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ABSTRACT

The purpose of this study is to develop a
numer ical method to compute shallow water wave spectral
trans formation both for stationary and non-stationary

cases.

A numerical model for stationary wave spectral
transformation has been developed Dby Shiau and Wang
(1977) and further amplified by Wang and Yang (1981).
The present work extends the model to add bottom
friction and local wind qeneratién. This model i3
applicable to wave s3pectral transformation under
stationary meterological conditions. IE the
meterological condition is non-stationary in the
generating area or the local wind effect in the domain
of consideration <¢an no longer be neglected, such as
when a hurricane or s3torm sweeps thcough offshore of a
coastal region, the wave spectral transformation in
shallow water should also be treated as non-stationary.
A non-stationary wave spectral transformation model is

thus developed to handle these cases.

Xili
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The non-stationary model c¢onsists of three
sub-models; dealing respectively, with 1) swell
transformation due to offshore wind variation without
local wind generation, 2) wind wave transformation due
to local wind generation, 3) hybrid condition that
combines the swell and the wind wave transformations.
The numerical results were compared with North Sea

field data.



CHAPTER 1

INTRODUCTION

The need for a more cealistic representation
and accurate prediction to shallow water environment is
increasing for both scientific and engineering
purposes. It is also an accepted opinion that wave
spectcum utilizing the ensemble of random sucface
oscillations provide a more realistic, and perhaps more
accurate representation of ocean waves than a
moncchromatic wave train of single freguency. In the
past, considerable efforts have been devoted to the
development of deepwater wave spectra, to the extent
that reasonable confidence can be placed in its
applicability to describe wind gensrated ocean waves.
To establish the wave climate in the coastal zone, as
i3 often necessary for scientific and engineering
pucposes, the deepwater wave environment needs to be
tcrans formed into shallow water. It is in this area
that both knowladge and effort are conspicuously
lacking, although, odd as it nay seem, the

trans formation of monochromatic wave trains is a



wall-studied topiz.

1.1 Literature Review

Thece exist a few attempts in the development
of theoretical concepts and numerical techniques
concerning wave spectral transformation from deep to

shallow water.

Longuet-Higgins (1956,1957) cons idered the
crefraction of a wave 3spectrum having Jjust two
components. In one case, the two components consisted
of two regular wave trains o§ the same wave number and
travelling in s3lightly different directions. The
effects of refraction on each other tend to increase
the crest lengths, and to decreaze the wave heights and
the angle Dbetween the two components. Another case
considered by Longuet-Higgins was a two component
3pectrum where the components were of slightly
different wave numbers and both travelling in the same
direction 1in deep water. In this c¢ase, the wave
pattern which originally was long crestad becomes short
crested due to the different refraction of the two

components .



Based on the radiative transfar equation,
Barnett (1968) developed a method to predict the
two-dimensional wind wave spectrum in the Nor th
Atlantic Ocean. The model takes account of wave
generation by both resonance and instability mechanisms
and wave dissipation by breaking. However, the shallow
water effects such as refraction, Dbottom dissipation
and the non-stationary wave conservation phenomenon are
not involved. Therefore, the model 1is applicable to

deep water only.

-

Based on the conservation of energy €£flux,
Karlsson (1969) developed a method to compute spectral
trans formation for refraction over parallel bottom
contoucs . The governing equation for the distribution
of the continuous directional wave spectrum under
steady 3tate conditions in water of any depth was
derived and its 3olution by finite difference

techniques was presented.

Collins (1972) extended the work £o the
inclusion of bottom frictional effects and mentioned
the application to an 1irregular Dbottom topography.
However, his numerical scheme traced wave energy along

wave rays, which made the computational procedure quite



impractical to determine shallow water wave spectra at
designated locations in an area of irregular offshore

bottom configuration.

Baszed on a geometrical-optical approximation,
Krasitskiy (1974) has derived explicit analytical
solutions for the spectral transformation over
two-dimems ional parallel bottom contours. The solution
he achieved took account of refraction and was applied
to problems of spectral trans formation due to

diffractions.

Hasselmann (1976) developed a parametcic model
within which non-linear interactions are implicitly
taken into account through the assumed shape of the
spectrum represented by a limited number of parameters.
Although the parametrization of the non-linear
wave-wave interactionz had Dbeen conzidered, shallow
water phenomenon due to the interaction of surface

waves with the bottom was not taken into account.

Shiau and Wang (1977) developed a numerical
model to compute the stationary wave spectral
transformation over irregular bottom topographies. It
is based on the assumption that wave energy associated

with a narcow frequency band stays within the band on



refraction when waves propagate from deep into shallow

water .

Longuet-Higgins (1957), assuming a horizontal
bottom, obtained an approximate solution of
monochromatic wave in shoaling water. Yang and Chen

(L979) further improved the solution by incorporating
wave statistics. They showed that the transformation
formula of random wave spectrum, based upon the
asymptotic solution of Friedrichs' (1948) small beach
slope case, was consistent with the approximation
theory by Longuet-Higgins. In addition, they extended
Stoker's (1947) sloping  bottom solution from
detecministic wave to a random wave field. Thelir
éolution was based on the consideration of stationary

case only; the non-stationary case was not considered.

Gunther (1979) developed a numerical wave
prediction model incorporating a parametrical wind-sea
model and a characteristic swell model. However, the
model doesn't include the shallow water effects such as
rafraction, bottom dissipation and also can not handle

the changing wind effect.



Wang and Yang (1981) compared field results
with the numer ical computations for energy
trans formation in shallow water, based on the numerical
model developed by Shiau and Wang (1977). The results
sugges ted that, or ior to wave breaking, the
trans formation of wave components is mainly influenced
by shoaling and refraction. The bottom frictional
af fect could also be important in the energy-containing
range. After breaking, turbulent generation due to
wave instability seems to be the dominant mechanism of

energy dissipation.

Based on the ray techaique, Cavaleri and
Rizzoli (198l1) developed a wind wave prediction model
in shallow water which included wave refraction,
shoaling, generation, and dissipation (breaking and
bottom friction). However, without considering the
wave conservation equation, the swell condition can not

be handled.

Vincent (1982) attempted to summarize the start
state of art on shallow-water wave modeling by
examining various factors that have been and that
should be included in the model. The review was

restricted to models using wave-ray methods. He



observed that a complete 3shallow water wave model
should include 1) propagation with refraction and
shoaling, 2) source mechanism due to atmosphereic
input, 3) sink mechanism including bottom dissipation,
bottom percolation and wave breaking and 4) non-linear

wave-wave interactions.

1.2 Objectives

A major motivation of the present study 13 to
develop an accurate method to predict wave spectral
trans Formation in shallow water environment. The
region of interest i3 depicted in Figure 1.1 which
begins from the point shoreward of the genecating area
to the point before breaking. Two different approaches
are used in the present work. The first method 1is3
based on Noda's (l1974) relaxation finite difference
scheme to solve the stationary wave spectral
trans formation in shallow water with the inclusion of
bottom dissipation and local wind generation effects.
The second method is using two-step Lax-Wendroff scheme
to solve the non-stationary case of wave spectral

trans formation in shallow water.
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The stationary wave s3pectral transformation

method is applicable to the energy spectral
trans formation under stationary meterological
condition. However, Lf the meterological condition is

non-stationary in the generating area and/or in the
wave trans formation area, the 'non-stationary wave

spectral transformation method should be applied.

For the non-stationary wave spectral
transformation method, it consists of three sub-models
1) the 3well model which handles non-stationary
swell transformation without local wind generation, 2)
the wind wave model which deals with the wave
trans formation due to wind generation effect, 3) the
hybrid wave model that combines the s3swell wave wmodel
and the wind wave model to handle the mixed conditions.
A set of field data recently collected along North Sea

was compared with the numerical results.






CHAPTER 2

THEORY OF WAVE SPECTRAL TRANSFORMATION

As ocean surface waves propagate from deep to
shallow water, significant changes occur in their
characteristics. These changes 1include both wave
xinematic and dynamic properties. Kinematically, the
wave form obeys wave conservation, dispersion. relation
and wave refraction phenomena. Dynamically, the wave
energy, hence the wave height, changes due to wave
refraction, wave shoaling, wave generation, and wave
dissipation. Thus, in considering wave transformaktion
in shallow water, both wave kinematic and wave dynamic
properties should conform to governing equations which

acre developed in this chapter.

2.1 Description of A Wave Field

[0

The waves appearing on the surface of the 3ea
are almost always random in the sense that the detailed
configuration of the surface varies 1in an irregular

manner in both space and time. Only the various

10
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statistical measures of the motion can be regarded as
significant ' observationally or predictable
theoretically. Of these, the fundamental measure is
the joint probability density of the variables
concerned. In a homogeneous and stationary wave field,
all +the joint probability densities are spatially and
time invariant except the addition of a constant space
vector or a constant time scalar. If 7, ,%....10n are
the ocean surface variations at n points, then the

probability density function of s can be expressed as

oo o
j~ “'“':S Pl 1) ddl -~ dla = | {2:)
-c0- -0
where
P(7.,% --%]) i3 the probability density of the
surface displacement.
P(7, T+ +Tw) d2d % . .d7a represents the probability
that the surface displacements at the points

(X biYoanl Baataul s

i.e. the total probability is equal to 1.

It i3 wusually convenient to measure the
displacement ‘1 from the mean free surface level, so
that the first moment (mean) of the probability density

P(17.) becomes

T = S-«» N P(1.)d7,

il
O
o
[
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for  all ¢

where the overbar is used to denote the ensemble

average.

The second moment (covariance) of the
probability density P(7,%.) becomes

RL¥%, Tst.r) == j f 1. % PLL. 1) dT 41

o

= M(X,t) (X7, L+T) (2.3)
where the points 1,2 are taken as (X,t), (X+T,t+7T ),
respectively. In particular, the mean square surface

displacement can be expressed by the covariance when

both T=0 and €=0, i.e.,
— ~ -
"{ (x,t) = R (x,05%,0) = J 17 P14, (2.4)

The wave spectrum X(k,e-) and the covariance

R(T,z) form a Fourier transform pair:

X AK,0) = (2zr)” ” Rc?,z)exp{-ui:-?-m)] drdz
r'c (2.5)

and

R(r,7)= Sg X k.00 exp[ Lk -o»t}] dkdo (2.6)
K o
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Equations (2.4) and (2.6) lead to

T (fxmnne

- =h ZK
k i3 wave number vector, |kl= K .

o= 2W/T, is wave angular frequency(rad/sec),

L i3 wave length,

T i3 wave period,

E = 7% = 1/23® (except for a factor Pg) is the
total energy per unit surface
area,

a is wave amplitude.

Therefore, %(Xk,») can be interpretated as the spsctral
density function per unit surface area of wave number

and angular frequency.

