— —), fully non-
linear model using potential flow assumption (--—-— ) and the data
from Cox et al. (1995) (o). z = 0 is the bottom. The vertical axis
is 2/ = (h+ 2)/(h + (). Plots (a), (b), (c) and (d) correspond to L3,
L4, L5 and L6 in table 5.2 respectively.

As can be seen from the figure, the effect of the bottom boundary layer further
into the surf zone (figures 5.16¢ and 5.16d) is limited to a very narrow region near
the bottom. This is in spite of the fact that in these measurements, the bottom
roughness was enhanced by sand particles glued to the bottom. In the region where
the effect of the bottom boundary does not penetrate far into the water column, the
difference between the computed and measured values is very small.

Figure 5.16 also shows the computed undertow assuming potential flow in

the surf zone (—-—-- ). In this case, the horizontal velocity is given by the potential
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part in equation (2.41)

7 (5.9)

A = K
e, 5) = T+ G~ e+ Y (T - )
where @ is the depth averaged velocity. The effect of the rotational component of
the velocity is still included in the momentum equation as the breaking terms. It is
evident that this assumption of potential flow does not yield a very good prediction

of the undertow.
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Figure 5.17: Comparison of the undertow profiles between the fully non-linear
model with v, = 0.04h/gh ( ), with », = 0.03h/gh (— —-)
and data from Ting and Kirby (1994) (o). The vertical axis is 2’ =
(h+2)/(h+ ).

Figure 5.17 shows the comparison between the wave-averaged velocities from
the fully non-linear model and the data of Ting and Kirby (1994). The locations at
which the comparisons are shown are given in table 5.3.5. As mentioned in section

5.3.1, the waves were said to break at a depth of h = 0.196 m. However, the
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Table 5.3: Locations at which comparisons to Ting and Kirby (1994) data are
shown in figure 5.17. z is the location, in meters, from the toe of the
beach and h is the still water depths at these locations.

Sub-plot | (a) | (b) | (¢) | (d) | (¢) | (f)
z (m) | 6.665 | 7.275 | 7.885 | 8.495 | 9.11 | 9.725
h (m) | 0.185 | 0.169 | 0.162 | 0.137 | 0.119 | 0.097

undertow profile at h = 0.185 m (figure 5.17a) seems to suggest that the waves are
not breaking at this location. Again, due to the omission of the bottom friction,
the model results at this location do not compare well with the measurements. On
the other hand, further into the surf zone it is seen that the agreement between the
model results and the data is again very good.

The measurements in this case extend up to the mean water level. Between
the trough and the crest, the net flow is shoreward. The computed wave averaged
velocities show that even in this region, the agreement between the model results
and the data is very good.

The figures also shows the results of using two different values of the eddy
viscosity: v = 0.03h\/gh (— ——=) and v, = 0.04h/gh ( ). It is seen that

decreasing the eddy viscosity has the effect of increasing the magnitude of the un-

dertow. This feature was also reported by Svendsen et al. (1987) who mention the
sensitivity of the undertow to the magnitude of the eddy viscosity.

The reason for this increase in the magnitude of the undertow corresponding
to a decrease in the magnitude of the eddy viscosity can be explained as follows.
With a smaller value of the eddy viscosity, the vorticity is diffused slower down into
the water column. This implies that the magnitude of the vorticity at the surface is
larger for a smaller magnitude of ;. Consequently, the velocities close to the water
surface in the region of the wave crest will be larger when the magnitude of v, is
smaller. Hence, by conservation of mass, the shoreward mass transport will also be

larger which leads to a larger return flow.
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5.4 Evaluation of phase-averaged quantities.

A phase-resolving model such as the Boussinesq-type model presented here
has the advantage that the individual short wave properties can be obtained directly
from the computations. The phase-averaged properties such as the wave mass flux
and the radiation stress can be directly computed. This section illustrates the
differences between obtaining the results directly from the model computations and
obtaining the same results using the model prediction of wave heights as input to

the results given by linear theory.

5.4.1 Mass flux.
Equation (5.7) can also be written as

L.
~ .

¢ G
'6\ = f (uw + V) dz+ Vdz (5.10)
Cr —h

In this form, the equation illustrates the difficulties with determining the mass flux
fé: in the short wave motion, because above trough level we cannot readily define a
mean velocity and hence cannot separate the oscillating component u,, of the motion
from the mean. Only the total velocity wu,,+V is known above trough level. In order
to determine the value of @,, we need to define the mean value V' above trough level.
This can apparently be done in several ways and the choice does influence what we
get for Q. It is emphasized, however, that this does not mean that the integrated
results are inaccurate, because what is not included in V is included in u,, and vise
versa. Hence, in the time averaged momentum equation, changes in the way we
divide the velocity above trough level will show up as changes in what is counted
as radiation stress and what is included in the nonlinear current terms. Outside
the surf zone, the current is almost constant over depth. Hence it is natural to
extrapolate V to ¢ from ¢,. Inside the surf zone, however, V is far from a constant.
Hence some of the choices we can make are

~—

__Q i
=57 GLz<l (5.11a)
V= V(G); (<2<C (5.11b)
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~—

Q

= m; (G < 25 (5110)

The non-dimensional mass flux is defined as

@ e

w @Qw (512)
where ¢ is the phase speed of the wave, h is the local water depth and H is the local
wave height. Figure 5.18 shows the calculated wave mass flux for the four cases of
Hansen and Svendsen (1979) (figures 5.18(a)-(d)), the wave conditions of Cox et al.
(1995) (figure 5.18(e)) and that of Ting and Kirby (1994) (figure 5.18(f)). The mass
flux calculated using the formula given by linear wave theory
I 1 gh

= = 5.13
Qw 8 cz ( )

is also shown for comparison. It is seen that the non-dimensional wave mass flux
decreases as the waves approach breaking. In all cases, in this region the model
results show a smaller mass flux than that calculated using linear theory. Linear
theory does not account for the asymmetry of the waves as they shoal, and hence
predicts a larger mass flux. Once the waves break, the non-dimensional mass flux
increases. Figures 5.18(d)-(f) show that after some distance the mass flux reaches
some value after which it stays reasonably constant in the surf zone.

