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ABSTRACT

Monochromatic wave reflection and transmission over a submerged
impermeable breakwater is predicted numerically by slightly modifying the
numerical model developed previously for predicting wave reflection and run-
Up on rough or smooth impermeable slopes. The slight modification is related
to the landward boundary condition required for the transmitted wave
pPropagating landward. In addition to the conservation equations of mass and
momentum used to compute the flow field, an equation of energy is derived to
estimate the rate of energy dissipation due to wave breaking. The computed
reflection and transmission coefficients are shown to be in agreement with ’
available sﬁall-scale test data. The numerical model also predicts the
spatial variation of the energy dissipation, the mean water level difference,
and the time-averaged volume flux Per unit width, although available
measurements are not sufficient for evaluating the capabilities and

limitations of the numerical model for predicting these quantities.
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NUMERICAL PREDICTION OF WAVE TRANSMISSTON OVER SUBMERGED BREAKWATERS

PART 1: TINTRODUCTION

Background

Submerged breakwaters are used for shoreline or harbor protection. Low-
crested rubble-mound breakwaters may also become submerged after being damaged
or matured (e.g., Adams and Sonu, 1986; Ahrens, 1987). The advantages ofl
submerged breakwaters as compared to subaerial breakwaters include their low
cost, aesthetics and effectiveness of triggering breaking of high waves
without eliminating the landward flow of water which may be important for
water quality considerations as discussed by Diskin et al. (1970) and in the
Shoré Protection Manual (U.S. Army CERC, 1984), hereafter referred to as SPM.

Most information about wave transmission, reflection and energy
dissipation was obtained from hydraulic model tests as summarized in SPM and
the report of Seelig (1980). The measurements in the model tests were
generally limited fo the free surface oscillations on the landward and seaward
sides of submerged breakwaters because of ease of instrumentation. These
measurements may be sufficient for estimating the wave reflection and
transmission coefficients but do not reveal the hydrodynamic processes over

submerged breakwaters.

Scope

The numerical model developed by Kobayashi et al. (1987) and Kobayashi
and Watson (1987) for predicting the uprush and downrush of normally incident
monochromatic waves on rough or smooth impermeable slopes is modified in this

report to predict wave transmission over submerged breakwaters. Wave
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overtopping over subaerial breakwaters was already examined by Kobayashi and
Wurjanto (1988,1989a). The randomness of incident wind waves, the
permeability of a rubble-mound breakwater and the stability of armor units are
not considered herein. The landward boundary condition for the numerical
model is modified assuming that the transmitted waves propagate landward
without being reflected from the shoreline and the transmitted water flows
landward without a return current. The effects of the shoreline and return
current were considered in the analysis of Kobayashi et al. (1989) for the
wave transformation over a shore-parallel bar.

In addition to the equations of mass and momentum used for the numerical
model, an equation of energy is derived to estimate the spatial variations of
energy dissipation rates due to wave breaking and bottom friction. The
reflection and transmission coefficients are estimated considering the time-
averaged values of the specific energy and energy flux per unit width at the
seaward and landward boundaries.

The computed reflection and transmission coefficients are shown to be in
agreement with available small-scale data for a submerged impermeable
breakwater (Seelig, 1980). The additional quantities computed herein include
the difference of the mean water level on the landward and seaward sides of
the submerged breakwater as well as the time-averaged volume flux per unit
width over the submerged breakwater. These quantities may be of value for
predicting a horizontal circulation pattern behind a submerged breakwater.

It should be stated that a concise version of this report will be

published elsewhere (Kobayashi and Wurjanto, 1989b and 1989c).



T II: NUMERICAL MODEL

Governing FEquations

The numerical model based on the finite-amplitude shallow-water equations
is essentially the same as that used by Kobayashi et al. (1987) except for the
landward boundary condition. Fig. 1 shows the two-dimensional coordinate
system (x',z') in which the prime indicates the physical variables. The x'
coordinate is taken to be positive in the landward direction with x'=0 at the
seaward toe of a submerged breakwater where the water depth below the still
water level (SWL) is given by df. The variation of the local slope angle §'
with respect to x' are used to specify any breakwater geometry in the
computation domain 0 < x < x{ where x} is the x'-coordinate of the landward
toe.of the submerged breakwater. The water depth below SWL at x=x) is denoted
by dg since d{ and di may not be the same. The particular geometry of the
smooth impermeable submerged breakwater shown in Fig. 1 will be explained when
the numerical model is compared with the small-scale data of Seelig (1980).

The equations of conservation of mass and x'-momentum integrated from the
assumed impermeable breakwater to the instantaneous free surface located at

z'=n' may be expressed as

ah' . 3 .

6t'+3"x_"[hu]'0 (1)
a Fagl a LETL 1 L} ] r 1 r r I

T [h u ] e [h n'e ¥ 7 gh 2] = — gh' tand’ - 7 f |u’ |u (2)

in which t' = time; h' = instantaneous water depth; u’ = instantaneous depth-
averaged horizontal velocity; g = gravitational acceleration; and £’ = bottom
friction factor. For the subsequent computation for the smooth impermeable

breakwater, use is made of f' = 0.05 which was found to be satisfactory for
6
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wave run-up and overtopping on small-scale smooth slopes (Kobayashi and

Watson, 1987; Kobayashi and Wurjanto, 1988).

