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ON THE SPECTRAL ANALYSIS OF NONSTATIONARY RANDOM PROCESSES

Abstract

Spectral design relati&ns for random processes are re—examined in terms
of the sampling properties of evolutionary spectral estimates, For a class
of spectral windows optimal design relations and formal criteria for selecting
optimal window forms are derived. It is shown that the optimal design relations
eliminate inadequacies and subjectivity associated with the available forms of
spectral design relations and bring out tﬁe salient features of the evolutionary

spectral theory most effectively. Concepts are illustrated with artificially

generated examples,

1. INTRODUCTION

The nature of various processes in economics, geophysics, and engineering
such as stock market fluctuations, turbulence, wind-generated gravity waves,
electr;cal noise, and mechanical vibration is randomly irregular. 1t has long
been accepted that the most fruitful and effective approach to investigate
such processes is through the theory of stochastic processes. In this approach
the spectrum is a well-known concept, and the problem of its estimation is of
fundamental importance. However, the development of the spectrum concept and
the theory of spectral analysis has been exclusively for stationary random
processes as a natural consequence of the fact that such processes are the
easiest to understand in theory and applications. Realizing the truly non-

stationary nature of the real world and motivated by the commorn objective to be




able to study non-sftationary processes in a manner as physically meaningful
and mathematically rigorous as in the stationary cases, various attempts have
been made to define a non-stationary spectrum concept. Among the currently

available definitions, the most significant are those due to Fano (1950),

Page (1952), Dubman (1965), Priestley (1965) and Marks (1970). Based on the
reviews of the subject (see, e.g., Loynes, 1968; Priestley, 1965, 1971; Tayfun
and Yang, 1972), and the theoretical and applied work stimulated by Priestley's
definition (see, e.g., Brown, 1967; Hammond, 1968; Abdrabbo and Priestley, 1969;
Priestley and Rao, 1969; Shinozuka, 1970; Shinozuka and Jan, 1971), it is

evident that the theory of evolutionary spectrum is the most promising in terms
of its fundamehtal approach and assumptions, mathematical rigor, interpretability

and usefulness.

Priestley introduced the evolutionary spectrum and a spectral theory
for eétimating time-dependent spectra in a series of papers (Priestley, 1965,
1966, 1967, to be referred to subsequently as P-1,2,3). Evolutionary spectrum
is a smooth generalization of the concepts associated with the orthogonal
spectral representation of stationary random processes to a wider class of
processes with implicit non-stationarity. Such processes, referred to as
oscillatory or, semi-stationary processes, admit a spectral representation of

the form

=]

X(t) = J A(t,w) eiwt dz(w) , (1.1

-

where Z(w) is an orthogonal process with E{|d2(m)’2} = di(w), and A(t,w) is
deterministic function of t and w. The evoluticnary spectral density is defined

to be



£(t,0) = |A(t,w)|? f(u) |, (1.2)

where f(w) = dF/dw, assuming that F(w) is differentiable. The particular caée
of (1.1), with A(t,w) ==I1, is the well-known spectral representation of
stationary processes with a mean-square spectral density f(w). If the function
A(t,w) is normalized, say, at t = tg, so that A(ty,w) = 1, then [A(t,m)|2
represents the chénge in Spectral density at subsequent times while pre-

serving the physically meaningful concept of frequenéy.

The evolutionary spectral density can bé estimated from a sample of a
single realization by a procedure which involves certain spectral windows
or, simply filters, whose forms depend on various parameters. Priestley
considered the problem of choosing these parameters to attain various desirable
properties in the estimated spectra. In particular, choosing the relative
mean-square error criterion as a figure of merit for the overall sampling
quality of spectral estimates, he developed various design relations to
determine the filter parameters. Under the condition that the mathematical
forms of filters are chosen a priori from the available collection of windows,
the relative mean-square error of the spectral estimates depends on two filter
parameters. Several possibilities arise as to how these two parameters
should be chosen. The first two require that estimates treated as a function
of both time and frequéncy should have either a prescribed frequency-domain
resolution or, a time-domain resolution, respectively. Therefore, these
requirements yield one of the filter parameters explicitly, enabling us to
determine the remaining one by minimizing the relative mean-équare error.
The third possibility is to require fixed resolution in both domains so that
the two ﬁarameters are determined from these prescribed requirements without

any specific regard to the overall sampling fluctuations of the spectral




estimates. The last but probably the most natural possibility is to minimize

the relative mean-square error jointly with respect to both of the parameters.

