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The Flow in Surf Zone Waves

J. Veeramony' and I.A. Svendsen 2

Abstract

An extended set of Boussinesq equations, which is used to model breaking
waves, is derived. The wave breaking is described by accounting for the effect of
vorticity generated by the breaking process. The vorticity field in the domain
is obtained by solving the vorticity transport, which is based on the Reynold’s
equations. The boundary conditions to solve for the vorticity are obtained from
measurements in hydraulic jumps. In addition to predicting the wave height
decay and profile deformation, the present model also provides information
about the velocity field. Comparisons with laboratory measurements show
that the model results give good agreement with experimental data for wave
height, setup and the velocity profiles. The undertow profiles predicted by the
model are also in good agreement with the results from experimental data. The
cross-shore variation of the radiation stress calculated from the model results

gives a good representation of the results from experimental data.
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1. Introduction

Wave breaking is a natural phenomenon that is widespread in the nearshore
region. By this process, energy is transferred from the organized wave motion to both
high frequency turbulence and to low frequency motion such as infragravity waves,

longshore/cross-shore currents and shear waves. These low frequency motions are not
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always visible to the naked eye, yet they play a very important role in the surf-zone
dynamics. Breaking waves are also the primary agents in sediment motions on a
coast. To model all these processes accurately, the breaking process and the velocity
field it creates in the surf zone have to be modelled accurately.

Recently, CFD simulations of breaking waves have been performed by Lin and
Liu (1998a, 1998b). They solved the Reynolds equations for the mean flow and the
k — e equation for turbulent kinetic energy using the VOF method. The model results
and experimental data were found to be in good agreement. The advantage of this
type of modelling is that the flow details such as the turbulent intensities and the
shear stresses can be directly evaluated from the model results. However, it takes
about 48 hours of CPU time on a supercomputer to simulate one minute of real
time for the two-dimensional case. Consequently, applications to practical cases are
limited.

Hence, modelling of breaking waves using shallow water theories such as the
non-linear shallow water equations or the Boussinesq equations remain of practical
importance. In the past few years, Boussinesq models have been used very extensively
to model waves in the nearshore region. The classical Boussinesq model (see e.g.
Boussinesq 1872; Mei and LeMehaute 1966; Peregrine 1967) is a weakly non-linear,
weakly dispersive wave model, which represents shallow water waves of moderate
amplitude quite well.

A substantial amount of effort has gone into extending the validity of the clas-
sical equations to intermediate and deep water regimes by improving either the linear
dispersion characteristics of the weakly dispersive model (e.g. Madsen et al. 1991;
Nwogu 1993), or by including higher order dispersive terms (Madsen and Schiffer
1998a; Gobbi et al. 1999). Similarly, the shoaling characteristics have been improved
by including full non-linear effects up to the order of dispersion retained (e.g. Wei
et al. 1995; Madsen et al. 1996).

On the other hand, incorporation of wave breaking in such models has followed

heuristic principles. The classical Boussinesq models conserve energy. To extend such



models to predict the wave motion in the surf zone, it is necessary to determine the
way in which breaking and the associated energy dissipation change those equations.

The signature of the breaking can be included in Boussinesq models in several
ways. One method is based on the concept of an artificial eddy viscosity term of
the form (1u,)., which is added to the momentum equations (Zelt 1991; Karambas
and Koutitas 1992; Wei et al. 1995). This term essentially has the same form as the
turbulent normal stresses in the horizontal direction. The value of the eddy viscosity
is calibrated with experimental data. With suitable choices for the eddy viscosity,
very good approximations to the wave height data can be obtained. However, there
is no physical justification for such a viscosity term. It is also a disadvantage that the
velocity profile remains unchanged from the standard quadratic profile (or a higher
order polynomial depending upon the order of the terms retained in the Boussinesq
theory) because the flow is still modelled as a potential flow.

Other methods use the concept of a surface roller first used by Svendsen (1984a,
1984b). Brocchini et al. (1991) used the concept introduced by Deigaard and Fredsoe
(1989), where the breaking term is incorporated in the model as an additional pressure
term due to the weight of the roller. In the breaking model proposed by Schéffer et al.
(1993), the roller rides on the front face of the wave at the speed of the wave. The
velocity is assumed to have a constant value in the roller region equal to about 1.3
times the wave speed. This introduces a change in the velocity profile once the
waves break, and hence an excess momentum flux, which simulates wave breaking.
As before, comparisons with experimental data show that the results for the wave
heights and setup can be modelled quite accurately although the flow is essentially
modelled as a potential flow. However, physically, the velocity profile assumed in such
models is unrealistic. In addition, the roller is modelled as a solid body that travels
with the wave. Lin and Rockwell (1994) showed experimentally that this is not the
case.

In reality, the presence of particle velocities in the roller in excess of the phase

speed and the turbulence generated are closely associated with the strong vorticity
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produced by the breaking process. This is used in the breaking description in the
third approach (Svendsen et al. 1996). The vertical distribution of the vorticity is
obtained by solving the transport equation for vorticity. That is also the approach
used in the present paper, and the work described is a further development of the
first version of the method.

The paper is organized as follows. In section 2, the basic governing equa-
tions are derived from the depth-averaged continuity and momentum equations. The
vorticity transport equation for the turbulent flow is derived in section 3. Section
4 describes the boundary conditions for the vorticity obtained from measurements
in hydraulic jumps. Section 5 presents the evaluation of the breaking terms, and in
section 6 we derive the procedure for wave generation at the seaward boundary which
also includes a generating-absorbing boundary condition. Section 7 shows compar-
isons between experimental data and computed results for wave properties such as
surface elevation, wave heights, velocity field, and undertow. The wave radiation

stress is also discussed. Section 8 presents the conclusions.
2. The basic equations.

2.1 Length scales and non-dimensionalization.

The two independent non-dimensional parameters which characterize shallow
water waves are the relative wave height 6 = a/h¢ and the relative wave length
it = koho. Here, ag, hy and ky represent the characteristic wave amplitude, water
depth and wave number respectively. In this study, we restrict ourselves to shallow
water waves, p? < O(1). Furthermore, as a first approximation, we also restrict
analysis to the weakly non-linear case, § < O(1). Thus, all terms O(d4?) and smaller
are neglected. As will be seen later, this assumption of weak non-linearity represents
the largest source of inaccuracies close to the breaking region (see e.g. Wei et al.
1995; Madsen et al. 1997a).