For the computation, the following dimensionless variables are

introduced:
t-;—: ; = ; x = —E ; xe-ié—— (3)
JeH" T'/gH" T'/gH"
yude 5 Bul ; gell @ g 1 derpe ()
o = T ﬁ, ; § = o tand’ ' f = % of’ (5)

in which T' = incident monochromatic wave period; H’ = incident monochromatic
wave height at x'=0; o = dimensionless parameter related to wave steepness; f#
= normalized gradient of the local slope; and f = normalized friction factor.

Substitution of Eqs. 3-5 into Eqs. 1 and 2 yields

dh 4

e T ax () =0 ke
a a 1

7t (hu) +"a-; [ht.l2 +§h2] = — fh — f|u|u (7)

Egqs. 6 and 7 are solved numerically in the time domain using the explicit
dissipative Lax-Wendroff finite difference method based on a finite-difference
grid of constant space size and constant time step (Kobayashi et al., 1987).
The damping coefficients determining the amount of damping high-frequency
numerical oscillations at tﬁe rear of breaking wave crests are increased from
unity to two because of the discontinuities of # at the sharp corners of the
speqific breakwater geometry shown in Fig. 1. The number of spatial grid
points in the computation domain 0 < x < X, is taken to be 300, while the

number of time steps per wave period is taken to be approximately 3,000



considering the numerical stability criterion as well as the desirable spatial
and temporal accuracy. The small grid spacing and time step are found to be
required for the prediction of time-averaged quantities as will be discussed
later.

Initial and Boundary Conditions

The initial time t=0 for the computation marching forward in time is
taken to be the time when the specified incident wave train arrives at x=0 and
no wave action is present in the computation domain 0 < x =< xg.

In order to derive appropriate seaward and landward boundary conditions,
Eqs. 6 and 7 are rewritten in terms of the characteristic variables a and B

(Kobayashi et al., 1987)

g% + (ute) %E - - fl%l& : along g% =u+c (8)
g% + (u—c) %g -6 + fl%lﬂ ; along %% =u-—c (9)
with ¢ = Jh : a=u+ 2¢c : B = —u+ 2¢ (10)

The seaward boundary conditions at x=0 are the same as those used by

Kobayashi et al. (1987)

h = d¢ + ny(t) + ne(t) : at x = 0 L)
ne(t) =5 [ B(e) —de  ;  atx =0 (12)

in which nj and n, are the free surface oscillations at x=0 normalized by H’
due to the incident and reflected waves, respectively. The incident wave
train in the water depth d¢ is specified by prescribing the periodic variation
of ni with respect to t 2 0. Eq. 12 expresses the reflected wave train Ny in

terms of the seaward-advancing characteristics g given by Eq. 9. The value of



u at x=0 is ;btained from u = (2/h — B) using the computed values of 8 and h
at x=0. Eq. 12 is approximate since use is made of the relationships
applicable for linear long waves, uj = ni//d¢ and uy = — n.//dy, where ujy and
u, are the normalized horizontal velocities at x=0 due to the incident and
reflected waves, respectively. Previous applications of Eqs. 11 and 12 have
suggested that these equations may be satisfactory even when the assumption of
linear long waves is not satisfied strictly.

Likewise, the landward boundary conditions at x = X, may be expressed as

h = dg + ne(E) g at x = Xg (13)
ne = % Jdg a(t) — dg ¢ at X = Xg (14)

where ny is the normalized free surface oscillation at x = x,g associatéd with
the transmitted wave, provided that no wave propagates seaward from the region
X > Xg. It is assumed that the flow at X = xo is subcritical and satisfies
the condition u < ¢ at X = Xg. Then, « and B represent the characteristics
advancing landward and seaward, respectively. Eq. 14 expresses the
transmitted wave train nt in terms of the landward-advancing characteristics,
@ = (u + 2/h), in which use is made of the linear long wave approximations,
2/h = [2/dg + (n¢//de)] and u= n¢//dg at x = xo. For the computation, the
value of a at x = Xo is obtained from Eq. 8 with f = 0 which is approximated
by a simple first-order finite difference equation. Eqs. 14 and 13 yield the
values of n¢ and h at x = Xo, respectively, while the value of u at x = %o is

obtained from u = (a—2/h) at x = x,.
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Reflected and Transmitted Wave Trains

For the incident monochromatic wave train ni(t), the computed temporal
variations of nr(t) and ne(t) for t > tp are found to consist of oscillatory
and steady components where tp = normalized time when the periodicity of the
oscillatory components is established and the steady components become
independent of t.

The reflection coefficient r, may be estimated as the normalized height
~ of the oscillatory component of n,.(t), whereas the transmission coefficient T,

may be taken as that of ne(t) if de = d¢

r, = (qr)max = (ny) : during tp =t =< (tp + 1) (15)

min

T, = (nt)max - (nt)min ; during tp <= t=< (tp + 1) (16)

in which the subscripts max and min indicate the maximum and minimum values
during one wave period tp =t = (tp + 1). For the computation made in this
pPaper, tp, = 4 is found to be sufficient for the periodicity as will be shown
later. Kobayashi et al. (1987,1989) used Eq. 15 to predict the reflection
coefficient. However, the reflection and transmission coefficients can also
be estimated considering the wave energy balance which will be examined in
Part IIT,

On the other hand, the steady components of ny(t) and ne(t) are denoted
by n, and 7t in which the overbér indicates the time averaging during
tp = t < (tp + 1). Since n = (ni + ny) at x=0 and N = Nt at x=xo, the

increase of the normalized mean water level 5 from x=0 to X=Xg 1s given by

&n = ng = (13 + 1) = wg — 7% | (17)
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in which the incident monochromatic wave train nj(t) is specified such that
EI = 0 in this report. It may be noted that the present numerical model is
based on the instantaneous mass and momentum equations given by Eqs. 1 and 2
which also yield the time-averaged quantities such as n and u (Kobayashi et
al., 1989).

