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SUMMARY

Erosion of an unprotected gravel causeway due to breaking waves is
analyzed. Using a new technique, analytical and numerical solutions are
obtained for predicting erosion at the bend and tip of the causeway.

Computation is made for a causeway in the southern Beaufort Sea.
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ABSTRACT :

An analysis is performed for erosion of an unprotected gravel causeway
with a relatively gentle side slope caused by the variation of sediment trans-
port rates along the causeway due to breaking waves. Use is made of the
coordinate following the curved shoreline of the causeway and the longshore
sediment transport formula developed for natural beaches. Neglecting wave
refraction and diffraction, simple analytical and numerical solutions are
obtained for predicting erosion at the bend and tip of the causeway. These
solutions are used to compute erosion of a hypothetical causeway in the
southern Beaufort Sea. The computation irdicates that erosion due to an
occasional severe storm may be severe but limited in the vicinity of the
bend and tip of the causeway. The analysis also suggests that if a slope
protection system is provided to a limited region of a causeway, erosion of
the unprotected region next to the protected region could be similar to that
of the tip of an unprotected causeway. However, field data is needed to verify
and calibrate the proposed model based on the analogy between a gravel causeway

and a natural sand spit.
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INTRODUCTION

Causeways have been used and proposed as pipeline shore-crossing
corridors in the southern Beaufort Sea north of Alaska (2). Causeways will
be subjected to wave and current action during the open water period of approxi-
mately three months each year. Large longshore sediment transport and beach
volume changes during severe summer storms have been observed and predicted by
a number of investigators (4,6,11,12,16). An unprotected causeway may hence
suffer severe erosion but the cost of a protection system for a very long cause-
way may be prohibitive. A method for predicting the severity of erosion of an
unprotected causeway is needed so as to determine an advantageous configuration
of the causeway under site-specific storm conditions and evaluate the amount
and frequency of maintenance requirements.

This paper presents an analysis for erosion of an unprotected causeway
with relatively gentle side slopes caused by the variation of sediment transport
rates along the causeway due to breaking waves. The mathematical formulation of
the problem is similar to those used for the prediction of shoreline evolution
(8,9,10,13,14) except that the present analysis utilizes the coordinate which
follows a curved shoreline. A simple analytical solution is obtained for pre-
dicting the severity of erosion at the bend of a long causeway. analytical and
numerical solutions are also presented for predicting erosion and recession of
the tip of a long causeway of finite width. These solutions neglect wave
refraction and diffraction but are very easy to apply for a preliminary design
of a causeway. Computation is made for a hypothetical causeway in the southern
Beaufort Sea. The computed results are discussed in the light of the limitations

of the present simple analysis.
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FORMULATION OF THE PROBLEM

A causeway in the southern Beaufort Sea is normally constructed of
gravel and may have a reasonably gentle side slope (e.g., 1:5). As a first
approximation, the causeway may be regarded to be similar to a natural spit
of finite width so that use may be made of the analysis procedures for pre-
dicting shoreline evolution (8,9,10,13,14). 1In the following, the shoreline
of the causeway is defined as the intersecting line between the mean water
level and the side slope of the causeway.

The shoreline location changes with time due to erosion or accretion
caused by sediment transport along and perpendicular to the causeway. Fig. 1
shows the location of the curved shoreline exposed to wave attack at time t
as well as some of the notation used in the paper. s is the coordinate following
the curved shoreline whose positive direction is chosen such that the causeway
is located on the left hand side of the coordinate s. (x,y) is the fixed

-
Cartesian coordinate system. m

(cosB, sinB) is the unit tangential vector
in the positive s-direction and ; = (-sinf, cosf) is the unit normal vector

into the causeway. £ is the angle between ; and the x-axis which is measured
counterclockwise from the positive x-direction. oy is the angle of wave incidence
at the breaker point relative to the y-direction as shown in Fig. 1. Q is the
volumetric longshore sediment transport rate and q, is the volumetric offshore
sediment transport rate per unit shoreline length. Using the notation of complex

variables, the location of an arbitrary point on the curved shoreline at time t

is expressed as
z =x +i i 8
s s Ys (1)

in which i = the imaginary unit such that i2= -1, and (xs,ys) = the location of

the point in terms of the Cartesian coordinate system. The location z_ varies



with time and with the coordinate s. The unit tangential and normal vectors

at a given time are related to the variation of z along the coordinate s

0z "
% :
m=e18=as—5 (2)
0z
-
n=i eiB =i 3;5 (3)

in which cosB = Bxs/as and sinfB = Bys/as at a given time.