For shallow water waves, the independent variables are scaled as

T =Ko, 2 = Z{hp, and t = ko+/ghot, (1)



where the (m) represents the dimensional quantities. The dependent varial')le.&;u;f (water
surface elevation) and v (streamfunction) are scaled as
¢ =C/ao, ¥ =1v/(6hoy/ gho). (2)

Using these scales, the non-dimensional horizontal velocity (u), the vertical velocity

(w) and the vorticity (w) are

= %% = 0v/gho u, (3)
W= —?b = dp\/gho w, (4)
T
LD=8—'%—@=6 10 ?E—;Lz@ :5,gfz,0w (5)
0z 01 ho 0z ox ho

For irrotational motion where w = 0, 0u/0z = dw/dz. In that case, to the
lowest order of approximation, u does not vary over depth. In the case of breaking
waves, however, the vorticity is quite strong, which implies that du/dz ~ O(1). To
develop a model that describes breaking waves in the nearshore region, we start with

the depth-integrated equations of continuity and momentum.

2.2 Depth integrated continuity and momentum equations.

The depth-integrated continuity equation is

aC  0Q
ot " ox % (©)

where the volume flux @) is

¢
Q Ef u dz. (7)
—h

In this study, only the region from intermediate/shallow water depths to the
shoreline is considered. Then, the effect of horizontal surface forces, such as due to
wind, is minimal since the fetch area is very small. To further simplify the prob-
lem, we choose at this time to neglect the shear stresses at the bottom. This, in
essence, implies a free-slip condition at the sea bed. The depth-integrated horizontal
momentum equation is (see e.g. Mei 1992)

oQ .98 [* , oh o [*
¥ -+ 55 ./:h 4 dz = p(—h.]a “sl pdz, (8)
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and, the depth-integrated vertical momentum equation is (see e.g. Mei 1992)

a [* 5 @ [%
alz) = (€ Spw® + wdz + op°— / uw dz. 9
p(z) = (- 5) / ﬁa.l ) (9)

Using (9) to eliminate the pressure p from (8), and replacing the vertical

velocity by the horizontal velocity using the continuity equation, (8) becomes
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2.3 Equation for horizontal velocity.

To solve (6) and (10), the depth variation of the horizontal velocity 1 must
be determined. In the classical derivation of Boussinesq models, the shallow water
assumption is utilized to represent the vertical variation of the velocity potential (¢)
by an infinite polynomial series. The coefficients of this polynomial are obtained
by solving the Laplacian and applying the boundary condition on ¢. From this
approximation of ¢, the depth variation of u is obtained. However, in the surf-zone,
the velocities can no longer be represented by a potential function because of the
vorticity generated by the breaking waves. Instead, we use the streamfunction 1,

which satisfies

By + e = w, (11)
with the boundary conditions

¥(z = —h) =0, (12a)

a2 = —h) = up. (12b)

Integrating (11) twice, from the bottom to an arbitrary location z in the water

- f / 121 dz dz + f / w dz dz + ug(z + h). (13)
—h J=h —h J—h
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To the lowest order in p%, we have

- /ﬂ [ w dz dz + wo(z + h), (14)
J—hJ—-h

which gives

vz 1
Yigr= / / Wee A2 dz + ug,, (2 4+ h) + Uphgy + 2ug, by, (15)
h h

where we have used free slip condition at the bottom. Substituting (15) into (13)

gives the expression for 1)

1 . z Z
P =ug(z+ h) — 6”2”0“(3 + h)3 + f / wdz dz
—hJ—h
1 ) ) , Z z z Z
- -2-;1,"‘(2 + h)? (uphge + 2ug hg) — i / / / / Wer dz dz dz dz.  (16)
J-hJ-hJ-hJ-h

From (16), the horizontal velocity is obtained by differentiation with respect
to z as

2
u = up — p(z + h)[2hgto, + haptig] — —u,n”(z + h)?

+ [ w dz — p? f / [ Way dz dz dz + O(u?). (17)
h h h h

Notice that there are two basic components in the expression for the horizontal
velocity., The first three terms constitute the expression for the horizontal velocity
in the classical weakly nonlinear, weakly dispersive Boussinesq equations (Peregrine
1967). The rest of the terms are associated with the presence of vorticity in the flow
field. Thus, we define the potential component of the velocity (u,) and the rotational
component of the velocity (u,) as
s 4
5 U0 (z + h)? 4+ O(u?), (18a)
Up = / wdz—p / / / wez dz dz dz + O(u*), (18b)

h hd—hdJ—h

Uy = g — 1 2(2 4 h)[2hgug, + hapg] —

so that

U= Uy + Uy (19)



The potential part of the velocity is now expressed in terms of the depth averaged

potential velocity U, as (see e.g. Dingemans 1997)

ol 2 (h? )
u, = U, — ;5'5(% + 2)(hUp)zx + % (’? - zz) Ui 0512, ). (20)
where
1 i
o = T /r uy, dz (21)

2.4 The weakly nonlinear breaking model.

From (10), keeping terms only larger than O(du?, ') , we have

y — i 2 / / zdz =
5 T 9%, j w*dz+ (h+6C)( + p /., awai /. . udz dz 0. (22)

We now have, using the results from the previous section,

a¢ 8¢ ‘
f u? dz = / (Up + u,)? dz + O(p?)

—h —h
¢
= [} (U2 + 20U, + U,2) + (2Upu, + u? — 2U,U, — U,?) dz + O(p?)
J-n 8 |
= (h+ 6Q)U? + / (u? — U,2) dz + O(1?)

h
_ @
 h+6C

+ AM + O(p?), (23)

where U is the total depth averaged velocity, ) the total volume flux including the
contribution from the depth-averaged component of the rotational part of the velocity

and
o
AM = (u? - U,?) dz. (24)
S —h

Similarly,

0 g2 8¢ 3 0 52 a¢ 0
_— dz d = z z
_p Oz0t /z / h vz dzdz = ,;, Ozt [ ~h U,, +ur) dz dz da + O(4)

Qm, (Q) — (AP)zzt + O(8, 11?), (25)
6 \ h al



where

a¢
AP = / f / (up — U,) dz dz dz. (26)

Substituting (23) and (25) into (22) gives

Q ¢ Q? A2
5+ a0z o (55 i Qu

aat 0. (27)

i

+ i ’ + 6 (AM), + p* (AP)
6 h xxt

Equations (6) and (27) form the basis of the breaking model. However, the dispersion

characteristics of the model are very poor for intermediate and deep water waves.

