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ABSTRACT

This . report represents a study of the
equations governing the propagation of weakly nonl}near
waves in regions where currents exist and where the'ﬁepth
and current are allowed to vary. After deriving a velocity
potential applicable to propagating surface waves according
to the Stokes expansion, the Lagrangian governing wave
motion in the propagation space 1is derived. A consistent
perturbation scheme then leads to the equations governing
the wave and current motion at each order in the Stokes

series.

After neglecting time dependence of the wave
amplitude, parabolic equations governing the 'combined
refraction and diffraction of Stokes waves of small
amplitude are developed and used to calculate the wavefields
for several representative cases illustrating the importance
of nonlinear effects. The computational models are verified
by comparison to laboratory data of wave amplitude for a

wavefield focussed by a submerged shoal, and it 1is found

ix



that the nonlinear model accounts for the major
discrepancies found between linear model results and the

laboratory data.



CHAPTER 1. INTRODUCTION

One of the central problems in the study of the
coastal surface wave environment is the prediction of the
transformation of waves as they propagate from the deep
ocean towards the shore. During this period of propagation,
the waves are subject to many of the physical effects
characteristic of general wave problems in many branches of
physics. First, the domain of propagation may in general be
in motion, due to the effect of tidal or other currents.
For the case of currents with scales of variation much
larger than the scale of the local wave, which may be
characterised by the wavelength, this effect may be
quantified locally in terms of a simple Galilean
transformation for waves of small amplitude, in which the
frequency of the wave oscillation is defined with respect to
the moving medium. Secondly, the propagation medium 1is, in
general, inhomogeneous. The inhomogeneity may arise locally
due to a smaller scale of variation of the ambient current,
and will be apparent over larger distances for any scale of

variation. Additionally, after the waves propagate into



water shallow enough so that the phase velocity of the wave
becomes a function of the local depth, the pattern of wave
propagation will be affected by the spatial variations of
depth. Each of these inhomogeneities can cause refractive
and diffractive effects, leading to the presence of caustics

and related characteristics of the wave field.

In addition to effects related to movement and
spatial inhomogeneity of the domain, the wave motion itself
is nonlinear, and thus the components of the wave field may
interact in both subtle and spectacular ways. The simplest
interaction involves the mutual interaction of the
components of a single wave, discussed by Phillips (1960),
leading to the effect of amplitude dispersion, in which the
phase speed of the wave is increased as a function of its
local amplitude. 1In addition, separate wave trains, either
propagating colinearly or intersecting obliquely, may
exchange energy in a complex manner leading to gradual
shifts of the overall characteristics of the wave field.
The individual waves of the wave field may respond to the
interactions in an unstable manner, leading to amplitude
modulations which act over a small spatial scale and which

also effect the phase velocity of the individual components.

Wave and current motions are subject both to direct



viscous effects and to small scale turbulence which may be
modelled 1in analogy to viscosity. 1In general, the presence
of viscous effects causes the domain of propagation to be
dissipative, so that waves propagating over long distances
may lose a significant proportion of their energy content,
principally through interaction with the bottom. Viscosity,
as well as the rotation of the earth, also 1leads to
rotational current distributions. Finally, the wavefield is
subject to the action of applied surface shear stress due to
wind, and to spatial fluctuations in the applied atmospheric
pressure. The shear stress due to wind is important in the
scale of the relatively short surface waves, and leads to
surface drift currents as well as growth of the waves as

energy is transferred to the water column.

In order for an analytic model of wave propagation
to be successfully applicable over all propagation scales,
it must begin to address all of the effects 1listed above.
The general problem of water wave propagation is therefore
extremely complex, and progress in its study has necessarily
been made through the study of subsets of the general
problem applicable to problems of a more simplified nature.
A major simplification which still allows for a general
treatment of a wide range of the mentioned effects 1is the

neglect of viscosity and wind shear effects, leading to the



study of wave states which do not dissipate or increase in
energy. This simplification leads to the ability to study a
subset of the governing equations applicable to
incompressible and inviscid flows. The further assumption
of irrotationality allows the entire £fluid flow to be
described by a velocity potential. It should be noted that
the assumption of irrotationality, especially with regard to
the large scale current, is strictly invalid in most
physical cases, and it would be desirable to obtain an
estimate of the error incurred by the neglect of this effect
in any given case. In this study, the assumption of
irrotationality will be included. The remaining subset of
the problem still allows for the study of propagation of
nonlinear waves through an inhomogeneous, moving domain,
which 1is the problem investigated here. The governing
differential equations and a corresponding variational
principle for inviscid and irrotational flow are discussed
in Chapter 2, along with the scales of variation to be
studied and the small parameter expansion of the independent

variables.

In most instances to date, the problems of nonlinear
wave-wave interaction and refraction- diffraction have been
studied as separate entities. After linearization of the

free surface boundary conditions, the sea state may be



characterized as the spectral sum of individual,
non-interacting linear components, with the consequence that
the propagation characteristics of each component may be
calculated separately. As a consequence, much of the work
on wave-current interaction and refraction -diffraction has
centered on the study of single component wave systems,
where the time dependence may be characterised entirely in
terms of the absolute wave frequency within a stationary
reference frame. Further, the problems of refraction and
diffraction have historically been considered separately and
have been joined successfully only in the past decade. The
first method for studying surface wave refraction in an
arbitrarily varying domain was proposed by Obrien and
Mason(1940), and is referred to as the ray method. Rays, Or
orthogonals to the travelling wave crest, are traced
independently through the domain and are assumed to be
everywhere parallel to the local direction of wave
propagation. The local wave amplitude 1is then calculated
based on the assumption that energy does not cross the rays;
i.e., that the area between adjacent rays is a tube of
constant energy flux. Arthur (1950) extended the ray method
to include the effect of wave-current interaction, and
calculated the rays by means of Fermat's principle of least
time. Skovgaard, Jonsson and Bertelsen (1975) extended the

method to include the effect of wave-energy dissipation due



to bottom friction.

Keller (1958) showed that the refraction
approximation arises as the first, or geometric optics,
approximation in a WKB expansion of the governing equations,
after neglecting the effect of wave amplitude gradients
normal to the rays. The limitation of the approximation
became apparent in the case where one or more rays
intersect, leading to singularities in the wave amplitude.
These singularities, which arise along curves known as
caustics, necessitate the inclusion of diffraction effects,
by which energy is allowed to cross the geometric rays,
leading to uniform solutions in the neighborhood of the

singularity.

The combined effect of refraction and diffraction
was first studied in order to provide locally wvalid
solutions in the neighborhood of singularities of the
geometric optics approximation. Ludwig (1966) showed that
the linear wave field in the neighborhood of a caustic is
represented by Airy functions, which are sinusoidal in the
illuminated zone upwave of the caustic, decay exponentially
in the shadow zone, and are bounded over the entire domain.
The wave field in the vicinity of the cusp of a caustic has

been studied by Smith (1976a). The problem of



simultaneious refraction and diffraction in a domain with
depth inhomogeneities was successfully studied by Berkhoff

(1972) , who proposed an elliptic equation of the form

G leub)roiad-o W

which must be solved as a boundary value problem together

with appropriate boundary conditions. Here, W, C, and C%

are the absolute wave frequency, phase speed and group

velocity, respectively, and will be defined in Chapter 2.
A

The guantity @ is related to the three dimensional

potential function ¢' by

cb= % cosh k(h+z) e-—«iw?f (.2)

cosh kh

where k and h are the local wave number and water depth.
Radder (1979) showed that (l.l1l) could be transformed to a

Helmholtz equation by the scaling

Y = (cq, gt ¢ (1.3)

and developed a parabolic equation approximation for (1l.1)
for the case of nearly unidirectional wave propagation.
Smith and Sprinks (1975) derived (1.1) by means of Green's

identities applied to (1.2) , and found several higher order



terms proportional to the square and derivative of the
bottom slope; these terms will be discussed in Chapter 3.
Booij (1981), wusing a method based on a variational
principle, derived a time-dependent extension of (1.1)
including an ambient current; his equation can be written in

the slightly altered form

?

?_N

25 i o)l 9,

where U(x,y,t) is the horizontal ambient current, D/Dt is a
i~

total derivation following the current, and lh is related to

b by
be cosh k) & (:5)

e et

cosh kb

The frequency O 1is the frequency of oscillation relative
to the moving domain. Booij's model is reducible to (1l.1)
after neglecting the current U and assuming . purely harmonic
motion ($"t=0' where subscript t denotes the time
derivative). Booij further derived a parabolic equation
approximation to (1l.4). Equation (l1.4) neglects a small
term which appears in Booij's equation due to an error in

his derivation.

In the conclusion of his dissertation, Booij states



that the principle drawbacks to the model (1.4) include the
inability to model the nonlinear effects of amplitude
dispersion directly, and the restriction to a monochromatic
wave field. The second conclusion is not strictly true,
since allowing q& to be specified as a time dependent
quantity allows for the specification of a wave field with a
narrow spectral band width, as 1long as a carrier wave of
frequency ) is identifiable. This allowance is critical to
the study of nonlinear waves in the context of the nonlinear
Schrodinger equation, as discussed below. The first
conclusion 1is basic to the 1linearization of the problem.
Booij suggested several means for including the effect of
nonlinearity based on empirical modifications to the linear
dispersion relation suggested by Walker(1976) and Hedges
(1976); a similar modification based on the correct
nonlinear dispersion relation for Stokes waves will be
suggested in Chapter e However, the present study
emphasises the inclusion of nonlinearity in the problem
formulation and model equation from the outset, and such a
model equation involving a cubic nonlinearity is proposed in

Chapter 3.

The general hyperbolic wave model can be reduced to
a first order hyperbolic equation governing the evolution of

the amplitude envelope of a wavetrain propagating in a known
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(or assumed) direction by substituting the assumed form

a;: ~ Alxy,€) e"""’}/ (L&)

where ’? is a suitable phase function for plane waves, into
the second order model. The resulting evolution equation is
shown in Chapter 4 to be consistant with previous results
obtained using multiple scale expansions of the governing
equations. Equations of this type, based on extended forms
of the Schrodinger equation with a cubic nonlinearity, have
been shown to be useful in modelling effects in nonlinear
wavetrains ranging from predictions of the stability
characteristics of various solutions to the description of
the evolution of complex wave patterns in the presence of
currents and wind. A recent and comprehensive review of
this topic has been provided by Yuen and Lake(1982). The
correspondence between the first order evolution equations
and the second order hyperbolic wave equation described here
points out the possibility of modelling complex wave forms
with narrow spectral bandwidth, a possibility not fully

recognised by Booij.

The general study of waves in a time-dependent, two-
space- dimensional approach involves the use of complex

numerical schemes such as the ADI method. 1In this study, we
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restrict our attention to steady plane waves. Parabolic
approximations for Stokes waves with and without an imposed
current field are derived in Chapter 4 and used to
investigate a number of examples in Chapter 6. In
particular, a comparison between the data set of Berkhoff,
Booy and Radder(1982) and predictions of the nonlinear
parabolic approximation points out the wusefulness of the
method in providing estimates of the wave amplitude in
regions where ray crossing occurs 1in the refraction
approximation, where both diffraction and nonlinearity

become important.

In Chapter 5, the effect of higher order terms
involving the bottom slope on the prediction of the
wavelength of edge waves on steep bottoms and on the
prediction of reflection coefficients for waves passing over
an underwater slope are investigated using an elliptic

formulation for steady, linear waves.



CHAPTER 2. FORMULATION OF THE PROBLEM

2.1 Governing Equations

In this study, thé irrotational motion of an
inviscid fluid 1is considered. The effects of surface
tension are also neglected. The fluid domain is bounded
below by a rigid, stationary bottom and above by a free
surface, and is of infinite lateral extent unless otherwise
specified. A definition sketch of the coordinate system and
physical domain is given in Figure 2.1. The domain 1is
allowed to have an arbitrary, horizontally varying
two-dimensional distribution of ambient, quasi-steady
current, with the theoretical restriction that the ambient
current must also be irrotational. This restriction is
seldom satisfied in practice, although it is known that weak
rotationality does not effect the governing equations for
the geometric optics approximation, as shown by Mei(1982)
and others. The neglect of friction also restricts wus to
consideration of vertically uniform currents, which may be
considered in some cases to represent the depth average of

vertically non-uniform currents. It will be demonstrated

12
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below that the effect of friction may be included in an a
posteriori sense; however, it may not be conveniently

represented in the context of the present derivation.

The equation of motion appropriate to the given
assumptions is Laplace's equation in three dimensions for

the velocity potentialfb:

‘V?-C# = cil;qu—c{)?a + <:IaEa =0 —hoéa < 7 (z.:.f)

Here, x and y are the horizontal coordinates, z is directed
vertically upward from the still water sur face, ¥ 1is the
instantaneous free surface position, and h, is taken to be
the water depth in the absence of any motion. Subscripts x,
y, 2z and t will be taken to denote differentiation with
respect to the spatial coordinates and time, respectively.
Kinematic boundary conditions are prescribed for the bottom

and free surface and are given by

v, ¢V h = -9, ; & ch (2.1.2)

and

Te * V;,cf-v,,»? = ¢ ¥ ® (z.1.3)

]
~S
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Here,ﬁ& is a horizontal gradient operator given by
Y Al E(r’&x+F—“é'f’9'1

where .'-’i:x ,,g,'% » and £, are unit vectors in the spatial

directions. Fluid velocities are given by

w=v, ¢

Finally, a dynamic condition is given on the free surface by

the choice

P(x)%,{:)':o ; 2=»2

where p is the fluid pressure. Use of Bernoulli's equation

at the free surface then leads to the condition

d’ﬁ + %.(Vé)z +9g2 =0 3 E=7 (2.1.‘1’)

The irrotational motion of an inviscid fluid with wuniform
density and a free surface and no applied pressure forces or
surface tension is completely described by (2.1.1-4)
together with appropriate initial and boundary conditions,

which will be developed as needed.

The set of equations governing the fluid motion is
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nonlinear. In the present study, we will restrict our
attention to weakly nonlinear motions, leading to the
assumption that the motion can be adequately described by a
series expansion 1in powers of a small parameter, with
truncation after a small number of terms. However, rather
than expanding the governing equations (2.1.1-4) directly,
we proceed instead by using a yariational approach involving
a Lagrangian for the conservative motion. The Lagrangian
can then be shown to lead to the correct set of governing
equations after taking the arbitrary variations with respect

to the dependent parameters 4) and ? .

The following derivation includes the effect of
interaction between the wave motion and the ambient mean
current, and it is useful here to define several quantities
before proceeding. The ambient current U(x,y.t) will be
represented by the first term in the expansion for % , and
will be presumed to be O(l) with respect to the small
expansion parameters. Consideration of the 1linearised
problem for water waves in the presence of a current leads
to a leading order solution for the wave potential of the

form (see Dean and Dalrymple(1983), sec. 3.4.5).

¥
= -4 _A osh h+ (4 (2[ §)
¢ “VG cod b



a7

[
where q{ is the phase function, given by

4= Ry -t

The dispersion relation between the intrinsic, or relative,
frequency ¢ and the vector wavenumber'5=ﬂa‘+' is given by
w= o+ R-U (2.1.6)

|
where & is the absolute frequency given by - %% , and

o= (%k Lawh kh )Vz

The frequency C may be interpreted as the wave frequency
relative to a frame of reference moving with the local

current velocity U.



18

2.2 The Variational Principle and Derivation of Euler

Equations

A variational principle equivalent to the boundary

value problem given by (2.1.1-4) can be written as

=
'ijjr L‘ ( ¢>,¢%;5V1:# Jcﬁe*)?:)aLt dX =0 (?'2J>
Xt

!
where L is the Lagrangian governing the quantities qb and
7, tI and tl are two arbitrarily chosen values of time, and
X, given by

x= {X)l}]_ > Xdx*Yds (2.2.2)

is the horizontal position in the domain. Here the space
{z,t} may be considered to be the propagation space, and the
coordinate z may be considered to be the cross-space, in the

terminology of Hayes(1970). The form of L was given by

Luke (1967) as
L = { 43’{: + —é-(vd’)l*‘ cgez dz (2.2.3)

where the integration over z represents integration over the
cross- space, leading to a variational principle governing

motion in the coordinates of the propagation space. The



19

original problem (2.1.1-4) can be recovered by taking
variations of (2.2.3) with respect toc# and Q - see

whitham(1974), section 13.2 .

Whitham(1967) used the variational principle (2.2.3)
to derive the dispersion relation and conservation laws for
wave action, momentum and phase for weakly nonlinear Stokes
waves with slow amplitude modulation. The Lagrangian was

treated in an averaged form given by

cf(A)",L)=-z—§—r—[LaL'\{’ (2.2.4)

P
where A is the amplitude of the wave form. Variation ofoc

with respect to A yields the dispersion relation

Go k) + AH(nk)+ole) =0 (22)

ACAIERIE (w-—ﬁ",@)z/f‘}-

is the dispersion relation (2.1.6) for the 1linear problem.
Peregrine and Smith(1979) have investigated the effect of
the nonlinear contribution H(¢,k) on refraction 1in the

vicinity of caustics; this problem will be discussed in
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Chapter 6. Conservation laws are obtained from Jt through
variation of the phase function ﬁb and use of Noether's

theorem.

In the present study, the Lagrangian is wutilized in
its unaveraged, or primitive, form in order to obtain
equations governing the fast varying quantities ¢ and iz
directly; the resulting equations thus need no assumption
about the form of the phase function ﬁb. This method was
applied by Booij(1981l) to derive a time-dependent mild-slope
model equation for linear waves 1in the presence of a
current. Booij did not make use of a perturbation expansion
to order the terms in his Lagrangian; consequently, steady
terms appeared in the governing equation for the linearized
wave motion and were dropped a posteriori,. The present
study provides a consistant means for deriving the
linearized equation along with the higher order equations to
be discussed below. Some use will be made, however, of the
properties of Whitham's(1967) approach; in particular, it
will be argued that terms which vanish upon integration over
the phase do not contribute to the governing equation for
- the motion, since they can play no role in determining the
corresponding conservation 1laws in the manner employed by
Whitham(1967). However, in order to strengthen this

argument, it will be shown that the retention of these terms
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and proper treatment within the context of the perturbation
expansion leads merely to redundant conditions on the
dependent variables; this will be demonstrated by example

rather than proven conclusively.

The Lagrangian L is manipulated in order to obtain
equations governing the instantaneous motion of ¢? and !2,
in the form of an Euler equation for a; and ?2 and a
corresponding free surface boundary condition for Q . The
potential &;(z,t) is the portion of the potential describing
motion in the propagation space. After substitution of ¢

with known cross space structure into L and integration over

the depth, L is of the form

L= L(n,§, &, ,%%) (22.)

Variation of L with respect to Q yields the

condition
L'Z (S':Z) =0 (2.2.7)

which in turn yields the boundary condition for q after

using the arbitrariness of S}Z. Variation of L with respect
L4
1

to %, then leads to
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L"F (§$> + L$¢ Q(C’f;t) + LVh$ 5(%,4) =0

(2.2.¢)

which, after partial integration, leads to the Euler

equation
Ly - (Lg), ~%(Llgg) =W @29

where W may be interpreted as a virtual work term of
arbitrary form related to slow spatial and temporal
nonperiodicity, and may be used to include the effect of
energy dissipation. This step was taken by Booij(1981) to
add a term to the mild-slope equation representing the decay
of wave energy. Dalrymple, Kirby and Hwang(l1983) have
related Booij's term to several known results for wave
energy dissipation due to friction; in Chapter 6, the
formulation will be further extended to include the effect

of breaking due to depth limited motion.

Various investigators (see, for example, Jimenez and
Whitham (1976) and Ostrovskii and Pelinovskii(1972)) have
developed methods for including dissipation effects within

the wvariational scheme in a rigorous manner. The usual
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approach is to include a term $ W in a generalized Hamilton's

principle which may then be written as

g{([_.&éd}g -—//S'Wofggdtﬁo
L e X €

Variations then lead to the inclusion of terms which take on
the role of the term W in (2.2.9). These approaches have
been summarised recently by Jeffrey and Kawahara(l1982).
Since the added terms resulting from the rigorous approach
are of the same form as the arbitrarily added terms based on
the allowable nature of W, we will not go further into these

approaches in the present investigation.
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2.3 The Perturbation Scheme and Series Expansions

for 95 and 12.

Two perturbation scales will be wused in the
following derivation. The first is given by €& and is the
usual expansion parameter for the Stokes(1847) wave theory.
By nondimensionalising the governing equations with respect
to the wavenumber k, it can be shown that & is equal to the
wave steepness kA; here, we will retain dimensional forms
and employ € as a formal parameter. The velocity potential
and surface displacement are then given by an expansion in

powers of € corresponding to the results of Stokes' theory.

A second formal parameter Y is taken to be
proportional to the rates of spatial modulation of
quantities such as h, k, A, etc. This is equivalent to the
use of a multiple scale approach, in which a stretched
horizontal coordinate X ~ 9‘5 represents the length scale
over which variations of the slowly changing quantities are
felt. This formalism will enter the derivation through the
treatment of horizontal derivatives; for example, the

gradient of the depth can be written as

Vi h(5x) ~ Shy ~9, h(x) = 00

where the operator V, is then an 0(l) quantity in the
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stretched coordinate system, while the gradient of a
wavel ike quantity has both fast and slow variations and can
be expanded in the form

e

¢ $
v ; ~ ik + = o)+ o(s)
h ~ H
N 1 1
It is implied that the operatorﬁ?H operates on the amplitude
r~
of the functions d) and Q , while the O0(l1) derivative is

related to the gradient of the phase function ﬂ+ .

In the derivation to be presented in Chapter 3, it
will be assumed that the spatial variations of the depth h,
wavenumber k, ambient current U, and relative frequency O
may be characterised by a variation scale S of 0(g ) at the
largest. This choice is consistant with the approach of Chu
and Mei(1970a,b) who neglected the ambient current U ( and
hence the relative frequency { ). It will be shown that a
shift of scaling, with S taken to be of O(EEL), then
reproduces the mild slope formulation of such authors as

Berkhoff (1972) and Booij(1981).

In contrast to the relatively fast spatial
variations allowed by the choice of Kﬁ'é, we will restrict
time variations of the quantities h, k, U, and O to be

)
proportional to Of S ); this will have the effect of
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excluding time variations of the physical domain from the
derivations. This choice is consistant with an assumption
that the time dependence of the physical domain is related
to tidal variations at the fastest, and corresponds ( in a
multiple scale approach) to the choice of a stretched
coordinate t3 = 63t for variations other than those of the
principle wave. For example, if the incident wave is
characterised by a period of 10 seconds and a steepness
£ =0.1, then the slow variations in tg will occur over a

time scale of O( 20 hours ).

In the perturbation expansion schemes standardly
used for deriving nonlinear evolution equations ( see Davey
and Stewartson(1974), Chu and Mei(1970b), and Yue(1980) for
typical derivations related to Stokes waves in intermediate
water depth ), the modulation parameter § 1is typically
related directly to the Stokes expansion parameter €& , with
disparities in scale maintained by the wuse of multiple
scales in the propagation space. Then, the expansions
proceed in powers of the single parameter € . Here, the
parameter £ will not be related in size to the parameter &
until the point is reached where specific results for
certain choices of scale relations are derived. This
approach has certain specific advantages over the standard

single parameter approach, in that it does not become
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necessary to Fourier-expand the boundary value problems at
each order, since this need is a direct result of having
lumped the expansion parameters in the first place. Thus,
terms which are implicitly related to higher order in § at
a given order of & do not become explicitly tied to terms

at higher order in € .

In order to obtain the desired results for weakly
nonlinear waves, it is necessary to carry the calculation of
the Lagrangian L to 0(6’), based on expansions of ¢> and Q
to 0(&5. We will impose the restriction that the smallest
terms at each stage of the expansion have exponents of &
and § totalling four; thus terms in L of O(ez) must retain
terms to O Sz), while terms of O(Ev) retain no modulation
terms. This will have the effect of excluding slow
modulations, and thus any consideration of scale, from the
nonlinear terms found below. This restriction is consistant
with the theories of Chu and Mei(l970b) and subsequent
investigators, with the exception of Dysthe(l1979), who
includes the 1lowest order modulation effects in the

nonlinear contribution.

One drawback of the Lagrangian approach is that it
provides no information about the correct form of the

g ! .
expansions of cp and IZ to be wused, both in terms of
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consistency with the ordering parameters and in terms of the
structure of the solution in the cross-space; this has led
to several misunderstandings in the past. Whitham(1967)
assumed a one-dimensional (in x) expansion of #’ and Q

given by

f.JF‘ - éjtlo $I -, 617(20 3;?- + /55(-— Yt ('2.3.!0.)

n= e =+ ¢&n +b (2.3.1b)

where

o coshklher) sk 2kle) (53
o cosh kh YT sk kA

and where F, )/, and b are 0(61). The resulting
conservation equations were subsequently found to Dbe
inconsistant with multiple scale expansions based on
modulations of 0(2 )~0(& ), as shown first by ©Chu and
Mei (1970b) , and it was surmised that Whitham's theory was
basically incomplete. Whitham(1970) showed, by means of a
multiple scale expansion, that his results were consistant
with the modulation rate §~ 61: Finally, Yuen and
Lake (1975), for the case of deep water, showed that the

!
inclusion in Whitham's approach of the proper forms of ?
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and Q., consistent with a modulation rate §$~¢ , produced
results consistent with the multiple scale expansions. In
the present study, we extent the demonstration of
consistency between Whitham's approach and the multiple
scale expansions to the case of waves in intermediate water

depths, although the treatment of the Lagrangian is altered.

A consequence of the lack of ability to determine
the assumed forms of 4} and Q is that appropriate forms
must first be obtained by means of an expansion of the
governing equations. The solution, including the effect of
an 0(1) mean current U, is derived in Appendix A, following
the method outlined by Chu and Mei(1970a). The forms for ¢

and Y are given by

4;: S‘“'c#‘, + é{fw -—X-g(d;pcn""'(z :2""“‘3:)(;3)1 a;l

+€ZJ(2a $z ¥ ézghfql-’; - {Xo*ez% ]"f*"'
(2.23%)

and

rz-:_- b, + é?l -+ Ez(bz-‘- ?z_>+«-' (23.2b)

where the steady current potential is given by
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b, = & (%,6) + S, bs )

where
V4

470 - “quzé,’ - (ho-f'a)%ho-%qb:
-

(2.3.4b)

The quantities fli and :ﬁi are given by

j( = Re Cos;)f?(h-f-e)
! cosh keh

{n = R(h+2) sih k(h+2) — kb Hih b cosh k(hve)

sl coch
fis =f KCnee) (V] cuh £(hve) 2,253
-
R “Z’V"'{%(éﬂ , 427 Bk (210)

R 2k Aj;)‘ 2k

where h is the 0(l1) mean water level given by
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}7_' J')b'*'bo (2'3"?)

r~

The forms of the wavelike components of ¢7 and r2 are
essentially similar to those given by Chu and Mei(1970a) ,
with the exception that the absolute frequency W 1is

replaced everywhere by the relative frequency o .

Other terms included in (2.3.3) are bo and b:. p
which are slowly varying surface terms related to the
ambient mean water level and the wave-induced surface
fluctuation; ¢{', which is the potential for the O(GZW
wave-induced current, and h; and X; , which are Bernoulli

constants for the mean flow at each order.