Raduced spectral density functions can ve
obtained from X(k,0) by integration over O~ or over K.

The wave number spectral density function is given by

F(k) = g X (K ,00) dor (2.8

oz

The angular frequency s3spectral density €function 1is

given by
Alon) = J( X (k.0) dk (2.9)
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The spectral density function F(kX) and A(®) can
be considered as a descriptor of the sea in space (x,y)
and time t, respectively. F(X), for instance, is a five
dimensional variables F(k, ,kz.X,¥.t). The angular
frequency spectral density function is also a five
dimensional variables, A(o,8.x,y,t) with § being the
directional angle. Alternate forms of the energy
density function can be shown as follows:

In directional wave-number spectrum,

Fi(k,0) = k F lki,%:) {2.10)

where

K. = k ces 8 end k, = ksinB

K = (k.*+ kza)y’ and Q = tan" (%)

In directional angular frequency spectrum
| 2.1 )
A,8) = — Fli,0) ¢
Cy

where Cg = is the group velocity.

ok



15

The directional frequency spectrum is

A(fe) =2t A(o,8) (2.12)

where f is wave frequency andO-=2nf.

The one dimensional wave spectrum is:
.4
A= [ A0 de (2.13)

Therefore, the transformation between wave number

spectrum and directional frequency spectrum becomes

C
F (ki ka) = Flk)==-;—£—k— A 9) (2.13a)

It is also noted that by definition.

1 = L.L F (ko ke) dikidk;

j { A(f, 0 ) df d6 (2.13b)
f ’0

Where 7% is the value of the mean square sea surface
fluctuation. The directional frequency spectrum will

be used throughout this text since it 1is easy to
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calculate. -

2.2 Conservation of Energy Flux in Wave Spectral

Trans formation

Let subscript O denote the reference state
(deepwater condition is usually conveniently selected),
the conservation equation of energy flux transformation

is established. From equation (2.13), we have

Alf,0) = Eii(:r:j:f‘% (Atfo)df). (2w

For s3teady state c¢ondition, the frequency £ is

invariant in space, the above equation simplifies to

K F(R)dK] .
A (f.8) = ( ———= A.(f06) (2.15)
(kF(RYdK],

since F(f)di approximates the incremental of wave
energy over the wave number band dﬁ, it is plausible to
write -

dE = F(K)dK (2.16)
Substituting equation (2.16) into equation {2:15)

results in

At e) = _Liz'_E_J_ Ao ($.0) (2.07)
E
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This transformation equation is not valid when
wave generation and dissipation are involved. Also, it
cannot be applied to unsteady state case because f is
no longer space invariant. More details will be shown

in the following sections.

2.3 Basic Equations for Wave Spectral Transformation

The basic equations for wave spectral
transformation consist two parts: one 1is wave
kinematics and the other is wave dynamics. In the
derivations, wave reflection and non-linear wave-wave

interactions are neglected.

i I | Wave,Kinematiés

Starting with a progressive linear gravity

wave, the free surface can be written as

"((X.y.t) = Q(x,y.t) cos {qb(x.y.t)]

where a is the wave amplitude and $ =k.x-0t is phase
function.

A wave number vector can be defined as

K = 99 (2.18)
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and a wave frequency scalar can be defined as

_ o
C>\ P— TSEL (2.19)

Assuming ¢(x,y,t) is continuous, then the order of

differentiation are interchangeable;

Substituting Equation (2.18) and (2.19) into the above
expression, it is found that

—

_9_[_<.+'f7"5\.—.-_o {2.21)

ot
which i3 the classical conservation of wave equation.
If no new waves are being created by a 1local
disturbance, the rate of change of wave number i3
balanced by the convergence of the frequency, the

number of wave crests passing a point per unit time, or

the flux of waves. In a random wave field of linearly
supecposed waves, Equation (2.21) holds for each
Fourier component but the simple geometrical

interpretation is not possible. If the wave field is

—
constant in time, then V=0, or, the wave period does
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not change with space. It remains constant even as the

water depth changes.

In the presence of a steady current ﬁ=Ui+Vﬁ, it
can be shown that the scalar frequency with respect to

a stationary reference frame is

O~=0 + k-u (2.22)

The wave frequency ¢ with respect to a moving reference

frame is given by the dispersion relation,

O~2 e Sk tanh kh (2.23)

If it is also assumed that the wave number field

changes slowly with time then from Equation(2.21)

‘—5(0- +k-u) =0
or

o~ + T('a = Constant (2.24)

This constant can be evaluated for the case where u=0

in which case 0 =2n/T where T 1is the wave period.
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Equation (2.24) becomes

Nt KU = —F

or

(9|<tanhl<h)&+Ukcose+ VkS-‘n9=2f§ (2.25)

for the coordinate system shown in Figure 2.1. Here U
and V are current velocity components in the x and y
directions, respectively; i3 the wave approach angle

measured from the positive x-axis.

Uaing the mathematical property that the curl
of a gradient is identically zero, if is shown that

— —

vV x V¢ =0 (2.26)

which implies that
6’ " E “ (2.27)

This equation states that the wave numbec vector is
irrotational. Using the coordinate 1in Figure 2.1,
Equation (2.27) can be further decomposed to

d(Kewsd) _ 2(Ksin®) _ (2.28)
oY 3 X
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For a shore line where the alongshore variations in the
y direction of all variables are zero, that is, there
are straight and parallel offshore contours, this

equation yields Snell's law.

With known U, V, and h, the three unknown wave
number k, angular frequency o-, and wave direction @ can
be solved through Equations (2.21), (2.25) and (2.28).
However, the kinematic conditions can not represent
energy spectrum unless the dynamic condition is also

considered.

2.3.2 Wave Dynamics

To determine the variation of A, the assumption
is made that the wave energy associated with a certain
frequency band stays within this band so that the
linear superposition c¢an be used. This assumption
denies energy transfer among different frequencies and
is compatible only when non-linear effects are

negligible.

Gelci, et al. (1956), Hasselmann (1960), and
Groves and Melcer (1961) have all independently
proposed a transport equation which takes into account

wave propagation as well as the processes of generation
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and dissipation. However, the shoaling of waves 1is3
also affected by the interactions of waves and
currents. The energy transport equation presented by
Longuet-Higgins and Stewart (1960,1961) for the

fluctuating motion of waves with a superimposed current

system is

9A

9 " |
3t ' % (A (utcgewsa)] + 55 (ALv+¢ysn0)

10 SV LA 2V
+ Sex DX +~S¥y QY * Syx Gy +‘5)’)’ oy

(2.29)

il
™
&

where

A

]

A(f,9,x,y,t) i3 directional frequency spectrum
G = G(£,0,x,y,t) is a general representation of
all processes which are adding or subtracting
energy from the spectrum

Cg i3 the group velocity expressed as
2kh
Shht)kd

C=(‘%'tanh(<h )55 is the wave celerity

Cg = nC =—_:..:(l+

Syg are the radiation straesses such that:

sxx = A((2n-1/2)cos?® + (n-1/2)3in?*®) = Abxx
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A((2n-1/2)sin®® + (n-1/2)cos’® ) = A0yy

Syy
Sxy = Syx = Ancosfsinf =AUxy
The Equations (2.21), (2.25), (2.28) and (2.29) are the

basic equations for wave spectral transformation.

2.4 Specification of the G-Functions

In Equation (2.29), G-Function represents all
processes which are adding energy to or subtracting
energy from the spectrum, i.e., source or sink
function. The processes can be categorized into linear

and nonlinear mechanism. The details are as follows.

2.4.1 Wave Generation

Based on the dynamics of the surface boundary
layer, both the surface pressure and shear stress
variations influence wave growth. One can see
intuitively that the pressure fluctuations on the
surface are of two kinds: those produced by the
turbulent eddies in the wind and those induced by the
air flow over the irregular water surface. At present,
there are two prominant postulations on wind wave

generations.
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2.4.1 Phillips' Resonant Mechanism

In the resonance theory proposed by Phillips
(1957), the turbulent atmospheric pressure fluctuations
are seen as prime wave generators. It is first assumed
that the ocean and the atmosphere are an uncoupled
system. Provided the turbulent pressure spectrum is
reasonably isotropic, the main condition for resonance
is that Uecos § = C(0~), where C is the phase velocity
of wave with angular frequency 0~, § 1is the angle
between wind and waves and Ug is the convection
velocity of the turbulent eddies with wave number %
This velocity is generally coansidered to be about equal
to the mean wind velocity W at a distance 2m/k above

the sea surface.

The Phillips mechanism calls for wave energy to
grow linearly with time and should be particularly
important for waves moving with approximately the same
speed and direction as the wind. The coefficient of
this linear growth will be denoted by the parameter ok =
oA(E, B8 ,x,v,t). It has been shown by Hasselmann (1960)
that

o 4x? ko’
P2 83

I

P(-l-(.,D'-) (2.30)
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where P(k,0) is the three dimensional spectrum of the
random atmospheric pressure fluctuation, Pw 1is the
density of sea water, g is gravitational acceleration
and ®® has unit of (length)ﬂ Barnett (1968) has
proposed a suitable function for P(ﬁ,?) based on the
work of Priestley (1965). The procedures are as

follows.

Let P(X,t) be the fluctuating static pressure
at time t and point (x,y). Define the co-variance

function

R(F,T) = L PLX.t) P(X+7,t+T) > (230

where the brackets denote an ensemble average.

The quantity desired is

g P{F.Z)Cw(E-F+mt}dth

Plk.o) = )’ j

r’c
(2.32)
Priestley defines the cross spectral density as
o0
i -l -
B(F.U') = (2m) 5 I?tr,t)exp{—io-l)dt.
-c0

= Co (F.oo) + 22 (F,0) (2.33)
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where ¢, and q are referred to as the Co-and
Quadrature-spectrum, respectively. Priestley
eventually arrives at emprical representations for cp

and g as

Co(?.&) = G (o) exp [-—p. [r,] = Va lrgl} CoS AT,

(2.34)
and
9 (r.on) = ¢ (&) exp [ -Vl - V2 {r;l} SinAl,
(2.35)
where

i

% (1/m)

W i3 wind speed (m/sec)
v, = 0.33 A" (1/m)
(1/m)
o) = 5.13x 1o wt/o?

a5
Y, = 0.52 A°

is pressure power spectrum (m -sec)
r, and ry are distance associated with unit
vectors

“
~ A : " ’ i
r, and ¥y directed downwind and crosswind, .
respectively.

Substituting Equation (2.33), (2.34) and (2.35) into

(2.32) and choosing the real part of P, then

P(K.o) = %%-% SEXP‘--V.!f‘al-vzll‘x]}Cos(i:.?-ﬂn)d?
L -t

(2.36)
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Direct integration yields

P(E.OJ: 63xio*w® [ V2 *l[ Vi

72 p Vai+ (ksia$)? v,2 +(Keos§-A)?

