N00014-76-C-0412

INTERACTION BETWEEN RANDOM WAVES
" AND HORIZONTAL SHEAR CURRENTS
IN WATER OF VARYING DEPTH

By
Mehmet A. Tayfun
Robert A. Dalrymple
Cheng Y. Yang

Ocean Engineering Report No. 4
November 1975

Department of Civil Engineering
University of Delaware
Newark, Delaware

Geography Programs of the Office of Naval Research under contract No. N00014-76-C-0412



INTERACTION BETWEEN RANDOM WAVES AND HORIZONTAL SHEAR CHRRENTS

IN. WATER OF VARYING DEPTH

M. A. Tayfun, R. A. Dalrymple, C. Y. Yang

Department of Civil Engineering
University of Delaware
Newark, DE 19711



INTERACTION BETWEEN RANDOM WAVES AND HORIZONTAL SHEAR CURRENTS
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Abstract

Interaction of incoherent random gravity waves with shear currents and
underwater topography results in a spatial transformation of mean square
spectral characteristics. For the particular case of unidirectional variations
in currents and topography, this transformation involves a modification of
spectral magnitudes and associated wave spaces in wave number or polar frequency-
direction. Shear currents, in effect, act as a filter, dissipating and/or
reflecting certain spectral components while transmitting others with substantial
amplification or reduction in amplitude. These interactions are most noticeable
in deep water and tend to be significantly diminished or modified in shallower

depths by depth refraction and shoaling.



INTRODUCTION

Interaction between monochromatic waves and currents and/or underwater
topography has been of considerable interest and usefulness in the study of
waves and related phenomena in coastal waters. Munk and Traylor [1947] viewed
wave refraction over an irregular topography as a primary mechanism controlling
the spatial variation of wave characteristics which, in turn, becomes an impor-
tant factor in various processes such as sediment transport, nearshore circula-
£4on'4nd rip current generation. Similarly, Johnson [1947] and Arthur [1950]
démonstrated the significant effects of the refraction of deep~ and shalloW4“lc¥y~

water waves encountering a current. Later, various investigators, e.g., Landau

and Lifshitz [1959], Whitham [1960], Ursell [1960], Longuet-Higgins and Stewart
[1961], Lighthill [1964], Bretherton and Garrett [1969], Dalrymple [1974 a,b],
Peregrine [1975] and others, developed most of the systematic rules and concepts
governing current-wave interactions. Explicit applications of these concepts to
the computation of wave heights, wave kinematics and nearshore circulation are

given by Kenyon [1971], Noda, et.al., [1974], Skovgaard, et.al., [1975], Dalrymple

and Dean [1975].

It is, however, recognized that the description of the sea surface in terms
of monochromatic waves is at best an approximation. Most realistic sea states
have a more complex randomly irregular structure concisely characterized by a
two—dimensional mean square spectral distfibution over a wave number space or a
polar frequency-direction space. Consequently, the extension of the concepts

developed for the case of monochromatic waves interacting with currents and



underwater topography to the prediction of the spatial transformation of mean
square spectral characteristics is a natural requirement., The earliest and most
significant effort in this direction was made by Longuet-Higgins [1956, 1957],

who considered the transformation of two-dimensional wave number spectra by refrac-
tion over a general underwater topography. Later, with the development of the
radiation stress concept [Longuet-Higgins and Stewart, 1962], Phillips [1966] and
Hasselmann [1968] generalized Longuet-Higgins' results and formulated a systematic
energy approach fof the prediction of spatially inhomogeneous spectra, taking into
consideration current interactions, various dissipative and generative effects as
well. The same approach has been recently extended to nonlinear random waves by
Willebrand [1975]. However, explicit applications of this approach have been demon-
strated only in a few cases. For example, Karlsson [1969] illustrated the refractive
transformation of polar frequency-direction spectra over topographies with parallel
and irregular bottom contours by numerical computation over a rectangular grid.
Similarly, by also taking into account an approximate form of bottom friction,
Collins [1972] developed a numerical ray tracing scheme to compute spatial variations
in spectra due to refraction and shoaling. The refractive transformation of spectra
over a topography with parallel bottom contours was further explored by Krasitskiy
[1974]. In the case of unidirectional waves interacting with an opposing or following
current in deep wate;, the explicit fransformation for one-dimensional frequency
spectra was given by Phillips [1966, p. 60]. The applications of this result to
current measurements and wave forces were demonstrated by Huang et.al. [1972] and

Tung and Huang [1973].