The figures also show the difference in the computed mass flux for the differ-
ent choices (5.11a)-(5.11c). Using (5.11a) or (5.11c) gives almost identical results.

However, using (5.11b) gives a slightly larger value for the mass flux.

5.4.2 Radiation stress.

The wave radiation stress is defined as

N

”~

¢ , K 1 f—"‘_—-é\
Stz =/ (puq, +pp) dz+5pg (¢ —<€) (5.14)
J—h

Py
where, again the () represents wave averaged quantities, u,, is the velocity com-

ponent due to the wave only, pp is the dynamic pressure. To the lowest order of
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Figure 5.18: Computed non-dimensional wave mass flux (5.12) for 6 wave con-
ditions: (a) wh031041 (table 5.2), (b) wh041041 (table 5.2), (c)
wh051041 (table 5.2), (d) wh061071 (table 5.2), (e) Cox et al. (1995)
and (f) Ting and Kirby (1994). Linear theory (------ ), using (5.10)
and (5.11a) (--—:~ ), using (5.10) and (5.11b) ( ) and using
(5.10) and (5.11c) (— —-).
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approximation retained, pp ~ —pw? where w is the vertical velocity. We define the

non-dimensional radiation stress as

S . (L
f 1 . 2 1 C_C -

= =— [ (- i il 5.0 4
P glE ~ gl j:h(uw w )dz+2 e (5.15)

Utilizing the decomposition described in the previous subsection, and the
fact that below the trough level, the average velocity in the oscillatory part of the

motion due is zero, P can be expressed in terms of the total horizontal velocity as

— s ~ rTA—\ q /(—ATE
1 2 2 2 1 2 1 C_ C
P gﬁl/_‘h(u =t} )dz—gﬁlf ‘HwV dZ—‘gﬁ _hV dz+ 5'—_{{—2— (516)

where (; represents the trough level. To evaluate the second term which involves

u,,V, we again choose V' to be defined by one of (5.11a)-(5.11¢), which gives

1 @\, 1 [ 1(¢—20)*
( )+AM —— [ Vidz4+ 2

Ve — Eﬁ h+c gHQ —h 2 H?
_ [—— e —
B QV(C) [C udz _V(E)(E . Ct) - _1_ ]IC wg dz (5.17)
gH? | /., ' gH? J_4

Figure 5.19 shows the cross-shore variation of the radiation stress, obtained
using the model results for the four cases of Hansen and Svendsen (1979) (figures
5.18(a)-(d)), the wave conditions of Cox et al. (1995) (figure 5.18(e)) and that of
Ting and Kirby (1994) (figure 5.18(f)). Linear long wave theory predicts a constant
value of P = 0.1875 whereas the values obtained from the model varies. Over most
of the domain, the value of P is significantly less than this value.

As the waves shoal, the crests become more and more peaked resulting in
decreasing values of P. The lowest value of P is just before breaking in all cases.
Once the waves start breaking, they become more triangular shaped, which results
in increasing values of P. Though differing in details, this variation is in qualitative
agreement with the results found by Svendsen and Putrevu (1993) from analysis
of experimental data. It is also seen that the cross-shore variation of the radiation

stress is similar to the mass flux variation.
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Figure 5.19: Computed non-dimensional wave radiation stress (5.17) for 6 wave
conditions: (a) wh031041 (table 5.2), (b) wh041041 (table 5.2), (c)
wh051041 (table 5.2), (d) wh061071 (table 5.2), (e) Cox et al. (1995)
and (f) Ting and Kirby (1994).
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We also notice that in the cross-shore variation of P which is expected to de-
crease monotonically towards the breaking point, there is an oscillatory component.
The wave period of this oscillation is exactly one half the wave period of the actual
wave. Closer inspection shows that this is because as the waves shoal, they start
deviating from the permanent form solution to the Boussinesq equation for that
particular water depth. Consequently, energy is transferred between the primary
and the higher harmonics and in particular between the primary and the second

harmonic components. This causes the wavy feature seen in the figure.

0151 =

0.1 M

0l st ; S e =~

~0.05f -
-04} R
~0.15f g

Figure 5.20: (a) Computed non-dimensional wave radiation stress (5.17) for Cox
et al. (1995). (b) Contributions to P from Q?/(h+() term ( ),
(¢ —C)? term (—-—-— ), AM (— — —), undertow (e) and the vertical
velocity (- +)

Figure 5.20(a) shows the cross-shore variation of P in Cox et al. (1995)
reproduced from figure 5.19(e). Figure 5.20(b) shows the contributions from the

different terms in (5.17). We see that the contribution from the dynamic pressure
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term (o) is negligible everywhere in comparison to the other terms. The main
) and

the (¢ — ¢)? term (--—-- ). Inside the surf zone, the additional contribution comes

contributions in the shoaling region are from the Q*/(h + ¢) term (

mainly from the AM term (— — —). The contribution from the current contribution
from the region between the wave trough and the mean water level is small and the

contribution from the vertical velocity is almost zero.

5.4.3 Wave celerity.

The phase speed of a wave, defined as ¢ = w/k where w is the angular
frequency and k is the wave number, is difficult to calculate directly when the depth
varies continuously in the direction of the wave propagation. However, if we assume

a locally permanent form so that

00
((z,t) = Z a,enkz—ut)
n=1

then, the local celerity is given by

o a¢/ot 0Q/ox
T 8(/ox  OC/ox

(5.18)

where @ is the volume flux. For each wave, this celerity obtained at the steepest
part of the wave front which is defined as the phase speed of the wave or the wave
celerity. This is also the definition used by Madsen et al. (1997).

