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ABSTRACT

The boundary value problem with the appropriate

boundary conditions for the three dimensional nonlinear

random wave field is reviewed. Using perturbation

techniques, the nonlinear problem is converted into a

series of linear (in the unknowns of that order) boundary

value problems. These are solved to the second order for

the finite depth case in terms of finite Fourier sums,

including relationships for the second order interaction

components. The results obtained are verified with

available solutions for more special cases.

Formulas are developed for:

(1) the correlations and probability density for the
water particle kinematics, and distribution of force
per unit lengtn of a piie,

(11) a closed form solution for tné joint probability
density of the inline and the cross forces feor the
drag dominant case and a three dimensional random

sea, and

(i1ii) the effects of finite time simulation on the mean



square value of a random realization, and on the

correlations amongst the simulated variables.

Wave forces due to a directional nonlinear random
sea are simulated via the following steps:

(1) a linear short-crested sea is represented by a
number of Fourier components propagating in many
directions;

(1i) second order correction components are computed by
the formulas developed;

(ii1) water particle kinematics and sea surface
displacement are computed by the superposition of the
linear and nonlinear components;

(iv) wave forces are computed by the Morison formula;
and

(v) total forces on a pile are computed up to the free

surface.

Some of the more notable features of the present

method are that it :
(i) correctly models the intercorrelations and
skewnesses of the variables in the wave field;
(ii) includes nonlinearity correct up to second order;
(iii) preserves the phases of the nonlinear corrections;
(iv) provides the capability to mcdel any directional

energy spectrum; and



(v) computes total force up to the actual free surface.

The above method is applied to simulate linear and
nonlinear rendcm realizations of the sea surface for the
Bretscaneider spectrum and four different directional
spreads. The nonlinearity representea by the skewnass is
cemputed in each case and it is found that the skewnass is
greatest for a narrow directionzl spread becausz for any
given two wave numbers the skewness kernel is largest for
smzll included engles. The reasons for this phenomenon
and the possible occurrence of negative skewnass in the

field are discussed.

The simulation method is furtner applied to
compute total wave forces on a single pile and a multiple
pile group. The total force on a pile reduces by a factor
of 1 to U.6l with increase in the directional spread of
the energy spectrum from unidirectional to
omnidirectional. For the four pile group with 60U feet
separaticn the reduction factors are similar to those for
the single pile case. These results are the same as tnose
obtained by a so-called hybrid method (Dean 1977) fcr a
drag daminant case. For a four pile group with one pile
at each corner of a 3ul feet sguare the reduction factor

varies from 0.79 to (.39 for the directional spectrum



varying from unidirectional to omnidirectional.

These results suggest that considerable economy
can be realized in the design of large Structures by

incorporating the directional effects of a real sea.



CHAPIER 1

INTRCDUCTICN

The storm characteristics to be considered in
developing design wave forces for offshore structures
differ substantially depending on the area in which the
structure 1s toc be installed. Some design storms may be
fairly distant from the site of interest, in which case
the effects of dispersion result in a fairly periodic and
long-crested design wave. A more common Situation in many
cases is that in which the structure is located near to
or in the storm generating area. In this case realistic
design waves, particularly those due to hurricanes,
snould include the following three important
characteristics:

{1) Nonlinearity:- waves with peaked crests id
shallow troughs;
{2) Randomness:- lack of order or regularity in
the wave motion; and
(3) Directionality:- waves approaching from many
directions resulting in

short~crestedness.



Nonlinear and random aspects of the ocean waves
have recieved considerable attention (see Hudspeth, 1974
for bibliography). The methodologies presently in use
for calculating wave forces on offshore structures depend
heavily on the stream function method (Bean, 19%65;
Dalrymple, 1974) for extreme nonlinear wave analysis &nd
linear spectral methods for compliant structures

(Borgman, 1967; Malhotra and Penzien, 1970).

1.1 Directional Effects

In the absence of definitive measured directional
spectra and economical calculation procedures, the
directicnal characteristics of ocean waves have been
ignored in the inline force methods of design and
analysis of ocean structures. The inline force methods
seem to yield reasonably good results. However, the
consideration of multidirectional seas can substantially
affect the wave forces as discussed below: |

(1) Dean (1977) showed that the forces on four piles
could be reduced significantly (upto 23%) for a
directional sea state compared to a unidirectional

sea condition.



(2) In and near hurricanes, waves travel in many
directions resulting in a sheort-crested condition.
Partial instantaneous standing waves may form
resulting in high particle veloncities below
relatively low water elevations and low particle
velocities below high sea surface displacements.

(3) The drag component of the total wave force is a
guadratic function of the water particle velocity.
In a random sea state associated with strong
hurricane winds there may be large velocity
components normal to the inline (predominant) force
direction. Thus the resultant velocity ana the wave
forces differ considerably for a directiecnal sea.

(4) Neonlinear effects generate sums and differences of
the fregquencies associated with the linear spectrum.
Conceivably these frequencies could coincide with
the natural peried of a structure causing a
relatively large response.

(5) Total second order components are less 1in the
directional sea state compared to the unidirectional
sea condition. For example a wave of amplitude a,

frequency ¢ and wave number k travelling in water of



depth h has & second order Stokes amplitude

Ka© cosh kh
F T Smhikh (Cashakh+2) (1-1)

Now instead of one wave at 9C degrees, consider 3
waves of amplitudes a/\3 coming from directions 3C,
90 and 150 degrees with respect to x axis. In tais
case the amplitude of the second crder Stokes

component is

1 __"S_Q-j: __C_‘E;gb—-;ib- (COSHZKH +'Z> (1-2)
)

) Sinh’kh

In addition there will be three more secona order
components, with amplitudes less than &/1C00, in
directions 60, 90 and 120 cegrees with respect to

the x axis.

Thus the directicnal aspects of ocean waves may
be as important as tne nonlinear and random asgects,

which have received considerable attention in the peast.

1.2 Cbjectives

- —— e ——— ——— ——— - ——

In the present study the nonlinearity, randomness
and directionality, all important elements of ocean

waves, have been retained. The twofcld nonlinearity, one



due to the nonlinear boundary condition at the surface
and the second due to the drag force relationship,
prévent a closed form solution for the wave forces from
beind obtained. Therefore, in the present study, the
wave forces due to a nonlinear directional random sea
have been simulated via the following steps:

(i) A linear directional sea has been represented Dy a
number of discrete frequencies and at each frequency
there are several wave components with independent
phases propagating in several directions;

(1i) Second order perturbation components including all
fundamental interactions have been computed
according to the analytical formulation developed
for the finite depth case;

(iii) Water particle kinematics have been computed from
the linear and the nonlinear second order
perturbation components;

(iv) The wave forces have been computed from the water
particle kinematics and the Morison formula using
suitable drag and inertia coefficients suggested by

Dean and Aagaard (1970).

The above simulation method has been implemented
for several directional spreads and compared with the

results of the hybrid method proposed by Dean (1977).
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The present study alse includes the following

theoretical investigations:

(i) Formulas for the second order perturbation
components of a directional random sea in finite
depth have been developed.

(ii) Since the most important single measure of
nonlinearity is the skewness, the related kernels
for the finite depth case have been studied in
detail. Kernels for the finite depth case have been
compared with those given by Longuet-Higgins (1963)
for infinite depth.

(1ii) A possible mechanism has been suggested to
explain some of the observed negative skewnesses.

(iv) Formulas for intercorrelations and probability
densities of the water particle kinematics in a
linear random wave field have been derived.

(v) The joint distribution for the compeonents of drag
force has been derived from the given joint Gaussian
distribution for the components of water particle
kinematics for the directional sea.

(vi) Formulas have been presented to explain thes
effects of finite time simulation on the mean square
value of a random realization and on the

correlations amongst the simulated variables.



The present dissertation has been organized as
follows:

(i) A brief review of the pertinent previous studies is
presented in Chapter 2.

(ii) In Chapter 3 the theoretical relations for the
second order perturbation seolutiens for finite depth
have been derived. Formulas for the three
dimensional simulation of the nonlinear random sea
surface and associated water particle kinematics
have been developed.

(iii) Statistical relations for linear random
directional sea have been derived in Chapter 4.

(iv) Chapter 5 contains the methodology of simulation
used in this study.

(v) The simulation method has been implemented and
example results presented in Chapter 6.

(vi) The summary of results and conclusiens are

- contained in the seventh chapter.




CHAPTER 2

BACKGROUND AND REVIEW OF RELATED LITERATURE

As discussed in the previous chapter, the problem
of computing design wave forces is complicated due to the
nonlinearity of the waves and the complexities of the
random and directional sea surface. Two essentially
different but complementary approaches have develcped in

an attempt to establish realistic design wave loadings.

2.1 Extreme Nonlinear Wave Models

—— D -

One approach is to represent nonlinearities of
the motion for a single wave composed of a characteristic
fundamental period and its higher harmonics. A number of
such theories have been developed (Skjelbreia and
Hendrickson, 1961; Cnappelear, 1961; Dean, 1%965; Von
Schwind and Reid, 1972; Laitone, 1960). ©Dalrymple (1974)
extended the stream function approach of Dean to the
waves on a snear current. Some of these theories can be
shown to account for the nonlinearities adequately;
however, they avoid the random and directional

characteristics of the sea surface.

12
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2.2 Linear Random Models

—— — e —— —— ————— ——— ——— - —

The second approach expleoits the principle of
linear superposition of infinitely many waves having
given frequencies, amplitudes and directinns of
propagation, but independent phases. The total energy is
distributed over a continuum of frequencies and
directions. In this manner, a three dimensional random
Gaussian sea can be represented fully. However, ignoring
the nonlinearities makes thé random Gaussian model

unrealistic, especially for large waves.

Following Rice (1944), both Rudnick (1951) and
Birkhoff and Kotik (1951) suggested that the random sea
can be mndelled as a Gaussian process. Birkhoff and Kotik
(1951) elaborated on the principle of random phases as
applicable to ocean wave problems. Pierson (1955)
developed the Gaussian model further, applying it to
several oceanegraphic problems. In this model the sea

surface is represented by the following pseudo-integral

e 2 L
- Marer 2-1
"Zl")f)-’—fj./s(a;g)ag A8 Cos{h X-gt+ é(ff,ﬁ)} e

in which

4§ 1s angular frequency
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kR is wave number related to 4 by the dispersion

relation

62-_.: 3& tanh Rh (2-2)

h 1is depth of water
3 is acceleration due to gravity
g 1is direction of propagation
S(s8) is the energy density associated with the
freguency 4§ and wave direction 4 such that
the unidirectional spectrum is
n
S(e) =f S(s,8) 48 (2-3)
=T

and the total energy E is

@0 .1
E = f J' S 68)df d& (2-4)
° Tn

&Lﬁﬂ is the random phase lying between (-7, T )

and independent of all the cther phases.

Pierson (1955) has given a proof that Eguation (z-1)
represents a three dimensional stationary Gaussian

process.