In order to place the present derivation within the
context of the implied or explicit scaling assumptions of
various studies, a list of the various choices is given in

Table 2.1,
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CHAPTER 3. THE LAGRANGIAN AND EQUATIONS GOVERNING

WAVE MOTION

3.1 Introduction

The Lagrangian L governing the motion of waves with
imposed current field U(x,t) is constructed by substituting
the perturbation expansions (in the small parameter € ) for
4: and ¥ , given by (2.3.3), into (2.2.3) and performing the
integration over depth. The Lagrangian is then expanded as
a series in the small parameter &, yielding the expression

+ &L, +€L (3.3.1)

ES
L=L, + &L, +¢&L ¢

e B

Then, consistent with the restriction that the exponents of
€ and § total no more than four, we may restrict L, to
o}| Sl) and Lq to O(1) . L3 will not contribute any new
information, and may be truncated to 0(1) in § for
simplicity. Equations governing the various terms in ¢ may
then be obtained by varying the term Ll% by the member q%m
of the perturbation series for ¢ . Since the perturbation
method is somewhat unique, an example of 1its use 1in a

simpler problem is shown in Appendix B.

33
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3.2 The Lagrangian for Stokes Waves

The assumed forms for ¢ and Q are given by
(2.3.3), based on the derivation for the large current case
given in Appendix A. Individual contributions to the
Lagrangian are given by gz, d){: and VC#’ ; the subsequent
calculations are lengthy and are outlined in Appendix C.l.
The results may be written in the expanded form (3.1l.1); the

individual contributions are given by

Lo = gbs - gh +h{d, -%-m ) ] + E@9)" +

+h o4 0% (ud )] -G o (Fnd)t G

where h=h_+ b, and where 41 and b, are to be expanded in

the forms
4% * 4%/'r Sz 4%”

and

/ 3
and we assume that the time variation of ¢° is 0(8);
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= gboy . { &, +@EDT - 0T 4 (G (A5 4

where

and G', J', and H' symbolize integrals over the depth which

are evaluated where needed in Appendix Dj;

= qzl +qbulpeh) » &pDE bt cThmA

~ 1

+(?z+bz){¢:t +"L'7_Cv;: 41{)1_ Yb] o+ G';'oVo ézl_ +/2J‘I¥z’_"1 +

b wd) G L8, maNE

et ) (B hug )T @ (hm b
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= 62V (h, 4 V0 & - (b )G 5@ (B0 4')) ¢

{

"'{Goo *%éofjﬁké‘ﬁz}(%%)z ¥

3
JZ 4 5
1
24 Z. o

~
ZZ o] ol Jk} c# -
DlJt( ._.E:

f

¢ ) % (3.23)

£

~,L{V;,(Zoé (793) +(U;1 Z,DJJJ["’JL'J'L}'

g™

o 4
where 4l is also an integral expression evaluated in

Appendix D;

= 9n (b)) + i vud G -n] ¢

e~

D¢, w Yt 7" T\
+<7Z+El)b_é +6n 7;1-5—? + C’ao 7((‘7;‘-?) +

(2

ten N + A GG Gh v A b

+ 0 (s) (3.2.9)

and
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Ly = (peb) 4, +wd nd'- 0l +h@e)"

o

* ?’ [!21"'}’1'. i o {Z'Z: (7z+bz_) 6:.:# + 7;36:2- ; g'é *
{4 (b)) « £ Db v v TR

+ {G:: (;?14-(9:_) + C—.;*: 7}1?(@‘ . A#u% V;,CE'V;- C';l; +

~ 2
%Jf ol
j;_':- ""/‘i‘?v 714):6#2 i

{62 ek + €2y

+ A0 d G+ A"cvh;_&f ey (3.2.5)

The expressions for L, - Ly form the basis for the

perturbation method outlined in Appendix B.
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3.3 The Governing Equations

We proceed by determining the Euler equations for
each order in € , following the method outlined in Appendix
B. First, by varying L, with respect to b, , we obtain the

expression

3[’: * 4’; *%)z - Y, = 0+« O(57) (3.3.])

By requiring that b, vanish in the absence of a current, we
set Z°=0, Then, varying L, with respect to ¢g and
performing the partial integration over the propagation

space, we obtain the continuity equation
/
b, *+V-{hwd b= 0+ O(5*) (2.3.2)

By taking the horizontal gradient of (3.3.1), we

obtain a momentum equation for the 0(l) mean flow:

€, «(UV)YL + 9%k =0 (333)

' d
where § =% 4 . Recalling from (3.2.1) that b, and $, are to

3
be expanded in orders of S, and that-lﬂ*O(g ) for the zeroth

ot
order flow, we find that

Vo d(h+b)%4'] = 0 « O(s*) (3.39)

and



39

gb,,; = —L@d) + oY (3.3.5)

to leading order. All contributions to L, and L, involving
Yﬁ(hiﬁﬁﬁ may therefore be dropped. The contribution of
¢f’in L, is thus reduced to a small correction to the
operator D/Dt and the O(l) mean water level h, and enters
the overall equation in tandem with ¢{ . It should be noted
that in Lq, which is expanded only to Of ?’ ), the
contribution from b:’ and ¢;'in h and D'/Dt should be
dropped; however, retaining them introduces only a small
error. It is apparent from (3.3.4-5) that the current is
effectively steady to leading order, and the smallness of b;:

justifies the neglect of time derivatives of the f functions

in ¢J.

Moving to O(& ), we note that the average of L, over
the phase for any choice of temporally periodic function for

¢ vanishes; i.e.,
7
;C, = E%'j'L;a(ﬁb = Q
4]

Thus L, does not contribute in any significant way to the
governing and conservation equations, following the results
of Whitham(1967). As a test of this hypothesis, we need to
show that variations of L, produce only redundant

conditions on b, and ¢% 5 At O( &€ ), our lowest order
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~ /
unknowns are 71 and 4% , since we can assume that b, and 41
are specified by (3.3.1-2). Varying L, with respect to q,
"
gives (3.3.1l) again. Varying L, with respect to qﬁ after
3
dropping the 0(S$” ) contribution of H' and J' leads to the
condition
(8 <128 | =B (5.3.0)
o TAL G Oy w3
which 1is accurate due to our assumptions about the time

scale of variation of the current.

; 7 : A ;
Moving to O(€ ), we take variations of L, with

£~
respect to the still unknown quantities 'ql and (b The

' -
ql variation leads to the well known surface boundary

condition:

" NT
%}?f ¥ 6& .Q.é =0 (3'3'7)
Dt
S
where Gy'= 1. The variation with respect to qa and the

subsequent partial integration are tedious and are presented
in Appendix C.2. The resulting second order wave equation

i
for P, is given by

%‘Efl +(,- &) %ff’ -VL'{% G,.%Chf * %G'?;. ¢,

+r.}(o{-l—F'> EE = M (3'3"?)
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where F is a complicated coefficient given below and derived

in Appendix C.2. The term

oo B - e (3.3.9)

VeVe

is identical to the higher order terms found by Smith and

Sprinks (1975); however it is not the only correction at
kY

0(§ ) involving the bottom slope. The term F is given, for

the general case of currents and depth varying at 0($), by

Fo=-38 + (%) - R (psputps)

Yo, Voot + X oly ~ 2%, 4 fe

R ACTT T DR AN R ACEY LN Y
"R (o - o) .

where

F' & ,]S'V;.(kd'l) F1= k v, (2%)
k* K’

3= R% (Rz/q/gé) = kv, (kzo'fg")
F k#A ' {5 }Q‘*a"t

F‘ = kY, (szsg)/z.k’ (3.3.11)

e 18
are 0($ ) quantities, and
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/Sg = E%A /57 = Rvo
S LG

(3.3.12)

v
]
n
=~
tZ

are 0(y ) quantities appearing in products. The quantities
Xl' q. and & arise from integrals of the normal mode
structure; explicit values are given in Appendix D. The

term X can be expanded explicitly as

o =S Gh' + GhUR « 5k ~Vif S,%h + S9k] (33n)
and S!-— S; are also given in Appendix D.

Equation (3.3.8) is an equation for linear waves in
a domain with depth and currents which vary at o(§); as
such, it serves as the first higher order correction to
Bo0oij's(1981) model, which is essentially similar to.(3.3.8)

after neglecting F and oL .

Moving to L, , variation with respect to the unknown

second order free surface (bz '*71) yields (3.3.7) as a
~

redundant condition. Varying L, with respect to ¢1 yields a

second governing equation similar to (3.3.8); this equation
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can be shown to be satisfied at lowest order by waves
governed by the linear dispersion relationship (2.1.6), and

is therefore also a redundant condition.

Variation of Ly with respect to (Q1+bl) yields the

free surface condition,

! ! / w o~
%(sz+bz) -f-(i)z{: *thh’m‘h- - X?_ + 206, 7,_%%’,

u o s ~ I o~
+ A %—é?- + .g’ia!(vh ¢ )1 + _C_"; ¢, =0 (3.3.14)
t

which specifies the complete second order free surface. The
mean surface b, can be extracted from this expression by

taking the mean over a wave period. After substituting

(3.3.7), this operation results in

/ by, o~ 2 1 ~ I oo L
ab, + D& - X, = 26/ (D&} - umdT -0 & ()
Dt 4 \ Dt 2 2

Again, by requiring that b, vanish in the absence of waves,
l
we set 3;= 0. Then, varying Ly with respect to dh leads to

the expression

- (b ~Go {0 b)G4 T - G- fhud |-G (98 ]

- V14’7, &1 =0 | (3.3.16)
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Taking the mean over a wave period, (3.3.16) reduces to
/ R
DE,_-}- (v, &) b + v, (ha, &) = -V i %4} (3.3.17)
D

This 1is the continuity equation for the second order
/

wave-induced current V1¢1. Writing the R.H.S. of (3.3.15) as

B and eliminating b, from (3.3.15-17) leads to a forced

wave equation for the second order mean flow, given by

D' -w) D& v (454 = DB uy)B « 4 %[5 6]
D'f. h ~ D‘L D
(3.3.18)
This equation is equivalent in spirit to the forced wave
equation given by Davey and Stewartson (1974) after
including the effect of 0(l) currents; the connection will
—ﬂ"
be seen more clearly after substituting for B and V}'-(I?IV,',&')

based on plane wave approximations.

Variation of Ly with respect to #1 leads to the

governing equation
- Rt "] -G k) 2 1A
Vi {8 pu &t « 4598 v {408 v {8 k]

Pl

+,é2a’(‘bz 5 (3.3.H)

(3.3.16) and (3.3.19) may be combined by eliminating
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(Q1+b1)? the resulting equation governs the second order
potential &; . Equations (3.3.2), (3.3.7-8), (3.3.18) and
(3.3.19) represent the complete set of governing equations
for the Stokes wave train to 0(61), with modulation rates of

0(§~¢) allowed for all quantities with the exception of

time-variations of ¢°.
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3.4 The Mild Slope Approximation and Some Plane Wave

Results

Reduction of the previously derived models to the
case of very slowly varying ( O(Sl) ) currents and depth can
be obtained by truncating the equations to 0(%). This
removes the effects of the u& and 4{’from # , and leads to
the neglect of the coefficients F and & in (3.3.8). ( It
is noted that, in some instances, it may be desirable to
retain the fast modulation rate for the wave amplitude,
contained in the coefficients Fg and ﬁ; , due to the
influence of nonlinear effects.) The first order wave
equation becomes, after substituting for the coefficients

from Appendix D
Do ) B - [ ] v o -m & = M (3:41)

which 1is equivalent to Booij's model after neglecting an
g
0($) term which appears due to an error in Booij's free
y %
surface boundary condition. The terms at O(€ ) are

unaltered, since modulations were not considered at that

order.

Several expressions from section (3.3) may be cast

in more familiar form by introducing plane wave
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approximations for the terms Q: and :E , oObtained from
.
Appendix A. The term Vh-f?.ﬂ, cf:o;} may be reduced to the usual

expression for the wave-induced mass flux

Ve {07 d 1 = V(£ k) (34.2)

where

Z
= A A
E=da lal
In the absence of a mean current E, (3.3.17) becomes the

familiar continuity equation

b, +%-{hwd +Ek] -0 (5:4:3)

found originally by Whitham(1962) and Longuet-Higgins and

Stewart(1962). The extension to the case including a

current is given by

N
o

o~

Hv,,.{%g«,w,;@ '*%EZ:D (3.4.4)

il

which reflects the interaction between the mass flux of the
O0(l) current and the small correction to the total depth
given by bz.
In (3.3.18), the quantity E; may be estimated by the

plane wave approximation
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B = _%k = 348
2 suhy 205 LA} ( )

In a quasi-steady wave field with small spatial variations,

b, 1is therefore given by

b, = b, =~ —kIAI" (340
s
2 sivh 2kh

which 1is recognisable as the steady Of éz) wave-induced
setdown, given by Longuet-Higgins and Stewart(1964). The

extension to the unsteady case with current is given by

/

- - Do, .
%bz ‘abzs T)ﬁf_ (3?7)

where bls is given by (3.4.6). The forced wave equation
(3.3.18) may then be simplified by the use of (3.4.2) and
(3.4.5) to give

Dy, D4, ' Al

DE* )52 - aT(hnd) - 7ok T

+ 3y kA0 4 aufh,v, 4] -0 (349

A form of this equation applicable to water of constant

depth in the absence of an 0(1l) current is given by
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4)1;.{.. ”%hv}:&; . % EW,[AIz . “’Iz'é: (3.‘1’.‘7)

28wh 2kh

e
which, after specifying that the principle wave ch travel in

the x direction

f= {k)oz

and using the lowest order energy equation ( Appendix E )

2 z
yields
2

hvz _@_z{ [ c JA]
472&*— LA Rtah "z—lﬁl? ¥

given by Yue(1980) and in slightly different form by Davey

(’3.‘:‘. Io)

and Stewartson(1974).
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r~
3.5 The Weakly-nonlinear Equation for ¢

!

In the preceeding sections, a method has been
described by which linear equations governing the evolution
of the first two terms in the Stokes expansion for ¢>, given
by 1% and &i , are obtained. This method could be carried
to higher orders after allowing perturbation of the
wavenumber k to account for secular terms arising at 0(&3);
however, the algebra involved becomes exceedingly tedious
for the general theory being developed here. The results
described so far allow for the calculation of the O0(€)
linear wave field, with subsequent calculation of the 0(&1)
forced harmonic following based on the result for the linear
fundamental. Truncation at this level provides results
consistant with the Stokes solution to second order, with
the waveform characterised by short crests and broad troughs
due to the second order correction. However, the results do
not include the effect of amplitude dispersion on the phase
velocity; this result would arise at Of 63) through the
choice of the first perturbation correction to the

wavenumber k.

One method of correcting this deficiency could
proceed by calculating k based on a nonlinear form of the

dispersion relation (2.1.6). Booij (1981) suggested two
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empirical modifications to the linear dispersion relation
based on suggestions by Walker (1976) and Hedges(1976);
however, it is simple enough to use the dispersion relation
from nonlinear theory directly, thus dispensing with the
empirical approximations. By averaging a Lagrangian similar
to (3.3.1-5), neglecting the O(Sl) terms, Whitham obtained a

dispersion relation given by (including the current U)

(- (Rewd) )R = qktawhkh (1+(k1AYD) (35.1)

where

D= cosh Ykh + & = 2 tavh kh (3.5.2)
% siwh ' kh

The relation (3.5.1) then provides a means by which the

value of k may be determined based on local values of the
amplitude A. Inclusion of this effect in the linear model
(3.3.8) requires an iteration in order to obtain the initial
guess for the updated local value of A, after which the
corrected value of k 1is determined. This method was
suggested by Booij as a means for incorporating the
empirical nonlinear dispersion relations of Hedges(1976) or
Walker (1976) in the linear model; and will be employed in
section 6.9 where Stokes theory 1is not appropriate to the

description of the problem.

In the recent 1literature on nonlinear water waves,
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the most successful approach to including the effect of low
order nonlinearity in the basic governing equation, and to
producing tractable computational models, has been to
include the nonlinear effects in the form of nonlinear terms
added to the linear governing equation. The added terms,
proportional to the third power of the local amplitude,
account for the effect of amplitude dispersion provided by
the nonlinear dispersion relation (3:5e1) or its

fast-modulation counterpart.

We proceed by deriving the third order correction
terms to be included in the linear governing equation. This
development 1leads to the «correct inclusion of amplitude
dispersion in the linear wave equation, which was only
suggested on approximate grounds by Booij (1981). In
addition the second-order hyperbolic form of the governing
equation allows for the study of reflections in an arbitrary
domain, which has been investigated only occasionally in the
context of the nonlinear Schrodinger equation approach ( see

for example Smith (1976b) and Newell (1978) ).

It is sufficient to consider a reduced form of L

given by

L=L,(0(e"s")) + Ly (3.5.3)
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Here, we have dropped terms of O(SZ) from L, for the sake of
computational simplicity; these terms are unaltered by the
derivation and may be replaced subsequently. Also, we drop
Lo entirely on the grounds that its average over the phase
is zero, implying that it has no effect on the conservation
equations; alternatively, we can argue that variation of Ly
with respect to &% in the following derivation leads to
terms which are steady or proportional to euliw? and are

asynchronous with the linear wave component; they therefore

do not contribute to the motion of the fundamental wave.
,Od'

However, Ly when varied with respect to 4% and 1, ,
, By “3iwt .
produces terms proportional to e and e ; the first

set of terms is then retained as the principle nonlinear

N
correction to the governing equation for 4%.

First, the reduced Lagrangian (3.5.3) is varied with
~
respect to #ﬂ , and the resulting expression is partially
integrated to give the nonlinear counterpart of (C.2.1):
[) / T i E D 3
.—TD% wmo%)q[ _‘Vh‘(éoov;'¢t)+ 600% “GO ,D_t‘(7:)

r r~

-26'{b.Dg 5%(7,731 b, {6508 - 6k 6

L o 17 ~

2% i = LR
—G:o Vh'{'?f%d’,g +6§o '27_ &, ® 6:.-. lect’l +/é6 ?l42’~

“»@;W'{'ZIV»‘&} —Vh'{'Z:LVLgl | -%d W 7i=0 (384



54

Varying L with respect to ¢ and dividing by g leads to the

nonlinear free surface boundary condition:

~ 7 T s he o A
Q! +.%,%¥? + Z.G; é? g;; 1‘5360_%; %tf + Ghb'&( ¢ )

EJV/ ™~ Y p.-

+;l£“”?l%ég '**& VL&: VL#E + Goo ?i#% 1 1'*32 J

r~
tV4, %, = O (3.5:5)

In the equations (3.5.4-5), b, 1is given by (3.4.7).

Differentiating (3.5.5) and substituting in (3.5.4), we
~

obtain a nonlinear governing equation for ¢1 7 with

nonlinear terms including the first and second order

fluctuating surfaces ?,and ?L:

104 @ Vik) D - U (L Vid )+ €5 &+ G ude

g” ol 27 Vi w 2"“ w ~
ebufon & -vd - 26" 24" D% ]+ 2.4°D (5, DE).

IR @)% 26014 B BD)- R

) - RGNS * 6 {L B (0@ wlna)s

"lw

e {3y
% Dt
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+4/ {1 @& &) %08 - (9d) -
+2 LD (&) g

B2 (& 2@ = o (2.5¢)

Dt

Here, nonlinear terms involving (ﬁ%-g) have been dropped due
to the assumptions about modulation scales. Equation
(3.5.6) may be written entirely in terms of the potential 23‘1
by the laborious substitution of the governing equations for
m, ?L, and E;; use of approximate forms of these equations
based on the local neglect of modulations does not alter the
level of accuracy of the nonlinear terms in (3.5.7). We will
proceed, instead, to a much reduced form of the nonlinear
equation by substituting the plane wave results of Appendix
A in the nonlinear terms of (3.5.6). This approximation
would lead to errors of 0(6?) in the direct calculation of
nonlinear standing waves, where the amplitude modulation
cannot be considered to be small; however, many of the

examples below are for gquasi-unidirectional wave

propagation, and the substition made here 1is entirely
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acceptable. We also neglect derivatives of the amplitude A
during the substitution, which would lead to the inclusion
of inconsistantly small terms of O(GEﬂ $ ). Substituting
(3.4.7) and the plane wave approximations into (3.5.6) leads
to the equation

~ ~ ~ & .
....].._ —D% e (Vﬁ'ﬁ') Pﬁ)l - m'(CC%v}n Ch ) e Gfo 4’; ** 2_0.: wz.
% Dt 3 Dt E

~

¢ +

+ 20 ) k.7 F o kz D ! b = W, + as Aménumu Ferms
% {ﬁ ’ LJFL o cosh® kh _D_'?E .i 4)' ! ¢ (35'?)
where
bl 2
W, = ok DAl (3.5.8)

and D is defined in (3.5.2). Substituting for the integrals

7/
G;: and G: , dropping the asynchronous terms proportional
-3:.:..-"‘- : ;
to e and rearranging, we arrive at
i ~

’%23* ) D4 -G (UG + ot (1-x) & + ok DIA'G,

+20’{E‘Vh¢: _ - D4, }% - W, (2.5.49)

2.Cr (osA 1k!° Dt

,‘\D
This represents the mild-slope equation for ch s in

the presence of a slowly varying ambient current U, correct

"
to O eg). The added terms, proportional to ]A[‘ and ¢,
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represent the direct effect of amplitude dispersion and the
/
interaction with the wave induced current Vgéﬁ '
/
respectively. Note that q; must also be solved for in the

general case, using the results of section 3.4.
The fast modulation corrections to the third order

model equation (3.5.9 ) may be obtained by including the

2
0o(€ ,%) terms from (3.3.8), to give

%Z%: +,- &) lg% G- (G md) + (- & +o}(ol+F)$;

+UL}?ZDM}1% *20'{1?"7:14’;{' e Dd’z’z&)\: = W,

20 cosh 2keh Dt*

(3.5, 10)

Equation {3+5:10) is a principle result of this

investigation.

In order to deliniate the connection between
(3.5.10) and the results of previous investigators, we

remark that
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where LJ; and ﬁdf)are given by Chu and Mei(1970), and
correspond to the second order frequency corrections due to
amplitude dispersion and change in mean water level,
respectively. In addition, E-v;¢i is equivalent to Chu and
Mei's Lﬁ%, while the remainder of (3.5.10) corresponds to

: o % T ’ . .
their W, and W, , after accounting for the inclusion of the

fast wavelike motion.



CHAPTER 4. EQUATIONS GOVERNING THE AMPLITUDE A IN

QUASI ONE-DIMENSIONAL PROPAGATION

4.1 Introduction

The second order hyperbolic models (any of (3.3.8),
(3.4.1), (3.5.9) or (3.5.10) ) represent a very general
approach to .the solution of wave propagation in a domain
with correctly posed initial and boundary conditions;
however, the existing numerical solution methods for this
type of problem in an arbitrary domain (in particular,
finite element or finite difference methods) are costly and,
in the case of finite element programs, require a nontrivial
programming effort. 1In several applications, one or both of
two simplifying assumptions may be appropriately utilized.
First, the wave amplituﬁe may be assumed to be steady in
time; thus the only contribution of terms like 3&;/3t is
the 0(l) phase contribution —icog:. This approximation may
be used in most applications of the linear wave equations
unless it is desirable to study time variations of the wave
field due to unsteady incident wave amplitude, representing

the effect of wave groups or transient disturbances. For

59
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nonlinear applications, use of this simplifying assumption
implies the tacit assumption that nonlinear interactions
between waves in a multicomponent system will not lead to
the onset of significant amplitude modulations, such as
Benjamin-Feir instabilities, over the length and time scales
being modelled; this assumption is problematic and has not
been fully investigated for the case of an initially
unmodulated plane wave. Equations based on the use of this
assumption in order to reduce the second order hyperbolic

system to an elliptic system will be given in section 4.2.

An independent assumption of quasi-one-dimensional
wave propagation can be made a priori, with the resulting
restriction that the reflection of waves counter to the
principle direction of propagation cannot be considered in
the same computational step. 1In this case, the choice of x
as the principle propagation direction, with the concurrent

choice

£e {0l

leads to a general set of equations in {E't} where the
dependence in y is related to oblique modulations of the
amplitude. In cases where refraction, and resulting bending
of wave rays, is important, the y dependence is used to take

up errors resulting from k not being truly alligned with x.
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Time dependent equations based on this approximation are
given in section 4.3, and we study the connection between
the general fast modulation model studied here and
previously derived models based on the nonlinear Schrodinger
equation, which are related to subsets of the general

problem.

Finally, in section 4.4, an approximation method
analogous to the splitting matrix approach (see, for
example, Corones (1975), McDaniel(1975), and Radder (1979) )
is used to obtain the parabolic approximation to steady,
gquasi-one-dimensional propagation, based on the elliptic
models of section 4.2. We also demonstrate the connection
between the parabolic equations and the scaling assumptions
neccessary for the recovery of these approximations from the
initially time dependent models of section 4.3. The
coupling between forward and back-scattered wave components

will be neglected.
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4.2 Time-independent Elliptic Models

Before proceeding with the reduction of the
hyperbolic model to an elliptic form, we choose a form for
the wave energy dissipation function W,:

_ _., D%
VJI ™ h/'ﬁz 0ﬂ2J)

which 1is slightly different than the form assumed by
Booij (1981) and reduces to the more carefully derived form
found by Jimenez and Whitham(1976), among others. A method
for relating w to several known dissipation mechanisms is
given in Appendix G. Substituting (4.2.1) into the full

nonlinear model (3.5.10) and making the assumption

~

Ch LT A wg, (4.2.2)

reduces (3.5.10) to the elliptic form
“ 2wl W+ U WGE) G ) Uwnd) -V, (9, &)
-f-(L‘J‘Z-—(,.,l—'mrZ - Al (V;",fé))‘i’: +°}(°¢"‘F> ${ "'JlktDM]:‘h

~

+ Zo—(,lg-v,,cﬁ’)% = /iO’WCh . (4.2.3)
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!
where we have used the fact that ¢it=0 in a steady wave
field. The corresponding mild-slope approximation for

linear waves is given by
Qi U & + LG (LG ) «Ta UGG ) -G (T &)

~ ~

e (0t b -mot - iw (e 8))d, = Lowd, (#2.4)

which 1is similar to equation (3.23) in Booij (1981).

Neglecting the 0(l) current U reduces (4.2.4) to the form
~ " ~ P
Vh'(cc‘}vhch) + (new +,¢‘ww)q!3 =0 (4.2.5)

which 1is the mild slope model of Berkhoff(1972,1976)

extended to include wave energy dissipation.

The time independence applied to the second order

results of section 3.4 leads to

Vi ihvid, «bit +<k] =0 (#2.6)

and

bz" bls CE) G‘.Z.?)

where (4.2.6) 1is a statement that the total second order

component of the mean volume flux is nondivergent.
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Equations (4.2.4) and (4.2.6) must Dbe solved as a coupled

pair in the general case.
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4.3 Time-Dependent Equations for A

Fod
1
In this section, we use the assumed form for qﬂ:

$, = -4 A emb “.3.1)
o

to derive a time dependent governing equation for A. The
resulting equation for one-directional wave propagation is
in the form of a modified cubic nonlinear Schrodinger
equation, and subsets of the general equation can be
directly related to the governing equations arising in

previous studies of the dynamics of nonlinear waves.

The most general form of the governing equation is

given by (3.5.10), and is rewritten here for convenience.