The motivation here is to study, via energy balance approach, the spatial
transformation of spectral characteristics for directional random waves inter-
acting with a steady nonuniform shear current in water of varying depth. 1In

particular, the results obtained by Longuet-Higgins and Stewart [1961] for mono-



chromatic waves on a shearing current in deep water are generalized to include
the case of random waves and the influence of one dimensional variatioﬁs in
underwater topography. It is, therefore, assumed that bottom contours are, in
general, parallel to the current direction, restricting the spatial inhomogeneity
of the problem to a single dimension. Emphasis is primarily placed on the
spatial variation of two-dimensional spectral characteristics.

DEFINITIONS AND ANALYSIS

An incoherent random gravity wave field can be represented by

nx,t) = X an(i’t) cos X @B)
n

where a is a Fourier amplitude regarded as a slowly varying function of time t
and position x = (%1, %p) in a horizontal coordinate system fixed at still water

level. The phase function
Xa@t) =k + x-owt+yp, (2)

in which W, represents independent random phases uniformly distributed over (0,2Tm),

defines the vector wave number gn and frequency w in the usual way:

k = 32 X & w = -3X_/dt (3)

where Eﬁ = (3/9x), 3/9x,) is the horizontal gradient operator.

It immediately follows from (3) that



dk
=0 and —=
at

X +Vw =0 - (4)

\ k
&l -n 2 I
are recognized, respectively, as the irrotationality condition and the kinematical

conservation equation for the wave number gn.

Consider now the limiting case in which the vector wave ﬁumbers, En’ are
distributed densely over a k = (k;, ky) plane. Correspondingly, the amplitudes
an are suﬁh that if (k;, ky + dk;; ka, ko + dky) denotes any small region of the
wave number plane then |

dk 5
5] a = ¥(s xt) dk | )
n

with dk = dk;dk, as a shorthand notation and the sum is taken only over values of
n for which En lies in the range dk around the fixed wave number k. The spectral
density, Yy, describes the distribution of the mean square surface deformation over

k-space locally, i.e.,

2 2
ol =l e - [ v xo )
n k

This distribution will be obviously different if the definition of wave space is
changed. For instance, at any point x where w and k are interrelated by a disper-

- sion relation
w = 2(k,1) _ (6)

in which the properties of the propagation medium are characterized by the function

A(x,t), we can write for the same mean square surface deformation



<InGt)| > = J ?(w,03x,t) v dw d6 - 7)
w, 0

where 6, with (kj,k;) = (k cos 6, k sin 0), is the direction of k relative to x;
and the distribution @ represents the so-called directional spectral density.

p and ¢ are connected by

P(sx,t) = P 2 0w, 03x,t) - (8)

so that

¥ dk = ¢  dw de.

Consider now a medium with nonuniform still water depth h(x,t) and moving
with velocity U(x,z,t) = (U,V,W) relative to the fixed (x,z) coordinate system.
It is assumed that both h and U are slowly varying functions of time and space,

and that the continuity equation for the mean flow is satisfied, i.e.,

oh
_.._..+ - - 3 =
U+« Vh+hVeU=0 (9)

where EB = (8/9x, 8/9z) is the three-dimensional gradient operator. We can write

[Phillips, 1966, p. 43]
w=Q(k,\) =U ¢« k + o (10)
where

w* = @°(k,h) = [gk tanh kh]1/2 (11)



represents the frequency relative to a coordinate system moving with the current
U. Furthermore, the equations for wave rays are given as [see, e.g., Bretherton

and Garrett, 1969; Kenyon, 1971]

dx  aQ dk 30 3A

'(—I'E'=§£ and E=—ﬁ-s—£ (12)