Longuet-Higgins in a series of articles
(1956,1957,1961) presented a comprehensive account of a

ranéom mcving surface, including derivations of the
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following statistical properties:

A (1) the probability distribution of the surface
elevation and the magnitude and orientation of the
gradient;

(ii) the average number of zero crossings per unit
distance along a line in an arbitrary direction;

(iii) the average length of the contours per unit area,
ind the distributicon of their directions;

(iv) the average density of maxima and minima per unit
area of the surface, and the average density of
specular points (i.e. points where the two
components of gradient take_given values) ;

‘(v) the probability distribution of the velocities of
zero-crossing along a line;

(vi) the probability distribution of the velocities of
contours and of specular points;

(vii) the probability distribution of the envelope and
phase angle; and

(viii) when the spectrum is narrow, the probability
distribution of the heights of maxima and minima and
the distributien of the intervals between successive
zero-crossings along an arbitrary line.

All the results are expressed in terms of the

two-dimensional energy spectrum of the surface, and have

been found to involve the moments of the spectrum up to a
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finite order only. Properties (i) and (iii) to (vi) have
been discussed in detail for the special case of a narrow
band spectrum. The converse problem, given certain
statistical properties of the surface, to find a
convergent sequence of approximation to the energy
spectrum, has alsn been studied and solved

(Longuet-Higgins, 1957, 1961)

Borgman (1969) has given relations between the
variables of interests such as water particle velocity,
water surface elevation etc. in a directional spectra

model for design use.

2.3 Wave Force Probability and Spectral Density

T — ———— ———————— — A A S e o ———

Pierson and Holmes (1965) and Borgman (1967) have
applied a linear unidirectional Gaussian medel te derive
the probability density of wave forces obtained from the
Morison formula. From the jeint Gaussian distribution of
velocity and acceleration, Pierson and Holmes have
derived the probability density of force as an integral
to be evaluated numerically. For zero mean velocity
Borgman (1967) has expressed the integral in terms of

parabolic cylindrical functions.

Borgman (1967) has also developed the linearized
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spectral density of wave forces on a pile due to a random
Gaussian sea. The drag force component has been
approximated in the simplest form by a linear relation.
He has alseo presented relationships for cubic and gquintic
approximations. These and other statistical models for
waves and wave forces have been summarized by Borgman

(1973) .

The influence of current on random wave forces
has been studied by Tung and Huang (1972,1973). They
extended the results of Borgman (1967) to include the
presence of steady current and the effects of
wave-current interactions. They have reported that for
forces on members near the surface the interactions are
more important than for forces on members near the
bottom. The wave-current interactions have mild effects
on the statistical distribution of the maxima of sea
sur face elevation. The various aspects of wave-current

interactions have been reviewed by Peregrine (1976).

2.4 Linear Filter Models

Reid (1958) developed a methnd for linear
filtering of a sea surface record to obtain the
kinematics regquired to compute forces on a pile by the

Morison formula. Wheeler (1969) used this technique to
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compute force ccefficients from measured hurricane wave
records and reported very little difference between the
measured and the predicted peak forces at different
elevations of an instrumented piling. Hudspeth et.el.
(1974) applied this technigque using hnurricane records and
reported mean square errors for forces computed over the
crest portion of the records which compared favorably
with mean square errors from pressure forces computed
using Dean's stream function method (1965). In another
application Hudspeth (1574,1975) used tne linear
filtering method to obtain the water particle kxinemtics

from the nonlinear random sea simulation.

2.5 Nonlinear Random Models

- — ———————————— i —— —— =

Stokes' perturbation method has been extended to
random waves by Tick (1959,1961), Phillips (1960,1961),
Hasselman (1962,1963) and Longuet-Higgins (1962,1%63).
The first three authors have assumed a first ocrder
stationary Gaussian solution in terms of the
Fourier-Stieltje's integral. Tick's derivation extended
to the second order, and was illustrated by an example of
a nonlinear realization in deep water (1%903). The same
paber included the nonlinear interaction kernel for the
finite depth case. Phillips, Hasselman and

Longuet-Higgins have carried out the perturbation scheme
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to higher order and shown that at higher orders, certain
combinations of wave numbers interact resonantly and
there is considerable energy transfer from one wave
number tn another. However, such resonant interactions
and transfer of energy take place rather slowly and are
of primary importance in the study of wave generation,
wave transmission and swell propagation over long

distances.

Tick restricted his perturbation derivation te
the second order for unidirectiecnal spectra. In search
for a mechanism of wave generation, propagation and
interactions, Phillips (1981) ané Longuet-Higgins (1962)
carried out the perturbation tn the third order and
Hasselman (1962-63) to the sixth order in energy
spectrum, but restrictad their derivation to the deep
water case partly due to the fact that: (1) the relations
for the deep water case are simpler and still bring out
the underlying theory without the complexities of the
finite depth eguations, and (2) the physical processes of
wave generation, propagation and interaction which they
nad in mind to mndel are primarily deep water phenomena.
Unlike Tick their derivation is for directional seas,
because unidirectional spectral models do not present

interesting sclutions even at nigher perturbation than
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second order. Also wave generation, preopagation and
interaction take place in zll directions on an ccean

sur face.

Longuet-Higgins (1963} developed a perturbaction
solution assuming the first order solution as the sum of
large number of waves naving different freguencies and
wave numbers but independent phases. He used nis solution
to compute skewness coefficients for surface elevation
and compared with tne skewness computed by Kinsman {1¥050)
from field data. The agreement between tne skewnesses

predicted by theory and those computed from the fiela

fact that

1]
i

jata 1s remarkable particularly in light of ta:
the theory does not taks into account the rancom
fiuctuating pressure due to the wind blowling over tne

water surface.

2.6 Nonlinear Random Mcdel 1n Deep Water

The theoretical derivaticn of Longuet-Higgins
(1963) is reviewed here because the thecretical
derivaticns of this study follow the functional
approximation approach of Longuet-Higgins and not the

measure theory approach cf Tick and others.
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A random homogzneous surface displacement on
water of infinite depth has been represented to the firsec

approximaticn by

0 )
Z =7 (2=3)
whera
N
) - - rig .o
7= z Qn Cos Wi 3 Wn= hh-x—ﬁn‘t*' é(hh) (<=9)
na
in which
X is tne horizon:zl vectorial Cartesian ccordinzte
t is time
i . | :
%, 1S a horizontal vector wave number
. - .
&, 1s argulor frequancy related to#k, by che

following dispersion relation
-y
o = §| R (2-7)

3, being tne acceleration Zue to gravity
—p . - -
Q. and qu“) are amplitudes and rendcem pnases
S0 that a,cose¢ and a,sing are jointly normal

with & uniformly distributed and

_’Z tas =E(R)dk _ (2-3)
Ry 3 dR
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. ‘ , w .
Corresponding to the free surface elevation 7] there is a

velocity potential

t R Z ) Aw o
"= bne siM¥n; bn= - (2-9)

.
n=1

() ) i -
However, 7% and @ are only the first
approximaticn to the solution of Laplace ecquaction.

satisfy the nonlinear boundary condition at the free

ol
[
3
(t
o
(]

sur face, terms cf higher order are censidzre

series expension

t () 3)
‘?Z=’7+”Z+"z+---" (2-130}
o) (2> (3 -
i ) (23 )
in wnich % and %  contain terms proportional to the
. . . ) . (3)
product of the linear amplitudes, 7 and & contain

terms propertional to the third order products cof the

. . . (@ Y]
amplitudes, and =0 on. The equations for ¢  znd 7

are

(2 -
V$ o T > — o0 (¢=13)

]
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After Tavlor Series expansion akbout z=GC,

2 @ 3 iy W 2 32 7 ) t
(%_E"'*g%)dpz.#é_f(vq))_? ﬁ(’é-t-‘+3§'z CP,‘Z:O (2-14)
W_ (28 (o d) e 2D ] = (2-13)

=’}'E’a'}' A 5iof - 3 2 =°

It is assumed that the mean level 7% is zerc.
. . w 4 .
Substituting ¢ in Equation (2-14) znd zfrer some

readuction we obtailn
2z @
2 3_)
(ﬂz‘*’c?az ¢
—p

N N - |
=- Z Z bi b,}: [.(Q‘ ﬁ')(ﬁc- fﬁj + R hj) sm (_%‘-Vj:)
=1 !

- - . .
et ) (R Ry -k R;) ST (W +%) ] (2-1s)
To sztisfy the above and Equation {2-13), ctmis of tne
form
N — -
N
- R -k, | 2
(2) _ # ; A
cP:_ZZ C ¢, < sin (W-%)
Lz !
IReary 12
+ Re+Ry ‘
+ G e } sin (v +¥%)

{2-17)
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{2)
substituting in the above, ¢ 1is found as

@ N2 (sc- 03} ( & -, Py Z[z
S 7 F ey [y ek
= (- g)- 3R - %] Sin-#)

- -
(rire) (Ri R -heky)  [RieRz very) | y
(049~ glRi+ | = sy 2ol

Inserting this in Equation {2-13)

(2) N 8_' 13* R, R Y
2 ZZ @ b = Biy ~RiR ) sy siny
=. a‘,a?[{ pe # }srnu«;Sn\;}
L2 4=

VROR,
Bt} 'f"&q. = ;:" +(h 'f'k) Cos¥e {05
{ VR R, } j (2-19)
in which
Ty =
- (" V&) (R R+ Rik) (2-20)

r (ﬁ.--r-\r"'i)t(hi Ry + ki) S
(J_t-+v”ﬂ) f£‘4-§él
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The kernel in the skewness formula

ks'—'@JIJ'JK(’%,%) (k. ) E(h};) d R, d-l;z: (2-22)

is

This skewness kernel has been further examined by

Longuet-Higgins. The kernel has been expressed in terms

—
of g : the angle between the wave number vectnrs R,
and ;% , and a dimensionless parameter 3
2 (R, k)1
such that
— — L
R, Y = : =
K ( L Rp) = (R k) £(¢,8) (2-25)
in which
L") (I'PC) L+
.ﬁg______————- —_ + (¢
£(8,8)= (e (1-¢) 1 +(20-¢)  (2-26)

L
G- (-5 3)F Qo —(i-fel)h
and

C cos @

il
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It has been furtner shown that £(£,f) > C. From
this it immediztely follows that the skewness coefficient
is positive. The function £({,8) as given by
Longuet-Higgins nas been reproduced as Figure (2.1). In

Chapter 6 this will be compared with z similar

computaticn for the finite depth case.

2.7 Nonlinear Random Sea Simulation

Hudspeth (1974,1%75) has solved the nonlinear
boundary value problem for the propagation of random
surface gravity waves in an ocean of finite depth. He has
introduced a rnonlingar interaction matrix facilitating
the use c¢f the Fast Fourier Transform in digital

simulation of the nonlinear random sea correct to tne

)

second order. The second order correction to tne linear
first order wave spectrum has been compuited and addad to

tne linear spectral components. The time seguence of tne
random nconlinear waves is efficiently obtained by tne
inverse Fast Fourier Transform. This time secuence of the
nonlinear random sea surfece was filtered by & linear
digital filter modified by a vertical cocrdinate
stretching function. The water particle kinematics thus
computed have been used in the HMorison formula to compute

the wave forces. Force spactra and normalized cumulative
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Figure Z-1. Graph of £(¢ ,6 )} defined by EGuation <Z-ib,
for Various Values of { (After
Longuet-Higgins 1963).
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probability distributions were computed from the pressure
force reazlizations cbtained oy filtering simulated
nenlinear randam sea surfzce rzalizations. These
simulated results were compered with the spectra and
nermalized cumulative probapility distributions of the
forces recorded during durricane Carla, by wave Forc
Project II dynemometer at a distance of 553.3 feet above
the ocean floor on an instrumented platform in a water
depth cf approximately 1UG feet in the Gulf of Mexico.
Hudspeth's simulaticn was restricted b uridirectional
spectra and nNis compariseon wilkh measurements was limlied

tc the measured inline forces.