Madsen and Schéffer (1998b) suggests enhancement of the frequency dispersion by

applying a linear operator

L =1+ Bu’h’— (28)

D2
on (27) and retaining terms of O(6, u?). Here, B is a free parameter, chosen such
that the dispersion characteristic most closely resemble that of fully dispersive linear

theory. Thus, (27) becomes

0Q <, 5( @ |
e+ hri0g+o () +ie (B-3) ¥ (@

o h? Q
+pt—= = + Bgh*(hz)zr + 0 (AM), + i (AP),
xxt

aal (29)

6 \h

Madsen et al. (1991) found that B = —1/15 gives the closest approximation to
linear dispersion and is therefore the value used in the following. The last two terms
in (29) depend entirely on the vorticity field in the domain. Thus, in the shoaling
region where there is no generation of vorticity, these terms vanish, and (29) reduces
to the classical Boussinesq equations with dispersion correction. On the other hand,
inside the surf-zone the vorticity terms are the only signatures of breaking, as vorticity
is generated due to the breaking process leading to non-zero contributions from AM
and AP.

Equations (6) and (29) together constitute the equations for conservation of

mass and momentum for the breaking waves. Thus, there are two equations and



three unknowns (¢, @ and w), which means that an additional equation is necessary
to close the problem. This is achieved by using the vorticity transport equation to

determine the vorticity distribution in the breaking waves.
3. The 2-D vorticity transport equation.

The vorticity transport equation for the turbulent flow can be derived from

the Reynolds equations, which in two dimensions are

3%1: "'a:f;i 2 85 i ap 67-_;,1" a'f-z.'n
ol e Tkt ( B B ) (0a)
a[é ~O  ~Ow 10p 1 [0%, OF
e L LY 301
U5 TP T 13 ( 55 93 ) (308)

where the () indicates ensemble averaged quantities and 7,, and 7,, are the Reynolds
stresses based on the ensemble averaged velocities. The pressure is eliminated from
equations (30a) and (30b) to give

oA g LT her==] = i | (31)
af b o% % P EYYT: rw zz S 550 za| -

If we express the Reynolds stresses in terms of an eddy viscosity 7, then

i 2 du 0w
P 3 [2%6% - 5&:] and  7.. = piy (a—g -+ -Bt%) (32)

where k is the turbulent kinetic energy. Assuming the eddy viscosity 7 to be a

constant, (31) reduces to

a$+~a$ ~00 _ 8225+82$ (33)
of 0z 9z \ar ' 9:2)’

At the free surface, in the region that does not include the roller, we neglect
the small vorticity due to viscous effects. In the roller region, the measurements
from hydraulic jumps (see e.g. Svendsen et al. 1999) indicate that the free surface
vorticity will also be close to zero. However, strong vorticity is generated inside

the roller region. We approximate this vorticity generated by the vorticity at the
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“dividing” region between the roller and the interior. Thus, the boundary conditions

used for the vorticity are

>

(2=C,0=D0.05,D, (34a)
@2 = —h,f) =0, (34b)
@(2,t=0)=0, (34c)

where the values of E;, which is the vertical location of the lower edge of the roller,
and 55(:1:, t) are discussed in the next section. As mentioned, the bottom boundary
condition of zero vorticity is consistent with the assumption of a free-slip condition
at the bottom.

Non-dimensionalizing (33) using the scales in (1)-(5) gives,

Ow 8_{0_

Ow ,0%w  *w
ket AR W— = e} 5
5 + ¢ um—t dw 5 — U (,u 972 4 822) (35)

where the ()'s are omitted for convenience.
Notice that in (29), the terms involving breaking are formally O(d) or O(pu?).
Therefore, we only need to retain terms of O(1) in (35). We first change the coordinate

system from (z, z,t) to (z,0,t), where

h+ 2z :
T o (36)

which transforms the domain from —h < 2z < §(, to 0 < o < 1. Then, the governing

equation for the vorticity distribution reduces to

Ow Pw ;
s Pl 5. 12
5 = 502 + O(6, u*), (37)

where x = 1,/h*. The boundary conditions given by (34a)-(34c) reads, in the new

coordinate system

wle = 1.8 = wl@, 1); (38a)
wle=0,1)=0, (38b)
aife, t=i0) =10, (38¢)



The boundary conditions are homogenized by redefining the dependent vari-

able
w = wW + ow,, (39)

which transforms the system of equations to

Aw) 92w Ow,

o 90z | ot A68)
wM(o =1,t) =0, (40D)
wM(o =0,t) =0, (40c¢)
wM(o,t =0) = 0. (40d)

The solution to this system of equations is obtained by first expressing the right hand

side of (40a) in terms of a half-range sine expansion so that

ws ;
—0 (;: = “Z:;R,, sin nwo, (41)
which gives
vl
ow, . 2 Ow,
Fp =2 ‘/n —o‘% sinnro do = (—1)“a 5; ; (42)
We now look for solutions to w® of the form
(s 4]
W) = Z G, sinnro. (43)

n=1

Note that (43) satisfies the boundary conditions. Equations (43) and (41) are substi-

tuted into (40a), which gives

i Gn 2,3
Z [% + kn’nG,, — ?‘] sinnmo = 0, )

n=1

which, to be true for all o, implies that

oG, s
W -+ ETLATTZC:,,. = F;l =} (45)

The solution to the ordinary differential equation (45), after substituting for F,, from
(42), is

. 'l’l
i Ows (_n"!?r?n('r—i‘.)

Gn(t)

I

(— )" dr. (46)

nw Jo OT
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Thus, the expression for w is

o0
W = ow;s + Z G, sinnno, (47)

n=1

with G, defined as in (46). This solution can be evaluated when w, and (, is specified.
4. Boundary conditions for vorticity.

Measurements of velocities and vorticity in the roller region for breaking waves
are not yet available inside the surf-zone. However, viewed in a coordinate system that
moves at the wave speed, breaking waves have flow patterns around the roller region
that are very similar to those observed in hydraulic jumps. The absolute velocities
and the bottom boundary layer would of course be different under this coordinate
transformation but the turbulent stresses near the surface, the surface profile and
especially the vorticity are similar.

Velocity measurements are available for hydraulic jumps for the range of
Froude numbers 1.3 ~ F < 2 (Svendsen et al. 1999; Lin and Rockwell 1994; Bakunin
1995). This range is similar to Froude numbers for breaking waves. The vorticity dis-
tribution was calculated from the velocity measurements in hydraulic jumps obtained
by Bakunin (1995). The details of the analysis of the data can be found in Svendsen
et al. (1999).