D'd @ -IDE -V (W) « ot(-n) &
Dt Dt

The term (ol +F) is given in section (3.3). The equation also
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contains a dissipation term. In addition to the wave
equation, we will also need the lowest order enerqgy

equation, derived from the results of Appendix E:

he+ oA 4fonfagt) -gaface
- (4.2.3

The reduction to the cubic nonlinear Schrodinger equation

(NLS) is made by substituting (4.3.1) into (4.3.2) and
iv
e -

cancelling the factor The O0(l) current U may be

written in its x and y components as

U= {ujV} (4.3.4)
The resulting equation for A is given by
i
: ; &
Alh+ G ) 4fu (e ) o - La]A
I I
+ 1S WD . D/L D\ .[CCTor\] A « 1L DDA
7-{ v DE T DE a-‘*r)e> ‘ (—?;f‘ ? “ 5Dt Dt

-

Ir
-G VoA~ LAy L LG (A L UG (7 A)

a-'f“'

-L@GLIDE LG (GHAY - g (L FIA +iwA

- ok'DIAIA - [Eu4 - _E_ DEA -0
. 2o coid, kb Dt A1)
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Here, j;%a- is the absolute group velocity in a stationary
reference frame, given by

Cop = Co+ & (42.6)
At this stage, no assumption has been made concerning the
orientation of k or U with respect to stationary Cartesian
axes x and y. The terms (I) have been given previously in
the present form (but for one space dimension) by
Turpin(1981), Benmoussa(l1983) and Turpin, Benmoussa and
Mei (1983), who have studied the effect of following and
adverse currents on the shoaling of Stokes wave packets (in
the form of solitons) in one dimension. The steady-state,
current-free counterpart of the term (I) is directly related
to the spatially varying shoaling term in the parabolic
approximation, as will be seen below. The terms (II),
involving derivatives of 0 , represent further corrections
of 0(51) due to the presence of a varying current. The
presence of the second unknown ¢£ requires a second
equation for closure; this is given by the forced wave

I
equation (3.3.18) for da .
il e

g 4 l l
D ) Db — U (hTd') = DE 75-4) B 4. Vi (9% )

(4.3.7)
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A number of virtually independent simplifying
assumptions may be applied to the pair of coupled equations

(4.3.5) and (4.3.7), and we illustrate several choices here
in order to relate the results of the present study to those
of other investigators. The first thorough study of Stokes
waves in a domain with "fast"™ modulations (§$~O0(€&) ) was
made by Chu and Mei(1970a,b), who investigated essentially
the same problem as studied here but neglected the presence
of a large current. Dropping the terms involving the O0(1)
mean current U from (4.3.5) and (4.3.7) 1leads to the
simplified set

AlAg+ G TA) +205-G)A + L G (CQUA) - Au

260

4, 1A

' 4 Z
(ol F) -wlé D/ﬂ/ A "'{,é'zaéz. chma{'ﬁ/ﬂ

(¢.3.2)

and

/ k4
4%&'4;% (hv,¢,') = m [N +2_%v;.[@]ﬂ[

(4.3.4)
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where F' is a simplified form of F obtained by setting P*
and F7=0. Equations(4.3.8-9) contain the same information
as the results of Chu and Mei, who left their equations in

the form of a set of conservation equations.

A mild slope ( ;f“éz) form of the current-free model
may be constructed by neglecting terms of Of ) and higher
in (4.3.8-9) after the shift in scaling. We remark that the
modulations of A must be left at O(&), since nonlinear
instabilities such as the Benjamin-Feir instability may lead
to fast amplitude modulation in an otherwise slowly varying
domain (see Benjamin, 1967, and Benjamin and Feir, 1967).

The coupled equations then further reduce to

A (A CaA) * 4(GoGa)A - A + LG (0T A) - wk'DIAIA +

2 !

Z_afmé”k/’ C#Ltz +&’¥A B o

& %3'1{.8-\7’, (EV,'..A>} = {jgvl-ad’z’ -
2wk’

with (4.3.9) altered to

d 2] ! 2 2 2
Ch.{__{: -ghV/'é, = '2_;?,%;6 ]A}t t g k- Al (d.3.11)

The three models mentioned so far may in principle

be solved as an initial boundary value problem in an
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arbitréry domain; however, the determination of the
direction of k at a local point in the domain is problematic
since the phase surface “%(z,t) is not being determined.
For problems in domains where a principle direction of
propagation may be defined, it is convenient at this stage
of the derivation to specify that the phase surface is one
dimensional in space. Choosing x as the principle direction

of propagation and defining

X
Y = fh (x)dx" - wt @.3.12)

leads to the simplifications

C% = C? A;x 5 E = k,’.&‘k (‘/.3’.13)

~
The amplitude is then allowed to vary in the y-direction to
account for modulations and small deviations from the
principle propagation direction. The ability to model the
deviation in travel direction will be crucial to the results
of Chapter 6. Inserting the simplifications (4.3.12-13)

into (4.3.10-11), and noting that

" _ 1) = ot /1o (Bh) 3
8 %__%1_}'({ ,éAv‘uAk) E%_(/ (_5%%) (4.3.19)

Ry

in the absence of a current, reduces the mild slope

formulation to
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/C(At +Cﬁ/4x> +_€'_C9XA -—_ég +EL s ,_é__([-khfmﬂ’/:)}/lxx

R Sivh2kh
LAy ), = ok DIATA - {Rb, b |
+'L%g/q =D G%E.Mﬁ
. ~ah¥, gk Al kR Ial, (4.3.6)
d)*f g 2:,.1,2&!1] t T

which is the extension of the equation of Djordjevic and
Redekopp (1978) to two space dimensions. Note that the term

(CC%Aﬁ)? in (4.3.15) can be expanded as

(CCs Ay )y = CCy Agy + (GO0 Ay

The second term is formally of O 6¥) in the mild slope
approximation, and could be dropped. However, we will
retain it for the sake of consistency with previously
derived models, as will be demonstrated in section 4.4.
Finally, for water of constant depth, (4.3.15-16) take the
following form after substituting for time derivatives of A

using (4.3.3):

T

LB+ CiAx) + Cly Ayy - {;._ ﬁ({ bh il bh }Axx

w 2w cosh *kh
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2 2 ! 2 / . _
-'60% DIplA - (f-’:‘c}'zx —Z,}_i_‘m cbzé)A +4ilA =0
(4.3.17)

4};_& — 5h V,,u#z’ = _gz,_k ([ —+ zl%%“% > [Aj; (.3.1¢)

Equations (4.3.17-4.3.18) are equivalent to the coupled
equations derived by Davey and Stewartson (1974) and
Yue (1980) . It is generally impossible to eliminate ¢;

between (4.3.17) and (4.3.18), and so gi: must be solved for
in addition to A. The exception to this rule is in the case
of a strictly one dimensional envelope A oriented colinearly
or at some angle to the propagation direction x. The
colinear case corresponds to the strictly one- dimensional
problem described originally by Hasimoto and Ono(1972). In
the case of the envelope function A making an oblique angle
with the direction of wave propagation, solutions in the
form of oblique envelope solitons and groups have been found
by Saffman and Yuen(1978) and Hui and Hamilton(1979), for
the case of deep water, and by Kirby and Dalrymple(1983c)

for the case of intermediate water depth.

For cases where the 0(l) current is retained, the

same series of gradual reductions may be applied. We
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present here, in order to show consistency with previous
investigators' results, the equations resulting from the
assumption of a mild slope and propagation in one spatial
direction, including the effect of a following or opposing

current.

Dropping higher order terms ( II ) and the
y-dependence from (4.3.5) 1leads to the one-dimension

evolution equation
A+ G+ 41 7(G0), - BT A kA =L Wheer
ol U Ay el {26 .r:A.AZ.tA)(!hM ¥4MM)}/4XK-J§‘D/A}%-

— {kd’z Zrcu}-% Dt }A % C‘/.lﬁ)

where we have used the definition (4.3.14) for ;ﬂ_ after
replacing & by ¢ , and have neglected dissipation. The
second derivative terms may be combined using the lowest
order energy equation. Restricting attention to 5 slowly

varying (in time) current field then reduces (4.3.19) to

L(A£+C&Ak)+,£_g‘(%_ﬂ>x,4 _C%[ a_(/ — kbt )] Ay

20 cosh kb

— ok DINIA - {ké 3. 20)
Z

o—:o.rzué Df’ }
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!
The corresponding forced wave equation for #z is given by

&y, 20, U, ;b;_ (W), -a(hd), =

vt

]
- -2—‘?”‘—%5 (%}—%‘- +—-‘3~(f2 Al ) (:./.glz{)

Equations (4.3.20-21) contain the same information as the
evolution equation of Turpin, Benmoussa and Mei (1983), who
derived a single equation in A directly. Defining the

moving coordinate
X

rr.:é{ ._d_z_._-c}
Ca.
and the slow coordinate

X, = €'X

(4.3.20-21) may be combined to give

A
g (B (G- 4 S

2
+4 ok D - o

_L__[]|A’A +
C, * Gh-G") zrmzu !)k’-M r'7 }l !

caGA =0 (43,22

where Q 1is a real function involving the integration

4.
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!
constant of ¢“¥' In the case of an isolated wave packet,
]
where 4; -» 0 for x-9xe¢ , Q may be set equal to zero.
Equation (4.3.21) is egquivalent to the result of Turpin,

Benmoussa and Mei (1983).
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4.4, Parabolic Equations

Under a restrictive set of assumptions, the elliptic
model of section 4.2 and the hyperbolic models of section
4.3 may each be reduced to parabolic, initial boundary value
problems for waves propagating in or close to a
pre-specified direction. The first assumption, already
applied in section 4.2, is that the wave field is purely
harmonic in time. The resulting neglect of the time
dependence of the amplitude A bars the consideration of wave
fields which are groupy in nature as well as precluding the
study of the onset of instabilities. The parabolic
equations which follow are thus applicable only to the study

of plane waves.

The second major assumption involves the
specification of one- directional propagation. This
assumption has already been made with regard to the
equations of section 4.3, and the parabolic equation then
follows directly from these results after neglecting time
dependence and introducing a shift in scaling. The
application of a splitting matrix to the elliptic model in
section 4.2 leads to a set of coupled qugtions for the
forward and back-scattered components of ¢3 , as in the

derivation of Radder (1979). In this section, we will use
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the method employed by Booij(198l) to obtain a single
ot
equation in the forward scattered component ¢1 which
-
neglects the coupling with the back-scattered component dﬁ .

The result will be to extent the parabolic approximation of

Booij to include the effect of nonlinearity.

As a first example, the derivation of a parabolic
equation from the mild-slope, time-~dependent equation
(4.3.15) is illustrated. A shift in scaling is introduced
by specifying that the x-derivative of A be 0(63),
consistant A  with the assumption that the variation of the
phase ﬂ? accounts for all the fast wvariation 1in the
direction of propagation. In contrast, the y-derivative of
A will remain at O(Ezﬁ, on the assumption that waves turned
at a small angle to the x-direction will exhibit slow
phase-like variation in the y direction. The term (L‘:C%A,ﬂ),:1
will be kept 1in its entirety; this choice 1leads to the
retention of the formally small componant (chhnﬁgr but we
note that, for waves turned at large angles to the principle
propagation direction, A% should approach O(&), 1in which
case (CC%)qA% is comparable in order to the remaining terms.

!

2
We also note that ¢i is formally of O(&) in this

approximation. These scaling assumptions and the neglect of

time dependence reduce (4.3.15) to the parabolic equation
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iCy Ay +4 (G A -f'-ile:;(cchea,).a -w_gDIAl% +igA =0 (4]

It is helpful in applications of parabolic equations
to define the amplitude with reference to a fixed wavenumber

k. based on some characteristic of the physical domain of

o
interest ( usually the initial conditions) . The
introduction of k, facilitates the reconstruction of the
instantaneous water surface ¥, since all phase information

not contained in k,x is then absorbed by the amplitude

function A. We therefore let

X
i (kox - (k.afx)

A-Ae (4.4.2)

o~
A' is then the amplitude of a wave ¢; given by

r~ 4 ab.(kgx_w.é.)
d)l = Ao A (XJt9> e C‘/f'?{-?)
w

Substituting (4.4.2) into (4.4.1) leads to the revised

equation
A / / » ! /
ACQAX + (P*k.)C-JA * 4 G, A+ EaITKCCg’A‘J)%

o (4.9.4)

|

— wk DIATA + iw A
2 2

After dropping the dissipation term, (4.4.1) and (4.4.4) are
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equivalent to equations (2.18) and (2.22) of Kirby and
Dalrymple(1983b) , which were derived using a multiple scale
perturbation technique. Each model may be further reduced
to an equation for pure diffraction by setting k=k,=constant
and C, C% = constant. Noting that A'= A in this case,

(4.4.1) and (4.4.4) both reduce to

- c_o_kf DIAIA «.ck, wA =0 (el 9.8)

2.k, A, + A %
@
9

9%

which is equivalent to the diffraction equation of Yue and

Mei (1980) after neglecting the dissipation term.

Kirby and Dalrymple (1983b) have shown that the
linearized form of (4.4.1) or (4.4.4) is consistant with the
parabolic equation of Radder (1979) for the forward scattered
wave :E+after neglecting dissipation. This consistancy will
be demonstrated again subsequent to the application of a
splitting method to the elliptic model (4.2.3). The
equivalence of the results of the splitting method to the
time-independent form of the nonlinear Schrodinger equation
after introducing the slower scaling in x allows us to draw
an important conclusion before proceeding to the derivation
of a general model including currents. If we neglect the
mean current U and the time dependency in the wave-action

equation (4.3.3), and assume that C =C,,j éx' (4.3.3) reduces

1
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to

C%Ax +J£C%XA =0 (4.4¢)

which is equivalent to the leading two terms in (4.4.1). It
is apparent that a requirement for a correct parabolic
approximation is that the governing equation must contain
the correct form of the relation for wave action
conservation. To further illustrate this point, we drop the
higher order terms (II), introduce the slow scaling in x,
and neglect time dependence in the general nonlinear
Schrodinger equation (4.3.5) to arrive at the form

x{(Cg-fU.)Ax + l//‘tl,,A +%[{M)x .f.(_g__)‘?],q - y{A} +

o

« L(CG Ay =L WY (19A) ~LlG4) (A -

2 1 / L 2
- ek DIAPA - {kE, S BR Y VY

&.9.7)

It is apparent that the bracketed term is the equation for
wave action conservation including energy dissipation, and
contains the essential features of (4.3.3). We may require

that the results of a splitting method applied to the
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elliptic model (4.2.3) should reproduce this information in

as close to the exact form as possible.

Booij(1981) presented a splitting method and
~t

resulting parabolic equation for the velocity potential ¢,

based on the mild-slope, linearized equation (4.2.4). A
quick inspection of Booij's resulting parabolic equation
shows that it cannot reproduce the terms (UAx + VAﬂ ) and

[(U/Uﬁx + (V/ &), ] which are important components of the

l%
wave action conservation equation. We use instead a
modified form of Booij's derivation which leads to a more

nearly correct form of the wave action conservation

equation.

Booij showed that the second order elliptic equation

%(L 3_4:.1) « Y, =0 (443)

¥ X

can be split exactly into equations governing forward and

+
backward moving (with respect to x) disturbances ¢

m and

¢ﬁ’ which are given by

&
&""‘ e A Yd’: G/‘{'T")

a X

Yom . _ ¥4 (44.94)

IX
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Since the split is exact, the equation governing 4%: is then
discarded since there is no coupling between the two
potentials. The assumed exactness of the split of the
elliptic model and the subsequent neglect of certain
derivative terms removes the option of calculating the
reflected wave by an iterative procedure, as employed by Liu
and Tsay(1983) to calculate reflection from isolated
submerged obstacles in the absence of a current. The
remainder of the problem centers on determining B! and the
~

relation between ¢%u and the wave potential 43 . Booij

chose the relation
¢%n = E.&% éﬁ%io)

o~
where ? is an as yet unknown operator on d){ . Substituting
(4.4.10) into (4.4.8), expanding and neglecting derivatives
of E alone then leads to the result

For(€)(E) . -v% 0 G

Y ¥ X

The elliptic model (4.2.3) must now be put into the form
(4.4.11) as <closely as possible. Letting p=CC% and
expanding some terms in their spatial components allows

(4.2.3) to be written as
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(P%x)x +(P$“a)”z +k1P:£ +(wz_o'z-p,éw(vi"-g‘)—a'Zk‘D/ﬂlz);E

*Lcrk/% = (Ml%x)x N (VI%Q)‘a -(av?ﬁx)% “(W%'a)x

+ 2,«::.;,(4»17,,2[;: = (44.12)
In the following, we will neglect the interaction with 314{
and b,. Booij chose to drop terms involving squares of the
mean current components based on the assumption that they
are likely to be arithmetically smaller than terms involving
p except in the vicinity of stopping points. This choice
leads directly to Booij's inability to derive the correct
wave action equation and also would lead to difficulties in
the derivation to follow. Booij then arranged (4.4.12) in

the form

~

Ch . +P-' (px+2;wu)%x +kz(f+ ;2‘1[_.:)6#!:0 (4_%;3)

~
where Mcg is given by
r- 2 ~
HC]’, = (w2—0'1+/£w(ﬁ7,,-,@)—0'1k22>//9/ +/irw)<f>, t

+2,£ch’f;,,& +qo$,%)? (.9.19)

(Here, Booij's derivation 1is extended to include the
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nonlinear term). (4.4.13) 1is then compared to (4.4.1l) to

complete the splitting process. We note that the inclusion

of the term 2Auﬂfax in the splitting procedure leads to the

neglect of the term UA 4 in the final parabolic equation,
~

since UA is already contained in the term 2;¢oUd3x . We

thus follow an alternate approach. Assuming thatx waves are

: |
oriented in the +x direction (phase given by eA'hdx ), the
dispersion relation may be written as
o= w-RkRW (4.4.15)
leading to the result
z 2 L
wi-or = 2wkl - (kW) (.4 1t)

Equation (4.4.12) may then be written as
(p-und 1, + R(p-uDd « Md =0 (4.4.17)

ﬂ
where M¢, is given by
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rli
We have thus imbedded the term Uchx, which we don't want to
r~
reduce in order, in Mdﬁ . (4.4.17) may then be written in
the form of (4.4.11);
H

$ e + (P () Gy + R(1+ M V4 =0
EVF-U})

Comparison with (4.4.11) leads immediately to the results

o~

¥ k2(1+-,;%’;;;))4>, | (4:420)

/Y = (p- wh) (4.9.20)

Y= k(l+ M )/z (¢4 22)
R*(p-u*)

L 7 M\
¥ - k’/(in) (1+ m)) (44.23)

Booij points out that Radder's(1979) approximation is

equivalent to the immediate choice

Y R(] +_H 4.4 24
A ( Zkz(fa-u‘)) (QZ)

§p = k‘/z(p— uy* (4.4.25)
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while Booij's approximation retains the full expression and

then approximates the resulting parabolic equation

o I
2K Gp-u) (Ju«__) 577 -

i Vo 2 A Yoot
= ikk"(p-u*) (!+m)) b Etn)

by expanding the pseudo-operators in the form

‘/fﬁ--l' ~ |

(H F(%-_uﬁ ) 4 = ([ 4&‘40 TR - d) ) ‘ L
Yo £

(H kl(,ﬁu‘)) #= (} * %k*(ff-?-aw) # il

The results of both expansions may be summarized in the

general equation

2 {k%(fa—u‘)’/z(1+__?j’_{f___ 14" -

X h"(f:- 3
~ 4
T L T RH__ )¢ (4. 4. 22)
. ( R p-u?) ) :

where
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O Radder

ik vz Booij Git.32)

and where P, -P, =1/2 for both approximations. The
approximation with P, =0 then should correspond to the
information contained in the nonlinear Schrddinger equation.

Equation (4.4.29) may be expanded to yield the expression

R(p-u’) %; +3':{HP'“L)]><$:+ =
T+

= _,(szp-bct>$l+ € 4 Ne G4.31)

Then, an equation for the complex amplitude is obtained by

~ o+
expanding Mch and making the substitution

~ (kd
5= —ia(a)e T (132

&

which results in the equation

(Cot WA + (%)VA,? +_g_“(gﬂ,#)xA +(%_> Vi, _%Vq*)A*

n

-'ﬁ.KC%A‘?)? + J;__/A +io*_§_ZD]A)zA O (4.4.33)

where terms containing products of components of the ambient

current have been dropped. This equation may then be
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compared with (4.4.7), and we note that errors have been
introduced through the factor (W/C¢) multiplying VA%_and
the appearance of W rather than 0 in the y derivative term
for V and 0. A complicated procedure involving a double
splitting of the equation in x and y shows that the errors
appearing in (4.4.33) result from the choice of Efk:éx and
the effect of this choice on the assumed dispersion relation
(4.4.15) . However, the resulting approximation is more
complete than the approximation obtained by Booij due to the
inclusion of the term UAy, and the correct form of the
derivative of (C} +U)/0 . Errors resulting from the use of
(4.4.33) rather than the more strictly correct form (4.4.7)
will be investigated in section 6.9. The approximate
equation (4.4.34) is further modified by the shift to a

: LR, X% ' . X
reference phase function e®™ , resulting in the equation

(Cﬁ +L(_)A'x +,£(£’°-—é>(6}+6()/3\' +<_ﬁ__;2) V/qf? +0‘(C3+__@> /‘1{4-

= o Iy
! . / 7
+{_{_ °°V°ar -(%) Vo:&}A hf{f?—‘ {CC?A%}% + %/A +
+ ik DIAT*A = O (4.4.39)
=

o
where A' is related to ¢} by (4.4.2). In the absence of a

current H, (4.4.34) reduces identically to (4.4.4).
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The equations (4.4.4) and (4.4.34) form the basis
for the computational schemes used in most of the examples
presented in Chapter 6. In several examples where currents
are neglected, use 1is also made of the more accurate
approximation with Pl=l/4’ Pz=3/4. The derivation of the
equation governing the complex amplitude A' for this case
follows along similar lines; however several simplifications

are introduced. 1In particular, the approximation

{Dmup ! - LkDIAIT G * (4.9.56)
X

C(Cq s C%,

is made, consistent with the neglect of amplitude

modulations in the nonlinear term. Further, we introduce

) N+ 5
Dy {AO"WC}[’, } ~ - kW («.9.36)
X

consistant with the assumption of a small coefficient for
the damping term. Substituting (4.4.32), (4.4.35) and
(4.4.36) into (4.4.30) with P!=l/4 and P, =3/4 and

neglecting currents leads to the governing equation

£CA + (k-R)C A ‘C:MA(+_§_(C(%A;)? ‘

2B (CGA, )y — B fbov it . ilbCG), ?(cc?A;J,,,—
wk 2k*CC,



—-co_k;D/A’le' +iwA =0 (4. 4. 37)

Z

where we have also neglected some small derivative terms
multiplying the nonlinear and damping terms. Equation
(4.4.4) is recovered from (4.4.37) by setting P =0 and P,
=1/2, consistant with Radder's splitting scheme, The
numerical schemes used to solve (4.4.4), (4.4.34) and

(4.4.37) are discussed in section 6.2,



CHAPTER 5, COMPARISON OF THE MILD AND MODERATE

SLOPE APPROXIMATIONS FOR LINEAR WAVES

5.1. Introduction

For most applications to water wave propagation
problems, the mild-slope form of the models derived in
Chapter 3 should be adequate for a reasonably accurate
representation of the wave field. In particular, ocean
bottoms consisting of loose material typically have bottom
slopes on the order of 0.00l- 0.01, and retention of terms
in (i&hf and vfh is clearly unnecessary. Tidal currents
interacting with these smooth topographies would also be
expected to be very slowly varying in the horizontal
directions, thus alleviating the need to retain terms to
O(SL) covering variations of ¢ and k. The mild-slope
approximation, given in linear form by Booij (1981) and by
(3.4.1) and in nonlinear form by (3.5.9), should then be
adequate for the modelling of waves in most physically
realistic domains. The principle exception to this
conclusion 1is that the term involving ]53: in E‘&)—: is

required for the study of unsteady nonlinear waves in order

91
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to avoid the types of singularities in amplitude observed by
Lighthill (1965,1967) in his study of Whitham's conservation
laws; see also Chu and Mei (1970a,1971). This requirement
is consistant with the fact that the amplitude may become a
fast varying quantity even in a very slowly varying or
homogeneous domain as wave instabilities develop and wave
groups form. The connection of the term in P,E to the
higher order dispersive terms in the NLS was discussed in

Chapter 4.

Exceptions to the assumptions of a globally
slowly-varying domain can arrise in several situations.
Relatively large bottom slopes may exist over short physical
expanses on rocky bottoms or in the vicinity of naturally or
artificially maintained channels, and tidal currents
interacting with these relatively rapidly varying bottoms
will themselves exhibit the same rapid variations provided
that the changes in depth occupy a significant proportion of
the total depth. In addition, ambient currents 1in an
otherwise slowly varying domain may exhibit fast variation
due to specialized circumstances, such as the flow fields
characteristic of tidal ebb currents from inlets and rivers,
rip currents, and discharge plumes from outfall structures.
Such concentrated flows, which often assume the form of

turbulent entraining Jjets, violate the assumptions of the
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present theory in two important ways. First, the small and
intermediate scale turbulence of the ambient flow field
violates the assumption of irrotationality on a 1local scale
of the order of a wavelength or smaller. Savitsky(1970)
studied the refraction of waves in the presence of a
turbulent flow with mean current gradient, and concluded
that the effect of the turbulence was small in comparison to
the interaction with the mean characteristics of the flow.
This result is encouraging; however, the mean flows
themselves are generally rotational over a large scale. It
is known (see, for example, Mei(1982), section (3.6) ) that,
for current variations of Of ez'), the refraction
approximation for waves in the presence of rotational
currents is unaltered from the strictly irrotational case.
No such results are currently available for the faster

variations implied in this study.

In this chapter, we study several cases involving

relatively steep bottoms with the intent of determining the
&

range of significance, if any, of the O0(£€ ) terms added to

the mild slope form in Chapter 3.
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5.2. Linear Edge Waves

As a first example, we investigate the effect of the
steep bottom terms on numerical predictions of the longshore

wavelength of edge waves. We consider the topography

h(x) = mx (s.2.1)

where m is the beach slope and x is directed offshore.
Edgewaves are trapped modes which propagate alongshore in
the + or - y direction ( or both, in the case of standing
waves ) and are trapped between the shoreline and an
offshore turning point by refraction. For water of
intermediate depth, Ursell (1952) has provided an exact
solution for the discrete spectrum of the 1linearized

solution; the dispersion relation is given by

wz 5 Sl'ﬂ{(zfn-l-f)fﬁﬂ_!%] (5‘.2.2.)
A
?

in the absence of currents, where A is the 1longshore
wavenumber of the edge wave and n is the mode number. A
family of normalized surface profiles for n=0-5 is shown in
Figure 5.1. The trapping mechanism requires that the
longshore wavelength be shorter than the deepwater

wavelength for a wave of the same frequency, or
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Wave Period = BO sec
Beach Slope = 0.0085

Figure 5.1 Edge wave surface profiles:
n=0-25
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) 7._62_2. = ko CS.?.,E)
%

where k, is the deepwater wavenumber. For each given mode

number n, (5.2.3) then requires that

SIN {(Zow!) T f <t (s.2.4)

or

m < taw {2(‘23;“) } (£45)

Condition (5.2.5) must be met for a mode n wave to exist on
a given beach. Interestingly, (5.2.5) is satisfied for all

finite values of m when n=0.

