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Summagz

This document disseminates the existing design information of break-
waters which is being proposed on the essential protective structures for
power plants in offshore environments. The content of this document 1s generic
in nature and covers all pertinent factors that need to be considered to

insure adequate structural safety.

Major breakwaters within and outside this country have been reviewed
first. Included in this review are three types: construction, site environ-
ment, and unique design features. Of particular emphasis is the documentation
of case histories.of structural failures, their cadses, modes and extent of

damage.

The current design practice, including the selections of environmental
and structural factors, and the analysis and testing procedures for environmental

and structural interactions, is summarized and evaluated.

An extensive literature research has been performed and references

documented.
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1. INTRODUCTION

Prior to 1950, the design and construction of breakwaters was based largely
on experience. They have suffered many setbacks and the confidence of engi-
neers was quite shaky. Substantial effects have since then been given in
research for better understanding and more rational design practice for
breakwaters. To date, the amount of information available is considerable and
is accumulating at an increasing rate. Unfortunately, this-information, though
volumninous remains largely unsynthesized.

Since breakwater design is a complicated problem involving numerous
variables a rational design ﬁrocedure has yet to emerge. Engineers who are
commissioned to the breakwater design often face the cumbersome task of sorting
out the right information applicable to their cases. For regulatory agencies
who are responsible for reviewing the applications, the task of how to effectively
apply the existing information is even more difficult because of the time con-
straint and, sometimes, the availability of this information.

The present document, prepared under the sponsorship of the U.S. Atomic
Energy Commission, Contract No. AT(11l-1)-2406, disseminates the existing design
information of breakwaters which 1s one of the essential protective structures
for power plants in offshore environments. The content of this document is
generic in nature and covers all pertinent factors that need to be properly
considered to insure adequate safety.

The work begins with a survey of literatures in which ﬁajor breakwaters
within and outside this country have been reviewed. Included in this review

are three typesj constructions, site environment, and unique design features.



0f particular importance is the documentation of case histories of structural
failures, the reasons, modes and extent of damages.
The current design practice, including the selections of environmental
and structural factors and the analysis and testing of envirommental-structural
interactions, is summerized and evaluated. The emphasis has been placed upon
synthesizing pracgices in the United States, the European Countries and far East.
Based on the synthesized findings, guidelines for design evaluations are
developed. Acceptable standards and their technical basis are given whenever
possible., Since breakwater varies greatly in shapes and forms, considerable
flexibility - remains in design procedufes and construction methods. Tﬁe
review guidelines provided in this document are by no means complete and shall

be used with discretion.



2.

SURVEY OF LITERATURES

2.1 Major Breakwaters in the United States

2.1.1 Breakwater in Hawaiian Islands

Breakwaters have been generally required to create most of the
harbors in the Hawaiian Islands. The sites of major deep water ports
are shown in Fig. 2.1. The coast of the islands are exposed to attack
by waves generated in a vast expanse of ocean extending more than

2,000 miles in all directions.

A. Bfeakwater Design

Breakwaters built in the Hawaiian Islands prior to 1950, are
generally of the typical section shown in Fig. 2.2. The controlling
factors of design were the type and capacity of available equipment,
native materials, labor costs, and sea conditions. The rubble-mound
structures were featured by Keyed Stonework in the armor layer.
Another feature of one of the older structures is the 25-ft. wide
berm of the Hile breakwater. It was surmized that the berm possibly

contributed to the stability of the head of the structure.

B. Recent Breakwater Construction and Repair

The only new federal breakwater to be contructed since 1950 is
at Kawaikae Harbor located on the northwestern coast of the island of
Hawaii. The structure employs stone in the armor layer because an

extensive coral reef provides protection against severe wave action.
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Fig. 2.3 Sections of Kawai Hae Breakwater
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The section is shown in Fig. 2.3. The weight of armor stone was
determined by Iribarrenformula as modified by Hudson. The structure
survived storms of waves ranging 15 to 18 feet high with no damage.

Kahului Harbor is a deepwater port flanked by east and west
rubble-mound breakwaters that were 2,850 ft/ amd 2,396 ft. in length,
respectively (Fig. 2.4). The breakwaters were completed in 1931.
Major repair of the structures at, and near, the heads was accomplished
in 1957 using 33-ton tetrapods in the armor layer. Two layers of com-
ponents were placed on the slopes around the heads of the breakwaters.
The seaward slope and the end slope (along the breakwater center line)
were set at l-on-3 with a transition to a l-on-2 landward slope. The
severe storm of November 22, 1958 caused substantial damage to the
east breakwater. It was estimated that at the peak of the storm the
breaker heights were about 25 ft. About thirty 33-ton tetrapods were
rolled away with a few broken. The damage was attributed to design
deficiency in that tetrapods genmerally were not used at the seaward
end slope. However, when used, the welght should be increased over
the tetrapods on the side slépe. In 1964, the breakwater was further
repaired using 38-ton tribars as armor units ( Ref. 79).

In 1966, a Kahului Surveillance Program was initiated to monitor
the effectiveness of the pre-cast concFeta armor units (tribars and
tetrapods) which were used to rehabilitate the east and west break—
waters. The study included (a) installation of wave gage to obtain
wave heights, (b) tagged selected armor units to observe their perfor-
mances, (c) field survey of subsedence and change of shapes, (d) per—

forming aerial surveys. In a recent Corps of Engineers publication
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(1974) the results of surveillénce were reported. It was concluded
that:

a. Most areaslshowing damage in the Model study (Ref. 79)

show damage in the prototype.

b. The structure has sustained minor damage from storm waves.
Since the maximum wave heights were about 25 feet, it is suspected
that the structure will sustain damage when the 34-foot design
wave is experienced. It is probable that damage will be of a
natu?e and extend to require emergency repair.

c. The inboard sector of breakwater head (110° to 1800) is
the critical area for structures subject to breaking waves and
overtopping.. The direction of wave attack on units in the inboard
. sector is such that the buttressing effect of adjacent units is
much less than that for the seaward sector.

Nawiliwili Harbor was developed at the mouth of Hulica River
with aﬁproximately 2,000-ft. long rubble-mound breakwater that was
;nmpleted in 1930. Waves generated by the storm of March, 1954
caused failure of .the end of the structure for approximately 105 ft.
and knocked down about 600 ft. of the adjoining seaward slope.

Repair design was developed using (1) all stone, (2) stone
and tetrapods, (3) stone and tribars. After considerable laboratory
testing and modification, a stome-tribar plan as shwon in éig; 2,5
were adopted. According to ‘laboratory tests, the structure withstood
broken waves equivalent to 36 ft. The tribars used in the armor
layer weighed 17.8~ton. The breakwater sustained very minor damage

during Hurricane Dot, in 1959, with hindcasted deepwater wave height



ranging from 27-35 feet. One reinforced concreted past was broken
off by a tribar that had been swept from the top row of units over
the crest.

Hilo Harbor, second iargest seafort in the state, is en the
Northeast Coast of the island of Hawaii in Hilo Bay. The existing
harbor was constructed in 1930 and it consists of rubble mound
breakwater 10,080 feet long and a control depth of 35 feet.

Model tests and studies on Hilo Harbor were completed in 1966. The
plan called for (a) modification of the existing breakwater by
strengthening, raising, and extending the breakwater to a total
length of 11,580 feet, (b) a west breakwater 3,000 feet long,

(c) a 3,000-foot land dike. The existing breakwater sustained
numerous damages in the head section and the structure trunk during
storms. Emergency repalr works were often required. It is evident

the structure breakwater is inadequately designed.

C. Summary

Prior to 1950, breakwaters in Hawaiian islands were featured
by keyed stone in the armor layer. The design of breakwater has
undergone significant changes thereafter. A scientific approach
has replaced the pure empiricism. Considerable design criteria
have been established. An essential prerequisite to breakwater
components were extensively used as armor ;nits. Tribars were
introduced.

Damages sustained were maiﬁly due to breaking waves. Only
local damages rather than total structure failure were experienced.

In general, heads of breakwaters sustained more severe damage than trunks.
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2.1.2 . West Coast

A. Crescent City, California

The outer breakwater at Crescent City extends from a point
on the westerly side of the city 3,670 feet southeasterly and
then continues easterly for another 1,000 feet for a total
length of 4,670 feet. This iq one of the major breakwaters in
the West Coast of the United States. The méjor portion of the
breﬁkwater is stone-rubble-mound. The average size of the armor
stone is 12 tons. A 560 foot dogleg section including the
head of the breakwater, using tetrapca as armor unit, was
completed in 1957. It was the first to use tetrapods in the
mainland of the United States. This breakwater has undergone
a geries of modifications and repairing since 1948.

In November 1948 and 1949, the reach between Stations
30+00 and 40+00 was considerably damaged by two storms. Both
storms had wave periods of approximately 12 seconds. The
significant wave heights were 16 feet and 19 feet from the west-
northwest and west, respectively. Storm damages were repaired and the
extension of the breakwater beyond station 40+00 was modified by
flattening the upper portion of the sideslopes to 1f on 1.5H on the
harborside and 1V on 1.7H on the oceanside. A major portion of the
damage was caused by waves overtopping the structure.

From October ‘26 to November 1, 1950, the Crescent City Area was

subjected to successive storms. From wave hindcast it was estimated
that during this period wave heights greater than 15 and 20 feet lasted

for 56 and 34 hoﬁrs, respectively. The breakwater seaward above

11



MARBOR

\\ \/'\,/ 2N\
CR ESCENT SCIRX }’

, 4 ‘\‘//\ \) -
“\/
<>

\/ ""’

1 INNER HARBOR
BASIN

fé'u

20 FT. DEEP

20 FT. DEEP

AUTHORIZED - BUT
NOT CONSTRUCTED

BASIN

ept in Rock)

CROSS SECTION

4TA, 0¥QO TQ 3Ta. 19+00

GROSS SEGTION
STA. 29+00 TQ 4TA, Ja+=TO
t ocEan

CROSS SECTION
STA 1870 TO STA 4 +20

CROSS SECTION
STA 4 +20 TO STA. 44+T0

QUTER BREAKWATER

INNER HARBOR
BASIN
IOFT. DEEP

SAND
BARRIER |

e \ - s iy
-

REALINED EXTENSION

a4’

ey,
CROSS SECTION

SECTION A-4

INNER BREAKWATER i
400" EXTENSION

Frl.l":."bm“

CROSS SECTION
JECTIoN -8
1,200" INNER BREAKWATER

CROSS SECTION
SAND BARRIER

CRESGENT GITY HARBOR

SCALE W FEET
1000 0 1000 2000 3000
[ S e
U. 5 ARMY ENGINEER DISTRICT, SAN FRANCISO
CORPS OF ENGINEERS
SAN FRANCISCO, CALIFORNIA
30 JUNEISTS ——— — - -

Fig. 2.6 Breakwater at Crescent

City, California



elevation three feet m.,l.l.w was displaced in the outer 450 feet of the
breakwater. Repairs of the breakwater were started in 1951 and con-
gisted of completing the concrete cap between Station 12+30 and 15+30
and repairing the breakwater shoreward of Station 37+00. A realigned

1,000-foot extension starting from Station 36+70 was constructed

during 1956 and 1957. Between Stations 36+70 and 41+20, an
armour blanket of 12-ton average stone was placed on the ocean-
side with slopes.of 1V on 2.5H landward of Station 39+70 and

1V on 3.5H seaward of Station 39+70. Between Stations 41+20
and 46+70, 25-ton tetrapods were placed on 1V on 1.3H slope

on the oceanside and 12-ton rock was placed on 1V on 1.5H

slope on the harborside. The crest of this section was
constructed at elevation +20 feet m.l.l.w., consisting of a
two-foot thick concrete slab overlaying grouted rock. It was
built in water of approximately -30 feet from mean-lower-low-—
water. The design wave height was 23 feet. During the winter
of 1956-~1957, the reach between Stations 36+70 to 39+10 suffered
a loss of armor stone. The reach was repaired using 140

25-ton tetrapods in June, 1957.

Further damages to the outer breakwater were reported in
March, 1960. Damages progressed until the 1964 construction
season when the breakwater was repaired again. Between
Stations 0400 and 29+00, minor repairs were made. The severely
damaged reach between Stations 35+00 and 38+20 was rebuilt with

12-ton rock placed on 1V on 4H slope on the oceanside. Around
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the conical head, Station 46+70 there was some settlement and
consolidation of 25-ton tetrapods. Seventy-five 25-ton
tetrapods were added to the conical heéd. In 1966 relatively
minor repairs were made using 12-ton rock.

After completion of the repairs in 1966, no damage to the
breakwater was reported until 6 June 1972, when field inspection
revealed damage to the oceanside slopes of the breakwater.
Damages were evident as:

a. Oceanside slope eroded in various reaches;

b. Concrete cap damaged at a number of stations.

The existing conditions and typical cross-sections are
shown in Fig. 2.6.

The proposed repair has the following features:

a. Design wave height was increased to 33 feet for some

reaches;

b. Berm will be incorporated in the design to protect

the toe area;

¢c. 30-ton dolos units will be used for repair purposes.

The dolosse would be constructed from high density
and strength concrete without reinforcement. In
general practice concrete armor units weighing over
20 tons are reinforced with nominal amount of steel,
approximately 75 pounds per cubic yard of concrete
to prevent damage during handling and placing. This
amount of steel does not increase the structural
strength of the unit, however, it tends to hold the

damaged pieces together.
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The Ky values used for calculations are based on two
layers of dolosse or rough stones placed pellmell. The following
Kg values were used: (KD is the damage coefficient, for definition see
P. 164). Dolosse 11:3

Stone 3.5
B. Humboldt Harbor, California

The Humboldt Bay jetties were constructed beginning 1889
and completed in 1927. There are north and south jetties with
location and typical cross sections shown in Fig. 2.7.

Originally, the jetties were constructed with slopes of approxiﬁately
1l on 1.5. On both sea and channelsides, crest width was
approximately 20 feet, and the crest elevation varied from about

+12 feet at the shoreward end to +19 feet at the seaward end.

Parapet walls about 6 feet in width, and 4 feet high, constructed of
both stone embedded in concrete and 20-ton concrete blocks, extended
shoreward from a éoint about 400 feet from the outer end of the
jetties, along the south side of the crest.

During the period of 1930 to 1970 the jetty has sustained pro-
gressive damages of various kinds, including erosion of trunk
sectionsg, broken-off concrete monoliths and damages at head
sections. Constant maintenance and repairs were made during this
period.

The most recent repairs were completed in 1972. Most of
the repair work was made on foundation of stqnes that were displaced
from the breakwater by wave action. In areas where there are no

displaced stones, the ocean bottom consists of sand.
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The design wave heights acting on jetty heads were determined
from refraction studies. The design waves acting on jetty trunks
were computed by dividing the depth of water by 1.3 seven wave
heights away from the structure. The values of design wave height
varied from 40 ft. at structure heads and bayward sections of the
jetties to below 20 ft. at iandward ends of the jetties.

Hydraulic model studies were conducted at the U. S. Army
Engineer Waterways Experiment Station in Vicksburg, Mississippi,
to verify the stability of the design section, using various
shapes for armor stones. Repair sections were tested using cube-
shaped blocks, tetrapods, tribars, tri-longs and dolosse. For
protection from 40 feet waves at the heads of the jetties, dolosse
were the only shape that could be lifted by presently available
lifting equipment to the toe distance required to provide stability
of the jetty heads. Due to the adverse conditions and high waves,
the design and the repair work are also predicated on placing the
dolosse by a 4600 V.C. Manitowac Crane from the crest of the jetty.
Limitations imposed by this placing equipment are as follows:

a) Maximum size of Dolos 42 tons

b) Maximum distance of placement 163 feet
(from edge of monolith)

Dolosse are reinforced to resist breakage andlto aid handling. A
few unreinforced units were also placed near the waterline for

test purposes. A unit weight of concrete ofl155 pounds per cubic
foot which could be obtained by using locallv available aggregate

was selected. Stones of 10 to 14 tons were used for trunk repairs.
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The KD values used for calculation are based on two layers

of Dolosse or rough stones placed pellmell. The following KD

values were determined by model studies for Dolosse:

Dolosse:
Trunk
Head

Rough Stones:
Trunk
Head

The following steps and sizes for repair section were

selected:
a) North jet:tz
Station

68+70 to 74+10

Channelside:

67+00 to 68+70
65+00 to 67+00
55+00 to 65+00
20+00 to 55+00

Oceanside:

68+00 to 68+70
674+00 to 68+00
62+00 to 67+00
54+00 to 62+00

b) South jetty

Station

Channelside and
Oceanside:

85+00 to 90+35

84+00 to 85+00

on 1.5
on 3
on 2.5
on 2

el el

Stone Size

42 ton Dolosse

42 ton Dolosse
10-14 tons
10-14 tonms
10-14 toms

42 ton Dolosse
10-14 tons
10-14 tons
10-14 tons

Stone Size

42 ton Dolosse
42 ton Dolosse

A recent survey in the Spring of 1974 showed a small..

percentage of displacement and breakage of dolosse units in-the

vicinity of water line in both the south and the north jetties.
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The unreinforced units also sustained higher percentages of breakage
than thelxeinforced units. Although the evidence was rather limited,

sqme investigators tended to belive that reinforcement is heneficial.

C. Santa Cruz Harbor, California
Santa Cruz Harbor is located at the northern end of Monterey
Bay about 65 miles south of San Francisco. The breakwaters were

completed in 1963. Typical sections are shown in Fig« 2.8. 25-ton

quadripods of two layers were used on the west jetty. This breakwater

together with the breakwaters at the Crescent City and Humbolt Bay are

the few in the Mainland that ultilized artificial armor units. The
rest of the breakwaters in this country used mainly stones as armor
units.
D. Other breakwaters in California Coast

The breakwaters are basically rubble-mound structures with stones

as the armor units. Cross sections of these breakwaters are quite

similar in design with some variance from one to the other. The

following Table provides a summary of these breakwaters.

Table 2.1 Breakwaters Along the Caifornia Coast

Location Length (ft) Seaward Armor* Slope Controlling
Depth (ft)
Half Moon Bay, Ca. 3,670 (West) A-3 Stone 1V 1.75H 24
4,420 (East)
Monterey Bay, Ca. 1,700 (West) A-1 Stone 1V 1.5H 36
1,100 (East)
3,300 (North
Petached)
Morro Bay, Ca. 3,700 A-1 Stone 16
Santa Barbara Harbor, 2,500 (East) 10 tons Stone 1V 1.5H 20
Ca. _ l,GPP_KDatached)
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Table 2.1
Continued

Location

Dana Point, Ca.

L.A. and Long Beach,
Ca. '

Redondo Beach, Ca.

‘Marina Del Rey, Ca.

Newport Bay, Ca.

San Diego Harbor, Ca.

Mission Bay, Ca.

Length.

5,500 (West)
2,250 (East)

11,200 (West)
18,500 (Middle)
13,400 (East)

2,800 (North)
600 (South)

2,000 (North)
760 (South)
2,330 (Detached)

1,620 (East)
2,860 (West)

7,500
3,300 (North)

4,270 (Middle)
2,050 (South)

E. Breakwaters in the northern part of the 'fest Coast

.There are about 1l major jetties along the coast of Oregon. They

are summarized as follows:

Location

Columbia River
Tillamook Bay
Yaquina Bay

Siuslaw River

Umpqua River

Length

2.5-mile (North)
6.6-mile (South)

5,700 ft. (North)
8,000 ft. (South)

7,000 ft. (North)
8,000 £t. (South)

8,000 ft. (North)
4,200 ft. (South)

20

_ Controlling
' S’eaward“'ﬁrmoz_'* Slope Depth (ft)
A-1 Stone 1V 1.5H 20
A-1 Stone 1v 2.0H 40
A-1 Stone 1V 2.0H 15
A-1 Stone 1V 2.0H 20
A-1 Stone 1V 1.5H 20
A-1 Stomne 1V 1.5H 42
A-1 Stone 1V 3H 20

Controlling
Construction Slope Depth (ft)
Stone Mound IV 1.5H 49
Stone Mound IV 2H 10
Stone Mound IV 2H 35
Stone Mound IV L.5H 13
Stone Mound IV 1.5H 19



Table 2.1

Continued
Controlling
Location Length Construction Slope Depth (ft)
Coos Bay Stone Mound IV 2H 32
Coquille River 3,450 £t. (North) Stone With IV 2H 14
2,700 ft. (South) Concrete Cap
Port Orford 550 ft. Stone Mound IV 2H 2
Rogue River Stone Mound IV 1 1/24 9
Cheteo River Stone Mound IV 1 1/2H 8

All the jetties in this area can be classified as high-tide jetties
that experience tidal variations up to 12 feet. No major failures have
occurred in the past. Figures 2.9 and 2.10 showed two typical examples of
the constructions.

Along the Washington Coast, there is only one major breakwater which
is the breakwater at Neah Bay (Fig.2.ll). This breakwater was completed in
1944 at a cost of over $1.9 millon dollars. It is a rubble mound structure
with 1V 1.5H slope. For a period of 30 years after its completion, the
breakwater suffered no major damage but some expected deterioration.

2:.1.3 East Coast -

There are numerous jetties along the east coast,but there are no major
breakwafers similar to the ones found in Hawaii or the West Coast. Almost
all of the breakwaters in the east coast are rubble mound structures uging
stone as armor units. Most of the-structures were built for navigational
purposes and a few were built for hurricane protections. No catastrophe
failure has been experienced.

Along the coast of Maine and New Hampshire there are more than 20 jet-
ties and breakwater protected harbors. The jettied entrances include Richmond
Harbor, Kennebunk River, Sasanoa Rivef, Saco River, Lubec Channel, Portland
Harbor, Wells Harbor, Scarboro River, Eastport Harbér, and Hampton Harbor.

Breakwaters are at Bar Harbor, Isles of Shoals Harbor, Matinicus Harbor,
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Moosabec Bar, Richmond's Island Harbor, Criehaven Harbor, Eastport Harbor,
Portland Harbor, Rockland Harbor, Wood Island Harbor, Little Harbor, and
Rye Harbor.

Along the coast of Massachusetts, Connecticut, and Rhode Island, the
jettied and breakwater-protected harbors totaled more than 45. (Nineteen
in Connecticut, Five in Rhode Island, and Twenty-two in Massachusetts,)
Most of them are minor structures. Descriptive information can be obtained
from the U.S. €Corps of Engineers District Office and their publications
in water resource development. There is also a detailed technical description
on the engineering methods of the hurricane protection barrier that spans
the Narragansett Bay at New Bedford (Ref. 97). All of the i
‘structures in this area are rubble mound with stone armor units. Major
failures have not been found.

Along the New Jersey and Delaware waters jetties and breakwaters were
constructed at a number of locations including the recently rehabilitated
jetties at Manasquam Inlet (New Jersey), Breakwater Harbor (Delaware Bay),
and Indian River Inlet (Delaware).

The only major jetty in Maryland is at Ocean City Harbor. It is
constructed in water of approximately 16 feet in depth with a top eleva-
tion of 9 feet above mean low water. The project has not been completed.
The jetty is another typical rubble mound structure with stone armor units.

Along the coast of Virginia are the following major wave protections:

a. Crapmey Island Spur Levee. A 2,300-foot long spur levee, capped. =

with heavy riprap, is located at the Craney Island Disposal Area within
Norfolk Harbor. The purpose of the levee is to provide wave protection
for the rehandling facilities. There have been no major repairs to the
levee since its construction in 1957. Pertinent design details.can be

obtained from the U.S. Corps of Engineers, District Office..



h. Rudee Inlet Jetties. Twin riprap jetties provide navigable access

from the Atlantic Ocean to Rudee Inlet in the city of Virginia Beach some
seven miles south of Cape Henry and the Chesapeake Bay. The inlet system
consists of a north rubble mound stone je;ty extending 800 feet into the
Atlantic Ocean, a 492-foot long timber sheet pile weir extending into the
ocean 510 feet south of the former, with a 280-foot rubble mound stone
section coupled at its seaward end. A sand deposition basin, designed to
retain 100,000 cubic yards of sand, and a 10-foot by 90-foot navigation
channel was also provided. The system was constructed in 1967 and has
experienced no damage to date. Further details and drawings of the system
can be obtained from the City Engineer, City of Virginia Beach.

c. Little Creek Inlet Jetties. Twin jetties are also present at

Little Creek Inlet on the south shore of the Chesapeake Bay. The inlet is
basically utilized by naval amphibious craft stationed at the Little Creek
Naval Amphibious Base. The overall length of the eastern and western jetties
are 1,400 feet and 1,100 feet, respectively. Built around 1927, neither has
experienced any major damage.

d. Pier 12 - Aircraft Carrier Breakwater. A rubble mound stone

breakwater, roughly 1,500 feet long, is located adjacent to Pier 12 at
the Norfolk Naval Amphibious Base. ‘The breakwater protects aircraft
carriers based in Norfolk froﬁ waves entering Norfolk Harbor from the
Chesapeake Bay. Design details of this breakwater may be obtained from
the Naval Facilities Engineering Command, Norfolk Station, Norfolk, Virginia.
The only jetty structure on the coast of North Carolina is located at
Masonboro Inlet. It is a low weir, rubble mound structure. A full descrip-
tion of the design is given by Magnuson (1966).
Two major jetties existed in South Carolina, located réspectively at

the mouth of Charleston Harbor and at the mouth of Georgetown Harbor. Both

were old jetties. For instance, the construction of Charleston jetties



was commenced in 1778 and carried on intermittently as appropriations were
made until completion in 1896, These jetties have experienced many storms
and hurricanes and have been repaired many times. No major failure, however,
has been documented.