To check the accuracy of the computation, use is made of the time-

averaged mass equation corresponding to Eq. 6 which can be rewritten as

m = hu = constant (18)

in which m = hu is the volume flux per unit width. The landward boundary
conditions given by Eqs. 13 and 14 are essentially based on the assumption of
open water in the region x > Xo. The constant volume flux m is expected to be
positive since the transmission of wave energy will accompany the transmission

of water mass over the submerged breakwater.
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PART III: WAVE ENERGY BALANC

Hydraulic test results for wave reflection and transmission over
breakwaters are normally analyzed considering the wave energy balance (e.g.,
Seelig, 1980; Ahrens, 1987), whereas the present numerical model is based on
the instantaneous mass and momentum equations expressed by Eqs. 1 and 2. For
steady flow in a frictionless horizontal channel with f’=0 and tanf’=0, Eqs. 1
and 2 reduce to the mass and momentum equations used for the analysis of a
hydraulic jump in open channel flow (e.g., Henderson, 1966). Invoking the
analogy between wave breaking and hydraulic jumping, an equation of energy may
be used to estimate the rate of energy dissipation due to wave breaking

without analyzing the dissipation processes explicitly.

Instantaneous Enerpgy Equation

The equation of energy corresponding to Eqs. 1 and 2 may be expressed as

gE' | b

Fer T g (Epd =D = Dy 19

with E -g (h'u’? + gn'?) (20)
P u.r2

o [3240)

D, =& £ |u'|u? (22)

E 2
in which p = fluid density; E" = specific energy defined as the sum of kinetic

'
and potential energy per unit horizontal area; E

p = energy flux per unit

width; Df

= rate of energy dissipation per unit horizontal area due to bottom

friction; and Dé = rate of energy dissipation per unit horizontal area due to

wave breaking. Eq. 19 may be used to estimate DB

invoking the analogy between

the present analysis and that used for a hydraulic jump. However, it should
13



'

be mentioned that the temporal and spatial variations of DB

obtained from Eq.
19 may not be very accurate since the present numerical model does not predict
the details of wave breaking nor account for the dissipation processes

explicitly (Kobayashi et al., 1987 and 1989).

Using Eqs. 3-5, Eqs. 19-22 are expressed in terms of the dimensionless

variables
dE 3
ac Y ax (Ep) =~ Dg — Dy (23)
; N 2 2
with E 2gh? = 3 (hu? + n 2) (24)
EI‘
Eg = il it 34 hu[% a2 4 q] (25)
peH’ 2/gH"
T'I:-]'S
Df = —oqrz = flu|u? (26)
T'D!
B
Dy = pie® (27)
T -Averaged Ener ation

The wave energy balance is normally analyzed in terms of the time-
averaged quantities. The spatial variations of E, E; and Df in the region 0 =<
X < Xg are computed using Eqs. 24, 25 and 26, respectively. The time-averaged

dissipation rate, 5;, due to wave breaking is computed using the following

time-averaged energy equation obtained from Eq. 23.
L. (T =g -5 (28)
dx (F £ %8

Eq. 28 implies that the time-averaged energy flux E; decreases in the landward

direction where Df > 0 because of Eq. 26 and Dy

zero. Integration of Eq. 28 with respect to x yields the time-averaged energy

is expected to be positive or

equation for the region 0 < x =< xg
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- gl Xe
EF(x-O) - EF(x-xe) - Io (Df + DB)dx (29)

in which the first and second terms on the left hand side of Eq. 29 are the

values of E; at x=0 and x=x,, respectively.

Linear Wave Approximations at Boundaries

The hydrodynamic problem considered herein is nonlinear especially in the
region of wave breaking. Nevertheless, the locations of x=0 and x=x, may be
chosen so that nonlinear effects are sufficiently small in the vicinity of x=0
and x=X,. This is also the case with laboratory experiments where linear wave
theory is normally used to separate the incident and reflected waves in front
of a coastal structure (e.g., Goda and Suzuki, 1976; Seelig, 1980).

Using the linear long wave approximations employed to derive Eqs. 12 and
14 together with Eqs. 11 and 13, the time-averaged values of E and EF given by

Eqs. 24 and 25 may be approximated by

E = EE + HE - at x = 0 (30)
EF-_»J@(?E’—E@ : at x = 0 (31)
E--Fg : at x = Xg (32)
E; = [fdg Eg . at x = Xg (33)

in which /d¢ and /dg are the normalized group velocities based on linear long
wave theory at x=0 and x=x,, respectively. ./dy and /d, may be replaced by the
corresponding normalized group velocities in finite water depth if the long

wave assumption is not satisfied strictly.
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In Eqs. 30-33, EE, EE and ﬁz are the normalized wave energy per unit
horizontal area associated with the incident, reflected and transmitted waves,
respectively, and are the same for linear long wave theory and linear wave
theory in finite water depth. Substitution of Eqs. 31 and 33 into Eq. 29
yields the time-averaged energy equation based on linear wave theory which is
generally used to estimate -he time-averaged rate of energy dissipation caused

by the combined effects of bottom friction and wave breaking.

