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This research project was part of a program designed to
delineate the effects on Delaware Bay of crude oil transfer
and upstream refineries., Managed by the University of Dela-
ware's College of Marine Studies, the 15-month program
(1 March '74 - 31 May '75) was conducted under a $300,800
grant from the National Science Foundation's Research Applied
to National Needs (RANN) Program, incorporating socio-economic
assessments, engineering and oceanographic studies, as well
as biological/ecological research. The research was conducted
by the College of Marine Studies, the Departments of Civil
Engineering, Biology and Geology, and the College of Business
and Economics, Further information is available from the
Program Manager, Dr. Robert Biggs, Assistant Dean, College of
Marine Studies, University of Delaware, Newark, Delaware
19711, (302) 738-2842. et

Already published under this program to date are:
CMS-RANN-1~75: Sea Surface Drift Currents, by Jin Wu,
CMS-RANN-2-75: Sport Fishing in Western Delaware Bay:
Assessment of Critical Areas, by Ronal W. Smith, and
CMS-RANN-3-75: Saturated Hydrocarbon Material in Sedi-
ments of the Delaware Estuary as Determined by Gas Chroma-
tographic Analyses, by John F, Wehmiller and Margaret
Lethen. Additional reports are in press, including base-
line biological data on Delaware Bay.
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LIST OF SYMBOLS

The following are symbols used in this paper:

A = scalar turbulent eddy viscosity coefficient for upper
layer of water

a, = autoregression coefficients

c = concentration of oil at r from centroid

C = tidal current magnitude

d = local water depth

D = maximum depth at‘which frictional and turbulentleffects are
important

E, = turbulent eddy viscosity coefficient for oil spreading on
water

h = thickness of o0il spilled

1 = unit vector in direction of deflected wind

ke = tidal drift coefficient

kg = wave drift correction coefficient

kg = wind drift coefficient

m = total mass of 0il spilled

P = random number between 0 and 1

x = radial coordinate

Rgv = radius at which gravity-viscous spreading has ended

R(t) = radius of oil from centroid

ﬁ(t) = vector oil slick displacement

Rx = latitudinal component of oil drift

Ry = longitudinal component of oil drift

tgy = time for which spreading has been cominated by gravity and
viscous forces

ﬁc = yector tidal current magnitude

ﬁs = effective drift

ﬁw = vector random orodeterministic wind velocity

q} = vector wave drift velocity

' = total volume of o0il spilled

W = random or measured wind speed

wit) = stochastically determined wind velocity vector

a = deflection of wind direction caused by earth's rotation

At = computational time step size at which all physical variables

are refreshed by new ones

- -



List of Symbols (Continued)

density difference between oil and water
random or measured wind direction (from north)
abgolute viscosity of water

density of oil

density of water

local latitude

current direction (measured from north)

earth's angular rotational rate



SUMMARY

The goal of the overall research program is to provide information
for decision makers on oil transfer operations in Delaware Bay. The
work reported here consists of only the computer model development.

Other work, including data gathering of physical parameters and a de-
tailed field verification program will be reported separately.

An interactive computer model for the prediction of oil spill dis-
persion was developed. Although the model is specifically developed for
Delaware Bay application, the technique can easily be extended to other
regions,

The model has two distinctive modes: drifting and spreading. The
mechanism of drifting is based on the fact that oil on water drifts under
the combined influence of water current, wind effects, and earth rotation.
The physical processes governing the spreading of the slick are divided
into three stages. In the initial stage, the spreading is predominantly
governed by the balance of the forces of gravity and inertia. In the
- second stage, the spreading involves the balance of viscous and inertial
forces. 1In the third and final stage of the spreading, a turbulent
diffusion model is employed. Based on these processes and the approxima-
tion of radial symmetry, the rate of spreading can be computed.