The only major jetties in Georgia lie on each side of the entrance to
the Savannah River Channel. Thése two jetties are each approximately 11,500
feet long and were constructed between the late 1890's and 1925. They con-
sist of quarried stone placed on a log and brush mat. No repairs have been
made since their construction, and recent surveys indicate that no repairs
are necessary. The original drawings of these jetties show tﬁat three
sizes of stone were used; the largest of which is estimated to be in the
15-20 ton range.

Because of the shallow depths along the coastline of Florida, the
breakwaters and jetties are not generally high or large structures.
Theére are two breakwaters and eleven jettied inlets to harbors. With the
exception of one jettied inlet the structures are stone construction.

The breakwaters are located at Key West, Florida, and Arecibo Harbor,

Puerto Rico. The Key West breakwater was built in 1967 and no maintenance

has been done. The crown is elevation +6 and cap or cover stone size 2
to 6 tons. The existing bottom was about 1l2-foot mean low water depth.

The Arecibo Harbor breakwater had maintenance done in 1951. Its

crown eleﬁacion is +15 and cap stone size 10 tons minimum. The existing
bottom is about 15-foot depth.

The eleven jettied inlets or entrances to harbor are twin jetties
extending from shoreline to depths of 10 to 20 feet. The jetties are
generally low with crown elevations of +6 to 10-foot range. Cap stone

size varies from 6 to 14 tomns.
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The jetties on the Atlantic Coast are at Fernandina Harbor, Jacksonville
Harbor, St. Augustine, Ponce de Leon Inlet, Canaveral Harbor, Ft. Pierce
Harbor, Palm Beach Harbor, Port Everglades, Bakers Haulover, and Miami
Harbor. The jetties on the Gulf of Mexico are at Venice Inlet.

In the Gulf area, only a few jetties were constructed and no major
breakwaters. These jetties existed at Southwest Pass, Plaquemines Parish,

Calcasieu River and Pass, etc. No major damage has been reported.
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2.2 Major Breakwaters in Europe and Africa

Breakwater design information is rather scattered in Europe. Complete
design data is rarely disclosed. Through the efforts of a few researchers
(in particular, Ref. 5 ), relevant facts on a number of breakwaters
constructed prior to the 1950's have been documented including some cases
of failures. Information on breakwaters of recent comnstruction can only
be found from various documents published mainly in Dock and Harbor
Authorities, International Navigational Congress, Journals of Civil
Engineering, Proceedings of Coastal Engineering Conference, and in reports
of a few laboratories in different nations. In this section brief accounts
on a few of representative cases are given.

A. Breakwaters at Catania, Italy and Algiers, Algeria

In February 1934 a storm of exceptional severity destroyed . a

length of 401 m. of newly constructed breakwaters at the port of

Algiers. In the previous vear a storm brought about the collapse

of 700 m. of a similar work at the port of Catania. Both of these

breakwaters were of the same type, consisting of a vertical wall of

superimposed blocks based on a foundation of rubble stone, and the

double disaster, following only a few years after a catastrophe of

the same nature at Antofagasta, Chile, naturally caused misgivings

as to the stability and trustworthiness of such vertical-wall

breakwaters - particularly in Italy, where a considerable number of

harbors were protected by works of this kind. =FSap .

It must be remarked that although the breakwaters that failed at
Catania and Algiers were of similar design and calibre, the failures
were brought about in entirely different ways, due to an essential

difference in construction. Both breakwaters were built of massive
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concrete blocks of cyclopean proportions, in the case of Catania,

12 m. long by 4 m. by 3.25 m., and in the case of Algiers, 11 m. by
about 4 m. square. These blocks, weighing respectively 320 tons and
400 tons, were set as headers transversely in the moles, their ends
forming the inner and outer faces of the wall, but whereas the blocks
at Catania were simply superimposed without bedding or bonding, those
at Algiers were provided with internal hollow shafts or wells which,
on completion of the wall to full height, were filled with concrete
reinforced by steel bars, so as to form a coherent structure from
base to coping (Fig.2.12). As might be not altogether unexpected
under such conditions, the mole at Catania failed by the sliding of
the plocks over one another in successive courses as indicated in
Fig. 2,13, which give typic#iwsections; whereas the jetty; _

at Algiers collapsed as a whole, i.e. in intact vertical sections,
before fracturing and disintegrating, the rubble mound being first
undermined through wave action and the erosion of a deep'trench

in the soft sea-bed of sand and mud at the foot of the wall. The

conditions produced at Algiers are shown by the typical diagrams in

Fig'z.la.

At Catania the storm of 26th March, 1933. came from the E.N.E.,
the fetch being 252 marine miles, the maximum depth of the sea
therein being about 2,000 metres, while the maximum height of the
storm waves was 7.40 metres, their length being 228 metres with a
period of 12 seconds. These waves commenced to break on the

adjoining slope of the foreshore in a depth of 10 metres.
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| Fig. 2,12 Mustapha Jetty at Algiers

Fig. 2.13 Sections Showing Failure of Eastern Breakwater at Catania
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At Algiers the storm which caused the disaster there occurred
on 3rd February, 1534, with waves of a height of 9 m. and length of
185 m. in the immediate vicinity of the breakwater. The storm
originated from the quarter of the compass in which the waves
reaching Algiers have the maximum possible fetch, namely, 480 nautical
miles, and they reached the wall normally to it. The sea-bed at the
site was a very compact bed of fine sand overlying conglomerate of a
stable character.

Photographs taken during the storm showed waves passing over the
parapet of the breakwater in an unbroken crest. Thus it is evident
that, as also at Catania, the waves retained their oscillatory
character up to the wall.

The incidents at Catania and Algiers therefore seemed to
indicate certain defects which could be remedied without materially
affecting the accepted type. It was at once realized, for example,
that the site of a vertieal-wall breakwater must not be conducive
to the complete breaking of storm-waves; in other words the depth of
water to the foot of the walls needed to be greater in order to
gafeguard the rubble mound, and in the case of existing breakwaters,
as at Genoa and Bari, the width of the berm or ledge at the top
of the mound would need to be increased and the side slopes less
steeply inclined

The reconstruction of the Catania breakwater was carried out in
accordance with tﬁe type shown in Fig.2.15 ; the two courses of
cyclopean blocks that had been carried away were left in place,

and on the summit of the upper course at the level of = 7.00 a slope
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of 2/1 was constructed, having a revetment formed by other recovered
blocks. At sea-level a parapet was built in mass concrete having a
parabolic face, a form originally adopted in the Roman epoch at the
ancient mole of Pandateria on the island of Ventotene. The smooth
slope, combined with the concave profile, led to the formation of
very high columns of water, and these, in falling, caused damagehét
the joints between the blocks and rubble slope. In spite of their
size the blocks became displaced, and thus it seems that these two

features are not advisable.

B. Breakwaters at Genoa, Italy

Figure 2416 shows the Galliera Mole at Genoa as originally
constructed towards tﬁe end of the last centur&. Evidently its
designers wished to dispel the energy of the waves against a mattress
of water situated between the parapet wall and the top course of
artificial blocks.

During a very severe storm in November 1898, the upper course
having been either pushed towards the parapet wall or dragged out by
the surf, it was easy for the sea to displace the lower blocks and rubble
stone and eventually to strike the parapet wall over its full height
with pressures it was obviously not designed to withstand. These
conditions are shown in Fig. ‘2.18 . The repaired breakwater is
shown in Fig. 2.17 , the principal amendment being the construction of
-~ a heavy concrete revetment over the whole width of 17 m. of the berm.
The underwater slope of the rubble mound, which had become flattened
from 1%%1 to 2/1 during the storm, seemed to be stable at that slope,
which was accordingly adopted. The height of the parapet wall was

reduced by raising the level of the berm.
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Fig. 2.16 Original Form of Galliera Mole, Genoa
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Fig. 2.17 Typical Profile of Repaired Galliera Mole,
Composite Type
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As a result of further violent storms, the breakwater still
suffered heavy damage, whole lengths of the stepped blocks being
swept away. These were then replaced by mass concrete from the
level of - 3.00 to + 3.35, the face having a slope of 2/1. Even with
these alterations the breakwater continued to éuffer damage; consequently
it was decided that the profile of the breakwater should be altered
in accordance with the lines that were followed in the reconstruction
of the outer b;eakwater at the harbour of Crotone in the years
following World War II (see later pages).

The last part of the outer breakwater, of more recent construction
and 3,869 m. in length, is of several types. That first adopted
consisted of a vertical wall built with three courses of cellular concrete
blocks (a design later altered to four, with thicker walls), surmounted
by a mass-concrete superstructure and standing upoﬁ a rubble mound;
the amended design is shown in Fig. 2,19 . This breakwater is
exposed to the prevailing winds from S.W. to S.E.; the most violent
storms come from the S.W., where the fetch extends to the coast of
Algeria, a distance of about 700 miles, and during these storms the
height of the waves is observed to be 5 m. For the construction
of the last section of extension to the west, the design of the break-
water was agéin amended as shown in Fig. 2,20, the wall being founded
at a level of - 11.50 and constructed of blocks of concrete 12 m. by
4.50 m. by 2.95 m., each weighing 420 tons, with the base protected
by blocks forming a berm 5 m. wide.

In spite of this strengthening, the breaking of waves during the
most violent storms was apparent, even if they caused no damage to the
breakwater, which, on this sector, remained intact until the storm of

1955.
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Fig. 2.19

Fig. 2.20

Section of Outer Breakwater, Genoa (Design in well-type
blocks)

Section of Western Extension of Outer Breakwater{ Genoa
(Design in Cyclopean Blocks)
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A great storm occurred at Genoa on 19th February, 1955, causing
considerable damage to the exterior breakwater and to ships in the
harbor. Full data are not available, although from the information
published in the technical press it appears that sections of each
type of the outer breakwater were severely damaged or destroyed,
with the significant exception of the oldest part of the Galliera
Mole, which was of the composite rubble mound and superstructure typee
(Fig.2.17).

The violence of the waves appeared to have been concentrated on the
stretch of wall near the western entrance of the Sampierdarena Basin -
where the longest breach occurred - in that zone of the sea-bed where
the depth contours of the sea form a submerged valley off-shore.

The breaches varied in nature and character for the different types
of cross-section of breakwater. The first serious collapse to occur
was that mentioned above, when on February 19th at 15.45 hours the heavy
seas which had been running for some hours overtopped and sheared off,
suddenly and simultaneously, 150 metres of wall of the cross-section
shown in Fig. 2.20. This gap widened continuously until it reached
450 m. . in length. Later examination by divers showed that the
top course of blocks and the mass=-concrete superstructure had been cleanly
slid into the harbour, the lower three courses of solid blocks and the
apron block at the toe remaining in place for the most part undisturbed
and undamaged. Two hours later, on the same day with the seas still
running high, a first small breach was opened in the east extension
of the Galliera Mole, which was constructed of well-type blocks (Fig.2.19),

and during the night and following day several more gaps of from 5-80
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meters were opened in the same stretch and also in the mole west
of the Galliera composite mole, which was constructed of three tiers
of cellular-type blocks.

The cellular blocks were not shearéd off like the cyclopean blocks
because they were held firmly by the central cores of concrete which
formed the fill of the wells of the precast skeleton cellular blocks.
Instead, the outer faces of both three~ and four-course types were
shattered and broken up gradually at many points under the heavy
blows of the waves. This provoked the undermining but not collapse
of the superstructure and the breaking-up of the adjacent blocks and
concrete below. It is remarkable that the first damage caused by
the storm, and the most extensive in length and depth, was in the
most modern and normally least troublesome stretch of the breakwater.

The gale appears to have been the product of a very strong southwest
wind and was of a short violent ascending phase and a long descending
period which aggravated the damage produced at the peak of the storm.
On the morning of the 18th of February the sea had been tempestuous;
next morning it seemed to be dying down but then, the gale suddenly
backing to the south, it became extremely violent. Such a storm
had never before been experienced in living memory at Genoa.

The barometer stood at 739.2 mm. (29.1 in.) and the velocity of
the wind in squalls rose to 123 kilometres per hour-(?s mph). The
waves were most irregular, at one time apparently coming from the
dominant S.W., then from the S.E., then a combination of bothj;  their
height could not be accurately measured, but those competent to judge
computed them conservatively at not less than 7 m. with the possibility -

of their being higher. They appear to have definitely broken at
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the walls, throwing up columns of water of great height, some
of which, from documentary photographs, were later calculated to have
reached 50 m. -

It has been mentioned that cellular and well-type walls had
been under suspicion for many years, and that where they had failed
previously they had been replaced (1926-1927) by the cyclopean block
type of wall. This type had withstood all storms successfully, with the
exception of minor fractures in the winter of 1953-1954, until seriously
damaged = by the storm just referred to. All these walls had been
built, of course, as reflecting breakwaters, but a combination of
reflected and oncoming sea-waves creates clapotis; this condition
causes such waves to attain about twice their original height, with
great dynamic and static power.

These incidents at Genoa seem to provide another example of
the occurrence of meteorological and storm conditions far in excess
of estimates.

The main lessons to be learned from this occurrence, together with
other disasters that have occurred with vertical-wall types of break-
water elsewhere, are first, that the basis of the present methods of
estimation of maximum wave-height and other wave characteristics for
design purposes need reviewing; secondly, that the design of such walls
to induce free reflection of waves from the vertical face is a delicate
experiment with natural forces; thirdly, that technical knowledge of the
dynamic effects of the breaking wave is still inadequate; and fourthly,
that a combination of partial reflection and energy dissipation at the

structure is very daﬁgerous and definitely to be avoided.
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It now seems that Italian opinion upon the merits of vertical-wall
breakwaters, due to continued failures at various ports, has been
madified, for experience shows that the rubble mound, composite, or

talus type have given the best results.

C. Breakwaters at Crotone, Italy

The outer breakwater has a total length of 835 m. divided into
two arms of which one, rooted in the coastline, has a length of 435 m.
in a S.S.W. to N.N.E. direction, while the second, 400 m. in length, is
slightly inclined to the north. The sea~bed is sandy and is at a depth
of 0.00 at the heel and -16.00 at the head. The breakwater is
exposed to waves which come from an E.S.E. direction with a very
long fetch and may reach a height of 6 m. with a length of 120 m.

The construction of the breakwater, of a composite type, was
commenced some sixty years ago, but the rubble mound and the
superstructure were not massive enough. In consequence the breakwater
suffered continual damage until finally, in 1941, it was completely
destroyed. The reconstruction was carried out as shown in Fig. .
The outer slope of the mound is protected by a covering of large blocks
having an incline, above water, of 3 to 1 and below water of 3 to 2.
The placing of the blocks was done in such a manner that while the
surface of the slope, owing ﬁo its irregularity, offered a very
pronounced friction to the water masses in movement, it contained no
sudden projections or deep recesses which lead to the formatiom of
columns of water and cause upward pressures. Along the first leg of
the breakwater there is an upper parapet in mass concrete which-continues

the incline of the 3 to 1 slope terminating with'a 1 to 1 slope - not
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a parabolic profile. Along the second leg this parapet has not yet
been constructed for reasons of economy.

The breakwater has withstood, without suffering any damage,
several storms of violence comparable with that which destroyed

the first structure.

D. Breakwaters at Marseille, France

The main undertaking, begun in 1845, has a length at the present
time of 5,000 yards, including an extension for the President Wilson
Basin. The same principle of construction has been maintained throuygh
more than a century with unvarying success.

A section of the main breakwater, the Grande Jetee, is shown in
Fig.2.21 . The core is a bed of small rubble having a depth or
thickness of 10 ft., and lying upon the sea bottom at a depth of 55 ft.
below low-water level. It is overlain by layers of natural stone of
increasing dimensions, ranging from 2 cwt. to nearly 4 tons apiece.
The quay shelter wall is a masonry structure founded upon the topmost
layer of blocks.

The exterior slope is 4 to 3 for its lower portion, extending from
the foundation to low-water level. At this point it flattens abruptly
to nearly 3 to 1. The effect of this sudden transition is to create a
sharp ridge at the water-line, with the result that the waves are cut
at the point where their action is most potenﬁ. The upper part
of a wave, therefore, falls dead upon the flat slope above, or at the
worst upon the masonry apron in front of the shelter wall, in neither
case being capable of producing deleterious results. The parapet thus
receives no appreciable shock, and spray alone passes at times over

its crest to fall upon the interior quay.
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The blocks forming the flattened slope referred to are huge
monoliths, rectangular in shape, with a length twice as great as their
width, having a volume of 500 cu. ft. and a weight of about 33 tons
apiece. They are deposited so as to lie longitudinally in the direction
of the onset of the waves.

The external profile of the breakwater has proYed to be extremely
stable and has been kept up at trifling expense in the way of repairs.
For a length of 1,200 yards é;nstructed prior to 1865 the cost of
maintenance is still very little. The remaining and later portions of
the breakwater also cost practically nothing for upkeep.

Thus the Grande Jetee is a most efficient example of its type.

Only one objection can be laid against the design, and that is the narrow-:
ness of the uppermost outer slope flanking the masonry apron. The

existing width of 27 ft. seems to be insufficient to prevent the protection
blocks from being occasionally rolled off by the waves into deep water.

Settlements in the mass of the breakwater, though they have been
by no means inconsiderable in themselves, appear not to have given rise
to any serious dislocation of the parapet wall. Indeed it is said
that only here and there can a few vertical cracks be observed, having
widths of mere fractions of an inch. The shelter wall and its apron are
not bonded together: they are simply in contiguity. Separation was

inevitable since they rest upon distinctly different foundatioms.

E. Alderney Breakwater, England s
The composite breakwater at Alderney Harbor which has the gemeral
cross-section shown in Fig. 2,22 , offers an interesting comparison

to the breakwater at Catania for it seems to have failed through
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almost precisely similar causes - disruption of parts of the structure
by falling masses of water.

The site of the breakwater is exposed to Atlantic gales with an
unlimited fetch; the tidal range is 17 ft. and the depth of water at
high water of spring tides, where the wall collapsed, was 130 ft.

The storm-waves of any height and length could manifestly maintain
their oscillatory character until quite close to the superstructure
of the breakwater.

The ‘rubble mound was constructed by first depositing two banks of
large stones, the space between being filled with smaller graded rubble,
during the deposit of which settlement was considerable. Heavy seas
that occurred during construction caused little disturbance of the
rubble when the top of the mound was 15 ft. or more below iow-water
level with no superstructure upon it. Three years elapsed before
the superstructure was built, to enable consolidation and settlement to
reach its maximum,but unequal settlement appears to have occurred after
the superstructure wall was built. It will be noted from the figure
that the crest of the mound was below low-water level; actually there was
11 ft. depth of water at the wall at L.W.0.S.T., and 27 ft. at H.W.0.S.T.
The upper slope of the mound was such that in effect a shoal was
formed about 100 ft. from the wall, at which distance the water was
some 7 ft. deeper. This depth of water meant that the waves =
oscillatory up to this point - were converted into a succession of
breakers, the impact of which on the wall caused masses of water
to be projected to a considerable height, recorded to have been, at

times, upwards of 200 ft.
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The blows of the waves dislodged some of the masonry blocks of the
superstructure wall, and the masses of water, falling from the great
height to which they had been projected, tore out the rubble.at the
base of the wall, the bottom courses of which dropped down and enabled
the sea-waves to reach and bring out the rubble hearting, and within
a short time to reach the inner portion of the wall which was soon
breached.

Four engineers of repute investigated the causes of the failure
of the breakwater, and the above remarks are based upon their
reports. The profile of both the rubble mound and the seaward face
of the walls were criticized, and one of the main recommendations for
reconstruction was the raising of the slope of the mound, so that
at the wall it reached the level of high water of spring.tides.

In the light of modern knowledge and practice, the defects of
this breakwater would probably be reckoned to be:

a) The profile of the mound and the depth of water arising

from it were ill-chosen, i.e. the latter was too shallow,
causing waves to break the wall. If the depth had been
greater, the oscillatory pattern of the wave would have
been retained, resulting in a '"clapotis" at the wall. If
on the other hand the rubble mound had been higﬁer and
above high-water level at the wall, and the slope had
been wider, all waves would have been forced to break
before reaching the wall.

b) The sizes of the stones of the outer covering of the rubble

mound were too small.
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¢) The dimensions of the blocks of stone with which the
superstructure walls were constructed were also too
small, and the foundation level in the mound was not
deep enough.

d) The covering of the roadway was not adequately robust.

F. Leixoes Harbor, Portugal

The port of Leixoes, the artificial harbor of Oporto, is situated
at the mouth of River Douro (Fig. 2.23 ). Two old breakwaters, the
northern and the southern, were built between 1883 and 1892.

The construction of the new shelter-breakwater was comﬁenced
in 1933 by building the first 330 m. of the planned 1,000 m. long
breakwater in the form of a vertical wall founded on the rock
below the sea bottom. During the work a storm pf exceptional
severity ruined part of the structure. It was decided that with the
depth of the water and the great exposure of the site, a vertical
wall would not be stable. Iﬁ 1936, laboratory studies came up with
the recommendation of using a suﬁmerged breakwater of rock-fill for
the 678 m. of the most exposed part of the structure. The cross-
gsections of the two tvpoes of breakwaters finally adopted are shown
in. Figs.2.24 and 2.25 .

The prevailing winds at Leixoes come from the quarter lying roughly
between N'Wf and S.W., and it is from this region that the greatest
storms arrive from the Atlantic with its almost unlimited fetch.
Actually, waves of the following characteristics have been recorded
at the harbor: height 8 m. and length 350 m., with periods of 10 to
15 seconds. Based on model studies, 80-ton bloéks for the outer

“covering and the inclusion of berms seen in Fig. 2.24, were recommended.
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In practice, the artificial blocks of the outer covering were made
90 tons in weight and were cubical in shape with the corners greatly

chamfered.

G. Casablanca Breakwater, Morocco

At this harbor the tidal range is 3.80 m. and the coast is exposed
to violent storms; waves with a height of 8 m. are not uncommon and
they sometimes break in depth of water of 20 m. From Fig. 2.26 it
will be seen that the artificial blocks of 45 tons in weight cover
the underlying riprap entirely in pell-mell fashion, while under
the superstructure they are built into position. At high tide the
mass-concrete shelter wall is liable to bear a great proportion of
the impact of breaking waves, though it is sufficiently low in
height to allow waves to go over the top in exceptional storms.
During such a storm in 1924 parts of the shelter wall weighing some
260 tons were thrust inside the harbor, but the main body of the

breakwater stood intact.

H. Dunkirk Breakwaters, France

The western arm of the two harbor breakwaters faces roughly
N.W., while the eastern arm faces N.E., the entrance between the
pierheads facing due north. While the maximum fetch is in a northerly
direction, the shoals off the shore and the Goodwin Sands reduce
the violence of any gales from the north and northeast. The
shortest fetch is in a northwesterly direction, but owing to severe
gales from the Atlantic Ocean advancing up the English Channel and a
not-infrequent change of wind to the northwest it is from this direction

that the most violent seas arrive.
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Two forms of breakwater are in existence, shown in Fig.2.27 and
2.28 , The first mentioned was employed for some 700 ft. from the
roots of the breakwaters, and the latter was used in deep water. The
sea~bed is composed of sand, and in view of the strong possibility of
scour being caused by tidal and littoral currents due to the projection
of the breakwater into the sea, a feature of the design of the mounds
was the use of brushwood fascine work in order to form a mattress 6 to
7 ft. thick upon which the rubble mounds were deposited.

The mattresses were constructed ashore of elm and birch branches
made into faggots about 12 in. diameter and 50 ft. long, placed in
layers, checkerboard fashion, all being lashed together. Sections
about 130 ft. long by 80 ft. wide were constructed, towed to the site,
and sunk by means of rubble stone deposited into the cells formed by

Ithe checkerboard comstruction. The sinking was accomplished by working
from the end meeting the current, the portion still floating thus

being kept taut.

T Praia de Vitoriz, Portugal

Praia da Vitoria is a harbor in the eastern coast of Terceira,
in the Azore Islands, Portugal. The rubble mound breakwater, about
600 m. long, extend from Ponta do Espirato southward into the
Prafa -Bay (Fig. 2.29 ). Given the location and orientation of the
breakwater, storms in easterly direction are the only kind that can
hit the breakwater with full strength. For some unclear reason
the breakwater was designed based on a design wave of 5.2 m. where
~ local observations recorded wave height of 5.5 m. during an easterly

storm in 1955 and of 5.5 to 6 m. in a storm of 1956. The typical
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cross section based on the 5.2 m. design wave is shown in Fig. 2.30 .
It consisted of type C stome core (up to 8,000 lbs.), type B
secondary armor layers (4 to 6 short tons) and type A armor layers
(13 - 15 short tons). During construction, difficulty was experienced
to obtain a quarry wifh the required percentage of A armor stomnes,
so that stones of 10-13 short tons were used in the inner layer of
the primary armor. Such practice further decreased the margin of safety.
The combination of insufficient margin of safety coupled with a
prolonged storm, severer than the storm considered in the design,
could give rise to the development of a chain destructign phenomenon
with serious results, as the layer excessively exposed to the action
of the sea would be less stable than the preceding ome, and consequently
would be more easily destroved. This is what actually happened late in
December, 1962.
In an attempt to obviate the possible effects of the undersized

A stones, special shaped artificial blocks of 16 short-ton weight were
placed in ramdom at a ratio about one to every ten A stones. Such a
practice proved to have no significant improvement in overall stability.

