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ABSTRACT

A quantitative understanding of wave and ice interaction is essential for
designing structures in partially ice-covered waters. At present, the ice is
modelled either as a thin elastic or inelastic plate or as a rigid body,
depending on the length and time scales involved in a specific problem, while
potential flow theory is normally wused assuming that the water is
incompressible and inviscid and the flow is irrotational.

First, the flexural response of elastic ice floes under the action of
- normally-incident regular waves. in finite water depth is analyzed assuming
that a row of the ice flows may be regarded as a long thin elastic raft of
finite width. The analysis relates the flexural displacement of the elastic
raft to the wave reflection and transmission through the raft. Moreover, the
mean wave drift force on the two-dimensional raft is expressed in terms of the
wave reflection and transmission coefficients. The general solution derived
for finite water depth is then approximated for deep water depth to reduce the
required computational efforts considerably. The computational procedure for
the approximate deep-water solufion, which is explained in detail, is to
compute the wave reflection and transmission coefficients, the flexural
displacement of the ice and the wave drift force on the ice.

Second, the motion of a rigid ice floe of finite thickness under the
action of incident regular waves is analyzed assuming that the ice floe is
vertically axisymmetric. The analysis accounts for the waves scattered and
radiated by the oscillating ice floe. Considering momentum balance, the wave

drift force acting on the three-dimensional rigid body is expressed in terms



of the scattered and radiated waves in the far field. The accuracy and
limitation of the boundary integral equation method used in the report is
discussed by comparing the numerical method with available analytical and
numerical solutions as well as with small-scale model tests,

Third, the computed results for elastic and rigid ice floes are presented
to elucidate the wave and ice interaction and examine the similarity and
differences between: elastic .and rigid ice floes. The computed results
indicate that the effects of sea waves on an ice floe depend on the size of
the ice floe relative to the incident wavelength. Furthermore, the wave drift
force will be important in the force ba'ance associated with the horizontal
movement of an elastic or rigid ice floe if the surface waves in partially

ice-covered water are not negligible.
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1.0 INTRODUCTION

1.1 Background

Structures in partially ice-covered waters such as the Bering Sea and the
Great Lakes must be designed so as to withstand design ice and wave forces
which will probably occur separately. In addition, these structures must be
. designed against the impact force associated with ice floes floating in waves
and colliding against structures since large waves generated in the open water
‘break and penetrate the ice '‘cover well inside the ice edge (Wadhams, 1986).
. Consequently, quantitative knowledge of wave propagation in the field of
discrete floes and resulting motion of ice floes is essential for predicting
the effects of wave and ice interaction on the structures.

Furthermore, wind-generated waves exert mean drift forces on ice floes
and affect the large-scale horizontal movement of ice floes which may be
caused by winds and currents. As a result, the mean wave drift force should
be included in the ice floe force balance used for predicting the horizontal
movement of ice floes in partially ice-covered waters (Madsen et al., 1986).

In the following, previous studies on the wave and ice interaction are
© briefly reviewed to elucidate the present knowledge of this subject. At
present, the ice is modelled either as a thin elastic or inelastic plate or as
a rigid body, while the wave motion is analyzed using linear potential flow
theory assuming that the water is incompressive and inviscid and the small-

amplitude wave motion is irrotational. .

1.2 Previous Studies

The interaction of waves with the ice cover determines the size



distribution of ice floes broken by wave action and the wave conditions
affected by the ice cover. Kheisin (1967) summarized the mathematical models
concerning wave propagation through floating thin elastic ice sheets as well
as in the ice field of pancake type which was treated as a continuous cover of
small non-interacting mass points. In order to describe the slow attenuation
of ocean waves as they penetrate the ice sheet, Wadhams (1973) and Squire
(1984b) accounted for inelastic flexure of the ice sheet, Squire (1984a)
analyzed the refraction of obliquely incident waves at the edge of the thin
elastic ice sheet and proposed a breakup mechanism based on the modulation of
wave amplitude with distance from the edge. The wave-induced flexure of an
ice floe or island may cause the fracture and breakup of the ice mass (Squire,
'1983a; Goodman et al., 1980). On the other hand, the attenuation of wave
energy in the field of discrete floes was investigated by assuming a row of
ice floes to be an infinitely long elastic raft of finite width and analyzing
the reflection and transmission of normally incident waves through a series of
rows of ice floes (Wadhams, 1986). Field measurements of the wave and ice
interaction in the vicinity of ice edges were also conducted to calibrate and
verify these theories (Squire, 1983b; Wadhams et al., 1985). Although
significant progress has been made, more extensive verification of these
theories will be required to apply them to practical engineering problems.
Furthermore, the interaction of waves with the ice cover may also be important
in nearshore regions. Mollo-Christensen (1983a) investigated the interaction
of edge waves with the shore fast ice sheet as a possible cause of ice rideup
on beaches. Andersen et al. (1984) conducted field and tank tests to examine
a possible utilization of artificially-generated waves to break and transport

the ice formed in a harbor.



For given wave and ice conditions at a specific location, the motion of
an ice floe may be predicted by assuming the floe to be a rigid body rather
than a thin elastic plate since the analysis based on the plate approximation
accounts for the vertical displacement of the plate only. The motion of a
rigid ice floe due to waves may be separated into the six oscillatory modes
corresponding to surge, sway, heave, roll, pitch and yaw and the wave-induced
drift (Mei, /1983; Sarpkaya et al., 1981).. The wave-induced drift is caused by
the ‘mean wave force which is normally neglected for predicting the horizontal
movement of an ice floe or iceberg due to wind, currents, Coriolis force .and a
mean sea surface tilt (Madsen et al., 1986; Sodhi et al., 1980). The two-
dimensional wave drift experiments conducted by Harms (1986) suggested a floe
with 10 m width could attain speeds as high as 1 m/sec for steep ocean waves.
Furthermore, Wadhams (1983) showed that the wave drift force acting on a floe
of 20 m diameter could be larger than the corresponding wind drag force
although the drift force was estimated using the theory of Longuet-Higgins
(1977) for a two-dimensional body in normally incident waves. In addition to
the wave drift force, the oscillatory component of the relative velocity of
the water with respect to a floe will modify the hydrodynamic drag force
acting on the floe due to currents (Mollo-Christensen, 1983b).

The impact load resulting from a moving iceberg colliding against an
offshore structure is a concern to exploration operations and production
systems off the east coast of Canada. Lever et al. (1984) conducted small-
scale model tests on the wave-induced motion of small icebergs and bergy bits
and concluded that these ice masses in storm waves could attain very large
kinetic energies. Johnson et al. (1985) used a simple energy-based model

which assumes that the work done by crushing ice equals the iceberg kinetic



energy immediately before the impact. Thus, the kinetic energy of an ice mass
is closely related to its impact load on an offshore structure. On the other
hand, Salvalaggio et al. (1986) employed a momentum-based model to simulate
more detailed impact dynamics numerically. In any case, these models require
the iceberg velocity immediately before the impact as input. Isaacson et al.
*(1986) developed a numerical model for predicting the motions of an ice mass
prior to impact with a large fixed offshore structure. The model consists of
a two-body diffraction solution for wave-induced oscillations and a time-
stepping procedure for drift .motioms. The computed results for several
examples indicated that the velocity and added mass .of the ice mass and its
- trajectory prior to impact might be significantly altered from their far-field
values because of the hydrodynamic interactions arising from the increasingly
close proximity of the ice mass and structure. At present, available models
related to ice impact loads are limited to a single ice mass impacting a large

gravity based structure.

1.3 Report Organization

In Section 2.0, the flexural response of elastic ice floes under the
action of normally-incident regular waves in finite water depth is analyzed
assuming a row of the ice floes may be regarded as a long thin elastic raft of
finite width. The present analysis improves the approximate solution for deep
water depth presented by Wadhams (1983, 1986) since the approximate solution
does not satisfy the required matching conditions at the edges of the raft.
The analysis shows that the flexural response of the elastic raft is directly
related to the wave reflection and transmission through the raft. The wave
drift force on the two-dimensional raft also depends on the wave reflection

and transmission coefficients. In order to simplify the required



computational procedure significantly, the general solution derived for finite
water depth is approximated for deep water depth. The computational procedure
for the approximate deep-water solution is then explained in detail.

In Section 3.0, an analysis is performed of the response of a rigid ice
floe of finite thickness under the action of incident linear waves. The floe
is assumed to be vertically axisymmetric to reduce the required computational
effort. The analysis considers the linear waves scattered and radiated by the
rigid ice floe which oscillates horizontally and vertically as well as rotates
about the horizontal axis perpendicular to the. direction of incident wave
" propagation.. Furthermore, the wave drift force acting on the three-
dimensional rigid body is expressed in terms of the scattered and radiated
waves in the far field by considering momentum balance. The numerical method
based on the boundary integral equations adopted in the report is then
compared with available analytical and numerical solutions as well as with
small-scale model tests in order to examine the accuracy and limitation of the
adopted method.

In Section 4.0, the computed results for elastic and rigid ice floes are
presented to gain a physical insight into the mechanism of the wave and ice
interaction. Comparison is also made of ‘the computed results for the elastic
and rigid ice floes to examine the sensitivity of the computed results to the
basic assumptions regarding the ice characteristics and response.

In Section 5.0, the summary and conclusions of this study are presented.
Limitations and future improvements of the analyses and computations presented
in this report are explained in 1light of the complicated ice and wave
interactions which occur in actual field conditions.