The interactive nature of the model allows for information transfer
between the computer and the users who may or may not be familiar with
computer programming. The details of oil spill tracking are displayed
on a Tektronix television-type screen. A number of output options are

available. Examples are given together with field comparisons.
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INTRODUCTION

Approximately 70 percent of all the oil that is delivered to the
east coast of the United States moves by water up the Delaware Bay and
River. Much of this oil is transferred several miles off the coast
inside the Bay mouth from large deep~draft tankers to barges (lighters)
or to small tankers to reduce the draft of the large tankers and allow
navigation up the Bay and River for unloading at docks. More than 50
million short tons of crude petroleum was transported through the Bay
using the Big Stone Beach Anchorage Area within the Bay (Figure 1).

Due, in part, to the nation's energy shortage, the oil transport
through Delaware Bay and transfer activities in the Bay are expected
to increase markedly in the future. National and regional concern over
such development focuses in large measure on environmental vulnerability
due to oil spills. Central to environmental repercussions, facility
development, and clean-up operations is information regarding the
physical movement and distribution of an oil spill. -

; A compﬁter simuiéti;n Qoael has been developed for traéing oil
spills in the Delaware Bay. The model has two distinctive modes:
drifting and spreading. The mechanism of drifting is based on the
fact that oil on water drifts under the combined influence of water
current, wind effect, and earth rotation. The physical processes
governing the spreading of the slick are divided into three stages.

In the initial stage, the spreading is predominantly governed by the
balance of the forces of gravity and inertia. In the second stage,
the spreading involves the balance of viscous and inertial forces. 1In
the third and final stage of the spreading, a turbulent diffusion model
is employed. Based on these processes‘and the approximation of radial
symmetry, the rate of spreading can be computed.

The input requirements include the boundary conditions (the geometry
and bottom topography), the tidal current, the wind condition, and the
nature of the oil spill — viz., the size of the spill, location of the
initial spill and the nature of the oil. Contemporary tidal current
information and wind conditions in the Delaware Bay region are now

being used as input.
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The wind condition can be entered in either of two ways. It can
be entered at finite time increments with known and predetermined values
or with computed outcome for stochastic analysis of past wind records.
The former way provides an oil tracking routine, and the latter input
yields information on the probability of oil spill distributions.

The interactive nature of the model allows for information trans-
fer between the computer and the users who may or may not be familiar
with computer programming. The details of oil spill tracking are dis-
played on a Tektronix television-type screen. A number of output

options are available.
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PROBLEM FORMULATION

Mechanics of Drifting

In considering oil drift, one should consider the effects of over—
water winds, waves, and current. This problem has been studied by a
number of investigators ranging from a purely analytical approach
(Warner, et al., 1972), to laboratory studies (Reisbig, 1973), to
empirical relations (Schwartzberg, 1971). The solution in the present
model follows closely the ones.used by Tayfun and Wang (1973).

The Lagrangian displacement of the mass center, with respect

to a fixed location, say the origin of the spill, is

o
R(t) = f @ +T o+ i}’n) dt (1)
0 |

> > >
where U,, Uy and Un are oil drift velocities due to current, wind, and

waves respectively,

In general, it can bé asSsumed that

6, -0 cn @
U, = U (,640) 3)

in which C,y = local water current magnitude and direction, respectively;

w,0 = the wind speed and direction, respectively; and + o = deflection of

the wind drift with respect to the wind direction in the southern and
northern hemispheres, respectively, with 6 being measured as positive
counterclockwise.

Since oil drift is evidently a result of momentum transfer, and the
intensity of the momentum is proportional to the velocity, it is natural
to assume that a linear relationship exists between the drift velocity

and the velocity of the wind and water, i.e.,

U =x¢ ' (%)
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U =k Wi (ota) ' (5)

where i is a unit vector which deviates from wind direction by an angle,
o, due to earth rotation.

Apparently the coefficients, k., and ky,, are functions of oil
characteristics, sea conditions and, perhaps, temperature. For calm
water, it is generally agreed that the value of ky is around 0.03.
Schwartzberg suggested that the value of k. should be around 0.56.