Three other design faults can also be cited. The first concerns
the bottom elevation of the primary layer, which in the present case
lies 17.0 ft. below M.L.W. During spring tides, the water level can
drop to 3 ft. below M.L.W. For this case the =17 ft. primary layer
does not give enough protection and this could lead to suspect that the
collapse of the breakwater might have started just in the zone between
A and B armor stones. Secondly, in the harbor side the A armor stone

cover extends down to +5 ft. to M.L.W., the B armor stone layer being,
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therefore, exposed for all the tide levels except high water spring
tide. Finally, there is no provision to make the head section of the
breakwater more stable than the trunk section.

The structure sustained extensive damage during a violent storm
in December, 1962. According to hindcast, waves as_high as 8 to 9 m.
were experienced. It was reported that the storm arrived at Santa
Maria island after 00 hours on 25th December and sustained through
27th with a reduced influence thereafter. The structure damage
appeared to be highly irregular (i.e., sections of breakwater
sustained extensive damage where other sections remained basically
intact or suffered very light damage)-.

Based on post-storm survey, it was recoﬁstructed that the damage
began due to insufficient stability of the sea-side slope and not to
overtopping. When the sﬁorm reached its maximum intensity, the
damage gradually extended to the whole structure. First, the
B armor stones became exposed and displaced, then the C core stones
were attacked by waves. Finally, sections were broken and profiles
above elevation (-0.00) were completely ruined. From this point on,
the overtopping waves pounded on the harbor-sidé slope and caused
removal of stones on that side. The destruction went on to the
extent that berth structures were endangered. Fortunately, the
storm abated before total collapse of the structure.

Figure 2,31 shows the breakwater sections after the storm. The
irregular distribution of damages is clearly illustrated. Two
factors could have caused this irregular distribution of damages:
marked changes of the wave height along the breakwater and variable

construction details from zone to zone.

29



SEA SIDE HARBOR SIDE SEA SIDE

HARBOR SIDE

o EL00_
UGS TANEN LUAN. VP12

—_N

SECTION 210 malers

_ SECTION 18§ maelers

SECTION 380 matars

SECTION 318 metars

HARBOR SIDE SEA SIDE

HARBOR SIDE SEA SIDE

SECTION 418 meters SECTION 490 maters

—— iy

SECTION B4D maters SECTION 378 melers
)

[ ] 10 “w w
e ——]
b reer

Fig. 2.31 Breakwater Sections After Storm

60



Later on, model tests were performed at the National Laboratory
of Civil Engineering in Portugal. The model tests seemed to agree
with the observations in nature. - It was found in the model
tests that the damages in the sea-side slope were extremely sensitive

to water level and wave heights.

J. Breakwaters at Scheoeningen, Ymuiden and Hook of Holland, Netherlands

Figure 2,32shows a typical cross section of a breakwater protecting
a pier at Ymuiden. The breakwater has a main body of concrete blocks
situated on a rubble mound foundation. The seaward side of thé
breakwater was protected by solid cubes of concrete placed in pell-
mell fashion. These concrete blocks have a specific gravity of 2.2.
The breakwater suffered damage when water masses fell down on them and
caused the cubes to become displaced or lifted from their original
location. Subsequently, the cubes were modified by using lead
slabs as aggregates to increase the specific gravity to 2.85. The
increase of the specific gravity has led to some improvement, buth
will not solve the problem satisfactorily.

The breakwater at Hook of Holland is often referred to as an
"open' breakwater and was constructed in water of about 50 ft. deep.
The breakwater has composite slopes in its cross section. It
can be seen from Fig. 2.33that, on the seaward side of the breakwater,
the main breakwater cross section has a l;L% slope for the top of
the breakwater to a depth of approximately 20 ft. It was then
connected to a horizontal terrace with a sharp break. The final
section was actually a foundation with a 1.6 sloped toe at the
seaward side. Solid cubes of concrete were used in the armor layer.
The structure suffered similar damage as that of Ymuiden due to falling

water mass.
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The unique feature of breakwater at Scheoeningen is the explatory
application of hollow cubes as armor units. These hollow cubes also
known as Stolk cubes have been designed by a firm of that name in
the Netherlands - J. Stolk & Sons. This cube is provided with internal
passages, each two opposite faces of the cube communicating with
each other by a single passage. The axes of the three passages
intersect in the center of the cube. These cubes were claimed to have
the advantage of absorbing wave energy, and slowing down fast-moving
current. The southern pier at Schoeningen (Fig. 2,34) has used 2,50b
Stolk cubes as the armor layers. The typical cross-section of this
breakwater is shown in Fig. 2.35, although it is believed that the
perforated breakwater cube will solve the problem of reducing the
impact of huge pressures exerted by violent wave action. The

information, up to date,. is insufficient to make concrete conclusions.

K. Port Talbot, England

Port Talbot is situated on the North side of the Bristol Channel
east of Swansea at the mouth of the river Afan. The coastline at this
point runs southeast/northwest and is thus facing directly towards
the southwest and the open Atlantic with a fetch of upwards of 3,000
miles in this direction, to the nearest land.

Thus exposed, Port Talbot is subject to severe southwesterly gales
and on occasion unpredictable swell waves which can come up out of what
appears to be a calm sea.

As is well known, the tides in the Bristol Channel are among
the highest in the world, the mean spring tidal range at Port Talbot

being some 28% feet and the range at the equinoxes over 33 feet.
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The port of Talbot was started in 1834 and a breakwater was
built on the south side of phe entrance channel for a length of some
1200 feet in approximately an east-west direction. In 1897 an
additional 1,000 foot extension to the main south breakwater and a
new north breakwater were constructed (Fig.2.36).

The extension to the south breakwater was of much more massive
construction than any of the work to that date. The breakwatér was
a composite type formed of mass concrete faced with concrete blocks,
headers, and stretchers laid upon a foundation dredged to a depfh
of some 8 ft. and filled with heavy copper slaé. The structure
was keyed concrete blocks laid on sloping land to allow for
possible unequal settlement. The seaward face of the breakwater
was further protected by the provision of a 22-ton unit weight
concrete wave breaking block laid pell mell. In the 70 years or so
which elapsed since the strengthening work, it has weathered many
very severe storms and required only limited maintenance.

The north breakwater was built at right angles to the shore line
on a bearing of 208° E. of N., for a length of some 1,500 ft. from
the high water mark and was thus considerably inshore of the head
of the main or south breakwater. Possibly because of this, it was
looked upon from the first as a "lee'" breakwater. This is a
misconception for while undoubtedly the north breakwater is protected
from the weather by the south breakwater in a direction from east
running through south to a bearing of 205° E. of N., the preponderance

of fierce gales and extreme waves come from the open Atlantic from a
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Fig. 2.36 Site Plan Showing the Breakwater at Port Talbot
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Fig. 2.37 Design of Reconstructed Breakwater
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southwesterly direction between 219° E. of N. and 258° E. of N.,
from which direction both breakwaters are completely unprotected.

Be that as it may, the design adopted in the 90's was of lighter
construction than the main breakwater and was of the timber crib
type of jetty which was common practice at that time. This consisted
of timber piled frames or "bents'" driven at 8-ft. spacing and cross
braced with half timbers and aligned longitudinally with whole timber
walings on each side. The piles were driven to penetrate well into
the underlying clay and records show this to have been (or assumed
to have been) some 5 ft. below the thin level of the sand surface at
the head, the piles penetrating a further 8/9 ft. into the clay
at this point.

Short half timber piles were driven between the main bents and
attached to the intermediate waling (about 4 ft. below H.W.S.T.) toeing
into the underlying clay. From the lowest waling (beach level) é4-in.
sheeting was driven to toe into the clay bed. From the bottom waling,
an 18-in. thick concrete wall was built up to approximately H.W.S.T.
level inside the main piling on each side. The space between these
walls was filled in with a hearting of copper slag finished with a:
layer of grouted slag at about H.W.S.T. The top cross tie of the
bents and longitudinal waling were finished with a 4~-in. planking
deck set at 8-ft. 6-in. above H.W.S.T.

It should be added that the outer Af ft. of the breakwater
forming the head, which was finished so that‘it could be extended
in the future if required, was of a stiffer design and was filled

in solid with heavy copper slag and 12:1 concrete.
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The north breakwater has frequently sustained extensive
damages during the last 50 years and constaﬁt repairing was required.
Finally in 1960, the British Authority came to the decision to re-
construct the north pier. Various schemes were examined. These
schemes can be broadly grouped under two headings:

1. Vertical wall breakwaters with roadway on top;

2. Rubble mound breakwaters with roadway on top.

In designing a vertical wall breakwater,lthe essentials are, of
course, to obtain a stable foundation and, secondly, to build upon it
a structure solid enough or suitably braced to withstand the breaking
forces of the waves. The first would be difficult and very expensive
to achieve as there was no question of forming a raft owing to the
presence of the old structure. Furthermore, the sand beach was of
such fine grain that it was not suitable to stabilize by cement
grouting and, of course, any question of coffer damming was out owing
to the extreme tide range. As to stablizing the structure in itself
by the introduction of cross ties and braces, this would be very costly
as such ties would have to be drilled through the existing structure
on low spring tides in reasonably calm weather. It was considered
that the actual construction of the vertical wall of the breakwater
would be both difficult and costly and the decision was therefore
made to examine the possibility of converting the breakwater into a
rubble mound.

The characteristics of this form of breakwater are a sloping
mound of heavy stone or rubble protected from wave action by a skin

or facing of stone or concrete block armoring which is placed in
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random fashion so as to produce ample voids to absorb the energy of
the breaking waves.

The design wave was selected as 15 ft. high. Hydraulic model
tests were performed at Grenoble before arriving at the final
design. The final design of the reconstructed breakwater has a typical
cross section shown in Fig. 2.37 . The existing structure was used
as a core or spine for the new work and was covered and partly encased
for its entire length of some 1,500 ft. by a 15-in. thick concrete
deck slab with skirting walls each side running down to as much as
10-ft. below the new deck level, as a protection to the existing
face. This cap was reinforced transversely with old bullhead rails
as cramps, interconnected with longitudinal rails and m.s. reinforce-
ment. To allow for uneven settlement or other movement, the capping
was constructed in 32-ft. lengths with the idea of forming the core
into monolithic units of not less than 100 tons apiece. | |

From a point 500 ft. from the root or landward end of the
breakwater a foundation fof the toe of the embankment was formed at
a beach level as described.

On the seaward face of the breakwater from the root to c.s. 7
(600 ft.) the exposed toe of the existing work was protected against
erosion by Pennant stone blocks Class C (7 cwt. to 15 cwt.) laid
on a slope of approximately 1 on I%.

From this point to approximately 1,260 ft. from the root, the
embankment consists of an inner core of B class fill (quarry run to
1 cwt.) covered by 4-ft. thick of C class fill and protected from

wave action by a double layer of 2.5 m3 Tetrapods with, however, a
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3 Tetrapods and finished with a berm at the top of

toe row of 5.0 m
the slope with 5.0 m3 Tetrapods laid to a density of 4 No. per 8-ft.
measured longitudinally. The transverse slope of the embankment was
1 on 1.33.

For the outer 250 ft. and round the head to the lee side, the
transverse section of the embankmeng is armored with a double layer
of 5.0 m3 Tetrapods throughout, laid on a slope of 1 on 1.33. The
Tetrapod armored embankment is carried as a wrap round the head to a
point 100 ft. shoreward of the head on the lee side. :he embankment
slope of the lee side is flattened to as much as 1 on 3 to form a
haunching or buttress to the armor directly in front of the head and
strengthen it against attack from the southwest.

On the lee side, protection against erosion was given to the
face of the existing structure, which was in much better condition,
by Pennant Qtone random rubble (7 ewt. to 1 ton) laid at a slope of
1 on L% from a narrow berm, level with the bottom of the capping
skirt. This was stiffened up with Class S fill (Penant stone 1 to
3 tons) on a considerably widened slope in the last 200-ft. of the
outer end to form a buttress to the Tetrapods. The work was
completed in 1964,

Several severe storms have been experienced in this time but
the genéral effect seems to have been to lock the f£ill and armoring
more closely than it was possible to place it, and flatten the slope
of the unprotected stone armoring on the inshore seaward face to

lon 3 or 4. During a force 8 gale on the 16th/l7th of January
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when gusting up to 70 mph was recorded, three small Tetrapods were
moved down to the beach, close in against the toe of the slope, at
a position about 25 ft. back from the change of section ip the

armoring. Apart from this, the Tetrapods appear to be doing their

job very well.

L. East London Harbor, South Africa

The breakwater at East London was the first test ground for the
much publicized artificial armor unit--Dolosse. The original breakwater
was constructed as a mound formed by rectangular blocks weighing from
15 to 30 tons each, topped with a 36-foot wide concrete cap reaching to
16 feet above Low Water Ordinary Spring Tide and a seaward parapet of
5 feet 6 inches high. By 1884, 1,500 feet of breakwater had been com-
pleted and the structure was ended off with a round head. Between 1911
and 1917, the breakwater was extended a further 776 feet using 40-ton
rectangular blocks placed at random while the end portion was raised to
19 feet above LWOST. 1In 1935, the third and final stage of construction
commenced, The breakwater was extended by a further 1,000 feet, also
to 19 feet above LWOST using 33~ton blocks. This work was completed in
1939 and the breakwater is now 3,276 feet long,

The seaward face of the breakwater was at one time protected with
a random layer of 33-ton rectangular blocks over a length of 1,000 feet
on the seawafd end of the breakwater and with 4l-ton blocks over the
remainder. During 1944, a severe storm breached the breakwater some

two hundred feet from the end, carrying away a considerable number of
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33~-ton protective armour blocks. The breakwater was repaired and

the whole seaward face protected to a height of 24 feet above LWOST
with 41-ton rectangular blocks placed at random to an approximate
slope of 1 1/4 horizontally to 1 vertical..In 1963, i.e. nineteen
yvears afterwards, it was estimated that the outer half of the break-
water had lost at least fifty percent of its seaward random block
protection, while a few sections were almost stripped bare to the
original mound core. It was, therefore, evident that the existing
rectangular 4l-ton armour blocks did not provide a stable protection.

A small number of the 19 3/4-ton Dolosse were placed in a line
(not interlocked) on a section of thé foreshore near the root of the
breakwater to test the individual characteristics of the blocks., They
were subjected to breaking waves up to 18 feet in height and, although
only seated on small loose round boulders, they moved very liﬁtle by
swinging sideways and tending to "dig in." They showed no tendency to
roll or glide away as happens to rectangular blocks.

By the end of 1965 approximately 450 Dolosse had been placed at
random around the end of the breakwater and along a short section of its
seaward face. It was found during the first severe storm that Dolosse,
which were not completely stable yet, moved into more secure positioms
and a general "settling down'" of the Dolosse occurred, forming a permanent
and better packed group. After this initial settling no subsequent move=-
ment has been observed and the blocks have now withstood the severest
storms, with estimated wave heights of up to 25 feet, of two winters,

while during the first winter (1964), five 4l-ton rectangular blocks
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were swept over the breakwater cap, at a section where there was no
Dolosse" protection.

Duringla storm or 'heavy seas,' and particularly when the wind is
blowing in the same direction as the waves, it is quite impossible to
traverse the breakwater due to large amounts of water splashing over the
top, and due to strong clapotis. On one occasion when the waves were
estimated to be of the order of 20 feet high, the only manner in which
thé light at the end of the breakwater could be reached was by ﬁeans of
a steam locomotive. At the round head, which is protected by Dolosse,
it was possible to walk about the breakwater deck with perfect safety,
and only a light spray brought over by wind was experienced.

No damage of any sort, including erosion, has been observed in any
of the Dolosse over a period of two years and, although many blocks fell
and slid four to five feet during placing, none of them suffered any
damage except for minor clipping of the edges. This seems to be the

first happy story of Dolosse application.
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2.3 Major Breakwaters in Japan
There are more than 1,000 ports in Japan; most of them are protected
by breakwaters or jetties of one kind or another. Figure 2.38 shows
the major ports in Japan. Since Japan is a country continually battling
with storms, tsunamis, tvphéons, and earthquakes, they have constructed
and are continuously constructing many marine protection structures. In
1966 alone, Japan spent $60 million in levees, breakwaters and jetties.
Usually, extensive theoretical and model test work is conducted prior to
construction. The most :vpicai breakwaters which have been constructed in
Japan are caisson-type composite breakwaters. Rubble-mound structures are
also common. A few of the important onmes are described here.
A. Nagoya, Ise Bay
The Nagoya breakwater is a large-scale breakwater built as a
link in the general Ise Bay Storm-Tide-Prevention Project. The
entire length of this breakwater is about 8,250 m (27,000 ft), which
extends from the mou:h of the Nebeta ruin, transversing the
northern part of Ise Bay, to the Chita Town (Fig.2.39). The
purpose of this breakwater is to prevent damages from storm-
tide and waves caused by typhoons. This project was completed in
September, 1964 at a cost of about 530 million. Based on past
oceanic meteorological data and computer analysis of storm tides,
the following design conditions are established:
a)l Waves: 3.0 m (12 ft.)
b) Storm Tides: 2.3 m (9.1 ft.)
c¢) Meteorological Tides: 3.55 m (9 ft.)
d) Crown Elevation: 7.5 m (19 ft.)

e) Soil Condition: sand to silty clay
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Since the soil condition along the line of the breakwater varies
from place to place, the entire breakwater was divided into four
sections as shown in Fig.2.40. In the exchange section, the soil
is very poor for foundation purposes and is therefore exchanged
through dredging and replacing with sand. The breakwater in this
section is of composite type as shown in Fig.2.41 . The drain
section is a section where the soil condition is marginal and is
improved through sand-draining. Typical breakwater cross section
in this section is shown in Fig.2.42. On the western part of
Naleta Bank where the soil is good and the water is shallow, stepped
“ rubble-mound breakwater, such as that shown in Fig.2.43,was chosen.
Finally, a transient section of concrete block (Fig.2.44) was chosen
to link the mound section and drain section.

The caissons are of ordinary type where the side walls are
designed as a fine slab of three sides. The armor layer is composed
of "A" stones of weight determined by the Iribarren-Hudsen formula.

In summary, the Nagoya storm-tide-preventing breakwater is
one of the major protection projects in Japan. It was well planned,
designed and executed. It is one of the unique structures that

consist of a variety of structure types linked together.

B. Kaga-Sanko Jetties

The Kaga-Sanko jetties were constructed in 1965 at the outlet
of a diversion channel of the Kaga-Sanko rec;amation project
(Fig.2.45), The west jetty is 130 m (512 ft) long and the east
jetty extends 90 m (354 ft). This is not a large structure by any

means but is one of the few recently constructed protection
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structures in Japan using tetrapod as armor unit of 2 to 6

layers and having a steep face slope of 1 vertical to 1 horizontal.
Typical cross-sections are shown in Fig.2.46. It is another
example of composite-type breakwater commonly seen along the

Japanese coast.

C. Hachinoke Harbor

The breakwater of Hachinoke Harbor was constructed in 1968
and 1969 with a total length of 1,400 m (5,512 ft.) in water to
10 ft. deep (Fig2.47). It is a caisson-type composite breakwater
with cross section shown in Fig2.48. A section of the breakwater
shown in Fig.2.49 was damaged and slid about 6 m (24 ft) during

a storm in January, 1971.

~D. Onahama Harbor

The breakwater at Onahama Harbor (Fig.2.50) is another
composite caisson breakwater (Fig.2.51) constructed in 1967
and was slid ;bout 0.3~ 0.9m by storm waves in April 1971 for

a section of approximately 300 m long in water of 14 m deep.

E. Other Recorded Damages in Japan

The breakwater at Haboro Harbor, Hokkaido, was observed to
oscillate with severe waves. The breakwater at Kashima suffered
local scouring and slid about 0.2 m to 5 m in a storm of January,

1972.
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E. Breakwaters at Madras, India

A section of the original breakwater is shown in Fig. 2.52; each
block, of which the vertical wall was constructed, weighed about 27
tons and was built into the wall without bond. The sea-bed consisted of a
large bed of shifting sand extending some 600 feet from high-water marks
into about 15 feet depth of water, beyond which the bed of the sea was
stiff blue clay with a small depth of firm sand upon it. The beach
slope was steep, and there was always a heavy surf breaking on tﬁe
shore.

In Novgmber, 1881, a cyclone originating somewhere near the Nicobar
Islands travelled across the Bay of Bengal in a north-westerly direction
and struck the Coromandel coast some 100 miles south of Madras. The
waves came with great regularity from a direction a little north of
east, the breakers being parallel to part of the north face of the old
north wall. The swell reflected from the face, meeting the waves direct
from the sea, set up large confluent waves which appear to have closely
hugged the elbows (the sheltering arm being, of course, not yet in exis-
tence), following them round and dislodging the blocks so that the outer
row fell outwards, and the inner row inwards. On the faces CD and HG
(Fig. 2.53) the walls rocked and fell inwards. The north and south pier
or arms were undamaged, but water poured over them and caused a current
from the harbour outwards through the entrance: Some sections of the
vertical walls were undermined in places to the unprecedented depth of
22 feet below water, and some of the work even fell outwards under

pressure of the water pent up within the harbour. A report on this damage
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was submitted by G. L. Molesworth, who made a close underwater inspec-
tion, and gave his opinion that the following effects of wave action
and ground swell were the causes of the catastrophe:

1. Direct blows of waves on the outer blocks, the force of which
may have varied from 1 to 3 tons per square feet.

2. Percussive action communicated from one block to another; this
might cause the last or inner row of blocks to be driven in, while the
outer row and intervening rows were untouched.

3. . Compression of air in the joints; this is caused by the wave
blows, and the concussion is communicated to the water also in the joints--
an action similar to that of the hydraulic ram.

4. Dragging action of the waves on the top block.

5. Vacuum formed behind the wall as the waves overtopped the wall
and receded into the harbour (Fig. 2.52).

In consequence of this disaster the walls, after repair, were raised
an additional 9 or 10 feet in height, with improved bonding and jointing,
together with protection in certain places composed of 30-ton blocks; the
wall as redesigned in 1883 is shown in Fig. 2.54. |

Unfortunately it has to be recorded that during a cyclone of excep-
tional severity in November 1916 the monolith pierhead, 42 feet square
and 50 feet in height, and founded 6n rubble on the sea-bed (which at this
point lies(at a depth of 42 feet below low water), was tilted over into a -
hole about 10 feet deep caused by the scouring action of the storm waves
- on the northern and western sides of the base. Deprived of the protection
afforded by the pierhead, a contiguous length of 130 feet of the new
sheltering arm was destroyed piecemeal. This damage was made good and

a new pierhead installed after World War I.
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F. Breakwater at Virzagapatam, India

The island breakwater at Vizagapatam on the east coast of India
is not a substantial étructure, but is rather unique in its comnstruction
and its subsequent modification; thus, warranting some mentioning.

The breakwater, consisting of two suttled ships filled with 1/2 cwt
to 1 cwt rubble stones, was pratécted by 2-ton to 6-~ton stomes on the
weather and lee sides.

The weather side protection was damaged heavily by the storms of
1933 and 1940. Begause of the progressive removal of stones in the
rubble mound, the ships' plates were badly damaged. The rubble was
consequently drawn out to the sea leaving hallows at numerous places.
Realizing the necessity of strengthening the breakwater, 5-ton blocks
were placed in 1959 on top of the rubble mound for preventing further
deterioration (Fig. 2,55). These concrete blocks also failed to with=-
stand wave action and assumed flatter slopes. Experiments were con-
ducted to determine the relative merits of various armor units for optimum
application. The breakwater was tested for a period equivalent to 12
hours in the pratotype and the following observations were noted:

1. Number of blocks dislocated for the armor layar;‘

2, Oscillation of blocks in the armor layer;

3. Settlement of the structure as a whole and the final profile
of the structure that was attained;

4. Stability of the toe of the breakwater;

5. Any strikingly notable characteristics;

6. Pressures on the ships' plates in order to compare the effectiveness

of different protective layers in sustaining and reducing wave. attacks.
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The various armor units tested included Concrete blocks of 12-ton,
20-ton, and 25-ton (Fig. 2.56)tetrapods of 12-ton size (Fig.2.57) and
tribars of 12-ton sizg. (Fig. 2.58). It was found that (a) the stone
blocks were completely unstable, (b) the 1l2-ton tetrapods laid on a 4
to 3 slope, were disturbed under breaking waves of 14 feet high and
14 sec. in duration, (c) trenching is necessary for tetrapods to prevent
dislocation, (d) 12~ton fribars were satisfactory on a 1.5 to 1 slope,
howéver, strange enough tribars of 12 tons laid pell-mell at the toe of
the breakwater were not stable and a toe.protection of 5-ton stones was
found essential, (e) it was evident that toe protection is crucial to
the breakwater stahility. It was recommended that after each storm
season, the entire toe protection should be thoroughly examined and

replenished.
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2.4 Summary

Major breakwaters in the world largely falls into one of the
two categories; that is, rubble~mound type and composite type. Almost
all the major breakwaters in the United States are rubble mound struc-
tures, whereas most of those in Europe and Japan are composite type.
To a varying degree, breakwaters are liable to damage due to hostile
environment no matter how well they are designed. Constant replensh-
ment is often required. On the other hand, catastrophic failures seldom
occurred, particularly after 1950 when breakwater design took a more
rational approach. Artificial armor units are generally considered
superior than natural stones for stability. Yet, for almost all the
cases reviewed, breakwaters covered by armor units have sustained a
finite degree of damage in the very first few years of emplacement.