(2,37

where & is angle betwzen wind and wave vectors.
Barnett also compared the ¢ value with experimental

data which fit reasonably well.

This resonance mechanism, as the name implies,
should be of particular importance for waves moving
approximately in the same direction with the same speed
as the wind field. We have found, as will be shown
later that while this mechanism 1is important in the
initial stage of wave generation and alsc contributes a
large portion of the energy in the eventual spectral
peak. It cannot account for the energy growth for the

rest of the spectrum.

2.4.1.2 Miles' Instability Mechanism

Miles (1957, 1959a,1959b,1962) explains the
energy transfer from the wind to the waves Dby
hypothesizing a coupling between ithe existing waves and

their induced surface pressure fluctuations. The waves

]

2
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grow exponentially in time with the spectral peak
shifting toward lower frequency. of critical
importance in this particular theory is the curvature
of the wind profile at a height above the sea surface
where W = C. The coefficient of this exponential
growth 1is denoted by the parameter (3= @ (£,0,x,y,t).
Unfortunately, the theoretical prediction of Miles'
theory did not agree with the measurements. Snyder and

Cox (1966) recommended a modified expression of (3.
— —
B =35 (kW =0 (2.3%)

where 3 i3 the ratio of the densities of air and water,
and W is the wind velocity measured one wave length
above the mean sea surface. Barnett (1968) recommended

a slight change in the ratio to yield

g = ssf (w Cos(‘—z")“ 0.‘?0]

where the wind W is considered 19.5 m above the sea

surface. One can make an argument to the effect that

most instability theories require waves moving faster
W

than the wind, 1L.e., C <1, =ither to experience no

growth or to be attenuated. The dot product
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representation in (2.38) and subsequent form of (2.39)
are just simple mathematical expressions to fulfill
this requirement. However, after the waves have moved
away from the generating area, the actual form of (3 for
%§<l then becomes important. If @ is relatively large
and negative, substantial dissipation would occur
continuously outside the generating region. A similar
circumstance would occur under head wind conditions,
(i.e., /2 < §< 3R/2), on the other hand, if B is small
but generally positive, as has been suggested by
Phillips (1966), then slow but continual growth would
be expected in the presence of light, favorable winds.
To makz a choice Dbetween the two possibilities, it
would be necessary to observe the behavior of spectral
components over great distance or time. The
measurements of Snodgrass et al. (1966) indicated that
for long waves, at least, the damping is negligible.

It is to be assumed that 3=0 for Wcos(—é's-)<0.90.

Both wave growth mechanisms suggested above are
for deepwater waves. It 1s not clear whether they are
applicable for shallow water case. In the present
model the combined Phillips' and Miles' mechanism is

used anyhow for lack of a better model, that is,

G, t §, = &t BA
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To illustrate these two mechanisms, oL+@A, 2
simple case is tested here for a steady state, one
dimens ional, zero current, and frictionless situation.

Equation (2.29) then becomes
Cqos0 2= ACF,0) = o + BAE6) (2.40)

Equation (2.40) is a 1linear boundary value problem.
The solution can be easily obtained with given boundary
condition. Here, the boundary condition 13 s3et as
A(E,0)=0 at x=0. The solution for the spectral

component along the x-axis, A(f£,0) is simply

A(F.0)=%(ex{>%-l] (2.41)

Three different conditions are illustrated here.

1) Onshore wind blows over a 3loping bottom at right
angle to the shore line. First of all, the growth of a
specific wave component (T=8sec) with respect to fetch
is examined. Here as shown in Figure 2.2(a), the
growth of each component will undergo three stages. 1In
the initial stage, wave will grow linearly with respect
to distance and then grow exponentially. Eventually,

the wave will reach the equilbrium range. Figure
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2.2(b) illustrates the fully developed spectrum in
shoaling water at location "I" based upon the combined
Phillips' and Miles' mechanism. The major peak of the
spectrum shifts toward the wind frequency £,
(Ew=g/2mW). After reaching f,, it then shifts slowly
toward even lower frequency. The 1light bump near
£=0.02 HZ is due to the discontinuous 'cut off’' of the
Miles instability mechanism. While such a sharp
cut-off 1is unrealistic, it will not significantly
affect subsequent results. The fully developed P-M
‘spectrum for the same wind condition is also shown in
Figure 2.2(b) for comparison purposes. The Phillips'
and Miles' mechanisms allow £or a certain amount of
growth in long wave components which do not appear in
the fully developed P-M spectrum.

2) offshore wind blows over a sloping bottom as shown
in Figure 2.3. The growth of a specific wave component
with respect to fetch still maintains the three growing
stages but the full spectrum at the location "I" i3
quite different from the above case for lack of
shoaling effect. The comparison between the fully
developed P-M spectrum and the spectrum generated Dby
Phillips' and Miles' actually have very 3imilar shap=s.

The peak-energy frequencies also coincide with each
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other. The total energy, thus the wave height, is
apparently lesser for the shallow water case.

3) wWind Dblows over a deep uniform Dbottom. The
spectrum, following the same pattern as case (2), is
shown in Figure 2.4. Although, at present, there is no
field verification on the applicability of Phillips'
and/or Miles' mechanism in shallow water, the results

given above do appear reasonable.

2.4.2 Wave Dissipation

The known wave dissipation mechanisms are
bottom friction, wave breaking, percolation, and wave
induced bottom motion. The former two are usually

considered to be the dominating factors and both are

non-linear mechanisms. The latter two proesses are
minor and linear mechanisms. In this research, only
the two major mechanism: bottom friction and wave

breaking, and depth limited wave are considered. The
two major mechanisms are the G, term in the energy
transport equation whereas the last term limits the
growth of the total energy under the spectral curve in

shallow water.

2.4.2.1 Bottom Friction
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Energy dissipation due to Dbottom friction 1is
primarily the result of two physical mechanisms: one
involves the dissipative work done against turbulent
shear stresses, the so-called turbulent bottom
friction, induced by water particle motions near the
bottom and the other is responsible for the dissipative
work done against the viscous forces induced at the

permeable bottom where percolation occurs.

In general, turbulent bottom friction is
dominant over other dissipative processes when the

sediment i3 composed of sand with mean diameter in the

range of 0.1-0.4 mm for which low permeability
prohibits percolation and viscous dissipation is
negligible. Putnam and Johnson (1949) investigated

this problem first. They used the quadratic friction
law to derive the rate of energy dissipation for
sinusoidal surface wave. Assuming Gaussian-distributed
surface wave field, Hasselmann and Collins (19268)
derived the rate of energy dissipation for a random
3ea. Their derivations are revieswed briefly. The
bottom friction can be represented by the quadratic

law.

Co: = = Pw c¢ Up: L uol (2.42)



38

where

u,; (i=1,2) represent the two horizontal
components of water particle velocity

at the bottom,
Cg is the bottom friction coefficient.

The total dissipation of the wave field is then given

by

@ = - { Tu; Ups 2 = = Pw Ce C 1UWI?D (2.43)

< > denotes an ensemble average over all possible wave
components in a given wave spectrum. The repeated
subscript represents summation over the field i=1,2.
After Hasselmann and Collins' result has been changed
from wave number space to directional frequency space,

$ becomes

b (f0)=- -2y Adke)

o~*cosh? kh

= ¢ A(+.0) et

with

{Up )

O~"Cos

32k2 yz
[%A({) “imeey e A{} (245)
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where A(f) is energy spectrum given by Equation (2.17).
The above expressions are used in the noncoupled case
because the basic assumption of this research is linear

process.

As the bottom friction coefficient,
Bretschneider and Reid (1954) evaluated the coefficient
to be cf=0.01 for the sandy bottoms of the Gulf of
Mexico. Hasselmann and Collins (1968) cp to be 0.015

using the wave spectra measured offshore of Panama

City, Florida. Based on these two studies, cp values
-2

of the order 10 have been widely used. However, the

fristion coefficient has been observed to vary

significantly above and below this range depending on
the sand grain diameter and existence of bottom
ripples. Laboratory and semi-theoretical studies by
Jonsson (1965) indicate that cp is a function of
Reynold's number and, also, of relative roughness.
Dingler (1975) and Nielsen (1977) individually found
the criteria for existence of bottom ripples and, also,
for predicting the lengths and heights of such ripples.
Basad on these results, 2a method, assuming the
roughness height being equal to the sediment diameter,
was proposed by Hsiao and Shemdin (1978) to estimate

the botttom friction coefficient over a broad range of
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conditons.

2.4.2.2 Wave Breaking

It is a well observed fact that unéer sustained
wind action, waves will grow to some limiting
amplitudes then breakings or whitecaps will limit their
growth. This phenomenon can be handled in practice by
multiplying the wind generation term ol +@A by a
weighting factor a4 where M is unity during generation

and zero at breaking. The condition is stated as

Q. tG: = & (ot BA) (248

where M is 1 for A unsaturated; Al iz 0 for A
saturated. Phillips (1958) proposed that 1in the
saturated range of wave spectrum in deep water the

expression is

A (. §)satorated = BT @(S) (2.47)

Barnett (1968) defined ®a5

@ (§) = 8; Cos* (§) (2.48)
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The coefficient " B " has been determined
experimentally by Burling (1959), Hicks (1960), Kinsman
(1960), Pierson et al. (1962), Longuet-Higgins et al.
(1963) and others, as a value varying between 0.0080
(Longuet-Higgins et al) to 0.0148 (Burling) with an
average value about 0.0123. The value 0.0123 is used

herein (Phillips, 1966).

In shallow water, Kitaigorodskii et al. (1975)
have extended Phillips arguments to case of finite
depth and obtain a modified equaion of the following

form:

A(f.5)= B3 @) (wh) (2.49)

where ™ is a non-dimensional function of the quantity
W= 0( 2-)*% The functi i in d

= 3 . e function varies from 1 in deep water
to 0 in depth h=0. When Wy, is less than 1,

| 2
rﬂ (Wy) = = Wha

Therefore

|

At s)=783ho>@L(S) (2.50)
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.Observational evidence for this form has been
reported by Thornton (1977), Ou (1980), and the Vincent

(1981) in the laboratory and the field.

Finally, when waves reach shallow water they
will break because of depth limitation. The energy is
supposedly saturated but Eq (2.50) can not account for
all of them (the 1low frequency components) since it
opens at low freauency. In the present model, an
empirical criteria based upon total wave energy in
terms of significant wave height is employed such that

(Divoky et al., 1970)

{ ‘5\) = o0.12 tanh (kh)y (2.5

b TR

where Hs=4JE'with E the total wave energy under the

spectrum.