In the present application, we study the prediction
of A;by reducing the linear wave equation to an ordinary
differential equation on the domain 0g<x<{ev; A is then
related to the eigenvalues of the reduced system. After
neglecting currents and dissipation, and assuming purely

harmonic motion, (3.3.8) reduces to

VL.{CC,}V,‘% } + kZCC?;E - %(oz-f- F}% =0 (5‘_2.6)
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The coefficient F involves the expression E-VL( ) in each
term. If we interpret E to be oriented in the direction of
A alongshore, it is apparent that each term in F is zero,
and (5.2.6) reduces further to the form
~
|

nfcand] « (eq-gofeo )

The mild slope equation is recovered by dropping & . Smith
and Sprinks(1975) used the mild slope equation to calculate
A on .a plane slope, and Kirby, Dalrymple and Liu (1981)
have used the mild slope equation in a finite difference
form to study edge waves on arbitrary bottom profiles. In
the present case, we will wuse (5.2.7) to determine the
effect of the term ¢! on the prediction of values of A ,
using a numerical method similar to that of Kirby, Dalrymple
and Liu.

~
First, the wave Ch is assumed to be of the form

~ .
¢ (x,49) = $ () e 4% (5.2.8)

Substituting (5.2.8) into (5.2.7) yields an eigenvalue

problem

(cey d;,x )+ (kccs, "‘i\‘?&) ¢ = Acey ¢, (€. 2.9)
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for A and ¢,. Boundary conditions on dﬁ are given by

bovwded AS %0

(#I = (5.2. 10)

e A0 AS X = o0

The shoreline boundary condition is computationally awkward,

and we introduce a new dependent variable
F= x4
such that (5.2.9) and (5.2.10) become
Clo X" ¥ +{X"(cc) -2ccx]$ +
% X X ¥ ’x ? X

% {chg - x(cg), + x‘(é"ccﬁ—%d)zg = An'e §
(5. 2.11)

X = ob (5.812)

(hyx, /2, e)

]
—
S
>
g
p))
e
N
. -

eyey) = 2 (8,8
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P
d = ‘Qg} Ez
?

where ~ denotes dimensionless quantities. Dropping ~'s and

defining p=CC% reauces (5.2.11) to

legxx w {XZPx _ZxP}'Ex i {ZP_ A P *xz(%"d)EE-—.

= A'x*"pE (5:2.13)

The dependent variable x is then stretched according to

¥z
(s.2.19)

in order to provide greater detail near the shoreline,

yielding the final equation
Y= 2 2 ¥ 2 ¥z
P (e™ =1) £.. +{(cn—0 P, ~¥[ (&) +2e -

£ (en

e 01p b, +{2ve™p - v (™0

+ Yzcz‘a’z (eh..r)z(w,— oz)] g =

- ]zxzcui(c“-f)lp;-: | (5. 219
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Equation (5.2.15) 1is solved on a truncated domain
0{z<{zmax, where zmax is cnosen such that the wave profile
for the highest desired edge wave mode may decay in an
unconstrained fashion, withlg(zmaxJ=0. The numerical scheme

employs central differences on evenly spaced points Zy-

Results for the dimensionless inverse wavenumber
cd}gjx as a function of beach slope m are plotted for modes
0,1, and 2 in Figure 5.2. Results for both the mild-slope
(neglecting A ) and the moderate slope cases are virtually
indistinguishable from the exact solution for modes 1 and 2.
For the mode 0 wave, results were calculated up to a beach
slope m=2.0. Both the moderate and mild slope results are
seen to diverge from the exact solution with increasing
slope, with the mild-slope model overpredicting the
wavenumber and the moderate slope model underpredicting it.
The moderate slope results are seen to diverge from the
exact solution earlier and faster than the mild slope
results. Table 5.1 presents a comparison of calculated

%
values of h:/g:l from each model with the exact results.

A possible explanation for the faster divergence of
the moderate slope results from the exact solution in the
range m>.5 is that the large slope values invalidate the

expansion procedure used to obtain the term ol, in which the
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1.00

SRS |

0.79

Figure 5.2 Dimensionless edge wave wavelength;

n = 0;1;2-
Ursell (1952);
————— mild slope, n = 0;

-+=-+- moderate slope, n = 0
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mz/gA

w?/g) wz/qk % 2
slope Ursell | mild Error | moderate Error
m (1952) slope mild slope moderate
slope slope
01 .01000 .01023 2,31 .01023 231
0.05 .04994 .05078 1.69 .05080 172
0.1 .09950 .10070 1,21 .10084 1.34
0.2 .19612 +19739 0.65 .19849 1Rk
0.5 .4472 .44583 -0.31 .45977 2.81
0.75 .6000 .59217 -1.30 .62668 4.45
1.00 « 7071 .69061 -2.33 .74499 5,36
1+25 .7809 1oL T -3.04 .82196 5.26
1.50 .B321 .80418 -3.36 .88036 5.80
1:75 .8682 .83872 -3.40 .91760 5.69
2.00 .8944 .86490 -3.30 .94400 5.52

mode 0, N = 90

Table 5.1 Sample calculated wavenumbers for
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slope is assumed to be a small parameter. Both models
exhibit moderately large errors for small slope values; this
result is probably due to numerical discretization errors.
The error relative to the exact solution of Ursell(1952) is
shown in Figure 5.3 for the choices of N=50 and 90 and
Z pay =1. Further increase in N reduced the error for small
values of bottom slope only slightly, indicating slow

convergence of the numerical solution.

Thel numerically calculated values of 2 differ
slightly in the range 0.03<m<0.2. For higher values of m,
the two solutions diverge rapidly. Due to the presence of
the numerical error at small values of m, it was impossible
to determine which model (mild or moderate slope) exhibits
more accurate behavior for intermediate values of the bottom

slope.






Figure 5.3
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Edge wave wavelength; percent error

relative to solution of Ursell (1952).

---- mild slope (neglecting o)
moderate slope (with a)
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5.3. Retflection from Underwater Topography

In this section, we study the reflection and
transmission characteristics for one case of plane waves
incident on one- dimensional bottom variations. The
topography will be taken to vary in the x-direction, and is
assumed to be uniform in the y-direction. Plane waves are
incident from x=-0@ at an angle @ to the x axis. The
variations of the topography are considered to be of bounded
extent horizontally; however, the depths at £ 02 are allowed
to differ. The physical domain is described schematically
in Figure 5.4. In the 1limit of topographic variations
characterized by vertical walls separating regions of
constant depth, the general case of differing depths at oo
has been studied by Lassiter (1972) for normal wave
incidence (@ =0) and by Kirby and Dalrymple (1983a) for
arbitrary angles of incidence, using methods based on the
matching of eigenfunction expansions along the vertical
boundaries of subdomains of the fluid region. Kirby and
Dalrymple also included results obtained using the boundary
integral method (BIM) of Raichlen and Lee(1978) as a test of
the principle results, and extended the method to include

oblique wave incidence.

A wave propagation method based on the mild slope



106

¢R
-
¢1 by
e —L
h

a) elevation

b) plan

Figure 5.4 Generalized topography for section 5.3
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equation (3.4.1) has been applied by Bo0ij(1981) to study
the reflection and transmission characteristics for waves in
regions characterised by gentle slopes. In particular,
Booij studied the reflection of waves normally incident on
an underwater slope joining two regions of constant depth
(with waves propagating from deep to shallow water and being
partially reflected), and also studied oblique incidence on
a submerged trench. 0f particular interest in this
connection is the case where a caustic forms on the upwave
trench boundary. 1f the trench width is narrow enough to
allow the exponentially decaying wave amplitude in the
geometric shadow to reach the second caustic line on the
downwave boundary, then significant wave energy may be

transmitted past the finite-width shadow boundary.

We wish to determine the importance (or the ability
to improve results ) of the higher order terms in € added
to the mild slope formulation in Chapter 3. The present
formulation allows for unambiguous specification of the term
ol, which depends only on the bottom slope and wave
frequency. However, the 0(81) texrm F depends on the
specification of a wavenumber vector k and the gradient of
the amplitude A, and these quantities are not well defined
in a partial standing wave system. The assumptions used in

evaluating F are discussed below. We neglect dissipation
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and restrict our attention to linear plane waves with steady
amplitude in the absence of currents. For this case, the
linear model (3.3.8) can be written as (after assuming

harmonic motion)

Y% (CC%V,‘ $,)+kzcc.}% —?(d*Fu% =0 (5-3-0

The restriction to one-dimensional topography allows
for some major simplifications to the general governing
equation. The definition of the wavenumber vector h leads

to the result that

v, xv,% = v,xR =0 (£3.2)

Then, writing k in its components £={kcoso , ksin® } leads

to the result

(ksin@)x ol ¢

or

R(x) sivB() = am = cowstant (5.3.3)

which 1is a statement of Snell's law. Thus, for a given
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distribution of depth, the 1local wave angle 9(x) is
uniquely determined. The wavenumber component .[ in the

x-direction can then be determined according to

A(x) = (kl(x) - mt )1/1 (3.3.4)

For waves propagating from shallow to deep water, it is
possible for m to be > k(x); according to (5.3.4), /g then
takes on imaginary values, and no physical significance can
be attached to the local value of cos 9(x). The point,l =0
is a turning point of the differential equation and
represents a caustic line extending in the y-direction
through the point. Waves in the region of ,f imaginary are
constrained to travel parallel to the caustic, with the wave

profile decaying exponentially away from the turning point.

From our one dimensional assumption,

Ch 2 AMm 4ﬂ : CSZ&Sﬁ

and the elliptic model is reduced to the 0.D.E. :

(CC?:EX ), + ,élcc? :}: ~ ,3(44-1:)3;, =0 (5:3.4)

The term o may be written as
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2 2
The term F 1is evaluated by assuming only the
presence of the incident wave propagating in the +x
direction. This assumption will 1lead to errors which

increase in magnitude with increasing reflection. In the

absence of a current, F may be written as

F = -3-1,5, + (3,_-— 33)ﬁz. - 3; ({33*'/86')

St Nyl oy + Yy ol =23 2y

= 7.5'0‘{1'/5& ~ 7791,/58 = B:;"Jz/?s - :-%2/?31 (5:3.9

The terms o(l " Q('J and F‘; may be written as

o(l-"- /(Ax/h ; 9232 ,@kx/ZkJs/A‘:ij/sz

thkx/kz )

Bi= LI K /gf,e(z,éx)x/ﬁ
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.4 4
Ba= L(LAD, [EA | fie = LB [2k (5.3.9)
The gradient of A may be further evaluated using the energy

conservation equation
V}".(E’g?) z O
yielding

(C?fAz/k )x = 0 (5.3.10)

or

A, = - (cge/B) 4 (5:3.1)
2Cy L [k

and thus A may be eliminated from the evaluation of F.

Solutions of (5.3.6) are obtained by rewriting

(5.3.6) in the form

~ o 2 it
T G B+ (a0 s

and then writing (5.3.12) in central difference form.

Boundary conditions are specified at x positions outside the
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region of varying depth. In this case, we may specify the

wavefield on the incident wave (-x) side as

~

¢ - ?;;I “ a;r (5.3,/3)

7~ ~
where d& is the incident wave of unit amplitude and d} is

a reflected wave with amplitude Kr. Kr is then the
reflection coefficient. The transmitted wave at x downwave

of the bottom variation is given by

$‘ = fﬁ.r (z.2.m)

Application of radiation conditions at the x boundaries then

leads to

,L,f; (’25;; - é% ) X = oo

X ~
ALy & X > ~cb (5.3.46)

/

el
I

where ,@, and -'(2_ refer to values of ﬂ at h=h, (xy-e0) and
h=h, (x9+e0) respectively. Equations (5.3.12) and (5.3.15)
yield a tridiagonal system which is solved by a standard

double elimination method.
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As an example of reflection from an 1solated depth
variation, we choose a bottom consisting of a smooth
transition from a depth hI(xSOJ to a depth hz(sz), with the

bottom profile in the region 0<x<L given by

= hyehe | (hhy) (ST
h() L (b gy [3TX )

4 %

where s=(h'-hz)/L. For both cases studied, we take

hz/h‘=0.2, with waves incident from the depth h The

T
maximum bottom slope occurs at x=L/2 and has the value
Ts/2. Results were calculated for values of s=1/3 and 2/3
and for angles of incidence of 9==O° and 45° Reflection
coefficients for each of the four cases are calculated by
four methods; mild slope equation (5.3.12) neglecting ol and
F, moderate slope equation (5.3.12) retaining only the
unambiguous term © , moderate slope equation (5.3.12) using
o/ and F, and the boundary integral method (BIM) described
in Appendix F. The boundary integral method provides the
theoretically correct answer and may be used as the basis
for comparison between the wave propagation methods based on
(5.3.12), although the method described in Appendix F
neglects 1local curvature of the bottom boundary and

therefore may introduce some error. The discretised
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boundary for the BIM for the case of s=2/3 1is shown in

Figure 5.5.

Results for the reflection coefficient K, as a
function of kh‘ for the incident wave are shown in Figures
5.6-5.9 for the four cases mentioned above. For the case of
s=1/3 (Figures 5.6 and 5.7), the mild slope equation
provides the best agreement with results of the BIM for the
45° angle of incidence, while, for normal incidence, the
full formulation with o and F agrees more closely except in
the range of kh'<0.75, where K, 1s large and errors
associated with the specification of F become important. In

this range, the moderate slope equation retaining only ol

agrees more closely with the BIM results.

For the case of s=2/3, the mild slope equation
provides the best estimate of the reflection coefficient for
normal wave incidence, while for 9=45’ the moderate slope
equation with F neglected provides the best agreement over
the range of kh values tested. Agreement between BIM and
the moderate slope equation with & and F is poor for both

angles of incidence in this case.

The results of the cases studied here indicate that

none of the approximate methods are accurate 1n terms of
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predicting the magnitude or variations of the reflection
coefficient with changing incident wavelength, although all
of the methods produce gqualitatively similar results
approaching the 1limit of small kh, where accurate results
may be obtained simply by matching surface elevation and
mass flux across a discontinuity in depth between h=hl and

h 0f the models described above, it would be expected

9.’
that the moderate slope model with F retained would yield
the more accurate results in comparison to the BIM, although
a rational scheme for specifying F, based either on a
formulation for standing waves or an iterative scheme

linking the incident and reflected waves, remains to be

developed.



CHAPTER 6. SOME EXAMPLES OF THE COMBINED REFRACTION-

DIFFRACTION OF LINEAR AND STOKES WAVES

6.1l. Introduction

In this chapter, we use the time-independent
parabolic models of section 4.4 to study several examples of
the combined refraction and diffraction of linear and Stokes
waves by variable depth and currents. Examples include a
study of wave focussing by a submerged shoal and diffraction
of waves by a shore-attached breakwater, for which data are

avallable for comparison.

Yue and Mei(1980) have shown that the reflection of
a wave at glancing angle of incidence on a vertical wall
produces an effect known as the "Mach" stem, where the
linear result of an incident plane wave and scattered
reflected wave, leading to a short-crested pattern in the
far field, is replaced by a region of plane waves of uniform
amplitude propagating along the wall. Peregrine(1983)
analysed Yue and Mei's parabolic approximation for

diffraction of Stokes waves and found that tne equation is

121
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analogous to the nonlinear equation governing the
development of an undular bpore. The incident wave and the
wave in the stem region can thus be interpreted as beiny
conjugate wave states divided by a Jjump. Peregrine
hypothesised that similar effects could be expected in
situations where refraction leads to ray-crossing and
overlapping of segments of the incident wave. Kirby and
Dalrymple(1983b) have demonstﬁated this effect in the case
of waves focussed by a submerged shoal. The development of
a conjugate state also has implications for the evolution of
wavefields in the vicinity of straight or curved caustics,
wnere the development of a jump may preclude the evolution
of steady state solutions for the wave field in the vicinity
of tne caustic. These steady state solutions can be found in
terms of the second Painleve transcendent (see, for example,
Miles 1978), and would be gqualitatively similar to the
linear solution in terms of Airy functions. With <this in
mind, we study the development of the wavefield from the
leading edge of a pair of straight caustics caused by
increasing water depth in section 6.7, and also look at the
situation of waves reflected by a distribution of following

current i1n section 6.8.

Finally, 1in section 6.9, we study the combined

refraction and diffraction of an incident wave field Dby the
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rip current velocity distribution given by Artour (1950).
Here, the nonlinearity occurs at too large an Ursell number
for Stokes theory to be wvalid, and we employ 1instead a
dispersion relation based on the empirical findings of

Walker(1976) , as mentioned in section 3.5.
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6.2. Numerical Approximation of the Parabolic Equation

The parabolic equations of section 4.4 are nonlinear
and in general have variable coefficients due to
inhomogeneity of the physical domain (in terms of depth and
current variations). Consequently, a numerical treatment is
required in order to obtain solutions to any but the
simplest problems. The parabolic nature of the equations
leads to the choice of a solution technique based on the
implicit, forward-stepping scheme of Crank and Nicolson,
detailed below. In analogy to heat transfer and diffusion
problems which are also parabolic in nature, we choose the x
coordinate as the forward-marching, time-like dimenéion,
while the y-coordinate then serves as the physical spatial
coordinate. For all examples studied in this chapter, we
will restrict our attention to a rectilinear coordinate
system as shown in Figure 6.1. The solution scheme also
requires the specification of lateral boundary conditions on

the y-coordinate, which will be discussed in section 6.3.

For waves in the absence of currents, we will
consider both the 1lowest order approximation (4.4.4),
referred to hereafter as the "Radder" approximation, and the
higher order approximation (4.4.38), referred to as the

"Booij" approximation. For waves 1in the presence of
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currents, the higher order approximation is quite complex
and its use does not produce significantly different results
than the model equation (4.4.35) in the examples studied in
sections 6.8 and 6.9. Consequently, we will restrict our
attention to the simpler model (4.4.35). The current-free
equations (4.4.4) and (4.4.38) will be treated separately
from the wave-current model (4.4.35), due to slight
differences in finite-difference approximations of the

coefficients.

Both approximations (4.4.4) and (4.4.38) may be

represented by the general equation

Ay +i(k-RYA +_L_(kp), A -,a_kg(PAb})? 4.#_1([3;1?)%
P P

2kp
+iP B (oA + L KIAIA + ww A =0 (6.2.1)
F;z/s Pruy by +o e
where
p = CCqy (.2.2)

K'= k'D/n (t.2.3)

r@=k,+,;,{ff+égp_)xz (t.2.4)
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and where primes (') have been dropped from the amplitude A
for convenience. Note that the reference phase function #’
is still given by ik,x. The Radder approximation is
recovered by the choice B =0, Pz=1/2' while the choice

P, =1/4, Pz=3/4 gives the Booij approximation.

A rectangular grid with uniform spacing in the x and
y directions is established as shown in Figure 6.1. We

define

X,=(i-Dax + %, ; 1€isHM (.25

For all examples studied, the depth will be taken as being
uniform on i=1, and the wavenumber on the first grid row

will be chosen as k,. Values of y; are defined according to

yi = (j-D4ag +y, ; 1&jeN (4.2.¢)

In (6.2.5-6), and Y, are arbitrarily chosen to allow a

Xp

shift in origin.

The parabolic model (6.2.1) is written in finite

difference form using the implicit Crank-Nicolson scheme.
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The coefficient fg is written as

fok v 20 (B7-R) L i L))" (o) ] (.27)
/S = (k" +k7) % [ (Ep)y™ + (p)y]

where the i row contains known values of A and the i+l row
is the row to be determined by the implicit step. The

second derivative term (pAn)?_is approximated according to

(pAy)ys = (pf+pi WA A7) = (pf e J A7 -A7-)
2 (‘-‘-19 i

6.2.9)

Using (6.2.7-8), the parabolic model is approximated by the

finite-difference equation:

AiﬂﬁA{' +%{(bb—bjﬂ .c.-H = (k PJ )A }

AX

{(kp?}‘i (km;] (K 45) if R _,_éﬁ_}(PA y, 48

(kp)y™ + (p)3 2 ax 20 )j"

il p erf L1l
A{ue)‘ ‘5"8‘*}@ 'f{ae*)"' J[M’

lh)
A 2 .

PaN
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. Lt At “ p
+ A ) W, /\J- + W } AJ =0 (6.2.‘:‘)
7 e (ke

(i@X P4
Equation (6.2.9) may be arranged so as to solve for the ALH
based on the known values of A%, Using the two-point
lateral boundary conditions discussed in section 6.3 leads

to a tridiagonal system of N equations in the N unknown
AH
J

double-elimination scheme described by Carnahan, Luther and

A , and solutions are obtained rapidly using the
Wilkes(1969), with their numerical algorithm modified to
handle complex arithmetic. Previous to this step, however,
an estimate must be obtained for the unknown value '33*: in

the nonlinear term at row (i+l). This value is provided by

an intermediate explicit step given by

K2 _af o i h-7)AT « {p) =(B)] | AT -
AX (kp) "+ lp)] ) =
- B, — B } (pA9 i +
(kp); (R}
+ 4 H'jMf‘lef 4 aow"{' Af =0 .2.10)
2

2[&p2f
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Note that in the intermediate step the derivative (kp)x and
the term 13; are off-center with respect to the value of A,

while the term (pA )%x is neglected.

9

The implicit scheme(6.2.9) has truncation errors of
Ot(ax):,(ay)z). While it 1is generally difficult to assess
the stability of nonlinear difference equations with
variable coefficients, it is known that the linear, constant
coefficient counterpart of (6.2.9) is unconditionally stable
with respect to choices of4x and &y. Further, the scheme
in the linear, constant coefficient case preserves mean
square quantities (here related to the wave energy jAIL)

identically, subject to the accuracy of the lateral boundary

conditions.

The explicit-implicit scheme described by (6.2.9-10)
was found to be stable in all experiments for all values of
kh, with the explicit value I%‘:ﬂ; generally falling within
10% of the final value iAjﬁI . A somewhat different scheme

involving a two-step implicit iteration, as used by Kirby

and Dalrymple(1983b), was found to develop an unstable
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p A
divergence in alternate iterations for the value of'ui'ﬂ for

values of kh 1less than 0.15 in general. Both schemes

exhibit stable behavior for ranges of parameters where

Stokes' theory is valid.

The finite-difference scheme for the wave-current

interaction model (4.4.35) is given by

AL - At « 41l R e (k- k] )A\,Z

b

AX

il M - ) ]

ayy

+___L (C?,ic:+.«+ LL;‘-H)/J;I-H . (Cﬂf"'af‘:)/ﬁf;}(/qjﬂ-(-/qf‘){-
ZA}C (Cﬁ:-'ﬂ Aff)/o.j‘f‘f o (C;J + a\j )/0.

At el Ll 4 AT
% At
"J

‘/.Ata- 2 0.\.].:4-.' ‘3' (C‘a,m -u)
+ ( )[ VJ-H v;—; -+ Vf (O—.Fi - U'J‘:., ) -] AT . /F
o} 4 sy 207 Ay (Cq: + Ui )

y ) Px 2
"%{(P 295 . * (A, )y ; +
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The intermediate value 'ﬁ; is provided by the explicit step

"'A"T:H - A\T "f";& (ko'k::>A:;: +(_@;)(__K:___) (A:ﬁ '-A:__;> +
AX 07 A Cof+t] 24y
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.y ( %) (¢.2.12)

————— J
20£(Cyf+]) ’

This scheme is used in the examples of sections 6.8 and 6.9.
For each scheme, linear results may be obtained by
neglecting the cubic nonlinear terms and eliminating the
explicit steps except in the case where waves are breaking,
where the explicit step is used to obtain the forward.value
ﬁffﬁ used in estimating the dissipation coefficient w. This

procedure is discussed in section 6.4.

The numerical procedure requires the specification
of A;, 1<j<N on the first grid row. In the cases studied
below, we will restrict our attention to monochromatic
waves, in which case Af may be specified simply by

! .«Eko.[‘.“ﬂ@lﬂd' '
qu = 140 ¢ ) iy * N

where A, is the initial amplitude and © is the angle of
incidence of the wave with respect to the x-direction. In
principle, the method may be used for a directional spectra

of incident waves which may be specified by
l x J_(.‘ea.nbé_e %~ @.z )
A =2 A e

\ 2ot L J

N
<
A
o



134

where n is the number of components each having amplitude

A;_' direction E& and phase shift @.ﬁ , with the restriction

that each component be a plane wave with

w.

absolute frequency
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6.3. Treatment of the Lateral Boundary Conditions

The solution of the numerical problem presented in
section 6.2 requires the specification of lateral boundary
conditions on the y-boundaries of the computational grid.
In the examples studied in this chapter, two types of simple
boundaries are included; completely reflective, and
completely transmitting. The completely reflective barrier,
representative of a vertical wall, is considered first. For
a plane wall oriented in the x-direction, the condition of
no velocity component normal to the wall 1leads to the

condition

Ay = 0 (6.3.1)
4= 9w

where is the position of the wall. For all cases

Yw
considered below, the wall will be centered midway between
two adjacent grid rows, as shown in Figure 6.2a. The finite
difference form of (6.3.1) centered on the wall is given by

A&,H = AJ (63.2.)

where the wall is located at y, =(j+1/2)Ay. Taylor series

expansion of (6.3.2) about Yy leads to the result
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A% = F'ZJ‘T Agys, (AKQ‘)Z = 0+ O(Ac})a (6.3.3)

indicating second order ( in Ay ) accuracy for the boundary
condition. The centering of the wall between two adjacent
grid rows is accomodated in the schemes of section 6.2 by
generating auxiliary grid rows to handle the required
overlapping of wave data on the two rows adjacent to the

wall.

Open, transmitting boundaries may occur on either
the up- or downwave side of the computational grid. For the
downwave boundary, the boundary condition must allow waves
to radiate freely from the numerical grid with as little
reflection as possible, while, for the upwave boundary, the
condition must allow the entry of a wave to replace the
waves propagating away from the boundary into the grid
interior, thus avoiding the creation of a shadow adjacent to

the grid boundary.

The application of an upwave boundary is in general
fraught with difficulty, since no definite information
beyond pure assumption exists to indicate the exact nature
of waves approaching the boundary from the exterior of the
grid. For the application to the study of a shore attached

breakwater on a plane beach in section 6.6, the lateral
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boundaries are placed far from the obstacle, and we may
assume as a first step that the wave field consists entirely
of the shoaling and refracting incident wave and the wave
scattered from the breakwater. The incident wave has the
characteristics of uniform amplitude in the y-direction and
a longshore wavenumber component m which is constant as a
result of Snell's law. If we presume that the boundaries
are far enough from the breakwater such that no scattered
wave reaches the boundary, then both the up- and downwave

boundary conditions can be specified exactly by

AU} .':J(;MA 5 %H‘ﬂ!j‘jﬂ (5.3.‘/)

Once again, assuming that the physical grid boundary is
centered between adjacent grid rows, as in Figure 6.2b,

(6.3.4) may be rewritten in finite difference form as

ko i SR |
g

AT, —AT = Lm (Afﬂ-Af) ¢.3.9)

where m is presumed to be known precisely. (6.3.5) is
rearranged to read
i : A ;
A (l- ,cm(ﬂ')) - AJ' (’*4%({}%)) (6.3.6)
2

JH

Introducing Taylor expansions of A centered at y=(j+l1/2)AY
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leads to the result

AD&E/‘-?’LA 4-"‘% A@Q(A?)L—"M{A%)l:’ﬂh—/q +O[A‘3')2.

24 <§'3-7)
The errors involved in (6.3.5) are thus seen to Dbe
comparable in order to the error encountered in (6.3.2);
however, the larger coefficient and lower order derivative
in (6.3.7) as compared to (6.3.2) indicated that larger
numerical errors are likely to be associated with the

approximate radiation condition (6.3.5).