Damages can be a result of many causes. Attacks of breaking waves
are undoubtedly a major contribution to local damages. However, major
damages in a relatively short duration are commonly coincided with high
wéter and substantial overtoppings. Heads of brgakwaters are more
liable to damage than trunk sections.

A number of damage modes have been experienced in the past instances,
among them:

a) the instability of armor units including dislocation, breakage,
settlement and consolidation (most of the rubble mound breakwaters).

b) breakwater sections sliding off (Catania, Genoa, Madras).

c) breakwater collapsed as a whole (Algiers).

d) settlement of foundation (Marseille).

@) structure breakage due to falling water (Alderney).
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f) the insufficient stability of sea-side slope and the resulting
flattening (Praia de Vitoria).

g) section bleached due to falling water (Ymuidem).

h) breakwater section sliding out of place (Hachinoke, Onahama).

i) scouring of foundation (Kashima,Madras)

j) breakwater caisson overturned due to difference of sea level
between sea side and Harbor side caused by trunami (Hachinohe).

Hydraulic model testing proved to be an important and useful tool
in breakwater design. There were good evidences that model studies can
reveal the pqtential damage. areas. The model studies were less accurate
in predicting the extent of damage. Unfortunately, the model predictions

tend to be less conservative.
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3. CURRENT DESIGN PRACTICES

3.1 Existing Codes, Standards, and Specifications

In the United States there are no existing design codes and/or
specifications for breakwater design. Commonly referenced design staﬁdards
are:

a. Shore Protection, Planning and Design Technical Report

No. 4, 3rd ed., U. S. Army Coastal Engineering Research

Center, 1966.

b. Design Manual - Soil Mechanics, Foundations, and Earth

Structures NAVFAC DM-7 U. S. Naval Facilities Engineering
Command, 1971.

c. Design Manual -~ Waterfront Operational Facilities NAVFAC

DM~25, U. S. Naval Facilities Engineering Command, 1971.

d. Design Manual - Harbor and Coastal Facilities NAVFAC

DM-26, U. S. Naval Facilities Engineering Command, 1968.

In Japan, there are no design codes and/or specificatioms either.
The commonly referenced publications are:

a, Design Criteria of Port and Harbor Structures Japan

Association of Port and Harbors.

b. Design Handbook of Shore Structures Japanese Society of

Civil Engineering.

c. Handbook of Hydraulics Formula Japanese Society of Civilﬂ

Engineering.

In England, there are no design codes and/or specifications.-
The commonly referenced publication is:

Dock and Harbour Engineering (4 Vols.) Charles Griffin & Co., LTD.

L

London, 1969.
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In the Netherlands there are no design codes and/or specifications.
Important literature concerning the design, construction and stability

aspects are a series of confidential reports M856 (14 parts), M1105 (3 parts),

M1117 and M1225 (all in Dutch).
The Director of the Rijkswaterstaat also published a number of

notes concerning design procedures for rubble mound breakwater that have
been used during the past decade in the Netherlands.
In summary, from all the countries with which I corresponded,

there are no design codes and/or specifications that are enforced by

public agencies.
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3.2 Commonly Accepted Design Practice

3.2.1 Environmental Factors

Oceanographic data rarely appears orderly but random in nature.
Therefore, statistical method is often employed to analyze the data and to
set criteria to determine proper values for design purposes.

In the offshore structure design, two types of statistical information
are generally sought. The first type is the so-called long term statistics
which prévide design parameters such as 50-year design wave, 100-year extreme
winds, etc. Such parameters when incorporated with designated design structure
life enables one to determine the loadings. The second tvpe of information
involves the statistical representation of certain oceanic phenomena which do
not have simple time or space variations. Typical examples of this type can be
found by using the gpectrum to represent sea surface variations or earthquake
input. Such information is of paramont importance when one comsiders the
dynamic response of offshore structures.

3.2.1.1 Wind

Wind is an important but indirect factor in breakwater design.
Direct wind loading is generally neglected. However, storm waves, storm
tides, wind-driven currents and, sometimes, water sprout are all closely
related to the design wind condition. Two kinds of information are only
commonly employed - long term statistics of extreme values and fluid
mechanics models of storms.

Strictly speaking, the wind statistics should consist of
three aspects: the speed, the direction, and the duration.

In the present practice, however, long term statistics are
sought in terms of wind strength versus return period. A number of methods
have been developed in the éast to estimate long term statistics of extreme

values; among them, Gumbel's first asymptotic distribution (sometimes
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referred to as a Fisher-Tippett Type 1 distribution ( Ref. 651,
Ref. 648, Ref; 661, Ref. 663) ' . and Frechet extreme
value distriﬁutions (sometimes referred to as a Fisher-Tippett Type II
distribution, Thom. 1973 a; 1973 b) have been extensively used. The
Gumbel's first asymptotic distribution is not bounded. This means that
the expected makimum value will tend to grow without limit as the interval
of prediction approaches infinity. Thus; if this distribution has any
bias, it is in the direction of overestimation. The Frechet distribution
is related to the first type by an exponential transformation. Figures
3.1 and 3.2 illustrate, respectively, the two types of distributions when
applied to wind predictions. The method of Gumbel's distribution is
introduced here. The method of applying Frechet distribution is similar
in principal and the readers are referred to references cited above.
Gumbel's first asymptotic distribution function has two basic
features: first, if the initial distribution is of exponential type
such as normal distribution, then the trend of logarithmic increase is
a straight line; secondly, the asymptotic distribution function of this
type, i.e., when number of trail becomes large, is a universal one and

has the form

-

F(x) = e © (3.1)

where

y = a(x-u) (3.2)

is the reduced variate of largest value, and x is the actual largest
value. The parameter u is the mean value, and 1/a is the measure of
dispersion; both of them have to be determined by experiment. The return

period according to the asymptotic distribution is
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SRR S (3.3)
1-Exp(e™?)

For T > 7, we have
T=¢ +1/2 (3.4)

The application procedures consist of three major steps: present
data on probability paper, fit the expected straight line, and construct
control curves.

Present Data on Probability Paper — The inputs required for an estimate

of expected maximum values are a tabulation of maximum attained values
over a specific interval, usually a year. The statistics of yearly
extreme random variable x, such as the annual extreme wind or significant
wave height,are first arranged in descending order; each of the data has
a corresponding return period. The yearly extreme is plotted as the ordinate,
the reduced random variate y, the probability distribution of yearly extreme
random obaervationﬁ Wk(x) and the return period R(x) are plotted as three
different abscissas. In such a plot, the random variable x and the reduced
random variable y are linearly related and in linear scales, but the
probability Wk(x) and the return period R(x) are in non=-linear scales
(see Fig. 3.1).

To estimate the maximum expected values in a very long run, each

th smallest value is assigned a plotting position

observed value L of them
‘given by the frequency value (m/N+l), where N is the sample.size.. m/N+1
can be looked at as the cumulative distribution function plotted on the
abscissa of We(x). If we transform the extreme probability “Vg(x) to
linear reduced variate by y = -lg (-lg(m/N+1)) then we can plot.évery

point of (ym, xm) very easily on extremal probability paper-
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The Expected Straight Line — The observed points plotted on the probability

paper cannot be used as a prediction tool. We hope that the theory applies
to the ohservations and consequently‘there.eﬁists a linear relation between
yearly extreme random observations i and reduced variate y. To obtain
such a relation, two parameters o and u in Eq. (3.2) are to be estimated.

These values are calculated from

1 .
E‘ = Sx/U(.N) (3-5)

and

u=x - y®/a (3.6)

where Eﬁ is the sample mean such that

Z|—=

N
X, = x (3.7)
N 121 i

Sx is the sample standard deviation,

5 =,\/-,(N*"- - G’ (3.8)

X

o(N) and y(N) are the theoretical standard deviation and mean of the
extreme value distributions both of which depend on the sample size. These
values are presented in Table 3.1.

- Substituting these values into the equation of the return period,
the relation between return period and the extreme variate can be
determined. It represents a straight line on the semi-log plot. This
straight line represents the expected value forla certain return period, or

can be interpreted as the line of 50% confidence of non-exceedance.
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Table 3.1

(N) and ?(N) as Functions of Sample Size For Extreme Value Statistics

Means and Standard Deviations of Reduced Extremes

N y(\) a (y) N y () a(y)

10 .4952 .9497 35 .5403 1.1285
11 .4996 . 9697 36 .5410 1,1313
12 .5035 .9833 37 .5418 1.1339
13 5070 .9972 38 « 5424 1,1363
14 .5100 1.0095 39 «5430 1.1388
15 .5128 1.0206 40 «5436 1.1413
16 .5157 1.0316 41 «5442 1.1436
17 .5187 1.0411 42 « 5448 1.1458
18 .5202 1.0493 43 «5453 1.1480
19 .5220 1.0566 g «5458 1.1499
20 «3235 1.0628 45 +5463 1.1519
21 «5252 1.0696 46 .5468 1.1538
22 .5268" 1.0754 47 .5473 1.1557
23 .5283 1.0811 48 « 5477 1.1574
24 +5296 1.0864 49 +5481 1.1590
25 .5308 1.0915 50 «5485 1.1607
26 «5320 1.0961 i «5489 1.1623
27 .5332 1.1004 52 +5493 1.1638
28 .5343 1.1047 53 «5497 1.1653
29 «5353 1.1086 54 <5501 1.1667
30 «5362 o 1.1124 53 = «5504 1.1681
31 " #5371 1.1159 56 .5508 1.1696
32 .5380 1.1193 37 .5511 1.1708
33 .5388 1.1226 58 .5515 1.1721
34 .5396 1.1255 59 .5518 1.1739
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Table 3.1 (Cont'd)

Means and Standard Deviations of Reduced Extremes

N y(N) (y) N y () )
60 .5521 1.1747 88 .5583 1.1994
62 .5527 1.1770 90 .5586 1.2007
64 .5533 1.1793 92 .5589 1.2020
66 .5538 1.1814 94 .5592 1.2032
68 .5543 1.1834 96 .5595 1.2044
70 .5548 1.1854 98 .5598 1.2055
72 .5552 1.1873 100 .5600 1.2065
74 .5557 1.1890 150 .5646 1.2253
76 .5561 1.1906 200 .5672 1.2360
78 .5565 1.1923 250 .5688 1.2429
80 " .5569 1.1938 300 .5699 1.2479
82 .5572 1.1953 400 .5714 1,2545
84 .5576 1.1967 500 5724 1.2588
86 .5580 1.1980 1000 .5745 1.2685
Wh = ~lg(-lg =
ere : 3 g(-18 § 4 7
N
1
y(n) = N ) Y
u=1
2

o’ (y) = YZ(N) - y(N)
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If confidence levels other than 50% are desirable, control bands
can be located on either side of the extremes.

Control Curves — The purpose of using control curves is very similar to

the use of significant levels in a normal distribution. For example,

in a normal distribution with zero mean for 90% confidence, the observation
will be within the band between x = -1.645 to x = 1.645. The real ob-
gervations within this range is allowable under .9 probability. In a

similar way, two control curves can be drawn in the upper and lower part

of an estimated straight line. Different probabilities will have different
control curves. The wider band the control curves, the larger probability

it will be. The control curves is a test of the theoretical fitness of

the past observations. It also can tell the deviation of future observations
from the estimated straight line with certain probability.

It is difficult to find asymptotic errors of order statistics directly,
but indirectly to construct control curve is possible through the standard
errors of normal distribution.

The construction of control curves should be separated into three
'parts:

a) The first set of control curves related to the body of the data
is located on either side of the x=-ordinate. When the total number
of the sample is large, the asymptotic errors of order statistics
can be obtained from the standard errors under the condition of
normal distribution. Gumbel has proven that this convergence

ﬁill be fast if the initial distribution Fx(X) is within the range
of .15 to .85. There are different standard errors corresponding
to different probabilities. Table 3.2 presents these standard

errors. When N is known and a is estimated, the standard errors
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Table 3.2

Standard Errors for Gumbel's Asymptotic Distribution Function

Probability Reduced Standard Error Reduced Variate
We (XD No (y) ¥
#15 1.2548 -.64
.20 1.2427 -.48
25 1.2494 -.33
.30 1.2685 -.19
.35 1.2981 -.05
.40 ' 1.3386 .08
.45 1.3845 .23
.50 1.4427 37
+35 1.5130 +51
.60 1.5984 .67
.65 1.7034 .84
.70 1.8355 1.03
A 2.0069 1.25
.80 2.2403 1.50
.85 _ 2.5849 1.82

Table 3.3

Values of fi(N) As a Function of Rank

N
i 1 2

1 1.140 ' 3.07
2 0.754 1.78
3 0.589 1.35
4 0.538 ; 1:17
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can be

G(Xm) will be known. Add and subtract these values from
corresponding points on the eﬁpected straight line, the fifteen
points can be obtained on each side. Connecting them with a
smooth curve, the first part of control curve is constructed.
b) The second part of the control curves is located on either

side of the top extremes of X at the distance
x, = fiCN)/u

Where the function f£;(N) depends on the indek of rank and on the
number of standard deviations of the dispersion, Table 3.3 applies.
In practice only the values corresponding to i = 1 and 2 are of
interest.

¢) Since there is no theoretical basis which can be followed

when the cumulative probabilit} is beyond N/N + 1, the prediction
is therefore less reliable and must be used with caution. The
current practice suggested by Gumbel is to draw two straight

lines parallel to the theoretical straight line for that range.

Through these three steps, connecting all points, the control curves

fully constructed.

" From the above method of data analysis, one establishes the extreme

value versus return period with certain degrees of confidence level (i.e.,

one standard deviation yields 68.3%Z confidence of non-exceedance, two

standard deviation yield 94.5%Z confidence of non-exceedance, and so om).

These extreme values and return periods, together with desired lifetime

of the

structure, enable one to establish the risk factor. The-

following equations apply:
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Te = -T, In(1 = R) (3.9)

d

where Te is the desired structure life and R is the risk factor in percentage.
For eﬁample, one desires to have a structure life time of 50 years,

at a 3% risk, then the design return period should have

Te

Td T~ D = 1,500 years

In analyzing wind loadings on structures, gust factors are often
considered. However, for breakwater design, the wind information is usually
used to estimate wave conditions and storm surges at the site, short-duration
peak wind can generally be neglected.

As to the fluid mechanics models of storms, one usually is interested
in high intensity events such as the representation of a toronado. A
toronado may result in unusually high-intensity wind of short duration and
abnormal high water in limited regions due to pressure drop. A common
theoretical representation of a toronado is the so-called Rankin Vortex
model (Fig. 3.3). The velocity and pressure distributions can be

estimated by the following equations:

Vv =20
T
Vo ~ ke rI T, (3.10)
and 2
To
Vo = K - ) r,

where K is a constant and r0 is the radius of rotational core.

B
1+ 5 _ (3.11)
rO

P P %

where P, atmospheric pressure at the outer-most circular isobaric line of the

storm.
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3.2.1.2 Waves

At present, waves are probably the single most important factor
being considered in breakwater design. Effects of waves on the break-
waters have also received most of the attention from researchers and
designers. Factors pertaining to waves are their height, periods,
duration, and direction. Basically, waves are expressed either as mono-
chromatic trains of regular shape or as random phenomena of irregular
shape. |

The wave height is the primary factor concerning the stahility,
damage, or runup and overtopping incurring on the breakwater. Many
existing stability criteria are expressed strictly in terms of wave
height ( Refs. 217 and 304, Ref. 431, Ref. 347).

Until recently, the effects of wave periods have been generally
neglected in the structural design of breakwater although it has been
recognized that wave length (sometimes expressed in terms of wave steep-
ness) is an important factor for wave rupup and overtopping. As previously
discussed, one of the primary damaging mechanisms on the lee side of the
breakwater is the overtopping waves. Therefore, neglecting wave periods
in breakwater design is not totally justified. In addition, wave periods
are closely associated with wave breaking; breakers of various forms
will result in differént loadings on structures (Figs. 3.4 and 3.5).
Also, it has been reported recently ( Ref. 477) that the effects
of wave periods appear to be more significant in the later stage of
damage on breakwaters.

The storm duration is another factor which is lightly treated in
breakwater design at the present time. This factor is of considerable

importance in the advanced stage of damage (see, fo; example, the breakwater
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at Praaia da Vitoria, Portugal). Above a certain level of wave height,
damage of the structures will increase if sufficient duration is allowed.
Below this level the damage to the structure stops at a certain limit
where a new equilibrium profile is obtained. Therefore, the design
duration should be established to ascertain that the damage would not
endanger the integrity of the structure. There is also recent speculation
that the time history of wave attack (i.e., whether the breakwater is
first attached by smaller or larger waves) has some bearing on structure
stability.

In the past it was commonly accepted that a regular wave train
with designated design wave height and period could be used for both design
calculation and model testing. This practice has now been challenged,
particularly in Eurpoean countries. In a joint project conducted by the
Delft Hydraulics Laboratory of The Netherlands and the River and Harbor
Laboratory of Norway on Europort Breakwater, it was claimed that irregular
waves seemed to represent a more severe-wave attack than regular waves
with heights equal to the significant ﬁave heights of the irregular waves.
Since facilities that are capable of generating irregular waves are rather
limited and the test results were also limited, the investigato;s
cautiously qualified their conclusions to the particular breakwater. It
is also not clear whether the severer attack of irregular waves is due
to the portion of higher waves (rather than the significant waves) or
due to the random nature of the incident waves.

To determine the design wave condition, methods similar to those
described in the previous section dealing with extreme values can be
applied provided wave data is available. If such information is not

available an indirect method;such as that based on the wind wave spectrum,
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might be used. The design waye may then be chosen using either the
gignificant wave haight: (average wave height of the highest one-third
of the waves in the total wave spectrum) or the extreme wave height
(average wave height of the highest one-tenth of the waves in the total
wave spectrum).

In the event that statistical properties of storm waves or random
waves are employed as the design input, one-dimensional wave spectrum
(wave energy spectrum in the frequency or period domain) is presently used.
There are a number of variations in presenting the wave spectrum. For deep
water cases, the S-M-B method (Sverdrup-Munk-Bretschneider) and the P-N-J
method (Pierson-Newmann-James) are among the popular ones.

Just as the S-M-B method is based on empirical wave data, so it
is with the P-N-J method. However, the wave data utilized were not the
same in the two methods, and the method of analysis of the data was
different. The method of analysis of the data for the S-M-B method
consisted in determining the significant wave height and period, which in
turn were related to windspeed, fetch length, and wind duration.
Consequently, the_P-N-J method can be used to predict the spectrum of
waves, from which one may obtain the significant wave height as well as
the statistical distribution of the waves. The S-M-B method on the other
hand is used to predict the significant wave height, from which it is
possible to obtain the wave spectrum and the statistical distribution of
the waves. Both methods utilize the distribution function derived
theoretically by Longuet-Higgins (Ref,790) .This distribution function is
in very close agreement with the empirical relationships given by Putz (Ref.

793) based on the analysis of 25 ocean wave records. Consequently,

when both S-M-B and P-N-J methods predict exactly the same significant
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wave height, then the two methods result in exactly the same
distribution of waves;

Details of wave spectrum presentation, estimation and forecasting
can be found in Pierson et., al. (Ref. 646)Bretschneider {Ref., 640, 643)

For wave spectrum estimation in shallow water, the reader is referred to
Bretschneider (1954); Sakamoto and Izima (1964).

In breakwater design, the evaluation of water particle velocity
aﬁd water particle acceleration associated with the design waves is
sometimes required. This exercise entails the selection of wave theories.
Figure 3.6 summarizes the state of the art of the applicabilities of various
wave theories for different conditions. The various expressions for
various wave theories are too numerous to list here. A good source of

wave theories is the book Oceanographical Engineering by Wiegel (Ref. 708).

Another important consideration in breakwater design is the
determination of the concentration of wave energy. There are numerous
examples of breakwater damages that are localized at places where the
wave energy is concentrated. For instance, Goda (Ref.291)has cited many
cases of damage of this type which he termed "meandering damage" (see
Section 2.4).

| The phenomenon of wave energy concentration is basically due
to wave refraction which is a process by which the direction of a wave
moving in shallow water at an angle to the contours is changed. The
. part of the wavé advancing in shallower water moves more slowly than
that part still advancing in deeper water, causing the wave crest to
bend toward alignment with the underwater contours. Procedures to .

construct refraction diagrams are well developed. Two methods -
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the Waye-Orthogonal method and the Wave-Front method - are commonly used.

Graphical methods were presented in Shore Protection, Planning and Design

Manual (1974); Design Standard for Port and Harbor Structures (1968);

and in a number of articles (Ref. 796; Ref. 787). | Computer
programs were also developed for three-dimensional cases (Ref. 789;

Orr, 1969; Ref. 794).

3.2.1.3 Tides, Storm Surges and Water Depth

In breakwater design, both water depth and water depth variation
are important factors. The water depth affects the breakwater height,
runup and overtopping, scouring, and the characteristics of waves impinging
on the structure. The water surface variation determines the zone of
damage , scouring, and critical loading conditions. At certain levels
of water the forces may be due to unbroken waves, whereas at other water
levels the full effect of breaking waves must be resisted.

The major factors that govern the water depth and water depth
variations are the bottom contour, tidal variation, and storm surge.
The range of tidal variation is not only important to loadings on the structure
but also important to the selection of the types of breakwaters to be
constructed. For instance, for locations where both the tidal range and
the water depth are modest, rubble mound breakwater may prove to be a
good choice. On the other hand, when the tidal variation is large, composite
breakwater or vertical-wall breakwater may be more desirable. Because of
its slowly varying nature, the factor of tides in breakwater design
is almost entirely related to its effect on water surface elevation, and
the dynamic action of the tide could be completely ighored unless in areas

where the tidal currents are unusually strong, such as in the Cook inlet



Alaska. Astronomical tides are repetitive phenomena, thus predictive
from past occurrences. Determination of tidal variation does not usually
present a serious design problem. On the other hand, the meteorological
tide, often referred to as storm surge, is highly irregular in magnitude
and frequency of occurrenée in severe weather. Therefore, determination
of design storm surge often represents an important task in breakwater
design.

Two different methods are currently employed to analyze storm
surge problems. One of these methods is again utilizing statistical
analysis of extreme values as discussed earlier. To use such a method
one must, of course, have available historical data. The other method
is to predict the storm surge through meteorologiéal information.

Factors that influence the maximum storm surge are wind
stress, Corialis force, atmospheric pressure anomalies, resurgence,
resonance, impact of rainfall, wave setup, among others. There is also
the problem of convergence, divergence and bottom configuration changes.
Some of these factors interact with each other such as wind stress
and Corialis force and wave setup and bottom configuration. Others
contribute independently. Since storm surge is a complicated but
important problem, there have been a great number of contributions on
the subject. There are at least over 400 contributions on wind tide
and storm surge and related subjects (Ref., 646). These
cdntributions coveraed topics of actual observations, field measurements,
analytical studies and numerical computations.

Although the contributions on the subject are voluminous, there
is no gingle universally acclaimed one that is widely accepted by designers.

For instance, among the various computer programs for numerical calculation
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of storm surge, the Hansen numerical method, known as one of the H-N
(hydrodynamical-numerical) methods, was used for North Sea Storm

surge; Masamoci Miyazaki (Ref.791)developed a numerical program for the
Gulf of Mexico; Jelesnianski (Ref.653) developed a numerical program for
the case of no bottom stress; the numerical model developed by Pearce'"

(Ref. 654) was for Hurricane Camille; the Reif and Baoline's (Ref.658) model was

for the Bay area. &
For the reason that the problem of storm surge is different for

different cases,Bretschneider (Ref.788)made an attempt to classify the

design problem so as to aid in selection of appropriate formulas and

techniques most suitable for the problem. The classification is shown

in the folloﬁing Table:

CLASSIFICATION OF DESIGN PROBLEM

A. Enclosed Lakes and Reservoirs B. Off Coast or on Continental Shelf

1. Rectangular channel, constant depth 1. Bottom of constant depth

2. Regular in shape 2. Bottom of constant slope
3. Somewhat irregular in shape 3. S8lightly irregular bottom profile
4. Very irregular in shape 4. Irregular bottom profile
C. Coastline | D. Behind Coastline
1. Smooth coastline 1. Low natural barriers
2. Coastline somewhat irregular 2. Medium-high natural barriers
3. Jagged coastline 3. High natural barriers

E. Open Bays and Estuaries

1. Entrance backed by long estuaries and with tidal flow
moving freely past entrance

2. Entrance backed by short estuary and with tidal flow
moving freely past entrance

3. Entrance constructed sufficiently to prevent free
movement of tidal flow past entrance
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Discussions and suggested methods of analysis were also presented by

Bretschneider (Ref, 788).