CHAPTER 3
NUMERICAL SCHEME OF

STATIONARY WAVE SPECTRAL TRANSFORMATION

After winds steadily generate waves for quite a
long period, 3tationary wave spectral transformation
will be reached. Without knowing the processes, the
shallow water wave spectrum, at any specified location,
is then éimply the contribution resulting from energy
associated with different frequency bands of the deep

water wave spectrum.

Based on the energy flux conservation, Shiau
and Wang (1977) developed numerical model of stationary
wave spectrum over irregular bottom. The present
study, based on the same numerical scheme as Shiau and
Wang, add wave generation and wave dissipation terms in
the stationary wave spectral transformation to fit the

r2al phenomenon in the ocean environments.

3.1 Basic Equations for Stationary Wave Spectral

Trans formation

43
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Under the assumption of steady state, basic
equations for wave spectral transformation, i.e.,
Equations (2.21), (2.25), (2.28) and (2.29) become

i) Wave Conservation Equation:

Vo-=o
or

O~ = constant or unaiform (3.1)

ii) Wave Number Conservation Equation:
Y 2R
(Gktanhkh )™+ Ukcos® + Vksinb = ——;r— (3.2 )

1ii) Wave Number Irrotational Equation:

9 (KeosB) _ _9(ksinB) _ o (3.3)
oYy o X

iv) Energy Transport Equation:

(Atu+ Cqeos9)) + 55 (ALV +Cgsin6))

oU SV oV
T Sxx ox % Sx)r 3_3(. + S}’X ox el SY)’ oy
3
= 26 (3.4)

where

EG—G + G, + G,

ist
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= M (Lt BA) + & .
ol is Phillips resonant mechanism Eq (2.30)
(3 i3 Miles instability mechanism Eq (2.39)
M 13 breaking coefficient
$® is bottom dissipation Eq (2.44)

3.2 Numerical Procedure

Based on Equations (3.1), (3.2), (3.3) and
(3.4), Noda, et al.(1974) devéloped numer ical
procedures to compute the wave angle and wave height as
functions of space variables for beaches with periodic
bottom variations in the 1longshore direction. The
advantage of Noda's method is that it predicts the wave
angles and wave heights at certain points rather than
along a wave ray. This procedure leads itself well to
use in the finite difference model because calculations
are performed at points which 1lie in the center of
rectangular grid elements which are part of a larger
grid mesh. The basic idea to get a steady solution
converged by finite difference method 1is to wuse the
relaxation scheme which will be shown in detail. It is
necessary to discuss the ercror estimates Dbefore the

numerical scheme to be used.
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The acccuracy of the finite difference method
is mainly limited by three factors. First there is the
truncation error which i3 the difference between the
true solution of the original equations and the
approximate solution of the finite difference equation
which replaceas the differential terms by
finite-difference terms. The truncation error can be
eliminated as  the Einite difference mesh size
approaches zero. Secondly, there 1is the round-off
error caused by the limited number of digits stored by
the computer for each number. As the computer wused
includes 12 significant digits, no appreciable errors
were expacted from this source. Thirdly, there is the
residual error caused by the difference between the
exact solution to the finite difference equations and
the actual solution reached when iteration scheme is
stopped. Obviously if a large number of iteration
cycles were used this error could be reduced virtually
to zero but economy insists that the program be stopped

as soon as the residual error is reasonably small.

To facilitate numer ical computation, the
governing equations are, out of necessity, to Dbe
trans formed into finite difference form. A mixed

forward, backward and central difference scheme 1is used
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to minimize the secondary restrictions at the expense
of nonuniformity of the order of errors. The reference

to the grid schemes is shown in Figure 3.1.

3.2.1 Wave Kinematics and Bcundary Conditions

The wave number and wave angle are solved
through numerical iterations of wave number
conservation equation and wave number irrotational
equation. In other words, for given spatial
distribution of U, V and h, Egquations (3.2) and (3.3)
enable us to compute k and € in the wave region
provided the boundary condition is specified. The wave

number conservation eguation becomes

Yo
(Ski.j taah (Ki; h:.j)] + Ui Kijcese:; +

Vij KijSind3y) = —2_;—1- (3.5)

which is solved through a Newtonian iterative technique

defined as

- ko]d _ ‘F‘(kold) (3.4)

Kaew +'(Kota)

where f'(k) is the first derivative of £(k) which is
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defined

‘F(k)’——‘“gktanhkh—[%" Ukcoje‘Vksme] (3.7)

The iteration is considered to satisfy the relaxation
criteria

l Kaew = Kold [ £ o.00l ] Kk new| (3.8)
The wvalue kX 1is then fed into the wave number
irrotational equation to solve the wave angle.

Expanding Equation (3.3) yields

30 _ 1 ok . 99 u_a_,k_]__
: =2 -~ = +.$m.9[-—-—-+— e )
LOSQ[ o X K 9?1 DY kK oX
(3.9;
From Equation (3.2), %?%—, gg can be derived as
oKk .. [, 28 ‘s SU _ov
X ik'_a'i: (Usin® - Veosg) = K (tost 55 *5in0 35

9k*sech?kh ah
2({ 9k tanh kh) " oX

] — [ Ueos® + Vsin®

(3.10)

. 9(tanhkh + Khsech®kh) J

2(8ktanhkh ) “

oK

U LV
_J)';' - {K %’?‘ (Usin® -VWSG) - K (Ces® 5y +5n0 oy

SK'-’seCh2 Kh g_h_} _ {UCOSB +VsinB
2(gk tanhik h)% ©°Y

(3.11)

. —3ltanhkh ¢ kh sech? kh) }

2(gk tanh kh) %



50

However, Equation (3.9) really needs _l|: B S .

X K oY
which can be represented as follows:

_Lak=66(u:nGVooss)+_L oK
K oX 9 ¥ AA K 9
(3.12)
: Usin6 - Vo5 Y
-—-"—dk“aeL . )+Kay
k 9y oY AA
(343)
with
zkh
AA = Joos@ + Vsin@ T .‘}.’.{1.;, Sinh 2kh )
o~ V7 e
( % - (Jcos® - Vs.ne) (3.14)
and

(o~ = Uk cos@ = VIK s.‘ae)_ oh

1 IR K“" Cos9 + ""' S'"G) - sinh (2Kh) 9%
kK 93X AA
(3.15)
oV (O~ - UK cosB - Vi sing) oh
| oK "(—_ s + -_.y—s'ne)- Sinh (2Kkh) QY
< oy

AA
(3.16)
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Substituting (3.12) and (3.13) into (3.9), the

following final equation is arrived at

ii f s+ S-‘nG(US.‘nO*VcoSG)] . 28 [s:ne B r_osQlUs.‘ne-Vcose)]

AA e AA
L2k .. - 7 -
+ X “ae $in 6 K oy Cos © 0O (3.17)
Finite differencing the above equation by using a

forward difference in x and a backward difference in y,

and solving for 0;,;

\ 1 oK 1 oK
- — el e e — SN e i “!’
61 J B{,J { K oy 059-._, K 9N J
Cos 9., »
e;-‘;-i [ ) T e v ' 1 Y < v —
—— Su‘.e,‘. (JS--‘@., VCOJG.,)
ay ¥ AAij J JJ

Oivn.i . 4 SOLE (ygsags s = VeosBi;) ]
.—Z-x—-(coseau AA..J ( 1] ! ]J

(3.18)

where

B . e sinBi; _ _ces@iy  _ '
ird ay ax AAi

(uUsingy,; - Vc::.sg;“')

L]

CosB..) Sinéiy
+ -
[ == ) (3.19)
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AA .

;+;j 13 defined in equation (3.14).

L. 3K and - 2X sre defined in Equations (3.15) and
K 99X K oY
{3.18)% The computation is carried out to satisfy the

relaxation criteria

l enew - eold | é ©.co | l © rew l (3.20)

The boundary <ondition of © is specified at the
offshore boundary at the x-axis. The offshore boundary
value i3 the input. The condition of the x-axis could
be specified in such a manner that ©., = ©Oy2 without
introducing significant error if the longshore bottom

variation in the vicinity of the x—-axis is slow.

©@:; will not converge when B;,; approaches
zero. Using the null-current condition as a guide, one

arrives at the following condition:

Ay (3.21)
—— > tan Gm
aAx

where Om is the expected maximum wave angle. For

example, 1f the maximum wave angle is expected to be
Fla
less than 60°?, the ratio of —:5% should be larger than

| S
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The current and depth gradients required in the

computation are determined by central difference, i.e.,

9% . _Bwg— Bagd (3.22)
9 X 2axK

where & represents U, V or h and x, is either x or y.

3.2.2 Wave Dynamics and Boundary Condition

The energy transport Equation (3.4) can be

derived as the following form.

(U Cscose)'éé“'*(\/*CJSane) ¥

A aw(u*‘—35059)+3‘§ "‘/"i-CjSa'nG) +

oU sV V. E . .
Onx ox * O‘ny ey ¥ O‘)’x o X ¥ O“yy 4
MB - € ) — sk = 0 (3.23)

QX
oA
(U+Cjcose)—a—; + (V-%C‘jsme) *
A(-Q-uB - €) —uck =0 (3.23a)
here
e Q =“(%L‘:+%)+C3$m6—-g—(l059——c§—

9,
- Qjcose %;— — $ia0 *3% =
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B By} U OV oV
J = Du 55 ¥ Oy 55 O 50 0wy 5y

Finite differencing the above equation by using a
forward difference in x and a backward difference in vy,
it becomes

A=Al
ay

( @) +C3°°56) A'.“';;A;‘i + (V + C3 Sin@)

+ 1@:4 ("IQ:J =B ~ €8s )"licghj = 0
(3.24)

Rearranging Equation (3.24), A;,; can be represneted as

(V*Cgﬁna) (v *’Qﬂ‘-‘“ﬁ)
A — a.\‘y BEAZEE AY Aiu.j T DLi.j
B .
(v + Cgsind) (U +Cgc0s9)
4 - % -Q;,j-MB;'j—e;‘i
sy %

(3.25)
Here all the values of U, V, and O are evaluated at
(1:3):
Again, Equation (3.25) is solved through a row by row

relaxation until

| Anew - Aold | £ 0.001 | Anew | (3.26)

The boundary condition is also defined in a
similar manner in that the shoreward boundary is
specified as the input and the values on the x-axis 1is

taken the same as the next column ( A;,, = A,z ).
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On the shoreward direction, the wave will
eventually break. Under such conditions, the wave
breaking dissipation 1is more important than bottom
friction dissipation. In the present model, Equation

(2.51) will be chosen as the criterion.

3.3 Examples

A plane beach of parallel bottom contours, with
the distance of 25,000 m between the offshore boundary
and the shoreline, 1is shown in Figure 3.2. The
coordinates are chosen as x-axis toward offshore,
v-axis alongshore, and z-axis upward. To apply the
numerical scheme, along the positive x-axis, the domain
is divided into five sections, with &4x=5000 m, denoted
as location _l to 6, and along the positive y-axis, it
is divided into two sections, with Ay=5000 m, denoted
as location I to III. Three pressure gdauges are
installed at location 6II (boundary), location 5II, and
location 2II of which the water depth are 25 m, 20 m,

and 2 m, respectively.