The references quoted in the report are listed alphabetically in Appendix

I. The symbols used in the report are listed in Appendix II.



2.0 ELASTIC ICE FLOES

In this section, an ice floe is assumed to be a thin elastic plate of
horizontal length D and uniform thickness h. Furthermore, a row of the ice
floes is assumed to form and be regarded as a long elastic raft of width D
perpendicular to incident monochromatic waves, which are assumed to be
described by linear (small-amplitude) wave theory. The use of linear wave
theory will be appropriate if the incident wave height, H, is small relative
to the wavelength, L, and the water depth, d, which is assumed to be constant,
‘The quantities of interest in the following analysis are the flexural
oscillation of the elastic raft, the wave reflection and transmission

coefficients and the mean wave drift force acting on the raft,

2.1 Wave Reflection and Transmission

The two-dimensional problem analyzed here is illustrated in Fig. 1 where
the Cartesian coordinate system (x,z) used in the following analysis is
defined. The x-axis is taken to be positive in the direction of incident wave
propagation, whereas the z-axis is positive vertically upwards from the still
water level (SWL). The elastic raft of width D and thickness h is assumed to
be floating freely. Consequently, the depth of submergence below SWL, hg, in
the ébsence of the wave action is given by hg = (pi/p)h in which p = density
of the water and pi = density of the ice. Since p > pi, hence hg<h. The
thickness h of the ice is assumed to be small relative to the width D, the
incident wavelength L, and the water depth d. The normally-incident linear
wave causes the flexural motion of the thin ice raft, while the presence of
the raft produces the reflected and transmitted waves propagating in the

negative and positive x-direction, respectively,



*2ABM IEOUTT JIUSPTOUI-ATTRWION

03 posodxd 3Iey OTISETd TRUOTSUSWIJ-OML IOF UYd3ISS UOTITUTI=A - 1 *BTa

) - . - - - - - - 2 Sae . . Eae LR el
o et T B 2 23, A g LTt e Ot _q....,.._..o..na.h g e L e

5 PN =
PEPEL By BTN L okt e A S AT AR ST

=iagt. .
B PN S I ok

$F

= ...f —

33ey OoT3seld aAeM IPSUTT JUSPTOUIL



The equation of the flexural motion of the thin elastic raft located in

the region 0 < x < D as shown in Fig. 1 can be written as (e.g., Kheisin,

1967)
32 a4
pih 5;% il 5;% — pigh + Pj (1)
with Dy e BAB (2)
171209

in which ¢ = vertical flexural displacement of the thin elastic raft, t =
time, Dj = flexural rigidity of the ice, Ej = Young's modulus of the ice, v =
Poisson's ratio of the ice, g = gravitationzl acceleration, and Pj; = fluid
pressure underneath the ice raft at z = ({~hg). The left hand side of Eq. 1
is the inertia force per unit surface area, whereas the first and second terms
on the right hand side of Eq. 1 are the net vertical force per unit surface
area due to the ice flexure and the weight of the ice per unit surface area,
respectively. Using the Bernoulli equation (e.g., Mei, 1983) which may be
linearized for the linear wave and thin elastic raft, the pressure Pj at z =
(¢—hg) is given by
a®

Pi = rglhs =) — » 3¢ 3
z=0

in which & = velocity potential associated with the wave motion below the ice
raft located in the region 0 < x =< D. The velocity potential & is defined
such that the fluid velocity vector U = V8. The first and second terms on the
right hand side of Eq. 3 are the hydrostatic pressure below SWL and the
dynamic pressure due to the wave motion, respectively. The dynamic pressure
at z = ({~hg) can be approximated by that at z=0 for this linearized analysis
in which the wvertical displacement { is of the order of the incident wave
height H or less. Substitution of Eq. 3 into Eq. 1 together with phg = pijh

yields



a2¢ 2% a0

z=0

The flexural displacement {(t,x) may be found as a function of t and x by
solving Eq. 4 if the velocity potential below the ice raft is known. The four
boundary conditions required for {(t,x) are that the bending moment and shear

must be zero at the ice edges located at x=0 and x=D (e.g., Wadhams, 1986)

2

g;% =0 at x=0 and x=D (5)
3

ng - 0 at x=0 and x=D (6)

No initial conditions for ¢(t,x) are required in this analysis since the
flexural motion of tﬁe ice raft will be assumed to be simple harmonic under
the action of the incident linear monochromatic wave.

The velocity potential &(t,x,z) below the ice raft located in the region
0 < x = D must satisfy Laplace’s equation (e.g., Mei, 1983)

2 2
%;% + g;% =0 in water (7)

The wave motion under the ice raft will also be simple harmonic since it is
caused by the incident linear monochromatic wave. The kinematic boundary
condition at the horizontal seabed which is assumed to be impermeable is
expressed as

ad

V. 7ol 0 at z = —d _ (8)

On the other hand, the kinematic boundary condition at the interface between
the ice and water located at z = ({~hg) is linearized in the same way as the

dynamic pressure term in Eq. 3

ac 2%
5%-—3; at z =0 (9)

Eq. 9 implies that the vertical velocity of the ice raft is the same as the
vertical fluid velocity underneath the ice raft which can be evaluated at z=0

in this linearized analysis. It should be noted that the coupling between the
9



ice and wave motions takes place through Eqs. 4 and 9. In order to solve Eq.
7, boundary conditions at the interfaces between the ice cover and open water
regions located at x=0 and D need to be specified. The matching conditions at
x=0 and x=D are that the dynamic pressure and the horizontal fluid velocity

must be continuous at these interfaces

g% is continuous at x=0 and x=D (10)
ad
% is continuous at x=0 and x=D (11)

Eqs. 10 and 11 imply that the wave motion in the open water regions x < 0 and
X 2 D need to be obtained in order to find the velocity potential below the
ice raft,

The velocity potential ®(t,x,z) in the open water regions x < 0 and x = D
must also satisfy Laplace’s equation given by Eq. 7 and the kinematic boundary
condition at the seabed given by Eq. 8. In the open water regions, the free:
water surface exposed to the atmosphere is present instead of the ice raft.
However, the free surface can conveniently be regarded at a special ice cover
with zero thickness h=0 and zero density pi=0.  Accordingly, the variable
§(t,x) corresponds to the free surface displacement for the case of h=0 and
Pi=0. For h=0, hg = (pi/p)h = 0 and Dj=0 according to Eq. 2. Then the
linearized kinematic boundary condition at the free surface is the same as Eq.
9 with { = free surface displacement, while the dynamic boundary condition at
the free surface is given by Eq. 4 with pi=0 and Dy=0, which implies that the
pressure at the free surface relative to the atmospheric pressure is zero
according the Eq. 3 with hg=0. In addition, the radiation conditions at x=tw
must be specified. In the far field upwave of the ice raft, the wave
reflected from the ice raft must propagate in the negative x-direction, while
the incident long-crest wave is specified to propagate in the positive x-

10



direction. In the far field downwave of the ice raft, the wave transmitted
through the ice raft must propagate in the positive x-direction. It should be
mentioned that the linearized two-dimensional problem formulated above is
fairly general and may be applied to various problems related to the
interaction of the linear wave with the thin elastic ice sheet (Kheisin, 1967;

Wadhams, 1986).

2.2 General Solution for Finite Water Depth

The linearized problem formulated in Section 2.1 is solved for the case

of the incident linear monochromatic wave whose velocity potential &; is given

by
85 = Re [41(x,z)e "] (12)
with
2 igH cosh k(z+d) —ikx
$1(x,2) 2w cosh kd . (13)
w? = kg tanh kd (14)

in which Re indicates the real part of the complex variable inside the_square
brackets, ¢j = complex function expressing the spatial variation of &;, i =
J-1, w = wave angular frequency, H = incident wave height, and k = wave
number. The dispersion relationship given by Eq. 14 implies that the incident
wavelength L = (2n/k) is uniquely determined for given water depth d and
incident wave period T = (2n/w). Eq. 12 with Egqs. 13 and 14 satisfies
Laplace’s equation given by Eq. 7, the kinematic boundary condition at the
seabed given by Eq. 8, and the kinematic and dynamic boundary conditions at
the free surface given by Eqs. 9 and 4 in which { = free surface displacement,
pi = 0 and Dj = 0.

For the incident wave described by Eq. 12, the velocity potential

13



®(t,x,z) and the displacement {(t,x) can be expressed as

t

® = Re [¢(x,z)er?C) (15)

¢ = Re [n(x)eiwt

] (16)
in which ¢ = unknown complex function expressing the spatial variation of @&,

and n = unknown complex function expressing the variation of { with respect to

X. Substitution of Eqs. 15 and 16 into Eqs. 4, 7, 8 and 9 yields

s ) _
Dj Ei% + (pg — pihw?)n + 1pm¢|z_0 -0 (17)
2 2
%;% * %Eg -0 in water (18)
%f - 0 4 % = (19)
_ia¢
Tt Tesz |, (20)

Substituting Eq. 20 into Eq. 17, the boundary condition for ¢ at z=0 is

obtained

a5¢ a¢
Di 329%% + (pg — pihw?) 3z pw?¢ = 0 at z=0 (21)

In the region 0 < x < D below the ice cover, the complex functions ¢(x,z)
and n(x) must satisfy Eqs. 18-21. On the basis of the explanations given by
Kheisin (1967), a general solution of ¢(x,z) below the ice cover which
satisfies Eqs. 18 and 19 may be expressed in the form

igH 2 iKpx —iKnpx
$= cosh(kd) Zl(Ane + Bpe ) cosh [Kp(z+d)]
=

+ ) (AneKnx o+ Bne"Knx) cos [Kp(z+d)] } (22)
n=4

in which K, = wave numbers explained below, and A, and B, = unknown complex
constants which need to be determined using the boundary conditions with

respect’ to x. The dispersion relationship for K, in Eq. 22 is obtained by

12



substituting Eq. 22 into Eq. 21. K, with n=1, 2 and 3 must satisfy the
following equation

2
< 0

DiK?l + (pg — pihmz) Kn — m -

(n=1,2,3) (23)

Eq. 23 has three roots in which K;>0, K, = (Ky + iKj) and Kg = (Ky — iKj) with

Ky and Kj being real positive. On the other hand, K, with n=4, 5, ., @ are
an infinite number of real positive roots, i.e., K, >0 of the following
equation
.¥5 = aatis? _pw? s i
DiKR + (pg — pijhw?) K, + tan(K.d) 0 (n=4,5,...) (24)

Substituting Eq. 22 to Eq. 20, the complex function n(x) related to the

vertical displacement of the ice cover is expressed as

3

L Y K, sinh (Kyd) (Ape ¥n* + B e tKnX,
n=1

7 = 2k sinh (kd)

- Ea K, sin(Knd) (A,neKnx + Bne_K“x) (25)
Ti=

in which use is made of Eq. 1l4.
In the open water regions x<0 and x=D, the complex functions ¢(x,z) and
n(x) must also satisfy Eqs. 18-21 except that Dj=0 and p;=0 in Eq. 21. A

general solution of ¢(x,z) can be expresses in the form (e.g., Mei, 1983)

igH ik,x —-ik,x
¢ %% coth (53) {(ale + b,e ) cosh [k, (z+d)]
- —k
+ T (8ne"™® +bye %) coalkn(z+d)] (26)
n=2
in which kj (n=1,2,...) = wave numbers explained below, and a, and by,
(n=1,2,...) = unknown complex constants which need to be determined using the

boundary conditions with respect to x. The dispersion relationship for k, in

Eq. 26 is obtained by substituting Eq. 26 into Eq. 21 with Dj = 0 and pj = O.