3.2.1.4 Current

Current is an indirect factor; that is, in nearshore area
where the breakwater i1s usually constructed the current is induced by
waves, tide and wind. Large scale oceanic currents are of no particular
concern in breakwater design.

Currents affect breakwaters in a number of ways. They may cause
scouring of breakwater foundation by carrying away bottom material.

They exert drag force on the structure as a whole and on individual
units. The interaction of waves and currents may aid in wave breaking
and runup and overtopping. The interaction of currents and breakwaters
may cause shoreline modification. When a breakwater is partially
damaged, currents are the major agency of eroding the core away.

At present a number of methods can be employed to estimate
the three major componénts of currents - the tidal current, the wave-
induced current, and the wind stress current. However, in design
practice, one often relies on field measurement. Such a practice
is indicative to the fact that nearshore current is a complicated
phenomenon and that although the effects of currents on breakwater
structures are always mentioned in design, quantitative prediction is

often lacking.

3.2.1.5 Ice
Only a handful of literature can be found that deals with
the general effects of ice on coastal structures. Most of the literature

(Ref. 784; Ref, 783; Ref. 785; Ref. 786) are descriptive



There is practically no information on the effects of ice on breakwater.
Even in countries like Norway and Japan where some of their ports are
located at high latitudes, no design information has been documented on

ice effects.

3.2.1.6 Geological Information

Geological information required in breakwater design includes
detailed sounding of bottom topography and the soil condition. The
bottom topography should not only include the construction site but. also
extend to the near field so that wave propagation and refraction can be
determined.

To determine soil characteristics, core samples are usually
taken. Since most of the breakwaters are massive earth structures, it
is not uncommon to require deep cores 150 to 200 ft. The following soil
characteristics are commonly determined through laboratory testing:

Physical properties -

unit weight

grain size analysis
permeability
cohesion

porosity

Mechanical properties -

consolidation
shear strength
pore pressure

penetration resistance



Dynamic Properties -
resonant column test
dynamic strain-controlled cyclic triaxial tests

cyclic static triaxial tests

All these tests are required to determine whether the foundaﬁion
is adequate for the structure or any improvement may be required. All
the above tests are quite standard and are explained in most standard
soil mechanics books.

One of the characteristics unique to sandy soil material is
the property of liquefaction. The exact nature of liquefaction is not
well know and the term is loosely referred to the phenomenon of excessive
settlement of foundation and weakened soil strength under dynamic(in
particular, repetitive) loadings which cause the soil to acquire

certain degrees of fluid-flow type motion.

If saturated sand is subjected to ground vibrations, it tends to
compact and decrease in volume; if drainage is unable to occur, the tendency
to decrease in volume results in an increase in pore pressure, and if the
pore pressure builds to the point at which it is equal to the overburden
preasufe, the effective stress becomes zero, the sand loses its strength
completely, and it develops into a ldquefied state.

To assess the susceptibility of liquefaction and its associated
damage potential to superstructures, one needs to answer at least the
following questions:

1. What is the condition that will result in liquefaction?

2. What is the state of pressure distribution during and following

liquefaction?
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3. What is the expected duration of liquefaction?

Unfortunately, none of these questions can be answered
adequately within the present state of the art. Prediction of
liquefaction potential is a rather recent enginéering endeavor. This
is evident from the list of references provided. In the United States
the analysis of liquefaction mainly follows the method developed at
the Earthquake Engineering Research Center, University of California
at Berkeley (see list of references).

The pertinent soil information required to perform evaluation
of soil liquefaction potential includes:

mean grain size (DSO) and size distribution

critical valid ratio

triaxial cyclic test

shear test

confinement pressure

standard penetration test
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3.2,1.7 Earthquake and Tsunamis

At present, there is practically.no information on using earthquake
as impact for breakwater design. In Japan, one of the most earthquake—
prone countries, it is generally assumed that if a breakwater is so
designed as to withstand severe wave action, it can also survive earth-
quakes with no significant damage.

F Recently, Japan haé experienced three severe earthquakes:

a. Niigata earthquake on June 16, 1964 (M=7.5)

b. Tokachi Oki earthquake on May 16, 1968 (M=7.8)

¢. Nemuro Hanto Oki earthquake on June 17, 1973 (M=7.4)

Post earthquake surveys showed that despite some severe damages
suffered by port structures, mainly quay walls, the breakwaters sus-
tained very little damage due to direct earthquake loading. Typical
example of breakwater damage in slight sinkage of caisson on the rubble
mound. The quantity of sinkage was of the order of 10-30 cm.

If an earthquake is generated in far field at offshore area, Tsunami
may be crested. Tsumanis, in the ferm of long-period and low amplitude
waves is imperceptive in the open ocean. However, when it propagates
into shallower water and encounters obstructiuns such as beeakwaters, water
tends to pile up and results in great water level difference on the seaside
and leeside of the structure. This great water level differemce is often
a source of concern. An example of failure due to Tsunami is found in the
Port of Hachinohe in Japan during the 1968 Tokachi Oki earthquake. Caissons
of 4.5 m wide, stable at the time of the earthquake, were overturned due to
water level difference that reached in excess of 4 m. A total of 336 m

caisson has been breached.
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3.2.2 Structure Factors

3.2.2.1 Clagsification

Functionally, there are two major classes of breakwaters. The
first class is a structure that depends only on its mass to break up
waves. The second class of breakwaters utilizes shape and materials
to give it an "ability" or "characteristic" that tends to break up
waves. Most major breakwaters are of the second class. In addition
to these two classes of breakwaters which are structures, there are
breakwaters that cannot be quite classified as structures, such as
pneumatic breakwaters or air-bubble breakwaters. Only breakwaters
that are structures are dealt with in this section.

As far as shape is concerned, there are also two general
classes of breakwaters., Breakwaters with vertical faces constitute one
class. These depend on their reflecting characteristics to be effective.
Sloping breakwaters are the second class and they cause the waves to
break or be partially reflected. |

One type of sloping breakwater is the rubblé mound breakwater
(see Fig. 3.6). This is the most common breakwater found in the United
States. Almost all the major breakwaters in this country that combat
heavy seas are of rubble mound type (Kawaikae, Kahulue, Crescent Cify,
Humboldt; etc.). Only a few of the European major breakwaters fall in
this category (Europort, Hook of Holland). Rubble mound breakwaters
are best suited for areas where stone is plentiful and there is a low
tidal range. They can be built on almost any bo£tom condition, even
thick soft layers, but they are usually restricted to a depth of less

than sixty feet. Because of the manner in which the rubble mound
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breakwaters are constructed (basically through piling up stones of yarious
sizes) they seldom result in catastrophic failures.
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Fig. 3.6 Rubble Mound Breakwater

Since rubhle breakwaters are porous, there is the possibility of
undesirable water transmission. This is dependent on the thickness of
the cover layer and the core, as well as the size of the stone.

A second type of breakwater that is similar to a rubble mound
breakwater is a composite breakwater (Fig. 3.7 ). A composite break-
water has a rubble mound base, but the part that endures the wave. forces
is a solid superstructure.‘ Composite breakwaters are especially good
for deep water, where the depth makes a rubble breakwater economically
unfeasible. They are also effective in areas of high tidal variations.
Major breakwaters in Japan and European countries largely fall into this

category (see Chapter 2).
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Fig. 3.7 Composite Breakwater

In composite breakwaters, the super structure is the most
critical part, simply due to the wave action it must endure. The base
of the super structure can be either at mean low water or well below
mean low water. In the former case, the base is more subject to scouring
action by the waves. In either case, failure can occur by overturning
or sliding or differential settling. Unlike rubble mound structures,
major catastrophic failures of composite breakwaters occurred a number
of times in the past. Damage repairing is not a simple case of
replenishing rubble but often represents a major task.

A composite breakwater can have a variety of super structure
forms. The superstructﬁre can be a solid monolithic wall, a caisson
structure, or various types of blockwork. It can be sloping, straight,
or stepped. Composite breakwaters can also have a solid cap on top for

added stability.
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One type of breakwater in the wvertical wall class is a solid
breakwater (Fig. 3.8 ) It uses various types of blocks, orderly and
carefully placed, to insure stability and abgorb wave energy. The
blocks are jointed or dowelled together to give the breakwater strength.
The blocks are either stone blocked or precast concrete. Solid break-
waters require a minimum of material and maintenance. They also have
the advantage that the leeward side can be used as a quay. However;

a firm foundation, usually rock, is necessary. Water depth also imposes
some constraint. Failure to a solid breakwater is serious since it is
usually due to overturning or sliding. Owing to the above reasoms, the

usage of vertical-wall type breakwaters is rather limited.

A N asse's

Fig. 3.8 Vertical-Wall Breakwater

Another type of breakwater is the caisson type (Fig. 3.9 ).
Caissons are hollow reinforced cells or circular pipes that are embedded
to a trench or into a rubble base. They are filled with either sand,

gravel, or rocks and capped with a superstructure. The superstructure
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serves to break up the waves and can be either sloped, vertical, or stepped.
The caisson can be sloped or vertical also. Sloping faces are the most

desirable as they improve stability and help prevent overturning.

Fig. 3.9 Caisson-Type Breakwater

Caisson breakwaters are principally used in lakes at depths of
less than forty-five feet. They can be constructed quickly on a soft
bottom and at a low expense. Their biggest drawback is their inability
to withstand breaking waves. Breaking waves apply a shock pressure
much greater than the static pressure of a non-breaking wave. This
dynamic pressure can batter and damage the caisson as well as cause
increased pore water pressure in the foundation soil.

A variation of solid caisson breakwaters is the perforated
wall type patented by the Canadian government. The installation at Baie
Comeau, Quebec, Canada, utilizes this caisson at the seaward side to
absorb and dissipate wave energy. There are current plans to utilize
perforated breakwaters to combat the heavy North Sea waves.

Similar to the caisson breakwater, is the sheet pile breakwater
(Fig. 3. 10 ). It is usually used in fresh water lakes where there is
only moderate wave action. Big hollow steel ﬁipes are driven into the

bo-tom and filled with sand. They ‘are usually capped with large stone.
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Another similar breakwater is the pile crib (Fig. 3.11). It is
two parallel rows of pile driven into the bottom with rock f£ill in between.
A concrete cap can be on top and usually is. Pile crib breakwaters are

very economical, but suitable only for small waves at shallow depths,

usually in lakes.
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Fig. 3.10 Sheet Pile Breakwater Fig. 3.11 Pile-Crib Breakwater

A-frame breakwaters are also very economical and limited to
shallow waters. An A-frame breakwater is a series of concrete reinforced
A-frames that stack side-by-side, similar to books on a shelf. Slots in
the walls catch water and let it run off as the wave receeds, while
protrusions break up and dissipate wave energy. Overtopping in small
and reflected waves have less height energy than a vertical wall would
produce. Some advantages of A~frame breakwaters are rapid construction,
continually renewed harbor water, harbor side than can be a quay, light
bearing load on the foundation, easy repair, and the unfinished parts are
not damaged by storms.

Submerged breakwaters offer a potentially cheap solution to some

problems. Generally they are rubble mound breakwaters below mean low

134



water. These breakwaters can cause up to fifty percent incident wave
energy loss. Thirty to sixty percent of the wave energy that is trans-
mitté& is transferred to a higher frequency than that of the incident wave.
Timber breakwaters are found on lakes and usually have sloping
faces. They are not very durable or stable compared to stone or rock
breakwaters.
Although many types of breakwaters are presented here, the
major breakwaters actually fall into the first two categories - the
rubble mound. type and the composite type. In the following sections

only these two types of breakwaters are discussed.

3.2.2.2 Rubble Mound Breakwaters

General Description

The rubble moﬁnd breakwater, as explained, is more or less a
heterogeneous assemblage of natural stones of different sizes and shapes
either dumped at random or placed in courses.

The cross-sectional shape of a rgbble mound breakwater usually
resembles a trapezoid. It has a core of relatively small stones surrounded
on the exposed part by much larger stones, called armor blocks; The cover
layer of armor blocks determines the stability of the structure; therefore,
it is common to have armor blocks weighing thousands of pounds each. It
is evident thaf the cover layer is the most important part of the cross
section; Once the armor blocks are moved, the underlying core is exposed
and quickly damaged by the waves.

The typical breakwater sections recommended by the U. S. Corps

of Engineers ( Ref. 1 ) are shown in Figs. 3.12 and 3.13 .
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Core Cover Layers and Armor Layers

Rubble mound breakwaters have heen, and still are, constructed
in a great number of cross-sections dictated to some extent by site con-
ditions but the general principal remains essentially the same. This
consists of forming a core to the breakwater and providing it with
protective coverings.

The core usually consists of quarry materials of various sizes,
in some cases of spalls and refuse of random stone from a few pounds
in weight to hundreds or more, in order to obtain maximum compactness
and a minimum of voids. Other than the randomness of stone sizes, the
only other requirement of core design deems to be the selection of
material such that it will not deteriorate in air and sea water. Lime-
stone, for instance, should be avoided as core material.

The core is covered by a number of layers of increasing stone
size as illustrated in Fig. 3. 12. The outermost cover is called armor
layer and is the principal protective layer. The layer next to the
outermost is termed secondary layer and is usually built by stones of
considerably smaller (about one-half) size than the armor layer. Layers
below the secondary are all named underlayers.

The function of the secondary layer and underlayer, as the names
imply,'is to offer secondary protection and to prevent core material
from being wasted away by wave and current actions. The major design
considerations are to ensure minimum escape of core material and at the
same time to provide sufficient porosity to avoid high back pressure in
the armor layer. Under current design practice, these layers are almost

exclusively built by natural stones. The stones selected for con-
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struction should be structurally sound, durable, and hard. It should be
free from laminations, weak cleavages, and undesirable weathering, and it
should be of such character that it not disintegrate from the action of
air, sea water, or handling and placing. In general, stones with high
specific gravity are desirable. As far as size distribution is concerned,
both uniform stone and graded stone are being used. It is recommended
by U. S. Army Corps of Engineers that all stones should conform to
the following test designations: apparent specific gravity, ASTM
Designatiop: C127-59; and abrasion, ASTM Designation C131-55.

As to the selection of stone sizes for the secondary énd under
.layers, U. S. Army Corps of Engineers (Ref. 1 ) provided some guide-
lines. These guidelines are pretty much followed by Japan and European
countries. Figures 3. 12 and 3. 13 illustrate the recommendations by the
Corps of Engineers. The classification of stone sizes, weight and

dimensions are shown in the following table.
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It is the general contention among the breakwater designers,
and probably rightly so, that the armor layer is the most important structure
element in rubble mound. Some bhelieve that the success or failure of a
mound breakwater depends almost wholly upon this layer = that is to say
upon its composition, selection of material, size, layer-thickness, slope,
levels, and its extension to underwater and underwater slopes.

Considerablelresearch has been carried out in the past and is
still going on at present concerning the design of armor layer. These
include the search for new shapes and materials for armor units andlthe
stability criteria of the armor layer. Both mass and shape of the armor
blocks directly affect stability. By increasing the mass of an armor
block, more force is required to 1ift it. The shape of the unit can
reduce the drag force and bond the units together. Each armor unit can
be assigned a coefficient of bonding which is a function of its shape and
material. This coefficient reflects the ability of the unit to remain
attached to surrounding blocks. It is clear that by altering either the
shape or the mass of the armor unit, its tendency to be moved by waves
changes. |

In addition to natural stones, many different artificial or
prefabricated armor units are not available. Smooth and rough quarry
stones are the two main kinds of natural armor blocks. Because they
have no definite shape, they are placed in random or pell-mell fashion.
Artificial or prefabricated units can achieve maximum bonding stability
when placed uniformly. The tendency is the increasing utilization of
prefabricated units, particularly, recently designed major breakwaters,

because of their superior interlocking ability. Shapes of prefabricated



armor blocks include cubes, modified cubes, tetrapods, quadripods,
hexapods, tribars, Svee-blocks, Dolos, parallel pipes, ete. Figure
3.14 illustrates the various shapes of the artificial units. All
these artificial armor units are made of precast concrete with or without
reinforcement. There is no definite criterion, at present, as to whether
reinforcement is essential or even is beneficial. A detailed discussion
of using concrete armor units for breakwater structure was documented in
a recent report (Ref. 434). LAl

In most cases, the armor layer is the outermost layer of a

mound breakwater. In a few isolated cases, these armor blocks are

protected by gabions or a cover of stone asphalt.

Shapes and Slopes

The cross-sectional shape of a mound breakwater is commonly
known to be trapezoidal. Actually, there is quite a range of variations
in shapes and slopes among different breakwaters. It is not uncommon
to have breakwaters of composite slopes or composite slopes with under-
water berm sections.

The underwater slope of the cover layer and its point of break
are critical to wave breaking characteristics and to the location and
extent of surge and backwash. The slope above the mean water level is
important to wave runup and overtopping which in turn affect the stability
of the breakwater. Breakwaters are usually designed with re;atively
steep slopes both in the seaward face and leeward face to save material
(it is common to have 1! ~ 3.0 horizontal to 1 vertical for seaward side; _
1~ 1% horizontal to 1 vertical for the leeward side). Among some of

the older breakwaters one occasionally finds cases of mild slopes
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(From Paape and Walther, 1963) (From Paape and Walther, 1963)
Akmon Bipod

(Courtesy of Coode and Partners, (After Jackson, 1968)
Consulting Engineers, 2 Victoria
St., London, S.W. 1)

Cob Cube (Modified)

Fig. 3.14 Various Shapes of Artificial Units
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(Courtesy of E. M. Merrifield, Harbor
Engineer, Port of East London,
Republic of South Africa)

(Courtesy of S. Nagai, Osaka
City University, Sugimoto-
Cho, Sumihoshi-Ku, Osaka, Japan)

Dolos

Gassho block

)

:

(Courtesy of P. Grobbelaar, 1971) (From Hexaleg Block Works)

Grobbelaar block Hexalog block

Fig. 3.14 Various Shapes of Artificial Units (Cont'd)
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(After Jackson, 1968) ; (After Nagai, 1962)

Hexapod Hollow Square

(After Nagai, 1961) (Courtesy of U. S. Army Engineer
. District, Galveston, 1972)

Hollow Tetrahedron Interlocking H-block

Fig. 3.14 Various Shapes of Artificial Units (Cont'd)
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(After Nagai, 1962) (After Jackson, 1961)

N-shaped block Pelican stool

(After Jackson, 1968) (Courtesy of Stabits Ltd., Sardinia
House, 52 Lincon's Inn Fields, London,
W.c. 2)
Quadripod Stabit

Fig. 3.14 Various Shapes of Artificial Units (Cont'd)
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(Courtesy of R. J. 0'Neill, Marine (Courtesy of R. J. 0'Neill, Marine
Modules, Inc., 475 Tuckahoe Road, Modules, Inc., 475 Tuckahoe Road,
Yonkers, N. Y. 10710) Yonkers, N. Y. 10710)

Sta-Bar - Sta-Pod

(Courtesy of B. Hakkeling, Ing, (Courtesy of Noreno, Cort Adlers
Merellaan 269, Maassluis, Gate 16, Oslo, Norway)
Netherlands) :

Stolk Cube Svee. Block

Fig. 3.14 Various Shapes of Artificial Units (Cont'd)
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(After Jackson, 1968) (After Jackson, 1968)
Tetrahedron (Solid) Tetrahedron (Perforated)

(After Tetrapods Technical (Courtesy of P. Grobbelaar, 1971)
Note and Applications ) )

Tetrapod Toskane

Fig. 3.14 Various Shapes of Artificial Units (Cont'd)

148



(After Jackson, 1968) (After Davidson, 1971)

Tribar Tri-Long

0.2h
015h

0.3h

015h
+
0.2h

1
|
I
I
1

~Z / o3®
2 Lhn

_________ ' VOLUME OF BLOCK : 03h'

(From Paape and Walther, 1963) (From Paape and Walther, 1963)

Tripod Details of Akmon Armor Unit

Fig. 3.14 Various Shapes of Artificial Units (Cont'd)
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(For instance, Holyhead breakwater and Alderney breakwater have about

7H to 1V slope). As a rule of thumb, steep-sloped structures are more
acceptable to wave overtopping but less to waye breaking whereas the
reverse is true for mild-sloped ones. Because of the advent of precast
armor units that have higher interlocking abiiity, the trend of current
breakwater design seems to converge to single-steep-slope type structures.
Most breakwaters when partially damaged by wave attack assumed a
curved=-shaped profile as shown. This shape seemed to maintain its
stability for quite a long time, therefore, new research is being
initiated in various parts of the world to investigate the feasibility
of designing cover layers of non-uniform slopes. However, the
difficulty of this new concept is that different wave conditions will

result in different stable profiles.

Crest Elevation and Width

The crest elevation and crest width are two important structural
factors influencing wave overtopping which in turn controls the stability
of the leeward slope. Overtopping is usually tolerated to the extent
that the area protected does not suffer excessive wave agitation and that
the structure is not endangered due to bleaching of the leeward section.
Duriné prolonged storms, bleaching of ﬁhe leeward section may lead to

severe and accelerated damage of the breakwater.
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The crest elevation is usually governed by the design storm
tide and wave runup which are discussed in the following section on
Structural-environmental interaction. The question of the crést width
of a rubble structure when overtopping is allowed is difficult to answer
due to the lack of data and the large variations of design: So far
there . is no commonly accepted design standard. The U. S. Corps of Engineers
recommended that, for overtopping and non-overtopping conditions, the
minimum recommended width correspond = to the combined widths of three
cépstones or to the width required for operatioﬁ of construction and
maintenance equipment, whichever is greater. In Europe, however, some
designers felt that the crest width could be as narrow as two capstones.
Because of the lack of criterion, caution should be exercised when the

breakwater is expected to experience overtopping.



Structure Trunk and Structure Head

Structure trunk is the main body of the breakwater that has
continuous lateral support of adjacent trunk sections. The wave attack
in the trunk section is usually on the front surface and is, therefore,
two dimensional. Much of the laboratory studies on breakwater stability
are for the structure trunk section. This is not only because the
structure trunk represents the major portion of the breakwater, but
also because of the limitation of most of the test facilities.

The structure head is the termination section of the breakwater.
There seems to be much more variation in the stability of a given head
section than is apparent for a trunk section. For one thing, the head
section is exposed on three sides instead qf one to withstand powerful
forces. Owing to the absence of uninterrupted lateral support, the
structure head must be self-sustained and independent. That is, it must
be treated as a perfectly detached and isoclated structure capable of
resisting all external influences, for in its downfall is involved the_
possible destruction of the breakwater section adjoining it.

In designing the structure head, the form, in particular its
interferences with waves, the degree of exposure, the cross current,
the nature of the sea-bed, etﬁ. are all significant factors. Unlike the
trunk section where the lee side of the structure is protected from direct
wave attack, the leeward section of the structure head is the most
vulnerable place because of constant impact due to falling water mass.

In the present design practice, the breakwater head is always designed as
a heavier structure. However, even with thig practice, there are more

instances of structure head damage than structure trunks.
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Filter Layer

A filter layer is used for preventing the material in the breakwater
from washing out and ailding in toe protection of the breakwater. In most
of the existing breakwaters, the filter system is composed of layers of
: graded stones. More recently, plastic filter systems have also been
used. The criteria for filter layer design are: (1) the stomes should
be so graded that the core material will not be washed away; (2) ,adequate
voids are provided to avoid high hydrostatic pressure being built up in the
breakwater; (3) the filter layer should extend far enough beyond thé

scouring depth to minimize erosion potential.

3.2.2.3 Composite Breakwater

Under the conditions that either the depth of water is great, or
there is a wide tidal range, composite breakwaters of a combination of
a rubble mound and a vertical wall are often selected. As mentioned
earlier, breakwaters in Japan and many of the earlier breakwaters in
Europe are of this type.

There is a wide variety of types of composite breakwaters.
They can roughly be divided into three classes. The salient features
of them are shown in Fig. 3. 15 . In the first type, ﬁhe rubble mound is
the real breakwater - the superstructure serves the purpose of preventing
the overtopping. It also serves as a cap to hold the crest stones.
The rubble slope extends to high water levels, thus forcing all waves
to break before reaching tﬁe wall. The second t&pe has a rubble mound
at low water levels. The quantity of material required is less than

that required in the preceeding case, but the superstructure is increased
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Fig. 3.15 Various Features of Composite Type Breakwater
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in height. The stability conditions are also greatly altered. The broken-
wave assaults are now closer to the wall at low tide and on the wall itself
at high tide. Thus, the superstructure must be designéd to sustain the
impact of breaking waves. The third type has a rubble mound terminating

at a level below the low-water mark and at a depth of water no less

than one maximum wave height. Under the circumstances, most of the
assaulting waves will retain their oscillatory characters and will be
reflected as clapotis. In this type, the rubble mound is of small
dimensions and really serves as a subfoundation to distribute the wall
pressures over the sea bed.