Assuming that the point on the curved shoreline moves normal to the
shoreline due to erosion or accretion, the continuity equation for sediment
can be written

oz 0z

_s.1 39 e ) _8
5 ~a Gs vty =3 G5+ Y 5 (4)

in which d = the depth of the active profile of the side slope of the causeway

which is assumed to be displaced landward or seaward without change of the

profile. Applying the empirical longshore sediment transport formula proposed

by Komar and Inman (7) which is approximately the same as that in the Shore

Protection Manual (17), the volumetric sediment transport rate along the cause-

way may be expressed as (13)

Q= Qm sin2(ab + B) (5)

with
2
KHb VgHb

O = (6)

16(s_-1) (l—np) s

in which B = Arg(azs/as) from Eq. (2), Hb = the breaker height based on the

root-mean-square wave characteristics, K = the dimensionless empirical constant,

I

g = the gravitational acceleration, S, = the specific gravity of the sediment

relative to the fluid, nP = the porosity of the sediment and k = the ratio of

H_ to the water depth at the breaker point (k = 0.8). In Egs. (5) and (6) the

b



group velocity at the breaker point is approximated by /55;7; using shallow-
water linear wave theory (13). The empirical constant in Eg. (6) is approxi-
mately given by K = 0.8 for nat;ral sand .beaches. Determination of an appro-
priate value of K for a gravel causeway requires field data, but usual values
are of the order of 0.8. (ab+B) in Eq. (5) is the angle of wave incidence at
the breaker point relative to the unit normal vector ; at the location Zg
assuming that the surf width is much smaller than the shoreline length. The
value of (ab+8) for natural sand beaches is normally small but that for a
gravel causeway could be large. The present analysis is limited to the case
of = 45° < {ab+8) < 45° so that the empirical formula given by Egs. (5) and
(6) may be applied. This limitation will be shown to be required for avoiding
instability of shoreline evolution.

In order to compute the evolution of a curved shoreline with time,

Egs. (4) and (5) must be solved numerically for specified Qm, @ 9 and d.

b
The variation of zg with respect to s yields the location of the curved shore-

line at time t. The initial conditions required for the computation are

expressed as
Z = = + i = =
z0 x0 i Yo ‘ s s at t 0 (7)

in which the subscript 'o' denotes the quantities at t = 0 and z, indicates
the location of a point along the coordinate S, following the initial shoreline.
The numerical computation of zs(t,s) is difficult since the coordinate s
following the instantaneous shoreline changes with time. It may be necessary
to solve Egs. (4) and (5) if the displacement of a curved shoreline is large
as in the case of a large evolution of a curved spit.

In the following, Egs. (4) and (5) will be shown to be approximated by

Egs. (15) and (16), respectively, if the displacement of the shoreline from the



initial position is small. For the case of small displacement, the location

zS at time t may approximately be expressed as
z =z 4+ E&En (8)

in which £ = the small displacement normal to the initial shoreline and £ is
+
positive for erosion and negative for accretion. n, is the unit vector normal

to the initial shoreline and given by

5 iBO dz
n =1ie = i — (9)
o dso

in which BO = the value of B at t = 0 and 2z depends on S, only. The assumption
of the small displacement will be appropriate if the following conditions are

satisfied

f—- << 1 (10)
o

in which Ro is the radius of curvature of the initial shoreline and given by

- .2
. o, . dagp . dzo d E -
o ds " as 2
o o ds
o
in which 'Im' indicates the imaginary part of the complex variable in the
parentheses and E; = {xo - i yo) is the complex conjugate of zZ - If the
conditions given by Eg. (10) are satisfied, the relationship between the
infinitesimal increments ds and ds0 can be approximated by
1/2
ds = EE— ’ + |1 - J;-Z ’ ds = ds (12)
9s R o o
o o

in which the factor (1 - g/Ro) accounts for the decrease of the radius of
curvature of the shoreline from Ro to (RO-E) due to the small displacement £
normal to the initial shoreline and the factor (35/330) is related to the
increment of £ along the infinitesimal length dso. As a result, the dependent

variables involved in the problem may be regarded to be a function of t and S,
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rather than t and s where So is independent of t.
Using Egs. (9), (10) and (11), differentiation of Eq. (8) with respect
to s yields
9z