13



k, is the real positive root of the following equation
k,g tanh(k,d) = w? 27)
Comparison between Eqs. 14 and 27 indicates that k;, = k is the wave number of
the incident linear wave expressed by Eq. 12. k, with n=2,3,..., « are an
infinite number of real positive roots, i.e., k>0 of the following equation
kng tan(kpd) = — w? (n=2,3; ...) (28)
Substituting Eq. 26 into Eq. 20, the complex function n(x) related to the free

surface displacement is given by

H

- ik,x
" = 2k sinh(kd)

—ik x

[k1 sinh(k,d) (a;e + b,e )

= 7 ky sin(kad) (e P + bne_knx)] (29)
n=2

It may be apparent that Eqs. 26-29 for the open water with Dj=0 and p;i=0
correspond to Egqs. 22-25 for the ice cover region, respectively.

In order to find the complex constants A,, B,, a, and b,, the general
solutions for the open water and ice cover regions need to be matched, First,
in the region x<0 upwave of the ice raft, ¢ and n are given by Eqs. 26 and 29,
respectively, without regard to the boundary conditions with respect to x.

The functions ¢ and 5 which satisfy the radiation condition at x = — « are

given by
= B zogh(kd) {(a,eiklx i e_lklx) cosh [k, (z+d)]
N, K
+ ), ape cos [kp(z+d) ] (30)
n=2
M Sy [f Sth (@) (agel T
< kpx
- ) kp sin(kpd) ape n] (31)

n=2
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in which ¢, and 5, = functions ¢ and n in the region x<0, and N, = number of
terms in the infinite series retained for the actual computation. In Eqs. 30
and 31, k;, and k (n=2,3,...,N;) need to be found from Eqs. 27 and 28,
respectively, for given g, d and w. Comparison between Eqs. 13 and 30 shows
that the term involving exp(—ik;x) with k; = k in Eq. 30 represents the
incident linear wave whose height 1is given by H. The term related to the
complex constant a,; represnts the reflected wave propagating in the negative
x-direction and the wave reflection coefficient R = |a1| which is a positive
value. The evanescent terms associated with a, (n=2,3,...) decay
exponentially as x + — « since kp > 0. Second, in the region 0 < x < D of the
ice raft, ¢ and n are given by Egs. 22 and 25, respectively, which are

approximated by

3
igH i -
¢2 e 2w cosh(kd) {HE]. (Ane Knx + Bne K’flx) cOSh[Kn(Z+d)]
+ 22 (AneKnx + Bne”Knx) cos[Kp(z+d) ]} (32)
n=4

H

3
"2 = 2k sinh(kd) L_Elkn sinh (Kpd) (Ape + Bpe )

N
- ¥ Ky sin (Ryd) (AgeXe™ + sne‘xn“)] (33)
n=4

in which ¢, and n, = functions ¢ and n in the region 0 < x < D, and N, =
number of terms retained for the computation. K (n=1,2,...,N,) in Egqs. 32 and
33 must be obtained from Eqs. 23 and 24 for given p, g, pj, h, Dj, d and w.
Third, in the region x=D downwave of the ice raft, the functions ¢ and g
expressed in the form of Eqs. 26 and 29 need to satisfy the radiation

condition at X=w and can be written as
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igH -ik
s = 2w cosh(kd) {b‘e 1% cosh[k, (z+d)]
Na ~feax
+ Y bpe ™ cos[kp(z+d)] (34)
n=2
H —ik,;x
Ny = m&‘j" k1 sinh(k,d) ble
Ns —knx
- Y k, sin(kyd) bpe O ] (35)
n=2

in which Ng = number of terms used for the computation. 1In Egqs. 34 and 35,
the term associated with the complex constant b, represents the transmitted
wave propagating in the positive x-direction, while the evanescent terms
associated with b, (n=2,3,...) decay exponentially as x + =, Since k; = k in
Eqs. 34 and 35, the wave transmission coefficient T, = |b,| which is a real
positive wvalue.

The (N, + 2N, + Ng) unknown constants a,, A,, B, and b, in Egqs. 30-35 are
determined to satisfy the conditions at x=0 and D given by Egs. 5, 6, 10 and

11. Eq. 5 reduces to 3%n,/3%x? = 0 at x=0 and x=D with n, given by Eq. 33 and

requires
Y K3 sinh(Kpd) (Ap + Bp) + ) K3 sin(Knd)(Ap + Bp) = 0 (36)
n=1 n=4
2 iK,D —iK,D
Y K3 sinh(Kpd)(Ape” ™ + Bpe — 1)
n=1
2 KD ~KD
+ ) K3 sin(Kpd) (Ape ™ + Bpe D) = 0 (37)
n=4

Eq. 6 results in 83%p,/8x® = 0 at x=0 and x=D from which we obtain
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3 N,
Y iK§ sinh (Kpd) (Ap — Bp) + ) KA sin(Kyd) (Ap — By) = 0
n=1 n=4

3
Y iK4 sinh (Kpd) (Ape
n=1

iKnD _ p  ~1KnD,

N2 —
+ ¥ KA sin(Ryd) (AjeP — B e ¥nPy _ g

n=4

(38)

(39)

On the other hand, the matching conditions expressed by Eqs. 10 and 1l require

a¢ d¢

e 3 991 _ 299 -
¢1 ¢2 ’ ax ax at x 0
b, = ¢35 - 532 5§3 at x =D

(40)

(41)

Egqs. 40 and 41 must be satisfied at any value of z in the region —d < z < 0.

For the computation, the matching conditions given in Eqs. 40 and 41 are

satisfied at the specified vertical locations zy (i=1,2,...,I) at x=0 and zj
(j=1.2,...,J) at x=D. As a result, Eq. 40 yields the following 2I equations
N,
(a; + 1) cosh [k,(zy + d)] + )} ap cos[kp(zy + d)]
n=2
3 | N,
= ¥ (Ap + Bp) cosh [Kn(zj+d)] + E (Ap + Bp) cos[Ku(zy + d)] (42)
n=1 n=4
N,
ik, (a; — 1) cosh [k,(z; + d)] + 2 kpap cos[kn(zi+d)]
n=2
3 N,
= ) iKp (Ap — Bp) cosh[Kn(zj+d)] + J Ky (Ap — Bp) cos[Kp(zj+d)] (43)
n=1 n=4

Likewise, Eq. 41 results in the following 2J equations
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3
L (Ap

n=1

IKnD i

+ Bpe X0°%) cosh [Kn(zj+d)]

KD ik,D

N, P "
+ ) (Ape + Bphe K“D) cos[Kn(Zj+d)] = b,e *53 cosh[kl(2j+d)]
n=4

N

+ 3 bpe ¥ coslin(z5+d)) (4b)
n=2
3 iK,D )]
Y iKn(Ape ™ — Bpe T B7) cosh [Kn(zj+d))
n=1
W KD _ 5 ~KnD
+ Y K, (Ape ™ — Bpe ) cos [Kp(zj+d)]
n=4
il By AP cosh(k, (zj+d)]
Ng kD
b5 Z k, bpe cos[kn(2j+d)] (45)
n=2

Eqs. 36-39 and 42-45 may be rearranged in a matrix form and solved to obtain
the unknown constants ap, (n=1,2,...,N;), Ap(n=1,2,...,N;), Bp(n=1,2,...,N,)
and bp(n=1,2,...,N;). In order to uniquely determine these unknown values,
the following relationship must be satisfied

Ny, + 2N, + Ny = 4 + 21 + 2J (46)
For the actual computation, the values of N;, N,, N, I and J should be

selected on the basis of the degree of accuracy required for specific

applications.

2.3 Wave Drift Force on a Two-Dimensional Floe

Once the constants ap,, A,, B, and b, are found, various quantities of
interest can be obtained using Eqs. 30-35. The flexural oscillation of the
ice raft can be investigated using Eq. 33. The wave reflection and
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transmission coefficients are given by

R = |a,] i Ty = |b,| (47)
in which a; and b; = complex constants.