Figure 5.21 shows the wave celerity computed using (5.18) for the six wave
conditions mentioned in the previous sections. In the figure, the celerity is normal-
ized by v/gh which is long wave phase speed. For all cases, at the offshore boundary,
the speed of propagation is smaller than \/gh. As the waves move into shallower
water, the speed increases until the waves start to break. This maximum speed for
all cases lie in the range 1.3-1.4y/¢h. In most cases, the speed starts to decrease once
the wave breaks. For the first case (figure 5.21(a)), the celerity eventually decreases

to a value close to \/gh. For all other cases, the minimum celerity in the surf zone
is about 1.2/¢gh.
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Figure 5.21: Computed non-dimensional phase speed ¢/\/gh of the waves for 6
wave conditions: (a) wh031041 (table 5.2), (b) wh041041 (table 5.2),
(c) wh051041 (table 5.2), (d) wh061071 (table 5.2), (¢) Cox et al.
(1995) and (f) Ting and Kirby (1994).
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Chapter 6

CONCLUSIONS.

A Boussinesg-type model, which is fully non-linear up to O(p?), has been
developed to model spilling breakers in shallow water. Unlike other Boussinesq
models, which use the potential flow assumption to describe the velocity field, the
breaking model described here includes the vorticity that is generated when waves
are breaking. Thus, the model can also describe the velocity field in the surf zone
due to the short wave motion.

Following the approach of Svendsen et al. (1996), the model is derived from
the depth-integrated momentum and continuity equations (Chapter 2). The vertical
variation of the velocity is obtained from the equation for stream function, which
allows the inclusion of the vorticity generated by breaking. This enables us to
calculate the velocity field in the surf zone with greater accuracy. The benefit is that
the wave-averaged quantities, such as the undertow, can be evaluated directly from
the model results. The breaking terms are essentially corrections to the momentum
balance. These correction terms come about due to the change in velocity profile
once the waves start breaking. The change in the velocity profiles can in turn be
attributed to the production of vorticity in the roller region of the breaking waves.

The vorticity, which appears as a third variable in addition to the water
surface elevation and the velocity, is obtained from the solution to the vorticity
transport equation (Chapter 3). An analytical solution to this equation is found
by means of a series expansion. To model the waves inside the surf zone, the
analogy between breaking waves and bores is used. The boundary conditions for the
vorticity are deduced from measurements in hydraulic jumps. The jumps considered
have Froude numbers that are similar to that in breaking waves. The boundary at

which the vorticity is prescribed is the lower edge of the roller. The location of this
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boundary is also obtained from the measurements in hydraulic jumps. A turbulent
eddy viscosity, comparable in magnitude to that observed in the laboratory surf
zone, is used for the diffusion/convection of the vorticity in the breaking waves.

A fourth-order ABM predictor-corrector scheme, similar to that used by Wei
and Kirby (1995), is used to solve the governing equations numerically (Chapter 4).
The spatial derivatives are obtained with enough accuracy that the magnitudes of
the truncation errors that result from the finite difference method are smaller than
the magnitudes of the terms in the equation. The model equations are rearranged so
that the solutions for the velocity variable are obtained using a tridiagonal system
of equations. This effectively increases the stability range of the model.

An absorbing-generating boundary condition is used at the offshore bound-
ary. The method of characteristics is used to absorb the outgoing wave at the
offshore boundary. The depth-averaged velocity corresponding to the permanent
form solution of the weakly non-linear equation is prescribed at this boundary. At
the shoreline, the present version of the model has a shelf with small water depth.
A sponge layer is used to absorb the breaking waves in the region of this shelf.

The performance of the model for monochromatic wave situations is presented
in Chapter 5. The model results are compared to laboratory data where possible.
The solitary wave propagation and shoaling is compared to the results from solving
the fully non-linear potential flow (FNPF) equations obtained using a boundary
element method. It is seen that the model prediction of the wave shape and height
is very good.

The vorticity field in breaking waves predicted by the model is also qualita-
tively in agreement with laboratory data. The model computations show that the
vorticity generated in the roller region spreads downward and towards the back of
the wave.

The comparison to experimental data for monochromatic wave shoaling and
breaking show that the performance of the model in the surf zone is also very good.
The model results for the wave height and set-up in the surf zone compare well
with experimental data. The model is also found to predict the velocity field for

breaking waves reasonably well. The undertow comparisons show that while the
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present model predicts the undertow well, a breaking model based on potential flow
does not. The correspondence between the magnitude of the eddy viscosity and the
undertow was discussed.

The model results also show that use of linear theory to predict the wave
averaged quantities, such as the mass flux and the radiation stress, gives larger
magnitudes of these quantities. The computed radiation stress from the model is
qualitatively similar to the radiation stress computed from measured data.

Although the present model gives very good predictions of the breaking wave
characteristics, additional features can be implemented which could improve the
model. The undertow predictions show that the bottom friction is important, espe-
cially in the shoaling region and in the outer surf zone. This would also necessitate
the inclusion of the vorticity generated by the bottom boundary layer which may
not be trivial.

Another area for enhancing the model is in the solution to the vorticity equa-
tion. As was indicated earlier, there is considerable uncertainty in the estimation
of the eddy viscosity. However, measurements indicate that the eddy viscosity de-
creases monotonically (almost linearly) from the surface to the bottom. Analytical
solutions to the vorticity equations can be obtained for such variations. However,
these solutions are cumbersome to implement even for the lowest order problem.
Therefore, it would be much more practical to employ a numerical solution tech-
nique in this case. As mentioned before, these methods would have to be more
efficient than simple finite difference methods.