2.6 Hybrid Methcd

Dezn (1977) proposed a nybrid methog for

computing Jdesign weve force and moment leading on an

(v

offshore structure. The hybrid method is z combinztion
of linear and ncnlinesr wave theories incorporating tne
most significant features of tne real sza, i.s. the
noniinearities and tne directional spectrum. Wave loading
due to nonlinear waves with 2nergy present over a
continuum of freguencies aﬁd directions is represented by
the product of a nonlinear wave force and a linearized

force transfer coefficient, the latter reoresenting the

effect of the directicnal spectrun. The force, quasf
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due teo a nonlinear directional sea is presented as

—

2=-27
FNL ’ TLDS ( )

F;LDS
in which
Fuu 18 the wave force computed by 2
wave thenry applicable for nonlinear waves
nf a single fundamental perind
propagating in a single direction
Tios 1s a pseudn-transfer crefficient based on

linear wave thenry.

The following directional spreading function was used
£ g

b%
5, (6) = G cos” (8-8,) Cle-6) < X

-8, gl
= o (8- 6] > L (2-28)
in which
g, 1s the principal directicn
Y 1s a positive real number
Cy 1is a ceefficient such that
n
f D, (6) 46 =1 (2-29)
-n

For a wave of single frequency acting on a single piling,

it has been shown that
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= C
Tups "\/-Ej' (2-30)
+1

in an inertia-dominant case and

c
Tps = —== (2-31)

S

in a drag-dominant case.

For a complete directicnal spectrum of the form
Syy (5.8) = Syp(a) . Dy(®) (2-32)

the spectrum of the totzl linearized force in the

dirsction @ is
i
S:ﬁ(cf, Br) = [ 7.;3‘(0’) 577(0’) G -

-n

cos*¥g-4) cos*(6.4,) dé (2-33)
in whicn
2 sh kS
=8 =, % Iy 2¢O _
T:)Zf __.(-f 7y C‘ +‘C;_ g )5 m (2—__).1}

S 1s elevation gbove Lbottom

h is depth of water

'4
¢ = ”z’a D (2-35)




Con PITDY
€, = ———-;{_—‘-" (2-36)

T, ps 1in the above case has been derivad as

n

o0 |2
S [ 5068 ac as

Teps o
J[ 512(5) T%f(ﬁj‘if
=4

Examples of single ard muitiple pile cresented snow force
reduction ugptc 25%. In Chapter 6 the results of tha
hybricd methed will be campared with the resuits of the

methods used in the present study.



CHAPTER 3

THECRY COF DIRECTIONAL NONLINEAR

RANDOM WAVE INTERACTIONS

Random functions can be represented by either
Fourier~-Stieltjes integrals or Fourier integrals.
although the Fourier-Stieltijes integral representation
does neot reguire an a prionri assumption regarding the
existence of a density function and is therefore a much
more powerful teol, the Fourier integral representation
gives identical results for many practical situations, is
more easily understond, and is readily ceomputed. For
these reasons, the finite Fourier approximations of the

Fourier integral have been used in the present study.

The boundary value problem with the apprepriate
boundary conditions for the three dimensienal nonlinear
random wave field is defined and using perturbationn
technigues, the nonlinear problem is converted inte
linear (in the unknowns of that order) boundary value
problems. These are solved for the finite depth case in

terms of finite Fourier sums. Relatinnships for the

32



33

second order interaction components are derived and the
results obtained here compared with snlutions due to
Longuet-Higgins (1963) and Chappelear {1961) for more

specialized conditions.

3.1 Fundamentals of Boundary Value Problem

If viscous and turbulence effects can be regarded
as small {more precisely, if the motion is irrotationaly,
incompressible flows can be well described by a pntential
function or stream functien. The vslocity potential Tany
can be defined in terms of the gradients of the velocity

componentssy

@
w 'L

=73
2

+ R

{3-1)

\?;::{

1%2
tr

Z

Q)

The mass conservatinn equaticn for an
incompressible fluid is

QU | 2V, W

—_ +—_ =0

gx 'Z} a2 (3-2)
which yields

(3-3}



34

The appropriate boundary conditions (Figure 3.1)
for the problem are presented below:
(L) Bottom Boundary Condition (BBC)
_--;Z_;;;-;;;;;;-;;;;;;;;:—E;;-;;I;city normal to the
boundary is equal to zero i.e.¥n=0. For the present
case of a horizontal boundery at depth h

2@ _ 5

>3 , 2=k, =P L5, Ye o0 (3-4)

(2) Kinematic Free Surface Boundary Condition (KFS2QC)

" The water particle on the free surface femains on
the free surface i.e. the vertical veleocity at tne
free surface 1s 2qual to the total rate of change of
water elevation.

27, 3N 2L

_5__+u'.:a:.;.r-1}'-a-}-_w, 2.—:-12(%;},:&) (3-5)

At the free surface the pressure is egqual to the
atmospheric pressure. In the present case, the
uniform surface pressure is taken zs zero without

loss of generality.

37+ & (WrvTw?) ¢ B2 -8B, zaqinnt) (3
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Figure 3-1. Definition of Boundary Value Prcblem.
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- which is recognized as an unsteady form of the
Bernoulli equation with tha sc-callecd Bernculli

term, Q(t).

(4) Combined Free Surface Boundary Condition {(CF3BC)

" This is an alternative form of (2) end (3) zbove in
which, by eliminating ?, involves only ¢’and its
derivatives. The total derivative cf the Bernculli

equation after some reduction is

_2* ¢ e G

3.2 Method of Solutiocn

The perturbation method is adopted here for
solution of the boundary value preblem fermulated in the
preceding section. This method zssumes that:

{1) all variables can be expanded as a convergsnt power
series of a small parameter such as water surfece

slope, and

1 =
ok d (=3

(ii} the nonlinear CFSBC can also be expanded

convergent Maclaurin series about the still water

level z=0 with some parameter.

The randem velocity potential ¢, random sea surface 7 and
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the Bernoulli term G(t) may e represented in the
following menner with the perturbation parameter absorbed

into the function:

ur 2} .
B,y 2,8)= &0y, 28 + $ (L2 0)* (3-3)
Q) {(2) e (3=9)
Ny, t) =7 (4, 2+ O, k)
(& .. {3-1u)
aw) = d’¢+ @& ¥
Supstituting into Laplace's 2cuation we find
1 L2
28 e,y z,t)=0 3 T @O0y =0, e (3-1
The bottom boundary conditicn becomes
) (%)
2P _ o, ; 2% z0; -
2t e
_ -k (3-12)

Since the CFSBC 13 satisfied at the unknown free
sur face, it presents en additional difficuity. However,
for small perturbaticon parameters the CFSBC can be
axpanded in a Maclaurin series zpout the mean water level

z=U to give
< " nri-s
n 3 "¢ %
Z’Z 5?'[21: "'?az FE
mzo

B -
(i‘*' ;47 _Vr) [f;cpl ]=0,' z2zo (3-13)



38

Substituting the perturbation expansions for ¢ . 72, and

Q@ we find after some reduction

> p (3)

) ) (2
- ﬁ,(c;%’ - B +&Da_(¢ A

u) (2) L u) z

G RN IR S LACE L AR

z

5 F (e ) T{IT(% $% ]

o |

{1 {2}

2 r w
) g (B 7 ) g T (25 ]
- U 3 —lp -, U} N 2
+-’2-'gg {V(tpj-rﬁé)f-u-').V{V'(¢+45)+-~)Ij,

2 =0 {(3-14)

Terms of the same order are separated for later

convenience.

_ e’ L ee, 2a”

=5 Y3z v IE
Cl)
e 587
+ 2 4t "'677?2 + a,t
[43)
5 ..un- 3 2%
+3¢_— vel +7 (31122 FTre )

4+ terms of thired ard #?»r’;e/r”a'n{w, Z2=0 (3-15)
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The dynamic free surface boundary condition is
also expanded in a Maclaurin series about the mean water

level to yield

ad;*@“} =0 (3-16)

Substituting perturbation expansions for ¢, 7 and 2,

and separating terms of the same order we obtain

}?{ +£_+F + ??Z #—«Q—’ 4( (t)

" 1_¢()
+—‘—[VCP/ "Z 325F
+ tarms of Mivd amd fuf‘a ovder (3-17)

The nonlinear boundary value problem posed
earlier reduces to the follewing sets of linear (in the

unknown of that order) boundary value problems
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(ly First Order Eguations

)
qu) = 0
28" h
a_z = O L) £ = -
0 w )
rh 9P L34 _ =
TR a1 i 7 2l

(1)
70)____ —-ﬁ‘(%—i— + a“(t)) » 2 =0

{z) Sescond Order Eguations

VLCP(?-')_;O

{2
_3_91_=o 3 25'-"'47-
22

(3-20)

(3-22)

(3-23)

(3-25)
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3.3 First Crcger Soluticn in Finite LDepth

Assuming a velocity potential of the form

zb‘n Cosiy Fom (h+2) Sih(:h-;"ﬁt*e“) {2-26)
CoSh khh
=y
satisfying
{1}
Vz «? =0
29" _ ;o -k (3-27)
2 2 ’
we c¢btain for the free surface
10 Dot (e F - gtw e 3-28
- -3 "
— Z QA fos q/-n (3—25)
=)
in which
Qm = D2In (3-30)
(3-31

5 = 8lRy) tah | Rafh

As shown by Birknoff and Kotik (1951) and Plerscn
(1955) the above represents a Gaussian random sea surface

if the phases are independent.
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3.4 Second Order Solution in Finite Depth

Now assume the second order velocity potential to

be represented as

o ({-.4- 2)

m cosh|h«; sinfh %5t} (3oaz
COSh = — ,ﬁ < < 4 PA
E’L
‘|

satisfying v =0 and the bottom boundary condition;lzzf
and ¢; } are given by sums and differences of the
fundamental vector wave numbers and frequencies. In order
to evaluate 53), éz; and 4&”, the seccond orccr potential
represented by Eguation (3—-32) is substituted in the left
hand nand sidz of Equation (3-24) and the first order
velocity potential ¢ and water elevation 77,

representad by Equations (3-26), and (2~2a) ere
substituted in the right hand side of Equation (3-24).