The incident waves exert oscillatory and drift forces on the ice raft.
The wave drift force averaged over the wave period should be included in the
ice floe force balance used for predicting the horizontal movement of the ice
floes in partially ice-covered waters (Madsen et al., 1986; Kobayashi et al.,
© 1987). For a two-dimensional body in normally incident waves, the mean wave
drift force per unit width, Fgq, acts in the direction of the wave propagation
and is given by (Longuet-Higgins, 1977)

1 w2 __2kd 2 _ m2
¥q = 15 pEH [1 * sinh(de)] Ll 8 B = 550 (48)

in which Fgq is proportional to H? but the mean second-order drift force
depends on the first-order quantities only. Since no wave energy absorption
and dissipation will occur for the potential flow and elastic ice assumed in
the present analysis, the conservation of wave energy requires (e.g., Mei,
1983)

RZ + T2 = 1 (49)
in which 0 =R =<1 and 0 = Ty < 1. Substitution of Eq. 49 into Eq. 48 yields

2kd ]

-1 ou2p2 __-2kd
Fa = g rel’R [1 * Sinh(2kd) $8)

In order to compare the wave drift force on the two-dimensional ice raft to
that on a three-dimensional ice floe, it is convenient to introduce the

normalized wave drift force defined by

- -Fa_ 1o L
M= =gk [1 * Sinh(2kd) (51)
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In deep water for which (d/L) > 0.5, that is, (kd) > x, (2kd)/sinh(2kd)
<< 1 (e.g., U.S. Army Coastal Engineering Research Center, 1984). 1In deep
water, Eqs. 50 and 51 can hence be approximated by

Fq = 3 pgH?R? in deep water (52)

o[ o=

£g = = R? in deep water (53)

It should be mentioned that the analysis of Longuet-Higgins (1977) assumed the
existence of the difference in the mean surface levels between the up-wave and
down-wave sides. This assumption may not be appropriate in open water far
from the coastline but the assumed mean surface level difference is negligible

in deep water.

2.4 Approximate Solution for Deep Water Depth

The problem formulated for finite water depth in Section 2.2 requires
significant computational efforts. In deep water,the problem becomes
independent of the water depth d and can be simplified considerably. For
(kd)>n, the dispersion relationship for the open water given by Eq. 27 with
k,=k reduces to

k,g = w? (54)
Moreover, there are no evanescent modes in deep water and Eq. 28 for k, with n
= 2 is not required. Likewise, the dispersion relationship for the ice cover
region expressed by Eq.23 is simplified as

DiKP + (pg — pihw?) K, — pw? = 0 (n=1,2,3) (55)
Eq. 24 for K, with n = 4 is not needed for deep water depth since Eq. 55 has
no equation similar to Eq. 24 corresponding to Eq. 23. As a result, only the

terms involving k,, K,, K, and Ky exist for deep water depth.
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Accordingly, in deep water, the solutions given by Eqs. 30-35 for finite

water depth are modified as

4y = 38 [aleil‘lx + e_iklx] gFa® (56)
s % [aleik,x . e—iklx] (57)
3 _
i —iK K
b, = 38 L [AnelK“" + Bpe “"] ¢ B (58)
=
H 2 iKnx iK%
g = 5= ). Kn[Ane Knx Bne ] (59)
1 n=1 : .

g - 1B g flgx gz (60)

H —ik
ns =3 by e 1% (61)

Eqs. 56, 58 and 60 satisfy Eq. 18 and Eq. 19 with d + « where k = k, > 0,
K, > 0, Re[K,] = Re[Kg] = Ky > 0. Eq. 20 can also be shown to be satisfied.
Substitution of Eq. 58 into Eq. 21 yields Eq. 55, while substitution of Eq. 56
or 60 into Eq. 21 with Dj = 0 and pj = 0 results in Eq. 54. Eqs. 56 and 57
satisfy the radiation condition at x = — =, whereas Egqs. 60 and 61 satisfy the
radiation condition at x = «. As a result, the unknown complex constants a,,
An (n=1,2,3), By (n=1,2,3) and b, in Eqs. 56-61 need to be found using the
conditions required at x = 0 and x = D,

The equations for deep water depth corresponding to Eqs. 36-39 are

written as

3

leg (Ap + Bp) = 0 (62)
n—

2 iK,D —iK,D

LKS (Ape" ™ 4+ Bpe M) =0 (63)
n=1
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3

Y K& (A — Bp) = O (64)
n=1
3
y, Ka(Ape "nP — pe™HnPy oo (65)
n=1

Egqs. 62-65 .ensure that the boundary conditions given by Egs. 5 and 6 are
satisfied in deep water. Furthermore, the matching conditions expressed by
Eqs. 40 and 41 must be satisfied'at any value of z in the region z =< 0 at
x = 0 and x = D. However, the deep water solutions given by Eqs. 56-61 with
no evanescent modes can satisfy these matching conditions only at one value of
z and are hence only approximate. Squire (1984a) and Wadhams (1986) matched

the solutions at z = 0 only since the wave action tends to decrease downward

from z = 0. Making the same approximation, Egs. 40 and 41 are satisfied at z

= 0 only
.
a, — ) (Ap + Bp) =—1 ' (66)
n=1
3
kja; = ) Kp (Ap — Bp) =k, (67)
n=1
2 iKyD —iK,D —ik,D
Y (Ape" ™ + Be D) —bse 1T =0 (68)
n=1
3 ik, D —iK,D —ik,D
YLKy (Ape" ™ —Bye N) + k,bye 17 =0 (69)
n=1

Solving the eight linear equations given by Eqs. 62-69, the values of a,,
An, (n=1,2,3), By (n=1,2,3) and b, can be found. The wave reflection and
transmission coefficients can be calculated using Eq. 47, while the wave drift
force per unit width can be found using Eq. 52. Furthermore, the vertical

displacement of the ice raft is given by Re[n,(x) exp (iwt)] in the region
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0 = x =D in which n, is expressed by Eq. 59. Consequently, the amplitude of
the 1ice displacement is equal to ]qz(x)[ which may be normalized by the

amplitude of the incident linear wave given by (H/2)

2|52§x)| - 1

3 "
Nm(x) = H K, L K ““1’1‘3iKﬂx % Bne—lxnx] I (70)

n=1

in which #np = normalized amplitude of the ice displacement in the region

0=x=D,

2.5 Computation Procedure

The computation procedure for the approximate solution for deep water
depth presented in Section 2.4 is explained in the following. The input
parameters required for the computation are: p = density of the water, g =
gravitational acceleration, pj = density of the ice, Ej = Young's modulus of
the ice, v = Poisson's ratio of the ice, h = thickness of the ice, D = width
of the ice raft, and T = incident wave period. The incident wave height, H,
is mnot specified since only the normalized quantities are computed herein.
The flexural rigidity of the ice, Dj, is calculated using Eq. 2. The incident
wave number k = k; = (w?/g) from Eq. 54 in which w = (2n/T) = wave angular
frequency. The incident wavelength, L, is defined as L = (2x/k).

Eq. 55 is then solved to obtain K;, K, and Kz in which K, is a real
positive value, and K,and K; are complex conjugates

Ko = Ky + iKg : Ky = Ky — 1K (71)
where Ky > 0 and Kjy > 0. It should be noted that K, must be positive to
ensure that ¢, given by Eq. 58 approaches zero as z -+ (). First, K, is
computed from

K} + C,K; — Cp,= 0 (72)
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v 2 2
C. = PBE-pibw? ) Cz—‘&>0 (73)

It can be shown that Eq. 72 with C, > 0 has only one positive root. Eq. 72 is
solved using a Newton-Raphson iteration method (e.g., Abramowitz et al., 1972)
stérting from K, = k., The other roots of Eq. 55 are the roots of the

following equation

u +ud +u?2 +u+Cy =0 (74)
with

- En . u Bg

U= ; Cs = & >0 (75)

in which K, = uK, and K, is the real positive value obtained above. Eq. 74

can be separated into the following two quadratic equations

u? + Cu + Cg = 0 (76)
u? + Cgu + C, = 0 (77)
with
1 3) % (78)
=g~ I3
2 35
%"‘[%:“_Ca] for v < 2
Cg = . 1 (79)
v v
E‘[Z“‘Ca] for v > 2
b
1 3
C6—§+[‘*Z] (80)
2 b
g—[}:——-cs] for v < 2
Cy = , . (81)
v v
§+[4——C3] for v > 2

in which the variable v is the real root of the following equation which
satisfies the conditions of v > 1 and v > 2/Cq4
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v3 = v? 4+ (1 —4C,) v+ (3Cg —-1) =0 (82)
It can be shown that Eq. 82 has only one real root which is greater than unity
and 2/C4. Eq. 82 is solved using a Newton-Raphson iteration method starting
from v = max (1, 2/C;). Since v > 1 and v > 2/C4, hence C, < 0, Cz > 0, Cg >
0 and C;, > 0. Solving Eq. 76, K, and K, are expressed as

K, =

N =

K, [—- Co + 1 (4C4 — cg)*’] (83)

'Ks _

N =

K, [— C, — 1 (4C; — cg)‘f] (84)

where it can be .shown that (4Cgz — C2) > 0. Comparison of Eqs. 83 and 84 with

Eq. 71 indicates

Re = =5 K, C( >0 (85)

%— K, (4C5 — €2)* > 0 (86)

Ky =
On the other hand, Eq. 77 yields two roots whose real parts are negative since
Cg > 0 and C, > 0. These roots are discarded since ¢, given by Eq. 58 will
approach infinity as z -+ (=) if.Re [K,] < 0.

After K,, K, and K, are computed, the complex coefficients for the eight
linear equations given by Eqs. 62-69 for the wunknown wvalues of a,,
Ap(n=1,2,3), Bnh(n=1,2,3) and b, are calculated. The solution of the eight
complex linear equations is obtained using the external subroutine LEQTIC in
IMSL 1library. Then, the reflection and transmission coefficients are
calculated using Eq. 47, while the normalized wave drift force, which is
independent of the incident wave height H, is obtained using Eq. 53.