Modeling the shoreline by means of a moving boundary condition, to model
the swash region and the run-up and run-down, would facilitate the study of such
phenomena as long wave generation by regular and irregular wave groups. One
possible problem in this scenario would be the modeling of bore-bore capture in the
surf zone.

These are some of the features that may be included in the one-dimensional
model. Further development of the model would involve extending the model to two
dimensions to study long shore currents, rip current and other nearshore circulation

patterns.
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Appendix A

ALTERNATIVE DERIVATION OF THE STREAM
FUNCTION 4.

We have the equation for 9 in non-dimensional form (equation 2.26)

i52'€l)mm + Y. = w, (Al)
with the boundary conditions
(—h) =0, (A.2)
a¢
»(C) =f u dz. (A.3)
—h

Integrating (A.1) once from the bottom to an arbitrary location z in the

water column

b= [ it [ wdstyulon), (A4)

Since u = 9 /dz, (A.4) is
h, = — fj 1ohge dz + /j w dz + uy, (A.5)
where wy is the velocity at z = —h. Integrating (A.5) again from the bottom to an

arbitrary location z,

P =— / f (P 1pee dz dz + / j w dz dz + ug(z + h). (A.6)
—h J —h —hJ—h

To the lowest order in p?, we have

Al e / / w dz dz + ug(z + h), (A.7)
A
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which gives

Yoz = / / Wee Az dz + uo,, (2 + h) + vohgs + 2up, b, (A.8)
—h J—h

where we have used the assumption that w(—h) = 0. Substituting (A.8) into (A.6)

gives the expression for ¢
1 F4 F4
Y =ug(z + h) — =plug,, (2 + h)® + [ f wdz dz
6 JhJ-h
1 . Z z F4 Z
- 5”2(2 + h)? (ughgs + 2ug, hy) — ,u,zf / [ / Wee dz dz dz dz, (A.9)
—hJ—-hJ-hJ=h

which is exactly the same expression as (2.34).

Thus, equation (2.34) can be derived without assuming (2.27). As we know
from classical Boussinesq theory, (2.27a) is not necessary; it is a consequence of
1> < 1. However, for pedagogical reasons it makes sense to assume (2.27b) and

then show that we really need the entire expansion for w.
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Appendix B

EXPRESSIONS FOR THE BREAKING TERMS.

The solution to the vorticity equation is

w =ows + w® 4 @

=0w, + Z G\ sinnmo + Z G sin o, (B.1)

n=1 el

2 d ow 2.2
(1) t) = (—1)"= baod S k(r—t) .
o) = (- [ Gergrrnrn ar (B2)
t
6t) = [ FPerme dr (B.3)
0
1
FE®(t) = 2/ F® sinnro do, (B.4)
0

where G£;l)(t)’s are the coefficients of the solution to the O(§") problem and GEE}(t)’s

are the coefficients of the solution to the O(§) problem. The expression for F(?) is

F® —2}6‘%

92wV 09 o owh Ow™ Ow
=D — 38 .y € @y Ty e
R oE T T Re a0 © Be " bz
w) [ Gw™
== T ( e +w3) . (B5)

First, we have to evaluate F$? based on the values of w®, 4@ and w®

obtained using GELU(t). Here, we make the assumption that the roller thickness

is much smaller than the wave height. Hence, in the terms where the rotational

velocity is integrated over the depth, the contribution from this region is negligible

in comparison to the contribution from the region between the bottom of the roller

and the sea bed. In the convective momentum term (AM), which is also the sole
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O(0) term whereas the rest of the breaking terms are O(p?), the integrand is the
square of the velocity. Here the contribution from the roller region is included by
approximating the vorticity in the roller region by a linear polynomial which has a
value of w; at the lower edge of the roller and zero at the surface.

The expressions for u(!) and w(") are approximated as

ult) = / w dz, (B.6)
y
u® =70 4 () —7,0) + 0(2)
9 1 G(l)
=gl 4 [ws (%_ i 6) — 2 Fcos nmwo +O(p. . (B.7)
wl) = —5% uM dz

8Gn CcoS NIwo

2
o - + O(6, hy, p1%). (B.8)

= —hii,o — h®
n=1
Substituting the solution to w from (B.1) and (B.7)-(B.8) in the expression
for F?) given by (B.5), the Fourier coefficients F? are calculated using (B.4). The

result, obtained after some algebra is

1 %Gm B 4ﬁ8Ce CcoS N _BGQ} Shw, oGV

F2) — _9n2,2 C“g(l - -
» el 2h gt * h ot nm % Oz dn?w? Oz

3 Qﬁ&uﬁ cosnw Owgcosnm [ 4 2 3hGY dw,
or nw *0r nw n2r? 3 8 n?n? Oz
Gm ou cos nw Ot 2 é)C‘, O'u - 1)n+m
2 5 e o e (1)
" 2nw Oz e nm Oz (h, ot ) Z nmG, e
m;én
>\ G nm(—1)+m By o= G m(—1)+m
W, £~ 9z (n? —m?)? Y ; ma (n2 — m?)n?
m#n m#n
Ows (—=1)"*™(3m? + n?)
2! : T(l) . .
+ Zh 3:{,‘ Z nmCm (nz i TN,2)3?T2 (B 9)

m=1

m#£n
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Now the breaking terms can be evaluated using (B.1), which can be written

in a simpler form using the relation

= 2w
s=) GO r G = (g B.10
ow ; Y sinnmwo by (-1) = ( )
which gives
w = Z G, sinnro, (B.11)

n=1

where G,, = G;E],O) - Gfll) 4 ng}.