The first term ¢n the right nand side of Eguation ({3-Z4)

is found to ke

4174

= ot
= Z 2 by oy [(ﬁg-h}+R;R}) Sh{y,- %)
£z j,sy
-
—Uz;-hi- - R;R)') SI'M(U"'.J-Q;‘) (3-33)

b

in which R, = h..' *Mh,‘/w: o

%
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Reversing the roles of 1 and J

-l
—é;lmf

oD o
- -5 .
=Z Z be b;" S, [C ﬁi.-f’lj'd-RL R}) .SF’H(W,_'-—L}?-)
<z

=7

_(Z‘-. ‘% - RiR{) sin(y,+4%) (5=34)

Adding and dividing by two we cbtain

-517°

2%

- Z ZJI ba.'b;'[(O};-ch;)f‘f—’«"é’%*Ré R;) sim(¥i-4)
iz 't.*f
+ (o ,}.)(%,%—R;R}) sin(%ﬂj)j (3-35)

The second term on the rignt nand side of Eguation (3-z4)

is

.__o-!i ci ci be b;- 6;' Q;"{Si”(\%‘r%)-ﬁhw'tﬁj}(3_36}

"~
)

-y,
11}

Similarly tne last term on the right hand side of

Equation {3-24) is
D

IR OB - )

1 (?' 2Z% {z=0

=-3 Z Z o Ry {simlir )= sin (-4} (3-37)

=1 j:p
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Combining the last two eguations we obtain

W 2 = &
-7 ﬁ”(gz:. + 4 )9

Z=0
] = N =S . .
DI EACAL" Wsimlpors)- sl (550

Reversing tne roles of 1 ana j

() ( Q)
—71 al 3.:" +}g-2 Z=0

?_z_ Zb"b} g(‘h RL) {sr‘h(u/ +w) siniy. y)}

¢t j-
Adding and dividing oy two we obtain finally

w

-1 ‘9 (Jt‘+} 3:‘5) cpw/z-a

=-Z ib; b.j[(o"-_ k;-f- 32 ;l:.) - (d:; R}Lk ?Rf)}f’.”@gal—t‘;)

‘fzzb b}[(‘f h G"h() (d‘;a -Gk )jsrn(w-w) 3-4C)
¢zt }-l
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Eguation (3-24) reduces to the following

Z{ (cr"’ +Jﬁ> rmhh,h} bq_ sim w;f-”
J""
= Z-—L be by C(& 9 (E fa’a,-ngRJ,) sim{¥; %)
g
+ (01;"‘0’;:3 ( g{ ;i: -'R(R}) 5!I'?‘L(Wé+l45;)]

—5 ) 2 bebsllariegi) ~(aRir R ] sinlory)

| T e R oM simf
-+—Z Zb‘ib? [(ﬁf‘\’}-c?/?t-)—{d:l?}-c;&)ﬂn(%—g-) (3-41)

2
From inspection cpl‘)has a snlutinn of the form sin(l&-_lﬁ@')
and sin(‘ﬂ‘ﬂlj- ). Based on the preceding eguation ithe

2
solution of cp“ is obtained as

m"zz Zb‘b}' ook (ht2) (o) (R R HRR) iy
& DshRih (G-g)= g R Bk

on &0 k8 IS ‘ Z 1
-4 Z Zb,; by osh Ry(h+2)  (siRj—0i ki) -0iR -G R) sim(¥i-)
: cosh Ry o (< - )" 9 tanh Ky b

S (h+E) : e o :
] T v et (B B8 iy
4 i} ((¢ +o’ -‘3 f?,_} fanh f? I'L

(s: R+ SR L‘”?H"? R:) sinl%+%')} (3-42)
(d' +d;) -—-} h,‘_} Wﬁ?v_/l
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in which
Ry = | Ri-K; |
+ —
‘hi} = L }

A compact form of Equation

(2 oshkiy(htZ)  Dif
b= {;Zzb‘b& y 7)

=t ,t'!

57 = VA= ) {VG (0 RE) Rl -RD)

cosh kizh (5i-5

4+
_cash kiy(h*®) Dy

(3-42)

sm(¥-¥)

sin(¥Yir¥)

Cosh Righ  (si+qp)

(VRC -1%; )"~

2 R —V&;)

TR R

D+' ) ¢ +F)1(

{: R; +R:R;)
h Mﬂ? -

—

5’#" E'RJ)

a (\('_4-\!'_)

R R (R;-Rf) +VF5 (Ri—RE) ]

+

R, hhhk;h

(i)

i

& tanh ka:ﬁ

(3-43)

{3-44)

(3-46)

(3-47)
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. . . . ()
By substituting for the first order potential <

: » T e - . .
and water elevation ‘1(, and the second order potential

&)
$

respectively, in Equation (3-25), we obtain the second

represented by Equations (3-28), (3-28) and (3-49)

order corrections for water surface elevation :

7= #Z’ J};M 2 [ { ) ‘E:‘::" +Kki) +Rc+R4 )} cos(v;-)

+{ pij ~ (R, Ry -ReRy)

+(R;+R§)}Los(%+‘§')j (3-48)

An alternative form of this is

oo oo N *
Dis — D) —2RIRS .

ey g oo [ ey ey

(. £ R. Ry

FA ] =t J‘

- + o

Diy + Doy —2 R, Ry
+{¢} ¢ < *——+2Q‘?£+R;')}c.os%dos4/- (3=4v)

\{R;R}' ¢

The skewness kernel as defined in Egquation (2-22) is

K( > D:‘J_' +-D..«,‘1;' -2 E«_E:

&\ [/ R
“TF

+Ji(R;_+R}) (3-50u)
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For infinite depth tifle generalized derivation
readily reduces to the eguations derived by
Longuet-Higgins (1963) for deep water. For i;=§;and N=1,
the formulas for potential function and water surface
profile reduce to the familiar Stokes second order
eguations. Another check on the equations has been
provided by deriving eguations for velocity potential and

water surface elevation for the short-crested wave system

considered by Chappelear (1961)



CHAPTER 4

STATISTICAL RELATIONS FCR A LINEAR DIRECTIONAL SEA

AND ASSOCIATED WAVE FCORCES

Some of the statistical relations for the linear
directional sea have been derived and will be presented
and discussed in this chapter. In particulear, formulas
will be presented for the correlations and probability
density for the water particle kinematics, probability
distribution of force per unit lengtn of a pile, and for
the drag dominant case a closed form solution for the
joint probability density of x and y force compcnents for

a three dimensional random sea.

In directional sea simulation, certain
difficulties can be encountered due to adding the same
frequency components with random independent ghases. A
discussion of this problem is followed by an
investigation into the effects of finite time simulation
cn the mean square value of a random realization, and on

the correlations amongst the simulated variables.

49
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4.1 Probapility Distribution of Water Particle Kinematics

A linear random sea 1s assumed to be represented

as

M N
’7(%&:2 Z\/Ey Slom) Ada A&.fof”(é,,—%’)cos um ,  (4-1)

mszt N3

_— .
©<Ld, L6y & - - o - 26 Loo
*%46.492C""" LQNL%

which is a finite sum analogue of thne pseudec-integral in
Egquation (2-1) with a directional distribution given as
Equation (2-28). In the above the y directien is the
predominant direction and fn is the direction in which
each component propagates with respeat to the x-axis. As
mentioned in Chapter 2, Pierson {(1953) has given a proof
that Equaticn (4-1) in the limit represents a thres

dimensional Gaussian process.

The velccity field corresponding to the above is

given by

WX, 2,t)= \?'qbci',z,t) (4-2)
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In particular the velocity in the x-direction is

M N
u(i’-,z,x) =%§= ZZ‘/C” SeEm) A dmm A b cosy@,,-fz’)

mey Ny,

g km  Cosh kmlhtd)
05 Yo ™ o cosh Kmh "

This can be represented in abbreviated form as

M N
Z Z B &km)VTy & oo 4 6r, cajy(&,,-f_{)(_sm(e,,-f!i))cosﬂﬁ-n;)

™z Ny

in which

Jst) . g km cosh km (h+E)

B km) =5 G COSh Kmh t4=3)

\‘th = 7{: > - Som L + Emm (4-6)

The average velocity 1is

CL = O {a-7)
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The mean sguare velocity in the x-direction is

N N
B E{ (Z > B(km) JCy 55w 40n

M=y n=)

Cos¥(bn-L) (- sim(6-T)) cos %,,.) -

N :
B (k) C3 & Tm 8 b

——,
AR

[T

P ey

cosy(of,:%)@ﬂ"“ (ﬁ"ﬂ;)) cos w”'"")} (4-3)

Since the linear system represented by Eguation {(4-1) 1is
Gaussian only if the phases are independent, the average
of the cross progucts 1s zerc and the centribution to tae

. . . )
sum is from the terms containing cos ¥

4y and tne above

reduces to

_ M N
UL==l§; B(kh) Cp Alm ABn

mEL M=y

cas"’(g,,_ 2) sin(hu-1) C05* Vs

In the limit N-+®and af »&

M
= = Z;*z B k) D& (i —-—%;) (4-10)
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Similarly for the velocity v in the y-direction

=0 (4-11)
—— M s
and Ut = 2 % B (k) A C (4-12)
P, P+t
M
Thus = 7 5 B (%) A6 (4-13)
m=y

The correlgtion between u and v 1s

T E[{Z Z B(km) T A& g A Bon (,05’?,, )-sim(Be ”))Cﬂ.s -,...}-

mz Nz

( (K""') \/CV A A&h"
Mz M=

cos ( e-2) coslb,- ZI' COS Yo'n }] (4-14)

Since the phases are independent, conly tne diagconal terms

survive and

m N
=5 D Bltm) G AGmAln -

mse; M=

27+
€057 ( Bn-G)-5imibn-1)) Cos W, (4-15)



54
As cos™ ¥,,=% . we obtain for

M
Tr =) & 87h.) ¢yaa.
M

a

N
Vi
Z cos’ (&,-!{)(—sin(e,,—f)) ab, {(4-1b)

M=t
In the limit N ~»ee , and Af,»¢ the summation of tne

terms invoiving # is equal to zero. Therefore,

u - 0 (4=17)

Similarly wi, uv, uv, v and vv are found to be equal to
2zero. Thus the marginal distributions for the velccities

u and v, and the accelerations 4 and v are

W~ N(D,fal) {:L~N@,o:"')
(4=-18)
. .
v A N@;@) V"'\-/N[o,o’;)
and the correlations are
PLLV:P\LL:\. = Pu.v- = ewv-: Qvf»—: wir = © (ot
and the joint probability density functicon is
T L R = o
i W w L -
L EXP{-3(Er v ) )
fl,uw)= P{ o A ;.. (4=20)

(2m)* u g & Sy
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4.2 Probability Distributicon of Force Components

The norizontal force per unit lengtn of pile in

complex notation is:
Fatrgify= cwegr) urrl +ca(oriv) (4-21)

in which C, and C, are given by Equations {2-33) and
(2-36) and j=y=1. The x and y components of the forces

are
= ¢, LL(lLL-i-v'L)%' +Cilk

A
Fy = c.v(a.hv‘)*--l— G (4-22)

The drag force components are

D= ¢ LL(LCq-v")”1L

(4=23)
Dy= c.v( u'y V")J"
and the inertia force components are
IX — CLLL
‘ {4-24)
Iy"—‘ C;V

From the known joint distribution of u, U, v and v given
by Eguation (4-20), it is proposed to find the joint

distribution for D, , 0O, , I, and I, . The inverse relations
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for the transformaticn are

_ Ix
w= N
4-25
o= Iy 172
Ca
Dx
e oE -5 )k
{4-20)
- Dy
& (DF+Di)¥
The Jacobian of the transformation 1s
w, L1
J‘( U',LLLL:):_. 1 (4-27)
B R YN

Therefore, the joint probability density function for Dg,

D, I;and I, is

Jc- (DxJDy,rx_,Iy)

[{ -;. I Iy
Exp[{EE ” - 2er T 2t

C(u

26 (D,(+D,)" (1Y 6 6y 03 S

{4-24)
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Separating terms involving drag and inertia components

< 1
Dx Dy
Qi_" d'v"l.-

e R renp)t
4 C, (D;"“*-D;')Jiﬁ &

> .
I Iy
— —
€ zc';.-L O‘L:' 2l 6-\;-

Foudy) $(T0Ly) =

(4=-29)
2N €T du o

It may be noted that th2 marginal joint
probabilty density of the inertia force components 1s a
pivariate Gaussian density with zero mean and variance:ﬁa}
and ctag? . The marginal density of the dreg fcrce
components is given by £(Dk, Dy) and nas been plotted in
Figure (4-1l). It is noted that the density function has a

singularity at the point (0,0).