For cases where the value of m cannot be determined
based on Snell's law, or where the scattered wave represents
a significant contribution to the total wave field, the
value of m must be estimated on a numerical basis. For the
case of a wavefield consisting of more than one component,
we assume that the wave may be estimated locally at the
boundary as a plane wave of unknown direction and slowly
varying amplitude A in the y-direction. Then (6.3.4) may
be used agaiﬁ. Assuming that the wave field changes slowly
in the x and y directions, m at grid row x=ilAx may be
estimated by the results at grid row x=(i-1) Ax by

m o= -4 A%”_'/A"' (4.3.8)

N
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Then, applying the centered finite difference scheme at
x=(i-1) A x, y=(j+1/2) Ay yields the estimate for the

numer ical value m

wy v -2 (A AL ) (£.19)
A=l "'/4:}:—’

Ua’ J-H
This estimate introduces a further numerical error which may
be estimated by inspecting the case where m is known and [A]
is uniform in the x and y directions. Employing Taylor

series expansions about the center point y=(j+1/2) Ay leads

to the result

. (Aa/A + (A, /A)(AQ)L/Z‘:‘) (6.3.10)
(] + €Y Any )

m

A
N

Then, assuming that the relation (6.3.4) is exact, (6.3.10)

reduces to

/m: ¥ o (| + mz(_g_eg)z' ) {.3.11)
|z

which again has an O( 4y~) error due to the differencing
scheme. Substituting (6.3.10) into the error estimate for

the boundary condition (6.3.7) leads to the revised formula

’ 3 2 2
A,,(} = AmA + Aim aa) {%_ A 7!2/"%'?} (J.z./z)
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indicating that the approximation is actually
self-correcting at 0(£sy1'). Retention of higher powers in
Ay in each expansion shows that the discretization errors
actually cancel to any order in Ay, rendering the boundary
condition exact in regions where Snell's 1law holds and
amplitude is uniform in the y direction. However errors may

be expected to occur in short crested wave fields, where A

may have large variations over several grid spacings.

Results of several numerical experiments are
presented here in order to indicate the errors associated
with the application of the radiating boundary condition to
both up- and downwave open boundaries. Tests were conducted
using a single wavelength and period for waves propagating
over a flat bottom. Water depth, wavelength and period were

given by

h = 10m.
L = 100m. ; k = 0.0628m""
T = 10,726s.

The formulation (6.3.6) was tested wusing both the

exact value m=ksin € and the numetical value m; ; given by
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(6.3.9), for angles & = 10, 20, 30, and 40°, where 6 is
the angle between the direction of wave propagation and the
x-axis, and for grid spacings (4x,Ay)/L = 0.1, 0.2, 0.3,
0.4, and 0.5. Typical errors associated with the
discretization of the spatial domain occur in the form of
partial reflection of the incident wave at the downwave
boundary, and decay of wave energy at the upwave boundary,
again due to reflection of waves trying to enter the domain.
For tests using the exact value of m and the monochromatic
wavefield, the reflection coefficient at the downwave
boundary and the loss of energy at the upwave boundary are
plotted as functions of wave angle and grid spacing in
figures 6.3 and 6.4, respectively. The loss of energy is
represented as a percent error between the minimum energy
occuring within ten wavelengths of the starting grid row and
the starting value. Calculations were performed using the
difference scheme (6.2.9) in linearised form with P, =0.
Results indicate that the numerical errors are relatively
small for all angles of incidence using small grid spacing,
and increase rapidly with the loss of detail in

representation of the wave at higher grid spacings.

Results using the numerically exact condition
employing the calculated value of m verified the condition

as being an exact representation of the boundary conditions
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Figure 6.3

Reflection coefficient K

R at

downwave boundary. Open boundary

test,

exact value of m.
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%Eloss

Figure 6.4 % energy loss at upwave boundary.
Open boundary test, exact value
of m.
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for plane waves. No errors on either the upwave or downwave
boundary were detected within the 1limits of the numerical
accuracy of the calculations for any grid spacing or angle
of incidence. The exactness of the numerical boundary
condition coupled with energy conserving properties of the
Crank-Nicolson scheme allowed the use of grid spacings in
excess of a wave length with no 1loss in energy in the
computational domain, even though the individual waves
cannot be resolved at this numer ical scale. A
representative wavefield with 4x/L=0.2, 6=45° is shown in
Figure 6.5. The exactness of the boundary condition
employing a numerical value mﬁ was further verified by
testing the case of waves shoaling on a plane beach, where
Snell's law 1is applicable, and again no errors associated

with the open boundary conditions were detected.

As a final test of the applicability of the open
boundary scheme to a general wavefield, several runs were
performed for the case of two intersecting wave trains, both
travelling at an angle to the grid direction x. Both waves
were taken to have the same wavelength as the wave in the
single wave test, and one wave was oriented at an angle of

o

10" for each test run, with the angle of the second wave
being varied from 15° to 40°. Grid spacings were varied as

in the single wave tests. A representative computed wave
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field is shown in Figure 6.6 for the case of Ay/L = 0.1 and
e

20° for wave 2.

The distortion of the wavefield adjacent to the up-
and downwave boundaries (left and right boundaries,
respectively, in the figure) is a result of the assumption
that the wavefield could be characterised by a plane wave
near the boundaries. On the upwave boundary, the boundary
condition assesses the characteristics (amplitude and
composite direction of propagation) of the wave at the
incident (x=0) boundary and then 1lets a plane wave with
these characteristics propagate into the domain, creating a
plane wave in the geometric region shadowed by the starting
point (x=0) of the side boundary. On the downwave boundary,
the short- crested pattern propagates out of the domain with
little difficulty until a nodal line approaches the boundary
(about 1/3 of the total boundary length from the top). At
this point, the gradient of surface elevation normal to the
boundary is dominated by the short crested pattern rather
than by the wavenumber component normal to the boundary, and
the assumptions used in deriving the boundary condition
again break down. The model responds by reflecting a
spurious wave back into the grid which can be seen through
the disruption of the short-crested wave pattern at a

considerable distance into the wavefield at the terminating
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boundary. This effect can become severe for large angles of

incidence with respect to the x-axis.

Although the basic computational scheme developed in
section 6.2 is clearly capable of modelling the propagation
of a directional spectrum of waves, it 1is clear that more
development of open boundary conditions must be pursued in

order to develop a model of a fully general nature.
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6.4. A Model for Breaking Waves in the Surfzone

An advantage of the parabolic method outlined above
over solution techniques for elliptic and hyperbolic
equations is that no downwave boundary condition is needed
for the solution of the initial boundary value problem.
However, in applications of wave models to coastal areas,
the behavior of waves in the vicinity of a physical downwave
boundary consisting of the actual coastline is of primary
importance to the prediction of known physical effects such

as the wave induced setup and longshore currents.

Wave breaking in the surfzone is a complex, highly
nonlinear phenomenon. It is obvious that the model
described in this study, which is limited to the
representation of weak nonlinearities, 1is basically
incapable of representing the wunderlying physics of the
breaking process. However, some progress can be made by
shifting our view of the model from its physical basis to

its use as a predictive tool.

The forces leading to the generation and
maintainance of setup and wave-induced currents depend on a
physical balance between gradients of excess momentum

fluxes, pressure forces due to changes in mean sur face
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elevation, and bottom shear stresses. The role of a wave
model in determining the balance consists of predicting the
local wave energy density and direction of propagation of
the wave field. Thus, as a lowest approximation of the
overall physics, it suffices that the wave model be able to
predict the local wave amplitude in the breaking zone with
some degree of reliability. The simplest model of wave
decay in the surfzone is based on the assumption that the
ratio of wave height to local water depth has the same value
everywhere in the surfzone as at the breaker 1line. This
assumption has been used extensively in the literature, from
the earliest predictions of setup ( Longuet- Higgins and
Stewart (1963), Bowen, Inman and Simmons(1968)) and
longshore currents ( Bowen(l1968), Longuet-Higgins(1970)) up
to the latest applications of numerical refraction schemes
to the study of wave-induced circulation over arbitrary
bottoms ( Ebersole and Dalrymple(1980), Wu(l983) ).
However, it has 1long been known that breaking waves,
especially of the plunging type, do not follow so éimple a
rule. Extensive model tests of normally incident wave
trains breaking on laboratory beaches have shown that the
pattern of wave height decay across the surfzone is strongly
a function of the beach slope. Representative measurements
of Horikawa and Kuo (1966) are shown for example in Figure

6.7'



152

(996T ‘onM pue eMETIOH WOIT)
suozyains AiojexoqeT © UT s3ybroysaem poinsesy [°*9 =aInbTd

q q
Y Y
01 60 80 L0 S0 SO ¥0 €0 20 10 O o 0Ol 60 80 (0 90 S0 vO €0 20 10 O B
“ =0 10
A _© 20 sie—{ 20
ne : bl
— . £0 N—x €0
A -3
+uu A - 1S5 il ° :
s 1o v A "
i #e |o 22 sV e P .
o +7Ee ={e]
x MW« = u>u,v " wuwm ge=1
In_[t q X G GE
£ 90 I\ = _\4 e Tioo] x |2©
.l 095 9G1=1 | o, & s+ 1,9
= Ziool A~ |40 & L+ swoo| A
%_B! gi100 Y ) N + ti100 v
$200 '] €0 Vs x €100 w 80
i og0o| o : ) gi00| =
[ 2c00| a  |€© . . zi00l g |8°
¥ ggoo| . + e ety T .
sv00 v [o}] ~| sooo v o1
€500 % soool X N
9 _ ssoo| o |1} 0z - gooof o |}
] =S °L4n | ‘quAs | S °V4ul quis 21

4
7



153

The purpose of the present section is to relate an
empirical model of surfzone wave energy decay to the
coefficient w of the wave model, and to detail the
application of the model to the prediction of wave height in

the surfzone. The empirical model is taken from the work of

Dally(1980).

Dally proposed that the decay of energy flux with

distance in the surfzone be given by the relation

(Ec, ), = K (€cy - (6cy),) (6.41)

where h is the local water depth and K is a constant to be
determined, and is related to the rate of energy decay. The
quantity (EC )s is a "stable" energy flux for a broken wave
in water of depth h. The stable energy flux may be related
to the height obtained by a wave propagating over a flat
bottom after the cessation of breaking. Data obtained by
Horikawa and Kuo (1966) suggest that waves typically reach a
height of 0.4h at the cessation of breaking on a flat
bottom, while an asymptotic value of 0.5h is approached for
waves breaking on a plane slope. In the following
derivation, we denote (H/h)g= ¥, where Y is a free

parameter.
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Equation (6.4.1) may be related to the wave energy
equation (E.ll) after neglecting currents and assuming a

time-steady wave field. For one-dimension, (E.ll) becomes

(E Coly = -wE (6.42)

Noting that Cgs“ C$ , w may be written as

ve Koy (|- &)= KG (|- (Hs)‘) (.43)
h E h “HY

where H is the local wave height, given by H=2[A|. Since H,

and hence w, is not known at the location of the forward

step in the implicit schemes of section 6.2, an iterative

scheme must be employed to obtain an estimate of w at the

forward position before the final application of the

Crank-Nicolson scheme.

For a plane slope and neglecting the effect of setup
(which is not calculated in the wave model), a simple
analytic solution of (6.4.1) may be obtained and used for
comparison with the numerical model. Letting 3‘= EC%
denote the energy flux and writing h(x) as h=-s(x-Xx,), where
Xo is the position of the shoreline, (6.4.1) may be written

as
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- o+ c:-(—-%L - _%{,(EC%)S (6.‘{.‘0

where 2! = K/s. Assuming shallow water conditions, (EC% )

may be written as

(Ecy)y = Lg®¥*h™ (6:45)
¥

Equation (6.4.4) then has the general solution

&+ = c]nd g (QYL!"% (6.4¢)

ti"%i

where F}= g%/B. A special solution is needed for X =5/2.
The value of ¢ may then be determined by the value of ;h, at

the breaker line, where

X "XL,

)

and KW is the ratio of breaking wave height to still water

depth at the breaker line. :EL is given by

3, = g R

which leads to
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[y (5
cepH [!—&“/z)tmf) Th,: k47
After rewriting & as plitﬁé, (6.4.6) may be rewritten

in dimensionless form as

.—-

(JHib)z ( )[(’“ )(‘h‘) +A]3d%-§; (t.43)

where

&) 19

For the case O = 5/2, the method of variation of
parameters and application of the boundary condition at the

breaker line yields the result

(_H.)%z h %[;_ _g:(l)z,zn@ov_)] j w=E  (640)

Hb hb ™ b

Based on a comparison of the laboratory data of
Horikawa and Kuo(l1966), Dally chose the value K=0.17. The
special case X = 5/2 then corresponds to a beach slope
s=0.068. Results for a range of & values of 1 < &\ < 10,
corresponding to the range of beach slopes 0.17 > s > 0.017,

are given in Figure 6.8 for = 0.4, = 0.78. The lines
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Figure 6.8 Surfzone model, plane beach.
o=1,.0.,10;-——=0 = 5/2.

1. Constant height/depth; H = kh
2. H = vh
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labelled 1 and 2 correspond to the constant decay
H=Hh=0.78h and to the stable wave height Hg=¥h = 0.4h,

respectively.

The results (6.4.8-10) provide a check for
determining the accuracy of iterative schemes using the wave
damping term (6.4.3). Noting that Hg = ¥ h and H=2lAl,

(6.4.3) may be rewritten as

W: ﬁc I Ll thz
h %[ Y |Al?

] (¢.4.11)

We use the linearized form of the parabolic equation

(4.4.4), which can be written as

~ i (k-kR)A +....-c-?chA +/ur/'\ =0 (¢.4.12)

where

Z e A LAy (6.4.13)

(6.4.12) is written in finite difference form as

.ﬂm_*Ai —é[(h%—ko) A (B p)AC ] &

aXx

A+JAA* //ﬂuﬂ4x).:(>

% _% {*”
(6.4.14)

o

c,?
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where

/w}--u . _{%{j‘“[ fi e Y (h ) ] (é.‘f-!f)

~ra ) L
4 [A*"]
The intermediate value A “*' is determined by a similar step

BRoat TRT- R )R (k- kA
AX Z

K £ g L5 k] o
e k K (6.41¢)

where

~ Ll 2-51 _ XY%;ﬂ)l L?J?
AT - e (t4.7)

Several cases were run for waves starting in a depth
of 2m and propagating towards shore over a plane slope. The
program checks at each step that the wave height has not
exceeded the breaking criterion. When H becomes greater
than "KW h, the program begins calculating values of the
damping coefficient (6.4.15). Breaking continues untilfu?

falls to a value of zero, which does not occur on the plane
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beaches studied here but would be expected to occur readily
for waves propagating over uneven topography. For each
case, the wave height was assumed to be 1.0m at a depth of
2m, and wave period was assumed to be 5 seconds. Values of
=1, 3, and 10 were tested using various computational
grid spaces 4x. Results for %=1 and Ax=0.2m and 1.0m are
shown in Figure 6.9, A =3 and A4x= 1.0, 2.0, and 5.0m in
Figure 6.10, and <& =10 and 4x= 2.0, 5.0, and 10.0m in
Figure 6.11. The exact solution (6.4.8) is included in each
figure for comparison, with hj being taken as being the
average of the depth at the last grid point before breaking
and at the first grid point after breaking. 1In each case,
the numerical results provide an adequate representation of
the exact solution. In Figure 6.12, the entire process of
shoaling from h=2m up to the break point and the subsequent
decay in the surfzone is shown for the case & =10 and

4O ¥=5m, with the solution (6.4.8) included for comparison.

The breaking wave model has been incorporated into
each of the numerical schemes discussed in section 6.2 by
adapting it to the explicit-implicit iteration scheme, and
is used in the remainder of the examples in Chapter 6 where

applicable.

The model described in this section is empirical in
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Figure 6.9 Waveheight decay in surfzone;a = 1,
s = 0.17
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Figure 6.10 Waveheight decay in surfzone;o = 3,
s = 0.0566

Equation (6.4.8)

¥ Ax = 1.0m

+ AX 2.0m

a AX 5.0m
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Figure 6.1l Waveheight decay in surfzonejo = 10,
s = 0.017

Equation (6.4.8)

+ ax = 2.0m

a Ax = 5.0m

x AXx = 10.0m
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Figure 6.12 Shoaling and wave breaking.
T =58, s =0.017, H( h = 2m) = 1.0m,
Ax = 5.0m
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nature and is based on a two-parameter best fit to existing
laboratory data. An alternate procedure based on estimating
the rate of energy decay 1in a turbulent bore has been
suggested by Divoky, LeMehaute and Lin(1970) and has been
revised to include the case of periodic waves by
Battjes (1978). While these methods attempt a more thorough
approach to the physics underlying the breaking process,
they do not differ with the model described here in terms of
results. Indeed, Divoky, LeMehaute and Lin based their
conclusions on the relative validity of their model on
comparison with the same set of laboratory data used to

calibrate the present model.






166

6.5. Combined Refraction and Diffraction of Waves by a

Submerged Shoal

The numerical approximations developed in sections
6.2-6.4 lead to a parabolic equation method which may be
used to model wave propagation towards an open coastline up
to and including the surfzone. Various sets of experimental
data exist which may be used to test the predictions of the
nonlinear model. Recently, Berkhoff, Booy and Radder (1982)
have presented data obtained in the vicinity of a focus and
cusped caustic created by an elliptic shoal resting on a
plane slope, and have compared the data to the predictions
of three linear wave models: a refraction scheme involving
averaging over bundles of adjacent rays (Bouws and Battjes,
1982), a parabolic equation model for the scattered incident
wave, and an elliptic model for the entire wave field.
While the results of each computational model differ in
particulars, an important conclusion may be drawn with
respect to comparison between linear wave models and the
data set. Linear models uniformly tend to overpredict
max imum wave amplitudes in the vicinity of focussed waves,
where wave steepness may become large and nonlinear effects
become important. This tendency is clear in the comparison
between Berkhoff, Booy and Radder's parabolic model results

and data. The conclusion to be drawn from a comparison of
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data and their elliptic model is less clear. The elliptic
model tends to predict lower amplitudes in the region of
focussed waves than the parabolic model; however, the model
results are significantly contaminated with waves reflected
from the downwave boundary, as evidenced by the rapid
oscillations in amplitude along x-direction transects 6-8 in
their results. The effect of these reflected components on
the structure and development of the the focus is unknown,
and it is unclear that the predictions of the elliptic model
are any better than those of the parabolic model in

comparison to the experimental data.

The intent of the present section is two-fold.
First, we wish to verify that a parabolic equation for
weakly-nonlinear wave motion 1is capable of predicting
accurate results for waves in the vicinity of a cusped
caustic, by comparing the model predictions to data.
Secondly, by contrasting the difference in predictions of
linear and nonlinear models, we wish to show Ehat the
difference between previous linear model results and data is
largely due to the neglect of nonlinearity rather than to
any inherent inaccuracy in the modelling techniques. We
will concentrate on the data set of Berkhoff, Booy and
Radder in performing this comparison. This data set is well

suited to the present purpose due to the great detail in
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which data on wave amplitude was obtained over the entire
vicinity of a refractive focus, where diffractive and
nonlinear effects become significant. We will wuse the
"Radder" approximation (4.4.4) in its numerical form
(6.2.9,10) in this section. Computation is halted before
the breaker line 1is reached; consequently we neglect the

effect of dissipation due to breaking.

Experimental topography and computational domain

Details of the experimental procedure and setup may
be obtained from Berkhoff(1982) or Berkhoff, Booy and
Radder (1982), which include a photograph of the experimental
wave field and a plot of wave rays in the refraction
approximation; we summarize the important points here. The
experimental topography consists of an elliptic shoal
resting on a plane sloping bottom with a slope of 1:50. The
plane slope rises from a region of constant depth h=0.45m,
and the entire slope is turned at an angle of 20° to a

straight wave paddle.

The bottom contours and chosen computational domain
are shown in Figure 6.13, where the computational domain is
represented by the dashed 1line bounding the contours.

Experimental data is given for the sections labelled 1-8.
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Figure 6.13 Bottom contours and computational
domain for experiment of Berkhoff,
Booy and Radder (1982). Experimental
data given on transects 1 - 8.
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Computational coordinates are established with the origin at
the upper left corner of the domain, which is then given by

O0< X< 2L = g o< u < 20.0m (é.f-l)

The offshore boundary of the domain is chosen so that water
depth is constant along x=0. The initial condition for the
wave then corresponds to the uniform wave train generated at

the wave paddle; we set

Alx=0,4) = A, (.5.2)

where A,=0.0232m is the amplitude of the incident wave. The
wave period T=1 sec. Slope-oriented coordinates {x',y'} are
established which are related to the computational

coordinates {x,y} according to

X'= (X=105) cn 20" - (y=1l0) gib 20° (6.5. 32)
y' = (x- 0.5 sib 20° + (- 10) Cos20° (6.5.3b)
The origin {x',y'} = {0,0} corresponds to the center of the

shoal. The slope is described by

0,40 e 3 X'<-582am (6.594)

h =

O0.49m — 0.62 (.82 +X") m ; X'2 -Cfim (.54



L 7l

The boundary of the elliptic shoal is given by

' 5

() +%]) =1 4.5:5)

and the depth in the shoal region is modified according to

AR 1
h=hgype ~fos (1-(%%) -(4) )" - 0.3] (.sc)

resulting in a depth h(x',y'=0) = 0.1332m.

The lateral boundaries at y=0,20m are open, and
transmitting conditions are specified according to (6.3.5),
where we have assumed that IAJ varies slowly in the vy
direction at the boundaries. The wavenumber component m at

each grid row is evaluated numerically according to (6.3.9).

Comparison of Computational Results and Experimental

Measurements

The nonlinear equation is valid wunder the same

conditions as the Stokes' theory, with the principle
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condition being given by
W, = {1a1] /(kh)" < oW 6. 5.7
d {T }/ Y

where U. is the Ursell number. For conditions where U

r r

approaches 0(l1), wave models based on the Boussinesq
equations, such as that of Abbott, Peter sen and
Skovgaard(1978) become more appropriate. Also, the
derivation of (4.4.4) technically requires that th/(k]A])
be O(€ ), although this has not been found to be a necessary

restriction in applications of the linear model.

Laboratory experiments designed to test the
predictions of linear wave models typically satisfy the
condition of small Uy in the vicinity of the wavemaker.
However, as waves propagate into shallower water and are
focused by bottom irregularities, U, may increase rapidly,
and care must be taken in verifying that Stokes' wave theory

is valid for the problem being considered.

Preliminary studies of the relevant parameters in
the wave field were performed by determining U, at several
locations in the experimental wave field. Values of U, at
the wavemaker, shoal crest, and point of maximum amplitude

in the focused region are given by U, = .014, .290, and
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.213, respectively. Stokes' theory should thus be valid

throughout the region of principle interest.

Data from the laboratory experiment of Berkhoff,
Booy and Radder (1982) 1is available for the labelled
sections 1-8 indicated in Figure 6.13. The computational
domain was discretized into square grids (Ax = Oy = grid
spacing), and the grid scheme was established so that grid
rows coincided with the measurement transects. Grid size
was decreased until the point was reached where further
reduction did not affect model predictions significantly.
The final numerical calculations were performed using a
spacing of Ax = 0.25m, corresponding to a grid of 87 X8l

rows -

Contours of normalized wave amplitude are shown in
relation to the bottom contours for the linear wave field in
Figure 6.14 and for the nonlinear wave field in Figure 6.15.
The nonlinear results indicate a broadening of the central
focused region and a decrease in the maximum amplitude in
the focus. The nonlinear contours are in better agreement
with the experimental contours shown in Figure 2 of

Berkhoff, Booy and Radder (1982).

Results of the nonlinear and linear models are shown



Figure 6.14

Computed amplitude contours ]A/AO;
for experiment of Berkhoff, Booy
and Radder (1982); linear model
results.



Figure 6.15

Computed amplitude contours |A/A]
or experiment of Berkhoff, Booy
and Radder (1982); nonlinear model
results.
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in comparison to the experimental data in Figures 6.16 for
the labelled sections 1-8 respectively. In each figure,
nonlinear results are indicated by solid 1lines, linear
results by dashed lines, and data points by open circles.

We first consider the results on each individual section.

On section 1, focussing effects have only begun to
be apparent, and only a slight difference exists between the
linear and nonlinear models, which both agree well with the
data. Sections 2 and 3 describe the region of the
development of the cusped caustic. For both sections, data
typically falls between the predictions of the two models in
the region of maximum amplitude, with the nonlinear model
underpredicting the maximum amplitude by about 8% on section
3. However, on sections 4 and 5, where the wave has passed
through the cusped caustic, the nonlinear model predictions
and the data are in striking agreement, with both the height
and width of the central focussed region and the size and
shape of side lobes in the diffraction pattern being very

well predicted.

Agreement between the nonlinear model and the data
is also very good along the longitudinal sections 6-8. On
section 7, which 1is just off center of the axis of the

focused region, the nonlinear model predicts both the drop
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Comparison between linear and
nonlinear model results and
experimental data of Berkhoff,
Booy and Radder (1982).
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in amplitude in the region of the cusp (with respect to
linear model predictions) and thé slower decay of amplitude
towards the shoreward end of the transect (large x). On
-section 6, the nonlinear model quite accurately predicts a
sharp drop in amplitude which is apparent in the data but
totally absent in the results of the linear model.
Berkhoff, Booy and Radder interpreted the discrepancy
between the 1linear model prediction and the data in this
region as being the result of the proximity of an
amphidromic point in the wave phase surface and the linear
model's inability to resolve this point. Here, we see that
the discrepancy is entirely explained in terms of nonlinear
effects and the resulting change in the geometry of the

focused region.

Differences between the linear and nonlinear results
are less striking along section 8; The nonlinear model does
reproduce the relatively high amplitudes in the region 6 to'
9 meters downwave of the shoal, in comparison to thé linear

model .

Taken as a whole, it is apparent that the results of
the nonlinear model exhibit closer agreement with the
experimental data than do the results of the linear model,

with the only obvious discrepancy occurring in the region of
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initial development of the wave focus. It is possible that
the discrepancy in this initial region of growing amplitude,
seen in sections 2 and 3, is due in part to a failure of the
approximate equations to allow waves to focus rapidly enough
to obtain a realistic amplitude. This discrepancy is seen
to be short-lived, as evidenced by the remainder of the data

set.
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6.6. The Wavefield around a Shore-attached Breakwater

As a second test of the parabolic models, we next
study the wavefield in the vicinity of the shore attached
breakwater described in Figure 6.17. An extensive set of
data for the wavefield in the shadow zone downwave of the
breakwater has been given by Hales(1980) for a number of
wave periods, amplitudes and angles of incidence. A less
detailed set of data is available for the reflection zone on
the upwave side of the breakwater in Pantazaras(1979). The
given experimental arrangement has been investigated using
several computational techniques for linear waves, including
the finite element method for the elliptic formulation
(Houston, 1981) and a parabolic equation method based on
curvilinear, ray-fitted coordinates (Tsay and Liu, 1982). A
closed form solution in the linear, mild-slope approximation
has been provided by Liu, Lozano and Pantazaras(1979) and
has been compared to the experimental data by Liu(1982), who
found qualitative agreement between the linear theory and

experimental results.