Reflection and Transmission Coefficients

The reflection coefficient r, based on the normalized reflected wave

energy may be estimated as

1/2
tp = [Fﬁ (nf)"* ] (34)
For the case of dg = dt, the transmission coefficient T, based on the
normalized transmitted wave energy may be estimated as
172
T, = [?;; (n3)"t ] (35)

For the sinusoidal variation of nj(t) whose height and period are unity,
Eg = (1/8). 1If the temporal variations of 5,.(t) and nj(t) are sinusoidal, EE
= (r?/8) and EE = (T?/8) in which r, and T, are the normalized heights of n,
and ny as defined in Egqs. 15 and 16, respectively. Then, Eqs. 34 and 35 yield
r, =r, and T, = T,, respectively.

Eqs. 34 and 35 do not account for the difference between the still water
level and the mean water level. Since n = ny and ny = 0 at x=0 and 5 = ng at
X=Xe as explained in relation to Eq. 17, the reflection coefficient r, and the
transmission coefficient T; accounting for the wave-induced mean water level

may be expressed as

16



1/2 o 1/2
ty = [(nr - 7g)? (EE)“] - [r§ - (np)? (EE)"] (36)
1/2 o 1/2
Ty = [(ﬂt —-We)* (Eg)"‘] - [TE - (9e)? (Eg)"] (37)

Eqs. 36 and 37 imply that ry < r, and Ty < T, as long as 5, and n¢ are not
Zero.

Comparison will be made later of the reflection coefficients r,, r, and
ry given by Eqs. 15, 34 and 36, respectively, and the transmission
coefficients T,, T, and T, given by Egqs. 16, 35 and 37, respectively. The
method used to compute the reflection and transmission coefficients should be
consistent with the method used to determine the refection and transmission
coefficients from the measured free surface oscillations in experiments. The
reflection and transmission coefficients obtained in the model tests of Seelig
(1980) essentially correspond to ry and Ty as will be explained in the

following.
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PART TV: CO ON WITH AVAIIABLE DATA

Data Used for Comparison

Seelig (1980) conducted extensive small-scale tests on monochromatic and
random wave reflection and transmission over and through breakwaters. Only a
part of a wide tank was used to minimize the effects of wave reflection from
the piston-type wavemaker. Transmitted waves were absorbed at the end of the
tank and water overtopping the test structure was allowed to escape through
the adjacent gravel absorber beach. As a result, the landward boundary
conditions expressed by Eqs. 13 and 14 may be appropriate for these tests.

The numerical model is compared with the test runs for Breakwater 1 which
was a smooth impermeable structure located on the horizontal floor as shown in
Fig. 1. The height and crest width of the structure were given by hf = 75 cm
and B’ = 30 cm, respectively. The local slope was specified as tanf’ = (2/3)
for 0 < x' < 1.5 hg, tanf’ = 0 for 1.5 hf < x' < (1.5 h{ + B'), and tand’ =
(=2/3) for (1.5 h§ + B') < x' < (3 hy + B'). The landward toe of the
breakwater was located at x' = x{ = 255 cm.

The test runs considered herein are limited to monochromatic waves over
Breakwater 1 whose crest was at or below the still water level (SWL). For
these tests, dé = dé = 75, 80, 85 and 90 cm and hence dé =0, 5, 10 and 15 cm
where dé = water depth below SWL on the crest of the submerged breakwater.
Among these tests, fourteen test runs with dé/(gT'z) = 0.016 and dé < 3H' are
selected for the subsequent computation and comparison where T' =
monochromatic wave period; and H' = incident wave height in front of the
structure. The measured reflection coefficients were plotted for the tests

with dé/(gT'z) = 0.016, although the measured transmission coefficients were

18



tabulated for all the tests. The test results with dé < 3H' may be regarded
to be of practical interest. For the selected fourteen test runs, T' = 2,18 —
2.39 s and H' = 0.6 - 19 cm.

The numerical model is compared with the fourteen test runs summarized in
Table 1. The dimensionless parameters Xg = [x;/(T'JEﬁT)}, deg = (dé/H') and o
= (T'J/g/H") have been introduced in Eqs. 3, 4 and 5, respectively. The
dimensionless parameters do, L and Uy in Table 1 are defined as d, = (dé/H'),
L = (L'/dé) and Uy = (L?/d¢) in which d, = normalized water depth below SWL on
the crest of the submerged breakwater; L = normalized wavelength at x=0; L' =
wavelength at x=0 based on linear wave theory; and U, = Ursell parameter at
x=0 (e.g., Dean and Dalrymple, 1984),

For the tests shown in Table 1, 0 < d, < 2.63 and 0.71 < xXg < 4.82. For
the runs with d, = 0, use is made of d, = 1073 for the computation so that the
300 grid points in the region 0 < x < x, used for the computation are located
below SWL. For the runs with relatively large values of d., wave breaking may
not occur over the crest of the submerged breakwater but the present numerical
model is applicable to non-breaking waves as long as the horizontal length of
the computation domain is not too large relative to the wavelength (Kobayashi
et al., 1989). For these tests, the width of the breakwater is on the order
of the wavelength which varies in the region 0 < x =< x,.