Moreover, the normalized amplitude of the ice displacement expressed by Eq. 70

is computed as a function of x in the range 0 < x < D.
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3.0 RIGID ICE FLOES

In this section, an ice floe is assumed to be rigid and vertically
axisymmetric, The response of the three-dimensional ice floe of finite
thickness under the action of incident linear waves is analyzed by computing
the linear waves Scattered and radiated by the ice floe. . The motion of the
rigid floe is separated into the three oscillatory modes corresponding to
surge, heave and pitch and the wave-induced drift, The numerical method
described in this report is based on that used by Kobayashi et a]. (1986,

1987) and Frankenstein (1986) who made example computations for the

be extended to multiple floes with significant additional computational

efforts (Kagemoto et al., 1986).

"3.1 Wave Diffraction and Radiation

floating rigid body are well established (Mei, 1983). For wvertical
axisymmetric bodies including cylinders and spheres, the use of an
axisymmetric Green's function method reduces the required computational effort
significantly (Eatock Taylor et al., 1978; Fenton, 1978;- Isaacson, 1982),
Consequently, the ice mass examined in the following is assumed to be rigid
and vertically axisymmetric. The associated wave field is assumed to be given
by linear potential flow theory. The effect of flow separation for a floating
small ice mass is expected to be negligible in the absence of winds and
currents since the small ice mass behaves approximately as a fluid particle

(Lever et al., 1984). The use of linear wave theory will be valid if the wave
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OSCillatES under the action of the incident linear wave. The translational

motions jip the x ang Z directiong are termed Surge ang heeve, respectively,

is €Xpressed ag

® = Re[4(x,y,z)cl0t ] (87)
in which ¢ - time, ¢ = angular frequency, ¢ = complex function expressing the
Spatia] Variation of ® and Re indicateg the real Part of the complex Variable

inside the Square brackets The following analysis jig essentially based onp

(1982) and Mej (1983) although they diq not compute the wave and jce

interaction. Since Isaacson and Mei used exp(-iwt) in Eq. 87, ¢ in their
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equation in the fluid domain, the kinematic boundary condition at the
horizontal seabed, the linearized kinematic and dynamic boundary conditions at
the free surface, the radiation condition at the far field and the linearized
kinematic boundary condition at the submerged surface of the body at rest
(e.g., Mei, 1983). The last boundary condition implies that the fluid
velocity in the direction of the unit normal vector, HO, which is taken to be
positive inward into the body, equals the velocity of the submerged surface in
the same direction arising from the surge, heave and pitch motions.
Accordingly, the complex function ¢ can be separated into (Isaacson, 1982)

3

$ =91 +ds+ T b5 &5 © (88)
j=1

in which the subscripts i and s indicate the incident and scattered waves
associated with the stationary body and the subscripts j=1,2 and 3 denote the
surge, heave and pitch motions, respectively. 1In Eq. 88, fj is the complex
amplitude of each of the surge, heave and pitch motions expressed in the form
$jexp(iwt) and ¢j is the complex function associated with each of the body
motions for the case of fj = 1. The boundary conditions at the submerged
surface of the body at rest thus become independent of £j and are given by
Isaacson (1982) who took the unit normal vector Eo to be positive outward from
the body.

As a result, the boundary-value problem for each of the unknown complex
functions ¢4 and ¢j(j-1,2 and 3) can be solved separately first. Then, the
equations for the surge, heave and pitch motions can be solved to obtain the

unknown complex amplitudes Sj(j—l,2 and 3).
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3.2 Boundary Integral Equations

Using Green's theorem, the following surface integral equation for ¢
with j=1,2,3 or 4, where the subscript j=4 is used to represent the subscript

s, can be derived (Mei, 1983)

¢ $5G) = IJ[¢j(§o) 3G(x|xg) C(X|%g) 32i(X0) ] dsg (89)
Sp ang ang

in which Sg = submerged surface of the body at rest, n, = distance in the
direction of the unit normal vector, and G(E]Eo) = Green's function related to
the potential at any field point x = (x,y,z) due to an oscillating source of
unit strength at the point ;o = (X0, Yo» Zo) on Sg (Mei, 1983). The parameter
€ in Eq. 89 is given by ¢ = 1 or 1/2 depending on whether the point x is
located in the fluid domain or on Sp, respectively. It should be mentioned
that Fenton (1978) and Isaacson (1982) used a closely related method based on
a source strength distribution function instead of Eq. 89.

For a vertical axisymmetric body, it is convenient to use the cylindrical
coordinate system (r,f z) with x = r cosf and y = r sinfd and express ¢j

(j=1,2,3 or 4) in terms of Fourier series with respect to angle ¢

$5(X) = ¢3(r,2) + 2 &, 4](x,2z) cos(mo) (90)

where ¢?(m-0,1,2...) is the unknown complex function which depends on the two-
dimensional coordinate system (r,z) in the vertical plane. Egq. 90 indicates
that ¢j is symmetric about the axis of #=0, that is, the x-axis.

Correspondingly, the Green’'s function can be expressed as

6(X|Xo) = 6O(r,z|ro,20) + 2.8, €M(r,z|ro,20) cos[m(b-6,)] (91)

in which the complex function ¢™(m=0,1,2...) depending on r, z, ro and z, with
30



Xo = rgcosf, and y, = ro, sinf, was given by Fenton (1978) and consists of the
propagating mode and evanescent modes.

Substituting Eqs. 90 and 91 into Eq. 89 and integrating the resulting
equation with respect to f,, the following line integral equation for ¢?(r,z)

can be derived (Eatock Taylor et al., 1978)

aG™(r, ero: Zo)

= ¢i(r,2) - J[¢?(ro, %)

2n 1y an,

. (92)
- Gm(r’zlro’zo)ﬁgﬂ.(_roiol ] rOdLB
ang
in which Lpg is the contour of the submerged body surface in the vertical plane
and the point (ry,, Zy) is located on this contour. In Eq. 92, the variations
of é?(ro,zo) (j=1,2,3 or 4 and n=0,1,2,...) on Lg are unknown but their normal
derivatives on Lp can be found from the kinematic boundary condition at the

submerged body surface (Isaacson, 1982)

348 (rg,20) ‘ -5 @ cosa m=1 s
dng 0 otherwise
5
iw sina m=0
048 (rg,20)  _ | 5
8ng 0 otherwise
-% w (z5 cosa + ry sina) m=1
01 (rg,20)  _ | (a8)
8ng 0 otherwise
m m m
3M(r0,20)  _ cose I9M(rorZo) | i 880(ro,Zo) o
dang arg dz,
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in which a = angle shown in Fig. 2 of n, relative to the horizontal plane such
that 30 = (-cosa, 0, sina) in terms of the cylindrical coordinate system and
¢T(ro,zo) results from the Fourier series expression of ¢; in the form of Eq.
90

igH coshk(z,+d)
2w coshkd

$; (To.20) = (-1)™ Jp(kr) (97)
where g = gravitational acceleration, k = incident wave number and J, = Bessel
function of the first kind of order m (Abramowitz et al., 1972).

In order to find ¢?(ro,zo) on Lg, the point (r,z) in Eq. 92 is taken to
be on Lp and the resulting equation with ¢ = 1/2 is solved numerically by
discretizing Lg into a finite number, N, of short straight segments and
assuming that ¢?(r0,zo) is constant over each segment and represented by the
value at the center of each segment as illustrated in Fig. 2 (Eatock Taylor et
al. 1978). The above discretization reduces Eq. 92 to the matrix equation
from which the values of ¢?(ro,zo) at the center of each segment can be
obtained. The details of the numerical computation including the treatment of
singularities and discontinuities were given by previous investigators (Eatock
Taylor et al., 1978; Fenton, 1978; Isaacson, 1982). Because of Eqgs. 93-95,
the non-zero values of ¢?(ro,zo) associated with the surge (j=1), heave (j=2)
and pitch (j=3) motions are ¢! (rqy,20), #3(re;2e) and ¢1(ry,zo) only. Then,
Eq. 92 with the point (r,z) taken in the fluid domain, that is, e¢ =1
indicates that only ¢}(r,z), ¢3(r,z) and ¢3(r,z) for j=1,2 and 3 are non-zero.

Consequently, Eq. 90 for j=1,2 and 3 can be simplified as
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$1(X) = 2¢1(r,z)cosb ,  ¢p(X) = ¢3(r,z)
(98)

$3(X) = 24} (r,z)cosf

On the other hand, for the scattered wave (j=4=s) Eq. 92 together with Egs. 96
and 97 needs to be solved to obtain ¢ (ry,z,) and then ¢7(r,z) for
m=0,1,2,..., (M-1) in which M is the number of harmonics retained in Eq. 90
such that the contribution of the omitted harmonics is negligible in
comparison to that of the retained harmonics. It should also be mentioned
that ¢7 is proportional to the wave height H since ¢7 in Eq. 97 is
proportional to H. As a result, it is sufficient to solve Eq. 92 with j=4=s
for unit wave height and obtain the value of ¢7 divided by H.

The complex amplitudes Ej (j=1,2 and 3) associated with the surge, heave
and pitch motions of a freely floating axisymmetric body may be found by

solving the following equations for n=1,2 and 3 (Isaacson, 1982)

3
= [-wz(Hnj + anj) + iwbnj + an] ﬁi % 251 (n=1,2,3) (99)
j=1 H H

in which Mpj = mass matrix components, Cpj = hydrostatic stiffness matrix
components, apj = added mass matrix components, bnj = radiation damping matrix
components and Fp = exciting force components. Mnj and an can be computed
for a specified body (Isaacson, 1982; Mei, 1983). anj and bnj are associated
with the radiated waves and can be obtained using the computed values of
¢}(ro,zo), ¢g(ro,zo) and ¢} (ry,2o), whereas Fn is caused by the incident and
scattered waves and can be found using the known values of ¢2(ro,zo),
$i(ro,20), $)(xro,20) and ¢} (ry,z,) (Eatock Taylor et al., 1978; Isaacson,
1982). Since Fp and §j are proportional to H, it is sufficient to compute the

values of F,/H and Ej/H, that is, the values of F, and Ej for unit wave height
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as indicated in Eq. 99.