; d
3o = expli(B + 5] (13)
o o

where 35/350 is retained since Bo is arbitrary and may be much smaller than

unity. Comparison of Eqs. (2) and (13) using Eq. (12) yields

& 9
B = Bo * s (14)
o]
Differentiating Eq. (8) with respect to t and comparing the resulting equation

with Eq. (4), the equation for the small displacement £ is derived

9 1 99
¢~ d Yaa— T ) (15)
in which use is made of Egs. (12) and (14). Substitution of Eg. (14) into

Eg. (5) yields

9

Q = Qm[sinz(ab+80) + 2 cos2(ab+80) Eg;

] (16)

Egs. (15) and (16) may be solved numerically or analytically to derive
the variation of the displacement & with time t along the coordinate Sg- The
initial shoreline can be specified by describing the variation of z along the
coordinate Sge The variation of Bo along the coordinate s, can be calculated
using Eq. (9). The other necessary input parameters are Qm' ayr a4 and d which
may vary with t along S,» The initial condition for { is given by £ = 0 at
t = 0 since the coordinate S, is taken to coincide with the initial shoreline.
The boundary conditions for £ must be given for a specific problem. For an
initially straight shoreline s, can be taken as S, = X and Bo = 0, so that
Egs. (15) and (16) become essentially the same as those used by previous investi-

gators (8,9,10,13,14). Egs. (15) and (16) are convenient for the analysis of



changes of curved shorelines since the present analysis utilizes the coordinate

which follows the initial shoreline.

EROSION OF IDEALIZED CAUSEWAYS

Simple analytical and numerical solutions for an idealized causeway
are obtained in the following. These solutions may be used for examining the
accuracy of a numerical method for solving Egs. (15) and (16) under more realistic
conditions as well as for a preliminary assessment of the severity of erosion at
the bend and the tip of the causeway. The idealized causeway analyzed in this
paper is shown in Fig. 2 where S, is the coordinate following the initial shore-
line of the causeway exposed to wave attack. A sharp bend is located at S, = 0
and the deflection angle of the bend is denoted by & which is taken to be in
the range - 90° < § < 90°. The tip of the causeway is located at g = - L and
the width B of the causeway in the vicinity of the tip is assumed to be constant.
The angle BO between the x-axis and the unit vector tangent to the initial shore-
line is given by BO =0 for - L = s, < 0 and Bo =46 for 0 < g where the causeway
is assumed to be infinitely long in the positive so—direction. The longshore

sediment transport rate Q given by Eg. (16) is hence expressed as

o€
Ql = Qm(sin2ab + 2 coszab 3;;4 (- L = S, < 0) (17)
Q2 = Qm[sinz(ab + §) + 2 cosZ{ab + &) 3;;] (0 < soj (18)

in which the subscripts 'l' and '2' indicate the quantities corresponding to the

regions - L = s, < 0 and 0 < Sy respectively.

In order to obtain analytical solutions, Qm and @, are assumed to be

constant neglecting wave transformations such as wave refraction and diffraction

which is small due to the narrow surf zone on the causeway. Furthermore, the



depth d of the active profile of the side slope of the causeway may be assumed
to be constant and taken such that g = 0. Substitution of Egs. (17) and (18)

into Eg. (15) with qn = 0 yields

%, azgl

—— = <

5%t - S1 T 2 b, 8 (12)
9s

3, )%,

ot 2 2 % ) (20)
as

(o]
with
El = 2 :;—cos2ab (21)
€, = 2 jg-cosz(ub + &) (22)

The present analysis based on the empirical longshore sediment transport formula
given by Eq. (5) is limited to the case of 0° < ab < 45° and 0 < {ab+5) < 45°
so that €y > 0 and €y > 0 where oy and 6 are in degrees. The negative values of

€ and €y would result in the instability of the shoreline evolution. The

initial conditions for El and 52 are

E. =0 P £, =0 at t =0 (23)

E, = 52 ; Ql = Q, at s_ =0 (24)

Since 92 approaches Qm sin2(ub+5) as s is increased, the boundary condition

for 62 is taken as

352
i ) as s > @ (25)
9s o]
o
The boundary condition for El at W, ™ L depends on whether erosion or accretion

occurs at the tip of the causeway. It will be shown in the example computation
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that erosion or accretion will normally be confined in the vicinity of the bend
and tip of the causeway. Consequently, the bend and the tip may be treated
separately so long as the length L of the causeway between the bend and tip is
sufficiently large. Correspondingly, the constant values of Qm' ab and d used
in the following analyses for the bend and tip should be taken as the repre-

sentative local values during a specified storm at the bend and tip, respectively.