The surf similarity parameter ¢ defined as £ = (¢ tand’//2x) (e.g.,
Kobayashi et al., 1987) varies in the region 0 <= x < X, and may not be an
important parameter for submerged breakwaters. Using tand' = (2/3), 3.9 < £ =<
23.4 corresponding to surging waves on a 1:1.5 smooth slope in the absence of

wave overtopping.
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TABLE 1. - Fourteen Test Runs Compared with Numerical Model

Run dg
No. (cm) de Xe d¢ o L Up
1 15 1.56 | 1.10 9.4 | 24.2 | 7.05 5.3
2 15 0.78 | 0.78 4.7 | 17.0 | 7.05 | 10.7
3 10 1.85 | 1.51 | 15.7 | 31.3 | 7.04 3.2
4 10 0.88 | 1.04 T:5 | 21.6 | 7.04 6.6
5 10 0.41 | 0.71 | 3.5 | 14.7 | 7.04 | 14.3
6 5 2.63 | 2.63 | 42.1 | 51.1 | 7.04 1.2
7 5 1.32 | 1.86 | -21.1 | 38.2 | 2.04 2.4
8 5 0.64 | 1.30 | 10.3 | 25.2 | 7.04 4.8
9 5 0.31 | 0.90 4.9 | 17.5 | 7.04 | 10.0
10 0 0.00 | 4.82 | 125. | 88.1 | 7.05 0.4
11 0 0.00 | 3.56 | 68.2 | 65.1 | 7.05 0.7
12 0 0.00 | 2.46 | 32.6 | 45.0 | 7.05 1.5
13 0 0.00 | 1.72 | 16.0 | 31.5 | 7.05 3.1
14 0 0.00 | 1.19 7.7 | 21.8 | 7.0% 6.5

20



For the fourteen runs, d¢ = dg = 3.5 and U, < 14.3, so that nonlinear
effects may be sufficiently small in the vicinity of the landward and seaward
boundaries. Since L = 7.04 or 7.05, the assumption of long wave is not
strictly satisfied in the vicinity of the landward and seaward boundaries.
This problem is related to the fact that there is no general wave theory
applicable from deep water to shallow water where wave breaking occurs.

For each of the fourteen runs, the normalized incident wave profile ni(t)
with unit wave height and period for t = 0 is estimated using Stokes second-
order wave theory which yields the same wavelength as linear wave theory

(e.g., Dean and Dalrymple, 1984)
ni(t) = a; cos[2x(t+ty)] + a, cos[b4n(t+ty)] ; for t = 0 (38)

where a, = 0.5; t,= time shift introduced to make ni = 0 at t=0; and a, =
normalized amplitude of the second-order harmonic which depends on the values
of d¢ and L listed in Table 1. For the fourteen runs, 0.003 < a, < 0.111.

It should be mentioned that Seelig (1980) used the method of Goda and
Suzuki (1976) based on linear wave theory to estimate the incident and
reflected waves from the free surface oscillations measured at three locations
in front of the structure. The mean water level and linear trend were removed
from the measured free surface oscillations. As a result, the present
computation performed in the time domain does not reproduce the experimental
results exactly. Nevertheless, Seelig (1980) indicated that for the selected
runs with dé/(gT'z) = 0.016, approximately 95 percent of the incident wave
energy was at the period of the sinusoidal motion of the wave generator. For
the selected fourteen runs, (a,/a;)? =< 0.049 and Eq. 38 may be regarded as a

good approximation.
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Discussion on Computed sults

The computed results for the fourteen runs summarized in Table 1 are
presented in Appendix B. The computed results for Run No. 8 are discussed in
detail as a typical runm among these runs,

Fig. 2 shows the specified incident wave train nj(t) with a, = 0.037 and
the computed reflected wave train n,.(t) at x=0 as well as the computed
transmitted wave train ne(t) at x = Xe for Run No. 8. The temporal variations
of ny and 5 become periodic before t = tp = 4. The computed variations of
ne(t) and ne(t) during 4 < t < 5 are used to compute the reflection
coefficients r,, r, and rgy defined by Eqs. 15, 34 and 36, respectively, and
the transmission coefficients Ty, T, and T, defined by Eqs. 16, 35 and 37,
respectively. Use is made of EE = (1/8) in Egs. 34-37 to be consistent with
the data analysis based on linear wave theory performed by Seelig (1980). The
difference between the mean and still water levels is given by 7, at x=0 and
EE at x=xo which are needed in Eqs. 36 and 37, respectively. The numerical
model predicts the wave set-down Ny = —0.087 at x=0 and the wave setup n, =
0.087 at x=xg. It should be noted that ni is computed to be 5 x 10°% and
almost exactly zero.

The computed reflection coefficients are ry, = 0.55, r, = 0.55 and r; =
0.50, while tﬁe measured reflection coefficient denoted by rp was rp = 0.42.
The computed transmission coefficients are T, = 0.71, T, = 0.67 and Ty = 0.62,
while the measured transmission coefficient denoted by Ty was Ty = 0.61.
Considering the data analysis procedure adopted by Seelig (1980), the
coefficients ry and T,, which are based on the wave energy and account for the
effect of the mean water level, may be regarded to correspond to ry and Ty,
respectively. The agreement between the measured and computed coefficients is
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fairly good although the comparison does not indicate whether the computed
wave profiles n,.(t) and ne(t) shown in Fig. 2 are correct.