4.3 Variation in the Mean 3quare of a Random Realization

In the simulation of linear directional seas,
components with tne same freguency but with different
amplitudes and phases occur. The following derivation
will be helpful in understanding some features of the

simulation method.
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Figure 4-1., Marginzl Joint Probability Density of Drag
Force Components.
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Let the water elevatlon be represented by

N = Q, oSk +6€)+QC08(gh+ b )t -+ AnLOS(TL44,) (4-30)

Expanding the cosine and simplifying yielas

M= cos o’t(Za,_ cos &) +5imat( ]

Qg sin é,;) (4=31)
Xy

/

ST™3

The mean value estimated from & reccrd of length ¢ is

= Sm 6'7.'. (ZQLCOS&) I}CQSO’:(ZQ smé) (4-32)

L c=y
which has an expected value equal to zero and tends to

zero as the length of reccrd increases.

The mean square value estimated from a recora of

length 7T is

A T
PE = —— tdt -
T"== !’Z (4=33)

On substituting forﬁz from Equation (4-3u), we obtain

_ £os5 osraz -t

»
Y- (Za cose ) (Za.; s é‘) =8
st
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On simplifying the preceding yields

" -1

™
Z ai + Z Zza;o_} cos(e; - €)

i3 =

_Cos2gT~1
i (Za‘wsc)(za.‘ i e‘) (4-35)

The expected value is

A n
E(?ZL) - 2 Z @¢ (4=36)

iz
The varliance of the estimate is
A A E
e {7 - E7)

L=

=E f 2 Z 2aca;cos (&- € )

ez 3=
OS2 T—1 /D £ <= e £ z
25 < (%‘“‘"5 ‘)(;“‘ st ‘)} (4-37)

Cn simplifying we have

g =1

Vav 7-2% {Z Z b a, .0S (g(_é")}
t=2 }-!
{ 222 ai ) cos(e-ey) ot (Zatcose)(ézj smé)}

=2 ;.-l

o

+ E{%(Zm wSé)(Zat sim &)} (4-38)

L=
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If T is reasonably large in the simulated records, the
last term is of the order %a and is negligible. For this
case, the second term is agual to zero and the first term
is

it

n . 3
Z: ay Qé
i

t=2 }”

Therefore, the variance of the mean square value of the

simulated record 1is

LA Sl R
Var (%) = _ZL; L (4-35)
L= =

R i L b o o L B L i ) TR R R W R MR M i —

The correlations computed in the first section of
this chapter are true only for a record of infinite
length. Simulation is usually of finite length,
particularly in this case, records of 200 seccndz have
been simulated. The remainder of this chapter is dsvoted
to exploring the effects of the finite length record on

the correlations amongst the simulated variables.
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Considering two varizbles 7, and 7, being

represented by

7 = Los (4t +E) (4-40)

7?,_ = Q. LS (_O’:_t'-" éL)
The estimated correlation between the two variables is

T

N A AL

=‘|f Q,a, oSl t+&) oSl t+E.)dTE (4-42)

Qo

After simplifying we obtain

a, a " - s 2 5T+
T = iy L5 A (sTe ) s (are)

O/L 0% (a" T + C’,) sin (L

—

- sim £, Cos £, 1—-0: Cﬁs&,si" 51;7 (4-43)
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The expected value of the estimated correlation is zero.
Also, as the record length increases the estimated value
tends to zero. The variance of the estimated correlation
is

Q‘La:—

Vor (75.) = E |3

*—m S sinfoTre) (o5 (7, T+ &)
— g COS(U,"CJ—&,) 5.”'1(51,':1‘6;)

2
-, Sm &, (oS €, + &; COSE sim é(} ] (4-44)

Carrying out the variance determination reguires

calculation of the following expectaticns:

E{Sf‘n@',‘c-r-e,) Sm e.} =L s T (4-45)
E{-Sll'h (GTTJ-E,)C—OS é,} = -}_)'_ sMm Gz (4-46)
E {cos@,m.e,)sfh &} =-4smaz (4-47)

E {CDS@?‘C+é,)cose.} = 3 S50, T. (4-48)
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Substituting the velues of thes: expectations into

Equation (4-44) we find

3 Ei&z—*— - b + 1t
Vﬂ-’l"(?lt?lp) = CL@TEO'.:DL {J‘.‘; ((l + &0, + ] 4.5".)

1 ! . .
- a. % LS T o5 0, T + c',a;_.g-_ sim oz (-ismoz)

Cn simplifying

A =
Var ("‘2,"'2,_) =% 4: { I

27 (gt )"
- -;La (s +ay) cosa T cos e,z
— e SMET S\ S, T (4-50)
from which it can be seen that the varlance approaches

zero as the inverse sguare ¢f the simulzted record

lengtn.



CEAPTER 3

SIMULATICON METHOD

The second order perturbation soluticon developed
in Chapter 3 should characterize z reai wave field
including nonlinearities reasonably accurately. From the
secord order potential solution obtained by adding
Equaticns (3-26) and (3-45), water perticle kinematics at
every point (x,y,z) in the wave field can e calculated.
Using these wave field kinematics in an analytical wave
force computation results in a cumbersome solution. To
gain an insight into the behavicr of the exact soluticn,
tha potential solution correct to the second order has
been simulzted and wave forces computed for further

study.

5.1 Procedure for Simulaticon

The procedure for simulating a random directionsl
secord order sea surface and associated wave forces is
summar ized below:

(1} The linear Geussian epproximation to a random sez

surface is represented by the discrete counterpart

65
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of Equation {2-1)

M N
1E, =) 0 5. ) A6m B6a

mz| Nz

cos(%-%-o’rd— Emn) (5-1)

Thus if M frequencies znd N directions are
selected (not necessarily at equal intervzals),
then the linear approximazicn to the wave field
has MN components. Pierson (1955) has given proof
that the a2bove finite sum tends to the
pseudo-intergral in Egquation (2-1} as M and N tend
to infinity and it represents a three dimensional
stationary Gaussian process.

{2) Using Equetions (3-45) and (3-48), second order
corrections are calculzted. There are (MN)**2
second order correction components. The phases of
these nonlinear ccmponents are related to tne
pnases of the linear components. Thus tne process
represented by the sum of the linear and the
nonlinear compcnents 1s no longer Gzussian.
Departure from Gaussian process i1s appropriately
indicated by the skewness.

{3) The time history of water elevation 7 is obtained

by summing all the components and taking the
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inverse Fast Fourier Transform.

(4) Velocities and eccelerations a2t any point are
computed as follows
(a) Velocities and accelerations due to each

component are resolved along the x and y axes.
(b) The contributicen from each ccmponent is added
to obtain the Fourier coefficients a.and b..
{c) Using the inverse Fast Fourier Transform, the
time domain realizations for velocities and
acceleraticns in the x and y directions are
obtained.

(5) These velocities and accelerations are used in
the Morison formula to compute wave forces per
unit length on a pile,

(6) The total force on the pile is ¢btained by
numerically integrating the force up to the free
water surface obtained in Step 3.

(7) Similar force histories can be obtzined for the
pile at any other desired pcint. Thus forces on a

group of piles can be studied.



68

5.2 Algorithm for Simulation

The above simulation method has been implemented

‘into a set of Fortran programs. The essential features of

the computation scheme are depicted in the flow chart in

Figure 5-1 and are summarized below:

{l) The given or assumed directional spectruin 3(&,8)

is discretized so that the sez surface 1is
represented by
M N
— -
nEt)=7 7 oy cos (R -atr &) (5-2)
L= }:J
where Qo =\ZS (a0, §) Aoy 86 (5-3)

{2} Second order interactiocon components zarc computed
by Equations (3-45) and (3-48).

{3) The position of the pile in the x-y plane is
selected. This step is essential for simulating
the total force on a group of piles.

(4) A szt of uniform random phases lying betwesen
{C,20) is selected for the linear components. The
pnases of the nonlinear components are darived
from these phases (Equaticn 3-43).

(5) Fourier coefficients for water elevation are
obtaingd by adding Fourier coefficients for eacn

of the linear and nonlinear components.
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Figure 5-1. Flow Chart for Computer Frograms for
Simuleting Second Order Directional Sea and
Associzted Wave Forces.
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{6) Similarly Fourier coefficients are obtained for

velocities and accelerations in the x and y
directions at several depths.

{(7) Using the inverse Fast Fourier Transform,
nonlinear random realizations for water surface
elevetion and velocities and accalerations in the
X and y directions at several depths are obtained.

(8) Wave forces at several depths are computed by the
Morison formula.

(9) The total force on the pile up tc the free

sur face is finally computeaed.

5.3 Comparison with Cther Methods

- — i — o o i i o o ——— ——

The nonlinear random sea simulation method
implemented by Hudspeth (1974,1975) first determines the
unidirecticonal second order sea surface realizaticn, but
the water particle kinematics are computed by tne linear
filtering method due to Reid (1938). A stretchned
vertical coordinate was used to take into account the
displacement of the free surface. In tne present method,
second order directional sea surface and associated
kinematics are simulated retaining the linear phases and
the related nonlinear phases. Also the force is computed

up to the free surface without the use of the stretched
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coordinates,

The present method yields results very similar to
Dean's more intuitive hybrid method (1977), particularly
up to the second ;rder. As will be evidenced in the next
chapter numerical results from the two methods are guite

similar.

Some of the more notable features of the present
metnod may be summarized as follows:

{1} Randomness depicted by the spectrzl densities,
probabilty densities and intercorrelations amcngst
various variables like water surface elevation and
veleocities and accelerations in the x and y
directions at several points have been fully
represented,

(2) Nonlinearities correct up to second order have
been included.

{3) Phases of the nonlinear contributions have been
retained.

(4} Any reasonable distribution of the directional
energy spectrum of a realistic sea can b=
simulated.

{5) The skewness of the simulated water surface
displacement is realistically represented without

any artificial means. The skewnesses of other
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variables of interest are also maintained.
(6) The total wave force has been computed by
considering the appropriate displacement of the

free surface.