In composite breakwater design the main considerations are the
stability problem and the caisson structure. For the stability considerations
one must assess:

1) The stability of the vertical wall ingluding sliding,
overturning and bearing stress of the mound foundation;

2) The stability of the rubble moﬁnd including sliding and
armor unit stability;

3) The stability of the breakwater as a whole including circular
sliding, settlement and meandering damage.

For the caisson structure, in addition to the common caisson
design practice, one must also consider the problems of caisson stability
at floating and the forces and stability during launching, towing and
installation. References and detailed design procedures for this type of

breakwater are offered in Refs., 4 and -
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3.2.3 Structure - Environmental Interactions

Prior to the 1930's the design of breakwater was based largely on
experience. The designers relied heavily on the performance of previously
constructed breakwaters. After that period,lthe design of breakwaters
has been gradually on a more rational basis. Unfortunately, the
problem of breakwater-environmental interactions is such a complicated
one that many design factors still cannot be defined adequately. The
present state of the art of how these design variables are handled is

briefly reviewed here.

3.2.3.1 Loadings on Structures

In the current design practice, the external forces commonly
considered are the wave forces, buoyancy and dead weight of the structure.
Forces due to wind and current are generally neglected because of their
relatively small magnitude. Furthermore, detailed force analysis is
only performed in composite breakwater design and caisson design. For
rubble mound breakwaters, external forces mentioned above are implicit
design factors as will be seen later.

Wave forces exerted on structure can be distinguished as due
to non-breaking waves, breaking waves and broken waves. Whether a
structure is subject to either or a combination of those forces depends
on the wave characteriaticé, the water depth aﬁ the toe of :ﬁe structure
and the foreshore slope and configuratiom.

To determine wave breaking characteristics onme is usually required
to carry the deepwater waves in the structure vicinity through the

adjustment of refraction and shoaling. It is not an easy task to
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determine the characteristics of breakers nor the location of breaking.
Rather, a zone on the structure is properly identified as susceptible to
breaking wave attack.
The force due to non-breaking waves is basically hydrostatic.
The Sainflou method or simplified Sainflou method (CERC, 1974, JPHA 1968,etc.)
are commonly used to evaluate the non-breaking wave force and pressure
distribution. There is very little doubt among deq}ghers in the validity
of this method. A number of other variations have been proposed by various
invéstigatdrs ( Ref. 233; Ref. 197). Their results,leither the
_total force or the pressure distribution, differ very little from Sainflou's.
Figure 3.4 shows the wave pressure distribution according to
Sainflow's method. ABED is the pressure diagram of the sur-pressures
due to wave action, DEC is the still-water pressure diagram, Py is the
value of the pressure due to wave action at the sea-bed, ho is the use of
the mean level of the clapotis formed due to reflecting wave. Sainflow's
formula for peak pressure involves hyperbolic trigonometrical functions.
For approximation, the pressure distribution can be treated as straight
lines as shown. In thié case, the only quantities which must be evaluated
before the diagram can be drawn are the values of p; and ho. These values

can be obtained by:

__WH
p, = 2nd
1 cosh I
and
2
mH 2md
ho — oth I
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where H = wave height
L = wave length
d = water depth

W = specific weight of sea water.

For a unit length of wall, with ho as the mean level of the
clapotis above the stillwater level and Pl the common length of the
segments EB and EF, the resultant Ri and the moment about the base Mi

are given respectively, for the maximum crest level (subscript e) and

the minimum trough level (subscript i) of the clapotis by the formulas:

g (d +H + ho) (wd + Pl) ) wdz
e 2 ¥R
2
o (d + ho + H)® (wd + Pl) 4 wd3
e 6 6
y wdz i (d + h0 - H) (wd - Pl)
G 2 2
9
o o wd3 ) (d + hO - H)" (wd - Pl)
. 6 6

The calculation of breaking wave force is quite a different story.
So far the mechanism of wave breaking is still not fully understood,let
alone the prediction of breaking wave force on a barrier. A number of
theories on breaking wave force has been advanced in the past. Among
them, the Bagnold's experiments (Ref. 5 & 7) and Minikin's formula (Ref.233) was
known to most of the designers. Bagnold's equation was based on his
experimental work conducted in England. His equation involves a time

expression which is difficult to determine for prototype structure. In
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order to overcome the difficulty of fixing this time scale, Minikin
proposed a f;rmula that did away with the time scale and the pressure
distribution is expressed in terms of wave characteristics only. However,
his wo;k was based on extrapolating Bagnold's result to a limited full-
scale experiment conducted by Rouviele and Petry (Ref.5) and Cagli (Ref. 197).
The reliability of his formula is not all convincing. However, in spite
of this, the Minikin formula has been widely used for lack of an improved
method of analysis. In modern breakwater design practice, model tests
are still of paramont importance to determine the loadings. |

The Minikin equation assumes a peak pressure to be at still-
water level and to diminish rapidly to zero at the crest of the wave at
a height H/2 above peak pressure. Below the peak pressure there is also
a rapid diminishing of pressure to you at H/2 below still-water level.
Therefore, in accordance with Minikin's formula, the pressure distribuation

assumes a triangular shape (Fig. 3.5 ). The magnitude of the peak

pressure, according to Minikin, should be

_ 2nd:. D+ d
pmax_LD W { 2}
where H = deep water wave height

D = depth of water at toe of mound

d = depth of water at vertical face of wall.

In Japan, Hiroi's formula ( Ref. 8 ) is often used. In
his formula, it is assumed that the pressure intensity acts on the wall
uniformly from 1.25 H above the still water level to the bottom of the

structure with a magnitude equal to 1.5 times the head of the wave height
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(Fig. 3.16 ). One of the shortcomings of his formula, of course,
_is that it could only be applied to shallow water cases. Also, it
really only provides estimation of the total magnitudes of the breaking-
wave pressure and does not yield information for local areas.

A formulé which takes into account partial breaking waves has
also been proposed by some authors (Ref. 5 and 293).
Goda's pressure distribution is trapezoidal as shown in Fig. 3.1?.ﬁ
The pressure intensities, P1s Py and P, are calculated by:

2
By *© woamax(al ¥ Reny B)

P1
Py = Cosh 2th/L

Py = o3Py
where:
1 ( 4mh/L a
™
% = 0:6 35 [ainh 4uh/L J

“ - Wl (. TH—
e k* [ L cosh 2wh/L ]

L: wavelength, B: angle of wave approach
In addition to the wave loadings, which is the prime considerationm,

the hydrostatic water pressure, buoyancy and lift, and dead weight of the

breakwater are also considered as external loadings.
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With this loading information in hand, the stress on breakwater
can be analyzed. Usually, stress is only analyzed for vertical walls,
caisson type of structures, and composite breakwaters. Rubble mound types

of breakwaters are designed mainly on stability criteria.

3.2.3.2 Stability of Structure

In breakwater design the term stability bears two different
meanings: the stability of the structure as a whole or the stability
of armor units. The latter applies specifically to rubble mound type
breakwaters. In this section, only the structure stability as a whole
is discussed. The stability of armor units will be presented in the
subsequenﬁ section.

The stability of the structure as a whole is of major concernb
for composite type breakwaters and is of secondary concern for rubble
mound type breakwaters. This is mainly due to the different structural
characteristics of these two types and their failure modes.

A rubble mound structure seldom fails due to total instability whereas
composite type breakwaters collapse mainly due to structure instability.

Needless to say, the stability consideration should be carried
out for the worst possible sea condition or conditions which usually
mean high wave in conjunction with high water level. The stability
éomputations usually include wali_or caigson ,rubble mound foundation,
and the breakwater as a whole.

For the s#ability of the wall or caisson, th; problems of sliding,
overturning and bearing stress on the foundation should be examined.

_Standard procedures for static analysis on earth structures are followed
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in these calculations. For random wave action, Ito (Ref, 353)
what he called the probable sliding distance to evaluate the ultimate
stability of caisson walls. This probable sliding distance is defined
as the expected_total displacement of a caisson due to irregular waves
of certain magnitude and duration.

For the mound foundation, sliding along various possible sliding
planes should be analyzed. Relations similar to the following are
applied:

¥ = f (Wcosf - Psing)
"~ Wsin® + Pcos®

where
F = factor of safety
W = total weight of the wall and the rubble mound above
the supposed sliding plane subtracted by buoyancy and
uplift
8 = angle between the horizontal plane and the sliding plane
f = coefficient of friction

P = total horizontal wave force

The accepted safety factor should actually be more than 1.2. (Ref.
As for the structure as a whole, sinkage, differential settling and
circular sliding are the common causes of instability and should be looked

into.

3.2.3.3. Stability of Armor Units and Slope of Cover Layer
As mentioned earlier, for rubble mound breakwater design,
the armor layer is the primary concern. The armor layer is generally

designed in accordance with so-called stability criteria.
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While it was appreciated that the slope and sizes of stones
and of attacking waves were interrelated, it was not until 1933 that a
first rational method has been proposed by deCastro. In 1938, Iribarren
first published his work regarding armor unit design. His formula is

still used today by European designers. The expression is (Ref.349 )

Kﬂ3yn
W =

3 3
(fcosa - sina) (Yn,_ Ye)

where
W = weight of the stone
H = wave height
f = coefficient of friction
¢ = angle of the slope
Y_ = specific weight of the stone
R specific weight of the water

K = stability coefficient combining all unevaluated variables.

This equation is used to determine the size of the stone for
designated design wave height and structure slope. The coefficient of
friction was taken equal to 1 in his original paper. However, the author
later concluded through an extensive series of tests that this coefficient
varies greatly with the number of blocks as counted along one line from
bottom to top of the slope. For natural stomes, the coefficient approaches
1.0 for large numbers of blocks, while with the number as low as six,
the coefficient was found to be 2.38. The stability coefficient K is
another experimentally determined value. Table 3.5 summarizes the

values of K and f for different kinds of blocks for "no-damage" condition.
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K £

Natural Stone 0.43 1.0 to 3.64
Concrete Parallel Pipe S 0.43 2.84

Tetrapods 0.656 3.47

Table 3.5 Values of K and f for Iribarrin
Formula for No Damage Condition (Ref. 349 )

A major drawback of Iribarrin's formula is that the coefficient
K is not dimensionless and this makes it difficult to extend experimental
results to prototype application. His formula has been modified by many
investigators, but the basis of the formula remains unchanged.

In Europe, Hedar of Sweeden (Ref. 431) and Svee from Norway (Ref. 452)
have proposed variations of Iribarrin's formula. Perhaps the most widely
acclaimed modification came from Hudson of the United States (Ref. 478)
Hudson's formula differs from Irribarrin's in that the stability coefficient
is dimensi;nless. This modification enables more rational interpretation
of‘small—scale experimental results for prototype design usage. His

formula takes the following form:

3
H Yn

KD(Sn - l)acota

W=

in which
Sn is the specific gravity of armor unit
KD is the dimensional stability coeffigient that combines
all unevaluated variables.

One of the reasons that Hudson's formula becomes so popular is

that many experiments have been carried out in the United States, mainly
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by U. S. Army Corp of Engineers, to determine the Qalues of KD for
various armor units, both natural and prefabricated. Thus, the
Hudson formula has a wide base for practical application. Many experimental
results of values K, are summarized in a report edited by Hudson (Ref. 434)
Some of the tabulated results for different kinds of armor units are
reproduced here in Tables 3.6 to Tables 3. 8. Table 3. 9
summarizes the type of molded armor units that have been developed.
Tables 3.6 and 3.7 provide recommended values of KD for structure
trunk and structure head respectively for no damage condition. In here
no damage condition allows minor displacement of armor units to the
extent that the stability of the armor-unit sectiom is not affected.
The recommended values of KD for structure trunk when some damage to
the structure can bé allowed were given in Table 3.8.
In Russia, a formula similar to that of Iribarrin also exists.
It takes the form: | ’

wy L

Ny N ——
= 153
JE + catza (yn/yf 1)
where

u' is the friction coefficient

L is the wave length

Thus, the Russian formula differs from the rest in that the wave length is
explicitly apparent in the equationm.
Brandtzaeg (Ref.193) in a summary paper presented in XXlst Intermatiomal

Navigation Congress provided an illustrative example comparing stability

calculations by using different formulae. His example is reproduced in

1€&



Table 3.6

Recommended®* Values of KD for Design of Structure Trunk

Breaking and Nonbreaking Waves, No-Damage and No-Overtopping Criteria

Placing B KD
Unit n  Technigue Breaking Waves Nonbreaking Waves

Smooth quarrystone 2 Random 2.1 2.4
Rough quarrystone 2 Random 5 3.5 4.0
Tetrapod 2 Random T:2 8.3
Quadripod 2 Random 7.2 8.3

- Tribar 2 Random . 9.0 10.4
Tribar 1  Uniform 12.0 15.0
Dolos 2 Random 22,0%# 25,0%%

* Breaking-wave data are tentative and subject to change after more

comprehensive ES 815 tests are completed.

Tentative and subject to change after comprehensive ES 815 tests are
completed. A few preliminary ES 815 tests, conducted in 1971, indi-
cated that KD for dolosse on steep slopes may be limited by slope
failure rather than damage to the armor-unit cover layer. Therefore,

a sea-side slope steeper than cot o = 2.0 1is not recommended at
this time.

*¥

Table 3.7

Recommended* Values of Kp for Design of Structure Head

n = 2, Random Placing Technigue, No-Damage and No-Overtopping Criteria

5

Unit#** cot o Breaking Waves Nonbreaking Waves

Smooth quarrystone
© Rough quarrystone
Rough quarrystone
Rough quarrystone

[

W WhhHF wh LAJNI-‘\in
w
o

owvi 9O FHOWN wWoNnO

VIO O@w OM\O Owvio-—

.
.
.

Tetrapod and quadripod
Tetrapod and quadripod
Tetrapod and quadripod

Tribar
Tribar
Tribar

Dolos
Dolos

OO0 oowvi ooOoOw OOw

»
.

.
.

WV N &Fwvwv Do e
VIO 1 @O0 Fovoy DO W

o
o

* Tentative and subject to change after comprehensive ES- 815 tests are

completed.
No data presently available for other armor units.
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TABLE 3.9

Types of Concrete Armor Units

Name of Upnit

Akmon

Bipod

Cob

Cube*

Cube (modified)

Dolos

Dom

Gassho block
Grobbelaar block
Hexaleg block

Hexapod

Hollow square
Hollow tetrahedron
Interlocking H-block
N-shaped block

Pelican stool
Quadripod
Rectangular block*
Stabit

Stabilopod

Sta-Bar
Sta-~Pod

Stolk cube

Svee block

Tetrahedron (solid)
Tetrahedron (perforated)

Tetrapod
Toskane

Tribar
Trigon

Tri-long
Tripod

Development of Unit U, S. Patent
Country Year Number

Netherlands 1962 None

Netherlands 1962 None

England 1969 None

- - None

USA 1959 None

Rep. So. Africa 1963 None

Mexico 1970 (?7)

Japan 1967 None

Rep. So., Africa 1957 None

Japan (1) None

USA 1959 None

Japan 1960 3,176,468

Japan 1959 None

USA 1958 None

Japan 1960 3,176,468

USA 1960 None

UsA 1959 None#*#*

— —— None

England 1961 None

Rumania 1965 None

USA 1966 3,636,713

USA 1966 3,399,535

Netherlands 1965 3,548,600

Norway 1961 3,210,944

USA 1942 None

USA 1959 None

France 1950 2,766,592

Rep. So. Africa 1966 None

USA 1958 2,909,037+

USA 1962 (?)

UsA 1968 None

Netherlands 1962 None

* Cubes and rectangular blocks are known to have been used in masonry
type breakwaters since early Roman times, and in rubble-mound breakwaters

during the last two centurtes.

1943.

**Patent for tetrapods applies also to quadripods.

tRoyalty free to agencies of U. S. Government.
The underscored units have been tested, some extensively, at WES.
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Table 3. 10 , in which it can be seen that all these formulae yield
compatible results for steep-sloped breakwaters whereas the deviatioms
become greater for milder slopes.

The similarity and simplicity of the above formulae may
create the impression that the calculation of rubble mound breakwater
stability is a straightforward and routine matter. Actually, it is quite to
the contrary. The simple mathematical expression indicates that the
analysis can only go so far. All the unanalyzed variables that influence
the stability of armor units are lumped into one coefficient. This
coefficient varies, as one would expect, over a wide range of various
situations. Most breakwater designers would advise the uselof these
formulae as guidelines, and the performance of actual design through the
assistance of laboratory tests. Therefore, it is in order here to discuss
briefly the limitations of the aforementioned formulae and the problems
which should be watched for in actual design.

All the formulae presented above apply to relatively steep-sloped
structures (roughly 1V to 3H as the limitation). For structures with
shallower slopes, the mechanism of armor unit movement may be different from
what the formulae are based upon. Hedar (Ref. 431) for instance, suggested
that with slopes flatter than a certain limit, failure occurs through
blocks being moved up the slope instead of down. Strictly speaking, these
formulae are for non-overtopped breakwaters. Furthermore, these equations
ignore the angle of approach which could be significant in exerting sideway
forces to the armor units. All these formulae are intended for zones
adjacent to the water level. For underwater armor unlts, the mechanisml

could be different. Kaplan(Ref.222) has proposed a formula for underwater
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Table 3.10
Necessary Weight of Armor Blocks, with Wave Height H = 6.0 meters,
According to Five Formulae

angle of slope

¥Yr = specific weight of rocks = 2.60
yf = specific weight of fluid = 1.00
L = wave length in metres
Q in tons, for cotg a =
Formulae Coefficients 1.25( 1.50| 2,00 | 2.50
Spain: (Iribarren)
3 N = 0.430
qQ = I 2 31,2 | 20.3| 12.4| 9.5
(fcosa—-sine) ™ (yr/y£-1) f = 2,38 '
Norway: (Svee) 3
Kyr H
Q= c033 i Yr/Yf-l)3 K= 0,12 34,5 | 28.4 | 22,9 | 20.5
Sweden: (Hedar) , Kdown = 3.2 42| 5.7] 6.4
3 -3
__ K Ko yrH e ke 35.6 | 22,5 | 17.3 | 14.0
Q (tgbcosd-sin )3 (Yr/vf-1)3 | tg¢ =1.11
U.S.A.: (Hudson)
Yt u3
» - - - L] L] l .1
Q KA cotgu(yr/yf—l)a KA = 3.2 34,2 | 28,5 | 21.4 7.1
U.S.5.R.:
= 0,025
9 39.8 | 32.7 | 22.8 | 16.8
p yr H™ L

L = H/0.05

iz V{;cotg3a (eryf—l)3

171




armor unit by taking into account current effécts. For lack of
experimental verification, his formula is not widely used. Iribarrin
also has modified the formula for underwater application by simply
adjusting the input wave height.

The various valués of the stability coefficient Kp account for
all variables other than structure slope, wave height, and unit weight
of armor units and the fluid in which they are placed. These additional
variables that could influence the armdr unit stability are:

1. wave length

2., depth of water

3. duration of storm

4. position of armor unit with respect to SWL

5. degree of overtopping

6. shape of armor unit

7. manner of placing the armor unit

8. portion of breakwater

9. number of layers

10. damaging history

- 11. coefficient of friction among units
12. porosity and voids
13. randomness of incident waves

14, effects of current.

Most of the available information on KD was obtained from laboratory - -

results. They are subjected to the following limitations:
a. They are tested under uniform wave height and wave period

with wave impinging at right angle.



b. Placement of units is unlikely to duplicate prototype.

c. Scale effects are not completely determined.

d. Structural (material) behavior of the units is not modeled.
It is also clgar that the variables involved are too numerous to permit
exhaustive investigation. Such én investigation is, perhaps, not
warraﬂted anyway .

At present, the variables usually addressed upon are: a) the
shape of armor.unit; b) manner of placing (random or uniform); c) portion
of breakwater (trunk or head); d) wave characteristics (breaking or
non-breaking). As to the rest of the listed variables, the present
knowledge varies from scattered information to non-existent. It
certainly doesn't mean that these effects can be ignored but that
for each design case, these effects have to be examined individually.

The duration of the storm, for instance, has long been recognized
as a factor not to be ignored. However, most experiments were
conducted with a certain number of waves of a definite size and shape
without actually simulating the storm duration. Many investigators
have expressed opinions that the damage of breakwaters is an accelerated
process. That is, the damage will progress at an ever increasing pace
once an initial damage occurred. Font (Ref,207) reported his
experimental findings and concluded that for the initial movement of
rocks or tetrapods it seems that the duration is not important. The
duration becomes relevant for advanced damage. An example of his
results is shown in Fig. 3. 18 . In there, le is defined as the wave
height that causes 1% damage.

Another factor that has drawn increasing attention is the

effect of irregular waves that one actually experiences as opposed to
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the regular wave tests conducted in the laboratory. Two recent related
investigations on Europort Breakwaters, one by the River and Harbor
Research Laboratory in Norway ( Ref. 26 ) ' and the
other by Delft Hydraulics Laboratory in the Netherlands (Ref. 794)

, seemed to indicate that the fact that the wave in nature
is irregular and this factor cannot be ignored. The results showed higher
damage due to irregular waves than regular waves (with significant wave height
of irregular waves equal to the height of regular waves). Samples of
their results are shown in Figs. 3.19 and 3.20 . The result shéwn
in Fig; 3.20 is also tied in with the effect of foreshore geometry
to breakwater stability.

The effect of wave length on breakwater stability is still un-
resolved. According to some investigators, including Hudson, the wave
length has a minimum effect except when it becomes a crucial factor
in determining wave breaking. Therefore, the values of Kp presented by
Hudson are different for breaking and non-breaking waves. There are
other investigators who argued that the water motion is closely related
to wave length (or wave period); therefore, the force exerted in the
armor unit must be different for different wave lengths. Russia's
formula is one of the examples. Research results in England

(Ref. 477) . also concluded that the effect of wave length
(period) may be important in the advanced stage of damage.

It is generally agreed upon that an increase in porosity will

enhance the stability of armor units; the exact extent is not known.

It probably is safe to say that the effect of porosity is insigmificant
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and that although an increase in porosity will decrease the potential
of high hydrostatic ;pressure to be built up on the back side of the
armor layer, it will also decrease the contact surface between the armor
layer and the underlayer to result in less friction.

Strictly speaking, the stability coefficient K‘D presented in
Tables 3.6 to-3:8 only apply = to non-overtopped breakwaters
with a no-damage criterion defined as leés than 5% displacement of
units of the total. The effect of overtopping is commonly ignored as
far as breakwater structural design is considered. The precaution
usually taken for overtopped breakwaters is to increase the width of
the breakwater crest. The overtopping could actually become a major
damaging factor, particularly for breakwaters used as Tsunami barriers.
This is mainly because Tsunamis are waves of very long periods; they
don't usually break on structures but create a mass of water running
up and finally overtopping the barriers. This mass of water, when it
falls, may slam hard on the leeside and cause excessive damage. Tests
performed‘for the rehabilitation of the Tsunami barrier at Hilo Harbor,
Hawaii (Corps of Engineers, Rep. 1968 ), indicated the effects of over-
topping on the damage of breakwaters. Figure 3.21 showed an example of
the test results. From this figure it seemed to reveal th; fact that the
. margin between no'damage and failure is very narrow and 1s not a clear
cut matter. The breakwater sustained either little damage due for one
instance or failure for the other. Lording and Scott (Ref. 440) also
. performed some laboratory experiment to determine the armor stability of -
‘overtopped breakwaters mainly for short waves. The results. were non-=- -

conclusive but they offered the following observations:
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a) For overtopped breakwaters, the lee slope may be a more

reliable index for estimation of armor stability.

b) The armor units near the crest became more vulnerable.

c) The wave period seemed to become an influencing factor.

These observations seem to collaborate with field experience
that qyer;opped breakwaters, like the breakwater heads, often sustained
earlier damage on the leeside. The damage then progressed at an
accelerated rate to the crest of the breakwater and, finally, caused
a whole section to be bleached.

As far as the effect of current is concerned, there is pract;cally
no information. This is not to say the current effects can be'neglected.
The lack of information is mainly due to the technical difficulty of
laboratory experiments. ‘

Over the past twenty-five years or so, a large number of special-
shaped concrete armor units has been developed. Because of their
superior interld&king'characteristics, in comparisﬁn with the quarrystoﬁe,
the application of pr;casted armor units has been significantly increased
over the past ten years. Aithough there are widely divided opinions
ranging from over-confident to outright rejection, the artificial umits
are here to stay. It may be opportune to briefly review some of the
important developments in the past. |

The earliest type of concrete armor units applied to breakwater
design were composed of concrete blocks of cubical or éectangular shapes.
As far ﬁack as 1883, the Madras breakwater was protected on the seaward
-gide by 30-ton concrete blocks. For the next 60 years, the development
of prefabricated armor units revolved aroﬁnd the shape of rectangular

blocks with little variation. Up to date, there are at least 10
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variations of this kind including the more popular ones such as modified
cubes, stalk cubes and tetrahedon. In 1950, tetrapod was developed in
France, which is quite 'different in shape to the conventional blocks.