It is clear that all of the above possibilities have the serious short-

B coming that the explicit mathematical forms of the filters must be a priori

chosen while there is no formal criterion as to what forms are optimal.
Furthermore, the first three possibilities have additional inadequacies
mainly in the fact that requiring that estimates have a prescribed degree

of resolution in a particular domain is a rather subjective decision. The
parameters chosen in this manner ¢an provide spectral estimates with too
much sampling fluctuations to render any kind of a prescribed resolvability
criterion meaningless. Clearly the most desirable criterion is to choose
the design parameters by optimizing the overall sampling quality of spectral
estimates expressed in terms of various properties of spectral windows.
Therefore in this paper we discuss the possibilities to determine unique
optimal design relatiops and formal optimality criteria for the mathematical
ﬁofms of a class of spectral windows éhich conforms to the generai character
of the evolutionary spectral theory. Before doing so, we briefly summarize
relevant parts of the evolutionary spectral theory employiﬁg the same notations

used by Priestley except for some minor modifications.

2. EVOLUTIONARY SPECTRAL THEORY

We consider processes which admit a representation of the form (1.1),
Given a sample record of X(t) (o <t <T), the spectral density f(t,w) in the
vicinity of time t and frequency w is estimated in two steps. First we choose
a filter g (u), depending on-a parameter h, and write

t
U(t,w) = gp(u) X(t-u) e
t=T

Llu(t-u) . (2.1)



Then we smooth the values of |U(t,w)|? over the neighboring values in time
by using a weight function or, simply ancther filter WT,(u), depending on

a parameter T', and estimate f(t,w) by

-~

£(t,0) = | wy () |UCt-u,0) |2 du . (2:2)
t-T

The filter gj(u) satisfies the following conditions.

(a) gh(u) is square-integrable and normalized so that

=]

2m J | gp () | 2du = [

Le=]

T@|2 do =1, . (2.3)

-0

where TI'(w) is the Fourier transform of gy (u), and

(b) gh(u) has a finite width defined by

By = J_m [u] [gh(u)ldu ’ (2.4)

Likewise the weight function wT.(u) satisfies, for ail T',
(a) wpo(u) >0,

(b) wT,(u) decays to zero as |u| » =,

(e) f th(u) du = 1, (2.5)

o J (v, (W} du < =,

[+s]
]

"(e) lim [Zn it J {w,r,(u)}2 du] = C (a constant).
] T'-}-m e

Clearly now, before the estimate g(t,w), can be evaluated from (2.1) and

(2.2) by varying the value of w, various decisions must be méde as to the

fungtional forms of gp(u) and wT,(u), the parameters h and T', and the minimum

sample length T required so that no errors will be introduced in evaluating

(2.1) and (2.2) due to filter end-effects. The figure of merit on which

these decisions are based is the relative mean-square error of the estimate
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E(t,w) at a particular time t and frequency w defined as
[E{E(t,m) - f(t,m)}z]J/fz(t,m) = [}iasz{g(t,m)}'+ var{%(t,w)}]/fz(t,m) . (2.6)

In the case of a normal process X(t), and for estimates of the form (2.2), the

explicit form of the relative mean-square error is approximately given by (P-2)

i B‘i B]% 2 cQ + T

Bl i 2wt BGw| T | [relte. e

where

- Y
B, = ?I w2 |T'(w)|? dw ‘ ) (2.8)
and
” Y

B = } J_m g? Wy (u) du( , (2.9)

are measures of bandwidth of T'(w) and wT,(u), respectively,

B (t,0) = | £/{a2£/3e2)[% (2.10)
and

B.(t,w) = | £/{2%£/3u?}] & | (2.11)

are interpreted as the bandﬁidths of f(t,w) over the tihe— and frequency-domains,
respectively. These last two definitions are generalizations of the spectral
bandwidth concept, and hence may be regarded as measure of how f(t,w) varies

as a spectral distribution over time and frequency. We note that in (2.7)

the first éroup of terms corresponds to the contribution of bias of %(t,w)

over both the time- and frequency-domains, and the last to the variance of

f(t,w). The ratios y = Bw/BO(t,w) and )\ = BF/Bf(t,w) are defined as measures

of resolution for the spectral estimate f(t,w) over time and frequency, respectively.



The particular case of stationary processes is also included in the above
definitions. That is, if A(t,w) = 1, cocrresponding to stationarity,
Bf(t,m) ¥ Bf(w), Bo(t,w) * «, and time-dependency smoothly dlsappears from

the analysis.