As a first test of the parabolic models, we restrict
attention to linear wave theory and investigate the
difference in predictions between the 1linearized "Radder"

and "Booij" approximations. The computational grid is again
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rectilinear, with the x-direction oriented parallel to the
breakwater. Thus, waves incident on the grid may be
propagating at angles of up to 30a to the x-direction. Two
cases presented by Liu(l1982) are studied, and results are
presented for a y-direction transect 5 ft. shoreward of the
breakwater tip. In case (a), the wave period T=1 sec. and
tne incident wave angle 9°=20ﬂ, while for case (b), T=1.5
sec. and %=30°. Results obtained using the linearized form
of (6.2.9) with Pl=0 and PI=1/4 are shown in Figures 6.18
and 6.19, respectively, for cases (a) and (b). The results
of Liu, Lozano and Pantazaras(l979) are included for

comparison.

Results obtained using the "Radder" approximation
(P'=O) indicate an inability to model the diffraction fringe
on either the up- or downwave side of the breakwater. This
result is particularly apparent in the region adjacent to
the shadow boundary, where reflected wave activity is
minimal or absent in comparison to the analytic results.
Similar results have been obtained by Hasimoto(1982), who
used the original model of Radder(1979). In contrast, the
"Booij" approximation, with P, =1/4, is seen to give a better
indication of the wave field away from the shadow and

reflection zone boundaries, and indeed may overestimate the

size and number of fringes in comparison to the analytic
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Figure 6.18

Normalized amplitude perpendicular to
breakwater

-=== linear waves, P, = 0.

Liu, Lozano and Pantazaras (1979)
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a)T=1s r20
%25
8:20"

b) T=1.5s r2.0
%=5

Figure 6.19 Normalized amplitude perpendicular to
breakwater
---- linear waves, P = 1/4.

Liu, Lozano and Pantazaras (1979)
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results. The overall agreement of results obtained using
Pl=l/4 with the analytic results is favorable in comparison
to the results obtained by Tsay and Liu(1982), which tend to
underestimate the diffraction fringe effects. (This
underestimation may be the result of interaction with
lateral boundary conditions rather than limitations of their
approximation.) Both models are seen to accurately predict
the characteristics of the reflection and shadow zones in
the near field of the breakwater with the exception of the

shift of the first amplitude maximum towards the breakwater

seen in the "Radder" approximation.

The inability of the linearized form of the "Radder"
approximation (B, =0) to correctly model amplitude
modulations at a distance from the obstacle disturbing the
wavefield has consequences on the applicability of that
model to the study of nearshore waves, where longshore
amplitude modulations can be instrumental in establishing
cellular circulation patterns in the surfzone and nearshore

region (Dalrymple(1975), Liu and Mei(1976)).

The contours of amplitude and the breaker 1line are
given in Figure 6.20 for the conditions of test T8 of
Pantazaras(1979), assuming a breaker index of 0.78 and using

the "Radder" model. We note that the breaker 1line would
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undergo more on-offshore displacement with distance upwave
from the breakwater in the "Booij" model due to the
increased amplitude modulation in the diffraction fringes
predicted by that model. However, both models are adequate
for predicting wave activity in the immediate vicinity of

the breakwater.

We turn now to a consideration of nonlinear effects
in the wavefield. 1In particular, we wish to determine if
any Mach-stem effect is present in the reflected wavefield
on the upwave side of the breakwater. Nonlinear effects on
the downwave, shadow side of the breakwater would be
expected to be <confined to a slight increase in wave
amplitude in the shadow region due to increased diffraction
across the shadow boundary; see Yue(1980), section 4.3. We
choose conditions corresponding to tests T5-T6é and T8 of
Pantazaras(1979) in order to perform a comparison with data.
The test conditions are summarized in Table 6.1. The
comparison is performed using the "Radder" model (P, =0), and
we compare with data only in the immediate vicinity of the
breakwater. Tests T5 and T6 represent identical conditions
of wave period and angle of incidence and, unfortunately,
Pantazaras presented results for these tests in averaged
form, since he was only interested in the linear

approximation. Here, we will compare each test to the
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Test # 60 T (sec) Ab (m)
75 30* L5 0.0229
T6 30° i 1) 0.0344
T8 20° 1+0 0.0320

Table 6.1 Test conditions for shore-attached
breakwater (from Pantazaras (1979))
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average of the experimental data. Results for test T8 are
shown in Figure 6.21. Along the transect at x=2.5ft.,
nonlinear effects are weak and there is no apparent
difference between the two solutions. At x=6ft., there is
some evidence of Mach-stem formation in the nonlinear
solution, and the amplitude adjacent to the breakwater is
reduced by 9% in comparison to the linear solution. The
experimental data is somewhat more supportive of the linear
solution. For the x=6ft. transect, the Ursell number for

the wave adjacent to the breakwater is Ur=0.648.

Results for test T5 are presented in Figure 6.22.
Again, there 1is little effect due to nonlinearity at the
x=2.5ft. transect. At the x=7.5ft. transect, the tendency
towards the formation of a Mach stem is apparent. In this
case, the data of Pantazaras(1979) is more supportive of the
nonlinear solution. Here, the Ursell number for the
nonlinear solution at the breakwater is U,=1.99, and Stokes
theory is of questionable validity in this region. However,
the large value of Ur and the apparent formation of a
Mach-stem indicate the importance of nonlinearity in this
region. Waves in this region would be expected to be of
cnoidal form; waves of this class also are known to produce

Mach stems during reflection at small angles of incidence.
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Figure 6.21 Amplitude contours perpendicular to
\ shore-attached breakwater. Test T8;
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Amplitude contours perpendicular to shore-
attached breakwater. Test T5; T = 1.5 sec,,
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; Q 3
-=—- linear; nonlinear;
° Pantazaras (1979) data.




195

For both of the tests T6 and T7, which represent
larger amplitude counterparts of tests T5 and T8
respectively, results of the present study indicate that
wave breaking occurs before the position of the second
transect is reached, based on a breaker index of 0.78. 1In
particular, for test T6, the value of H/h adjacent to the
breakwater from the 1linear solution without breaking 1is
1.20. Values of H/h this large may occur for waves shoaling
on steep beaches. The broken wave amplitude resulting from
the present calculaﬁions with a breaker index of 0.78 are
presented in Figure 6.23. We note that the Ursell number
for this wave condition is too large for the wvalidity of

Stokes theory.

The present numerical calculations could be refined
by incorporating a variable breaking index in the model.
Various formulae exist for calculating Hyp/hp based on the
local bottom slope and parameters of the wavefield. This
body of theory and empirical results has been reviewed
recently by Mallard(1978). This extension to the model is
clearly warranted as indicated by the discrepancy between
position of the breaker line calculated here and estimated

from Pantazaras' data.
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Figure 6.23 Amplitude contours perpendicular to
shore-attached breakwater. Test T6;
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values based on breaking index k = 0.78
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6.7. Reflection from a Caustic: Topographic Case.

As a final example for steady waves in the absence
of a current, we study the incidence of a plane wave in
constant water depth on a symmetric, wedge-shaped
depression, with sides sloping down from the constant depth
region. The geometry of the wedge is described in Figure
6.24. The 1line of symmetry 1is taken as y=0, and the

boundary of the depression is given by

Yp = X fan 6 | (6.7.1)

where & is the wedge half-angle, and where the tip of the
wedge 1is located at x=0. The bottom slopes down with a
slope of 1:50 normal to the wedge boundary. The maximum
depth of the depression is given by 2h , where hg, is the
depth of the incident wave region. The incident wave is
characterised by k,h,=1.0 in the constant depth region
outside the wedge. For the cases considered here, a caustic
of the linear wave field occurs on the sloping wedge
boundary, and , in the far field (x large), the wave field
in the vicinity of the caustic would be described by the
Airy function, with an exponentially decaying amplitude in
the geometric shadow over the trench and total reflection of

the incident wave. The corresponding result for weakly



198

\\Zh//'
N\

Figure 6.24 Geometry of wedge-shaped
depression.



19%

nonlinear waves would be a qualitatively similar description
in terms of the second Painleve transcendent (Miles (1978)).
However, as in the case of the development of a Mach stem at
the leading edge of a reflective wall, the initial value
problem for the wave state in the vicinity of the caustic of
linear theory may be subject to the development of a wave
jump condition, as described by Peregrine (1983), and the
asymptotic result in qualitative similarity to the Airy

function may not develop.

As a test of this hypothesis, two wedge geometries
specified by 6 =15° and 0=25° were tested using the
parabolic model (6.2.9) with P, =0, with 1incident wave
steepnesses of k A =0.1 and 0.2. Waves are assumed to enter
the grid parallel to the x-axis, and the y boundaries were
assumed to be totally reflective, with one boundary located
at the centerline of the wedge-shaped depression and the
other 1located far enough away from the wedge that waves
reflected at the caustic do not reflect back into the
computational domain from the side boundary within the
x-distance used. Results for 0=15° and 9=25° are
presented in comparison to results obtained by the
linearized form of (6.2.9) in Figures 6.25 and 6.26,
respectively, where normalized amplitudes perpendicular to

the line of symmetry y=0 are plotted for k°x=40, 80, and 120
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kox = 80
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k x =40
) o]

a) kOAO = 0.1

Figure 6.25 Submerged depression, 6 = 15°
Normalized amplitude vs. distance from
centerline of depression
a) kOAO = Q1% B) kOAO = 0.2

----~ linear theory, Pl =0

nonlinear theory, Pl =0
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Figure 6.26 continued
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for each wave steepness tested. For the case of 6 =15 and
k,A, =0.1 (Figure 6.25a), the evolution of the nonlinear
wave in the vicinity of the caustic is not qualitatively
dissimilar from that of the linear wave. The maximum
amplitude near the caustic is seen to be decreased by the
effect of nonlinearity, but the generation of a reflected
wave and a large amplitude decay in the shadow 2zone are
apparent. For g = 150 and k,A, =0.2, however, the reflected
wave is not as apparent, and a broad region of waves which
are slightly higher than the incident wave develops in the
vicinity of the caustic. Wave amplitude decays much more
slowly towards the center of the wedge 1in the area of the

linear shadow zone.

The result of nonlinearity is even more accentuated
in the results for (°] =25°, where little reflection of the
incident wave is apparent for either incident wave
steepness. In order to accentuate the qualitative
differences between the linear and nonlinear results, plots
of the instantaneous surface for the linear wave field and
for the nonlinear wave with k,A, =0.2 are given in Figures
6.27 and 6.28, respectively, for a wedge angle of 6=25".
It is apparent in Figure 6.28 that a broad wave crest
travelling parallel to the caustic region has developed.

Peregrine(1983) argues that, in the event that the jump
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conditions develop, this wave crest must continue to grow in
width since the wave energy flux continually incident on the
jump boundary cannot be balanced by the flux in a jump of
constant width and height unless total reflection of the
incident wave occurs. It is therefore unlikely that the

wave field will evolve into its asymptotic state.

Since the principle conclusions on the evolution of
the nonlinear wave field concern the absence of the
development of a reflected wave, the results for the wave
steepness k,A, =0.2 and both ©=15° and 6=25° were
recalculated using the more accurate model (6.2.9) with
Pl=l/4 to insure that reflections were not being
artificially suppressed. Although some increase in the
magnitude of the reflected wave were noted, the results for
the region of the caustic, where nonlinear effects dominate,

were unaltered.
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6.8. Reflection from a Caustic: Current Case

As a first example of waves in the presence of a
horizontally varying current, we consider the case of a
linear caustic caused by reflection by a following current.
The results are then qualitatively similar to the results of

section 6.7.

A stationary current distribution is established and

is given by

i Gs.)
U(b;) = U > ¥0 8.1
%—%i’x’o(tygf’) j Roy =

V=0 (6.32)

Here, bU/}y is taken to be a constant for each experimental

case. The computational domain is given by

0= Ry =20

(6.5.3)

0O £ Rx S PDXH

Waves are incident in the region k,y<80 at an angle 8 to
the x axis, and open boundary conditions are specified on

the lateral boundaries. The initial wave field is given by
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iR, sin 6
A(O_;'ﬁ) = Aoc ] b,,%é?o Cé,t.‘ﬁ
& j Rey > 80
No waves are present initially on the current. The physical
situation 1is described in Figure 6.29, and represents a
straight wave maker oriented at an angle d to the Yy
coordinate, with a 1linearly varying current distribution
starting at the end of the wave maker and increasing in
magnitude with distance from the wave maker. The depth is

taken to be a constant, with k°h=l.0.

Snell's law applied to this problem requires that
the x-component .1 of the wavenumber vector be constant

throughout the domain, and .X is given by

A= B, cos® = coustant 4.8.5)

The wavenumber is then uniquely determined throughout the

domain according to

w=0 + LU (6.8.¢)

The position of the caustic in the current distribution is
also simply determined, and occurs where k(y)=.f. Since k

then equals k,cos @ at the caustic, the dispersion relation
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Figure 6.29 Reflection from following current
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may be written as

Yo
w = {%b,,(.o.f 6 favh (Roh cos 6) 1 + kW cwnb (.8.7)

or, solving for U,

}5Q

W= = 1ak.cab dash(ces)
k, cos &

The value of U at the caustic is thus uniquely determined by

the choice of W, which gives ko in turn.

Two sets of computations were run with 8 =15 and
T=2.30sec. for each case. The corresponding value of k, is

-!

lm ", and U at the caustic is calculated from (6.8.8) to be

U= 0.0753‘}1/n4

Calculations were performed using the numerical scheme
(6.2.11-12), and results were obtained for linear waves and
for values k°A°=0.l and 0.2, as in section 6.7. For the
first set of calculations, }U/by was set equal to 0.05, and
the caustic occurs at k,y=81.51. Results are presented in
Figure 6.30. For k°A°=0.l (Figure 6.30a), nonlinear effects
are relatively. weak, and there is little gqualitative

difference between 1linear and nonlinear solutions. For
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Reflection of waves from caustic
caused by a following current;
du/3y = 0.05, 8 = 15°

nonlinear solution;

——== linear solution

a) kOAO = 0.1l; b) kOAO« 0.2
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k,A,=0.2 (Figure 6.30b), a broadened wave crest develops in
approximately the same position as the first antinode in the
linear wave solution, with very 1little spreading of wave
energy beyond the caustic being apparent. The position of

the caustic is indicated by the vertical line in the figure.

A second set of calculations were performed with
BU/3y=0.025, representing a more slowly varying current
distribution. The caustic occurs at k,y=83.02. Results are
shown in Figure 6.31l. The increased effect of nonlinearity
for the case kyA,=0.2 (Figure 6.31b) is dramatic. A broad
wave crest develops in the region of the caustic and spreads
significantly beyond the caustic position. The reflection
of waves from the region of the caustic has also been
suppressed to a large extent. It is evident that a wave
jump has occurred, and that the conjugate wave state is able
to coexist with the current in the shadow region of the
caustic. The wave would be expected to decay with
increasing k,y due to the continual increase in current

velocity.

A possible explanation for the increase in nonlinear
effects with decreasing ¢U/dy is that, for progressively
lower current gradients, waves entering the current are

refracted more slowly and thus travel a greater distance
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Figure 6.31
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Reflection of waves from caustic caused
by a following current; 3U/3y = 0.025,
B = 15°

nonlinear solution

—-—-—- linear solution

a) kDAO = 0.1; b) kOAO = 012
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b)

Figure 6.31 continued
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before 1leaving the current as reflected waves. This
increased distance, over which incident waves and reflected
waves are nearly colinear 1in the vicinity of the caustic,
allows for a greater span of nonlinear interaction between
the individual waves and enhances the possibility for wave
jump conditions to develop. An analogous behavior would be
seen in the results of section 6.7 if the slope of the side

walls of the wedge were decreased.
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6.9. Interaction with Rip Currents

Several coastal features lead to the presence of a
narrow, offshore-directed jetlike flow. On a large scale,
ebb-tidal flows from inlets and river mouths may influence
wave propagation over large stretches of adjacent coastline.
On a smaller scale, narrow, intense seaward flows known as
;ip currents may occur on otherwise uniform coastlines, and
lead to the presence of on-offshore channels in the beach
face which may stabilize the rip current and contribute to
considerable offshore sand transport. In this section, we
study the interaction of an incident wave train with such a
current. As 1in the previous section, the flow pattern of

the current is assumed to be fixed.

In one of the first investigations of the influence
of currents on results of the ray approximation of
refraction, Arthur(1950) studied the interaction between a
normally incident wavetrain on a plane beach with a flow
field designed to mimic the features of a typical rip
current. With the coordinate x oriented offshore and the
rip centerline located along x and at y=0, Arthur's velocity

field is given by

-(X/76.2)7-1 - (%/Zéz)"/:z.

U=0.02295 x e e (6.9.1a)
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. — (x/76.2)%/2
V= -o0.2188 (2- (x/%.2)") e .

. C,VJL { %/76.27"{ f siqn (4) (é-q'fé)

where U 1is positive in the offshore direction and erf
denotes the error function. Current velocities are in
meters/second. The bottom topography consists of a plane

beach,

h(x)= 0.02x (6.9.2)

Arthur calculated the ray pattern for an incident wave
period of 8 seconds; his results are shown in Figure 6.32
for comparison with the refraction-diffraction results

discussed below.

Arthur's solution technique involved some confusion
over the relation between wave rays and wave orthogonals, as
evidenced by the straight "rays" to either side of the
narrow rip; the ray paths should be convected towards the
centerline of the rip by the longshore current perpendicular
to the wave orthogonals. Christoffersen(1982) noted this
discrepancy during his development of a ray-tracing
procedure for waves 1in the presence of a current, and

Jonsson, Christoffersen and Skovgaard (1983), using
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Christoffersen's procedure, have presented a corrected
version of Arthur's results which also include estimates of
the local wave amplification with respect to the incident
amplitude at h=100m. Jonsson, Christoffersen and
Skovgaard's results suggest a decrease in wave height in the
center of the rip; this appears to be a result of the
termination of several rays and a subsequent underestimation
of the local wave energy density. These results point out
the difficulties of interpreting refraction patterns in

regions of multiple ray crossings.

In this section, we use the parabolic model given by
(6.2.11-12) to investigate thé interaction between a
normally incident plane wave and a fixed current pattern
given by (6.9.1). The deviation of the free surface due to

the 0(1l) current is neglected.

At large distances from the centerline of the rip
current, the wavefield is characterised by normally incident
waves and a longshore current distribution with no
on-offshore component. Consequently, the wave crests and
shoaling characterisitcs should not be affected by the
current at lateral boundaries far from the rip. 1In order to
place the lateral boundaries close to the rip and reduce the

size o0f the computational domain, the 1lateral boundary
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conditions are replaced by a one-dimensional model for

shoaling waves, given by

A, -i(k-k)A +L G A +W A+iwk DIAIA =0
X ZC%. x ZC? Z

(6.9.3)

which is just the one-dimensional counterpart of (4.4.4).

Breaking is included in all calculations in this section.

We first consider linear theory. As mentioned in
section 4.4, the parabolic approximation for wave-current
interaction derived by the splitting method contains errors
in y-derivative terms. We first compare results obtained
using the approximate equation (4.4.33), written in
finite-difference form as (6.2.11), to results obtained
using the correct equation (4.4.7), written in a similar

finite-difference form. The computational grid is given by

O0s %' = 297 m ; 81.28 = Y s §9.25m

with x'=0 located offshore and the shoreline located at
x'=300m. The values of ax and Ay are 2.5m and l.5m,
respectively. A plot of the instantaneous surface elevation

for an amplitude Ao(h=6m) =0.1lm and a wave period T=8sec. is
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Wavefield in presence of rip current (Arthur, 1950).

Linear model results; T

zone included.
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8 sec., AO = 0.1 m.

Figure 6.33
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given in Figure 6.33. Note that the wave amplitude is
strongly amplified along the centerline of the rip, and that
discontinuities develop in the wave phase surface, leading
to the presence of nodes in wave amplitude along the lateral
boundaries of the core of the offshore directed rip. The
amplification seen here is in direct contradiction to the
results presented by Jonsson, Christoffersen and
Skovgaard(1983). Wave breaking occurs on the rip centerline

at x'=240m, or 60m from the shoreline.

The region of strong amplification and large
currents along the centerline of the rip is likely to be a
good indicator of the amount of error involved in using the
approximate equation (4.4.33). Linear wave results were
obtained for an initial amplitude of Ay =0.0lm and T=8sec.
using both the exact (4.4.7) and approximate (4.4.33)
equations. For this amplitude, breaking is confined to the
last shoreward grid row. Plots of amplitude relative to the'
incident wave are given in Figure 6.34 for transects y=0
along the rip centerline and for values of x'=197.5m,
222.5m, 247.5m and 272.5m. The results show a decrease in
maximum amplitude in the approximate solution relative to
the results of the exact equation in the region of strong
focussing near the shoreward end of the rip, indicating a

loss in wave action density due to the errors in terms
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interacting with rip current. Comparison of
results of exact equation (4.4.4) and approxi-
mate equation (4.4.33): 1linear waves
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o |

owwy

226

i x' = 197.5 m

-80 =40 0 40 80

x' = 222.5 m

RN

-80 -40 0 40 80

y (m)

Figure 6.34 continued



227

1 1 J

-80 -40 0 40 80

y (m)

Figure 6.34 continued



228

involving the y velocity component V in (4.4.33). These
results indicate that it 1is not desirable to use the
approximate form (4.4.33) if detailed estimates of 1local
wave amplitude are required. The transects for constant x'
values clearly show the development of the node in the

amplitude as the discontinuity in wave crests develops.

Due to the strong wave focussing in the area of the
rip current, nonlinear effects are also 1likely to be
important in this example. As in several of the cases
studied 1in section 6.6, nonlinear effects occur in this
example at Ursell numbers too large for Stokes wave theory
to be valid, if reasonable values of initial wave amplitude
are chosen. In order to investigate the effect of
nonlinearity in this example, we incorporate the effect of
amplitude dispersion in the model using the empirical
dispersion relation of Walker(1976) . The effect of
nonlinearity is included in the model by using the.
linearised governing equation but calculating k based on the

revised dispersion relation, as suggested in section 3.5.

The correction to linear wave theory is given by
Walker as a modification to the linear phase speed.

Walker's phase speed C,, is given by
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Cw=c(l+-—?’_--f-£i) ¢.7.4)
in the present notation, where C 1is the phase speed
determined by the 1linear dispersion relation. Walker
obtained this one parameter fit by comparison with data
obtained from laboratory waves shoaling on a plane beach. A

dispersion relation may be determined from (6.9.4), and is

given by

w",__cgkw(u-—lz.i?i) %mﬂ{kwé(f* %) 629

Walker's modification is purely empirical and it is
desirable to gain some insight on how his results compare to
theory. 1In order to provide this information, we compare
results for Walker's phase speed prediction to values given
by the stream function wave theory of Dean(1965), which is
valid for all water depths. Values are compared for a range.
of local wave heights relative to the local breaking wave
height as determined by the stream function theory, and for
a range of relative depths h/L‘, where L, is the linear deep

water wavelength given by

L= aT" . 219 (e2.)
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values of H(=2|[A|)/H, Of 0.25, 0.5, 0.75 and 1.0 were used.
Stream function values were obtained from the tables of
Dean(1974). Results of Walker's modified phase speed are
presented as a % error relative to stream function theory in
Figure 6.35. Linear theory results are included for
comparison. The range of h/Lo values relevant to the
present problem extends from 0.060 for the offshore boundary
to 0.012 near x'=240, where breaking occurs in the linear
theory for the choice Ao=0.lm. It is apparent from Figure
6.35 that Walker's modification provides a significant
improvement over linear theory except for the region close
to the offshore boundary, where wave amplitude 1is small.
However, for small amplitudes the relative error in either
Walker's or linear results are on the order of 2%. It
appears that Walker's empirical formula provides an adequate
estimate of the phase speed even for steep waves near
breaking. We remark that it would be.desirable to obtain
more detailed forms of the empirical dispersion relation
designed to cover the entire range of depth wvalues, since
Walker's relation is suitable mainly in shallow water and

approaches linear theory asymptotically in deep water.

For the present application to wave-current
interaction, we modify Walker's dispersion relation

according to
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w=R,(Cotu) = 0, +h L 6.9.7

where

Y
G, * {%kw ([4— -Lz%-‘-)‘f'mrly[k’w!a([* %-{)]]

The wavefield for the case A°=0.lm and T=8sec. is shown in
Figure 6.36. Plots of amplitude for the same transects as
in Figure 6.34 are given in Figure 6.37 in comparison to
linear results. The transect at x'=272.5m is 1inside the

surfzone for both the linear and nonlinear results.

It is apparent from Figure 6.37 as well as from a
comparison of Figures 6.36 and 6.33 that +the effect of
nonlinearity due to the empirical shallow water dispersion
relation is relatively subdued in comparison to the striking
examples of sections 6.7 and 6.8. An invalid application of
Stokes theory to the present example leads to the prediction
of strong wave jump conditions in the region of the rip;
this effect 1is absent from the present calculations. The
nonlinear effects are 1limited to a reduction in wave
amplitude along the centerline of the rip and a slight
broadening of the region of focussed waves as evidenced by

the position of the partial nodes 1in the amplitude
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Figure 6.36
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transects. The results are similar to the nonlinear
modification seen in the data for waves passing over the

elliptic shoal in section 6.5.

The results of this section indicate that it may be
possible to make use of a variety of dispersion relations
within the context of the linear wave model in order to
model phenomena beyond the limits of wvalidity of Stokes
theory. Before any conclusions regarding this possibility
can be drawn, it will be necessary to investigate the
behavior of the models in comparison to existing or future
data for waves propagating and shoaling in shallow water.
The benefits to be achieved in the event of the wvalidity of
this approach are clear, since existing numerical approaches
depend on the use of Boussinesq or Korteweg-deVries
equations, which require more involved computational

procedures than the parabolic equation method used here.



CHAPTER 7. SUMMARY AND SUGGESTIONS FOR

FURTHER RESEARCH

In this study, we have sought to provide a model for
progressive surface waves 1in the presence of a large,
horizontally varying current. The formulation includes the
lowest order effects of nonlinearity in a manner consistant
with the Stokes(1847) expansion in a small parameter based
on the wave steepness. In addition, the depth is allowed to
vary somewhat more rapidly than in the traditional mild
slope approximation, and terms proportional to the square

and derivative of the local bottom slope are retained.

In Chapter 2, we obtain a solution for the velocity
potential for a plane progressive wave to 0(&1) in wave
steepness and O( 3) in bottom slope. Then, wusing the
variational principle of Luke(1967), we obtain a Lagrangian
governing the entire fluid motion in the absence of viscous
effects, given in Chapter 3. Variations of the unaveraged
form of the Lagrangian with respect to the unknown dependent

variables, following a perturbation scheme developed here,
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yields equations governing the instantaneous fluid motion.

The lowest order problem reproduces the nonlinear
shallow water theory governing the 0(1l) mean motion. This
result could be further expanded for the case of small bb/ho

to yield the Boussinesq equations.

For the leading order wave motion (O(¢.)), we obtain
an equation including terms to 0(63) in gl and :{’;, governing
the potential g:. Invoking the simplifying assumption of
plane wave motion reduces the nonlinear contribution to a
coefficient proportional to the square of the local
amplitude multiplying the potential ;‘: . This term has the
effect of modelling amplitude dispersion arising at 0(&3).

; i L : g ;
Interaction with the mean 0(€&€ ) wave-induced motion 1is also

included.