Erosion at the Bend. =~ For the case of large L the value of Ql given by

Eg. (17) approaches Qm sinzab as s is decreased and the boundary condition may

hence be approximated by

agl
3;; -+ 0 as so > - 0 (26)

The solutions of Egs. (19) and (20) which satisfy the conditions given by

Egs. (23), (24), (25) and (26) can be written

-
E. = & /7 ierfc|—= (02s) (27)
1 b [2#elt] @
7 = |
E, = E ¥m ierfc (0 =5 ) (28)
2 b {2 E;E} o

with

20 t
%=V 7a F 23

sin2 (a, +6) - sin2a
F = = 2 (30)
f%osztab+6) + /Eszub

in which 'ierfc' is the notation for the integral of the complementary error
function 'erfc! and is given by (1)

oo

ierfc(g) = J erfec(x)dx = % exp(-cz) = ¢ erfe(g) (31)
z s
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Since ierfc(0) = l//?, Eb defined by Egq. (29) is the displacement at .- 0
which is proportional to /e, Egs. (27}‘and (28) can be shown to satisfy the
overall conservation of sediment volume at the bend which can be expressed as
0 o

j_mdaldso + Jodgzdso = Qm[sinZ(ab+6) - sinZab}t (32)

Egs. (27) and (28) indicate that the values of gl/gb and Ez/Eb decrease
from unity at .- 0 to zero as S, is decreased for El/ib and increased for
Ez/Eb. The effects of the bend are approximately limited to the region
- 3.2f€:€-< S, < 3.2/E;€ for which the values of El/Eb and Ez/Eb are greater
than 0.01. If 6§ > O, £l and 52 are positive and erosion will occur at the bend.
If 6 <0, £l and 52 are negative and accretion will take place at the bend.

Fig. 3 shows the variation of F with respect to a_ for 6§ = 10°, 20°, 30° and

b
40° where F = 0 for § = 0°. The values of F for § <0 can be found using the
relationship F(ab,é) = - F(—ab,—ﬁ). It is assumed that - 45° < o, < (45°-8)
for 0 £ § < 90° and -(45°+68) < ab < 45° for - 90° < § < 0° so that El and 82

given by Egs. (21) and (22) are positive. For 0° < § £ 30° F is maximum at

a = - §/2 and the maximum value of F = sind/Ycosd. For 30° < § < 90° F is
maximum at ab = = 45° and (45°-¢) and the maximum value of F = v2tand siné.

Since £, is given by Eg. (29), the maximum displacement £,  at the bend is not
p 8 9 Y b

very sensitive to a, for the range of a

b considered in this analysis. Since

b
Eb increases as 6 is increased from zero, the severity of erosion at the bend
deflected onshore towards the direction of wave propagation for which § > 0

increases as the positive deflection angle of the bend is increased.

Erosion at the Tip. - Erosion at the tip of the causeway will be shown

to occur if Oy > 0. Introducing the coordinate z = (sD+L}, the tip and the bend

are located at z = 0 and z = L, respectively. For the case of large L and oy >
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the boundary conditions for El may be taken as

Ql =0 at z = 0 | (33)
351
T -+ 0 as z + @ (34)

in which Ql is given by Eg. (17). The solution of Eg. (19) with z = {sc+L)
which satisfies the conditions given by Egs. (23), (33) and (34) can be written

z <

£, = £, VT ierfc (0 = z) (35)
ZVslt
with
2th 51n2ab
Et i oy (36)
Ycos2ub
in which Et is the value of El at z = 0 and positive for 0 < oy < 45° where the
present analysis is limited to the case of e 2 0. The value of al/gt decreases

from unity at z = 0 to zero as z is increased. If o > 0, erosion will occur
approximately in the region 0 X z < 3.2/EI€ for which gl/gt is greater than
0.01l. The maximum erosion Et at the tip increases rapidly as ab is increased
from zero to 45°., It should be noted that the solution given by Egq. (35) may
also be applied if the side slope of the causeway for the region z < 0 is pro-
tected so that Ql = 0 for z < 0 but that for the region z > 0 is not protected
and Ql >0 for z > 0. This implies that erosion at the tip of the causeway is
mathematically similar to that at the transition point between the protected
and unprotected regions.