The exact effect of waves on oil drift is not known. However,
one may reason that waves play a role in that they increase the
surface roughness of the sea at least, and produce a surface drift
themselves. While the surface roughness definitely affects the wind
drift, the wind drift contributes directly to the water drift. The
1a50ratory work by Reisbig seemed to suggest that at low wind speeds
wave drift augments the wind drift. However, at higher wind speeds,
the waves cause a net decrease in drift velocity. For lack of better
undefstanding of the exact effect due to waves, a correction coefficient,

kg, is incorporated into the present model, so that

Ug = kekyW 1 (64a) | (6)
The wave correction coefficient, kg is evidently a function of wave
steepness and wind velocity, as is shown in Figure 2. The deflection
angle, o, is computed according to the following formula (Neumann, 1968),
under the assumption of steady state and shallow water conditions:
sinh (27 %) - sin (2w %)

tan a =
sinh (27 %) + sin (2w -g-) (7

in which d = the local water depth and D = depth of frictional influence,

given by

R T rar 8)
where A is the eddy viscosity coefficient in the upper strata of the oceans;
p = the density of water; and ¢ = the local latitude. Based on the values
p=1g/em3; w = 7.29 x 1077 rad/sec and A = 100 g/cm-sec, the value D is
approximately 46 m (150 ft).

Equations (4), (6), (7) and (11) constitute the basic formulation of
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oil drift.

Mechanics of Spreading

The problem of physical processes in the spreading of oil on a
water surface has been studied by several investigators; Fay (1971),
Schwartzberg (1971), Ichiye (1972), Warner, et al. (1972 and Murray,
et al. (1970) are but a few of them.

Approaching the problem from the point of view of the basic
mechanics of oil spreading, Fay suggested that the spilling of oil
passes through three stages as time progresses: 1) the graﬁity~
inertia stage where the gravity force is counterbalanced by the
inertia force; 2) the gravity-viscous stage where the inertia force
of the oil mass becomes insignificant and the gravity force is
basically resisted by the viscous force; and the final stage, 3) the
surface tension-viscous force stage when surface tension becomes the
driving force and is counteracted by the viscous force. Laboratory
results revealed that the surface tension-viscous stage dominates the
other two. However, field experience seemed to indicate that, except
for a short period (within a few hours), the spreading and decay of the
oil slick can be treated as a diffusion process (Ichiye, 1972; Murray,
et al., 1970). Thus, although in the laboratory the surface tension-
viscous stage is an important one, such a mechanism does not seem to
be effective in the field.

Based on the above argument, the spreading model used here con-
sists of three stages, namely the gravity-inertial, the gravity-viscous,
and the diffusion stages. The equations for the respective earlier

stages are as follows: (Fay, 1971)

Gravity-Inertial Stage

1/3 [ glp ]1/4 t1/2 (9)

R(t) = 1.14 (V)
pwvll 3

Gravity-Viscous Stage

i )—1/12 t1/4 (10)

B 1/3 8P 1/6
R(t) = 0.98 (V) S wihi

w
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where R is the radius of spill size; V is the volume of spill; g is the
gravitational acceleration, p, is the density of oil, py is the density
of water, Ap is the density difference between water and oil, g is the
viscosity of water and t is the time.

The oil spreading at the diffusion stage is based on the assumption'
that at a certain period after the spills, the oil can be treated as a

diffusible material. Thus, the diffusion equation is applicable.

%%—= %—%;-(r Er-%f _ . (11)
where ¢ is the concentration; r is the radius of spreading,-Er is the
turbulent diffusion coefficient. The value of E. for oil in ocean waters
is not quite known. Ichiyg (1972) stated that E, should be a function
of the spill size, wind velocity, and wind direction. Murray (1970), on
the other hand, treated Er as a constant in his study and claimed good
comparison with field results. For the case where E. is equal to the

constant, the solution of Equation (11) becomes

2 .

by, 1 m (-r"/4E_t) _
¢ = ————— e g o s (12)
4 thErt

where m is the total mass of the oil spill; h is the thickness of the

0oil spill. Equation (12) indicates that
R o t1/2 ' (13)

When Equations (12) and (13) are used to match with the two previous

stages, this results in

- 2
R = 2V/2 Er(t - tgv) + (Rgv/z) (14)

where the subscript gv indicates the conditions at the end of the
gravity-viscous stage.