B.1 Expressions for the O(§) breaking term.
The term AM in (2.72) is the only breaking term that is O(d). In the

evaluation of this term, the contribution from the roller region is also included. The

expression for AM is written as

Ce
Asz (- @) dz
—h

'Cc 'C . A 2
= / u? dz + / u? dz — M, (B.12)
—h J e h‘ + C
where
Ce 18
Q, = / Uy dz and AD, = j u, dz. (B.13)
-—h. e

Although it is known from the estimates in the hydraulic jump measurements that
the variation of w in the roller region is closer to a quadratic variation, to simplify the
problem, a linear approximation is assumed for w in this region. This linear variation
also captures most of the contributions from this region. Thus, the variation of

vorticity is given by

4 o0
E G, sinnwo 2% (g
n=1

= (B.14)

(—z
\wS(C_Ce) CE(z(C
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which gives

¢ p0C
/ wdz &€y

h
B == 4 (B.15)

18
u,b+/ wdz La<i
\ v iie

where u,, is the rotational velocity at the lower edge of the roller. This gives the

expressions
C& o0 2 (s o]
2 1. _ 3
.[_h u? dz = (h+C.) (; ) 21 WW? ; (B.16)
4
/c u? dz = u?, (¢ — () + gurbws(c Ce)® + _SWE(C —¢)?, (B.17)
Q=h+LPY C-?W (B.18)
n=1
AQy = (¢ — Ce) + ER[C ) (B.19)

which are then used to obtain AM from (B.12).

B.2 Expressions for the O(;?) breaking terms.

The breaking terms that are O(p?) in (2.72) are AM,, AP, D,, and D,
which are the higher-order correction to the convective momentum term, the effect
of the vertical acceleration, the vertical motion of the fluid and the net shear stress
due to the mean flow respectively. The integral expressions for these breaking terms
are given by (2.59), (2.2.2), (2.66), and (2.69) respectively. The contributions from
the roller region in the expressions for these terms are assumed small. Therefore,
the expression for u, can be approximated as

o0

_ Q1 Gn
By = (h+ ¢, — B.20
1 Tt + ) EZ: P ( )
which gives
Uy — U = —(h + () i Gn COSNTO. (B.21)
\ n=1 n

149



This expression for u, — %, is used to evaluate the expression for the breaking terms
that are O(p?) . Thus,

¢ 6 pz
——[ //(ur—ﬁr)dzdzdz
J—hJz =h
Ce Ce z
—/ / [('u.,.—ﬁ,.)dzdzdz
—(h+ ) f[/ r — Uy) do do do

—(h+¢)* Z n37r'5 cos n, (B.22)

n=1

AM, = —(Tp)ze []f (2hz + 2°)(uy — ;) dz]

h

— () 2z [/_i (2hz + 2%) (u, — Gy) dZ]

—2(h + €)% (Tp)zs Z g—;i cos N, (B.23)

n=1

@ fflfo r: B 0 B
Dw‘—'c,% ’” [(-B-:;[dh(ur—u)d)%f (U+Ur—?ir)dZ] dz
8 Ce a - N 6 B

~ ﬁ.[—h [(al/:h(ur U,) dz ) 6__/ (T + u, —u?.)dz] dz

i G2 (13 L n?m?
it I\ 4 6

Z Z 2Gqu 3'”» . m ( ¢ )
ﬂ,mﬂ'2 — m2)2ﬂ2 cosin m )

n=1 m=1
m#En

b b+ Y |35 4 3 S (sl 1)

2 nirt nmn? \ (n? — m2)%xn?
n=1 m=1
m#n

= (h+¢)® (Gea)?
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and 2

i CObﬂﬂ] (h+ C)" Z : (B.24)

2uT [(h + ()
(B.25)

¢ H2 9 . % B 8
Dy, L@ [( i ur)af_h udz + (T + up — y) P / Uy — Uy dz] dzdz

Ce 82 e _ 0 z - B a
[ —u,)a—mﬁhudz+(f;+1sr—asr)§[h ]dzd,z

—, G 0 o~ G
= 4= i 4 LA
(h 4 () Uy E 2n 3,3 COS TV + ua [(h + () E 5,3 C08 mr]

2
—h 0T —h

n=1

n=1
cos (n+m)w

= GnG GnGm,
= (h+G)” Z 4nA Z_l m24 ( n? — m? )

n=1
m#En

[ G2 (n2x2 3
(h+ Ce)*Cer D Lrw( e T 4)

2G,Gm (1% —m?+ n?m?2 +m?
+ Z mﬁw‘:n ( S ) cos (n +m)7

m#n

(B.26)
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Appendix C

SPECTRAL SOLUTION TO WEAKLY NON-LINEAR
EQUATIONS.

The permanent form solution to the weakly non-linear ( — @ version of the
Boussinesq equations was shown in Yu (1996). Here, the same approach is used to
derive the permanent form solution to the weakly non-linear { — @ equations for a

horizontal bottom. The equations are

G+ W, + (¢u), =0, (C.1)
1
ﬁt + mr.\: + ng =+ (B = 5) hgﬁm:t + B.qhac.rrz = 0(6“2)- (CQ)
The water surface elevation ¢ and the velocity @ can be represented by a Fourier
SuImn
g 4t
- mn_ind
(=) Fe"+x, (C.3)
n=1
2.3
i= 3, E"em" + %, (C.4)

where @ = kx — ot, k is the wave number, ¢ is the angular frequency, i = v/—1 and
* represents the complex conjugates. The idea is to obtain a solution to (C.1) and
(C.2) such that each Fourier component of the solution travels at the same phase
speed. The derivatives of (C.3) and (C.4) that appear in (C.1) and (C.2) become

N
G = Z —ina%e"“g + %, (C.5a)
n=1
o (4]
=Y e.:;nkgemf’ Ery (C.5b)
n=1
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N

. 3,3%n ing
zzw = ) —IN K — ; C.5
G ; ink" e + % (C.5¢)
i b
Uy = ,?:1 -z’na%e‘“e + %, (C.5d)
=, b
Uy = ink—e™ .0e
U “E:] ink-o-e™ +x, (C.5e)
A b
Uiy = r?:l 'in%ga%e"‘e + *. (C.5f)