It almost dominated the scene of breakwater repairs and reinforcements
for the following decade. More than 20 breakwaters used tetrapod for
repairing, extension or construction. In the late 1950's it became
evident that tetrapod out-performed natural quarrystones in maintaining
stability. From this point on, a race was on throughout the world to
develop artificial armor units of more radical shapes. It was realized
that tetrapod, though superior than quarrystone, has a fundamental
disadvantage of high center of gravity. Therefore, it may be easily
rolled over on a steep-sloped wall. In the United States, tribar was devel=-
oped by Palmer (Ref. 792) and was successfully applied to a number of

breakwater repairs. Other developments include sta-bar and sta-pod by

. & -
a private concern, quadripod, a modified version of tetrapod, trilong,

etc. In Japan, a number of modifications of existing forms were made
such as hollow squares and hollow tetrahedron. .Professor Nagai (1962)
developed an N-shaped hollow block with four legs and reported a high
stability coefficient through laboratory tests. In Europe, tripod,
akmon and stolk cubes were the contributions from the Netherlands.
Staleit was developed in England and was used in England and New Zealand.
Values of stability coefficient ranging from 19 to 25 were reported.

The svee block was the production of Norway. Its stability depends
heavily on the.orderly placing. Adding to this list, dolos, grobbelaar
block and toshane were developed in the Republic of South Africa. Among

them, dolos (Ref. 775) . . has received the most attention.
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The authors have reported damage coefficients as high as 40 for double-
layer random placement and 25 for single layer uniform placement; both

for 0% damage case (the 0% damage actually allows for 2% damage). Hudson (Ref.
434) instead tentatively recommended Kp = 22 for structural trunk design
for breaking waves and 15 for structural head for two layers. According

to the results reported by Merrifield and Zwambornm, the margin of the
stability coefficient is even larger compared with other shapes when
percent damage allowed is increased (Fig. 3.22 ). Such a characteristic
is, of course, attractive from the point of view of safety margin. A

list of the types of concrete armor units is provided in Table 3. 9 .
Among these units, many are in the experimenting state with no sufficient
technical data to substantiate them. Some require special pl&cing
arrangements; thus, are limited in their application. Tetrapod, tribar,
dolos and tetrahedron are among the popular ones. In addition to the shape
characteristic which is the dominant factor in stability, there are a |
number of other facets concerning the application of precasted concrete
armor units that should not be ignored. The specific gravity of concrete
used for casting, for instance, is a factor that could influence the
stability. According to Hudson's formula, higher specific quantity should
be advantageous. Brandtzaeg(Ref.344) proposed a modified formula to

include the effects of specific weight when Sn is unusually large and

small. His formula takes the form:

3
Y H

W= 3
KD(Sn- $) cota

The additional variable ¢ in the denominator, according to
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Brandtzaeg could vary from 0.37 to 1.05 for unusually light to unusually
heavy materials. The usual range of values of Sn’ from 1.88 to 2.76,
is not believed to be sufficient to affect appreciably the accuracy of
weight determination. In practice, attempts have been made in the past
to increase the specific gravity of the aggregate by adding lead slags
(a s.g. of 2.85 was achieved in Scheueningen breakwater ( Ref. 63)
As far as structural behavior of concrete armor units is concerned,
Huddori(Ref.434) came to a fairly representative statement. First of all,
it is perfectly understandable that each unit should be designed to
withstand the forces and stresses imposed on them by the hostile
environment. Presently, however, there is nearly a complete lack of
knowledge in this respect, both analytically and experimentally. The
difficulties, as one can easily realize, are that the armor unit cannot
be treated as a rigid structure with fixed supports in analysis, and they
cannot be modeled . based on simple .modeling rules in experiments.

There is no question as to the importance of using a dense,
watertight (low permeability), high-quality, high=-strength concrete.
According to Tyler(Ref.434}Fhe main causes of deterioration in concrete
marine structures, in addition to damage du; to the breakage of armor
units as mentioned, are freezing~and-thawing attack on the concrete,
corrosion of reinforced steel, and chemical attack on the concrete by
sea water. Deterioration can be greatly minimized if the concrete is
watertight. Thus, the selection of aggregates, ﬁater-cement_ratio, and
admixtures and the attention given to the procedures of mixing, placing,
stripping of forms, and curing of the concrete are extremgly important. -

If possible, as suggested by the Report of AD Hoc Committee of Artificial
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Armor Units for Coastal Structures, the strength of the concrete should
not be less than about 5000 psi at 28 days.
. The question whether the concrete should be reinforced remains
open. Many contgnd that reinforcement is unnecessary, but perhaps
not harmful. The argument being that the breakage of armor units is
mainly due to impact loading and reinforcement does not help in this
category; Once they sustained breakage, the reinforced bars may be
exposed to sea*ater causing acceleratedicorrosion. Systematic drop
tests of tetrapods by Danel,et.al.(Ref.469) seemed to find no difference
on the fracture characteristic whether the units were reinforced or not.
Others firmly believe that armor units should be reinforced. They based
their claims on some field observations that the unreinforced units out-
numbered reinforced ones in breakage. However, the informationlis quite
limited to be conclusive.

Since the éhape factor is expected to play an important role in

affecting the fracture behavior, it is important that tests be performed

for each specific case to determine whether reinforcement should be used. '

-After the.aBove-diééussidn of é?m&r.ﬁnits, it may be appropriate
to conclude this section with a list summarizing the important engineering
points to be exercised in the armor unit selections:

‘a) The ability of armor units to withstand downrush, uprush and
outrush resulting from wave actions. The downrush is
considered to be the major damage méchanism under normal
conditions on the seaward slope of the breakwater. The
uprush is a factor for shallow-sloped structure or when
part of the breakwater is flattened by settling or sustained

initial damage. The outrush is partiéularly critical for
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b)

c)

d)

lee side slope and structure head.

The energy absorbing characteristics of the armor layer

and the related runup, overtopping and wave reflection

characteristics. As explained earlier, the overtopping is

one of the important mechanisms to dislodge leeside units.

Reflected waves are a major contribution for toe scouring

which in turn affects the overall stability of the armor

layers.

The ability of armor units to withstand impact loading due to

breaking waves.

The stability of the armor layer after the attack of

sustained storm. This includes the aspect of catastrophic

structural failure and the aspect of post storm repairability.

A number of factors should be considered:

1)

2)

The interlocking ability of the armor units when
scouring has occurred or core material was washed

out from under. Under this coudition the type of armor
unit selected should be able to sustain its interlocking
capability without total collapsing so that repair can
be made after the storm is over.

The stability of the armor units at advanced stage of
damage. Usually the section of armor units is based

on their stability at a designated percentage of

damage whether it be 0.1 or 2 percent. It is also
inevitable that a breakwater will sustain some damage

duration storms. The behavior of armor units after certain
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3)

4)

damage has occurred, therefore, provides the safety
margiﬁ of the structure. The values of stability
coefficient KD at various percentages of damage, for
instance, serves as a partial indicator. Figure 3. 23
is an example of such a plot. If a structure were
designed for 0% damage, it would probably have the
same design safety margin whether dolosse , tetrapods
or quarry stones were selected as the armor units.
However, according to Fig. 3. 22 , should certain
damage occur, dolosse would provide better protection

for the structure from further deteriorating than the

other two.

The stability of armor units at waves exceeds the design

wave height. This factor is another indication of
safety margin in armor unit section. Figure 3.24
illustrates this property for a number of different

armor units.

The ability of armor units to resist further deteriorating

when A section breaking water crest has been bleached.
Usually when a section of the crest has been opened up
either because of uprush or overtopping, the water
began to pour in like a jet. This jet type action
could be very damaging to threaéen total structure
failure unless the armor units can readjust themselves
to stabilize deterioration. There is practically no

information in this regard.
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e) The stability of the armor layer when partial breakage
of armor units occurs. In the usual manner of armor unit
testing, the damage is measured in terms of dislocatiom
or displacement. It serves to indicate the degree to
which the armor units are disturbed from their initial
placement and the density of armor units remained in a
certain area. The iﬁfluence of armor units integrating

to the total stability is obviously not addressed.

3.2.3.4 Foundation and Toe Protection

It was commented by Minikin in 1950 that ome igescapable fact
in connection with nearly all breakwaters to that time is the weakness
of foundations. The breakwater designers were, in general, paying for
less attention to foundation than their counterparts to sub-foundation
for land atrﬁctures. Consequently, very little research directly related
to breakwater foundation has been done in the past.

The problem of foundation has been gradually gaining
prominence in breakwater design; the method of analysis follows quite

__closély to the earth structure design on land. The Design Manual 7 -

Soil Mechanics, Foundations, and Earth Structures - published by the

U. S. Naval Facility Engineering Command (1962) and Design Standard

for Port and Harbor Structures published by the Japan Port and Harbor

Association (1968) are two standard manuals frequently consulted.
The foundation of breakwater is usually treated as a shallow

foundation subject to vertical loadings due to the weight of the
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breakwater and horizontal loadings due to waves. Strictly speaking, the
vertical load diagram should have trapezoidal shape. For simplicity,
Minikin suggested that a load diagram of triangular shape could be
used instead. To compensate for this replacement, the apex height (p)
can be considered 25 percent greater than the flat top of the mound
(see Fig, 3.25 ). The horizontal loading results from the dynamic wave
pressure and the differential water level on both sides of the structure
are due to storm surge, wave setup, etc. In shallow water, the load
diagram can be approximated by a triangular shape.
After the load cpndition has been determined, foundations are

analyzed for rotational failure, translational failure, and total
and differential settlement. An example of failure lines is shown in
Fig, 3. 26 . So far, foundation design practice is carried out for static
loading condition. Foundation response to dynamic loading and potential
of soil liquifaction , though noted by many designers, were rarely
performed. DM-7 recommends a safety factor no less than 1.5 for
permanent or sustained loa&ing conditions and no less than 2.0 to limit
movements necessary for strength mobilization or local plastic strain
at the foundation edge. Detailed requirements for safety factors in
bearing capacity analysis can be found in DM-7.

For rubble mound breakwater, the core material is usually
compacted sand and gravel. The failure analysis should be extended
to include this section. Examples of failure éalculations are presented
.in Figs. 3.27 and 3.28.

Since the location of breakwaters is primarily dictated by the

requirements of wave protection the in situ soil condition may not be
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always suitable for foundation and improvement may be required. The

various methods employed for soil improvement are:

1.

Stage loading - the construction is programmed to allow
incrementa; loadings of long duration. The technique
allows soil compaction and avoids large immediate
settlement.

Replacement - for poor soil condition or time is limited

to complete the construction. The foundation soil may

have to be replaced by sand and gravels.

Sand drain - this is another commonly employed method to
improve the soil condition through installation of vertical
drain piles to assist‘dewatering and to accelerate con=-
solidation.

Filter blanket and toe protection - it is almost a

standard practice in breakwater design that a bed layer

or filter blanket be considered for foundation protection.
A filter layer serves the dual purpose of preventing

core material from being removed and of offering toe
protection against scouring. Leaching of core material

may result in excessive settlement and potential éollapsing
of the structure. Scouring will lead to considerable
weakening of the shear resistance of the foundation and

eventual structure instability.

Two different kinds of filter layers are used at present -

a drainage filter and a membrane filter. -
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The drainage filter is graded material of fine sands, course
sands and gravels such that it provides good drainage to permit quick
release of hydrostatic pressure and at the same time to prevent core
material from leaching out. The graded material could be in two or more
protective layers. The design procedures involved a) make mechanical
analysis of ﬁhe base material; b) gstimate sizes of voids in the cover
rubble stones; c) design filter by Terzaghi criteria as revised by
the U. S. Army Engineers Waterways Experiment Station (Posey, 1961 and

1971). It stipulates that:

Dl5 Filter

D85 Base & 3
D Filter
15
4 < D15 Base 5.
D Filter
50 < 925

DSO Base

D85 Filter

voids, stones

<2 (Seelye, 1965)

where D = nominal diameter of grain size usually in mm, and for example
D50 means 50% grain size.

The thickness of the filter mentioned should be adequate for
complete coverage of subgrade and base material. The layer should be
extended beyond the possible scouring zone. Typical filter layer

arrangements are shown in Fig. 3. 29,
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‘The membrane filter layer is woven of synthetic fibers such as
polyvinylidene chloride resin monofilament yarns and polypropylene
monofilament yarns. At present, this type of filter has not been
widely used because of lack of experience. The design criteria
have been discussed by Lee (Ref.227) He also presented comparisons
between the graded filter system and the membrane filter system.

One of the difficulties in filter layer and toe protection
design is the problem of estimating scouring forces and the extent of
the scouring zone. The information is vital for successful design and
yet it is difficult to obtain, and often qualitative. We only know
that the scouring is strongly related to wave characteristics, reflection
from the structure and current strength and direction. The current
design practice relies heavily on experience which, in this case, is

unfortunately difficult to transfer from one specific case to the other.

3.2.3.5 Dynamic Analysis of Breakwater - Soil System

The scope of the dynamic analysis of breakwater-soil system
encompasses establishing stress-strain relationship when the structure
is subjected to earthquake ground motion, and accessing the potential
of foundation soil liquefaction. At present,ldynamic analysis due to
earthquake loading is not a standard practice in breakwater design.
Little or no information is available in the United States. In Japan,
the earthquake loading is often considered as a surcharge to the
structure. One of ghe reasons that no serious attempt has been made

to analyze earthquake loading on breakwaters is due to the fact that
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the breakwater has not been treated as a structure of serious consequence.
With the recent development of using breakwaters as the

protective structures for floating nuclear power plants, the dynamic

analysis of breakwaters subjected to earthquake loading could become another

important design consideration. Methods based on finite element

techniques have been developed recently to perform dynamic analysis

of earth structures such as dams ( Ref. 797; Ref. 795)

The finite element method is based on the concept that a
continuous structure can be replaced by an assemblage of discrete
elements interconnected at their model points. The equations of motion
of the model po;ncs in the finite element system are thenlastablished
by assigning appropriate stiffness and damping coefficients. These
equations are then solved for designated excitation forces, for the
model displacements. The stresses in all elements are obtained from
the model displacements by a matrix transformation through stress and
strain relationships.

It seems logical that such methods could be easily extended
to analyze the dynamic response of bréakwaters. The difficulty
actually arises from:

1) The establishment of the actual values of stiffness

and damping coefficients.. In particular, about the
armor units of various kinds. i e

2) The effects of water mass and how it can be incorporated

into the system.

3) The dynamic effects of water waves in conjunction with

the earthquake loading.
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4) The definition of structural safety or failure criteria
and related safety margins.

Extensive research needs to be conducted before a satisfactory
solution can be reached. -

The problem of liquefaction potential has been discussed in
a previous section. Some breakwaters, particularly rubble mound types,
are rather unique structures. One really should examine thé problem
in two parts: firstly, whathis the liquefaction potential of the
foundation soil and secondly, should liquefaction occur, what will be
the consequence tothe structure? Would it result in total structural
failure, partial damage, or just settlement? None of these problems

can be easily answered within the present knowledge.

3.2.4 Damage Assessment

The modes of damage could be quite different for composite type
breakwaters and rubble mound breakwaters. It is more convenient to discuss
them separately.

Composite breakwaters — Damage to this type of breakwater is

usually more drastic than rubble mound breﬁkwaters. The common damage
modes are:
1) Instability of upper structure
a) Structure collapsing as a whole
Possible causes - exceSSive‘wave pressure in the
horizontal direction, excessive overtopping, foundation
failure.
b) Structure sheared off at sections
Possible causes - inadequate bondings, initial stress

developed due to differential setﬁling along the
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strﬁcture and foundation settling in the vertical

direction, initial stress damaging improper

constructions, sudden blows due to breaking waves.
¢) Structure sustaining local damages

Possible causes - constant attack of breaking

waves, material deterioration, inadequate structure

design.

d) Strﬁc:ure receptive under dynamic loadings (no
adequate documentation)

e) Structure sliding with respect to foundation
Possible causes - horizontal loadings exceeds
friction resistance.

Instability of Foundation

a) Excessive scouring
-Possible causes - strong current, shallow water,
wave reflection

b) Excessive settling
Possible causes - poor foundation material, time
inadequate to allow initial settling, unexpected
release of pore pressure, liquefaction (no documented
case).

¢) Foundation sliding aléng diagonal surface

d) Circular failure at rubble mound foundation

e) Circular failure at toe of rubble mound

f) Circular failure at base material



Rubble Mound Breakwaters - For rubble mound breakwaters,

damage-is almost exclusively linked to armor layer stability although
causes of damage may be quite different for different cases. (See

Fidi 33 Stability_pf Armor Units and Siopes of Cover Layers). Because
of this reason, damage 15-sé1domiy géscribed in terms of damage mode
as in the case qf composite breakwaters; rather it is commonly

defined in terms of degree or extent sustained by the structure.

At presenﬁ the description of damage remains to be a very
confused issue. Not only does a unified standard not exist, but the
terminology is also rather ambiguous.

In the United States, the U.S. Corps of Engineers' practice
is commonly followed. The damage in laboratory tests is defined in
terms of percentage of armor units being displaced out of the total
tested. This certainly is a rather loose standard,as one would
expect that at least the location of damage and the concentration of
dislocated units would have some effect on the structure stability as
a whole. To confuse the issue further, the no damage criterion actually
allows certain degrees of damage§ sometimes it allows 1 to 2% and at
other times up to 5% dislocation of armor units is allowed. Judgement
from individual investigators plays an important role in determining
whether the structure is endangered or not.

In the Netherlands, the new revised damage criteria are
defined in terms of percentage with the help of damage description.

Through communication of Mr. Vinje, Head Laboratory De Voost, the damage

code is provided as follows:
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Code

"none"

"slight"

"little"

"moderate"

llmuch"

"serious"

"destroyed"

Description of the extent and nature

of the damage

0-17% of the total number of units in
the cover-layer.

2% of the total number of units in
the covgr-layer; only small holes
in the structure with sizes of
1-2 units.

3% of the total number of units in
the cover-layer; only a few holes
in the structure with maximum
sizes of 3 units.

larger holes in the cover-layer, one

hole of about 10 units and some

smaller ones.

a largér number of large holes of more

than 15 units each, in the cover layer.

core of the structure visible and/or
cover-layer almost completely removed.
smaller material in the core of the
structure is no longer pro:ectéd,

damage is progressing fastly with time.
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Other European countries such as Norway and England, use very
similar damage criteria as described above with possible slight
variations. In Japan, it is unclear exactly what damage criterion
has been used as rubble-mound breakwaters are not really of méjor concern.

Many investigators have the opinion that the existing damage
criteria are inadequate both in definition and uniformity. Many
propositions have been put forth. Some felt that the armor unit dis-
location is not really a good gauge to measure the extent of damage;
rather, the extent of underlayers uncovered is a better criterion.
Others expressed concern.of using the total armor units as a base of
measurement and suggested that the percentage damage should be expressed
in terms of unit area or unit length of designated zones. Still, there
are thoughts that the ability of maintaining the structure slope should
serve an indication of structure integrity. All those concerns are
certainly justified. One must realize that breakwater construction is
really an outgrowth of ancient art. Until very recently, breakwaters
have been gggarded as the type of structures whose failure would only
create secondary consequences. The general attitude has been that
rubble mound breakwaters will sustain damage no matter how carefully
designed, and that they can always be repaired afterwards. This
attitude may have to be changed if breakwaters are to be used to

protect more vulnerable activities such as nuclear power plants, or offshofe

0il terminals.
" Therefore, the general trend seems inclined to demanding more
precise damage description. It is the author's opinion that the

damage of rubble mound breakwaters should at least be described in terms
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of damage location and the extent of damage incurred. The following
serves an example of such a proposition:
Damage Zones
1) Water level zone - mean water level + design wave height
2) High water zone - above water level zone, below structure
crest
3) Low water zone (or zones) - below water level zone, above
berm
4) Zone of berms and toe
5) Crest zone
6) Leeward zone
7) Structural head zone
Damage Modes
1) Armor units dislocation
2) Armor units breakage
3) Exposure of under layer
4) Leaching of core material and undermining
5) Scouring and erosion
6) Bleaching sections
7) Meandering damage
8) Slope instability

Damage Degrees (in terms of percentage) =

1) None
2) Slight
3) 1Littlae

4) Moderate

5) Much
6) Serious
7) Failure
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3.2.5 Model Tests

3.2.5.1 Current Practice

Hydraulic modei tests are becoming indispensable tools in
breakwater design. In today's practice, breakwaters are either
designed or checked through hydraulic models. Skills and model
theories are highly developed and the practice is quite standardized
throughout the world. The United States, Japén, Netherlands, Norway,
France, England and the Republic of South Africa are all fairly well
equipped to conduct large scale breakwater model tests. Cases -
of major test programs conducted in the past can be found in
listed references.

All hydraulic model tests should preserve geometrical
similarity; that is, the ratios of all homologous dimensions on prototype
and models are equal. For testing of breakwaters, dynamic similarity
is observed only to the extent that Froude criterion 1s satisfied.
That is to say, forces due to gravity are assumed to dominate other
kipds of forces including friction force, elastic force, surface tension
and so on. This is a very common practice in hydraulic modeling sinée
the criteria of modeling various forces at the same time are extremely
difficult ;o fulfill. Also, like many otﬁer hydraulic modeling
pracfices, fixed bed models are commonly used. Because of these
restrictions, experimental investigations are limited to determine:

1) The stability of the structure against wave attacks (more

appropriately, armor layers)

2) - Wave runup and overtopping
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Since models ére treated as rigid bodies, elastic behavior
is not usually modeled. Consequently, a wide variety of material

can be used as long as the model remained rigid during testings.

3.2.5.2 Data Interpretation and Scale Effects

It is almost invariably true that the data obtained from
breakwater testings suffers the problem of scattering and respeatability.
This is simply because there are so many variables involved and the
investigators are striving to obtain certain simple relationships
among a few recognizable variables. Even if the data obtained can be
accepted with certain confidence levels, and can be satisfactorily
presented, a greater challenge remains to interpret them for protoeype
application. Without the latter step, the model testing is meaningless.

As we have mentioned before, the dynamic behavior (forces)
of breakwater-fluid interaction is modeled in accordance with Froude
criterion (or Froude law of scaling). Therefore, it leaves little
choice but to interpret the data accordingly. The variables that could
influence armor unit stability have been listed in 3.2.3.3. Among
them; it is generally believed that inertial force created by the wave,
_ the drag force created by the wave, and the friction and interlocking
among armor units are the three most important factors affecting the
armor stability for a giveh breakwater shape. The Froude criterion
used in dynamic similitude only yields correct simulation of the
inertial force. The other two factors will not be correctly scaled
using the said scaling law. Under this condition, one faces fwo

alternatives:
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3) Wave transmission through porous structures

4) Wave force movement on vertical walls

Among tﬁem (1) is most directly related to breakwater structural
design. Most laboratories perform their test in wave tanks equipped
with wave generators capable of generating monochromatic waves.
Recently, wave basins that permit three dimensional tests are also
available. Laboratories in the Netherlands and Norway are now testing
breakwater stability by irregular waves., TFacilities capable of
generating irregular waves are also available in thé country. However,
no breakwater test has been performed using these facilities.

In designing model testing, the selection of the linear
scale is of first priority because it depends on many factors which
follow:

a) Absolute size of model waves capable of being generated

b) Dimensions of test facilities

-c) Limitation of water depth

d) Operation constraints

The effects of water depth and wavelength on the wave refraction
and deflection characteristics require a geometrically undistorted model
to ensure accurate simulation of wave action. Almost all the breakwater
‘tests. performed so far were using undistorted models.

The fluid most often used is water. This is because water is

readily available and is more satisfactory than other fluids.
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1) If the effects are separable in the model, the inertial
force could correctly scale up and corrections could
be made for the other two factors.

2) 1If the effects are inseparable in the modél, the total
effect has to be scaled up obeying Froude criterion and

hoping that inertial effects dominate the rest.

In breakwater modeling, the second practice is followed. The
scale effect is often noted but no solution has been found. Since
field measurement is so difficult to obtain, there is no quantitative
verification to completely endorse the current practice. It is safe
to say that within the state of the art hydraulic models are indispensible

for breakwater design, but one should not rely on it with over confidence.
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4. EVALUATION OF CURRENT DESIGN PRACTICE

4.1 Deficiency

Before 1950, breakwater design and construction have
experienced many setbacks and the confidence of engineers was quite
shaky. Over the last two decades, substantial efforts have been given
in research for better understanding and more rational methods of
breakwater design. The hazardous nature has been appreciably lessened
as evidenced by greatly reduced breakwater failures during this
period. However, for one reason or another, breakwaters are étill looked
upon as structures of secondary consequence when failed, and engineers

tend to show too great an optimism for favorable conditions and place

heavy weight on economic considerations.

As is often the case in engineering problems involving environ-

mental interactions, breakwater design suffers many deficiencies.

These deficiencies can generally be categorized into two groups;

(a) those resulting from lack of understanding, and (b) those

resulting from new requirements. Deficiencies stem from lack of understanding
belonging to one group whereas those resulting from new requirements belong
to the other. Deficiencies of the first category have largely been addressed
upon in the previous discussion. The deficiencies of the second category,
specifically relating to applications of floating nuclear power plants,
will be the main point of discussion. It should be pointed out that

these two groups are not mutually exclusive.