A set of very efficient Fortran pregrzms have
bean developed tc implement the above simulation method.
In the next chapter some of the many important results
derived from the simulation method are presented and

discussed.



CHAPTER o

APPLICATION CF SIMULATION

The methods of the last chapter nave been zpplied
to simulate linear and nonlinear realizations of the
random sea surface for the Bretschneidsr spectrum and
four different directional spreads. The nonlinearity as
represented by the skewness has been computed in each
case. It has been found that the skewness is greatest for
a narrow directional spread because for the given two
wave numbers the skewness kernel is largzsst for the small
included angles. The reasons for this phenomencn and the
possible occurrence cof negative skewness in the field

have been discussed.

The simulation method has been further applied to
compute total wave forces on 2 single pile and a multiple
pile group. The totzl force on a pile reduces by a factor
cf 1 to Q.61 with the increase in the directional scread
of the energy spectrum from unidirectional to
omnidirectional. For the four pile group with 60 feet

separation the reduction factors are similar to those for

73



74

the single pile case. However, for the four pile group
with one pile at each corner of a 300 feet square the
reduction factor varies from 0.739 to C.39 for the
directional spectrum varying from unidirectional to

cmnidirectional.

6.1 Discrete Directional Spectra

In this study the directional spectrum nas been
assumed to be given by
s(c §) = S - D) (6=1)

in which the 'Bretschneider spectrum repressntation has

been utilized for S5(&), i.e.

%
-5 S &
sor= 25 (5] 3@ (5-2)
Co °
in which

Ef is total energy given by

[~ =}

[ st ds (6-3)

-]
6, is the angular freguency of
the peak ©f spectrum
and the directional spreading function D(#) was assumed

to be given by Equation (2-238).
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Siﬁulation Wwas carried out for twelve different
directional spectraz formed by permuting three Jifferent
total energies with four different directicnal spreads
corresponding to the values of the directional spreading
parameter ) equal tec O, 1, 5, and 50CC. The shapes of
the directicnal spreading function D(#) for three
different values of spreading parameter 2/ are presented
in Figure 6-1. A value of 2J equal toc zZero corresponds
to the case when the energy is equally distributed in
all directions (omnidirectional). A value of ) eguzl to
30C0 approximates a unidirectional sea. Values of 2/
equal to 1 and 5 represent intermediate directional
spreads which possibly corresponé to realistic seas. For
a value of )’ equal to 5, 91.8 % of the total energy is

concentrated within an angle of 60 degrees.

The continuous directional spreading function hsas
been replaced by twenty equidistant discrete directions
in the range C to 180 degrees. Similarly the linear
continuous spectral density S(§) has been represented by
60 cosine components with the discrete freguencies
ranging from .Q0% Hertz to Q.30 Hertz at an equal

interval of 0.005 Hertz.
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Figure 6-1. Directiocnal Energy Spreading Factors for
Directicnal Parameter )/ Equal to U, 1, and S
in Eguation 2-Za.
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Each of the 1200 cosine components, obtazined by
permuting 60 discrete fregquencies and 20 discrete
directions, are assigned one random phase drawn
independently from an identically uniform distribution
between O and 3860 degrees. Before using the phases, the
set of 1200 phases nave been tested for suitability in

the simulation.

6.2 The Random Phases

The set of 1200 randcem phases has bzen gene

L

ated
by using the random number generator available at the
University of Delaware Computing Center. The freguency
distribution of the 1200 random numbers used in the

simulation is presented in Table 8&-1.

The percentage varies from 8.17% to 11.75%
compared to the theoretical percentage of 10%. The
computed value of chi-sguare is 0.1385 which is
acceptable at commonly used significance levels.
Therefore, it is reasonable to believe that the 1200

random phases belong to a uniform distribution.

For detecting any periodicity in the set, the
fast Fourier transform has been used to compute the

periodogram of the 120C random numbers. A cumulative
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TABLE 6-1

The Fregquency Distribution of

the Sample Kandom Phases

Interval Range of No. of % of
No. Interval Occurrences Total

in Degrees

1 0-36 141 11.75
2 36-72 122 10.17
3 72-103 114 9.5
4 105-144 l20 10.50
5 144-180 11C .17
6 180-216 93 8.17
7 216-252 139 1l1.55
8 252-2%4% 133 5.53
9 288-324 134 11.17
10 324-360 113 9.42
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periodogram has been computed &and has been normalized by
the variance of the random numbers. Normalized
freguencies have been formed by dividing freguencies by
the Nyquist freguency. The normalized cumulative
periodogram has been plotted in Figure 6-2 against the
normalized frequency. The bounding lines, corresponding
to the confidence limits for 5% significance level in the
Kolmegorov-Smirnov test of the hypothesis that the
observations are drawn freom white ncise, have zlsc been
shown on the figure. At a 5% significance level it is
reascnable t¢ accept that the random numbers are
uncorrelated and without any nidden periodicity.

6.3 Linear and Nconlinear Random Sea Surfaces

The 1200 cosine component waves, consisting of 60
discrete frequencies, and propagating in 20 discrete
directions in 100 feet of water, and heving independent
random phases, have been combined to cbtain linear
realizations of 200 secondé duration for the sea surface
elevation and water particle kinematics at several

depths.

Linear componenté with significant energy onliy
have been used in calculating the nonlinear components.

20 frequencies from 0.05 Hertz to 0.15 Hertz and 20
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directicons have been combined to yield 160,000 nonlinear
components. Adding these to the linear comgponents, we
obtain the nonlinear random realizations for the sea

sur face and the water particle kinematics at the depths

of interest.

The linear and the nenlinear random sea surface
realizations have been computed for four different
directional spectra with the same total en=rgy. Figures
6~3 to 6-6 show typical linear and nonlineer sea surface
realizations for values of the directionel distributicn
garameter ) egual to O, 1, 5, and 5000C. The lower narts
of the figures show the linear (solid line) and the
nonlinear (dashed line) realizations for the sea surface
elevations. As expected the nonlinear contributions,
shown for clarity in the upper part of the figures,
flatten the troughs and cause the crests to be more
peaked. The wave height and period of thé individual
waves are practically the same for the linear and the
nonlinear realizations. But the more peeked crests,
caused by nonlinear corrections, in general result in
increased velocities below the crests and hence,

increased maximum drag forces.
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6.4 Linear and Nonlinear Random Sea Surface Spectra

The spectral densities of the linear and
nonlinear sea surface realizations for the four values of
the directional spreading parameter )J are presented in
Figures -7 to 6-10. The linear spectral densities are
presented as so0lid lines. On the same figures the
selected Bretschneider spectra have been gplotted. The
assumed and simulated linear spectrz are represented by
the same solid lines. This has been achieved by selecting
the phases carefully as guided by the derivations in
Section 4-3 and testing them for suitability (Secticn

6-2) before using them.

The broken curves on these figures represent the
spectral densities of the nonlinear realizations. A& small
peak in the vicinity of twice the frequency of peak
energy density can be noticed in the neonlinear spectra.
Similar pezks have been reported in the spectral
densities of random waves measured in the field and

lsboratory.

The nonlinear spectra have small energy in tne
subharmonic freguency bands in which the corresponding
linear spectra have no energy at all. The energy in the

very low frequencies has been observed in the field ss
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surf beats and the second order interaction tneory has
teen used to explain the cccurrence of surf beats in the
nearshore zone (Gallagher, 1971). Thus the present
method has been able to modzl two of the observed

features of nonlinear waves.

In the preceding paragraphs some of the important
features of the time domain realizaticns of the sea
sur face have been discussed. It is evident tnat different
directional spreazdés do not cause idzsntical nonlinsar
affects. 3kewness has been known to be a sensitive ana
regresentative parameter depicting nonlinearity. In the
following section the skewness and its kernel are

discussed.

6.5 Skewness and Its Kernel

The dimensicniess skewness coefficients, cefinedg
as tne mean cupe divided hy the cube of the standard
deviation, have been computed for 11 values of the
directional parameter )/ and arce presented in Teble 6-Z.
Figure $-11 shows the same data graphically. For ths
directional spreading function used in this study, it can
be seen that an intermediate spreading of energy causes
meximum skewness. The unidirectional waves represented by

a value of )/ equal to 500U have the least skewness. With
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TABLE 6-2

Variation in Skewness with

Change 1in the Directicnal Spread

Y Skewness

5000 0.1286

500 O.1250
5C G.15&1
7 0.180C
6 0.13803
5 0.18C3
4 0.1797
1 C.1l647
0.1 J.1470
.01 0.1447

0 0.1447
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the wave directicens spread unifermly over a 180 degrees
sector, the skewness is less than the maximum but greater
than for the case of unidirectional waves. Table 6-2 and
Figure 6-11 represent cases of random waves, each with
total energy equal to 22.3 feet sguare in a water depth
of 100 feet. In lesser water depth and for greater wave

energy the skewness would be greater.

It is of interest to consider the nature and
cause of the maximum skewness calculated for the narrow
directional spread. This is particulerly significent
pecause the limited directional spectrum estimates of a
number of real wave systems indicate thet the value of
the spreading parameter » lies between 1 and 2. In the
extreme case, if we model a sea having a directional
spread corresponding to a value of 2} egual to 5 by a
unidirectional sea, the skewness 1s reduced by 23%.
Similar reductions are realized in the skewnesses of the
water particle kinematics at several depths. As the drag
force is proportional to the square of the velocities,
the skewnzsss of force is reduced by & greater percentage

than for the sea surface.

In order to appreciate the manner in which the

skewness is affected by the directional spreading in wave
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enargy, it is helpful to examine the skewness kernel
carefully. The skewness kernel for the infinite depth
case has been presented by Longuet-Higgins (1963) and has
been reproducéd as Equaticn 2-23. The cerresponding
relation for the finite deptn case has been cerived in
Chapter 3 (Equaticn 3-50). Analyticelly it has not been
possible to show that the skewness kerndl is a2lways
positive for the finite depth case as has been shown by
Longuet-Higgins (1963) for the infinite depth case.
However the numerical computations have shown that the
skewness kernel for the finite depth case is positive for
the frequency range 0.05 to C.15 Hertz and water depths
of 1, 1C, and 100 feet. The calculations also indicate
that the skewness increases as the water depth decrcases.
Table 6-3 presents values of the skewness kernel for
three depths and two ceollinear waves of freguencies ©.075

and 0.0860 Hertz.

These findings ceonform to the results and
observations of other investigators. The waves become
steeper and more asymmetric as they propagate into
shallower water. The actual waves, however, are limited
in amplitude and steepness because of other physical
considerations. Therefore, in computing actual skewness

coefficients, only physically realizable waves for the
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deptn under consideration should be used.