Equations (9), (10), and (14) are then matched to provide the
complete solution for oil spreading. The criteria of matching are

based upon the size of the spill as suggested by Waldman et al. (1973).

Figure 3 delineates these criteria.
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COMPUTER SIMULATION TECHNIQUE

The method of simulation used in this study is virtually language
independent and is viable for any general-purpose programming language.
An earlier version of the program was written in Fortran and has been
converted into Basic-Plus for use on the P.D.P. system 1l minicomputer.
Because of the structural nature of the program made possible by the
Basic-Plus programming language a flow diagram would be repetitive and
superfluous.

The numerical method to be described makes use of printed output
in order to instruct the user to make valid responses to quéstions and
options. In addition, the graphic form of the output displays results
in as physically meaningful a manner as possible. This mode of output
eliminates the necessity of reducing large sets of numerical data and
allows for instantaneous evaluation of results.

- Input responses by the operator are by means of a number followed
by a carriage return. A carriage return without a number indicates
that the user either does not know a proper response (in which case

‘more information is supplied) or that the default value (a preprogrammed

value) is to be used.

Boundary Conditions and Generation

In order to display positions and movements relative to the Bay
shoreline, the first display drawn is the shoreline with a scale to
indicate distances in nautical miles. This data is stored in a
virtual array which contains the ordered sets of x and y points cor-
responding to those of the shorelines. These data are interconnected

by a series of straight lines.

Since one of the prime purposes of the model is to trace oil spills,

it is necessary to determine whether or not, and if so when, the spill

drifts off the Bay and onto land. The irregular nature of the shorelines

make these logical decisions very difficult. A complete search of the
shoreline data is extremely inefficient. 1In order to avoid this, a
method is devised which expedites decisions on boundary locations. A
one-dimensional integer array is created to store the number of times

a horizontal line through a row of grid points crosses the shoreline

e e N e e e i e ST 5
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boundaries. A two-dimensional integer array then stores the beginning
and ending number of grid points which lie in the bay for a particular
row. This method provides an advantage over a complete search through
the data in that only the beginning and ending number of gridpoints
must be stored in order to determine the extremities. This greatly
lowers the amount of information to be checked in deciding on interior
and exterior points to the bay. It also hastens the logical process

since only integers are involved.

Simulation of Environmental Conditions

One of the more difficult and controversial aspects of numerically
modelling the transport process in oceanic environment is the predictive
methods to be employed for the generation of water movement information.
The governing equations of the hydrodynamic processes are nonlinear,
both in the equations themselves and in the boundary conditions. Analyti-
cal solutions are, in general, unobtainable. Although a numﬁer of
numerical schemes are available, their application is tedious, requiring
lengthy calibration and sometimes extensive modification. For a boundary
Eondition aé complicated:as Délaware Bay, the adoption of alhydrodynamic
model for current prediction appears impractical.

By using field measurements of the tidal currents and winds these
difficulties may be avoided for the most part. Although this process
requires efficient means of storing and utilizing large amounts of data,
the process may be optimized to the point where the simulation will run
in much less than real time and with memory restrictions imposed by a
minicomputer. The bay currents C useé by the model are those measured by
the U.S. Coastal and Geodetic Survey (1960). They are stored in a virtual
array similar to the one used for the shoreline points. However, whereas
the order is important for the shoreline points so that they are connected
simultaneously, the order is not important for the tidal currents. The
virtual array is, however, divided into six segments in order to separate
the various tidal phases of a full tidal cycle. These six segments are
thus recycled as necessary in order to continually recycle the tidal
currents.