3.3 Wave Drift Force on a Three-Dimensional Floe

The computation of the mean wave drift force on a freely floating
axisymmetric rigid body is made by applying the general formulas presented by
© Mei (1983) which were originally derived by Maruo (1960) and Newman (1967)
using momentum balance. In these formulas, the mean wave drift force and
moment are expressed in terms of the scattered and radiated waves in the far
field. Alternatively, use may be made of the method based on the direct
integration of all pressure contributions upon the instantaneous submerged
surface of the body (Pinkster et al., 1983). However, for a single body in
regular waves, the momentum approach was found to be more efficient
computationally than the direct integration approach (Kokkinowrachos et al.,
1983). - On the basis of Eq. 90 with j=s for the vertical axisymmetric body,

the scattered wave potential in the far field (kr>>1) may be expressed as

$s(X) = Ag(0) E(r,z) for kr>>1 (100)
with
Ag(8) = A2 + 2 2 A" cos (md) (101)
s S
m=1
b
Bl z) = B0 SOBHE(E) | 2 ) e il e o E (102)
2w coshkd nkr 4

in which Ag(6#) is the normalized scattered wave amplitude in the far field in
the direction #. The incident wave propagates in the direction # = 0. The
dimensionless complex constants AE (m=0,1,2...) in Eq. 101 are related to
¢E(r,z) by ¢$ - Aﬁ E in the far field. For kr>>1, Eq. 92 with j=s may be

shown to reduce to
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= g (kz-oz)d+a H dng
Lp
[coshk(zy+d)Ip(kry)] - coshk(zg+d)Jp(krg) N (103)
dng

m
L
H

in which o = wz/g and Az is independent of H since the computed values of
¢2(ro,zo)/H are independent of H. Az is computed by integrating Eq. 103
numerically along Lp which has been discretized into N short segments.

On the other hand, Eq. 98 indicates that the radiated wave potentials in

the far field may be expressed as

e s | - o .-1
¢1(x) - Al H "E(r,z)cosf, ¢2(x) o Az H "E(x,z),
(104)
¢3(§) - A% H'IE(r,z)cose for kr>>1
in which A;, Ag and A% are dimensionless complex constants and could be

obtained from the far-field asymptotic forms of ¢i(r,z), ¢;(r,z) and ¢§(r,z)
in the same way as AE given by Eq. 103. However, it is more efficient to use
Haskind-Hanaoka theorem which relates the n-th component of the exciting force
to the n-th radiated wave potential for the same body (Mei, 1983). This .

theorem may be shown to yield the following relationships in the present

notation
el . .8, -3l (105)
1 2 3
H H
with 1
B w20 | pall 280 (106)
sinh2kd
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in which p = fluid density and A}, A; and A% are independent of H.

Moreover, Egs.” 88, 100 and 104 imply that the sum of the scattered and

radiated waves in the far field may be expressed as

3
¢s(§) + j§1 ej¢j(§) -A(8) E(r,z) for kr>>1 (107)
with
AGO) = A (8) + &2 A + &1 Ai + &3 Aé ] cosf (108)
- H H H

in which Ag{f) is given by Eq. 101 and A(#) is the normalized amplitude in the
far field. Eqs. 101 and 108 indicate that Ag(f#) and A(f)are symmetric about
the axis of #=0, that is, Ag(f#) = Ag(-0) and A(#) = A(-0). As a result, it is
sufficient to consider the range 0 < # =< «.

Finally, applying the formulas presented by Mei (1983), the wave drift
force in the x-direction, Fq, for the vertical axisymmetric body is computed
from

T
fqm—Td o )t | 1422 1| coso|ace)|2as
pgH2D sinh2kd ) | = J

(109)

+ Re[A(O)I}

in which D = characteristic horizontal length of the body and fj = normalized
wave drift force which is independent of H. It should be noted that for the
vertical axisymmetric body the mean drift force acts only in the direction of
wave propagation, that is, in the x-direction. Furthermore, the mean second-
order drift force depends on the first-order quantities only (Mei, 1983;
Pinkster et al., 1983).

One way to check the accuracy of the computation of f4 by use of Eq. 109
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is to examine whether the computed values of A (#) and A(f#) satisfy the energy
conservation relationships for Ag(f#) and A(f) presented by Mei (1983) which
- for the vertical axisymmetric body can be written as

T

X |AS(8)|2d9 = - Re[Ag(0)] (110)
w

‘0

oAl
1 2
= | |ae)|“de = - Rg [A(0)] (111)
w Jo

Eq. 111 is wvalid as long as the freely oscillating body does not absorb or
dissipate the wave energy. Egs. 110 and 111 are used herein to check the
accuracy of the computation of fg using Eq. 109.

Furthermore, the computed values of AE using Eq. 103 may be compared with
the analytical solution for a fixed vertical cylinder of diameter D (e.g.,

Mei, 1983). For this case, A$ can be shown to be given by
] ] ' -1
AT = - In(B)[In(B) - 1 Yp(A] T (m=0,1,2,...) (112)

in which Y = Bessel function of the second kind of order m (Abramowitz et
al., 1972) and the prime indicates the differentiation with respect to 8 =

(nD/L) with D = diameter of the cylinder and L = wavelength.

3.4 Accuracy of Numerical Method

A computer program was developed by Kobayashi et al. (1986, 1987) to
compute the wave drift force on a vertical axisymmetric ice floe using Eq.
109. The normalized far-field wave amplitude A(f) in Eq. 109 is defined by
Eq. 108 and includes the complex amplitudes §j (j=1,2 and 3) for the surge,

heave and pitch motions as well as the exciting force components Fn (n=1,2 and
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3) due to the incident and scattered waves. As a first step for insuring the
accuracy of the developed computer program, the computed values of Ej and Fp
were compared with available analytical and numerical solutions in the same
way as Eatock Taylor et al. (1978) and Isaacson (1982). The compared results
presented by Frankenstein (1986) indicated the accuracy of the developed
program for computing £j and F,.  The number of segments, N, used to
approximate the body contour Lp was taken to be N = 30 in the computation
although a smaller value of N could be sufficient. The use of N=30 was
possible since the computational procedure is highly efficient. The length of
each segment was taken to be equal except for waves of small period for which
more segments were required near the free surface since the wave action is
essentially limited to the region z 2 (-L/2) where L = wavelength.

In addition, comparison was made with the small-scale model tests of
Lever et al. (1984) who measured the motions of spherical, cubical and
rectangular prismatic ice models made of paraffin wax. The compared results
were presented by Kobayashi et al. (1986) who approximated the cubes and
rectangular prisms by the corresponding vertical axisymmetric cylinders of the
same height and mass. The agreement between the linear analysis and the
measured ice motions was found to be only qualitative -probably because of the
measurement uncertainties and th; limitations of the linear potential theory
for predicting the resonant amplitude of the heave motion of an ice floe. The
maximum translational velocities computed by Kobayashi et al. (1986) indicated

large values during severe storms.

As for the wave drift force computation using Eq. 109 with A(§) given by

Eq. 108, it is required to ascertain the accuracy of the computation of Ag(4)
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which is defined by Eq. 101 with A computed using Eq. 103. For the
computation the infinity of the summation in Eq. 101 is replaced by (M-1)
where M is the number of harmonics included in the computation. 1In order to
estimate an appropriate value of M required for the computation, the
normalized wave drift force, f4, for a fixed vertical cylinder of diameter D
was calculated by Kobayashi et al. (1987) using the analytical solution for
which A% is given by Eq. 112. The calculated values of f3 were plotted as a
function of the wave period T for the cylinder of D = 20 m in the water depth
d = 100 m which was essentially deep water for T < 11 sec. M=8 was found to
be sufficient for T > 2.7 sec (L/D > 0.57) and reasonable for T=2.1 sec (L/D
2 0.34) where Isaacson (1982) indicated that M=8 would be sufficient for
computing the circumferential variation of wave runup around the cylinder.
However, the value of M greater than 80 or so was needed in the range T = 1-2
sec. Consequently, a large number of harmonics were required to describe the
circumferential variation of A;(8) around a large body for which the value of
L/D was small, Extrapolation of the computed results to the limit T - 0
appeared to suggest that fq = 1/12 as L/D -+ 0, Comparison was also made of
the numerical and analytical variations of ]AS(B)]2 with respect to § for T=5

and 8 sec where use was made of D=20 m, d=100 m and M=8§. |[As(6)|? indicates

the analytical results based on Eq. 112. The scattered wave energy in the far
field was concentrated near #=0 and b=n/2 for T = 5 sec (L/D=2.0) and near § =
n® for T = 8 sec (L/D=5.0) where the axis of § = 0 was in the direction of the
incident wave Propagation, IAS(ﬁ)l2 was larger for T = 5 sec than for T = 8

sec. As the wavelength L of the incident wave with given height H became
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smaller relative to the diameter D, the scattered wave energy in the far field
and the resulting wave drift force on the body normally increased. In
summary, the computer program developed by Kobayashi et al. (1986,1987) has
been shown to be accurate and efficient except for a very large body relative

to the incident wavelength.
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4.0 EXAMPLE COMPUTATIONS

In this section, the computed results for the two-dimensional thin
elastic ice raft analyzed in Section 2.0 and the vertically axisymmetric rigid
ice mass analyzed in Section 3.0 are discussed to gain a physical insight into
the mechanism of the wave and ice interaction. The differences and similarity
between the elastic and rigid ice floes are examined to assess the sensitivity

of the computed results to the assumed characteristics and responses,

4.1 Computed Results for Elastic Ice Floes

The computed results presented in the following are based on the
approximate solution for deep water depth and the required computation
procedure given in Sections 2.4 and 2.5, respectively. The input parameters

required for the computation are taken as

Gravitational acceleration g = 9.81 m/sec?
Density of the sea water p = 1025 kg/m?