TABLE 6-3

Skewness Kernel Values for Two Collinear Waves

cf Fregquencies 0.C75 and 0.08 Hertz

Depth in Feet Skewness Kernel
1 0,251
1GC 0.02¢
100 0.CC33

e ——— i — T — " W o —— o ——— o o s s

The wvariation 1n the skewness Xernel with
frequency and direction is much more interesting. The
result of Longuet-Higgins (1963) for the infinite depth
case was discussed in Chapter 2. The simulztion methcd
has been used to recalculate the kernel values for the
deep water case by using a very large value for the water
depth. The results of a typiczl computation are presentad
in Figure 6-12 as a surface plot. The plotted surface
pertains to the values of the skewness kernel for a
frequency of 0.075 Hertz interacting with 21 frequencies
ranging from 0.0C5 to 0.15 Hertz and propagating from 36
directions ranging from O to 175 degrees. It can be

noticeé immediately that the pecint corresponding to the
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self-interaction is the mecst prominent feature on the
kernel surface. For the given two freguencies the kernel
value for the collinear case is greater than those for
almost all other included zngles. It will be seen.later
that there 1s a weak peak for an included angle of about
9 degrees. For a given peir of waves the interaction is
the least for the nearly orthogonal directicons. These
features are similar to those discussed by

Longuet-Higgins (1963}.

Similar celculations have been carried cur for
the finite depth case. The skewness kernel for 100 feet
depth has been plotted to evaluate any special features.
Figure 6-13 shows the surface plot of skewness kernel for
a wave of C.075 Hertz frequency interacting with waves of
21 freguencies ranging from C.C5 to 0.15 Hertz and
propagating at 26 angles ranging from C to 175 degrees in
2 water degpth of 100 feet, Szlf-interaction is the most
prominent feature even in the case of finite depth. For
included angles between O and o0 degrees, the interacticn
in shallow water is much stronger than in the deep water.
For included angles between 60 and 175 degrees,
interactions in the two cases are very similar. In this

range of included angles the interaction for the shzllow

water is marginally greater than that for the deep water
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o 0.0%
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Figure 6-13. An Cblique View of & Surface Piot of the
Skewness Kernel for a ¢.u75 Hertz Wave
interacting with 21 Waves of Freguencies
Ranging from 0.U5 to 0.15 Hertz Propagating
at 36 Angles Ranging from U to 175 Degrees in
a Water Depth of 1UU Feet.
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case. For frequencies much greater than 0.075 Hertz, the
strongest interaction occurs when the waves are
collinear. This feature is similar to the infinite depth
case. But in the neighborhood of 0.C75 Hertz, interaction
in a direction other than the collinear one has the

maximum value.

The skewness kernel values for a 0.075 Hertz wave

interacting with a C.08 Hertz wave propagzting over &

3

v
i

directiconal range varying from O to 1lcC degrees hzve ©

computed and rlotted in Figure o-14, Ine sclid lir=z 1

[

jn
1t

for the deep water cesz. The curve 1s nzarly symmetriczal
about 35 degrees. There is z weak maximum zround an
included angle of Y degree. For comparing this curve with
that of Longuet-Higgins for the deep water case, tne
dimensionless parameter defined in Equatiocn 2-24 has been
computed. Its value in the present case is equal to
1,00C35, The curve corresponding to this value in rfigure
2-1 is the same as the s0lid line in Figure 6-14 excerpt

for a factor.

The broken line in Figqure 6-14 shows the
variation in the skewness kernel for the same freguencies
and directions but in 100 feet water depth. For small

inciluded angles the kernel value is low. This sharply
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rises to a maximum around 13 degrees. It gradually
descends to & minimum velue arocund 100 degrees, then
slowly increases to a maximum at 180 degrees. The value
at 180 degrees is higher than that at O degrees. For the
approximate range C to 60 degrees the kernel values for
tne 100 feet depth case are much higher than thosa for
the deep water case. For about 60 degrees to 18C degrees
the kernel values for the 100 feet depth case are greater
than, but much closer to those for the infinite depth

case.

The second order correction is partly the resulct
of the guadratic velocity effect in the dynamic free
surface boundary conditicn. It can be shown easily that
in the case of two waves intersecting at an angle, the
quadratic velocity correction is maximum when the two
waves are collinear. When the two waves hava nearly the
same frequency and travel at a small @ngle, their crests
propagate nearly in phase. 7This causes strong
interaction similar to the self-interaction effects. Thus
for two waves of nearly equal fregquencies, greater
interaction occurs at a small intersecting angle rather

than at zero angle.

The previous discussion of the skewness Kernel is

now used to explain the simulated result that the
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skewness of the sea surface is greatest for & narrow
directional spread of a random sea. As aiscussed in the
previous paragraphs, for tne 100 feet depth the skewnzss
kernel nas much higher values for angles ranging from O
to 60 degrees than those for angles encomgpassing o0 to
180 degrees. In the O to 60 degree range the Xernel vzlue
has a sharp peak around 13 degrees. Thus 1if all the
energies are concentrated in one direction, the skewness
is small. As the directional spread increases, more wave
interactions take place at angles arcound 13 degrees, thus
resulting in higher skewness. Further increase in the
directional spread results in more waves interacting at
angles other than 13 degrees and also &t angles greater
than 60 degrees for which skewness kernel values are
lower than those for angles OC to 60 degrees. Tnis means
lower skewness for greater than an optimum directional
spread. For the directionzl spreading model used in this
study the maximum skewness occurs for & narrow
directional spread corresponding to the directional

spreading parameter 0 equal to 5,

Any discussion of skewnesses would be incomplete
without referring to the negative skewnesses meesured in

the field and the laboratory.
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6.6 Observed Negative Skewnesses

The nonlinear wave theories and almost all the
observations in the field and laboratory indicate that
water waves have positive skewnesses. However, some of
the observations of Kinsman {1960) have negz:tive
skewnesses. These observed negative skewnesses are
generally ascribed to errors in date gathering, and in
numerical computation, particularly due to the finite
length of record. During the ccurse of this study, a
possible mechanism for the occurrence c¢f negative

sKewnesses has been develovped.

As found in Chapter 3, the second order
components have frequencies egual to the sums and the
differences of the linear component freguencies. Ths
components obtained by summing the freguencies cause
rositive skewness, because they sharpen tn2 crests and
flatten the troughs. The components obtsined by taking
differences of the linear freguencies are better known as
"peat" frequencies. These beat freguencies are 1lo0
degrees out of phase with the wave group envelegpe. The
ceat profile has @ minimum corresponding %o the peak in
the wave envelope and vice-versa, thereby reducing the

mean cube value and the skewness of the sea surface
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displacement. As the wave group moves into shallower
water, the energy in the beat freguency bands increases,
thus decreasing the skewness. The individual waves at
the same time sSteepen and increzse skewness. But they
soon become unstable particularly in the presence c¢f an
overlying wind and brezk into smaller waves. Thus growth
of positive skewness meay be limited by the physical

considerations.

From the above discussion it can be concluded
that the presence of proportionately kiigh energy in tne
beat freguency bands, which are 16C degrees out of chase,
indicates the possibility of the presence of very low or
negative skewnesses. The data of Kinsman (1560) have been
examined in this light. The spectral densities 0f lo data
sets have relatively small energy in the very low
frequency bands. These records have skewnesses varying
from ©.138 to C.433., But 9 data sets-have varying
zmounts of energy in the beat fregquency bands. The
computed skewnesses for these records are all very low,
between -C.092 angd 0,088, three of them being negative,
Record No. 083 has skewness equal te -0.004. The spectral
density of this record has been reproduced in Figure

6-15. It can be seen that a large fraction of the total

energy is in the low frequency bands for this case.
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The previous brief discussion about skewness has
not only theoretical importance but has practical
significance in wave force computzticns because the
skewness ofvthe wave forces 1s higher than that ¢f the
sea surface and an increase in the skewness of force
alters the distributicn of the extreme forces. This and

other aspects of wave force simulaticn have been

discussed in the rest of this chapter.

5.7 Wave Force Simulation

For the four directional sprezds, wave forces ter
unit length of pile at five levels have been computed
using the Morison formula with drag and inertia
coefficients suggested by Dean and Aagaard (1970). For
even a small directional spread, large forces in the
direction neormal to the dominant direction have occurred
in the simulation. Total forces on the length of the pile
below water have been computed. The maximum force in a
simulated wave has been compared with the maximum force
computed by the Stokes second order theory for a wave of
the same period and wave height. The average ratios of
the forces computed by the Stokes second order theory and
the simulation method vary from C.95 to 1.62 for

unidirectional and omnidirectional energy distributions
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respectively. Similar ratios are indicatea by the hybrid

method {(Dean 1977) for a drag dominant case.

By strict superpositicn of the Kinemetics due to
cach linear and second order nonlinear ccmponents, tne
accelerations and the velocities in the x and ¥y
directions have been computed at five levels in & water
depth of 100 feet which is nezarly equal to the water
depth of 98.8 feet associated with Wave Force Project II
measurements. The resultant horizontal force per unit
length was computed by the Morison formula using the
computed kinematics and the modified Dean and Aazgzard
{1970) resultant force coefficients reproduced in Tabie
6-4. The Reynolds number was determined using a value for
kinemetic viscosity equal to 0.000014 feet
squared/second, a pile diameter of 3.71 feet, (which 1is
equal to the diameter of tne instrumented pile in the
Wave Fecrce Project II) and a density of sea water of 2.0

slugs/cubic feet.
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TABLE ©6-4

Modified brag and Inertias Coefficients for
the Resultant Pressure Forces per Unit Length

{Dean and Aagaard, 1Y70)

Reynolds No. Coefficient of Coefficient of
{X 10 ) DPrag, C Inertia, C
Re < 3 1.34 1.13
3 < Re < 10 0.48 1.18%
Re > 10 0.Y92 i.18

.y . —  ——————— A . A M e B . i o o . o e . T T R A - ———

e R B L s e o i rn T . R W - R MR W AN R M W M W A — —————

The force per unit length has been computed for
five levels in a water depth of 100 feet. The force per
unit length in the predominant direction (inline) and &
direction normal to it (transverse direction) for a level
75 feet above bottom were computed and plotted for che
four directional distributions used in this study. Figure
6-16 presents computed wave forces for the unidirectional
waves for which the transverse direction forces are

identically equal to zero. Figure 6-17 shows the forces
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for 2 narrow directional distributicn of energy
corresponding to a value of 3/ egqual to 5. The so0lid line
shows the instantansous force per unit length in the
predominant direction. The dashed line shows the
instantaneous force per unit length in the transverse
direction. It can be seen that the forces in the
transverse direction are of the same order of magnitude
as in the predominant directicn. It appears that the
instantaneous resultant force occurs from all directions.
In the case 0of ) equal te 1 (Figqurzs ©-138}) and the
homogeneous wave field case { 2/ equal to O, Figure 6-19},
the forces in the transverse direction are as large as

those 1in the predominant directien.

The Wave Force Project II field data for the wave
forces show very large forces in the transverse
direction. It has been suggested that these large
transverse forces are due to the vortex shedding =zffects.
In the present study vortex shedding effects were not
considered yet large transverse forces have occurred in
the simulation of directional seas. The results of this
study show that the large transverss forces can be caused

by a directional distribution of wave energy.
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9.9 Spectral Densities of the Simulated Pressure Forces

The spectral densities of the force per unit
length in‘the predominant direction and a direction
normal to it for & level 75 feet above the bottom have
been computed and plotted for the four directionzl
distributions used in this study. Figure 5-20 shows the
spectral density of the force per unit length in the case
of unidirectional waves. The highest peak in the figure
corresponds to the peak in the wave spectral density
(Figure 6-16). There are two other smaller peaks

corresponding to the frequencies eguzl to 1.5 and 2 time

i

the freguency corresponding to the principal peak.