Figure 1 shows the variation of the horizontal velocity and the vorticity in the
three jumps. The vorticity is concentrated in the upper region of the flow. Imme-
diately behind the toe of the roller, the maximum vorticity is seen to occur at the
lower edge of the roller. Further downstream, however, the maximum vorticity occurs
below the roller. In addition, near the surface, the vorticity reduces to a very small
value. This structure is very similar to that reported by Lin and Rockwell (1994).
The vorticity generated inside the roller region is represented in the breaking model
by specifying the vorticity at the lower edge of the roller.

For the three hydraulic jumps, with Froude numbers less than two, analyzed

by Svendsen et al. (1999), it was found that the shape of the roller measured by its
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thickness is similar for all three cases. Figure 2(a) shows that the roller thickness can

be represented by the curve, obtained using a least squares fit to the data,

<{: =1 786@{‘1’-:- i e i_z. (48)
hav/€ ‘ b )

where £, is the length of the roller, & = hy/h; is the ratio of the downstream depth

(hy) to the upstream depth (h;) and & = 0 at the mean position of the toe of the
roller.

Similarly, figure 2(b) shows the vorticity at the lower edge of the roller. Again,
it was found that non-dimensional vorticity values for all three cases are very similar,

and the dimensionless w, can be represented by

which is shown as the dashed line in the figure. It turns out that the sharp discon-
tinuity at #/¢, = 0, which can be expected based on physical considerations, causes

numerical instabilities. The numerical computations are eased somewhat if this is

o)

which is shown as the solid line in figure 2b. This avoids the sharp discontinuity at

replaced by the expression

‘53 h2€
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—
o
-~
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®
-
=
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~
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/0, = 0, at the same time preserving the shape of the vorticity function at the lower
edge of the roller. The expressions of E; and w, from (48) and (49) are used in the
solution (47) to the vorticity equation.

Inside the roller, the vorticity decreases upwards from w, at the lower limit
(the dividing streamline in a coordinate system following the wave) to near zero at
the surface. The contribution from this region is of some importance for an accurate
evaluation of the AM term though we do not have a detailed description of the flow
inside the roller. Values are determined by interpolating between the surface and the

roller limit as described in the next section. We notice that the potential part of the
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flow in the roller is already included in the Q*-term in (29).
5. Calculation of the breaking terms.

The vorticity field in the computational domain can be determined using (47).
Reverting to dimensional variables and omitting the () for convenience, we define

Ce ¢
Q,,. = / Uy dz and AQT = f Uy dza (50)

—h (_:c
where AQ), is essentially the rotational part of the volume flux due to the roller.
Then, (24) can be written as
¢ AO.)?2
AM = [ uldz + f u? dz — M (51)
h+C
Using (47), we have

2
Gn
B = CP + Z n"—' (Z 'nﬁ)
n=1
2 Gy (2cosnm 1 L (Qr + AQ,)?
— Wy — |l us dz — ——— ", 5
& ; nm ( nn? i 3)} ¥ '/Cc e h+(¢ -
where

= (h+ () { Z (53)

=i

From measurements in hydraulic jumps, it was found that the velocity in the
roller region is approximated well by a cubic polynomial in z (which was also the ap-
proximation used by Madsen and Svendsen 1983). Therefore, the contribution to the
vorticity from inside the roller is calculated using a cubic polynomial approximation.

In calculating the expression for AP, the contribution from the roller region is
neglected, since AP is O(p?). This essentially corresponds to assuming hydrostatic

pressure inside the roller. It gives

Ce 'C:. Crf
AP = / / [ (u, — U,) do do do
—h Jz J—h



6. Numerical solution.

The governing equations (6) and (29) are solved using a fourth-order Adam-
Bashforth-Moulton method. This method has been found accurate and effective for
Boussinesq type equations by Wei and Kirby (1995) and gives a correct representation
of the triple-derivative terms.

At the offshore boundary, solutions to the equations for permanent form waves
are found and used as input. The approach represents a generalization of the third
order Stokes solution presented by Madsen and Sgrensen (1993). This makes it pos-
sible to generate large amplitude waves at the boundary. This is combined with an
absorbing-generating boundary condition used at the offshore boundary to absorb the
long waves reflected from the computational domain.

The derivation of the constant form solution and the absorbing-generating
boundary condition for the Boussinesq equations is described in some detail in the
appendix.

[t is emphasized here that this procedure allows us to specify only the incoming
volume flux @); at the seaward boundary. This is in analogy with how a wavemaker
in a wave tank works. The values of ¢ at the boundary upgraded to the next time
step are determined from the continuity equation.

Close to the shoreline, a shelf with a very small but constant depth with a
sponge layer and a wall is used to absorb the breaking waves. The start of wave
breaking is usually defined as the position where the front face of the wave becomes
vertical. In Boussinesq-type models, as the waves approach breaking, the amplitude
dispersion balances the frequency dispersion. Consequently, the front face of the
wave stabilizes before it becomes vertical. Thus, the point where the breaking is
initiated for each wave has to be specified explicitly. In the present computations
wave breaking is assumed to start when the maximum slope in front of the wave crest
exceeds 20° (see Madsen et al. (1997a)). The transition period, during which the

roller develops, lasts for 1/10-th of the wave period. Drawing on the results from the
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measurements in hydraulic jumps, the fully developed roller extends from the wave

crest to the location in front of the wave where the gradient is zero.
7. Comparison between model results and data.

The results from the model described in the previous sections were first com-
pared to two sets of experiments with monochromatic waves. Wave heights and
setup measurements for monochromatic waves are available from the experiments by
Hansen and Svendsen (1979). Wave shape and the velocity profiles below the wave
trough are available from the measurements by Cox et al. (1995). Both experiments
were conducted in wave flumes with plane beaches. In the experiments of Cox et al.
(1995) however, the bottom roughness was increased by gluing sand to the bottom,
which increased the bottom friction. The computational domain, shown in figure 3,

is similar to the experimental domain of both the above mentioned experiments.

7.1 Wave height and set-up comparisons.

The first set of comparisons is to the data from Hansen and Svendsen (1979).
The experiments were conducted in a wave flume with a plain beach of slope 1:34.26.
The water depth at the start of the slope was hy = 0.36 m. Seven tests were conducted
in all. The wave heights and set-up for each case was measured at a number of
locations. In this paper, comparisons will only be shown for three cases. Table 1
presents the wave period and the wave height at the start of the slope for each of the
cases.

Figure 4 shows the comparison between the model results and the data for
Case 1. The wave heights in the initial part of the shoaling region is represented well.
As the waves get closer to breaking, the difference between computed and measured
wave height increases. At the point of wave breaking, the difference between the two
is obvious. The reason for this discrepancy is that the present version of the potential
part of the model is based on the lowest order weakly nonlinear theory as in Madsen

et al. (1997a, 1997b). Though this can be improved, the emphasis of this study,
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however, is the modelling of the phenomena after breaking. A short while after the
breaking has been initiated in the model, it is seen that the agreement is again very
good.