Density of the ice pi = 922.5 kg/m?
Young's modulus of the elastic ice Ej = 6.0 x 10° N/m?
Poisson's ratio of the elastic ice v =20.3

Width of the ice raft D =10, 30'and 50 m
Thickness of the ice h=0.3, 1.0and 2.0 m
Incident wave period T=1- 10 sec

The typical values of p, pj, Ef and v assumed above are the same as those
assumed by Wadhams (1973) and Squire (1984a). The assumed ranges of D, h and

T may be typical for the marginal ice zone in the Bering Sea (Squire, 1983b;
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Wadhams, 1983; Madsen et al., 1986). For the computation, use is made of T =
1.0, 1.5, 2.0, ..., 10 sec. The water depth d is assumed to be deep. The
deep-water assumption should be valid if d > 0.5 L, that is, d > 78 m for T =
10 sec in which L = (2n/k) = (gT?/2x) = deep-water wavelength. The incident
wave height, H, is not required to be specified since only the normalized
quantities are computed herein.

Fig. 3 shows the wavelength L, = (2x/K;) in the ice-covered region as a
function of the incident wave period T for h = 0.0, 0.3, 1.0 and 2.0 m in
which the case of h = 0.0 m corresponds to the open water, that is, L, = L,
It should be noted that the values of K;, K, and Ky computed from Eq. 55 do
not depend on the width D. Fig. 3 indicates that L, increases as T and h are
increased. Figs. 4-6 show the variations of K;/k, Ky/k and Kj/k with respect
to T for h = 0.3, 1.0 and 2.0 m, respectively, where K, and Kj are defined in
Eq. 71 and determine K, and K;. The wave number K, associated with the
propagating mode in the ice-covered region approaches the wave number k in the
open water as the wave period T is increased. K, /k and Kj/k tend to increase
as T is increased.

On the other hand, the wave reflection coefficient R and the wave
transmission coefficient T, calculated using Eq. 47 as well as the normalized
wave drift force f4 defined in Eq. 53 are computed as a function of T = 1.0,
1.5, 2.0, ... , 10 sec with D =10, 30 and 50 m for h = 0.3, 1.0 and 2.0 m.
The computed results are plotted in Figs. 7-15 where straight lines are drawn
between the computed points, It is obvious that more computed points are
required to draw smooth curves in these figures especially for Figs. 7-9 for
h=0.3 m. Figs. 7, 10 and 13 show that R tends to decrease from unity and
approach zero with the increase of T although the computed values of R

fluctuate. Conversely, Figs. 8, 11 and 14 show that T, tends to increase from
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zero and approach unity with the increase of T since (R? + T) = 1 from Eq.
49, On the other hand, f43 = (R?/8) in deep water from Eq. 53. Consequently,
fq tends to decrease from 1/8 and approach zero rapidly as T is increased. 1In
order to illustrate the effect of h on R, T, and f4, the computed values of R,
Ty and f4 are plotted as a function of T with h = 0.3, 1.0 and 2.0 m for D =
30 m in Figs. 16, 17 and 18, respectively. Figs. 16 and 18 indicate that the
values of R and f4 for given T tend to increase as the thickness of the ice is
increased, while Fig. 17 shows the opposite trend for T,.

Moreover, the normalized amplitude 75, given by Eq. 70 of the vertical
displacement of the ice raft located in the region 0 < x < D is plotted as a
function of x/D for T = 2, 4, 6 and 8 sec in Figs. 19-27 in which h = 0.3, 1.0
or 2.0 m and D = 10, 30 or 50 m. The value of n; is the local amplitude
normalized by the incident wave amplitude(H/2). Figs. 19-27 show that the
values of n, are typically of the order unity. This implies that the vertical
displacement of the ice raft is typically of the same order of magnitude as
the vertical displacement of the water particle at the free surface. The
variation of np with respect to x/D, which is related to the bending moment
and shear of the ice raft, tends to decrease as T is increased. This suggests
that the ice raft tends to behave like the water particle at the free surface
as the width D of the ice raft becomes small relative to the incident
wavelength L = (gT?/27). Accordingly, for the case of D << L, R and fg
approach zero and T, approaches unity. On the other hand, R = 1, f4 = 1/8 and
Ty = 0 as the ice raft becomes thick and wide relative to the incident
wavelength L. 1In other words, the incident waves tend to be reflected by the
thick and wide ice raft which does not move much vertically as may be inferred
from the curve for T = 2 sec in Fig. 27. However, most of the computed

results shown in this section fall between these two extreme cases.
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4.2 Computed Results for Rigid Ice Floes

The computed results discussed in the following are based on the
computation method for a vertically axisymmetric body given in Section 3.0,
The ice floe of density pj = 922.5 kg/m® is assumed to be cylindrical and
floating freely in the sea water of density p = 1025 kg/m®. The parameters Ej
and v are not mneeded for the rigid ice. The input parameters D and h are
regarded as the diameter and height of the cylindrical ice floe. The water
depth d needs ‘to be specified as input for this case. The incident wave
period T is varied to examine the effects of the size of the ice floe, D,
relative to the incident wavelength, L. The additional input parameters
required for the computation are the integer numbers N and M explained in
Section 3.4. N = 30 and M = 8 are used in the following computation. Since
some of the computed results were already presented by Kobayashi et al. (1986,
1987), the additional computation made for this report is limited to the case
of D =30 m, h=1mand d = 80 m corresponding to the rough first-year ice
floe tracked during the Bering Air-Sea-Ice Study (BASICS) (Madsen et al.,
1986; Kobayashi et al., 1987). The incident wave period is wvaried in the
range T = 3 - 10 sec so that the computed results may be compared with those
presented in Section 4.1. It should be noted that M=8 will not be sufficient
for smaller values of T as explained in Section 3.4.

The computed oscillatory motions for the BASICS floe are presented in
Fig. 28-30 where straight lines are drawn between the computed points for T =
3.0, 3.5, 4.0, ..., 10.0 sec. Figs. 28 and 29 show the surge amplitude |¢,|
and the heave amplitude |£,| normalized by the incident wave amplitude (H/2)
as a function of the incident wave period T. Figs. 28 and 29 indicate that

the cylindrical floe tends to behave like the fluid particle at the free
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surface as T is increased for given D, that is, as the value of L/D becomes
large. This finding is similar to that based on the small-scale model tests
on small icebergs and bergy bits conducted by Lever et al, (1984). However,
the heave amplitude for these models computed by Kobayashi et al. (1986)
showed a sharp peak at the period of heave resonance, whereas the normalized
heave amplitude shown in Fig. 29 for the BASICS floe does not have any sharp
peak associated with the heave resonance. Using Eq. 99 and neglecting the
effects of added mass and radiation damping, the period of the heave resonance
for a cylindrical floe is approximately given by T = 2ﬂ(pih/pg)k which is
approximately 2 sec for the BASICS floe. This explains the lack of a sharp
peak in Fig. 29. It should be noted that the heave resonance period increases
with the ice thickness h and is larger for thick icebergs and bergy bits. On
the other hand, Fig. 30 shows the computed pitch amplitude ]Esl in radian
divided by the incident wave amplitude (H/2) as a function of the incident
wave period T. Fig. 30 indicates a broad peak at the period of approximately
5 sec.

The normalized wave drift force fq defined by Eq. 109 is computed for the
cylindrical BASICS floe and is shown in Fig. 31 as a function of the incident
wave period T. The computed values of fq decrease from fq = 0.08 at. T = 3 sec
and approaches zero rapidly as T is increased. The computed results shown in
Fig. 31 are consistent with the computed results by Kobayashi et al. (1987)
who plotted fyq as a function of L/D with L = wavelength in deep water. For
the cylindrical ice floe fq = 1/12 as L/D approaches zero, whereas fq = 1/8
for the two-dimensional ice raft examined in Sectior 4.1, The difference
between fy = 1/12 and 1/8 appears to be related to the fact that the two-

dimensional analysis accounts for the scattered and radiated waves in the
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directions of ¢ = 0 and m only. It should be noted that as the diameter D of
the three-dimensional ice floe becomes large relative to the wavelength L, its
oscillatory motion becomes negligible as has been the case with the two-
dimensional ice raft examined in Section 4.1. Moreover, as the size D of the
two-dimensional or three-dimensional floe becomes small relative to the
wavelength L, the floe behaves like the fluid particle at the free surface.
As a result, the behavior of the two-dimensional and three-dimensional floes
are similar for the extreme cases. The trends of the variations of f4 with

respect to T for the two-dimensional and three-dimensional cases shown in

Section 4.1 and 4.2, respectively, are also similar.

The normalized wave drift force f4q discussed above accounts for the
effects of the wave period T only for given ice floe characteristics. The
dimensional wave drift force Fq = (pgDH2fy) from Eq. 109 is proportional to
the square of the wave height H. Unfortunately, it is not possible to
calculate the values of Fq on the ice floe since the associated values of H
and T were not reported except that surface waves were observed to be
negligible during BASICS (Madsen et al., 1986). Nevertheless, the assumption
of negligible wave effects on the horizontal movement of the ice floe needs to
be verified quantitatively by showing that the wave drift force was indeed
negligible in comparison to the air-ice and icé-water drag forces which were
found to be dominant (Madsen et al., 1986). The magnitude of the air-ice drag
force on the cylindrical ice floe of diameter D may be expressed as (Madsen et
al., 1986)

T =+ mw
Faj = & D? pg CaiIUail2 =% D? p, Cai Ug ; (113)

in which p, = air density (= 1.3 kg/m3), Cai = air-ice drag coefficient, ﬁai =

reference wind velocity vector relative to the ice velocity vector and U, =
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reference wind speed. The assumption of |ﬁai|=¢Ua in Eq. 113 is normally
appropriate (Wadhams, 1983). Madsen et al. (1986) estimated Chi = 2.82 x
1073 for the BASICS floe where U, was measured 3 m above the ice floe. As a

result, the ratio of F4q to Fui is given by

Fq . _4 p gH? fy
ai 7 pa Cai D U3 (114

+r

The wave drift force may be neglected if the value of F3/Fyi is much less than
unity.