The first problem one would like to address upon is the

determination of design conditions and the related risk analysis.

As just mentioned, current engineering practice tends to put too much
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empha;is on economics. The design parameters were often selected at

the designer's discretion, often éith very little research on the
viability of their decision. One of the favorite excuses 1is that the
structure failed because it encountered two one-hundred-year storms
within five years. For breakwaters to be used as protective structures
of serious safety consequence, much more stringent methods of analysis
should be used. There seems to be two alternatives open for exploration.
The first one is to select design_parameters based on probability of
occurrence of extreme events and to perform meaningful risk analygis.
This method requires a substantial data base to support the decision

and its confidence level usually decreases as the data extrapolation
extends beyond a reasonable period. The other method is to select

the design parameters based on the limiting mechanisms that govern the
process. For instance, it is a common practice to select design breaking
wave height based on the water depth simply because of the fact that
waves can physically n;ver excaed certain limiting heights for a des-
ignated water depth. Unfortunately, not all the environmental parameters
are as clear cut as breaking wave heights. Further research needs

~ to be performed.

Another vital deficiency in the present breakwater practice is
the understanding of breakwater response under earthquakelloadings. There
is practically no documented information directly related to breakwaters.
Since technical tools are fairly well developed to handle structural
analysis of continuum material under dynamic loads, a finite amount of

research work may have the problem well in hand.
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One of the problems that may haunt us for a while is the lack of
clearly defined design requirements and damage criteria. The problem

of safety margins in the usual sense of structure design is also lacking.

4.2 Recommendations

The design of breakwaters still remains, to a certain extent, an
art. Experience and judgement played and still play important rolés. Many
aspects and problems need to be improved, understood more, or defined
better. In the advent of new roles of breakwaters in the offshore
installations, the following research needs to be carried out for safety
purposes:

1) The design of breakwaters, both composite type and rubble

mound type, against earthquake loading.
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5. DESIGN REVIEW INFORMATION REQUIREMENTS

To facilitate éppropriate design review, the following information
should be furnished by the applicants to the fullest possible extent. Any

additional information that will aid in design review should also be provided.

5.1 Narrative Description

A physical description of the breakwater shall be provided, supplé—
mented with sketches or diagrams such that a detailed description of all
pertinent features is provided including surrounding environment, geometry
of breakwater, type of structures, major dimensions, typical views and geolo-
gical setting. The function of the breakwater and its expected performance

shall also be summarized.
5.2 Plans

The plans shall provide sufficient details with sizes, sections,
and relative locations of various members of the breakwater. Different
design water levels shall be dimensioned. Plans shall be drawn to a scale

large enough to convey the information adequately.
5.3 Data. Summary

Data pertinent to design should be provided. These data should
_include all the physical, chemical and engineering information cited or used
in design and analysis sources of information and means by which information

is obtained should be properly identified,
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The following kinds of information are generally required:

a) Long-term wind statistics, in particular, storm or hurricane
statistics., The information should include the speed, the duration and
the direction.

b) Wavg statistics,including wave height, period and direction.
Information on wave spectrum,

c) Tides and storm sufge information including both astroaomical
tide and meteorological tide. Other meteorological factors that influence
the meteorological tide such be documented, Such factors include atmospheric
pressure anomalies rainfalls,

d) Current information including wave, tide and wind induced current,
current anomalies such as downwelling and upwelling.

e) Geological information including bottom topography and soil
condition. Soil foundation data down to the point where the structure has
negligible effect shall be provided.

f) Earthquake and tsunami data shall be provided.

g) Other factors such as ice, fog, temperature, when applicable.
5.4 Design and Analysis Procedures

The design and analysis procedures shall be described including:

a) Determination of Design Parametefs——this shall include the methods,
the hypothesis, the analysis and the results of determining design input
parameters such as:

1) Design wind, wave and current conditions.
2) Design water levels and storm tides.

3) Design foundation information including physical properties,
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mechanical properties, and dynamics properties.

4) Design earthquake input spectrum and design tsunami
conditions.,

5) Combinations of design parameters.

b) Determination of loads and loading combinations--this shall
include the type of loads acting on these structures such as.dead, live,
earth pressures, static and dynamic loadings due to water and impact loadings.
Loads resulting from natural phenomena; such as, earthquakes, tornados ,
hurricanes, and other time~dependent loads unique to the site should be
described. The load factors used and their justificatioms.

c) Methods and Techniques——this shall inc;ude the assumptions made
and the identification of boundary conditions. The expected behavior under
load and the rénge of design variables that influence the results of the
analysis should be provided. The design codes, standards, specificationms,
regulations, general design criteria, safety guides and other industry
standard practices that are applied should be identified. The specific
edition, date, or addenda of the applicable documenqa.should be identified
including any exceptions taken, and their just:ificatiun, -and/or application
of.substitute provisions, The limitations and assumptions made in the
referenced documents should be discussed in relation to the procedures out-
lined for the design. The Degree of conformance with the related AEC safety
- guides should be discussed. Computer programs that are utilized should be
referenced to permit identification with available published programs. Pro- -
priety computer programs should be described to the maximum extent practical

to establish the applicability of the program and the measures taken toO
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validate the program with solutions deriyed from other acceptable programs.

d) Documentation of Experimental Testing Program-éé’dféﬁﬁSQion of
all experimental test programs initiated by the applicgnt to verify design
parameters, to determine design conditions and to test performance should be
included along with a list for each experimental test program. A more detailed
sumﬁary of the experimental test program including such items as experimental
design, procedﬁre, data acquisition, data analysis and interpretation,
applicability and limitation to prototype application and level of confidence

should be included.
5.5 Materials, Quality Control and Special Construction Techniques

The materials, quality control procedures, and the special construction
tecﬁniquea used for the breakwater should be identified. A summary of the
material spedifications to provide information on the engineering properties
of the materials and the quality control procedures that will be used to
maintain quality should be submitted. A comparison of the actual materials
used, results of the quality control program and results of the construction

techniques should be provided (FSAR),
5.6 Testing and Inservice Surveillance Requirements

The testing and inservice surveillance requirements for the break-
water éhould be defined. The objectives of the surveillance and maintenance
programs relating to crest width and elevation and the thickness and density
of the armor and other areas important to the safety function should be pro-
vided. Details of the inservice surveillance and maintenance pfograms should

be provided (FSAR).
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6. DESIGN REVIEW GUIDELINES

To facilitate design evaluation and to maintain comprehensive but

not excessive review practice, the review items discussed below are rated

as essential (E), important (I), and optional (0O) whenever possible,

according to their relative importance to the structure safety. Commonly

accepted practices and elaborations will be referred to the appropriate

section(s) that deal with the specific topic.

6.1 Design Criteria

AI

8.

Function of Structure (I)

Expected Performance (E)-expected protection offered,

structural integrity under various loading conditiomns,

life of structure, etc,

Item:

Item:

Basin Agitation

Common standard: none

Recommended standard: Under storm wave condition

the plant agitations shall not exceed those set by
the manufacturer for safe operation and safe shut-
down conditions. Under long wave condition, the plant
agitations shall not exceed comfortable operation
conditions.

Overtopping

Common standard: none

Recomennded standard: No blue water topping shall

be allowed. Minimum amount while water topping spray

is allowed only when justified.
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Item: Structure Intergraty
Common standard: For rubble-mound type, damage under
design wave condition shall not exceed 2 to 5% (Defi-
nition of damage varies). For composite breakwater
no clearly defined criterion.
6.2 Design Parémeters (Ref. Sec. 3.2)(E)
A, ﬁesign Environmental Parameters--Design environmental para-
meters shall, in general, including those listed in the following
table} any additional parameters pertinent to the plant location shall
also be reviewed, methodologies employed in determining these parameters and.
risk analysis shall be reviewed. (See Table 6.1)
B. Geological and Soil Information (E)~-information to support
1) foundation design; 2) near field wave interaction analysis; 3) erosion
assessment; 4) liquefaction analsyis shall be reviewed. The following
information and analysis are generally required:

Hydrographic survey:

1. adequacy to permit design and construction of breakwaters—-no ¢OMmon
standard{ 1 to 5-foot contour mappings are generally required depending on
the size of the structure and the geomophology of the area.

2. adequacy to permit computation of near-field wave refraction and

wave energy concentration--no common standard. Contours no more tﬁan
10~foot interval may be required up to d/L 3_1/2 where d is the water
depth and L is the longest wave length under ‘consideratiom.

Soil information

1. For sandy and muddy sea floors, core samples are required. The depth

of core and the density of coring: should be adequate for foundation design
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information. It is not uncommon to require deep cores 150 to 200 feet.
Corings should be taken both along the axis of the breakwater and per-
pendicular to the axis to provide information for settling anaiysis

and foundation failure analysis.

2., For rocky bottom, sedsmic profiles shall be reviewed to determine
possible underwater fault, effects on underwater aquafer.

3. Laboratory test procedures and results.shall be reviewed including
the physical properties, mechanical properties and the dynamic properties
of the foundation soil (Sec. 3.2.1.6). Test procedures and items, in

general, follow standard soil testing practice.

Physical Properties | Mechanical Properties | Dynamic and Liquefaction
Properties
Unit Weight Consolidation Grain Size
Grain Size Shear Strength Critical Void Ratio
Permeability | Pore Pressure Resonant Cblumn Test
Cohesion Penetration Resistance | Triaxial Cyclic Test
Porosity I Shear Test
Confinement Pressure
Penetration Resistance

TABLE 6.2 COMMON SOIL PROPERTY TESTS
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6.3 TForces, Stresses, and Strain Under Extreme Conditions

A. Combinations of Extreme Design Parameters (E)
The combinations of design parameters shall be reviewed including
1) values of design parameters, 2) basis for selecting various
combinations, 3) consistency of assigned risk.

The environmental parameters most pertinent to breakwater
design are wind, waves, swell, level of water, current, earthquake
and tsunami. Extreme conditions of these parameters do not usually
occur simultaneously. The selection of combinations depends to a
certain degree on their statistical influences. The mosttonserva=
tive design condition would be the highly unlikely case that all
the environmental parameters are statistically, totally dependent.

On the other end of the scale, the least conservative situation

would be under the assumption that all the parameters are statis-
tically independent to each other. By analyzing the cause-effect

of these parameters one should be able to reach a reasonable set

of design conditions. For instance, if one assumes the statistical
infiuence can be artificially differentiated at four levels--strong-
dependent, moderate-dependent, weak-dependent and independent, a

table like the following can be developed to aid in selection of design

parameters.
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Wave Swell |[High Water|Low Water |Current | Earthquake Tsunami

Wind Strong |Moderate |Strong Moderate Strong Independent |Independent
Wave Weak Strong Weak Moderate | Weak Independent
Swell Moderate |Weak Moderate | Weak Moderate
High Water Independent |Strong Independent [Strong

Low Water Weak Independent |Strong
Current Independent |[Moderate
Earthquake Independent

TABLE 6.3 EXAMPLE OF STATISTICAL INFLUENCE OF ENVIRONMENTAL FACTORS

Thus, one may reason that a combination of high wind, high water, high wave,

strong current and moderate swell is a likely one whereas a strong earth-

quake with moderate wave and swell and normal wind will be another combination

with comparable degrees of risk if the individual design value is a priori deter-

mined at the same risk level.

Loads and Load Conditions, Types of Loads (E) (Sec. 3.2.3.1)

The following table provides the load conditions commonly considered in break-

water design. Detail force analysis is only performed in composite breakwater

design. For rubble mound breakwaters, external forces are_implicit design

factors.
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Common Practice

Remarks

Dead Weight
Buoyanc

Static | Hydrostatic force due Caused by Tsunami
Load to differential
water level
Wind Load Ignored
Current Load Ignored
non-breaking | Saintlow or Mini- |for vertical wall only
kin method &
Wave force{breaking Minikin or Hiroi |still rely on experiment
formula
broken Momentum balance
B method
Dynamic Earthquake Ignored input, in general, in terms
Load of acceleration rather
than loading.
Ship Collision Ignored experiment

TABLE 6.4 LOAD TYPES IN BREAKWATER DESIGN

C. Stress Analysis Under Static Conditions--Essential for Composite

Type or Caisson Structures:
retaining walls, dam structures, or caisson design are followed.

shall be performed for both reinforcement and concrete,

Standard practice of stress analysis on

Analysis

For caisson design,

side walls, inside walls, and bottom slabs shall be examined separately.

The caisson as a whole is examined as a beam for sagging and hogging during

towing, installation and in place on soil foundation.

Table 6.5 provides

a breakdown on load analysis for caisson structures,

Stress analysis 1is usually not performed for rubble mound structures,

D. Stress and Strain Analysis of Structure-~Soil system under dynamic

loading conditions (combination of earthquake aﬁd wave impact)(E). No

standard method.

method developed for dam structure design.

method are:

225

Best available method in analysis is the finite element

Some of the limitations of this



1. The effect of water mass is not included.

2. The wave loading is not included.

3. The actual value of damping and stiffness coefficients have not

been established.

In reviewing this fluid-structure-soil system, attgntion shall be paid
to how these elements are treated. Also, the reasonableness of failure and
safety criteria used in the analysis shall be evaluated. In the dam struc-
ture analysis, maximum allowable strain 1s generally adopted as failure
criterion. This criterion is believed to be valid for composite type of
breakwater., For rubble-mound breakwater such criterion is open to question.
E. In summary, the review of forces, stresses and strain on breakwater
structures shall emphasize the following points:

1. The soundness of selecting design parameters and the combinations.

2. The appropriateness of assumptions, methods of analysis and boundary

conditions.

3. The confidence level of the results and the expected range of

variability of the results.
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6.4 Stability of Structure and Structure Components

A. For composite type or vertical wall type of structures (E)

(Sec. 3.2.3.2)~--stabilities of superstructures, vertical walls

or caissons, foundations and base material, problems of struc-

ture head, possible damage mode(s), vulnerability and safety

mﬂrgino

Table 6.6 gives the general concern on the stability

of vertical-wall-type or composite-type breakwater.

UPPER STRUCTURE

Method of
Failure Mode Causes Historical Case Evaluation
Collapses as a whole | excessive wave pressure Yes analytical
excegsive overtopping
differential water level
due to tsunami
foundation failure
Section sheared off inadequate bondings Yes No adequate
differential settling method
breaking wave force
Local damages breaking waves Yes No adequate

Structure ruptured

deterioration
dynamic loading

excessive horizontal load-

no adequate doc-
ument

method

Finite element
method

Sliding Yes analytical
ing
FOUNDATION
Method of
Failure Modes Causes Historical Case Evaluation

Excessive settling

Sliding along dia-
gonal surface

Circular failure
Undermining

poor foundation material

inadequate initial set-
ling

unexpected release of
pore pressure

liquefaction

inadequate foundation
shear resistance

poor foundation material

excessive scouring

72978

Yes

Yes

Yes

Yes

field informa-
tion

analytical

analytical
Experimental




STRUCTURE HEAD

Method of
Failure Modes Causes Historical Case Evaluation
collapsing same as upper structure Yes experiment
sliding and turning same as upper structure Yes no adequate
method

B.

Table 6.6 STABILITY OF COMPOSITE TYPE OR VERTICAL TYPE BREAKWATER

For rubble mound breakwaters (E)(Sec. 3.2.3.3)--Stability of rubble-mound
breakwaters %s a complicated problem involving many inter-related para-
meters. Therefore, safety evaluation is not an easy task., Model test

is almost indespensible. The solutions of many questions are still beyond
the state-of-the-art even on a case by case basis. The following items
are considered essential in breakwater safety review:

1., Definition of damage, degree of damage, vulnerability of damage
to structure failure, range of expected variability of damage, and margin
of safety.

2, Stability of armor layers, under layers, structure slope, and
structure head.

3. Stability of foundations, berms (if any), rubble-mound bases
(if any) against sliding, rotational failure, total settling and differen-
tial settling.

4. Liquefaction potential and structure vulnerability at various
degrees of liquefaction.

5. Stability of foundation and toe protection against erosion.

6. Assumptions made and procedures followed in stability analysis=
Influencing factors being specifically evaluated, neglected or lumped

together and the justification for such neglecting or lumping.
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It is also important to review the adequacy of the material for core and
underlayer and the material and_structural behavior of the armor units.
In reviewing damage ériteria, Table 6.7, provides an example of the

review format.

Damage Criteria = Damage Mode + Damage Zone + Degree of Damage + Safety
Margin

Damage Criteria

Total Functional Failure
Partial Functional Failure
Severe Structure Damage
Much Structure Damage
Moderate Structure Damage
Little Structure Damage
Slight Structure Damage

No Structure Damage

Damage Mode
g AN
Collapse (no case history) - -
Bleaching Sections o
Exposure of Underlayer 2 i
Leaching Core Material and Undermining g %
Foundation Failure s =
Scouring and Erosion ol
Slope Instability g
Armor Unit Dislocation "
Armor Unit Breakage
Damage Zone A
: w O
Structural Head 84
Water Level Zone—mean water level + design wave height a :S
High Water Zone——above water level zome below structure y
crest zone -
Leeward Zone "o
Zone of Berms and Toe -

Low Water Zone(s)=--below water level zone above berm

Damage Extent

In terms of percentage per unit area.

TABLE 6.7 EXAMPLE OF DAMAGE CRITERIA FOR RUBBLE MOUND BREAKWATER
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Apparantly, a conservative damage criterion shall possess the following
combinations:

1. the criterion of damage mode is on the lower scale of severity

2. the damage zone is designated at low vulnerability region

3. the percentage of damage is low

4, the safety margin is high
In the current practice, the démage criterion (often referred to as the
stability criterion) ié to allow a certain percentage of armor unit dis-
location (from 2 to5%) under design wave condition. Although the allowed
damage mode is low on the severity scale, the criterion does not speak
to the crucial problem of damage zone and how rapidly the damage will
propagate to higher mode if design conditions are slightly exceeded.

In rubble-mound breakwaters, the stability of armor layer is one of the
most important safety items and shall be carefully reviewed. Some guide-
lines in this respect are discussed here. Again, one should be cautioned
that the problem of armor ;tability is a complicated one., Descretion must
be exercised to deal with each case on an individual basis.

Stability Computation

The stability computed in accordance with existing formulas shall
serve only as a first approximation. The final stability of the armor

units shall exceed, at least equal to, that computed.
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Stability Test

At present, experimental test is indespensible to establish the actual

stability of armor units. To insure structural safety, satisfactory answers

shall be provided on the effect of various parameters ‘(listed in Table 6.8)

to the armor stability. Anong them, the following are the more important

ones that are commonly neglected in routine test:

a.

C.

d.

The actual simulation of incident wave and the probability of multi-
airectional waves and swells.

The gtability of armor units under dynamic loading including earth-
quake loading.

The margin between low-damage mode and high-damage mode and the margin
between slight or no damage and heavy damage shall be investigated.

If the margin is small and is within the expected variability of test

parameters or the scattering of test results, the structure is not

acceptable.
The combined effects of current and waves on armor stability, in

particular, at the structure head area.

Armor Unit

The armor unit shall be reviewed in the following aspects:

al

The material--—it is commonly recommended that a dense, watertight
(low permeability), high quality, high=-strength concrete shall be

used. It is also recommended that the concrete should not be less

than about 5,000 psi at 28 days.
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b. The reinforcément—-if no reinforcement is used, it shall be so
justified through experimental testing, in particular, under condi-
tions simulating breaking waves (the ability of armor unit to with-
stand wave impact loading).

¢. The stability under damaged condition-- 1) the stability of broken
unit, 2) the interlocking ability at advanced stage of damage, 3) the
stability of armor units at waves exceeds the design condition, 4). the
stability of armor unit for overtopping water.

In liquefaction and related structure vulnerability the following items

shall be reviewed:

1. Sections that are vulnerable to liquefaction--usually areas of low
surcharge : and areas of high pore pressures.

2. Damage potential of breakwater at various degrees of liquefaction
(no documented case on breakwater failure due to liquefaction).

3. Damage mode and damage zone due to liquefaction.

In determining the adequacy of core and underlayer design, the following

items are of importance:

1. The grading of core materials to provide structure integrity and
excessive leaching of material.

2. The adequacy of voids and porous behavior to avoid excessive built-

- up in hydrostatic pressure.

3. The compatibility with armor units in earthquake resistance.

6.5 Hydraulic Model Test (Essential for Rubble Mound Structure)(Sec. 3.2.5.1)
In reviewing the model test, the following items shall be reviewed:
A. Scope and comprehension of test program——ideally, the model test shall

cover the effects of environmental factors crucial to structure safeéy,
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among them:

1)
2)
3)
4)

the effects of water wave .
the wind load
the current effect, and

the earthquake load.

However, the standard practice in breakwater model test only considers

the first item.

power plant, full justification shall be provided if the other effects are not

evaluated through experiment.

BI

Modeling techniques and limitations=—including the soundness of the
simulitude criteria and the limitation of test results in design
application., Since dynamic similarity cannot, in general, be fully
preserved, justification shall be given as to why certain dynamics
aspects are ignored in the test and what corrective measures are to
be taken when the results are applied to prototype design.

Test conditions, procedures and repeatability of test results-—the
test shall cover thg full range of design values. Cases crucial to

structure safety shall be tested exceeding the design conditions to

insure appropriate safety margins. According to past experience such

cases may include the degree of wave overtopping design wave

height exceedance. The effects of earthquake duration shall also be care-

fully examined; although, no historical cases have been documented

to indicate how sensative the structure safety to earthquake duration.

Tests with widely scattering results shall be carefully reviewed to

insure that in no case the envelope of the scattered data exceeds the

design safety criteria.
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D. Data collection techniques, procedures of data analysis and inter=-
pretation, and error analysis--this shall include the range and relia-
bility of data collection system, the sensitivity and tolerance of
instrumentation,. the caliboration of stability of sensing elements.
For error analysis, one must be assured that the data collected are
of uniform quality and that the amount of information is sufficient to
allow ﬁeaningful analysis.

E. Application to design, scale effects, level of confidence and range of
variability--of particular importance in this category is the scale
effects. In certain cases, models of different scales may have to be

used to establish the appropriate scale effect.

6.6 Structure Vulnerability Against Accidents (E)

The assumptions, the procedures of analyses and/or experiments, risk
analysis and structure vulneraéility shall be reviewed. If experiments are
required, it is important to insure that the appropriate dynamic behavior of |
the system is simulated. For ship or airplane collision, for example, the

elastic behavior of the breakwater must be properly simulated.

6.7 Hydraulic Effects of Breakwaters (0)

A. Degree of wave runup and overtopping, wave energy transmissibility
when structure is intact and at various stages of damages shall be reviewed
to determine the expected functional performance of the breakwater as claimed
by the applicants.

B. Wave reflection, deflection and diffraction characteristics due to
the wave-structure interaction shall be reviewed to determine whether zones of

high energy concentration within and outside the breakwater exist.
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6.8 Materials, Quality Control and Construction Techniques (I)
A. Material specifications including physical properties,
engineering prospectives and chemical and biological

stability in marine environments.
B. Quality control standards and procedures and results.

C. Material handling procedures, including manufacturing,

transport and installation.

D. Construction programs and techniques and inspection.

6.9  Testing and Inservice Surveillance Requirements (1)

A. Scope and criteria of testing and inservice surveillance

program for safety evaluation.

B. Risk statement, maintenance schedule repair requirements.

C. Inspection techniques and procedures.
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General

1. Shore Protection Manual (3 vols.) U. S. Army Coastal Engineering Research
Center, 1973. -

2 Design Manual-Soil Mechanics, Foundations, and Earth Structures, NAVFAC OM-7,
U.S. Naval Facilities Engineering Command, 1971.

3. Design Manual-Waterfront Operational Facilities, NAVFAC DM-25, U. S. Naval
Facilities Engineering Command, 1971.

4. Design Manual-Harbor and Coastal Facilities, NAVFAC DM=26, U. S, Naval Facili-
ties Engineering Command, 1968.

5. Dock and Harbor Engineering (4 vols.) Charles Griffin & Company, Ltd., London,
1969. '

’

6. Port Structures (2 vols.), The National Ports Council, London, 1969.

7. Winds, Waves and Maritime Structures by R. R. Minikin, Charles Griffin, Ltd.,
London, 1.950.

8. Design Standard of Port and Harbor Structures, Tapan Association of Port and
Harbors, 1969 (in Tapanese)

9 Design Handbook of Shore Structures, Tapan Association of Civil Engineering.

10.. Desgin Construction of Port and Marine Structures, by A. De F. Quinn,..McGraw-Hill
New York, 1961.

11. Water Resources Development-California, U.S. Corp. of Engineers, 1973

12, Water Resources Development-Connecticut, U.S. Corp of Engineers, 1971.

13. Water Resources Development-Hawaii, U.S. Corp of Engineers, 1972.

l4. Water Resources Development-Maine, U.S. Corp of Engineers, 1971.

15. Water Resources Development-Massachusetts, U. S. Corp of Engineers, 1969.

16. Water Resources Development-New Hampshire, U. S. Corp of Engineers, 1971.
17. Water Resources Development-Rhode Island, U. S. Corp of Engineers, 1971.
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