An important gauge of the model performance is also obtained from looking
at. the prediction of the set-up (figure 4b), which shows good agreement between the
model results and the experimental data. This suggests that the evaluation of such
terms as the radiation stresses will also be accurate.

Figures 5 and 6 show the comparisons for Case 2 and 3. Again, the model
underestimates the wave height near the breaking region. On the other hand, the pre-
diction of the set-up is consistently good. All this indicates that the flow properties in
the surf-zone are being modelled with reasonable accuracy. To illustrate this further,

the results from the model are compared to velocity data from breaking waves.

7.2 Velocity and surface elevation comparisons to data.

Velocity and surface elevation data were gathered by Cox et al. (1995). The
experiments were conducted in a wave flume with a plain beach slope of 1:35. The
wave height at the wavemaker was Hy = 11.5 em and the water depth at the start
of the beach was hy = 0.40 m. The wave period was T, = 2.2 5. Measurements of
velocity in the vertical were taken at six locations given in table 2.

The first measuring line was outside the breaking region, the second was close
to the breaking point and the last four were inside the surf zone. Figure 7 shows the
comparison between the data and the model predictions at the locations given in table
2. The abscissa in the figure is normalized by the wave period. The present version

of the model incorporates only the lowest order nonlinear contributions. Hence, the

computed wave surface shape (— — —) does not quite have the saw-tooth shape seen
in the data (———) at the locations in the surf zone.
The comparison between the measured (o) and the predicted (—-—-— ) velocity

profiles are also shown in the figure 7. For the most part, the agreement between
the two is excellent. An exception is near the toe of the turbulent breaker front

(t/T = 0.2) where the model tends to predict a positive velocity whereas the data
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shows negative velocities. The differences are likely to be due to the differences in
the predicted and measured surface profiles.

Figure 8 shows the vorticity field in a breaking wave. The contour lines of
vorticity (8a) show that the vorticity produced in the roller region is convected down-
ward and towards the back of the wave. Also, the absolute maximum value of the
vorticity in the wave occurs right after the toe of the roller has passed. Along each
vertical cross-section, it is only close to the toe that the maximum of the vorticity is
close to the lower edge of the roller. From approximately halfway through the roller
region, the maximum of the vorticity is found below the lower limit of the roller. The
maximum vorticity remains well below the surface as the vorticity decays downstream
of the roller on the backside of the wave. These results are similar to that observed
in the hydraulic jumps (see figure 1 and also Lin and Rockwell (1994)). Thus, the

important features of the vorticity distribution are captured by the model.

7.3 Comparison of undertow profiles.

When starting the computations of the waves from a cold start, a significant
surge is also initiated in the tank. After a while, when the surge has settled, there is a
strong seaward mass flux near the bottom (the undertow), which is particularly pro-
nounced inside the surf zone. The total horizontal velocity (u) can be separated into
an oscillatory wave component (u,) and a current component (V') which is constant

over a wave period. The total mass flux over a wave period is given by

¢
_sz wy + V dz, (55)

h

where () represents averaging over a wave period. The oscillatory or wave component
is defined so that the mean velocity %, below trough is zero. This also implies that
the mass flux due to waves below the trough level is zero, and therefore
_ < 4
Q= / Uy d2z + / V dz, (56)
J (i J—=h

where the first integral is the mass flux @,, due to the wave motion. The undertow

V(2) is then the Eulerian mean of the velocity u below trough.
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The model results of the undertow profiles are shown in (Figure 9) together
with the results from the measurements of Cox et al. (1995). Outside the surf-zone
(h = 28.0 em and h = 21.14 ¢m) the results from the model show that there is
no vertical variation of the undertow. This is consistent with the fact that outside
the breaking point the wave motion is irrotational. In the transition region (h =
17.71 em), model results underestimate the undertow over most of the water column,
although not very significantly. On the other hand, the agreement between the model
and the data is extremely good in the inner surf zone (h = 14.29 em, h = 10.86 cm
and h = 7.43 em). In addition, the effect of the bottom boundary layer in the inner
surf zone is limited to a very narrow region near the bottom, despite the enhanced

roughness produced by the sand particles glued to the bottom in those experiments.

7.4 Evaluation of the radiation stress.

The wave radiation stress is defined as

¢ 1] —
S::.'.-c = / (p'”';zu + }"D) dz + EPG(C - C)2 (57)
J—=h

where, again the 6 represents wave averaged quantities, u,, is the velocity component
due to the wave only, pp is the dynamic pressure. To the lowest order of approxi-
mation retained, pp ~ —pw? where w is the vertical velocity. Madsen et al. (1997a)
calculated the radiation stress from their weakly nonlinear Boussinesq equations, us-
ing the approximate expression

2

. - Q 1 2 =4
‘SJIFIJ,‘,M == Ph’ +C + 2;”9( ('“]8)

For weakly nonlinear, weakly dispersive Boussinesq this expression is equivalent to
T =2 :
(57), except that the contribution from ¢~ term is neglected.

We define the non-dimensional radiation stress as

Sz L 4" 1(¢—()?
P . 2 T fr 4 2 —6) 59
pgH? — gEE ), \Me T PD)d2+ 57, (59)

Utilizing the decomposition of the velocity described in the previous subsec-

tion, and the fact that below the trough level, the average velocity in the oscillatory
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part of the motion is zero, the total wave averaged momentum flux M,, can be

expressed as

¢
ML‘;I: = SJ,'r = ,Of (V2 s 2?LwV) dz (60)

—h
which shows that, with S,, defined by (57), the contribution from the current to the
total momentum is given by the integral. In the surf zone, it is of further interest to

divide S,, into a potential part S,,, and a breaking part S, j, writing M,, as

v
M’s:n — j51.1:.1:,1.! - S:r;a:,b =} P (V) 4 2TfrmV) dz (61)
J—h

In terms of the dimensionless parameter P (= P, + P,), this becomes

M'm; 1 .3 )
,0!}1;1’2 =FP,+ P+ e /I (V2 + 2u,,V) dz (62)