Of the preceding expressions, the first describes a wave ray, i.e., the path traced

out by an observer moving with the absolute group velocity

_G=-5-£=5~£(H-E)+QG=(U+CGc030,V+CGsinB) (13)
in which
s X
EG wiE T (CG cos 8, CG sin 6) (14)

denotes the group velocity relative to U, and the second equation describes the

change in the vector wave number k along the ray., In this manner, we can define

] .
ac " &% " Y, (15)

as differentiation moving with the group velocity EG'

The propagation of energy in a linear random wave field is described by an
energy balance equation [Phillips, 1966, p. 147] derived under the general condi-
tions of a medium with variable properties, nonuniform currents and various dissi-

pation and generation effects. Under conservative conditions in which dissipation,



generation and wave-wave interactions can be neglected, the general form of

the energy balance equation reduces, with a slight difference in notation, to

ou au ¢
3. ” 1 e -
P8 Ge G L) ¥ty Sy Gro ) < O (16)

where i,j = 1,2 refer to components associated with the horizontal coordinates
X1 and xp so that U; = U and Uy = V; Sij denotes the spectral density of contri-

butions to the radiation stress tensor given in the form

k.k
i ; - - L
Sij pg n P(ksx,t) { 2 + 4 -5 Gij} (17)

in which

(18)

with

c” = (19)

~|E

representing the relative phase speed, and (kj/k, kp/k) = (cos 6, sin 0) are the
components of the unit vector k/k. Now, by exactly following the procedure
described by Bretherton and Garrett [1969, p. 553] in the case of monochromatic

waves, it can be shown that

. bu, U, |
7 5y ox, * axi) = =P8 - qr (20)



and, therefore, the energy balance equation (16) can be rewritten in a more

concise, equivalent form as

de fymigd wg. s Bda=0 - (21)

It is evident that this equation describes the propagation of the quantity

W/w”), referred to as wave action spectral density, in a general time dependent

inhomogeneous medium, and it has been recently noted in a slightly different
notation by Willebrand [1975], and previously by Bretherton and Garrett [1969] in
a form applicable to monochromatic waves. Clearly (21) implies that

9

w o ¢ _
k 7k o constant (22)

v .
w

along a wave ray. Therefore, this result together with (12) and the initial values
of y (or ¢), x and k at one time are sufficient to determine the spectral density
Pp(k;x,t) or ®(w,03x,t). An obvious alternative that avoids the excessive numerical
integration involved in ray tracing in general is to solve (21) by a finite
difference approximation, this time, together with the irrotationality condition

and the kinematical conservation equation (4) for the vector wave number k.

In order to explore more explicitly what is involved in (22) in the following,
we consider the simple yet interesting case of steady state conservative random
waves propagating from a spatially homogeneous region guch as deep water into an
inhomogeneous region with a nonuniform depth profile h(x), and traversing a steady
nonuniform shear current, U = [0, V(x), 0]. Hence, relative to a horizoﬁtal Xy y=

coordinate system fixed at still water level, the current direction and isobaths



are parallel to the y-axis, restricting the spatial inhomogeneity of the problem
to the x-direction only. Under these conditions and from (4), the kinematical

conservation law requires that the absolute frequency w be invariant, i.e.,
w=w" + V() k sin 8 = constant (23)

where the angle 0 relative to the x-axis is taken to be positive clockwise, and
negative if counterclockwise. Similarly, the irrotationality condition on k

implies that
k sin 6 = constant - (24)
I This is recognized as Snell's law. From (13) we have

EG = (CG cos 0, V(x) + CG sin 0) (25)

Therefore, it is immediate from (21) or, simply from (22) that

v - W 99 ?(w,0)
[w = V(x) k sin 8] k 3k [w - V(x) k sin 6]

= constant (26)

in the x-direction. ' It is understood in (26) that Y and ¢ are independent of

time t, and the x~dependency of both quantities are kept implicit for convenience.