Et given by Eq. (36) increases with time and becomes equal to the width

B of the causeway in the vicinity of the tip at t = tr where tr is given by

deZ cos2ab

by ™ 20 o =
m sin 2ab
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For t > tr’ El is no longer given by Eg. (35) since the displacement El is

limited by B. Defining the receding point as the point where 51 = B, the

receding point moves with time in the positive z-direction. Denoting the un-
>

known location of the receding point by z = r(t) for t 2 tr' the boundary

condition for El given by Eg. (33) must be modified as
Ql =0 2 E. =B at z = r(t) (38)

Eq. (19) with z = (s0+L) together with Egs. (34) and (38) are solved numerically
to obtain the values of El and r for t 2 t..
For convenience of the numerical computation the following dimensionless

variables are introduced

€
_ t _ B o = X
e T % 1 rEx T g T T (39)
r C {5
with
z =L B cot2a (40)
T Rl b

in which the subscript '*' indicates the dimensionless variables and z #0
since the present analysis is limited to the range 0 < o < 45°, Substitution

of Eq. (39) into Egs. (19), (34) and (38) yields

2
3, 3°E
4 *
e g (o, BB B, > Q) (41)
* Bz*
35*
7z, >0 as z, + (42)
35*
m
% F— - ‘—4- I E;* = ] at z* = r*(t*} (43}

*
Since El is given by Eq. (35) at t = tr' the initial conditions for £, and r,

at t, = 0 can be written



) yr
£, = /7 ierfc (‘% z,) , r,=0 at t, = 0 (44)

The steady solution of this receding boundary problem in terms of the moving

coordinate (z,-r,) for large t, may be’shown to exist and be given by

dr*

€, = exp[- % (2, =T.)) » EE: =1 for large t, (45)
After the steady state relative to the receding point is reached, the receding
rate given by Eg. (45) can be rearranged to dr/dt = [Qm sinzab/(dB}] where use
is made of Egs. (37), (39), (40) and (45). This implies that the rate of sedi-
ment volume eroded at the receding front equals the longshore sediment transport
rate along the straight segment of the causeway.

Egq. (41) with Egs. (42)-(44) is solved numerically using the finite
element computer program developed for the analysis of thermoerosion of frozen
soil by Kobayashi and Aktan (5). The present problem is mathematically similar
to the problem of heat conduction with phase changes except that the term
corresponding to the latent heat of fusion is not included in the present
problem. Fig. 4 shows the computed variation of r, with respect to t,. Fig. 5
shows the computed variation of €, as a function of z, for t, =0, 0.6, 1.2 and
2.0. In order to check the accuracy of the computation, the computation is made
starting from t, = - 1, that is, t = 0. The differences between the computed
values of £, for - 1 Z t, 5 0 and the exact values obtained from Eq. (35) are
less than 0.03. Fig. 4 indicates that dr,/dt, is approximately unity for
t, > 2.0. The computed variations of £, with respect to z, for t, > 2.0 are
found to be well represented by the steady solution given by Eq. (45). Conse-
quently, the steady state relative to the receding front is approximately reached
for't* > 2.0. For t, > 2, £, is approximately given by Eg. (45) with

r* = [1073 + (t* - 2)].
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Finally, if oy < 0, accretion will occur at the tip of the causeway.
If the boundary condition at the tip is to be taken as an/az =0at z =0,
the solution of Eg. (19) with z = S + L which satisfies this boundary condition,
the boundary condition given by Eg. (34) and the initial condition El = 0 at
t = 0 will simply be given by 51 = 0 and hence 0, =9 sinZub for z 2 0. This
solution implies that for the region z 2 0 the causeway will remain essentially
straight and the rate of sediment volume deposited in the region z < 0 will be
equal to the rate of longshore sediment transport along the straight segment of
the causeway. However, a more detailed analysis including the effects of wave

refraction and diffraction is required to predict the accretion pattern at the

tip of the causeway.