The six segments contain four numbers for each data point. The first

two numbers are respectively the x and y locations at which the measure-
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ments were taken. The third and fourth numbers are the magnitude and

direction of the currents. By means of this type of file structuring,
the tidal phase for the beginning of the simulation may also be chosen
by the user.

In order to select a particular current for a point in the bay the
closest point with measured current data is chosen. The complete segment
for that tidal phase is tested in order to find the closest value. A
more sophisticated interpolation procedure seemed unnecessary in view of
the crude nature of the data.

The wind may be accounted for in the model in either of two ways.
The operator may choose to enter wind speeds and direction on the basis
of two-hour intervals for the duration of the physical time to be
simulated. This allows for data based on forecasting or recent field
measurements to be used in a deterministic manner.

An alternative to the deterministic mode of operation is probabilis-
tic determination of the wind. The wind speed and direction are modelled
by means of a linearly correlated time series and a uniformly distributed
random number with the same variance as though calculated by measurements.

The model for. the velocity:is-as follows: o (15)

[wee)| = all w (t-At) | + a2| w (t=2At) | + 33l w (t=3At) | + a,| w (t-48t)| +p

where a1y 855 aq, and a, are the autoregression coefficients and P is a
random number with a variance determined by the standard deviation of the
autoregression analysis. The solution for the coefficients of the terms
and the random number has been presented by Tayfun and Wang (1973). For
the present model, wind data at Dover Air Force Base, Delaware

(approximately 14 miles northwest of the anchorage area) are used.

Drifting and Spreading

Equation (1) is used for the computation of the drifting of the center
of the mass. All effects are assumed fairly uniform over a finite size
time step so that the equations for the prediction of the x and y coordi-

nates of the center of the spill are respectively

R _(t+At) = R (t) + (ifc # i?w + ‘u"n)x At (16)
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R (c+ht)= R (t) + (ﬁc + wa + ﬁn)y At 17)

An example of the deterministic method is shown in Figure 4. For this
case a steady wind of 20 knots is assumed to blow from the southeast for
a period of 40 hours. The initial spill is assumed to be 500 tons, oc-
curring during a period tide at the location of 38° 56' Lat. and 75° 06"
Long.

While in the deterministic mode, Equations (16) and (17) are applied
only once for each time step increment, the same computational procedures
will have to be repeated a large number of times to be statistically |
meaningful if the probabilistic mode of the program is used. Recalling
that the main purpose of the probabilistic mode is to provide estimations
of probable spill routines during a designated period of the year, the
larger the repeated trials the more reliable the results. An example
of this type of simulation in order of time sequence up to 40 hours is
shown in Figure 5, with 200 individual experiments. If the number of

| particles are counted within each grid, an approximate conditional
‘probability that an oil slick will appear in that grid can be created in
the form of a percentage. Such a display is shown in Figure 6. The effect
of the number of experiments is clearly demonstrated in this figure.

The rate of spreading about the center of the mass is determined
by Equations (9), (10) and (14) for the various regimes. The spreading
begins with the Gravity-Inertial Stage [Equation (9)]. The time for
which the Gravity-Viscous Stage becomes important may be calculated by
setting the radius predicted by Equation (9) equal to the radius pre~-
dicted by Equation (10) and solving for the time t. The time at which
to begin use of Equation (14) is solved for in a similar manmer. The
sizes of the slick at successive time dincrements are printed on the
display and, at the user's option, can be drawn on the graph. Output
of this type is shown in Figure 5. A number of other auxiliary output
options such as bay current and an oil drift speed diagram are also

available in Figure 7.

Data Retrieval and Usage

The numberical model described above obviates the need for special

handling of vast amounts of data, thus making the method quite attractive
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in actual application. The Basic-Plus language used in the simulation
does this by means of a simple random access file system named virtual
core. The elements of data within virtual core are individually
addressable as they would be if they were contained in core rather
than a disk file, It is this feature which gives this type of.stcr-
age device its name. This type of access is in contrast to the kind
for normal data files which are limited to sequential I/0 of data.