To specify various space-dependent quantities more explicitly, we will from
now on designate deep water values that are spatially homogeneous in the
absence of currents by the subscript (), those in finite nonuniform depth,

h(x), in the absence of currents by the zero subscript, and leave all values in
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the presence of a current ﬁnsubscripted irrespective of any depth consideration.
In this manner, it can be shown first, from (11),(19),(23) and (24) that thé
function |

w? [1 - Eéél sin lez = gk tanh kh (27)

[+s]

represents the general dispersion relation, and

¢c*= glw[l - Eéil sin 6 1} ltanh kh

[+

= ¢, 11 - T gin 0 17 tanh kh (28)

oo

which is the phase speed relative to current, with the deep-water and finite-depth

values in the absence of currents being given, respectively, by

e, = wk = g/w | (29)

Co - w/ku

I

Cou tanh koho . (30)

Also, from (11), (23) and (27), we have

V(x)
&

oo

k =k, [1- sin 6_]2 (tanh kh)™! (aLy.

and, on substitution from (24),

sin 6 (k_/k) sin 8

V(%)
C

o0

]

(tanh kh) [1 - sin em]_zsin 8, (32)
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Now, using (23) and the fact that Cé = 3w”/ok = nC”

59 E
Sp™ EG o CG + V(x) sin 0
=2 [n+ (1n) Y& gin o) (33)

oo

with

(34)

KWE

A0 _ _ w_ _ 1
GRs ™ (€)= 1, k"3

oo

On the basis of the preceding definitions, it is observed that the simplest
form of the constant in (26) is w'lﬂn or (C/2k )2 . In terms of
these and from (26) it follows, therefore, that the inhomogeneous densities

Y(k) and ¢(w,6) are given by

b = (1 - T sin 01 ¥ (k) - (35)
and
kC, [1- Véx) sin 0_]
®(u,0) = = 2, (4,8, (36)

2 k [Gé + V(x) sin 6]

CONSTRAINTS AND INTERPRETATION OF RESULTS

The general character of the preceding results indicates that the inter-
‘action between a random wave field and nonuniform current-depth effects involves

a spatial transformation of the spectral magnitudes, Vs @5 and their respective
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wave spaces. However, before we proceed to interpret this transformation, it
is appropriate to discuss various kinematical and dynamical constraints embedded

.in the above equations., First, note from (35) and (36) that the condition

V(x

S

[1 - sin 6] > 0 . ' (37)

.

must be satisfied, in particular, by the components propagating in the direction
of the current (6_ > 0). However, we also note from (32) that these components

must locally have sin 6 < 1, or equivalently

V(x)
C

o0

1/2

[1 - sin 6_] > [(tanh kh) sin 6_] (38)
Recognizing that 1 > tanh kh sin 6 _ > 0, it is evident that the kinematical
constraint implied by (38), only, is of any significance. At the lower limit

when this constraint is an equality, sin 0 = m/2 and the associated spectral

component is totally reflected [Longuet-Higgins and Stewart, 1960].