Notice that in the expression (58), Madsen et al. (1997a) takes @ as the total
volume flux (including the contribution from the net current) which corresponds to

defining the radiation stress as

5
Sra,M = Szzp+ ,a[ (V2 + 2u,V) dz (63)

o —h
Figure 10 shows the cross-shore variation of the radiation stresses, obtained
using the model results, for the three wave conditions in Hansen and Svendsen (1979)
and also the wave condition given in (Cox et al. 1995). The figure shows the total

radiation stress as defined by (59) ( ), the component of the radiation stress due

to the non-breaking part P, (— ——) and the radiation stress as defined by (58) (--
—-—). Linear theory predicts a constant value of P = 0.1875 whereas the maximum
obtained from the model is slightly larger than this value. Over most of the domain,
the value of P is significantly less than that obtained using linear theory. As the
waves shoal, the crests become more and more peaked resulting in decreasing values
of P, which has its lowest value just before breaking. Once the waves start breaking,
they become more triangular shaped, which results in increasing values of P. Though
differing in the details this variation is in qualitative agreement with the results found

by Svendsen and Putrevu (1993) from analysis of experimental data.
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We also notice that in the cross-shore variation of P which is expected to
decrease monotonically towards the breaking point, there is an oscillatory component.
The wave period of this oscillation is exactly one half the wave period of the actual
wave condition at the boundary. Closer inspection shows that this is because as the
waves shoal, they start deviating from the permanent form solution to the Boussinesq
equation for that particular water depth. As a result, energy is transferred between
the primary and the higher harmonics, in particular between the primary and the
second harmonic components, which causes the wavy feature seen in figure 10. Such
a feature does not appear for the case of a horizontal bottom.

Direct comparison of S,z with experimental data is not possible because no
measurements are available for the velocity field in the roller region. However, a
good assessment of the accuracy of the computed values for S, is obtained from the
comparisons of the setup shown in part b of the figures 4. 5, and 6, because the setup
gradient is essentially equal to the radiations stress gradient. These figures show that,

in particular inside the surf zone, the setup is predicted with great accuracy.

8. Conclusions.

A model has been developed for breaking waves which includes the develop-
ment of vorticity due to the breaking process. The model can therefore also describe
the velocity field, due to the short wave motion, in the surf zone, which has not been
possible for earlier breaking models. This allows us to predict the horizontal and
vertical velocity field in the nearshore region with good accuracy. Therefore, it is
possible to obtain not only the wave heights and set-up, but also the wave-averaged
quantities such as the mass flux due to the waves, the undertow profiles and the wave
radiation stress.

The model is based on the traditional Boussinesq assumptions of long waves
with weak non-linearity, which implies that the model is less accurate as the waves
approach breaking. On the other hand, comparisons with measured data show that

this deficiency is limited to a narrow region starting from just offshore of the breaking
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point to just inside of the breaking region. In the surf-zone, from shortly shoreward
of the breaking point, the model results agree well with the experimental data, both
in prediction of wave heights and in the prediction of the set up.

Comparison with data for the horizontal velocities and the undertow show very
excellent agreement. Furthermore, the radiation stress calculated from the model is

in qualitative agreement with the results obtained by previous researchers.
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A. Generation of permanent form waves.

At the offshore boundary, the depth is assumed constant so the Boussinesq

equations are, in dimensional form,
G+ (2.-;-: =0, (Al)
Q2 1 2 3 o= ”
C:).', - :’_I == Q(h = C)CJ - | B+ § h Q:m:.". - B{!h C.-c:c::r: = 0. (AZ)

To develop constant form solutions for these equations, we assume that ¢ and @ can

be expressed in terms of Fourier series

M
¢ = Z %emﬂ + c.c, (A.3)
n=1
- b
Q=Y =e™+tecec A4
b ; 5 e + c.e, (A.4)

where 0 = kx — wt with k the wave number and w the frequency. Substituting (A.3)

and (A.4) into (A.1) and (A.2) gives

—way + kb, =0 (A.5)
and
s = [#71 ¢ k n iy _qn
—whb, + o Z (hibn_; + gh 5 ) + 7 Z (bghg_” + gh > )
f=1 I=n+1
+ ghka, — (B - %) h*n?k*wb, + Bgn’h*k*a, =0 (A.6)

respectively for each n = 1,2,..., M. In addition, the wave height, defined as H =

Cma.;:: == Cmain givv.s
H=2(a; +a3+..an), (A.7)

where N = M if M is odd and N = M — 1 if M is even. (A.5)-(A.7) is a set of
2M + 1 equations for the 2M + 1 unknowns a,, b, and k, which is solved using the

Newton-Raphson iteration method (Press et al. 1992).
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Note that for a given wave height, wave period and water depth, the solution
procedure involves finding not only the Fourier amplitudes a,, and b, of the water
surface elevation and the velocity, but also the wave number k. Thus, the solution

implicitly incorporates the solution to the dispersion relation.
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B. The absorbing-generating boundary condition.

The absorbing-generating boundary condition used here follows the work of
Van Dongeren and Svendsen (1997) which was developed for equations of continuity
and momentum locally dominated by the terms corresponding to the non-linear shal-
low water equations. In our case, this criteria is satisfied since the dispersive terms
are considered small. The dimensional equations for a horizontal bottom with no

wave breaking can be written as

oQ
E " o
G i :

If we define the variables d = h+ (, U = Q/d and G = (B + 1/3) h*(Q),,, +

Bgh*Cr, (B.1) and (B.2) can be expressed in matrix form as

of
n 4 AO." G, (B.3)
where
d U ¢ 0
= . A= and G = (B.4)
U d U G/d

The eigenvalues of A are U &+ /gh which are always real. Therefore, a modal

matrix P can be constructed from the eigenvectors such that P~' AP is diagonal,

Vhlg —/h]g 1| Va/h 1

P= and P '== (B.5)
1 1 2\ —/g/h 1

Equation (B.3), can then be re-expressed as

19F + P“‘APP—'E

= _ p-1 i
o ot 0:{:_P & (i)

which yields a set of two equations in terms of @ and (,

ap* opt

ét + (h?-c + v g(h+ C)) Df—: =G/(h+0), (B.7)
ap~

o+ (ke ~ Vi 0) O = 6/+ ). (B.5)
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with

Bt =U +2+/gh, (B.9)
B~ =U -2/gh (B.10)

Here % is the incoming characteristic and - is the outgoing characteristic.
For our purpose, it is the outgoing characteristic which gives the information about
the waves which are propagating away from the shoreline. We now have to assume
something about the interaction between the incoming waves, which are specified and
the outgoing waves which are unknown. Both the volume flux and surface elevation

can be divided into an incoming and outgoing component

Q=Q;+Q;, and ¢ =G+ G

where the subscript ¢ denotes quantities coming into the domain and the subscript r
represents the outgoing components.