The non-linear terms become

N a N b
(b= ( femg +*) . (Z —5—6‘“’9 —I—*)

n=l1 n=1
N 1 1 N n N
= Z §anbn - Z Z { rlgbﬂ_g -+ Z: (a;bg—n -+ bta'!_“)jl 61719 4%, (CE)E,)
n=1 n=1 Li=1 I=n+1
Hod 2B
2 T _ind n_inf)
0 = —e k] - € ik
N n 1 N 1
— inf
= Z ( Zbﬂ}n_g + Z §btbl_n) e+, (C5h)
n=1 \I=1 l=n+1

Substituting (C.5) into (C.1) gives

n N
Z&gbn_g + Z ((I.gbg_n + bg(lg_n)] ) ema +*x=0. (CS)
=1

I=n-+1

N

Z (-—cmn + khb,, + %

n=1

This equation has to be valid for each n, so that

i n N
—oay + khb, + 3 LZ:; by + Z (aby—pn + b;a;wn)} =0, (C.7)

I=n+1

forn =1,2,---, N. Similarly, substituting (C.5) into (C.2) gives

n N
1 k
_Ub‘n +k § Zblbn—i + 5 5 b!bﬂ—n ¥+ gkan
=1 l=n+1

4 (B - é) h’n’k*ab, — Bgh*n’k*a, =0, (C.8)
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forn=1,2,---, N. Finally, we have the wave height

N
H = (lp=0 — C|o=r = Zan (1 — cosnm). (C.9)
n=l1

Equations (C.7), (C.8) and (C.9) form a set of 2N + 1 equations in the 2N +1
unknowns (k,ay,ag, -+ ,an,by, by, -+ ,by). Thus, with the wave height and wave
period known, these equations are solved to give the Fourier amplitudes and the
wave number. The set of equations is a non-linear algebraic set of equations and is
solved using a Newton-Raphson iteration method (Press et al. 1992). The solutions

for two different cases are shown in figure C.1.

0.15

04k

Coos
h

11| R U

-0.1 1 l | i i i i | L

0.6 T T T T T T T T T
04r

€ gl s

B el vl Do g,

1 1

i 1 .
0.1 0.2 03 0.4 OE/T 0.6 07 o8 0.9 1

0.1
0

Figure C.1: Permanent form solutions to the weakly non-linear ¢ — % equations.
(a) 8/h =02, 2=02 (b) 6/h =05, 4* = 0.14.

154






Bibliography

Abbot, M. B., A. Damsgaard, and G. S. Rodenhuis (1973). System 21, Jupiter,
a design system for two-dimensional nearly horizontal flows. J. Hydraulic
Res. 11, pp. 1-28.

Airy, G. B. (1945). Tides and waves. Encycl. Metrop., Section VI.

Anderson, D. A., J. C. Tannehill, and R. H. Pletcher (1984). Computational fluid
mechanics and heat transfer. New York, USA: Hemisphere Publishing Corp.

Bakunin, J. (1995). Experimental study of hydraulic jumps in low Froude number
range. Master’s thesis, Center for Applied Coastal Research, University of
Delaware, Newark, DE19716.

Banner, M. L. and O. M. Phillips (1974). On the incipient breaking of small scale
waves. J. Fluid Mech. 65(4), pp. 647-656.

Battjes, J. and T. Sakai (1981). Velocity field in a steady breaker. .J. Fluid
Mech. 111, pp. 421-437.

Battjes, J. A. (1974). Surf similarity. Proc. of 14th ICCE, ASCE, pp. 466-480.
Battjes, J. A. (1988). Surf-zone dynamics. Ann. Rev. Fluid Mech. 20, pp. 257-293.

Benjamin, T. B. and M. J. Lighthill (1954). On cnoidal waves and bores. Proc.
Roy. Soc. Lond., Series A 244, pp. 448-460.

Boussinesq, J. (1872). Theorie des ondes et des remous qui se propagent le long
d’un canal rectangulaire horizontal. en communiquant au liquide contenu dans
ce canal des vitesses sensiblement pareilles de la surface au fond. Journal Math.

Pures et Appl. 2nd series 17, pp. 55-108.
Brocchini, M., M. Drago, and L. Tovenitti (1992). The modelling of short waves

in shallow waters. Comparison of numerical models based on Boussinesq and
Serre equations. Proc. of 23rd ICCE, ASCE, pp. 76-88.

155



Brocchini, M. and D. H. Peregrine (1996). Integral flow properties of the swash
zone and averaging. J. Fluid Mech. 317, pp. 241-273.

Brocchini, M. and D. H. Peregrine (1998). The modelling of a spilling breaker:
Strong turbulence at a free surface. Proc. of 26th ICCE, In press.

Chen, Q., P. A. Madsen, H. A. Schéffer, and D. R. Basco (1998). Wave-current in-
teraction based on an enhanced Boussinesq-type approach. Coastal Engng. 33,
pp. 11-40.

Cox, D. T., N. Kobayashi, and D. L. Kriebel (1994). Numerical model verification
using Supertank data in surf and swash zone. Coastal Dynamics ’94, ASCE,
pp. 248-262. ASCE.

Cox, D. T., N. Kobayashi, and A. Okayasu (1995). Experimental and numerical
modeling of surf zone hydrodynamics. Technical Report CACR-95-07, Center

for Applied Coastal Research, University of Delaware.

Dean, R. G. and R. A. Dalrymple (1991). Water wave mechanics for engineers
and scientists (2nd ed.). World Scientific.

Deigaard, R. (1989). Mathematical modelling of waves in the surf zone. Prog.
Rep. 69, ISVA, Technical University, Lyngby. pp 47-59.