It is noted, from (32), that the components with an initial angle of entry
0, (or 8o) < 0 will also have to have 0 < 0 locally. It follows, therefore,
from (36), that these components must satisfy the condition

g—{:= [c{ + V(x) sin 0] > 0 (39)

In other words, the local relative group velocity, Cé, must be opposite in diréc—
tion and larger in magnitude relative to the current velocity component, V(x)

sin @, in the direction of wave propagation. In the limit condition when



13

Cé = =V(x) sin 0, the associated spectral component can no longer propagate
against the current in that direction. Theoretically, the local spectral
.magnitude, ¢, becomes infinite, suggesting, therefore, that these spectral

components will tend to diminish or attenuate by wave breaking and, possibly,

by a lateral stretching in the crest direction before this point is reached.
Note from (35) that the corresponding spectral magnitude, ¥, over k-space
remains always bounded (i.e., < 2). It is, however, evident that (35) as well
as all other results and definitions of the preceding analysis will lack

validity near the critical point,

In summarizing the preceding discussion now, we may conclude that the
spatial t;ansformations of the spectral magnitudes, y_ and ¢ _via (35) and
(36) are subject to the reflection constraint (38) for the components following
the current (6 _ > 0), and to the breaking constraint (39) for those opposing
the current (Bw < 0). The latter can be rewritten, on substitution from (33)

in terms of the homogeneous deep-water properties as

n

(1-n)

g > =V (x) sin Bm (40)

The transformations of the incident densities, ¢_ and ¥ are, therefore, con-
tinuous in x for all but the attenuated and reflected components. The

regions of the incident, k - or w,0_-space that violate either of these constraints
Iat a point are cut-off or, simply deleted at that point, assuming the absence

of any sort of interaction between the attenuated and/or reflected components

and those remaining. However, the original incident wave space is to be properly
modified, as will be illustrated later with exaﬁples, by the reflected components

in a manner consistent with the steady state assumption.
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The spatial transformation of the magnitude y_ is entirely due to the
cﬁrrent interaction in contrasf with the transformation of ¢ that involves
. the combined current-depth effects. The spectral magnitude y  associated
with the components at an opposing angle of incidencg (6‘OD < 0) are amp}{iiﬁd,
and those with the current (6_ > 0) are reduced irrespective of any depth
consideration. In the case of ¢_, the current effect on the spectrai com~-
ponents ﬁith an opposing angle of entry is qualitatively the same as in the
case of ps i.e., amplification. However, for the components L following
the current, the net effect of the combined current-depth interactions could
be an amplitude amplification or reduction depending, respectively on whether
a particular component is in shallow water or not. The spectral components
p, with the normal incidence (8 = 0°) are entirely unaffected and remain

spatially invariant; whereas for the same angle of incidence, ¢_ values may

vary significantly due to wave shoaling represented by the term

k(CG)w (c Cade _
RS (41)

k C

in (25). The local k—-space associated with the transformed magnitude Y is
distorted by the combined current—depth effects, obviously, in terms of the
magnitude k as well as the direction 6 of the wave number vector k. As expected,
the distortion by depth refraction is more pronounced in the range of small wave
numbers while the current refraction in general affects the higher values. On
the other hand, the distortion in the polar w,0-space is entirely due to the
spatial dependence of 6. Since the complete spectral transformations require

the mapping of the density y or ¢ desirably in the form of contours in the local
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wave space, the invariant nature of the frequency w makes the polar w,0-space
particularly advantageous to work with. Therefore, the discussion will be

restricted to this space from now on.

COMMENTS ON SPATIAL VARIATION OF MEAN ENERGY

Mean total wave energy per unit horizontal area is defined by [Phillips,

1966, p. 27]

E = pg <|n|?> = pg I 3 (w,0) w dw de (42)

w, 0

In order to comment briefly on the spatial variation of this quantity for the

particular case of interest here, it will be expedient to write

®(w,0) w do do = @(w,0) w dw g—g de_ (43)

where, by virtue of (32),

k sin 6

a6 o0 ] il_(. .
56; " k cos 0 (cos' B, - k 30 (44)
and, from (31),
k k_V(x) cos 6
ok o 0
5 - (45)

B mpll = V—é’il sin 0_]
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On substitution from (44) and (45) we find that (43) becomes

(n sin 20)

= ain 96 ¢m(w,ew) w dw dO_ (46)

?(w,0) w dw db =

Therefore, (42) can be rewritten as

(n sin 28)m
E = pg J ¢ (w,0.) w dw do_ 47)

n sin 26
C we B e R

© oD

where R represents the region of the incident w,0_-space that is not deleted by
wave breaking and/or reflection as waves propagate to the point of interest.