There are three examples to be discussed: i)
energy flux conservation case, ii) bottom dissipation

case, 1ii) local wind generation case.
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3.3.1 Energy Flux Conservation Case

The energy flux conservation case considers no
energy generation or dissipation, i.e., EF;=O, in the
process of the wave spectral transformation. The wave
spectra at different locations are shown in Figures 3.3
and 3.4. Since the shoaling coefficient Ksh

(unaffected by refraction),

wave height in shallow water

K5h==

wave height in deep water

is less chan 1 when 0.06 <-%:< 0.5 and larger than 1

when %i < 0.06,(Le is the wave length in deep water),

the wave height will increase or decrease in shoaling
water depending on the range of -%: . In the example

given in Figure 3.3, the energy spectrum at location

5II is lower than the input spectrum (location 6II),

h
Le

because the value of of all the frequency
compoﬁents fall between 0.06 and 0.5. On the other
hand, the components of energy spectrum at location 2II
are lower than the inputs at low freguency but higher
than the inputs at high frequency. Figure 3.4 shows

the refraction effects in shoaling water. The

directional sensitivity is further examined in Figure
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3.5. It plots the percentage error Qf spectral density
of each frequency component for various approaching
angles that deviate from a designated mean wave angle.
It can be seen that error increases with increasing
wave period. More importantly, the approaching angle
plays a significant role in directional sensitivity.
For waves with small approaching angle (perpendicular
to the shoreline), the wave transformation is far less
sensitive to the wave angle variations than for waves
with large approaching angle (parallel to the
shoreline). Therefore, the energy spectrum is
dominated by frequency variations for small approaching
angle but by wave angle wvariations for large

approaching angle.

3.3.2 Bottom Dissipation Case

The bottom dissipation case concerns the energy
loss due to the bottom friction in the process of wave
spectral transformation. As shown in Figure 3.6, the
influence of bottom friction 1is quite limited at
location 5II because few wave components are affected
by the bottom. The difference between the wave
spectrum with bottom friction and the wave spectrum

without Dbottom friction is only a few percent for the
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low frequencies under consideration and these two
spectra practically overlap. However, in Figure 3.7,
the influence of the bottom friction is quite
significant at 1location 2II because most of the wave
components have already felt the Dbottom. It is
reasonable that the bottom dissipation effect for long
wave is more significant than that for short wave in
shallow water because 1long wave feels the bottom

earlier than short wave.

3.3.3 Local Wind Generation Case

The local- wind generation case deals with the
energy generation in the process of wave spectral
transformation. Considering no energy input at the
boundary, the steady local wind generates waves in a
closed region. As shown in Figure 3.8, the local wind
wave spectrum at location 5II still stays at high
frequency, whereas, with increasing fetch, not only the
local wind wave spectrum at location 2II increases
singificantly but its spectral peak shifts toward the
lower frequency. Hasselmann et al. (1973) in the
JONSWAP measurements which traced the development of
the wave spectrum with increasing fetch under

conditions of steady offshore winds illustrate this
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phenomenon. Since the Kitaigorodskii's shallow water
equilibrium energy criteria ,open at one end, can only
handle the wave breaking for a specific range, the
criteria for the breaking of the long wave components
needs to. be restricted by the depth-limited wave
condition. The comparison of the 1local wind wave
spectrum at location 5II and Jlocation 2II with P-M
spectrum 1is shown in Figure 3.9. The result at
location 5II is fair because the eﬁergy spectrum of
that particular location hasn't been fully developed
yet. The result at location 2I1 is also fair because

the P-M spectrum is only valid in deep water.
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CHAPTER 4
NUMERICAL SCHEME OF

NCN-STATIONARY WAVE SPECTRAL TRANSFORMATION

In the previous chapter, the numerical scheme
for the stationary wave spectral transformation was
developed. For the case of non-stationary wave
spectral transformation, the problem is nore
complicated because  the kinematic and dynamic
characteristics chance with time. This chapter extends
the model to unsteady state case when the offshore
boundary condition. and the local wind effect in the
domain of consideration are no longer stationary. This
is a common situation when a hurricane or storm sweeps

through offshore of a coastal region.
4.1 Rasic Equations for Non-Stationary Wave Spectral
Transformaticn

Basic equations for non-stationary wave
spectral transformation have been developed in chapter

2. They are repeated here:

68
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i) Wave Conservation Equation:

—

ot

ii) Wave Number Conservation Equation:

(9ktanhkh) %+ Ukecesd + Viksind= ==

(4.2)
iii) wWave Number Irrotational Equation:
39 ( ‘ )
O(Kcos®)  o(ksinB) _ o (4.3)
QY 9 X
iv) Energy Transport Eqguation:
3 A ) I v o)
S5+ o (Awtegwse)] + 35 (A (Wiggsing]
A SAY) oV A
T O 5y TSy Sy tSyx Sx TSy oy
3
= 2 & (4.4)
where
3
26 =G, + G+ Gy

ey

M (bt gAa) + @

o i3 Phillips resonant mechanism Eq. (2.30)
3 i3 Miles instability mechanism Eg. (2.39)

AL 13 breaking coefficient
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@ is bottom dissipation Eq. (2.44)

4.2 Method of Solution

The numerical scheme described in the previous
chapter can not be easily extended to the non-statioary
case because the nature of the differential equations
changed significiantly with the addition of the

uns teady tecm-ﬁi). An entirely new numerical scheme

ot

has to be developed.

4.2.1 Two-3tep Lax-Wendroff Scheme

The Einite difference scheme for
initiai-boundary wvalue problems can be classified into
two categories: one is implicit method and the other
i3 explicit method. Although the implicit method
ensures unconditional stability criteria, it uasually
involves 1lengthy computations due to matrix inverse.
Therefor=s, an explicit method is explored here. The
two-step Lax-Wendroff scheme, i.e., the first half step
i3 Lax-Friedrichs scheme and the second half step 1is
leap-frog scheme, was used. The reasons for selecting
this scheme are that (l) it is second order accurate,

and ralatively Low in dissipation; (2) it is
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single-leveled and easy to apply; and (3) it is widely
used by fluid dynamicists and hence it would be

desirable to understand fully.

Before applying the actual problem posed above,
the numerical scheme is explained £first with the
application to an initial-boundary value problem which
has the similar characteristics as the actual problems
but with exact solution. In this way, the validity of
the numerical scheme can be established. The stability

criteria was then examined.

The example, with a non-constant coefficient
and non-homogeneous term, is shown as follows.

Governing Equation ( G.E.):

JU 2% -3 U _ _ (X" U “4s)

Initial Condition ( I.C. ):

U (x,0) = x / 59162

Boundary Conditions ( B.C ):

Uu(o,t) =0
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U(35,t) =35 / (59162 + t)

Then the exact solution is

U(x,t) = x / (69162 + t) | 4.6 )

Let's dafine the coefficients as

2x=nt
(Y; = —

a, £ 67162 + t

v i
% =
g Ly % 69162 +t
Equation (4.5) becomes
o U ° o w f
= + Q,(x,¢) 5% ag()(',‘f.)J k47)

According te the two-step Lax-Wendroff scheme, the
difference equation of Eguation (4.7) becomes

i) Lax-Friedrizhs' Scheme: modified forward

difference.
n \ n-i - n-| el ‘.n-l
- . — ~ ] U! ""(..‘l—
U| 2(.\)--“ 4+ Uiay ) + Q.(x,t}l' ( 4 ')
At 2ax
n=1 n -
= = Q) t); Ui W)
ii) Leap-Frog Scheme: three time level.
i (L"T U e ) non
N - N " kil sl =
Y + Q,(x.t); =-0G, xt); Uy
2at 248%

(4.9)
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wher e
the subscript i, j represent the discritization of
x-axis and y-axis,
the superscript n represents the discritization in
time axis.
3ing a time step At/2 instead of At in the first two
half s3teps, the accuracy of the first calculation has
been improved. The computation procedures are

illustrated schematically in Figure 4.1 and 4.2.

4,2.2 Stability Analysis

Richtmyer and Morton (1967) showad that the

well-known Lax Equivalence Theorem is

"For a weall-posed initial-value problem for
linear differential equations, and for a consistent
difference approximation, stability i3 necessary and

sufficient for convergence."

In other words, to show 3stability analysis i3

to show convergence.

4.2.2.1 Homogeneous Eguation
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time level n-1 n n+1

time 0 1/2 at At

Lax=Friedrichs

Leap-Frog

Figure 4.1 Initial Lax-Friedrichs and the First Leap-Frog
Scheme Solution Steps
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time level n-1 n n+1 n+2

time 0 1/2at at 24t 3at

! l ) }

L

l.eap—Frog

| |

Leap—-Frog

| |

Leap—-Frog

Figure 4.2 General Leap-Frog Solution Scheme



76

The homogeneous equation for Equation (4.7) is

o oU _ (4.10)
ot % + QX)) 5y 0 10

The stability criteria can be found as

At ] <
a, 1) 2= &1
or
A X
< (4.11)
at & | Q. (x,t)

If a,(x,t) is constant, the stability criteria will
vary with Ax only and follow the Equation (4.11).
Whereas, a,(x,t) is not a constant, the time step At
actually used is much less than that given by the above

criteria.

4.2.2.2 Mon-Homogeneous Equation

The stability criteria for the non-homogeneous
equation has to meet the following condition, one
condition is the same as that of homogeneous equation,

i a@a;

A X
Q.lx,t)

At £ |
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the other condition is
Q,(x.t)at | < | (4.12)

The domain of the problem, with distance of 35 along
the x-axis, is divided into five sections, denoted as
location 1 to 6. By using At equal to 84 and Ax equal
to 7, the comparison between the exact and the
approximate solution from location 2 to 5 are shown in
Figure 4.3. It seems that the approximate solution
becomes unstable after a few time steps. The reason is
due to the time level of the non-homogeneous term in
Leap-Frog Scheme. By using (n-1)th time level instead
cf nth time 1level for the non-homogeneous term, the
problem will be handled. FEquation (4.9) is rewritten

as follows:

n-1l

n+l n=| _“ - ,n n=\
U.. _U; n ‘.U.-n U"')=—-O,(x.t); U;

+ a;(kat)’
2at ' 24x

(4.13)

The new results are shown in Figure 4.4 and agree
reasonably well. Thus the effectiveness of the
numerical scheme for solving a transient problem is

demonstrated.
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4.2.3 Numerical Dissipation and Dispersion Analysis

It is well known that numerical schemes
introduce numerical dissipation and dispersion, in
roughly the same way as physical dissipation and
dispersion occur in phenomena of fiuid flow.
Dissipation means the damping of Fourier components or
plane waves. Dispersion means the propagation of plane

waves of different components at different speeds c.