The wave conditions in the marginal ice zone may be very complicated
since wind may generate waves in water openings (polynyas) inside the partial
ice cover and swell may penetrate the partial ice cover from the open sea
(Wadhams, 1983 & 1986). Furthermore, multiple scatterings and radiations will
occur in the presence of multiple discrete ice floes. Consequently, it will
be very difficult to predict the values of H and T to be used in Eq. 114.
Limiting to the case of a single floe in the open water, use may be made of
available deep-water wave prediction methods such as that given in the Shore
Protection Manual (SPM) (U.S. Army Coastal Engineering Research Center, 1984).
Assuming fetch-limited wind-generated waves, H and T may be predicted for
given U, and F where F = fetch length and U, at the 3 m elevation needs to be
adjusted following the SPM. H and T for computing F3 may be taken as the
root-mean-square wave height and the spectral peak period, respectively. It
should be noted that the wave drift force on a floating body in irregular
waves contains the slowly varying component in addition to the computed mean
component Fy (Lgken et al., 1979; Pinkster et al., 1983). The slowly varying
component is important for the design of mooring systems associated with large
ships and floating offshore structures but may be neglected for predicting the
net horizontal movement of an ice floe. The mean second- order force in a

wave train consisting of a superposition of regular waves has been shown to be
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the sum of the mean forces for each of the component waves (Pinkster et al.,
1983).

Kobayashi et al. (1987) computed the values of Fg/Fgy for the BASICS floe
as a function of Uy = 10 — 40 m/sec for F = 5 and 10 km. Cpj = 2.82 x 107>
was used’ assuming that the presence of waves would not affect C,i. - It should
‘be mentioned that the ice-water drag coefficient is more ‘likely to be modified
~..by the presence of the waves (Mollo-Christensen, 1986b). For the range Uy, =
10 -. 40 m/sec, H = 0.38 - 2.1 m and T = 2.6 - 4.6 sec for F = 5 km, while H =
0.54 --3.0mand T = 3.3 - 5.8 sec for F = 10 km. For the wave period smaller
 than 2.6 sec the value of M greater than 8 was found to be required to compute
Fq accurately where Eqs. 110 and 111 were used to check the accuracy of. the
computation. The computed ratio of Fy/Fgiy was much greater than unity and
decreased as Uy was increased from 10 m/sec, although the fetch length F = 5-
10 km might be very long for the partially ice-covered water. Kobayashi et
al. (1987) hence concluded that the wave drift force should be evaluated more

carefully even if surface waves might appear to be negligible visuélly.
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5.0 SUMMARY AND CONCLUSIONS

5.1 Summary

The wave and ice interaction in partially ice-covered water has been
investigated in this report. First, a brief review on previous studies on
this subject has been given to identify various engineering and scientific
problems which will require quantitative knowledge of the wave and ice
interaction. The brief review has also indicated .that the ice is presently
modelled either as a thin elastic or inelastic plate or as a rigid body,
depending on the nature of a specific problem, whereas linear wave theory is

widely used to describe the wave motion. These basic assumptions regarding

the - ice and wave motion enable one to make use of the mathematical and

numerical methods developed in other fields, although the wave and ice
interaction in actual field conditions may be more complicated than the
simplified interactions assumed in this report.

Second, the. problem of the flexural response of elastic ice floes under
the action of normally-incident regular waves in finite water depth has been
formulated assuming that a row of the ice floes may be regarded as a long thin
elastic raft of finite width in order to simplify the problem as a two-
dimensional problem. The general solution obtained for the formulated two-
dimensional problem has been shown to satisfy the matching conditions required
at the edges of the ice raft unlike the approximate solution for deep water
depth presented by Wadhams (1983, 1986). The formulated problem shows that
the flexural response of the ice raft is related to the wave reflection and
transmission coefficients which also affect the mean wave drift force acting
on the ice raft. In order to reduce the required computational efforts, the
general solution obtained for finite water depth has been approximated for
deep water depth. The computational procedure for the approximate deep-water

solution has then been explained in detail since the required algebraic
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manipulations are not trivial.

Third, the oscillatory motion of a three-dimensional ice floe under the
action of incident linear waves has been analyzed assuming that the ice floe
is rigid and vertically axisymmetric. This analysis neglects the flexural
motion of the ice floe but accounts for the surge, heave and pitch motions of
the three-dimensional ice floe of finite thickness. The linear waves
scattered and radiated by the oscillating ice floe have been computed using
the boundary integral equation method developed for floating offshore
structures. The mean wave drift force acting on the ice floe has been
computed from the computed scattered and radiated waves in the far field. The
adopted computation method has then been evaluated in.terms of its accuracy
and limitation by comparing available analytical and numerical solutions. the
computation method has been found to be accurate within the limitation of the
linearity assumption, although a better computation method is needed for a
very large body relative to the incident wavelength for which a large number
of harmonics are required to describe the circumferential variations of the
wave motion.

Fourth, example computations have been made for elastic and rigid ice
floes in deep water. For the two-dimensional elastic ice floe, computation
has been made of the wave reflection and transmission coefficients, the
normalized wave drift force and the normalized amplitude of the vertical
flexural displacement of the ice. For the three-dimensional rigid ice floe,
the normalized surge, heave and pitch amplitudes as well as the normalized
wave drift force have been computed in the same was as was computed by
Kobayashi et al. (1986,1987). Similarity and differences between the two-
dimensional and three-dimensional results have been discussed. The
qualitative behaviors of the two-dimensional and three-dimensional floes have

been found to be similar for the extreme cases D<<L and D>>L in which D =
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horizontal length of the floe and L = wavelength in deep water. The
normalized wave drift forces computed by the two different methods have been
found to be the same order of magnitude and vary with respect to wave period
in a similar manner, although one method deals with a single rigid floe while
the other assumes a row of identical elastic floes. Moreover, the computed
results for the BASICS floe suggest that the wave drift force could be
important and needs to be quantified even if surface waves appear to be

negligible visually.

5.2 Conclusions

The analyses presented in this report are fairly idealized and need to be
improved although these analyses elucidate the mechanism of the wave and ice
interaction. It is desirable to develop a mathematical model which accounts
“for both flexural and oscillatory motions of an ice floe of arbitrary
geometry. Moreover, the incident waves have been assumed to be linear,
monochromatic and uni-directional in this report although directional random
waves and swell as well as winds and currents are usually present even in the
open water without ice floes. The presence of multiple floes and a structure
in the partially ice-cover water will add the waves scattered and radiated
multiply to the incident directional random waves and swell. Furthermore, the
multiple ice floes may collide with one another or with the structure. The
ice floes may also break under the wave action or due to the collision.
Consequently, the actual wave and ice interaction in the partially ice-
covered water 1s extremely complicated and difficult to describe
ﬁathematically. Field and laboratory data are hence essential for improving

our capabilities of predicting the wave and ice interaction quantitatively.
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APPENDIX II, -

NOTATION

The following symbols were used in this report:

normalized wave amplitude in far field,

complex constants in Eq. 22,
added-mass coefficients,
complex constants in Eq. 26,
parameter defined by Eq. 106,
complex constants in Eq. 22,
radiation damping coefficients,
complex constants in Eq. 26,

hydrostatic stiffness coefficients;

drag.coefficients,

seven constants (n=1-7) introduced in Section 2.5,

horizontal length or diameter of ice floe,

flexural rigidity of ice,

water depth,

function defined by Eq. 102,
Young's modulus of ice,

force; fetch length,

normalized force,

Green's function,

gravitational acceleration,

wave height,

height or thickness of ice floe,
depth of submergence of ice floe,
L,

Bessel function of the first kind,
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real positive number related to K, and Kg,

wave numbers determined from Eq. 23 or 24; from Eq. 55,
real positive number related to K,and Kg,

incident wave number,

wave numbers determined from Eq. 27 or 28,

wavelength,

submerged body contour,

mass matrix coefficient; number of harmonics used for computation,

number of terms retained for computation; number
approximating Lp,

unit normal vector directed into body,

fluid pressure underneath ice raft,

wave reflection coefficient,

real part of complex variable,

radial coordinate,

submerged body surface,

incident wave period,

wave transmission coefficient,

time,

velocity,

variable defined in Eq. 75,

variable satisfying Eq. 82,

coordinate in direction of incident wave propagation,
Bessel function of the second kind,

horizontal coordinate in right-handed Cartesian system,

vertical coordinate measured upwards from still water level,

86



zy = vertical locations (i = 1,2,...I) at x=0 for matching solutions,
zy = vertical locations (j=1,2,...,J) at x=D for matching solutions,
a = angle of N, relative to horizontal plane,

B = D/L,

€ = 1 or 1/2 depending on location of point #,

¢ = wvertical flexural displacement of ice raft; free surface displacement,
n = spatial variation of ¢,

Nm = mnormalized amplitude of ice displacement,

# = polar coordinate with axis of § = 0 in x-direction,

v = Poisson's ratio of ice,

§€ = complex amplitude of body motion,

p = density of sea water; density of air or ice,

o = w?/g,

® = wvelocity potential,

¢ = spatial variation of velocity potential, and

w = wave angular frequency.

Subscripts

a = air,

d = mean wave drift force,

i = 1incident wave; ice,

j = mode of motion (j=1,2,3 and 4 corresponding to surge, heave, pitch and
scattering, respectively),

n = component of exciting force (n=1,2 and 3 associated with surge, heave

and pitch, respectively),

0o = point on submerged body surface,
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s = scattered wave,
1 = region x < 0 upwave of ice raft; surge motion,
2 = region 0 < x < D under ice raft; heave motion, and

3 = region D < x downwave of ice raft; pitch motion.

Superscripts

m = harmonic of Fourier series, and

L

= differentiation with respect to argument.
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