The asymmetry of the profile n,(t) was also noticed in the computed
profiles for the case of wave overtopping over a subaerial breakwater
(Kobayashi and Wurjanto, 1988), but more symmetric profiles were predicted for
the case of no wave overtopping (Kobayashi et al., 1987).

On the other hand, the computed profile ny(t) shown in Fig. 2 exhibits a
bore-like profile even though the normalized water depth below SWL is dg =
10.3 at x=xo. The bore-like profile at x = xXg = 1.30 may still be realistic
considering the short horizontal distance from the point of wave breaking to
the landward boundary located at X = Xg. The transmitted bore-like wave may
eventually become undular as it propagates further landward. The development
of an undular bore was predicted numerically by Peregrine (1966) using the
Boussinesq equations based on the assumption of irrotational flow. In any
case, data on the wave transformation behind the submerged breakwater will be
required to clarify the limitation and capability of the present numerical
model.

Fig. 3 shows the computed spatial variations of the normalized free
surface elevation 5 above SWL located at z=0 and the normalized depth-averaged
horizontal velocity u at t=4, 4.25, 4.5, 4.75 and 5 for Run No. 8. The
spatial variations of n and u at t=4 and 5 are identical because of the
periodicity of the computed flow field. Fig. 3 indicates the complicated free
surface and velocity variations due to wave breaking in the vicinity of the
crest of the submerged breakwater which is depicted in the solid line in the

region -4 < z < —d, with d. = 0.64.
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It should be stated that the present numerical model is not expected to
predict the details of wave breaking and flow separation may occur at the
sharp corners of the breakwater. The computed variations of n(t,x), h(t,x)
and u(t,x) in the region 0 < x < X, during 4 < t < 5 are used to examine the
time-averaged wave energy balance in which h is the sum of 5 and the
normalized water depth below SWL.

The time-averaged volume flux per unit width, m = uh, is also computed as
a function of x to check whether Eq. 18 is satisfied. For Run No. 8, m = 0.30
except that the variation of m with respect to x exhibits some numerical
oscillations and spikes in the vicinity of the sharp corners of the
breakwater. As a result, the value of m for each run presented in this report
is the value at x = x, representing the constant value of m.

Fig. 4 shows the computed spatial variations of the time-averaged energy
flux per unit width, E;, the time-averaged wave energy per unit horizontal
area, E, the time-averaged rate of energy dissipation per unit horizontal area
due to bottom friction, ﬁ;, and the time-averaged rate of energy dissipation
per unit horizontal area due to wave breaking, 5;, for Run No. 8. Eq. 28 is
used to estimate 5; using the computed spatial variations of E; and 5;.

However, the computed variation of EF is found to exhibit kinks because of the

discontinuities of § in Eq. 7 at the sharp corners and is smoothed so that E;

decreases monotonically with respect to x and DB

smoothing of the computed values of E; at 300 grid points is performed by

averaging the computed values of E; at five adjacent grid points and applying

is positive or zero. The

the five-point smoothing procedure of Longuet-Higgins and Cokelet (1976) to

the averaged values of E; at 60 grid points.
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The computed and smoothed variations of f; shown in Fig. 4 are almost
indistinguishable apart from the kinks. Moreover, the estimated spatial
variation of 5; almost satisfies the time-averaged energy equation in the
region 0 < x < X given by Eq. 29 in which ﬁ; (x=0) = 0.293 and E; (X=Xg) =
0.191, whereas the integration of (5; + ﬁ;) in the region 0 < x =< x, yields
0.104.

Fig. 4 suggests that the wave energy dissipation due to wave breaking and
bottom friction is large in the vicinity of the landward corner of the crest
of the breakwater where wave breaking appears to occur as shown in Fig. 3.
This statement is intended to be only qualitative because of the smoothing of
E; as well as the assumed constant friction factor f’' = 0.05 without regard to
possible flow separation.

The computed spatial variation of E shows the increase of E due to
shoaling on the seaward slope of the breakwater and the decrease of E on the
crest and the landward slope of the breakwater. For Run No. 8 with d, = 0.64
shown in Fig. 4, the maximum value of E occurs seaward of the location of the
maximum values of ﬁ; and ﬁ;. Data on the flow field over the crest of the
breakwater would be required to examine the detailed processes of wave
breaking and evaluate the quantitative accuracy of the predicted wave energy
balance such as that shown in Fig. 4.

The approximate relationships given by Eqs. 30-33 are examined to
quantify the uncertainties associated with the linear long wave approximations
used at x=0 and x=xo. The computed values of E and E; at x=0 are 0.164 and
0.293, respectively, as compared to 0.163 and 0.278 on the right hand sides of
Eqs. 30 and 31, respectively. On the other hand, Eqs. 32 and 33 yield E =

0.057 = Eg = 0.055 and q = 0.191 = /fd, Eg = 0.178 at x=x,, respectively. As
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a result, Eqs. 33-33 are good approximations for Run No. 8.