Following Van Dongeren and Svendsen (1997), we utilize that the linear terms
in the equations are O(1) and the O(d, 4*) terms are considered small. Thus, the

expression for [~ is, keeping terms up to O(5?)

- =U+U, — 2\/_9.-’1, (1 -+ Cz;:—cr)

T Ci—I'C'r . (Ci+_<r)2 3
=U; + U, — 2+/gh (1 th S = ) +0 (8%). (B.11)

We now express the water surface elevations (¢; and () in terms of the velocities (U;

and U,.) utilizing the relation

U= 8 U, = —% c=gh+G+G). (B.12)

- h—l-ct"

After some algebraic manipulations, the water surface elevations (; and (. can be

expressed in terms of the velocities as

G U 10U . Ul ¢3 N
h ¢ " 2 c? * 2c2 +0 hs ) (B.13)
G . O 107 U, ¢? |

h i 2 ¢ g 2c3 =0 h3 )’ (B.14)
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where ¢y = v/gh and both ¢;/h, (,/h ~ O(d). Substituting (B.13) and (B.14) into
(B.11) gives

' 1U2 33U, U, 17
o i, SO gt S5 B.15
o def 2 i " co 4c B 15)

Solving this equation with respect to U,, the outgoing component is calculated as

: 2 : =
E:(—3E+4)i2\/2U—;—6g5+4*(&+2). (B.16)

Cp Cp Ch Cp

The still water condition is

3-
=0, U; =0 and b~ +2 =0, (B.17)

Co

which gives the positive root as the spurious root, which leaves

fi 2 i 3
b _ (—3l—+4) —2\/2%—62— (i—2). (B.18)
(&) (&) Cy (&5} Cp

During the solution of the Boussinesq equations the values of ) and ( are

calculated at the next time step at all interior points of the computational domain.
The expression (B.18) makes it possible also to upgrade @, and hence @) at the
boundary points to the next time step. For further details about the derivations see
Van Dongeren and Svendsen (1997).

Figure 11 shows the performance of the boundary condition for two sample
input wave conditions. For both cases, the initial condition is no waves in the domain
(¢ = 0 everywhere in the domain). Waves are generated at the boundary during
t = 0 — 67T. The waves are tapered with a hyperbolic tangent function to suppress
transients during the first and last period. The waves propagate up to a wall where
they are reflected. The reflected waves then pass through the absorbing-generating
boundary at « = 0. The length of the wave tank (\) was 5.0 m for the first case and
20 m for the second.

Figure 11(a) shows the time series at the absorbing-generating boundary at
2 = 0 for a long wave of T'\/g/h = 26 and L/ ~ 2, where L is the wave length. The

waves reflected from the wall boundary reaches the absorbing-generating boundary
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while waves are still being generated and sent into the domain. As a result, standing
waves are present in the domain for most of time the waves are in domain. Due to the
dispersive nature of the equations, there is a tail of very short waves for the reflected
waves. These small waves propagate slowly out of the domain. It is seen that still
water condition is recovered quickly. Figure 11(b) shows the time series at z = 0
for a much shorter wave of T'\/g/h = 10.5 and with L/\ ~ 0.2. The recovery of
still water conditions takes a longer time in this case, probably also as a result of the
length of the domain in comparison to the wave length. Overall, the performance of

this boundary condition is very good for regular waves.

References

Bakunin, J. (1995). Experimental study of hydraulic jumps in low Froude number range.
Master’s thesis, Center for Applied Coastal Research, University of Delaware, Newark,

DIE19716.

Boussinesq, J. (1872). Theorie des ondes et des remous qui se propagent le long d'un
canal rectangulaire horizontal. en communiquant auw liquide contenu dans ce canal des
vitesses sensiblement pareilles de la surface au fond. Journal Math. Pures et Appl.

2nd series 17, pp. 55-108.

Brocchini, M., P. Cherubini, and L. Tovenitti (1991). An extension of Boussinesq type
model to the surf zone. Computer modelling in ocean engineering 91, Rotterdam, The
Netherlands, pp. 349-359.

Cox, D. T., N. Kobayashi, and A. Okayasu (1995). Experimental and numerical model-
ing of surf zone hydrodynamics. Technical Report CACR-95-07, Center for Applied
Coastal Research, University of Delaware.

Deigaard, R. and J. Fredsoe (1989). Shear stress distribution in dissipative water waves.
Coastal Engng. 13, pp. 357-378.

Dingemans, M. W. (1997). Waler wave propagation over uneven bottoms. Part 2 - Non-
linear wave propagation, Volume 13 of Advanced series on Ocean Engng. World Sci-

entific,

29



Gobbi, M. F., J. T. Kirby, and G. Wei (1999). A fully nonlinear Boussinesq model for
surface waves. II. Extension to O(kh)*. J. Fluid Mech., In press.

Hansen, J. B. and I. A. Svendsen (1979). Regular Waves in Shoaling Water: Experimental
Data. Technical report, ISVA Series Paper 21.

Karambas, T. K. and C. Koutitas (1992). A breaking wave propagation model based on

the Boussinesq equations. Coastal Engng. 18, pp. 1-19.

Lin, J. C. and D. Rockwell (1994). Instantaneous structure of a breaking wave. Phys.

Fluids 6(9), pp. 2877-2879.

Lin, P. and P. L. F. Liu (1998a). A numerical study of breaking waves in the surf zone.
J. Fluid Mech. 359, pp. 239-264.

Lin, P. and P. L. F. Liu (1998b). Turbulence transport, vorticity dynamics, and solute
mixing under plunging breaking waves in surf zone. J. Geophysical Res. 103, pp.
15677-15694.

Madsen, P. A., B. Banijamali, H. A. Schiffer, and O. R. Sgrensen (1996). Boussinesq
type equations with high accuracy in dispersion and nonlinearity. Proc. of 25rd ICCE,

ASCE, pp. 95-108.

Madsen, P. A., R. Murray, and O. R. Sgrensen (1991). A new form of Boussinesq equations

with improved dispersion characteristics. Coastal Engng. 15, pp. 371-388.

Madsen, P. A. and H. A. Schiffer (1998a). Higher order Boussinesq-type equations -
derivation and analysis. Phil. Trans. R. Soc. Lond., Series A, 356, pp. 3123-3184.

Madsen, P. A. and H. A. Schiffer (1998b). A review of Boussinesq-type equations for
gravity waves. P. L.-F. Liu (Ed.), Advances in Coastal and Ocean Engng., Volume 5,

pp. 90. World Scientific, Singapore.