In deep water in the presence of currents (47) reduces to

sin 26w
8 — d
E PE J sin 28 Qm(msem) w adw dBm (&8)
w,® e R

oo

and, obviously, to the constant

E = pg J ¢, (ws8 ) w dw db, (49)

(4]

w, 0

o

in the absence of any currents. Finally, at intermediate water depths in the

absence of currents we find that (47) becomes

(CG cos e)m
Ee = pg J YEE—EEE-ES:-¢m(w,Bm) w dw dO_ (50)
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An examination of (47), (48) and (50) indicates that these definitions‘are, in
fact, generalizations to various well-known results associated with monochromatic
waves and, of course, with a narrow-band random wave field. 1In the case of

monochromatic waves with the incident height H_, frequency w, direction 0,5 and

energy
E, = 08 J [(1/8) W2 §(b ~)6(6,~0,)] dv db, = (1/8)pg HZ ~  (51)
we find

~ (n sin 20)

B Ssinzo e -
sin 20

E=oma (53)

(CG cose)m
Eo E (54)

(CG cos 0), =

corresponding to(47), (48) and (5Q), respectively. Of the preceding expressionms,
the last two have been previously given elsewhere te.g., see Longuet-Higgins and
Stewart, 1960; Phillips, 1966, p. 53]. The generalization of these results
fepresented by the form (52) has not been observed before. It was informally
suggested [e.g., see Longuet-Higgins, 1972] that (53), which is relevant only to
deep water conditions, may be applicable to wave-current interactions at finite

depth equally as well., It is evident now that this is not so.
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ILLUSTRATIVE EXAMPLES

In order to illustrate the transformation of the directional spectral
.density ®(w,0) more exﬁlicitly, it is worthwhile to examine some specific
examples., TFor simplicity in presentation the examples will be confined to
deep and shallow-water conditions where various key definitions involved in the
transformation (36) become analytically tractable, Furthermore, it will be
convenient to nondimensionalize various quantities in terms of the value

Vm = max V(x) as follows:

wk = (wV )/g (55)

k* = (k ?mz)/g | | (56)

h* = gh(x)/Vm2 (57)

o* (w*,0) = (8/V )% ¢(w,0) (58)
so that

do*pkdp* do = ¢ w dw dO (59)

The explicit form of the incident spatially homogeneous deep water spectral
density in both examples is assumed to be
1 ; 1/2 < wx <3, |8 ]| < n/2

o) (u*,0_) = (60)

0 ; otherwise
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The incident w*,6_-space has, therefore, a semi-annular shape as schematically

illustrated in Figures 1 and 7.

Example 1: Current Interactions in Deep Water

In deep water, (32), (38), (40) and (36) become

sin 8 = [1 - Eéil w* sin ii-)m]_2 sin 6 (61)
m
ﬂvﬁ w* sin 6_ < (1 - sinl/? 8.) » 8, >0 (62)
m
= !éﬁl w¥ sin 6_<1 , 6_ <0 (63)
m
o* (w*,0)/0% (w*,0 ) = A (64)

where the spectral amplification factor, A is in the form

A= [l - V—,f,")— w* sin 0_]°[1 + V‘(I—") w* sin ]! (65)
m m

The shear current field, V(x), shown schematically in Figure 1, consists of

regions of monotonic increase and decrease. It is evident from (65) and (61) that

>1 (6_ < 0)

A =1 (¢

0) ' (66)