EXAMPLE COMPUTATION

Computation is made to estimate the severity of erosion of an unprotected
causeway in the southern Beaufort Sea. For lack of available data the empirical
constant K in Eg. (6) is assumed to be K = 0.8 which is obtained for natural
sand beaches (7). The typical value of the pérameter Kk in Eq. (6) is usually
taken as k = 0.8 although the value of k depends on the slope and the steepness
of incident waves (13,17). The specific gravity and the porosity of the fill
material of the causeway are assumed to be 8, - 2.6 and np = 0.4 which may be
appropriate for gravel in sea water. The limitations of the empirical longshore
sediment transport formula given by Egs. (5) and (6) are that it does not account
for the side slope of the causeway and the size of the fill material. Applying
the equilibrium beach profile model proposed by Dean (3), the equilibrium profile
of a gravel beach under the action of waves of normal incidence may have an
average slope of approximately 1:5. The change of the side slope profile of the

causeway during a storm is not considered in the present analysis but could be
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investigated using the analysis procedure based on the equilibrium beach profile
concept (3) if waves are of normal incidence. The breaker height Hb based on the

root-mean-square wave characteristics is taken as H. = 5 ft (1.5 m) which appears

b
to be a typical value in the shallow water of the southern Beaufort Sea during

an occasional severe storm (6). The associated wave period may be of the order

5 sec but the present simple analysis does not account for the wave period
effects. Eg. (6) with K = 0.8, ¥k = 0.8, g = 2.6, np = 0.4 and B = 5 ft

(1.5 m) yields o= 18.5 £t Jaec (6,523 n /sed).

The height and configuration of the causeway depend on site-specific
conditions. The tip of the causeway may be located in water depth as large as
12 ft (3.7 m) (2). The storm surge associated with a storm of 100-year return
period was estimated to be 6-7 ft (1.8-2.1 m) (15). 1In the following computation
the height d of the active profile of the side slope of the causeway is assumed
to be the same as the height of the causeway above the seabed which is taken to
be 25 ft (7.6 m) considering the typical design values of the water depth, storm
surge including minor effects of tides, and wave runup and overtopping. Field
data on the eroded profile of the side slope is required for accurately deter-
mining the value of d such that o 0 at the water depth of closure of the
analysis domain which is typically estimated at 30 ft (9.1 m) for the analysis
of shoreline evolution (9). Gravel grains on the side slope of the causeway in
shallow water will be moved by waves during an occasional severe storm in the
southern Beaufort Sea (6).

Fig. 6 shows the variations of the shoreline displacements 51 and 52
computed using Eqgs. (27) and (28) at the bend of the deflection angle § = 10°
for t = 1, 4, 9 and 16 hr where use is made of Qm = 18.5 ft3/sec
(0.523 m3/sec), d= 25 ft (7.6m) and a, = 15°. Fig. 3 indicates that

b

the computed results will not be very sensitive to the value of @, so long
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as 6 = 10° and ay is in the range - 45° < a < 35°. Fig. 6 suggests that
erosion at the bend may be severe but confined in the vicinity of the bend.

Fig. 7 shows the variation of the displacement El computed using Eg. (35) at
the tip of the causeway for t = 1, 4, 9 and 16 hr where the values of Qm' d

and oy at the tip are assumed to be the same as those at the bend although this
assumption is not necessary since the bend and the tip have been analyzed
separately. The minimum length L between the bend and the tip required for the
separate treatment of the bend and the tip can be estimated for given time using
Figs. 6 and 7. If the width of the causeway at the tip is less than the value
of 51 at z = 0 for given time in Fig. 7, additional computation using Figs. 4
and 5 will be required. Fig. 7 suggests that erosion at the tip may also be
severe but confined in the vicinity of the tip. Since erosion at the tip is
sensitive to the value of Gys @ detailed wave refraction computation is required
for predicting the severity of erosion at the tip using site-specific data.

Fig. 7 also indicates the degree of erosion expected in the unprotected region

z > 0 next to the protected region z < 0 although slumping of the fill material
in the protected region may reduce the severity of erosion. It should be noted
that the present analysis is limited to the case of unfrozen soil. Erosion as
severe as that shown in Fig. 7 may result in exposure of frozen soil to wave
action where the frozen soil may exist at the depth of approximately 8 ft (2.4 m)
below the surface of the causeway. The analysis of thermoerosion of frozen soil
due to wave action by Kobayashi and Aktan (5) indicates that the frozen soil may

not reduce erosion significantly.