At O(Eﬁ, a set of forced equations representing a
free surface boundary condition and continuity equa£ion for
the entire Otel) motion is obtained. Taking the mean over a
wave period yields the continuity equation for wave wave
induced mean flow, as found by Whitham(1962), and a forced
wave equation governing the 0{&1) wave-induced flow is
obtained. Retaining the the full equations at 0(&}) yields

equations which could be used to calculate the forced second
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~
harmonic of the fundamental wave da.

The resulting formulation is a correct
representation of the governing equations for plane
progressive waves in the absence of strong reflection. This
is demonstrated in Chapter 4, where we show the
correspondence between the second order wave equation
formulation and the nonlinear Schrodinger equation governing
the evolution of the amplitude envelope. This
correspondence points out the potential capability for
modelling wavefields with narrow-banded frequency spectra
and an identifiable carrier frequency. However, in the
remainder of this study, we choose to limit our attention to
steady, monochromatic wavefields. Parabolic approximations
for waves in the mild slope formulation are derived in
Chapter 4 and used to study a number of examples in Chapter
6. A detailed comparison with laboratoty data for the case
of waves propagating over a submerged shoal demonstrates the-
validity of the parabolic equation method and indicates that
accurate solutions may be obtained using this
computationally efficient method. This result has
significant bearing on the potential for development of wave

models for engineering application.

In contrast to the case for progressive waves, the
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formulation contains basic ambiguities in the case of
arbitrary wave motions, both in terms of the evaluation of
several of the second order terms in the bottom slope as
well as in the evaluation of the wavenumber for the case of
waves on a current. Both evaluations require that the
direction of a wavenumber vector be specified relative to
the direction of the current vector or vector gradients of
various quantities in the physical domain. The model does
not directly calculate the local wave direction, and, in the
case of partial standing waves, this quantity is not well
defined. The problems associated with this ambiguity are
pointed out in Chapter 5, where we study the reflection of

waves by steep depth transitions.

One path along which future research could proceed
is towards removing some of the limitations of the present
theory. An expansion of (P without assuming a plane wave
form of the solution a priori may alleviate the difficulties.
encountered in Chapter 5. Further, the 1limitations imposed
by the assumed irrotationality of the motion should be
investigated and, if possible, eliminated, since it is clear
that most physical cases of interest will involve currents
with rotational velocity distributions. Finally, although
the effect of viscosity is neglected, we have shown that it

is possible to effectively parameterize viscous effects in
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the model simply through imposing the condition of a complex
frequency or wavenumber. The resulting equations are able
to effectively model both gradual and strong dissipative
effects including wave breaking. For applications to large
scale problems, it would also be desirable to include the
facility to allow for wind generation of waves as well as

deep water wave breaking due to excessive wave steepness.

The parabolic and Schrodinger equation wave models
as formulated here are suitable for direct use in models of
wave induced circulation in the nearshore region. Most
currently existing models such as those by Wu(1983) and
Ebersole and Dalrymple (1980, see also Kirby and
Dalrymple (1982) for a recent summary) use a
finite-difference refraction scheme and solution of the wave
energy equation to provide the local wave amplitude and wave
angle for use in the momentum equations for the mean flow.
These refraction schemes do not allow directly for-
diffraction and do not provide detailed information in
regions of strong focussing and ray crossing. The models
should therefore be especially useful in applications to
regions with strong currents such as rip currents and ebb

tidal flows from inlets.

The limitation of the validity of Stoke's theory in
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shallow water places a severe constraint on the general
utility of the models formulated here. Most real waves in
the nearshore zone are more appropriately modelled by the
Boussinesq equations. However, it has been shown in section
6.9 that models of a more empirical nature may be developed
by the direct substitution of any given dispersion relation
into the linear form of the governing equations. It may be
possible to develop methods by which the basic linear
propagation model may be made to mimic any desired real wave
process (such as the propagation of broken waves in the
surfzone) by a suitable choice of dispersion relation and
dissipative mechanism. It is not clear, however, that such
a model would be capable of maintaining a proper balance
between relevant quantities such as amplitude, energy flux

and phase speed.
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APPENDIX A. THE STOKES SOLUTION TO O(S) IN THE

PRESENCE OF A CURRENT

In this appendix, the series solution of Chu and
Mei (1970a) is extended to include the case of an O0(l) mean

current U(x,t), given by

E& = ‘Q 4{ﬂo G*J)

where tb_lotz',z,t) is the leading term in a Stokes expansion

and is o( €™

). The term ¢hbis assumed to be slowly varying
in time. The ambient current is then of O(E‘FIS), or;
equivalently, O(1l) in the present context. In this
appendix, the notation of Chu and Mei(1970a) is used for
convenience, with the consequence that the ordering

subscripts for quasi-steady terms and Of g ) contributions

are respectively one order smailer or larger than in the

main body of the text.

The series solution of Chu and Mei for 4> and 7 is
given by (after substituting the modulation scale § for the

equivalently valued parameter E where appropriate)
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A . A
b= e, e +k « 5, «Fede <k

2;.““
Letp e 4 K oo (A.2)

4 Py
+ ¥+ ﬁzrzm + Qerz,_,e + *

?== € ?” e
+ et 3 cz.d'l‘z_x o @3)

where

o _ 2 3 2
4%: = é&f? Ay §u> y q&22== ’°7£?a4u j;o
(#2, N '"Ef%-/qu (/°4 w ¥ CQAJ;Z +‘“}j;?> 64-99

and * denotes the complex conjugate of the preceeding term.
The terms fID -sz are given in (2.3.2) and (2.3.5). Here,

the c{’s are given in terms of the absolute frequency W :

v (2)] »

2k f_u)z

(7%

&g =

The lowest order quasisteady term in the expression for 4}
is 4%0' which is related to the second order wave-induced
current. It is desired to alter the expansion to include a

(
term of O( € ) which 1leads to an O0(l) current U upon
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differentiation.

For the standard, slowly modulated form of the
Stokes expansion, neglecting ¢Eland Q?,, it is well known
that the inclusion of a constant mean current U leads to an

expression for the relative (or intrinsic ) frequency g,

o= w-RU (A.€)

The terms in the expansion of 4> are merely adjusted to
account for the frequency shift by means a Galelean
transformation; see Thomas (1979) . Thus (#“ and ¢%2 are

altered to the form

. ]
c#” - P'fzi? A”ﬁ’ ) C#22"""‘ s _%Q.“ANCZD @.7)

We must now determine the corresponding form of the fast
modulation term 4%1, as well as any higher order terms due
to the addition of the slowly varying term at O é-'). As
mentioned in Chu and Mei(1970a), we may obtain this
expression in the context of an expansion for linear waves;
this is particularly clear if we consider ‘#ll as a term of

0(€:,S ). Correspondingly, we choose expansions of the form

( see Chu and Mei(1970a))

P-e'd « ¢, f &S eim% (A.82)

= e -y
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and

- ; P
‘?"’ ‘Qoo il X (:«' E 'vaf. < (A'%')

a=| e

where ]m! <1 since we do not need to consider the higher
harmonics arising in the nonlinear problem. The governing

equations are written in the form

d)xx t Gy T Y T C ~hy 5241 i ita)

by + b b, = 0 eechy  (AA0)

b +qd, + (% ~Avbo)lotl z0 ey 29

after elimination of Q' from the free surface boundary
conditions. Equations (A.9a-b) are sufficient to obtain the
results desired here. The free surface boundary condition
is used to provide consistancy conditions which will be
obtained separately by the variational approach in Chapter
3. As an exception, we will use (A.9c) to verify the

dispersion relation (2.1.6).

The expansions (A.8) are substituted into the
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equations (A.9), leading to the set of equations

y
Ciyﬂwb 2z %zk Cf)own = R«.m ) ~h,c2< 1, (A.loab
iatwtzz = E;*L ) €= _'Ao CAJDED

%q{)ﬁ.ma - %zwt am,: 69:.“ ) 82760 (A,{Dc)

where, for each order n, the terms R, G, and F are
determined in terms of lower order quantities or corrections
to the absolute frequency W . The Taylor series expansion
of the free surface condition (A.9.c) is made with respect
to the 0(l) free surface position z= Q,M since this 1is the
total depth occupied by the currentﬁ%cﬁmin the absence of
waves. We define a shifted vertical coordinate z'=z-;ba;
the free surface conditions are then applied to the position
z'=0, while the total depth influencing the wave motions is

given by h=h + 1/, . We find that, to lowest order,

R, =F,=6, =0

]
and (A.l1l0a-b) are satisfied by ?Lm=<#_w(x,y,t). The lowest

order componant of the ambient current thus does not vary
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over the depth, which is consistent with the neglect of

friction in the formulation.

Turning now to the problem for m=0, n=0, it is found
that

Ry = Fo = Guw =0

00 oo
leading to a homogeneous problem for:%m. Foda and Mei(1981)
have used ¢O° to allow for the resonant growth of a 1long
forced wave driven by the O0( &) wave field. This effect is
not central to our present concerns, and we neglect é%o.
The problem at m=0, n=1 is altered from Chu and Mei's
problem due to forcing by the n=-1 current, and the

coefficients R",, F, , and G,, take on the values

lo

1o = 7 vldz d.)"lo

ED - -vh L‘b ’ ‘7‘1 é)-m

and

Gp = - Cl)"'"et -~ (d)""’t) "'li 7;14)_»\?;‘ (lv;.é)mll) -%rzwvl':ci:_“

whereas in Chu and Mei's study the corresponding problem is

!

homogeneous. The inhomogeneous problem forﬂﬂois given by

Po,. = Rio ~he# 0 (Adla)

O&C#n% = Ga‘o 2{'-’0 (A.f“a)
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and
& — F '-t'!-': "*lﬂ (A.”d)
|0 lb
z
In previous studies where the largest current is
smallexr than O0(1), has been identifiable completely as

the wave-induced current component. Here, the homogeneous
solution of (A.13), denoted as Lh: , will be identified with
the wave induced current. The remaining problem for the
particular solution ¢:’ can then be solved directly using

(A.1l1 a,c), leading to the result

cf/’ = - (he2)

Io T

vib, - (e )%h%e, (AR

74

The potential Vo

represents a higher order
correction to the 0(l) ambient current, and could play a
similar role in the overall wave-current problem as the
wave-induced current &; ; in the sense that both may lead to
small wavenumber corrections at third order through wave
current interaction. It should be noted that tﬁi is

essentially an O( § ) correction to #ﬁ, as is and in

u !
that sense can also be dropped from consideration in the

context of a mild-slope formulation.

Turning to the problem for the wave component at
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n=1, m=1, we find that R“ =B, =0, while

Gy = {20k-Td, + (k9d) 14,

Using (A.6) as a definition for O , the free surface

boundary condition (A.l1l0c) can be written as

n

%qgl"z = & y e e'=0 (14.!'3)

The solution to the homogeneous problem (A.l10a-b) 1is given
by

C#,, = '%%5} /q;.fﬂb

in agreement with (A.7), and the value of the coefficient
has been chosen to give an amplitude A, for the linear wave
component. Substituting Cb“ into the free surface boundary

condition (A.13) gives the result
0 = gktwh kb

thus verifying the dispersion relation given in section

(2.1)

At n=2, m=1, F“ and RLI take on the values



265

le " -Vih {"‘E 47“ } L’.-—h
Rz:

= -4V, - {kb ] -ik b

The solution for #Zl is then given by

/

Z
4)_“ = Cos[’lk(”ﬁaf) Cl —#IR,_, Jib;ak(h-f-E)o{E o

—

{

Z

+ sivh k(hez)d c, +“é‘i Ry cosh k(l'*E)dE} (A.14)
~h

where c[ and Cy

solution, and where we have used the method of variation of

are coefficients of the homogeneous

parameters (see, for example, Hildebrand(l1976), p.24-26).
Application of the bottom boundary condition (A.1l0b) gives

the result

while c remains formally arbitrary. After performing the
required integration and choosing a value for <, consistant

with the form of 4% , 4%115 given by
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49?_; = _%?g Au fo "%éu ol,k(h*g")jc;o +

¢ ok (he) sih blhee) | ablhez’)] £, ]
cosh kh (A.15>

Neglecting the homogeneous term in Az; leads to the solution
of Biesel(1951), corrected for the presence of a current.
Chu and Mei(1970a) noted that ¢El becomes unbounded in the
limit of deep water. Therefore A, is retained and chosen
so that ¢b remains formally bounded in the deep water limit,
yielding the results of Chu and Mei corrected for the

presence of a current:

4’21 = _—%éﬂ {C‘Zf J[n + oy JC:z t+ oy n} (A1e)

where c4z_is given by

o R

2k (4

o,

The appropriate form of the wavelike componants of Chu and

Mei's solution is thus obtained for our study simply by
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replacing the absolute frequency (& by the relative
frequency ¢ in each term in 49 . It should be noted that
sz will in general be a function of the variation of the
0(l) current, thus greatly complicating the expressions

involving of, and derivatives of X, .

The results of the perturbation expansion give the
form of 4? and rz required for the problem formulated in

Chapter 2. They are given by

_ i :
(i)‘ﬂ Sl‘i[’-m +eci?”€, + ok veb ue-ﬁﬂé**"'

/ p 2;4
.. 3 4 5
+S€4>f° +S4’,° + € uc ol

(A.174)

and

A o
VZ: ?°°+é'2lf€ e +65’2“6 ok

- 5 5 ZJ’?
*&'250 "'8'27.4 +e722€ + ¥ + .

(A 17 b)

where the two values of 2& correspond to the split of (hb.



APPENDIX B. PERTURBATION METHOD FOR THE LAGRANGIAN

The Lagrangian L for an expanded dependent variable
f= é“fn , n=0,1,2,..., may be derived by substituting the
assumed expansion for f into the appropriate form of L. By
retaining tne ordering parameter € , L may then itself be

expanded in the form
n
L=¢ L,n ; w=o0 (B.1)

If L is in general nonlinear, then lowest order terms which

are quadratic in f, will appear first in L subsequently,

wn

variation of L with respect to f

20 leads to a linear

n
governing equation for f,s containing foréing terms
involving lower order terms fyr m<n. The exception to this
rule may occur at O0(l), or n=0, where the governing equation
for an 0(l) quantity f° may not be reduced to a linear form;

this will be seen in the problem for the ambient current in

Chapter 3.

As an example, consider the one-dimensional Duffing

equation:
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7z+f+e)(3=o (B.2)

A Lagrangian corresponding to (B.2) may be written as
4 2 4
B A MY (8.2
2 2% o

Here, ( ) denotes differentiation with respect to the

independent variable. Let an expansion for f be given by

f: éﬁ'jcm' s e=z0o . (8.4)

(B.4) is then substituted into (B.3) and ordered into the

form (B.l), where

Lo= £ - S (35
Ly =l — Ji% - 4, (B.5b)

i

7L
Li=f - h + £f o hh-Lh B

ete.

Proceeding in a consistant manner, the lowest order

contribution to L, given by L, , is varied with respect to

the lowest order unknown contribution to f, given by f 4

r

yielding, after partial integration

h # fo = ik
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Then, regarding fo as known (as determined by (B.6a) ), the’
next lowest order term L, is varied with respect to the
lowest order unknown fI , Yielding (B.6a) as a redundant
condition. Thus L, . which is linear in the lowest order
unknown, yields no information concerning the unknown.
Then, LZ_ is varied by the still unknown fl ;, Yyielding the

governing equation

fef e f, =0 (Bc)

This process may be continued indefinitely. (B.6a) and
(B.6b) are identical to the results obtained by applying a
regular perturbation scheme directly to (B.2), and (B.6b) is
known to produce a secular result, which may be removed by a
stretching of the independent variable. For the water wave
problem to be studied, the corresponding secularity appears
at Of ezﬁ , resulting from Ly i since it will be sufficient
to carry the calculations to Ly o+ the perturbation scheme

will be regular in nature.

While the treatment presented here for the Duffing
equation does not represent a computational advantage over
the normal procedure of perturbing the governing
differential equation directly, the advantage becomes
apparent in the case of problems containing cross-spaces,

where the form of f is known and separable. Then, use of
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the Lagrangian integrated over the cross space leads
directly to variational principles governing motion in the
propagation space. The corresponding governing equations
are obtained in the multiple scale expansions as solvability

conditions related to higher order inhomogeneous problems.



APPENDIX C. DERIVATION OF L AND THE EULER EQUATION

i~

FOR ¢h

Due to the complexity of the calculations leading to
the expression for L and the resulting Euler equations, the
derivations are presented here in some detail, with L being
In section 2, the Euler equation for

derived in section

1'
I~
the wave component &ﬂis derived.

C.1l The Lagrangian L

The series form for 4) and Q are given by

~

d = 57, + effo-iS(tfuttifatetsfs)] § ¢

ey e fu - (Heen)t +0@)
(c.1.1)

and

yzr- b, + N + e"’(?,_+ b, )+ 0&*) (c.1.2)

Also, ¢; is expanded in powers of S to give

272
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C#o/ + . & ! (.1, 3)

¢

where

4)0,' (% ).&) | (e.44)

/
P,
and

u (2 / y
qlxb = = h;&) V;ch g (A+z>v,,h.v,, ch,
(o)

The evaluation of L requires the quantities d% and'vé,

which are given by

3 ~
L g & T ‘
d)& » § (f)ot 4 S c#bt + & (jclb -»S\éof\nttj > Q!?!.t

rey, cffud, % -Eh

¢

(e.ib)

Iin 8 )
where we have invoked the condition that éjat of the ambient

3
current is O(S ), and

v4

thl) W clbg fét

Lt

v, b, sy 4, + €SV, {DC,, -.cSJZMoJJf,J-} ¢,

3 ~
+effu-iSZ il Vi +
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© et 4, ],@a (c.1.7)

b 2
The expression for (V(f)) only needs to retain terms to

kS 1 q i -/
0(&",5) and 0(¢&'), and can then be written as ( where 3 s

have been dropped for convenience)
(_v%f = (V4 £ -wmd el(v;,f,,)’“%z
g 2
z
e év ‘7[2.0 (V;a j‘g_g

FeGF GG G +eFUS-E Vb

+EFwd) + '@
: 2

P ARV LN Y Y

veif v b Vh , + e, v b v

+ e‘{jmv;,F- /&(me)f—i oﬁﬁj}'&r%)%

e (Vfnh )& ¢ 4 (G k) G
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* &:2{m (Vz1fu>'sazg >‘¥; L 63 p:fu (Uﬁga‘vigi')

e, (G4 mE) (4, ) KT

2z

P
<+ é‘f 3(2:-& ﬁ + € F-E C#o[/a % + 61 20g c#:; g;z.
i

+ e* F:'& J(?—”a 4’1 4)2.

w[:.%—?

(] T)

where

F = fWu = X—:%_ C{Lfs (C'L‘?)

j::

The expressions #@ ,Qgélt and gz must now be integrated from
the bottom to the ;istantaneous free surface rz . The
integrals of the known cross-space dependencies are
expressed in terms of the symbolic values G and Ai , which
are defined in Appendix D and evaluated where neccessary.

The integration results in

7
II =/g%d% % ; - 111
~ho %% %_f
= gq(b'=he) 1 eqbup, + igbulben)

i ézﬂ%‘:z > 63(3,2r (,?14.&;,2)4-(:‘!%(2,:6;32 (. 1.10)
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Q ' 7 ~
IL= [Cbt dz = C{)oé (ha“"Z) 4 é{éb "A'-JZ_:—‘MJ GJI C}l)‘t
"'ha
Ce b v,
U, ) (H+er V) .1

and

f"’z‘ 'Z 2 ~ 17
= G"u*’z)(vh éo" )1 ot 62 G’VoVo .C_EL “"&1/;:0(3 (v;;é )
z 2 <he 2z
I\ 2 ~ X 1 / N
" eq(ho*?>(vil 4":, )+ é-q/é (v;, q[":.) “'[vhé’,vh 4’0 4z
2 % 4

Y - " ,
+evh4>:‘£v,,ma 4 vefbiziCilnd v
1 y i / /
+e[3f,‘,vhc{>,, Az -'thh +el{hb+7)v‘h41,-‘7h4ﬁ
—{10
I " & 7" ™~
+&1(V;14/°'Vh‘#_ )(l?o+‘2> '*'&/3\711?14 Viy‘fl)z
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+eYG

Vo

J—.'

'Vh‘i););: ki ezé‘bw'vh%>% '*_ég ov'wl;:)%—

~

,,,Zozé?? qb v, 4 ce' by b vid

"a
i T I
‘e | R, de q% + € /fuichaxz &
—h, ~he
3 TT
n éz{ﬁo ; ﬁjazraﬁ@f {4 ¢
(c.1.12)
Here , the remaining integrals are given by
_{F Az = G,, Zﬁffazjé —EJZ;OJ o/kc;kj (,,J.k=(%
‘ (B.12)
7 2 i 3 "
/Fz At = 6y, ~2LE o ZZococ n (c.1.4)
2 Jz=! ket j® J k J
d K 3
/W,Fa(z ol L z(de)GJ -»JE%VLGJ c.1.18)
g ™

o

The integrals G and _&# can be expanded about the

0(l) mean
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water level according to the expansion
G s ¢’ +é?' 6* & éa_{?!z(’m*(?“ BL)G.&’} »
+e3{yzlsem + 29, (N +by ) '”} (c.1.16)

as shown in (D.1-3), and similarly for ﬁ . The integrals

containing “t’ are evaluated here.

“4/7 ,,za(ze/(é)a’%+)2(¢) { "?:».L )C),

e
(]

’_}L( W)+ @) () *

ten, [W-(hv,,é,,’)] + e‘g:zi_lsa)[\a-(hvh&j)] ’
ST )w w4 (e

where Y2!= lq -b,, ;

'? / i
_{;,F;Cb"* dz = J + (e?, + e’{;?ﬁbl)){"ﬁ?;,-[hw,cﬁ;)} C—): +

+ inl"jhef order terns (C-f. Ii‘)
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where &
I

T'= thE'q‘:,e Az

1 - ,_
/J&oz G, dz = Tems io L of O (e, 5")
~he

"

[@4' 54 - - (mgla)w(Ewd)

~fen + e(peb)]
@d-w- (e

e (%, 8-9 )% - (h9d) )]

+ Iqiahcr order terns (C.{. !‘?) '

1 e
{ﬂ'v}'#"’" e = Hf“ = V"{Vh'(% Vi A )} 1, + higher order Terns

=y’ ey ‘#:L 0 (€. 1.20)

where
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We also note that the terms Cg, andlsov; may be combined

to yield

’ 7/

GVo.i- " GOV,{: = vh 0i "'JC:ojCMIV’O (C.!.'Zl)
~h

The Lagrangian is constructed by adding the terms I]

through I3 and expanding the integrals G and lﬁ . The

final form of L is written in the expanded form

L= Lo -l-é!_' + e,zf_,_ +5_3L.5 +eVlyw ...

where

= cg@i;__hf_) « Wl bs,-, +(&i{)l} +_%f.(vh"c{>j)l
“‘-Q-Vm’-%{%-(m%ﬁ ~hin v (v )]

abpy + bl % MG ]+ (% (b))
{G deG?D“L’ -1 Vs v;,{vh (E v )

b Gy i i oy a2 6 ] &+ T < HwE,
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L., = c;_g,_z +3bo(?z+b,_) + VZ[%%L +,5’%?

b, BT E %] + O, &

P

+(C7’ 'vh% ) :E: “F (}?1+b2>{ djo!t +%(Vh4>;)z__ a,bz

oo

+ by Gid & (»314-6;){‘7;,-(;:%,4»;)}2
HT 4% (ha & ) - 6w (w6,
(k) (%8 5w (£ 9, 4. )

~(%, &%, % (k3 8)) 9
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+{Go'; - 2@\}20{;,% —-gdf_ ol oty G\;k}(‘&‘i’,)
2l 3l = "_"""‘—'2
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Ly= gp(g+h) +n{d, +vd nd -%]
D e ':.DH' & ‘o Vg
+(}21+bz_)—i + G, V'Dié o'V d, 4
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(—?QE) +('21+b1)2(4> “ Vb %4, "'XL} +

*h(g,d ) + (2, (714.;,1)(,;%7,%;?)%? +
A

e((queb) A e A") -g%’—l AR

2

(b6l 4 e E) ey Al w T w
2.

:HN

""N'?:.*b )G'oo * C’Eo )é!. * '2: 4’: 2
YT Y S '
3 &

These are also given as (3.2.1-5) in the main body
of the text. Here, the operator D/Dt is a total derivative

. / q[)!/
following the 0(1) mean flow ([ = Vj( ¢, + 10
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C.2 The Linear Equation forth to 0( § )

~

Varying L, with respect to ¢: and performing the

partial integration leads to the expression
/ o / ~ ' o
) —g—gf "'(Vh ,(é-) ?I ¥ Gvov'o Ch * Povo V;‘ch B v" ' { G“" } d)l

" 3 3 / -
-w- ([0 - 2 oG ~ 2 4=, Cpk 1G4, |

Jmt kst j=t
/ 3 2/ 3 3 e
+{G:° “ Jre o God' "tEJ;. o) oty G’Jk }d’:
J'I s 1=t

iR E G ~GhZ 4fdil Fad

J'Bl -

Zil%f»ﬁj_)h] $1 =0

K7 2%_:1-@;- + . h
+"’"v1:1 {[Vhl}:; d 4 h I (C‘Z'I)

Expanding slightly and performing some cancellations leads

to the form

!

~Dg, -y 3 - (6ah) + oo Cm] B

+Vh{2£édjézj}'vi,‘{’| »

3 , 1 3 .. -
+{2;§djéoj +§d-2,°‘/\idk Gdk}v;lqb, +

1 2! 3 % s ~
+£ 2,:.;04 Goj = Zgg{] oty Gk ¢ =0 (c.2.2)
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' R z M
The terms involving C‘J’Qh are 0(%), and, in those terms,
F o

20 2 - :
§i¢;may be approximated by —kch . Defining the quantity

/
;}Jk = ;?zéd; + G%;

we rewrite (C.2.2) as

D -G« G - felad]

F

2
The term ‘a 4: may be expanded according to

o~ g r~
th(,f;l - -—qufa, % Z;E.VH 4;, + O(EL) (C.Z."O
where‘ﬁ; is defined in section (2.3) and is related to the

N
spatial variation of the amplitude of éﬁ. Noting from

Appendix D that

/ 4 .
kzé»oj + Gij = § J¥4YS (c.2.6)

it is apparent that all 0(§ ) contributions other than those

provided by the first four terms of (C.2.3) dissappear.
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Also, the term

Vi, {i““a G:J ]

™

1 i~ o~
is 0(8); V), ¢ can be approximated by .k ch . The term
[ L 1é
(;wa> - Ynﬂ{;oaa i

is identical to the higher order term found by Smith and

Sprinks (1975), after absorbing a boundary term through

Leibnitz integration. Using (C.2.4) and (C.2.5), (C.2.3)
can be written in the form

/ i ¢ 7

"%@ G830, - T (60Vg) + G &

F

{6} - 26 W2

3 / Vo 1 ? o~
"'L/JZ_-_-‘ oZJGOJ E'VHC}\J, - z&é od'jodk gjk C}L, =0

@.2:4)

Equation (C.2.6) 1is the correct equation forch to
2

0(& ); however, the operatoer is only symbolic and is not
~

practically applicable. Letting h be given by

L

Ch= -w_}/-'\ &
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i~
we can write '\_;’H ‘i’] in the form

b

~ A o
Vb o= -ig(WA)e = (Yh,é)% (¢.2.7)
where Y,A/A is one component of O()_. In order to make

further explicit progress, it is neccessary to expand X,
into its components, and then to take the derivatives of the

/
products “"j G-:.J . We define the quantities

P

1]

k% (kwh) 5 f= k% (Ruk)
R k"

]

kvh (E'V&:AD 4 /3.1,= B'Vh (,@Vh"') ;
R'A ko

s

pe = l@-%(ja-ls) ) (c.2.8)
ZR

T
where /g, -F;‘ are 0( § ), and

———————

L = EV};A \ . jgv;lﬁ"
pr £BA R

/33 = Uk (c.2.2)
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where /86-/53 are 0O ) ). Also, we let
/
3, = 2R Gy (c.2.10)

The coefficient ¢{, may then be expanded as

e b p - p 2

The terms Vj ~j may be written as
2 2
f‘vhdl = _Zk Qg|°£3 : k/gl

EVJ‘" o(.',_ = - Zkzozj/@, + kt[(gg -ﬁq +/§¢." ‘ﬁz> = kz/‘ggl
- ‘7%‘2053/54 + ‘fézo{_-‘/&; +ékz°(32 + kz/‘f'}z

kV,oly = S /ez/gz ; (C.2.42)

and the terms ke - V,G oJ as

&
B.Vhém = or.{l. 20' ol 923 391 (C. 1‘[3)

where

2y, = { ) by oo i s ,é/,‘z’mzé;é)}

ca__m-h 2kh

c TN » { (3-42) sk oy + 28 (L)1 - z(/—,ééwz»@}
P
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/
U Goy = Xy 303 t oA, g (C.2.14)

oo

where

e

3

{mmm bhtwh ki) + (kh) ]

%JMAZéé

3y = =0 { o (k) tanh kb (-1
¥ sivh®2kh

+ 4lh) dawhh (|- b fuud b ) 'JZ
Siwh kh

and

B-°Vh C’;s = of ;o: + oly F,, (C.2.15)

where

- Ot . + (2n -+ Fanks kb i(,é};) 7{,44;/; £h
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2, - —,_g*{a-fn.) o 2eh) dash bh o
Cﬁ.