<1 (6, > 0)
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and the contours of density ¢* =.A = constant, corresponding to various fixed
values 6f the product w* sin 0_, are straight lines parallel to the direction
,of normal incidence (6, = 6 = 0°) over both w*,8_- and w*, 6-space. The breaking
constraint (63) indicates the regions of the incident w*,0_-space to be deleted
in a progressive manner dependent on the ratio V(x)/Vm and whether dV/dx > 0 or
dV/dx < 0. For instance, referring to Figure 1, the spectral components in the
region ABL of the incident w*,0 -space are entirely eliminated by the time waves
propagate to the section (2-2) where V(x) = 0.5 Vm. Similarly, the components
in the region BCKL gradually dissipate as waves advance from (2-2) to (3-3).
However, beyond (3-3) where dV/dx < 0, wave breaking has no influence on the
spectral components to the right of the line CK. For 6_ > 0, the reflection
constraint (62) suggests that, as waves propagate from (1-1) to (2-2), the

part IFGH of the incident w*, 6 _-space be eliminated at (2-2). Similarly, from
(2-2) to (3-3), the components in the region EFIJ are reflected leaving only the
part CDEJK of the incident wave space beyond (3-3) where breaking and reflection
become immaterial. However, for a steady state, the reflected spectral components
must be properly accounted for since they propagate back in the direction (m-0)
locally and modify the incident wave space. The deep water density ¢* (=1) and
the associated w*, 8 _—space must, therefore, be as shown in Figure 2 by dashed
lines with the region GE'J'H representing the mirror image of the part GEJH that
has been progressively reflected back as waves propagated from (1-1) to (3-3).
Likewise shown in Figures 3 through 5 are the transformed densities over their
respective local w*, 0-spaces at any point along the lines (2-2), (3-3) and (4-4)

of Figure 1, respectively.
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In Figuré 3, the region FE'J'I represents those components reflected back in
between (2-2) and (3-3). Finally, Figure 6 illustrateé the spectral density
Jaﬁd the associated wave space at any point on and beyond the line (5~5) where
V(x) = 0. The spectral magnitudes (=1) and the wave space in this figure are,

therefore, exactly the same as the CDEJK part of Figure 2.

Example 2: Current Interactions in Shallow Water

By virtue of the definitions (55) through (57), we may rewrite the disper-
sion relation (27) as

V(x)

(w*)2[1 - w* sin Gw]2

tanh k*h* = ; i (67)

Under the shallow water condition

V(x)

v
m

h*(w*)2 [1 - w* gin Bm]2 < n/10 I(68)

we find [see, e.g., Longuet-Higgins, 1956]

1/2

tanh k*h#* = @k (h*)™"“[1 - w* sin 0_] (69)

and

V(x)

v
m

e (tanh k*h#*) = 2 w*(h*)1/2[1 =

Ik w* sin 0_] (70)

On the basis of these results, it follows that
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e G 1/2
C%s 63 = Vm(h*) : (71)

‘and (32), (38), (40) and (36) become, respectively

sin 0 = wk(h) /(1 - !ézl.w* sin 617! sin 6_ (72)
m

YO yx sin 0, < 1+ a0, 6 >0 | (73)
m

——(—)—Vv" w* sin 8m<1}:—n=00 » 6,<0 (74)
m

o% (w¥,0)/8_% (u*,0,) = A - (75)

where
-1
A= (1 - EE ok gin 0 13 [20% (%)2] (76)
n |

As a specific example here, consider a current of the form

Ve i X, 5% 2 X,
V(x) = (77)
0 H otherwise '

as schematically illustrated in Figure 7, together with the shallow water depth
profile. We note that the breaking constraint (74) is redundant in this case.
That is to say, no component with finite w* in the local w*,0,-space just

before the current [see Figure 9] will ever attain a breaking condition on



23

account of the excessive depth refraction which progressively distorts and
focuses the incident wave space to the direction of normal‘incidence by the
time waves encounter the current field in shallow water. Provided that

< oh*/3x = <0, as assumed here, the lowest upper bound of the reflection
constraint is realized at x = Xq where h* = 0.002. Hence, at this point
the components in the DEF region of w*,0_-space are totally reflected. These
are, therefore, propagated back and superimposed on the incident wave field.
In this manner, the deep-water wave space and the spectral magnitudes become
as shown in Figu?e 8 by the dashed line boundary in which ¢ * =1 and the
region ﬂF‘E'corresponds to the reflected image of that bounded by DFE. Pre-
sented in the remaining Figures 9 through 12 are the local spectral contours
and wave-spaces corresponding to any point at x = x_ (just before current),

1

..'..
(right after the initial interaction), x = x

X = 2_ (just before waves

*1
exit) and x = x2+ (right after exit), respectively.