The virtual core matrices are read into central memory automatically

each time they are used.

FIELD TRIALS

On May 8, 1975, a field experiment was conducted near the anchorage
area (details of this field work will be reported separately) using -
surface drogues, plastic sheets, air mattresses filled with fresh water,
and articulated plywood mats to measure the surface drift. These floating
objects were dropped into the‘bay at 39° 02' Lat. and 75° 14 Long.
aﬁﬁroximatelf two hours-béfogé Ehe maximum ebb, and were traciéd by
boat and airplane for a period of six hours. The weather was relatively
calm during the first two hours; a northeasterly wind gradually picked
up during the latter part of the experiment, with measured strength
varying from 5 to 15 knots. Samples of experimental results are pre-
sented in Figure 8. 1In general, it can be seen that the effect of wind
is more pronounced on the movement of the air mattress than the surface
drogues which were one foot below the surface. The air mattress actually
drifted faster than the drogues because of the favorable wind direction.
The predicted surface drift currents were compared with those measured
in Figure 9. Figure 10 illustrates the comparison of oil slick drift
as predicted, using the actual measured surface current and the current.

data built into the model.
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Air Mattress Filled

Cmini) With Water

B———8 Surface Drogue
(10:25) ©-----@® Articulated Plywood

1 N Mi p
Scale

May 8, 1975

Figure 8 Surface Current Measurement Using Various Floating
Objects
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CONCLUSIONS

An interactive computer model for the prediction of oil spill
dispersion was developed. Although the model is specifically devel-
oped for Delaware Bay application, the technique can easily be ex-
tended to other regions. The computer model has the advantages of
being relatively simple to operate and of utilizing printed output
to instruct the user to make valid responses to questions and options.
In addition, the graphic form of the output eliminates the time- |
consuming process of data reduétions and interpretations.

Since the model is based upon existing knowledge of oil spill
drifting and spreading, a number of fundamental assumptions are still
open to question. Among them, the effect of waves on both drifting and
spreading, the relative drifting speed between water mass and oil
slick, and the value of diffusion coefficient need further research.
The results of field verfication are encouraging but inconclusive, as
the floating objects used in the test do not ﬁecessarily == 3n fact,
they probably do not -- closely simulate the oil drift. Tests with real

0oil slicks should be conducted to confirm and/or improve the model.
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Appenidix II
by D. F. Polis and S, L. Kupferman

Sources of Inaccuracy and Possibilities for Further
Improvement as Related to the Field Program
This appendix deals with the reliability of the model's predictions
based on the assumption that the empirical formulae relating oil drift to
current velocity and wind speed are correct, but that errors attributable
to a lack of knowledge of actual wind and current conditions may occur. .
In the present formulation of the model, the drift of an oil film is taken

to be the vector sum of 56% of the instantaneous current velocity obtained

from Tidal Current Charts - Delaware Bay and River plus 3% of the wind

velocity adjusted for deflection caused by the earth's rotation. The
questions under consideration are then how well can the present model
.repFesent wind‘and current Foqﬁi?inns and what are the prospects for
further improvement resulting from a moderate amount of additional field

work.

Data

In responding to these questions we shall rely on the results of
the first year's field work. This includes

(1) Two thirty-day records (October 1974 and May-June 1975) from
current meters moored approximately two miles northwest of the ship
anchorage area, near the axis of the ship anchorage channel. The
shallower current meter was 3m below mean low water;the deeper, 10m
below mean low water,

(2) Full tidal cycle current, salinity and temperature measurements

taken at a number of stations on cruises in October 1974 aud January and
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May 1975. Inter alia are thirty-six hours of hourly current meter profiles
(values obtained typically at one—meter.;ﬁtervals on each profile) obtained
from a vessel anchored within 200 meters of the moored current meters
while the current meters were in place.

(3) A one-month record (October 1975) of wind speed and direction

at Brandywine Shoal Light in the center of Delaware Bay.