Figure 6-21 shows the spectral densities of the
inline and the transverse forces at 75 feet above the
bottom for a directional distribution given by cos 8 .
The spectral density for the inline force is similar zo
the unidirectional case, except that it has a small peak
at about the third subharmonic of the frequency
corresponding to the principal peak. The broken line
shows tne spectral density of the forces in the
transverse direction. This does not have a peak at the
frequency for which there are peaks in the spectral

densities of the sea elevation and the inline forces. The
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spectrzl density of the transverse forces is rather brcad
band in the range 0.4 to 0.8 radians/second. The mean
square value of the transverse forces is smaller than

that of the inline force,.

The spectral densitiss of the inline and the
transverse forces for the directicnal distribution given
by cos's (Figure 6-22) are similar to those for the
directional distribution given by ccs'# , except that
the small peak at the third subharmonic is not present.
The mean sguare value of tne inline force is

substantially greater then that of the transverss force.

In the case of the completely homogenecus sea,
the mean square values of the inline and the transverse
forces are nearly egual (Figure 6-23). In other words,
there 1s no predominant force direction., The transverse
forces have significant ensrgy in the beat frequency

bands, while the inline forces do not.

Several interesting features have been noticed in
the force spectra. The presence of peaks in the inline
force spectra at the freguencies s2gual to that
corresponding to the peaks in the sea elevation spectré
are expected results. 1In addition peaks have occurred at

the third subharmonic frequency and at 1.5 times the
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fundamental freguency. These seem to have been generated
through the nonlinearity associated with the wave force
(drag component}. The transverse force spectra are broad
band for the two narrow directicnal distributions used in
this study. For the completely homogeneous sea the
transverse force spectrzal density is similar to the
inline spectral density except for significantly greater

energy in the beat freguency bands.

6.10 Comparisen with Hybrid Method for Single Pile

The tetal force on 2 piling has been cemputed by
numerically integrating the force per unit length up to
the free water surface. From the record of the water
sur face elevation, 17 to 23 waves with single peaks have
been selected (Figure 6-24). For each of these waves, tne
following were tabulated:
{i) the wave height, defined as the difference
between the c¢rest level and the average of the
adjoining trough elevations;
{(ii) wave period, defined by the time between two
consecutive upward zero crossings; and
(11i) the maximum simulated force cccurring during
each of the selected waves.

For each of these waves, the total force on the pile has

also been computed using the Stokes sacond order wave
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Figure 6-24. Definition Sketch for Cbtaining wave
Height and Wave Period from a Random Sea
Elevation Recorgd.
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theory. An zppropriate reducticon factor from the Hybrid
method has been applied to obtain the computed maximum
total force on the pile. For a directional spread

corresponding to a value of » equal to 1, the total

10

forces obtained in this manner are plotted z2gzinst those
obtained directly from the simulation method in Figure
6=-25. There is reasonable agreement with the line cf

equivalence. Since the simulated waves are not

symmetrical about the crest as are the Stckes waves, the

m

forces computed by the two methods GO0 not agrze on

one—-to-one basis.

Similar computations nave been carried out for

the four directional distributions. A ratio has been
computed for each wave by dividing the force cobtained by
simulation into the force calculated by the Stokes second
order theory. The average ratio for the four directionzl
spreads has been presented 1in Tatble 5~5. In the same
table, ratios recommended by the Hybrid method for the
inertia dominant and the drag dominant cases have been
given for comparison., It is seen that the ratios
calculated by the simulation method are very close to the
ratios suggested by the Hybrid method for tne drag
dominant case. The force ratics vary from 0.95 to 1l.62

for the directioconal distribution changing from the
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unidirectional to the omnidirectional case. Thus in tne
extreme case of a completely confused sea, the =second
order Stokes theory predicts wave forces which are
approximately o0 percent greater than those obtained by

the simulation of a second order directional sca.

6.11 Comparison of Total Forces on a Four Pile Groug

The total forces on a four pile group with one
3.7 feet diameter pile zt each corner of a square (Figure
6-26) were computed by the simulation method for thne four
directional distributions of energy. The maximum force in
a number of waves has been compared with the maximum
force computed by the second order Stokes theory using
the wave height and perioé of the corresgponding simulated
waves. The average ratics of forces computed by the
Stokes second order theory and the simulation method have
been computed for the each of the four directionzl
distributions. Table 6-6 presents the average ratios for
two cases: one for a pile separation cf 60 feet and the
second for a pile separation of 300 feet. It is seen that
for the 60 feet case the ratios are the same as the c¢nes
for the single pile case. But for piling that are 300
feet apart, the average ratios range froﬁ 1.26 to 2.54.

Thus for the four piles 300 feet apart the second order
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Figure 6-26. Plan View of Pile Groups Considered in
This Study.
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TABLE o-v

Comparison of Total Forces on a Four Pile Group
Obtained by the Secend Order Stokes Theory and

the Second Order Directional Simulation

L R L R S L L e I T ——— T o ——————— - i S —

Average Ratio of Forces Computed by Stokes

Second Order Theory and Simulation dMethod

Separation in feet Sample

60 300 Size

5000 1.02 1.26 17
5 1.13 1.53 15

1 1.50 2.54 21

A e e L M A et o T S A L i} = I A e o — —
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Stokes theory yields forces wnich are 26 percent toc 134
percent greater than those obtained by a simulation of

the second order directional random sea.

The four pile group with 60 feet separation is
not very different from the single pile case, because the
wave lengths associated witn the predominant wave enargy,
are nearly ten times the separation distance. Therefore,
the crests of high waves occur nearly simultaneously at
the four piles. Hence, the maximum total force on the
pile grougr is approximately equal to four times the

maximum total force on a single pile.

The separation distance of 300 feet is more
interesting because it is approximately eguai to half the
wave length of the waves associated with the predominant
wave energy propagating in y direction. Hence, the
simultaneous occurrence of the crests of high waves at
the four piles is very rare. The correlaticn amongst the
sea surface elevations at the four piles is either very
small or negative. Table 6-7 depicts the correlation
matrix for the water surface elevation at the four piles

for the directional distribution of energy given by cos™ @
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TABLE 6-7

Correlation Matrix for tnhe Sea Surface Elevation
at the Four Piles for the Directionzal

Distribution Given by Cos* @

Pile No. 1 2 3 4
1 1.0 -0.323 0.033 -0, 339
2 -0,323 1.0 =U. 349C 0.0855
3 Q.033 =0.3%0 1.C ~0.233
4 -0.338% 0.055 -0.233 1.000

. . T — o N — T —— ] —— ——— - —————————————

Similar correlations exist for the forces. Therefore, the
forces on the piles cancel one another resulting in a

smaller total force on the pile group.

These results suggest tnat considerablie economy

can be realized in the design of large structures by

incorporating the directiconal effects of a real sea.



} CHAPTER 7
SUMMARY AND CONCLUSIGHNS

In the present study the rnionlinearities,
randomness and directionality (2ll important elements of
ocean waves) have been retained. The twofold
nonlinearity, one due to the nonlinear boundary
conditions at the surface and the second due to the drag
force relationsnip, prevent a closed form solution for
the wave forces from being obtained. 1In order to study
the effect of the directional spread cof wave energy and
the distance between piles in a pile group on the extrenme
wave forces on a pile, a methodology has been developed
to simulate three dimensional nonlinear randcm seas and

the associated wave forces.

The boundary value problem with the appropriate
boundary conditions for a three dimensiconal nonlinear
random wave field is presented in Chapter 3. Using
perturbation techniques, the nonlinear problem is
converted iﬁto linear (in the unknowns of that order)

boundary value problems. These are solved for the finite

131
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depth case in terms of finite Fourier sums. Ralationships
for the second order interaction components are derived
in Section 3-4. ‘The results obtained were verified with
prior solutions due to Longuet-Higgins (1963} and

Chappelear (19bl) for more specialized cases.

Some of the statistical relations for the linear
directional se&a are presented and discussed in Chapter 4.
In particular formulas are presented for the correlations
and probability density for the water particle
kinematics, distribution of force per unit length of =z
pile, and, for the drag dominant case, a closed ferm
soiution for the joint probability density of x and vy

force components for three dimensional random seas.

In directional sea simulation, certain
difficulties may be encountered because of adding the
same fregquency components witn random independent pnases,
A discussion of this problem is follcowed by an
investigation into tne effects of finite time simulation
on the mean square value of a random realisation, and on

the correlations amongst the simulated variables.
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The method for simulating a three dimensicnal
noenlinear random wave field is described in Chapter 5.
Wave forces due to a directional nonlinear random sea are
simulated via the following steps:

(1} a linear directional sea 1s representad by a number
of discrete frequencies and at each freguency there
are several wave components with independent phases
propagating in several directions;:

(11} second order perturbation components including all
fundamental interactions are computed according to
the analytical formulation developed for thne finite
depth case;

{(iii) water particle Kkinematics are computed from the
linear ant nonlinear second order perturbation
components; and

(iv) the wave forces are computed from the water
particle kinematics and the Morison feormula using
suitable drag and inertiz coefficients suggested by

Dean and Aagaard (1970).

Some of the more notable features of the present
method may be summarized as follows:
{1) Randomness depicted by the spectrzl densities,
probabilty densities and intercorrelations amongst

various variables such as water surface elevation
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and velocities and accelerations in x and y
directions at several points have been fully
represented.

(2) Nonlinearities correct up to second order are
included.

(3) Phases of the nconlinear contributions are
retained.

(4) Any reasonable form of the directional energy
spectrum for a realistic sea can pe simulated.

{5) The skewness of the simulated water surface
displacement is realistically represented without
any artificial means. The skewnesses of cther
variables of interest are also maintained.

{6) The total wave force is computed by considering

the appropriate displacement of the free surface.

A set of very efficient Fortran programs have
been develcped to implement the above simulation method.
In the last chapter some of the many important results
derived grom the simulation method were presented and
discussed. The methods of Chapter 5 have been applied to
simulate the linear and nonlinear realizations of the sea
surface for the Bretschneider spectrum and four different
directional spreads. The nonlinearity represented by the

skewness has been computed in each case. It was found
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that the skewness is greatest for e narrow directional
spread because for the givan two wave numbers the
skewness kernel is largest for amall included angles.
The reasons for this phenomenon and the possibile
occurrence of negative skewness in the field heve besn

discussed.

The simulstion method has been furtner zpplied to
compute total wave forces on a single pile and 2 multiple
pile group. The total force on a pile reduces by a factor
of 1 to 0.61 with tie increase 1n the dirsctional spread
of tne energy spactrum from unidirecticnal to
omnidirectional. For the four pile group with oy fzet
separation the reduction factors are simiiasr to those for
the single pile case. These results are neerly the sams
as those cobtained by the Hybrid method (Dean 14%77) for a
drag dominant case. For the four pile 3roup witin one
plle at each corner of a 3Lu feet sguare the reducticn
factor varies from U.79 to UG.39% for the directional
spectrum varying fraom unidirectional to cmnidirascticnzl

respectively.

These results suggest that considerable economy
can be rezlized in the design of large structures by

incorporating the directional effects of a real sea.
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