CONCLUDING REMARKS

The mean-square spectral distribution over a wave number space or a polar
frequency-direction space constitutes a concise characterization for incoherent
random gravity waves. The spatial transformation of this distribution by
refraction due to currents and underwater topography is, therefore, of basic
interest and practical importance. In the preceding, the solution to this trans-
formation has Seen given for waves crossing a steady nonuniform shear current
field in which variations in the surface wvelocity and depth-profile are unidirec—
tional in the same sense. Various nonlinear mechanisms, dissipation andlgenera—

tion effects such as wave-wave, wave-wind interactions, friction, percolation,
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etc. have been neglected. Some of these, e.g., friction and nonlinear wave-
wave interactions, may very well be of secondary importance as suggested by pre-
. vious studies [see, e.g., Munk and Traylor, 1947; Huang et.al., 1972] in compari-
son with the dramatic influence of currents and underwater topography on waves.

Hopefully, this has been illustrated here by a few idealized examples.
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Figure 1 Example 1: Current Interactions in Deep Water. Definition sketch showing
the qualitative effect of the shearing current on wave orthogonals for
various angles of entry 0_.
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Figure 2 Example 1: Current Interactions in Deep Water. Diagram showing the
steady state incident directional density ¢_* (=1, within the dashed-
line boundary), and various regions of the incident w*,0 -space affected
by breaking and reflection as waves cross the current.
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Figure 4 Example 1: Current Interactions in Deep Water. Contours of ¢* = A =
const and the associated w*,0-space at any point along section 3-3.
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Figure 5 Example 1: Current Interactions in Deep Water. Contours of ¢*% = A =
const and the associated w*,06-space at any point along section 4-4.




- Figure 6

Example 1: Current Interactions in Deep Water., The directional

spectral density ¢* = ¢_* (=1, within the dashed-line boundary) and

the associated w*,b-space (= m*,ﬁm) at any point on and beyond
section 5-5.
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Figure 7 Example 2:

Current Interactions in Shallow Water. Definition sketch in

plan view (top) and profile.
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Figure 8 Example 2: Current Interactions in Shallow Water. The steady state
incident directional density ¢_¥* (=1, 'within the dashed-line boundary),
and various regions of the incident w*,6 -space affected by reflection

(DFE) as waves enter the shear current at x = xl.
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Figure 9 Example 2: Current Interactions in Shallow Water, Diagram of contours
of do* = A = const and the associated w*,8,-space at any point along the
line x = x; , showing the dramatic effect of pure depth refraction on the
incident (ABCDEF) spectral components as well as on those reflected back

(D'F‘E) from x = xl‘" by the shear current.
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Figure 10 Example 2: Current Interactions in Shallow Water. Contours of

¢* = A = const and the associated w*,f-space at any point on the

line x = xl+, showing the combined effects of depth and current
interactions (h* = 0.002).




Figure 11 Example 2: Current Interactions in Shallow Water. Contours of
¢* = A = const and the associated w*,6-space at any point on the
line x = xp , showing again the combined effects of depth and
current interactions just before waves leave the current field
(h* = 0.001).
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Figure 12

Example 2:
¢°*-A=

Current Interactions in Shallow Water.

line x = x,, showing the effect of pure depth refraction right after

Contours of
onst and the associated w*,8,-space at any point on the

waves cross the current (h* = 0.001).
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