SUMMARY AND CONCLUSION

Erosion of an unprotected gravel causeway with a relatively gentle side

slope caused by the variation of sediment transport rates along the causeway due
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to breaking waves is analyzed using the coordinate following the initial shoreline
of the causeway and the longshore sedigent transport formula originally developed
for natural sand beaches. An analytical solution for erosion at the bend of a
long causeway is obtained neglecting wave transformations in the vicinity of

the bend. Analytical and numerical solutions for erosion and recession of the
tip of a long causeway are also presented neglecting the effects of wave
diffraction and refraction and development of longshore current (6) at the tip

of the causeway. An example computation based on these simple solutions is

made for a hypothetical unprotected causeway in the southern Beaufort Sea.

The computation indicates that erosion due to an occasional severe storm may be
severe but limited in the vicinity of the bend and the tip, respectively. The
analysis also suggests that if a slope protection system is provided to a limited
region of a causeway, erosion of the unprotected region next to the protected
region could be similar to that of the tip of an unprotected causeway.

Field data are needed to verify the applicability of the longshore
sediment transport formula for natural sand beaches to gravel causeways as well
as to calibrate the parameters involved in the formula. Admittedly, the present
analysis assumes that a gravel causeway is similar to a spit with sand beaches.

A more rigorous approach would require detailed analyses of wave and current
fields and sediment transport due to the combined wave and current action. How-
ever, extensive computational efforts would be necessary for the detailed analyses.
Alternatively, a computer program based on the present approach including the
effects of wave transformations, frozen soil and the change of the side slope
profile may be developed to predict erosion of the causeway in a more realistic
manner although field data are still needed to establish sediment transport
relationships. The analytical solutions presented in this paper can be used to

examine the accuracy of such a computer program.
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APPENDIX II. - NOTATION

The following symbols are used in this paper:

B = width of causeway;

d = height of active profile of side slope of causeway;

erfc = complementary error function;

F = function defined by Eq. (30);

g = gravitational acceleration;

Hb = breaker height based on root-mean-square wave characteristics;
3 = imaginary unit;

ierfc = integral of complementary error function;

K = empirical constant in Eg. (6);

L = length between bend and tip of causeway;

-

m = unit tangential vector;

= .

n = unlit normal vector;

-

nO = unit vector normal to initial shoreline;

nP = porosity of sediment;

Q = volumetric longshore sediment transport rate;

Qm = parameter defined by Eq. (6);

Ql = sediment transport rate given by Eg. (17);

Q, = sediment transport rate given by Eqg. (18);

a4, = volumetric offshore sediment transport rate per unit shoreline length;
Ro = radius of curvature of initial shoreline;

r = location of receding point;

I = normalized location of receding point defined by Eg. (39);
s = coordinate following instantaneous shoreline;

So = coordinate following initial shoreline;

B = specific gravity of sediment;
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time;

time when recession of tip starts;

normalized time defined by Eq; (39) ;

fixed Cartesian coordinate;

x-coordinate of a point on initial shoreline;
x-coordinate of a point on instantaneous shoreline;
fixed Cartesian coordinate;

y=coordinate of a point on initial shoreline;
y-coordinate of a point on instantaneous shoreline;
coordinate whose origin is located at tip of causeway;
characteristic length defined by Eq. (40);

location of a point on initial shoreline;

complex conjugate of zi

location of a point on instantaneous shoreline;
normalized coordinate defined by Eg. (39);

angle of wave incidence at breaker point relative to y-axis;
angle between ; and x-axis;

value of B corresponding to initial shoreline;
deflection angle of bend;

parameter defined by Egq. (21);

parameter defined by Egq. (22);

ratio of breaker height to water depth at breaker point;
small displacement normal to initial shoreline;
shoreline displacement at bend of causeway;

shoreline displacement at tip of causeway;

shoreliné displacement between bend and tip;
shoreline displacement from bend to large Sqi and

normalized displacement defined by Egq. (39).
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An Idealized Causeway

Fig. 2
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Fig. 4 Normalized Location of Receding Point
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Fig. 7 Erosion at the Tip of an Example Causeway (Note: 1 ft = 0.305 m)
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