The computed results for Run No. 2 are shown in Figs. 5, 6 and 7 which
correspond to Figs. 2, 3 and 4 for Run No. 8, respectively. Comparison of
these figures may confirm that the computed results for Run No. 8 discussed in
detail are fairly typical of the fourteen runs listed in Table 1. However,
for Run No. 2 with d; = 0.78, the maximum values of E, Dy and Df shown in Fig.
7 occur approximately at the same location unlike those shown in Fig. 4 for

Run No. 8.
asured and uted Transmission Coe cients

For each of the fourteen runs listed in Table 1, thé computed
transmission coefficients T,, T, and T, are compared with the measured
transmission coefficient Ty as shown in Fig. 8. The solid line in Fig. 8
corresponds to the perfect agreement. T, and T, given by Eqs. 35 and 37,
respectively, are based on the transmitted wave energy and in agreement with
Ty based on the measured transmitted wave energy. The effect of the wave-
induced mean water level ny included in Ty is minor and does not improve the
overall agreement significantly. T, given by Eq. 16 is based on the
normalized height of the transmitted wave and tends to be greater than Ty
since the computed transmitted wave profile ne(t) tends to exhibit a sharp
peak as shown in Figs. 2 and 5.

Seelig (1980) proposed the following formula for the empirical wave

transmission coefficient, Ty, which is also included in SPM

B de
T, = [0.51 = 051 h_s] [1 ¥ -E—{—,] (39)
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in which R’ = wave run-up on the seaward slope of a breakwater in the absence
of wave transmission. For the submerged breakwater under consideration, B’ =
30 cm, hf = 75 cm and d{ = 0 - 15 cm as given in Table 1. Eq. 39 was proposed
for subaerial breakwaters with di < 0 as well. For each of the fourteen runs
in Table 1, the value of R’ has been estimated using the empirical formula
given in the report of Seelig (1980) as well as that given in SPM. The latter
has found to yield slightly better agreement between Ty and T, and is adopted
herein. The comparison between T, and Ty for each of the fourteen runs is
shown in Fig. 9 where the computed transmission coefficient T, is also plotted
for each run to compare the capabilities of the numerical model and the
empirical formula given by Eq. 39. For the case of di = 0, Eq. 39 yields T, =
0.47 independent of the incident wave conditions and does not represent the

data well.
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Measured and Computed Re ction Coefficients

Fig. 10 shows the computed reflection coefficients r,, r, and r, compared
with the measured reflection coefficient r, for each of the fourteen runs.
The solid line shown in Fig. 10 indicates the perfect agreement. r, and r,
are given by Eqs. 34 and 36, respectively, and based on the reflected wave
energy, whereas r; given by Eq. 15 is based on the normalized height of the
reflected wave train. Since r, includes the effect of the wave set-down .,
ry < r, as indicated in Eq. 36, while r, is found to be greater than r, for
most of the runs as might be discernible in Fig. 10.

The numerical model tends to overestimate the reflection coefficient
slightly even if the best estimate r, is compared with the measured value ry.
Since the computed and measured transmission coefficients are in agreement,
the slight overestimation of the reflection coefficient suggests that the
numerical model slightly underestimates the wave energy dissipation due to
wave breaking and bottom friction. Increase of the bottom friction factor f'
would improve the agreement but may not be warranted without data on the flow

field over the submerged breakwater.
Mean Water Level Difference

Fig. 11 shows the computed values of the normalized mean water level
difference, An, as a function of the normalized water depth below SWL, de, on
the crest of the breakwater. An is the difference between the wave setup EE
at x=x, and the wave set-down 7, at x=0 as defined in Eq. 17. For each of the
fourteen runs, the computed value of 5, is negative and on the order of

magnitude of the positive value of .
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Since no data on An was provided by Seelig (1980), comparison is made
with the empirical formula of Diskin et al. (1970) for ponding behind low and
submerged permeable breakwaters which are completely enclosed. The comparison
is only qualitative since this formula corresponds to the case of no net

volume flux, that is, m = 0. This empirical formula can be expressed as
An = 0.6 (Kg)™! exp[—(0.7 + Kgdg)?] (40)

in which Kg = shoaling coefficient at x=0 based on linear wave theory. The
dotted line shown in Fig. 11 corresponds to Eq. 40 where Kq = 0.932 for all
the runs listed in Table 1. The computed values of An are on the same order
of magnitude as those based on Eq. 40 as long as d. is not too small. If the
crest of the breakwater is located near SWL, An is expected to be strongly
influenced by the permeability of a breakwater and whether the water behind
the breakwater is allowed to escape landward or laterally.

In addition, Ay is calculated using the analytical solution derived by

Longuet-Higgins (1967) which can be expressed as

-1
A7 = w1 + £ — T2) [mt sinh [i—"]] (41)

in which the measured reflection and transmission coefficients are used to
calculate the value of An for each of the fourteen runs listed in Table 1.

Eq. 41 predicts the values of An in the range 0.0003 < An < 0.0095 which are
much smaller than those predicted by the numerical model. Eq. 41 is based on
the assumption that the motion everywhere is irrotational and is not
applicable if wave breaking occurs. For breaking waves, Dalrymple and Dean
(1971) performed an analysis similar to that used for predicting wave set-down
and set-up on a beach and obtained reasonable agreement with the data of

Diskin et al. (1970).
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Time-Averaged Volume Flux

Fig. 12 shows the computed values of the normalized time-averaged volume
flux per unit width, m, as a function of de. The value of m in the absence of
the breakwater based on Stokes second-order theory (e.g., Dean and Dalrymple,
1984), which is given by m = [0/(8d¢L)] in the present notation, is also
plotted in Fig. 12 for each run. Fig. 12 indicates that the presence of the
breakwater will increase the net volume flux especially if d, is small.