Sk 2kh

P30 (- btk ) ]

3wk 284

Substituting (C.2.7-15) into (C.2.6) leads to the

equation

(hsy +ad -3¢ «p(2o0d

« (-, +/s?-/£:)}l% - Bt Nk d

P Yot d o+ By (2fp) A d + (2R eI G
£ N (1) 6 b+ B (B 4G =0

(e, 2.1¢)

where

{mnsy = ”PD{' R g () (c.2.17)

oA = Cowe -~V Cove (€.2.19)
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and

o<
I

), + 23,

)’l = 2‘[‘303 = 3’01 e 305’ = 213‘)

Y, = (425 -2~ Ry - 230 - V)
Y, = 3, + Fos

Yo = 43 - 224

Y, = P, - 2, + Dy

and where we have used the results
311+2f = 3’:1"'3:. = }z:*gz il

Note that

{hs)=o

(C.2.1)

is equivalent to Booij's mild slope wave equation after

z
dropping a small O(¥ ) term which appears in his equation
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due to an error in the derivation. After substituting the
free surface boundary condition (3.3.7) into (C.2.16), we
obtain the reduced wave equation for ZE , correct to O Sl),
given by (3.3.8), where an arbitrary dissipation term is
included. The coefficients K]— Xg are given explicitly in

Appendix D.



APPENDIX D. INTEGRALS APPEARING IN L

In the derivation of the Lagrangian L, various
integrals, denoted by G and X& , arise in the integration

over the depth. The notations used are as follows.

Integrals of fu‘ quantities:
n /.
G, =“£ fis = i Gy =_'han“" Az
1 (
G(j ) [ jc""mf"ica 68 F Cayp ™ fu %k JE'J' o
~he “he

etc.

Integrals of fza‘

7 7
,@ml / JC""(:) de i ﬁ@) E /@h)fu Az
—he —h

Integrals of products of fu> and fu quantities:

293
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" 1

@
,ﬁ&_ - f;@) Mﬁa‘ii ! fgvx = f%‘i i de
<, K
1
/é&'v - Mﬁo) L 42§ etc.
~hs

Each of the integrals G and}ﬁ may be expanded about the mean

water level z=b, by the following procedure

Y be . but ey, + €t be)
I= /A dz = [Adz + ALz
—h, "'"bb b,
6 ¢+ e‘(?ﬁ by)
. /Ad%’ v A 4z’ (D.1)
) 6

where A is an arbitrary function, and the wave reference
level z has been shifted to the slowly varying O(l) mean
water level. The coefficients fli » £,, are then defined
with respect to the local mean depth h=h,+b, rather than the
still water depth ho . The integral from z=b, (z'=0) up to

the local water surface is further expanded to give

T =//‘(c£z’ + {eiz{_‘_éi(,zt*b‘)} A) S WZAE/ )
-l B 2 3

3
+ {e?,+ eX(n, byl ARJ +
¢ A
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= I'+ {efzmé’('gnbl)}l‘”
1 2 3
+fep, « e*(?ﬁgz)}?':: + {ep, +€Gb,)] T
(D2)

The contributions to I are then reordered in powers of & to

give

T I)‘ “ &}?'I” a 61{(71-&-191)_7:”4' ?JZIM} i

W (4
+ €3 {2:2,(71_4-61)1 +9° I ] . D3
The integrals appearing explicitly in the equations follow.
o
For the mild slope approximation (terms of Of § ) in ?a

neglected), integrals of the form G,, G, 7 J& and ;&o appear

in Ll and Lq. These are given by

'

G, =1

/

Coo = CCql5 CE = 62(1-%)/s,

where n is the ratio C% /C given by

n= L1+ 26h/uih 2eh)

Cow = 4 5 Go = 0'at G0 5 Com ROl

)
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G 2 i3
Gb = 0 /2? ] C"o = ’Ql/é §
4 "= cosh kh ; 4" = cosh 2kh
/é’ I/QVA z»éh Sk qzéé
b "= 2kcosh kh
sul llh
.é:{ = / COJA 3&4 -+ (o_;é /éA} 5
2 cosh &b sih kb
E'.” z
’én = ‘}‘) {ca.rz 3kh - Co.r[éz} )
Cojz éé Sfbéqkfr
2! sk 2kh LY
,ﬁ = ir:é':/:s/,’k/, {.S‘MA ’ +?LZ :
/
B2 2 2ksik2kh {co;f}zé i, %} ,
siwh®kh
At 0($) and Of Sz), integrals of the form Gi' and G‘E.

appear in Lz_ and contribute to higher order terms in the
~

Euler equation for ch . The integrals G':é , i=1-3 are

simply f” - f!S evaluated at z’=0, and are equal to zero.

< 5] .
The integrals Gf‘lf ' are given by:
A
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6f = kbY . o I Hwh ks
Y cosh b 4k
2
¢k (kh) A7
Gy = T s

G/ £y - Zzﬁo‘_‘éﬁ & .E—é-(/"’ﬁfk>7€4ﬂéz»éé
0.?-_ 74 7R 4R

i

Ggif== '1&[2%) '*1?7Q”A‘éé "1?{?94)(7*€4L)Z%w4ﬁé4
) 4 o

/

G = k) L LA —kh (-t )
GR 4

gré‘(os/ z/éé
¥ ) ) 24
= _kkh)  _ ktahbh . L6/ +Tuh
3 cosh 2RoA 7 7

It is apparent that the quantities

il e’ _
R Coi *+ G j &= 53

are identically zero. Quantities 3"{:, i=1,2,3 are defined by

3{‘; = 244"16:,; (D“/)

and are given by
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&= -0 _@;/’_)i-__ L _0F }

2

F,= o' _kh_ (I-kh ﬂwé,éé) — o {/+ (A% )

‘5’ sivh 2kh

2
3, = %( - kb tuh £4) - 46h) — £ 2" kh)
where

¢ e (jzé'%amd éﬂé

(a’

The remaining required integrals are the quantities G‘ﬁ
i,j=1,2,3, and the combinationsE&&given by
2 ./ @’
3. = kG, + G
) ) “J

which are given by:

¥ L ot (k4 )’
6 = 7, O (1+ bhtuud 44) ~ 2 T

[ 2 g 2 é
6r' = B (1 bt #h) + k) =L Y e
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[« &h Favh kh) -k L (e (mzéféé_ _4_9

Lf%k‘ ( %4’ /é-mz 24},

/
GE'= o (I-khtwhbh) +2(6) -k Lh)
Hey 7

2(.1.{/; ztéh

2
+ okh) - ( el b _ _L>
Y cash kb Cosh kﬂ

S L_D_ -O’_E____ (/ éﬁ/mﬁéé)

2‘;} coshleh Y sih 2h

Gy = & _g_ffi)__ 3,05. (/- k4 Fwh b4)
2

s ‘3k siwh 2kh

~ 3 (kh) + g (kh)’
b ok

/

Ch= ot (R L az{/ oy Fauh b4

s g Stk 2bh
*»’E’(H) v obh) w4 o (bh)
? 5 g’ J‘/mlg 2{"4

e -;_/z el Aud i) — ,ém)wzrzgwdi% }
Ny %
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LA {1 - (nLi- €)' ]

Sih 2kh

{_ri. L (kW)L 1 = (kh) ]; +_9§ k)

29tk Stk 2kh Stivh 2kh
3. ot { (k) , o }
. > { (Ivh 2kh 2R
/ 4
G & 5 -3 w
L }%é;),ﬁ/, ” ?.‘}k" (kh) -3 % +anwh kh
1 (k)
T3 cosh*kh
62 = - kleh) , k) —1 o dwbkh
" 21 coshk 24 k4 %
+ Sk (k)
8  coshkh
3.=0 {}eh-—-bwl.kh +(BRY Z
‘} 2 Sivh 2kh

C. = -z_o;(/ fhth h) o 3.(6h) ~ 0% kb kb
e

{_(A%_) " _%(éé)"}

o 0’
%z k .!'/.oA 24k

c* = az (/- Feh Hauh 4) + £lh) +2 2 4 fuwh b4,
Y

2 o-"‘ b)Y 4ot (64 kY (1~ e k)

P

"‘"i‘azk Sd 2kh 39 Sk 244 ef?

'\)
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3
= 4 o (k) . ¥ . 4
&, g_(bhh_i%_}ﬁ% _2;.(/ bl Huh #4)

The combinations

are equal to =zero. Referring to the definition of F in
(3.3.8), given by (3.3.10), and to (C.2.13-16), the

remaining coefficients are given by

)ﬂ él” =t ‘Z:;or

"

2% & i 2imbbh [ k-1 }
> {(} ’)L) " Sl 2&h ( )

X1= 2{203'3‘01-295—- E:;}

: _o;‘z(znm,eu - 264+ ) ([ Stk %)
K crih 2k

— 20 (k/:)z 7wl bb }
- stoh 24



302

X::,: 43, - & - P - 2% - ¥

= (T . ‘rLuhkA + I 1 B Z(}?A)z
_%—{—Ii{.. .blq(A Hanhr Poh +r:i»£§y’)

+ (b danhbh 16 (k) Lk b

“ish 2k Sivh 2kh

@ [+ - vttt (g )] ]

)/q - .;[z " o3

_ wp = Bbh tak bk . Lind, 4
—Q;[ .m?zé // e >}

XS'E {'/;:_ -2&0'{

- 2_@[%_7_ - (B0 L A bl
¥ Cosh h Sk, © 244

& Zé/ (/+2é4 m/éx)[/_,ézmwf

XL-.- -

i

§ [[o-2m - 2L (bt ) + &

~2blh) . A (- ot ) ]



303

The coefficient ¢ , expanded in (3.3.13), has the

terms S‘— 85' , which are given by

§=_0" - _k (kh)

g cosh’kh 2 cosh “eh

§,= b dashbh o (eh)  (twh'Eh - L)
2 cosh kh kws’a kh

§,=_h__ ('/AMA’/: AR WY h__
ro:fa kz‘l Y !/éi.ésé Z,é);
S y = - 44’/! 71,4,04 Zéé
Sivdy 2k

Sc= L { ph -tk kb + b/ Sn) Fad 44 }
Yp?



APPENDIX E. CONSERVATION EQUATION FOR WAVE ACTION

In order to derive several of the results in Chapter
4, an equation governing the flux of an energy related
quantity is required in addition to the Euler equations
found in Chapter 3. It has been shown that, for propagation
in a moving medium, the appropriate conserved quantity is

the wave action, given by

wave Action = E/O' (E.1)

(Garrett(1967), Bretherton and Garrett(l968) ), where E is
given by E=g]A{l/2. Note that the expressions for conserved
quantities are formulated here with respect to unit masses,
which is possible since the density has been assumed to be
constant throughout the fluid domain. The lowest order
conservation equation for E/¢ may be obtained directly from
the linear wave equation (3.4.1), using the definition of W

given by (4.2.1):

. . N N
% (- &) %f_f Vi (CC W &) + 0 (1=n) , =

o

=/<Za*w4>, (£.2)

304
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where w in the last term is a coefficient related to the
rate of energy dissipation ( Booij(1981), Dalrymple, Kirby
and Hwang (1983)). Following the approach of Jonsson(1981),
we assume that 2; may be represented by the ansatz

~ =

,iq% = KRe E.3)

where R and & are real quantities. Comparing (E.3) to

(A.4), it is apparent that

R = %,O‘_' }A} (E-‘l‘)

while 5 absorbs the higher order phase effects neglected in
the definition of WL. Since we are looking for the lowest
order results, we may approximate O and its derivatives

according to

9 = Y+ 0fe?) (E.5)
6 = ¥+ O(e) E-w (€.5L)

w0 = v¥+olet) =R (e.5¢)

Substituting (E.4) and (E.5) into (E.2) leads to the complex

equation
2

DR +4) DR -9 (cCuuR) -~ (R +20R,)

-J.[ Vilur) R +2(c )R +-(kec))R + 2kccy - /’?}
-LlowR = O (€. ¢)
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Since R and @ are real by definition, the real and imaginary
parts of (E.6) must individually equal zero. Gathering the

imaginary terms and multiplying by R, we obtain the equation

~(eR), - U R - () R* - CCo k% R*

2z 2
~% (kccy) R~ owR =0 (E7)
Then, noting that we can write

CC}E = hc(c%k/k) = O'Q%, (E.?)
we rearrange (E.7) to the form

@RY), + V- (eR*(U+ L)) = = owR" (.9

Now, R* may be replaced by

R*= g2 [Al"/o = 28(E) (E.19)

which yields the relation

(E/r), + v,-{(em(u+gq)] = -w (E/r) (€. 1)

It is apparent that w>0 for a dissipative motion.
Neglecting the right hand side of (E.ll) gives the standard
equation for conservation of wave action in a conservative,
inhomogeneous, mov ing system, given originally by
Garrett(l1967). The result with dissipation has been shown
to be somewhat incomplete by Christoffersen and

Jonsson(1980), who show that the right hand side should
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contain a term involving the bottom shear stress resulting
from the 0(l) mean current. In this study, we regard the
ambient current as an imposed flow and neglect frictional
effects related to the current, thus yielding the version of

the conservation equation given by (E.1ll)

Jonsson(1981) shows how the equations governing the
geometric optics approximation of (3.4.1) may be obtained by
using the real part of (E.6). In this case, it is necessary

!
to retain the expressionsﬁiﬂ% and ﬁ% in order to obtain the

desired results.



APPENDIX F. BOUNDARY INTEGRAL METHOD FOR THE

ONE-DIMENSIONAL PROBLEM

The one-dimensional problem (topographic variation
in the x-direction only) treated in Chapter 5 admits an
"exact" solution by means of the boundary integral method
(BIM) . The method 1is exact 1in terms of its basic
formulation, whereas the theory of the main body of the text
relies on series expansion representations for the
propagating components of the wave field alone. However,
solution by BIM still requires discretization of the domain

and numerical evaluation of the results.

The method used in this study was described
originally by Lee(1971) and was applied by Raichlen and
Lee(1978) to the study of linear waves radiated in one
direction from an infinite inclined plate wave generator.
Here, we extent the method to waves travelling at an oblique
angle to the direction x. Let the total velocity potential

4> be represented by

308
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i(my - wt)

(Fy)

where m=0 for normal incidence and 0<m<kA for oblique

¢’(X)°} 3%1{:) =§(X)%>C

incidence, where kA is the wavenumber for a constant depth
region A on the upwave (x» - 00 ) side of the topographic

obstacle. The incident wave é& is then given by

;[u%-wﬁ)
qu - gs | (F2)

with unit amplitude, where

X

- &/f
T, - i (wohbh ) whklhee) e (F3a)

L= (Ri-wb) (F3b)

Substituting % into Lapiace's equation (2.1.1) 1leads to a

modified Helmholtz equation
- 2 =
L(E) =3€xx + §az w*$ =0 (F.4)

with the associated free space Green's functions

G(r) = = K, (mr) M >0 (F.5)

2T
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G(r) = Lnr m

(F.se)
27

n
<

where Ko is the modified Bessel function of the second kind
and =zeroth order and r is the radial distance from the

singularity to the field point in question

%3

r o {(){—Xo)z v (2-2)" (F.¢)

A fluid domain () (x,z), shown in Figure F.l, 1is constructed
by separating the constant depth regions from the region
containing the variable topography, but including enough of
the constant depth region to either side of the variation to
allow for the decay of nonpropagating modes. The solutions
in the exterior regions A and C may then be given by

1 widily %
II i /.;3 R (deJA bAA> cosh ibA(hA'f‘E) e CF74.>

l

£,

. ke
E(_ = "i%T (Lo cosh kLC> Co.il: k’c (hc+a) e CF.'?lo)

where R and T represent reflection and transmission
coefficients, and are in general complex to allow for phase

shifts in x and y. Conservation of energy in the diffracted
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Figure F.l Boundary integral method domain
in relation to extent of variable

topography
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wave field requires that

[R]Y + JTJ”{MHC

MoRe Lp | ] 3]

c

Also, the boundary of L) is denoted by éjl. Following the
standard procedure for constructing solutions by means of

Green's functions, we take the inner product to be given by

(L(z) ¢) = (G (V) -w)E 42

A1 2 (F.a)
o N
VY @ St T e

Then, using Green's Second Identity, a formula for the value
of E (xo,zb) for an interior point of the domain f)L is

obtained:

T(%2) -t IEOEOX) - C-p)3E O sy Eo
Yo

where n denotes the outward normal too{l. vValues of EE in
the interior of {J are thus completely determined by 4 on

o), and the problem is reduced to finding % (3{.). Values
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of E on J.O. are determined by moving the point (x,,2 ) to

o
the boundary and determining the principle value of the
integral in (F.10) (see Figure F.2). 1Including the point

(xb,zb) within the contour and retaining the residue leads

to the formula

T = 2§ {2003 -0 EW0  asco
oL2

for points (x ,zb) on ol . Substituting for G from (F.5)

leads to the formulas

Z(x,) = 14 {3 (0 - B (Kl )] s )
bYol (File)

for oblique incidence, and

Z(¥)= :Lj{{,ﬂu- 2 (xy - T() (,é’u-)} 25 (x)
'ﬂ' an I
Q. (FiL)

for normal incidence.

The details for the numerical approximation of
(F.1lla) follow; the corresponding details for (F.llb) may be
derived in analogous fashion or obtained from Raichlen and
Lee(1978). First, the boundary 311 is discretised into N
boundary segments which are presumed to be straight line

segments (thus leading to discretization errors in the case
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dS (X)

a) interior point

b) point on boundary odf

Figure F.2 Integration paths for interiecr points
and points on boundary
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of locally curved boundaries). Taking x, ={x_,z,} to be the
~ p o (¢]

boundary point for which jE is being determined and X to
vary over all boundary points, (F.lla) is approximated by
Fly) = Léik(m 5 - 204 32 (K mry)] &5,

(F.12)

and ¥

where ZbSJ is the length of the jth boundary segment
is assumed to be uniform over each boundary segment.
Writing

Special treatment is needed for i=j, where ré3=0.

(F.12) out in matrix form, we get:

5] iy y 2
‘; b = —%— Ho (MrJ)ASJ ;" _:I-TL _é_[h/b(m,:j)zg%] ::
(Xy); %%(;n> -E(XJ)
(F.12)
Let
Gx.'j = K, (» %) AS (F.140)
Cu [klﬁhnﬂflz_f = —qn.k’ﬁwzgu).érQ (F.b)
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The normal derivative br /3n  is given by (for i#j)

dy L XDa® | (ZoE) X

o Vef  AS; ] a8y

and the evaluation of (F.14) for i#j 1is straightforward.

For 1i=j, GAL in a small neighborhood of 5 can be

approximated by (Abromowitz and Stegun (1972) , p.375)

6. = -—,@,._(mr;u) S, (F15)

s

Integrating over the boundary segment As; leads to
Cov = ~{Mu(man)-1]as, (R

Following Lee(1971) and Raichlen and Lee(1978), GuJJ is

given by
Gy . =0 (F.17)
due to the neglect of the local curvature of the boundary.

Finally, QE;%Q- can be specified in terms of boundary and

radiation conditions:
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A:j,q E - 2.«‘.4@4 EI ufamwt bowo&ma.

O S‘o’fl bovud aries
o A .f¢ £ Aowwwave &Mana_
_Qi' ey Jcreﬁ :wfnce-
%

leading to the final matrix equation

i.f,q 2E

on T
. o 0
T +24 _.C;’:j o) & B * o By fcen (F. 1)
ide 2
ey o

where I is the diagonal identity matrix S‘i . Kirby and
Dalrymple(1983a) have compared the results of the present
approximation to results obtained using integral equations
based on eigenfunction expansions of $ in regions of

constant depth separated by vertical boundaries, as shown in
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—_— — -y
dg '-——‘-/_\ ¥
. | _,\/
Region | : Region 2 : Region 3
,..,7-,-,-,-,,-,-,-,—,-,-7-;7-; —h, !
: it
A ok}
1 B
A=h4 r
GGacamcocncsanid
o

Figure F.3 Geometry for test of BIM
ap = R ar = Tz ap = T
a) elevation b) plan
(from Kirby and Dalrymple,
1983a)
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Figure F.3. Two such comparisons are shown in Figures F.4
and F.5. In Figure F.4, results are for the case of an
asymmetric trench, with the trench being twice as deep as
the incident wave region, and the transmitted wave region
being half as deep as the incident wave region. The ratio
of trench width to incident region water depth is 5:1, and
only normally incident waves (m=0) are studied. Generally
good agreement is found between the BIM and eigenfunction
solutions. The results of Lassiter(1972), included for
comparison, are seen to deviate significantly from the
solutions of Kirby and Dalrymple(l983a). 1In Figure F.5, BIM
results are shown for a symmetric trench and an oblique
angle of incidence of 453. Here, hz/hl=3 and L/hl=10, using
the notation of Figure F.3. For values of kh,;<0.792 for the
incident waves, the value of the x-component of the
wavenumber vector in the trench is imaginary; this result is

seen to present no difficulties to the analysis technique.

The method used in the present study represents a
relatively crude approach to the boundary discretization.
For a more satisfactory approach, where 35 is assumed to
vary linearly over each segment, see Liu and Abbaspour

(1982) .
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Kh,

Figure F-4. Reflection coefficient: asymmetric
trench
Bl = 0. 5

Rp = |R|, K = w”/g

Kirby & Dalrymple (1983a) ;

——=,--- Lassiter (1972);

+ BIM solution

(from Kirby and Dalrymple, 1983a)
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Q2
0 L 1 1 1 i 1 J
0 0.2 04 0.6 08 10 1.2 . B
kyhy
Figure F.5 Transmission coefficient: symmetric

trench
h2/hl = 3, L/hl = 10
KT = T

AP = o
Bl Q°; 0

Dalrymple (1983a)
+ BIM solution

X

(after Kirby and Dalrymple,

= 45°, Kirby and

1983a)



APPENDIX G. RELATIONS FOR THE DISSIPATION COEFFICIENT

w BASED ON VARIOUS DISSIPATION MECHANISMS.

In this appendix, the 1role of the dissipation
coefficient w in the governing equation for wave motion is
investigated, and its wvalue is related to physical
quantities based on various mechanisms for wave energy

dissipation.

The role of w in determining the wave amplitude can

be investigated by wusing the current-free form of the

elliptic model (4.2.4), which reduces to
—~ . ~
Ve (CCy Vi d,) + (nw+ieww) g, =0 (6.1)

Considering the simple case of waves propagating in the

x-direction over a flat bottom reduces (G.l) to
' i 2
B ¢3 = S
4%}(x kc‘ | o G; )

where

322
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= K ( i w,w (6.3)

The solution of (G.2) for waves travelling in the positive x

direction is given by

i Ra X
& (x) = Ae” ©.9)

where A is real and arbitrary or can be related to an
initial condition. 1If k, is expressed in real and imaginary

parts, k. = k} +£ki, the exponentially decaying solution for
~

4% is given by

&) = Ae e - 6.9)
From (G.3), we flnd
k. = il (w) J«1 (tka)

2 V:’-
k. = hf[f +(25) |- (5. EE)
( 2

Solving (G.6b) for w yields

el ()" e
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Depending on the nature of the localized energy
dissipation, w takes on different values. For a number of
dissipative mechanisms, the wave height decay is
exponential, in agreement with (G.5), and k; is known.

A
Several examples are:

1. Porous bottom (Reid and Kajiura, 1957).

ki = (3%2 )("279!: ihﬁné 2kh (6.%)

2. Viscous mud bottom of thickness d, viscosity

l%t, and density 6“ (Dalrymple and Liu, 1978).

AV D
GO+ (g )5x)"

.{[h(d«-k)-(w‘/%] #[ 1+ )( )][“% ”
(1[0 )] ]

(6.9)

where k; is for shallow water (for simplicity).
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3. Laminar bottom boundary layer (Ippen, 1966).

k,é, = E (P/Zw)yz (6.10)
N cuh 2k

4. Densely packed surface film (Phillips, 1977).

. Y,
k_(v/iw) (6.1)
M 2 Ak kA

k

For case 1, a more complete expression has been obtained,

including the effect of boundary layers, by Liu(1973).

For other types of damping, the wave amplitude is

not exponential but varies as

Alx) = Ao (6.12)
| + & X
where A, is the initial wave amplitude and od is a damping

coefficient. For a rough bottom with a turbulent boundary

layer, Madsen(1976) showed that

A = 24 R'A, _ ©.13)
3w L&Akﬁ(2k5+r&42kb>

where fw is a wave friction factor. Dalrymple, Kirby, and
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Hwang (198 3) derived a dissipation formula for waves
propagating through an array of vertical cylinders occupying
an arbitrary fraction of the total water depth, based on
drag-dominated dissipation for each cylinder times the
density of cylinders per unit area. The resulting value of

¢! is given by

3 \b/\b/ | 3 sivhkh [2kh + sivh 2%h)

oL = %k C, (AOJ(D) ( sivh >bs + 3sihbs ) (6.1%)

where s is the position of the top of the cylinder relative
to the bottom, b is the spacing between cylinders, D is the
cylinder diameter, and CD is a representative drag

coefficient for each cylinder acting alone.

In order to relate & to w it is convenient to first

relate & to k; by comparing the following expansions

(+ax) = I=ox + (ax) = (LxVe... (6. 152)
~kx : :
= = 1= kx + (BX) - (kx), .. (6. 155)
2 .

Therefore, for small values of k;x or ol x, we may take

& =k, . We can thus use (G.7) 1in either case with o
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replacing k’:, as long as ¢! Ax is relatively small. For
subsequent numerical modeling it 1is sufficient to

approximate (G.7) by

W zmw(%;) i 2140(%) N

for {k}:, ol }<<k.