Deigaard, R. and J. Fredsoe (1989). Shear stress distribution in dissipative water

waves. Coastal Engng. 13, pp. 357-378.

Duncan, J. H. (1981). An experimental investigation of wave breaking produced
by a towed hydrofoil. Proc. of Roy. Soc. of London, Series A 377, pp. 331-348.

Duncan, J. H., H. Qiao, V. Philomin, and A. Wenz (1999). Gentle spilling break-
ers: crest profile evolution. J. Fluid Mech. 879, pp. 191-222.

Galvin, C. J. (1968). Breaker type classification on three laboratory beaches. J.
Geophysical Res. 73(12), pp. 3651-3659.

Gobbi, M. F., J. T. Kirby, and G. Wei (1999). A fully nonlinear Boussinesq model

for surface waves. I1. Extension to O(kh)*. J. Fluid Mech., In press.

156



Grilli, S. T., R. Subramanya, I. A. Svendsen, and J. Veeramony (1994). Shoaling
of solitary waves on plane beaches. ASCE J. Waterway, Port, Coastal and
Ocean Engng. 120(6), pp. 609-628.

Hamm, L., P. A. Madsen, and D. H. Peregrine (1993). Wave transformation in

the nearshore zone: a review. Coastal Engng. 21, pp. 5-39.

Hansen, J. B. and I. A. Svendsen (1979). Regular Waves in Shoaling Water:
Experimental Data. Technical report, ISVA Series Paper 21.

Hibberd, S. and D. H. Peregrine (1979). Surf and run-up on a beach: A uniform
bore. J. Fluid Mech. 95(2), pp. 323-345.

Hornung, H. G., C. Willert, and S. Turner (1995). The flow field of a hydraulic
jump. J. Fluid Mech. 287, pp. 299-316.

Iribarren, C. R. and C. Nogales (1949). Protection des Ports. Section II, Comm.
4, XVIIth Int. Nav. Congress, Lisbon.

Israeli, M. and S. A. Orszag (1981). Approximation of radiation boundary condi-
tions. J. Comp. Phys. 41, pp. 115-13.

Karambas, T. K. and C. Koutitas (1992). A breaking wave propagation model
based on the Boussinesq equations. Coastal Engng. 18, pp. 1-19.

Karambas, T. V., Y. Krestenitis, and C. Koutatis (1990). A numerical solution
of Boussinesq equations in the inshore zone. Hydrosoft 3(1), pp. 34-37.

Kennedy, A. B., Q. Chen, J. T. Kirby, and R. A. Dalrymple (1999). Boussinesq
modeling of wave transformation, breaking and run-up. I: One dimension.
Submitted to the ASCE J. Waterway, Port, Coastal and Ocean Engng.

Kirby, J. T. (1997). Nonlinear, dispersive long waves in water of variable depth.
J. N. Hunt (Ed.), Advances in Fluid Mech., Volume 10, pp. 55-125. Compu-
tational Mechanics Publications.

Kirby, J. T., J. Bakunin, and P. Huq (1995). Turbulence measurements in low
Froude number hydraulic jumps. Proc. 10th Engng. Mech. Conf.



Kobayashi, N., G. S. De Silva, and K. D. Watson (1989). Wave transformation
and swash oscillation on gentle and steep slopes. J. Geophysical Res. 94 (6),
pp. 951-966.

Kobayashi, N., A. K. Otta, and I. Roy (1987). Wave reflection and run-up on
rough slopes. ASCE J. Waterway, Port, Coastal and Ocean Engng. 113(3),
pp. 282-298.

Kofler, M. (1997). MAPLE: An introduction and reference. New York, USA:
Addison-Wesley Longman Inc.

Larsen, J. and H. Dancy (1983). Open boundaries in short-wave simulations — A

new approach. Coastal Engng. 7, pp. 285-297.

Lin, J. C. and D. Rockwell (1994). Instantaneous structure of a breaking wave.
Phys. Fluids 6(9), pp. 2877-2879.

Lin, J. C. and D. Rockwell (1995). Evolution of a quasi-steady breaking wave. J.
Fluid Mech. 111, pp. 29-44.

Lin, P. and P. L. F. Liu (1998a). A numerical study of breaking waves in the surf
zone. J. Fluid Mech. 359, pp. 239-264.

Lin, P. and P. L. F. Liu (1998b). Turbulence transport, vorticity dynamics, and
solute mixing under plunging breaking waves in surf zone. J. Geophysical
Res. 108, pp. 15677-15694.

Madsen, P. A., R. Murray, and O. R. Sgrensen (1991). A new form of Boussinesq
equations with improved dispersion characteristics. Coastal Engng. 15, pp.
371-388.

Madsen, P. A. and H. A. Schiiffer (1998a). Higher order Boussinesq-type equations
- derivation and analysis. Phil. Trans. R. Soc. Lond., Series A, 356, pp. 3123
3184.

Madsen, P. A. and H. A. Schéffer (1998b). A review of Boussinesq-type equations
for gravity waves. P. L.-F. Liu (Ed.), Advances in Coastal and Ocean Engng.,
Volume 5, pp. 90. World Scientific, Singapore.

158



Madsen, P. A. and O. R. Sgrensen (1993). Bound waves and triad interactions in

shallow water. Ocean Engng. 20, pp. 359-388.
Madsen, P. A., O. R. Sgrensen, and H. A. Schéffer (1997). Surf zone dynamics

simulated by a Boussinesq type model. Part I. Model description and cross-

shore motion of regular waves. Coastal Engng. 32, pp. 255-287.

Madsen, P. A. and I. A. Svendsen (1983). Turbulent bores and hydraulic jump.
J. Fluid Mech. 129, pp. 1-25.

Mei, C. C. and B. LeMehaute (1966). Note on the equations of long waves over
an uneven bottom. J. Geophysical Res. 71(2), pp. 393-400.