Available data on wave overtopping rates such as that given in SPM
appears to be limited to subaerial breakwaters because of the ease of
instrumentation. The empirical formula for wave overtopping given in SPM may
be used to estimate the value of m if d, is zero or negative. For the case of
de = 0, this formula reduces to m = (/Q* Kg'*°) in which Qj = empirical
coefficient and Kg = 0.932 for all the runs. The value of Qﬁ Eo¥ & 1:1.5
smooth slope on a 1:10 nearshore slope is listed as a function of (Kgd¢) and
(Kgo?)™! in SPM. For the runs with d, = 0 listed in Table 1, Qﬁ may range
from 0.007 to 0.088, resulting inm = 0.09 - 0.33. This rangé is comparable
with the order of magnitude associated with the computed values of m shown in

Fig. 12.
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PART V: CONCLUSIONS

A numerical model is presented to examine the hydrodynamic processes
involved in monochromatic wave reflection, breaking and transmission over a
submerged impermeable breakwater. The numerical model is shown to be in
agreement with a set of data on wave reflection and transmission coefficients.
It is also shown to predict the mean water level difference and net volume
flux per unit width which are in qualitative agreement with limited
information available at present.

The numerical model may be used to provide the hydrodynamic quantities
needed for the design of a submerged breakwater as well as to interpret
hydraulic model test results since some hydrodynamic quantities such as the
rate of wave energy dissipation are extremely difficult to measure directly.

However, the numerical model needs to be expanded to include the
permeability of a breakwater and the randomness of incident wind waves even
under the assumption of normally incident waves on a long breakwater. In
addition, comprehensive and detailed measurements will be required to
calibrate and evaluate such an expanded numerical model. Improvement of our
numerical prediction capabilities may stimulate improvement of our

experimental capabilities.
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APPENDIX A: NOTATION

following symbols are used in this report:

= 0.5;

= normalized amplitude of Stokes second-order harmonic;

= dimensional crest width of submerged breakwater;

= /b

= water depth below SWL on crest of submerged breakwater;

= water depth below SWL at landward boundary;

= water depth below SWL at seaward boundary,

= rate of energy dissipation per unit horizontal area due
breaking;

= rate of energy dissipation per unit horizontal area due
friction;

= specific energy defined as sum of kinetic and potential
horizontal area;

= energy flux per unit width;

= bottom friction factor;

= gravitational acceleration;

= dimensional wave height at seaward boundary;

= instantaneous water depth;

= dimensional height of submerged breakwater;

= shoaling coefficient at seaward boundary;

= wavelength at seaward boundary;

= normalized volume flux per unit width;

= empirical coefficient for wave overtopping formula;

to wave

to bottom

energy per unit



ui

Uy

dimensional wave run-up on seaward slope of breakwater in absence
wave transmission;

measured wave reflection coefficient;

wave reflection coefficient computed using Eq. 15;

wave reflection coefficient computed using Eq. 34;

wave reflection coefficient computed using Eq. 36;
dimensional wave period;

wave transmission coefficient based on empirical formula given by
39

measured wave transmission coefficient;

wave transmission coefficient computed using Eq. 16;

wave transmission coefficient computed using Eq. 35;

wave transmission coefficient computed using Eq. 37;

time;

time shift introduced to make nj; = 0 at t = 0;

time when flow field in computation domain becomes periodic;
Ursell parameter at seaward boundary;

instantaneous depth-averaged horizontal velocity;
horizontal velocity at x = 0 due to incident wave;
horizontal velocity at x = 0 due to reflected wave;
horizontal coordinate with x = 0 at seaward boundary;
x-coordinate at landward boundary;

vertical coordinate with z = 0 at SWL;

characteristic variable defined as a = (u + 2c);
characteristic variable defined as 8 = (—u + 2c¢);

instantaneous free surface elevation above SWL;

A-2

of

Eq.



ni = free surface variation of incident wave train at x = 0;

ny = free surface variation of reflected wave train at x = 0;

ne = free surface variation of transmitted wave train at X = Xg;

An = mean water level difference between set-up Et at x = Xg and set-down E;
at x = 0;

§ = local slope angle or gradient;

€ = surf similarity parameter in absence of wave transmission;

p = fluid density; and

o = dimensionless parameter related to wave steepness,

Superscript

! = indicator for physical variables; and

= indicator for time averaging during tp, = t = (tp + 1).



APPENDIX B: COMPUTED RESULTS FOR 14 RUNS

The computed results for the fourteen runs listed in Table 1 are presented
herein. The specified incident wave train pj(t) at x = 0, the computed
reflected wave train n,(t) at x = 0, and the computed transmitted wave train
ne(t) at x = xo for Run No. I are plotted as a function of the normalized time
t in the range 0 < t < 5 in page B-2I with I = 1,2,...,14.

On the other hand, the computed spatial variations of the normalized free
surface elevation n and the normalized horizontal velocity u in the range 0 =

X < Xo at t = 4, 4.25, 4.5, 4.75 and 5 for Run No. I are plotted in page B-

(2I+1) with I = 1,2,...,14.
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