For the case of one dimensional shallow water
wave in uniform depth and =zero current, the wave
conservation equation and the energy transport eqution

can be written as

9K, ¢ B, L (4.14)
3t 3 X
3t | * o (4.15)

Both equations are wave equations representing a wave
of form Xk or A propagating without change cf shape at
speed ¢ in the positive x direction. To illustrate the
effect of numerical dissipation and dispersion, an

example, with a function £ representing k and A in
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Equations (4.14) and (4.15), 1is shown as follows:.

Governing Equations (G.E.):

oF of _ (4.16)
s, W po @,

ot
Initial Condition (I.C.}:

f(x,0) =0

Boundary Condition (B.C.):

O t<o
-F-(O,t)=( 2+ c $t42
4-t ‘zﬁﬁ<4

L (o) t 24

The exact solution is

(4.
£ (x-ct) s

which i3 recognized as having the wave character noted.
According to the two-step Lax-Wendroff scheme, the
difference equation of Equation (4.16) becomes

i) Lax-Friedrichs' Schemz:

R ) e I ar = iy
-Fl _2(’1:.1.: ‘F-—l) +C o4 ‘F.--I = 0 (4.'6:}
at 2ZAX%
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ii) Leap-Frog Scheme:

-C ntl _ -P'_n-l 'FH-? - F\'-nl
' tC =0 (4.19)
2at 2aXx

The comparison of exact and numerical solution for
at : . g

r(=C.z;)=l/2 is shown in Figure 4.5. It can be seen

that both the dissipation and dispersion effects are

more significant for At=1/2 than for At=1/4. A large

number of spurious oscillations near sharp transition

is due to the conservative scheme which will be

discussed later.

To illustrate the dissipation and dispersion
effects of the Lax-Friedrichs scheme and ﬁhe Leap-Frog
scheme, the amplification factors for the two schemes
need to be found. By using the Von Neumann method, a

funtion can be repcesented by a finite Fouries series.

g yn ZER ()

£7=2 Fllye®

(4 20)

wher 2
1 represents the wave component,

L i3 wave length,
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Exoct Solution

1
= — — (ae= 5 )
8.00 r t=4 Numuaricol Solution 2
T (at= 3‘1— )
2.00 F
-N
l‘ .
fix,t) ’ ‘\
- j I, - A{\\
1 - L5
R\
e
‘\
N R
0 o l '1:.:.“ * v~ ¥.00 9.00 10.0C
x/c
400 b
Exact Sclution 1
t=8 o ——— (ot = 3)
.00 Numaerical Solution i
g tat = 2)
2.00
fix,t)
i.0m0
=
0.00 o 10.00
.00 &
Figure 4.5 Comparison of Exact and Numerical Solution

for r=1/2



84

j_* = .1-—[ -
Substuting Equation (4.20) into Equation (4.18),

respectively, one can obtain

R =co vy BRE o 2Rk 5 X2
n n-l | s (ld\') prcidcol - P
£, = F e 7T { cos Tor ""5"'.-,“‘}
2=—00
(2.21)
and
23R n
'F"'” ~i¥2rsin — a¥ | F
F°
) | 0 F
(4.22)
where r=C_ % . The amplification factors Eor
Lax-Friedrichs' scheme and l=zap-frog scheme become
2R2 . 2n R
RA = (os t aX -1 %r sin » ax (4.23)

and

v
2 2R R AX) 2

RA = -i+*rsin 2z-? ax t (!" r#sin

(4.24)



85

Then the amplitudes |RA| for the two schemes are given

respectively by

2 2RE

I

[?A' ( |- Ct=r2) S'n AX')Z" (4.26)

and

I

| RA I (4.2¢)

The phase angles ¢, for the two schemes can Dbe shown

respectively as:

CPN' = ta_n ! (I" tO-l"l 2E£ &YJ (4’27)
and
27K
o | rsin
Py = tan L (£.28)

([-7‘23"’12 23‘26){)&

Then the dispersion effect can be shown as

C Num _ (‘DN’

- T ex {\4.2?>
Cexa e
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where m= represents the number of samples per

wave length.

The dissipation and dispersion for the
Lax-Friedrichs scheme and leap-frog scheme are shown in
Figures 4.6 and 4.7, respectively. It can be seen that
both dissipation and dispersion effects are more
significant for short wave than 1long wave. The
Lax-Friedrichs scheme is dissipative and dispersive,
while the leap-frog scheme is non-dissipative, or

conservative and dispersive.

4.3 Numerical Analysis for Wave Conservation Equation

Wave conservation equaticn 1is a homogeneous
equation which can use the two-step Lax-Wendroff
scheme. However, it can't be solved singly because it
contains angular frequency 06, wave number k, and wave
direction 8. The wave kinematic equation including
wave conservation equation, wave number conservation
equation, and wave number irrotational equation have to

be solved simultaneously.

4.3.1 Numerical Procedures
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120

1.42%

1RAI
Exact Solution
i1.000 ¢ r=1]
,_-—'—'_'—'_'-“___‘-_“
"=
o573 |
wl
2
G ¢
r=a
%0 0.00 10.00 20,00 £3.00 * 40,00 :n.m
m
4.2m
--1.
=3
=1
sazs }  "T2
=§
"=
C num
Cexa 30 | r=1 m——
Exact Solution
073
L 0.00 ’ W 2000 ; .00 ! «'J.w ; :::.m
m
Figure 4.6 Dissipation and Dispersion for the

Lax-Friedrichs Scheme
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1.2%0
1429
LA Exact Solution
1000 | r=]1
l'ui
I“-%
o673 %
r=
M L " L " " e L X i
0 = 10.00 .00 $0.00 <0.00 50.00
m
1.2
1.429 |
€ num
C axa Exact Solution
1.000 f r=1 -
r:i‘//——;
I'=%
0.473 "=i
" " 2 A L L " L " )
873 0.00 40.00 0.00 20.00 40.00 50.00
m

Figure 4.7

Dissipation and Dispersion for the
Leap-Frog Scheme
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To solve it algebraically, the vector form of
wave conservation equation has to be decomposed into
two scalar forms, one in x-direction and the other in
y-direction. If the wave direction & measured from the
positive x-axis 1in a counterclockwise direction,

Equation (4.1) becomes

o (Kews@) I
x-direction St + ey I 0 (4 30)
y-direction o (KsinB) 2 O 4.3
ot oYy

The other two wave kinematic equations remain to be:

(3kt‘an’nkh)y2+ UKeos d + VKseinB = "'2.-“{'.{'1" {(4.2)

and
dlkwsp)  _d(KksinB) _ , (4.3)
oY R
For given spatial distribution of U, V, and h; o , Kk,

and @ can be obtained by solving Equaticns (4.30),
(4.31), (4.2) and (4.3) simultaneously with specified
initial and boundary conditions. Using the two-step

Lax~-Wendroff scheme.
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i) Lax-Friedrichs' Scheme

n | n-| = n-) n=
(I(«:os!a‘)l.’j -;[(kwsa%ﬂ_‘. +tkwss);,,,5]+ Onen g = iag -
At 24X
(4.32)
a4 n-i " " = n =
(Ksn8)i,; =5 ((ksin®d; 5y, (ks:ne):’;_i]‘* Oiiw = O
At | 2qy
(4.33)
ii) Leap~-Frog Scheme
r n+} n=\ “ n
~ ((wse)l‘;i. -(kbose);l; o‘l“rlh“ —D‘;‘—ih; -
t =0 (4.34)
24t 24X
. a4l . n-| n n
(Ksin @),y - (KsmBdi; g Blin TRL L, (4036)
2at 248
4.3.2 Stability Analysis
According to the stability analysis fae

homogeneous equation, the stability criteria for the

present difference equation is

fi-{-fi&]
Pty oy

or

At £ ax 4ay (.36 )
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Because the coefficient is a constant, the time step At

obeys the stability criterion as given by Eq. (4.20).

4.3.3 Initial Condition and Boundary Conditions

To solve the wave conservation equation, it 1is
necessary to choose suitable initial conditicn in the
domain and boundary conditions at ©boundaries. The
initial condition c¢an Dbe decided by either angular
frequency or wave number and wave angle. Based on the

steady state assumption, the angular frequency does not

change with space. It is constant even &as the water
depth changes. Hence, the initial c¢ondition is
determined more conveniently by constant angular

frequency, which is invariant with space, than by the

wave number and wave angle, which varies with space.

As for the boundary conditions, the variation
of +the wave energy has an effect on the offshore
boundary condition. In other words, the Xinematic
condition will wvary if the dynamic condition changes.
The rest of the boundary conditions, shore boundary and
side boundaries, need to be specified to carry out the
numerical scheme. At shore, no flow of water occurs

across the shoreline, thus the shore boundary doesn't
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vary with the changing dynamiz condition. The side
boundaries require that the longshore bottom variation

in the vincinty of both sides is slow.

4.4 Numerical Analysis for Energy Transport Equation

The enerqgy transport equation is a
non-homogeneous equation which i3 the same type as

Equation (4.7) except it is a two dimemsional equation.

4.4.1 Numerical Procedures

After expanding and rearranging, Equation (4.4)
arrives at
A A

9A A
=% t(utCgwse) 55+ (Vicgsin®) 5

(>
Al 2 (UG wsB) + o5 (VHG5in0) + Dux 3% +

>U o _
Ovux 22+ Ouyy 3L 4 Oy 2 - mp -e] -amo =0 (437)
or
9A -
e + (U+Cq msa) +Lv+cdme) ay (@+mBre)A +a0d
(4 .38)
wherea

o<
& = - (5 +3) +gysine 55 - wso 53

oV SV SV Vv
J=D‘-xx ‘_"; 1'0\,),3; D"Yr'é_x +O‘>’)’ 3y
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. Applying the two-step Lax-Wendroff scheme, the finite
difference form of Equation (4.38) is

i) Lax-Friedrichs' Scheme

n | =i - n -l n=t
Al.,_; - z (Al‘,a“fl -i. A l.,s-l + A l‘-i-l.; T A l“'..; ) +

st
n =l Nt
(U+ C\j 0059)::' (Aiw.: - Aa-l..l) +
24X
M=)
il Aia-l -
KV'*‘ CJ 50‘09);‘3 ( +) At 1= l)
228y
w=1 | n=|
= (@i + MBL; +€0; )AL + M) 43D

ii) Leap-Frog Scheme

(Afﬁ?; - A.‘.;:‘; )

24a%

A A

24t

+ (U+ Cy WSO);:

(A.‘, .‘HH - A, Jr-'-r )
248y

n
£ (VHCasin®)

n-j n- n-) i

(@ f:‘j-’ + MBy; +EL; )AL Aokl

(4.40)
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To avoid instabilities,, the non-homogeneous term has

to be put in (n-1) time level as shown in Equation

(4.40).