Currents
With regard to the currents there are two problems to be considered:

(1) How well do the currents predicted in Tidal Current Charts represent

the currents actually occurring in the location for which a prediction is
available?

(2) How much spatial variation is there in the surface currents
between such locations?

In answering the first qhesiian, it must be realized that tﬁé currents

presented in the Tidal Current Charts are based on an average of observation

over the upper 20 feet (6m) of the water column.

Comparison of moored current meter data from the three meter deep
current meter with data from current meter profiles indicated that the
moored current meter was a good indicator of the average velocity of the
upper six meters of the water column. Velocities from the 3m current
meter were typically within 0.02 kﬁots and 10° of the average velocity
over the upper six meters of the water column.

A comparison of measured 6p averaged currents with currents estimated

from the Tidal Current Charts indicated that the measured values for that

time were higher than the predicted values by about 0.1 knots on flood, and
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lower by about 0.1 knots on ebb. This would result in a cumulative
error in the position of an oil slick estimated by the model that would
appreciate at the rate of about 0.6 nautical miles per tidal ecycle, 1In

other words the Tidal Current Charts do not predict the net drift correctly.

The situation is worse when one considers the long term variations in
drift detected by the moored currenf meters. The two-tidal cycle running
average velocity at three meters during October 1974 is displayed in
Figure Pl. The component of velocity along the channel, Vs is ‘taken as

positive up-bay and the cross-channel component v_ is taken as positive

y

toward the Delaware side of the Bay. As can be seen, the two-tidal cycle

rpnning average velocity varies from near zero to about 0.3 knots (15 cm/sec)

in both directions. This variation would mean a variation in both the x

and y coordinates of the oil slick of up to two miles per tidal cycle.
"A.preliminary analysis of the data indicates that perhaps half of

this variation can be related to river discharge as large changés in

average current velocity seem to follow increases in river discharge by

about four days.

Cross—channel variability of the currents is quite high.. Figure P2
shows the simultaneous currents at five locations in the lightering channel
at a depth of one meter. The center location is approximately that occupied
by our current meter moorings. The stations along the axis of the channel
are two nautical miles apart while the cross-channel stations are one-half
of a nautical mile apart. As can be seen the currents vary from more than
two knots on one side of the channel to about 0.2 knots on the other side
of the channel, while the tidal current charts fail to indicate any cross
channel variability. This kind of cross-channel variation will result in

variations of oil movement accumulating at the rate of about one nautical mile
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FIGURE P1

2.TIDAL CYCLE RUNNING AVERAGE CURRENT
UPPER CURRENT METER
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per hour. This variation is associated with the passage of estuarine
fronts., 3 ' :

The structure of the cross-channel component of velocity is illustrated
in Figure P3. This is a sector across the channel looking up-bay at the
three center stations of Figure P2. As can be seen the structure is quite
complex showing four distinct.regions of velocity separated by two
divergences and a frontal convergence; This structure appears to be
repeatable and, therefore, predictable.

In summary, we believe that further field work will allow us to
- reduce the uncertainty of the currents in both time and space. Thus the

errors from this source in oil spill position would be reduced from a few

miles to a few tenths of a mile.

Winds

A comparison of wind observations at Dover and at Brandywine by
oﬁtané was underﬁaken. A &iréctﬁcg}relation of hourly observatiogé from
the two locations showed a correlation coefficient of less than 0.6 in
all octants. Thus wind observations at Dover are a very poor indicator
of conditions over the Bay.

In an effort to improve on this, correlations were run on time-logged
three-hour running averages for each octant. Logs up to plus or minus
twelve hours were calculated. Fitting coefficients were chosen for the
log time giving the best fix. The results show an improvement over the

direct correlation of hourly data in every octant with optimal correlation

coefficients ranging from 0.38 to 0.89 depending on the octant.
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Further wind observations in the Bay would allow the validity of
the predicting equations to be checked and extended to other seasons of
the year. Correlation with observations at additional land stations might

substantially increase the worst correlation cocfficients.
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