Nwogu, O. (1993). An alternative form of the Boussinesq equations for nearshore
wave propagation. ASCE J. Waterway, Port, Coastal and Ocean Engng. 119,
pp. 618-638.

Packwood, A. (1983). The influence of beach porosity on wave uprush and back-

wash. Coastal Engng. 7, pp. 29-40.

Packwood, A. and D. H. Peregrine (1980). The propagation of solitary waves and
bores over a porous bed. Coastal Engng. 3, pp. 221-242.

Peregrine, D. H. (1967). Long waves on beaches. J. Fluid Mech. 27, pp. 815-827.

Peregrine, D. H. (1983). Breaking waves on beaches. Ann. Rev. Fluid Mech. 15,
pp. 149-178.

Peregrine, D. H. and I. A. Svendsen (1978). Spilling breakers, bores and hydraulic
jumps. Proc. of 16th ICCE, ASCE, pp. 540-550.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1992).

Numerical recipes in fortran (2nd ed.). Cambridge: University Press.

Resch, F. J. and H. J. Leutheusser (1972). Reynolds stress measurements in hy-
draulic jumps. J. Hydraulic Res. 10, pp. 409-430.

Resch, F. J., H. J. Leutheusser, and M. Coantic (1976). Etude de la structure
cinematique et dynamique du ressaut hydraulique. J. Hydraulic Res. 14(4),
pp. 293-319.

159



Rouse, H., T. T. Siao, and S. Nagaratnam (1959). Turbulence characteristics of
the hydraulic jump. Transactions of the ASCE 124, pp. 926-966.

Schiffer, H. A., R. Deigaard, and P. A. Madsen (1992). A two-dimensional surf
zone model based on the Boussinesq equations. Proc. of 23rd ICCE, ASCE,
pp- 576-589.

Schéffer, H. A., P. A. Madsen, and R. Deigaard (1993). A Boussinesq model for
wave breaking in shallow water. Coastal Engng. 20, pp. 185-202.

Shapiro, R. (1970). Smoothing, filtering and boundary effects. Rev. of Geophys.
and Space Phys. 8(2), pp. 359-387.

Skjelbreia, L. and J. Hendrickson (1961). Fifth order gravity wave theory. Proc.
of 7Tth ICCE, ASCE, pp. 184-196.

Southgate, H. N. (1993). Review of wave breaking in shallow water. HR Pub-
lished paper no. 71. Presented at The Soc. Underwater Tech. Conf. on Wave

Kinematics and Env. Forces.

Svendsen, I. A. (1999). Hydrodynamics of the surf zone. International Handbook
of Coastal Engng., In Press.

Svendsen, I. A. and P. A. Madsen (1984). A turbulent bore on a beach. J. Fluid
Mech. 148, pp. 73-96.

Svendsen, I. A. and U. Putreva (1993). Surfzone wave parameters from experi-
mental data. Coastal Engng. 19, pp. 283-310.

Svendsen, I. A., H. A. Schéffer, and J. B. Hansen (1987). The interaction be-
tween the undertow and the boundary layer flow on a beach. J. Geophysical
Res. 92(cl1), pp. 11845-11856.

Svendsen, I. A., J. Veeramony, J. Bakunin, and J. T. Kirby (1998). The flow in
weak turbulent hydraulic jumps. Submitted to J. Fluid Mech.

Svendsen, I. A., K. Yu, and J. Veeramony (1996). A Boussinesq breaking wave
model with vorticity. Proc. of 25rd ICCE, ASCE, pp. 1192-1204.

Tanaka, M. (1986). The stability of solitary waves. Phys. Fluids 29(3), pp. 650
655.

160



Tao, J. (1983). Computation of wave runup and wave breaking. Internal Report,
Danish Hydraulic Institute, Hgrsholm.

Ting, F'. C. K. and J. T. Kirby (1994). Observations of undertow and turbulence
in a laboratory surfzone. Coastal Engng. 24, pp. 51-80.

Twizell, E. H. (1984). Computational methods for partial differential equations.
West Sussex, England: Ellis Horwood Ltd.

Van Dongeren, A. R. and I. A. Svendsen (1997). Absorbing-Generating boundary
condition for shallow water models. ASCE J. Waterway, Port, Coastal and
Ocean Engng. 123(6), pp. 303-313. '

Veeramony, J. and I. A. Svendsen (1998). The flow in surf zone waves. Submitted

to Coastal Engng.

Wei, G. and J. T. Kirby (1995). A time dependent numerical code for extended
Boussinesq equations. ASCE J. Waterway, Port, Coastal and Ocean En-
gng. 120, pp. 2561-261.

Wei, G. and J. T. Kirby (1998). Simulation of water waves by Boussinesq models.
Technical Report CACR-98-02, Center for Applied Coastal Research, Univer-
sity of Delaware, Newark, DE 19716.

Wei, G., J. T. Kirby, S. T. Grilli, and R. Subramanya (1995). A fully nonlinear
Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. J.
Fluid Mech. 294, pp. 71-92.

Wei, G., J. T. Kirby, and A. Sinha (1999). Generation of waves in Boussinesq

models using a source function method. Coastal Engng., in press.
Whitham, J. B. (1974). Linear and non-linear waves. New York: John Wiley.

Yoon, S. B. and P. L.-F. Liu (1989). Interactions of currents and weakly nonlinear
water waves in shallow water. J. Fluid Mech. 205, pp. 397-419.

Yu, K. (1996). Breaking waves in the surf-zone. Ph. D. thesis, University of

Delaware.

Yu, K. and I. A. Svendsen (1995). Breaking waves in surf zone. Coastal Dynamics
"95, Gdansk, Poland, pp. 329-340.

161



Zelt, J. A. (1991). The run-up of nonbreaking and breaking solitary waves. Coastal
Engng. 15, pp. 205-246.

162