4,4.2 Stability Analysis

According to the stability analysis for
non-homogeneous equation, the stability criteria for
the present difference equation has to meet the

following two conditions:

i)

2 at

IU+C:]<.0591 ‘%;( + |V+C\35.'n9| Y < )
cr

ot o o Y (4.0

lu+t Cguse) |V + Cqsin® |

and
ii)

| (@+mp4e)at| < |
or

|
at < (4.42)

|l Q + MR ¢+ &

In general, the first condition can be stated in the

following manner : the speed of propagation of any
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disturbance in the model must be less than or equal ¢to
the speed it takes the disturbance to cross one
computational grid block in one computational time
step. The disturbance speed is in general the speed of
gravity wave plus the time-independent mean current.
Therefore, in shallow water, Equation (4.4l) can be

expressed approximately as

J (ax)24cay)?
(Ul + C

(443)

>
A

In general, the maximum magnitude of the wave
speed far exeeds the current speed, the stability

criteria can be expressed as

,.[_k.nx)‘-tu.y)“ \4.44)

Cmox

At

HA

which is a type of two dimensional Courant number.

As stated before, the time step actually wused
in the numerical model is much less than that given by
the criteria above due to the fact that the coefficient

i3 not a constant in Equation (4.41).
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4.4.3 Initial Condition and Boundary Conditions

It is necessary to specify the initial and
boundary conditions to solve energy transport equation.
Commonly, the initial condition falls in one of the two
types: one i3 for calm sea where the wave energy is3
equal to zero and the other is the fully developed sea

where the wave energy is saturated.

There are also two types of offshore boundary
conditions. The first type i3 an open boundary. It i3
a time varying boundary condition which is affected Dby
the offshore wave condition. In general, it 2an be
prescribed by a continuous variation of wave spectrum
at the offshore boundary. The second type i3 a closed
boundary which is not affected by the offshore wave
condition but self-adjusting. In order to apply the
numerical scheme, the shore boundary condition and the
side boundary conditions also need to be specified. At
the shoreline, the wave numbers are to be perpendicular
to the shoreline and the bottom slope to be finite.
The side boundaries are such that the bottom contours

are parallel outside the region of computation.

4.5 Application in Monochromatic Wave
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To examine the micro—mechanism of wave spectral
trans formation, the cases of a one-dimensional and
two-dimensional monochromatic wave are illustrated
here. The random wave model and the field data

comparison are dealt with in the next chapter.

In computing wave kinematics, the initial
condition is set at constant angular frequency over the
entire region of computation. Therefore, the boundary
conditions should also be specified in terms of angular
frequency. The offshore boundary condition can be
determined from a continous variation of wave spectrum
at the offshore boundary. The shore boundary doesn't
vary with changing the dynamic condition. In order to
proceed with the numerical s&heme, the boundary

conditions at both sides will be specified as follows:

o 0- o O~ :
+ R (4.45)
ot ~ Cj QY

In the energy transport equation, the steady
state wave spectral transformation i3 chosen as the
initial condition. Since only swell condition is

considered in this section, an open offshore boundary
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condition is used. The boundary condition at the
shoreline is assumed to be both no energy flux into the
shoreline and no reflection from the shoreline. The
boundary conditions at both sides need to be specified
because of the numerical procedure. They can be

expressed as follows:

9A A
+ s == (446)
e T 9y

'A schematic view of a two-dimensional case,
with horizontal dimensions 60 m by ISOIm and water
depth 1Iﬁ, iz shown in Figure 4.8. The coordinates are
chosen as x—-axis toward the offshore, y-axis
alongshore, and z-axis upward. To apply the numerical
scheme, the region is divided into five sections along
the positive x-axis, with Ax=20 m, denoted as location
1 to 6, and it is divided into four sections along the
positive y-axis, with Ay=15 m, denoted as location I to

V. The time step At=1 sec is used in all cases.

4.5.1 One-Dimensional Case
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In this 3ection, three different conditions
will be considered. The first case examines the wave
trans formation process when the wave at the offshore
boundary becomes increasingly shorter (a case of
diminishing wind). A monochromatic wave, with T=10 3ec
and H=0.lm, propagates along the negative x-axis. On
reaching the steady state, the frequency of the wave
component 3tays at 0.1 HZ no matter where the location
is. As shown in Figure 4.9, the three plots represent
the wave spectrum at location 6III (boundary), location
5III and 1location 2III, vespectively; the wave
spectrum of each plot denoted by t=0 sec is at steady
state. The wave at offshore boundary is then gradually
adjusted to generate a higher frequency wave component,
which increases frequency from £=0.10 HZ to £=0.15 .HZ,
within 60 seconds. When t=20 sec, the frequency of the
wave component at location 6III is higher than that of
the wave component at location 5III. However, the wave
component at location 2III is still at steady state.
It is due to the fact that the component at the
boundary has not arrived at location 5III and location
2III yet. As time elapses, this phenomenon occurs also
at both location 53III and location 2III. If the wave

component at the boundary becomes steady again, the
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wave component at other locations continues to change

until it reaches the new steady state.

The second case, 3hown in Figure‘ 4.10,
investigates the wave transformation for a shorter wave
with T=2.5 sec and H=0.08 m. Under the same condition
as 1in the first case, all the short wave components
will follow the same pattern as that of long wave
component except that the short wave component travels
slower than the long wave component within the same
time period. It 1is owing to the fact that the group
velocity of a short wave is smaller than that of a long
wave. The short wave component lags behind as the long

wave component moves ahead.

In contrast to the first two cases, the third
case investigates the wave transformation when the wave
at offshore boundary becomes longer with the short wave
component as the initial steady state condition. As
soon as the monochromatic wave, T=1l0 sec and H=0.1 m,
propagating along the negative x-axis, reaches steady
state, +the offshore wave i3 adjusted to lower
frequency, from f£=0.10 HZ to £=0.05 HZ within 60

sjeconds. This phenomenon i3 shown in Figure 4.11.
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4.5.2 Two-Dimensional Case

Three different cases are discussed in this
section. The first case illustrates when a
monochromatic wave, with T=10 sec and H=0.1 m,
propagates in the direction of 8=20"with respect to
negative x-axis. After the wave transformation reaches
its steady states, the wave at offshore boundary is then
adjusted to generate higher frequency component Erom
£=0.10 HZ to £=0.15 HZ and smaller wave angle within 60
seconds. The wvariation of enerqgy spectrum in
two-dimensions, as shown in Figure 4.12, is similar to
that in one-dimension. As time elapses, a3 shown in
Figure 4.13, the wave component approaching the center
line, i.e., @=0°, from right to left, occurs first at
boundary, then at location 5III and finally at location
2III. It is because the wave frequency, wave number
and wave angle are correlated during the non-stationary
process. The wave angle will change as the wave

frequency varies with time.

Figure 4.14 provides the second case with the
same condition as the first case except propagating in
the direction of 8=-20 with respect to the negative

X-axis. As time elapses, the wave component
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approaching the center line, from left to vight, is

opposite to the first case.

The third case with a situation just opposite
to the first case in that the wave at offshore boundary
i3 adjusted to generate lower frequency component from
£=0.10 HZ to £=0.05 HZ and larger wave angle within 60
seconds after the monochromatic wave has reached the
steady state. As shown in Figure 4.15, the evolution
of the energy spectrum in two-dimension is similar to
that in one-dimension. The variation of the wave
direction, moving away from the center line instead of

approaching it, is shown in Figure 4.16.
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CHAPTER 5
RANDOM WAVE MODEL FOR

NON-STATIONARY WAVE SPECTRAL TRANSFORMATION

In this chapter, discussion is focused on the
random wave model which consists of three sub-models :
1) swell wave model, 2) wind wave model, 3) hybrid wave
model. The field data comparison is also included. A
schematic view of ocean environment which is the same
as Figure 3.3 i3 illustrated in Figure 5.1. To apply
the numerical scheme, & x=5000m, Ay=5000m and &t=60

seconds are used in the three sub-models.

5.1 Swell Wave Model

The swell wave model, without the consideration
of local wind generation, computes wave transfromation
when the offshore boundary condition is unsteady. In
the example given here, Pierson - Moskowitz (P-M)
spectrum, a fully developed sea of the form,

1 g2 » jt:14
Apy = £ o 7 1) A
o

112
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where

oem %

i3 chosen as the 1initial condition. The offshore
boundary i3 treated as open boundary which is affected

by the offshore wind variation.

Two different offshore open boundary conditions
are illustrated: one for increasing wind speed, hence,
growing spectrum and the other for decreasing wind.
First, the Eecreasing wind case is examined. The
initial condition is established by inputting a wave
spectrum at offshore boundary (location 6II). This
spectrum corvesponds to a fully developed sea of 7
m/sec wind and a main direction 20 degree normal to the
shore. The steady state spectra at boundary (location
6II), location 5II and location 2II are denoted as t=0
min curves in Figure 5.2. The wave condition at the
offshore i3 then allowed to vary by diminishing the
wind speed from 7 m/sec to 4 m/sec in one hour at
constant rate with the spectral curves marked
successively as 20,40,60 (min) £from time O. The

corresponding wave conditions at location 5II and

location 2II for the successive times are as
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illustrated. The effact of non-stationary wave
trans formation is clearly revealed here. By comparing
spectra at boundary (location 6II) and at location 2II,
it can be seen that although the wave conditions
changed drastically at offszhore within one hour, the
waves in nearshore region were hardly affected during

this time period.

Figure 5.3 provides another example with a
situation just opposite to the previous one in that the
initial wind condition i3 4 m/sec and begins to pick up

in an hour at steady rate to a final speed of 7 m/sec.

Field data measured by Ijima (1958) is shown in

Figure 5.4 which illustrates the time change of wave

spactrum during a decreasing pariod of
typhoon-generacted s3swell. The =2f{fect that the wave
components disappear a3 wind speed decreases is

observed.

5.2 Wind Wave Model

The wind wave model 1s concerned with the
effect of local wind generation. A calm sea is chosen
as the 1initial condition with an opan ofEshore

boundary.
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The wind beginning to build up from O to 7
m/sec in the first half hour and then maintaining 7
m/sec for the second half hour, blows over a calm sea
in the direction perpendicular to the shoreline. As
shown in Figure 5.5, the spectral peak 3hifts toward
lower frequency with increasing time. This phenomenon

i3 consistent with the field observation in the ocean.

5.3 Hybrid Wave Model

Based on linear superposition, the swell wave
model and the wind wave model can be combined into a

hybrid wave model to predict the real ocean waves.