Madsen, P. A. and O. R. Sgrensen (1993). Bound waves and triad interactions in shallow

water. Ocean Engng. 20, pp. 359-388.

Madsen, P. A., O. R. Sgrensen, and H. A. Schaffer (1997a). Surf zone dynamics simulated
by a Boussinesq type model. Part 1. Model description and cross-shore motion of

regular waves. Coastal Engng. 32, pp. 255-287.

Madsen, P. A., O. R. Sgrensen, and H. A. Schiffer (1997b). Surf zone dynamics simulated

30



by a Boussinesq type model. Part II. Surf beat and swash oscillations for wave groups

and irregular waves. Coastal Engng. 32, pp. 289-319.

Madsen, P. A. and I. A. Svendsen (1983). Turbulent bores and hydraulic jump. J. Fluid
Mech. 129, pp. 1-25.

Mei, C. C. (1992). The applied dynamics of ocean surface waves (2nd ed.). World Scien-
tific.

Mei, C. C. and B. LeMehaute (1966). Note on the equations of long waves over an uneven

bottom. J. Geophysical Res. 71(2), pp. 393-400.

Nwogu, O. (1993). An alternative form of the Boussinesq equations for nearshore wave
propagation. ASCE J. Waterway, Port, Coastal and Ocean Engng. 119, pp. 618-638.

Peregrine, D. H. (1967). Long waves on beaches. J. Fluid Mech. 27, pp. 815-827.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1992). Numerical
recipes in fortran (2nd ed.). Cambridge: University Press.

Schaffer, H. A., P. A. Madsen, and R. Deigaard (1993). A Boussinesq model for wave
breaking in shallow water. Coastal Engng. 20, pp. 185-202.

Svendsen, I. A. (1984a). Mass flux and undertow in a surf-zone. Coastal Engng. 8, pp.
347-365.

Svendsen, 1. A. (1984b). Wave heights and set-up in a surf-zone. Coastal Engng. 8, pp.
303-329.

Svendsen, I. A. and U. Putrevu (1993). Surfzone wave parameters from experimental

data. Coastal Engng. 19, pp. 283-310.

Svendsen, I. A., J. Veeramony, J. Bakunin, and J. T. Kirby (1999). The flow in weak
turbulent hydraulic jumps. Submitted to J. Fluid Mech.

Svendsen, I. A., K. Yu, and J. Veeramony (1996). A Boussinesq breaking wave model

with vorticity. Proc. of 25rd ICCE, ASCE, pp. 1192-1204.

Van Dongeren, A. R. and I. A. Svendsen (1997). Absorbing-Generating boundary con-
dition for shallow water models. ASCE J. Waterway, Port, Coastal and Ocean En-

gng. 123(6), pp. 303-313.



Wei, G. and J. T. Kirby (1995). A time dependent numerical code for extended Boussinesq

equations. ASCE J. Waterway, Port, Coastal and Ocean Engng. 120, pp. 251-261.

Wei, G., J. T. Kirby, S. T. Grilli, and R. Subramanya (1995). A fully nonlinear Boussinesq
model for surface waves. 1. Highly nonlinear, unsteady waves. J. Fluid Mech. 294, pp.

7192,

Zelt, J. A. (1991). The run-up of nonbreaking and breaking solitary waves. Coastal En-

gng. 15, pp. 205-246.

32



Case No. | T'(s) | H (em) | T\/g/h

1 3.3333 4.3 17.4
2 2.5 3.9 13.0
3 2.0 3.6 10.44

Table 1: Wave parameters from Hansen and Svendsen (1979) at the toe of the beach.

Line No. | L1 L2 L3 L4 L5 L6
h (cm) | 28.0 | 21.14 | 17.71 | 14.29 | 10.86 | 7.43

Table 2: Location of measuring lines for the data of Cox et al. (1995)
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Figure 3: Schematic figure showing the computational domain.
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Figure 6: Comparison between model results ( ) and data(e) from Hansen and Svend-
sen (1979) of wave heights (a) and setup (b) for Case 3 in table 1. The slope starts at

= 01m.

39



h = 28.0 em

-
(5

I T I c'l
03r 0 4
. : e G iy e ‘@ ¥ [ w - -
N 0.2 4 sl ‘ol e ‘e ls le - b ¢ d ; L .
* . .. 8" + ‘. PR * ‘.. . . - L .
01k* ol cel Lo le e I» le; o bk 4 b i
oLbi i [N ALY A N [ R S S
h = 21.40 em
T T T I I T T T 1
0.3F 3 C o
HN 0'2_i . R ! .rc . Il I:_ T; o P v il
01l "t ;I : ‘g_‘ | N | ; I3 12 12 12 P ? 4
N S U NN M A1 S M A T T
h=17.71 em
0.3 T T T T T T T T T T T
— ¢
0.2 : 2l
N e 7 : o Ly ' Te: 1 e w -
. . vy - - - - L . . . . L
01Fg : X : ] 5 2 e e: g: §:
- d " 2 2 bt L L] . . : - : L] : L] :
ol b | p ! i A W | L} N | | I |
T T T
0.2f ¢
S . . - £ ! = —— —es
0113 : s I Lol ] e o I o s : o
. . . . ‘e ‘e K . . . e -
oLl &, §) A VI S SN A P N S
0.2 T T
h?\) 01 B - . =1
P
0 I I 1
0.15F 7T T =
0.1 -l
0058 g — e
. - ‘.
0 L L
0 0.1
Figure 7: Comparison of velocity profiles between the breaking model (—-—-— ) with

experimental data from Cox et al. (1995) () and of water surface elevation (model

1

— — =, data ° "). The horizontal line at the top right of each sub-plot is the

magnitude of the wave speed. The ordinate 2z’ = z + h is zero at the bottom.
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Figure 8: (a) Contours of vorticity at h = 14.29 em. (b) Vertical profiles of vorticity under
the roller and behind the crest at h = 14.29 e¢m. The ordinate 2/ = z + h is zero at the

bottom.
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Figure 10: The non-dimensional radiation stress P ( ), the potential part P, (—

— —) and using the definition given by Madsen et al. (1997a) (—----) for the wave
conditions of Hansen and Svendsen (1979) (a) Case 1, Table 1 (b) Case 2, Table 1 (c)
Case 3, Table 1 and (d) for Cox et al. (1995).
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[igure 11: Time series of the water surface elevation at the boundary (z = 0) for the fully

non-linear model, showing the effect of the absorbing generating boundary condition. (a)

long waves (T'\/g/h = 26) (b) short waves (T'\/g/h = 10.5).
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