Here, the offshore wave condition is the same
as given 1in the first case of the swell wave model,
i.e.,waves at outer boundary diminish from a spectrum
corresponding to 7 m/sec wind to that of a 4 m/sec wind
in one hour. In the region of consideration, a local
wind of the same nature as given in the wind wave
model, i.2., wind begins to build up from 0 to 7 m/sec
in the first half hour and then maintains at 7 m/sec
for the second half hour, is also occurring
concurrently. The corresponding wave conditions at

location 5II and location 2II ar= shown in Figure 5.6.
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The spectra are now dual-peaked; the peak due go swell
shifts toward higher frequencies as the offshore wave
diminishes in strength whereas the peak corresponding
to local wind wave shifts towards the lower frequencies
as the local wind picks up. Eventunally, the wave
spectrum of the local wind wave will dominate the whole
wave spectcum. This phenomenon i3 very clearly shown

in Figure 5.7 from Long and Hasselmann (1979).

5.4 Comparison with the North Sea Field Data

Documented field data with sufficient
information for the purpose of comparing with the
present namerical model is scarca. The recent MARSEN I
experiment was conducted during the months of September
and October 1979. Waves were measured in shallow water
by a s3eries of wave gages as well as in deep water by a
number of pitch-and-roll buoys. It is an attempt to
understand the characteristics 6f wave 3pectral

transformation from deep to shallow water.

The experiments were performed 1in the German
Bight around the Island of Helgoland and Sylt. Figure
5.8 shows the locations of the nearshore site and

deepwater measurements in the MARSEN test region.
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Deepwater wave information was obtained from
the pitch-and-roll buoy maintained by Deutsches
Hydrographisches Institute of Germany. The shallow
water measurements by Wang et al. (1980) with emphasis
on surf zone characteristics were carried out at the
Island of Sylt. The distance between the
pitch-and-roll buoy and the nearshore site is

approximately 70 km.

Figure 5.9 shows the instrument arrangement in
the nearshore zone. The wave gauges at lccations 1225
m (approximately 1100 m from shoreline , 1225 m denotes
the distance in meter from a base line which is
approximate 100 m inland from shoreline), 940 m, 2and
225 m are bottom mounted echo-transceivers as developed
by Fuhrentholz Laboratcry. These echo sounders are
capable of measureing water surface variation to 0.5
cm for water depths up to 90 m. The shallow water
gauges are staff-mounted pressure transducers of type
MDS 76 as manufactured by H. Maihak AG, Hamburg with a
pressure range of 0 - 1 kg/cmz. The current meters are

COMEX electromagnetic two component type.

Data were taken with recording length of

approximately 20 minutes. Spectral analysis was
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performed using the FFT technique developed by Cooley
and Tukey (1965) with Hanning Window (Blackman and
Tukey, 1958) for data smocthing. All the data sets
were sampled uniformly at a time interval Ht=0.5 sec to
a total data point N=2048 or 1024. In order to
maintain good resolution, a degree of freedom DF=40 for
N=2048 and DF=20 for N=1024 was selected a3 the

optimum.

The mean water depth at location of
pitch~and-roll buoy and at location 1225 m are 23 m and
8 m, respectively. The wave data were 3till being
analyzed and sorted out. So far, we have indentified
only one set of data that marginally suitable fot the
present purpose {(simultaneous wave recordings with all
the necessary input information documented). The
results of this data set which was taken on Sept. 24,
1979 are reported here. First of all, the wind
condition of this particular day is shown in Figure
5.10. The wind speed variation was rather moderate for
the whole day somewhere around 8 -10 m/sec for the bulk
part of the day; the wind direction was from SWS
during 0 to 8 o'clock 1local time and then suddenly
shifted to N from 8 o'clock till midnight. Since the

wind direztion changes drastically at 8 o'clock, wind
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wave generated from that time meets the criteria of the

local wind model described above.

Wave data were collected at offshore location
from 8 o'clock at approximatly 2 hour interval. The
energy spectra and their corresponding directiocnal
information are given in Figure 5.11. Shallow water
waves were recorded at location 1225 m, during the same
period. A rough calculation indicated that the
dominant wave component ( ~~ 0.16HZ) would take
approximately 2 hours to travel from the cffshore site
to the nearshore zone. Thus, to predict wave condition
at the nearshore site, the input at offshore locaticn
should be chosen about 2 hours in advance. DBased upon
this approximation, deepwater waves at 12:14 pm were
used as input to compute the condition at location 1225
m at 14:00 pm. The bottom friction coefficient is
chosen as 0.01 because of the sandy bottom. The grid

system, with Ax=5000 m, Ay=5000 m and At=60 seconds

which used in the computation is shown in Figure 5.12.

The comparison of numerical results and field
data is shown in Figure 5.13 and Figure 5.14. The
contributions to the total energy spectrum from local

wind generation and swell transformation are indicated
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in Figure 5.13. As can be seen, for the specific case,
local wind waves were the major contributor. The swell
component while important to the peak energy was minor
as a whole. A majority of the wave components present
in the offshore region actually never arrived at the
nearshore zone. As we have stated eaflier, this set of
data 1is really marginal for verification purpose
because of this minor contribution due to swell

components.






CHAPTER 6

SUMMARY AND CONCLUSIONS

A mathematical model which can predict the
stationary ana non-stationary wave spectral
transformation in shallow water of irregular bottom has
been developed. The model contains the physical
dynamic processes which are conserved, such as wave
refraction and shoaling, as well as those which are not
conserved, such as wave -energy generation and
dissipation. The numerical results can be used to
guide further research in wave phenomenon of which very

little is known.

The theory of wave spectral transformation is
presented in Chapter 2. Instead of wusing the
parametrical method which was developed by Hasselmann
(1976), the theory is based on the physical method.
Both methods, physical and parametric, have their
relative advantages and limitations. The problem
becomes much more complicated when the shallow water

effect is to be considered. Several additional

135
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effects, such as wave shoaling, refraction and bottom
dissipation must be taken into account. Furthermore,
the non-linear wave-wave interactions become
increasingly important in shallow water. The physical
method includes the former effects but excludes the
latter effect, whereas, the parametrical method can
cnly handle the local wind fields which are
characterized by extremely large spatial and temporal
gradients. Based on the reasons specified above, the
physical method which can handle the time varying wind
condition in shallow water is chosen as the basis of
wave spectral transformation. The results are found to

be reasonable.

The tﬁeory consists of three kinematic
conditions, which handle the wave refraction , and one
dynamic condition, which controls the wave shoaling,
wave generation and wave dissipation. In the wave
generation, two mechanisms are considered: one is
Phillips' resonant mechanism which causes the initial
wave growth and the other is Miles' instability
mechanism which controls the major wave growth. In the
wave dissipation, there are also two mechanisms. The
bottom friction and wave breaking are chosen from

Hasselmann and Collins' derivation and Kitaigorodskii's
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shallow water equilibrium energy spectrum,

respectively.

The numerical scheme of stationary wave
spectral transformation is analyzed in Chapter 3.
Based on Noda's numerical procedures, the
non-hcmogeneous terms which are the effect of the wind
generation and bottom friction are also added to be
solved. Shoaling and refraction are well handled in
the model. In low fequency components, the influence
of the bottom friction is found to be important in
shallow water since the long wave component has already
felt the bottom. However, in high frequency
components, enerqgy generation or transfer are nmore
important than the bottom friction. In the steady
local wind generation, the short wave component exceeds
the maximum wave steepness and follow the breaking
criterion of Kitaigorodskii's shallow water eguilibrium
~energy spectrum. Whereas the long wave component has
not reached the maximum wave steepness and continues to
grow until the total energy spectrum reaches the

depth-limited wave condition.

The numerical scheme of non-stationary wave

spectral transformation is analyzed in chapter 4. The
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problem is solved by using the two-step Lax-Wendroff
scheme. Numerical verification is based on an example
which has the same type as the energy transport
equation. The exact solution and the approximate
solution agree very well (no more than 2%). | It shows
that the present numerical séheme can handle both
transient equations (one is the wave conservation
equation and the other is the energy transport
equation). The characteristics of the wave spectral
transformation, in which the wvariation of wave
component at the boundary affects far locations, are
shown in the example of monochromatic wave in one and
two dimensions. The effect which the propagation
vélocity of long wave is faster than that of short wave

is clearly revealed.

Based on the linear assumption, the random wave
model for non-stationary wave spectral transformation
is discussed in Chapter 5. The problem is handled by
developing three separate models; 1) swell wave model
handles the offshore wind variation without local wind
generation, 2) wind wave model handles the local wind
generation, 3) hybrid wave model linearly combines the
swell wave model and wind wave model to predict a real

ocean wind waves. The numerical results show
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reasonably agreement with the North Sea field data
except the wave components at high and low frequency.
This is 1likely to be a consequence of the non-linear

wave-wave interactions which is not considered in this

model and of the assumed constancy of the
Kitaigorodskii's " B " constant for the equilibrium
condition.

Wave spectral transformation in shallow water
is important for the study of analyzing and predicting
wave conditions in nearshore zone due to hurricanes or
storms sweeping through offshore region. In the
present model, only the linear problem 1is considered.
Ideally, the non-linear wave-wave interaction terms
should be includedé. But, it has not been done so for
two practical reasons as follows:

1) Lack of suitgble model. Phillips (1960) made the
first investigation of nonlinear resonant interactions
among particular groups of wave components.
Hasselmann, in a series of three papers (1962,1963a and
1963b) studied the rate of energy exchange in a random
wave field. He assumed that the probability density
distribution of the surface displacement is normal and
calculated the net rate of energy exchange from one

wave to its wave components in the resonant tetrad.
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Unfortunately, the results he got are neither
mathematically smooth nor stable. Barnett (1968)
modified Hasselmann's parameterized function in a
manner that will increase the calculation speed but the
result 1is only an approximation. Based on the narrow
band spectrum, Longuet-Higgins (1976) and Fox (1976)
applied the evolution of wave packets 1in three
dimensions to the Hasselmann's resonant energy transfer
result. The simplification improved calculation speed
and stability. All the above studies are restricted to
deepwater  waves. Herterich and Hass2lmann (1980)
modified Longuet-Higgins results for the computation of
the rate of wave energy transfer in finite depth water
for a narrow band spectrum. However, their results
cannot be applied to shallow water areas where the kh
value is between 0.3 and 0.7. Resio (1981) modified
Hasselmann's(1976) parameterized function to be a new
parameterization. The result is still not applicable
because it is restricted to deepwater waves.

2) Lengthy computation. The numerical program would
have become unwieldily complicated at this stage that

would submerge us in numerical manipulation.

Actually, it 1is a drawback to omit the

non-linear wave-wave interaction terms which by many
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researchers are regarded as an important parameter in
shallow water. Therefore, a more extensive study
should account for the effects of non-linear wave-wave

interations.
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