We may regard the bias error as a consequence of the imperfections of
the filters gy (u) and wT,(u), and variance as a consequence of employing a
sample of only a single realization. Therefore, the relative mean-square
error can be considered as a measure of the overall statistical errors involved
in the estimation procedu;a. Any such estimation should, therefcre, be based
on the unique set of design relations which minimizes the relative mean-
square error. 1In the next section we discuss how such a unique set of optimal
design relations can be constructed for a class of filters which suggest

themselves in a rational manner.
3. OPTIMAL DESICGN RELATIONS

We consider now a class of filters {g(u)} which are, in addition to
satisfying the conditions (2.3) and (2.4), continuous functions, and for which
we can find a positive constant h such that g(u)=0 for [ul > h, Similarly,
consider the class of filters {w(u)} which are, in addition to satisfying the
conditions (2.5), piecewise continuous and of bounded variation, and for which
we can find a positive constant T' such that w(u)=0 for |u| > T'., It is
noted that the conditions g(u)=0 (lufli h) and w(u)=0 ([ul > T') suggest
themselves in a fairly matural way in (2.1) and (2.2) so that no errors will
be introduced in spectral estimations due to filter end-effects. The continuity
and piecewise continuity conditions on g(u) and w(u), respectively, guarantee
that various properties of these functions are well-defined. In particular,

if g(u) has a point of discontinuity, it may be easily realized that BP defined



in (2.8) is infinite. Under these conditions, and noting that exp (iwt) is
redundant in (2.1) on account of |U|? required in (2.2), we may rewrite

(2.1) and (2.2) as

| h |
u(t,w) = J g(u) X(e-u) e ™™ qy (3.1)
~h
and
-~ T'
£(t,w) =J w(u) | U(t-u,0)|? du . ; (3.2)
_T' j
We note now that the minimum sample size required is clearly
7 =2 (h+T'" (33

min '

assuming that t is centralized in the interval (O, Tmin) so that t = h + T',

Making use of the normality conditions (2.3) and (2.5¢) for the filters
g(u) and w(u), respectively, we may now define the '"characteristic shapea"

functions {G(x)} and {W(x)} which satisfy

{h”z sGit), |x]<1

G(x) = (3.4)
0 , otherwise ,
and
PrrlxTY) |x|<1
W(x) = (3.5)
0 , otherwise .

The characteristic shapes G(x) and W(x) defined in this manner enable us to
rewrite various properties of the filters g(u) and w(u) which appear in (2.7)
more explicitly in terms of the width parameters h and T', and a set of
coefficients which depend only on the functional forms of the characteristic

shapes.



In particular, we have

1 '
B, = T‘{ [_1 x2 W(x) dx } dgt T Co1 (3.6)
and
1 def
C =2 I [W(x)|2 dx “% Gy ° 873
-1

Similarly, it can be easily verified that

2 ' P -
dx } def .~1

1
B =k ) oy j iﬂﬁ&il et vl ., (3.8)
i3 -1 dx . gl
and
! , ; - "
J |P(w)[“ dw = h {dﬂ J f G(x + y)G(x)dx dy}'dgf h ng . (3.9)
-0 4] e §

We are now in a position to express (2.7) more explicitly in the form

N Gy 2 6000 "
oL _ w p
MY 4 EETETET' + hj«ﬁgfzjab + (1 + Go’w) T . (3.:10)

We recall that the objective is to determine the width parameters h, T',
and possibly the optimal characteristic shapes G(x) and W(x), which minimize
the relative mean-square error M. However,. at this point let us assume that

the set of coefficients (Cgl’ c 29 Cwl’ sz) already corresponds to the optimal

&
characteristic shapes, say, Go(x) and Wo(x),and for simplicity denote it by
C. Also realizing that, for a given process, the spectral bandwidth measures
Bo(t,m) and Bo(t,w) are fixed properties dependent only on t and w, we can

in principle regard M as a function of only h and T', with C, t and w treated

as parameters, and concisely write

M = M(h,T'; C, t, w) - : (3.11),
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Consider now an optimization of M with respect to h and T'., For all
values h, T' > o; we can easily show that the derivatives of M satisfy the

conditions:

(92M/3h2) (32M/3T'2) - (32M/0h3T')2 > o,

92M/3h2 > o and 392M/3T'2 > o.

Hence, a global minimum of M exists with respect to h and T'., Denoting the
optimal values by the subscript zero, the necessary and sufficieat conditions

for hy and T,' to be optimal are,
aM/dh = 0, and OM/JT' = 0, at hss T

by the usual differential calculus technique. However, before we proceed
to the solutions of the two simultaneous equations resulting from the above
conditions, we note that M, as a function of h and 7', is a posynomial of

the form

4
M =Ly kj ¥, &1 b TN (3.12)

where

I

aj b,
y (,T') =h I T b G =1,2,3,8)
denote the product functions of h and T' with

a; = Q, a, = -2, ag = -4, a, = I,
(3.13)

and kj's are positive coefficients defined as

kg = % { /o) }k '
ky =5 [{Cwlcgli/{Bo(t’“) Bf(t’“’”]z’
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ky = 3 {cgl/Bf(t.wJ }q :

k4 = (1+ 38§ )c.,C

w2 Cg2 (3.14)

0,w

Thelposyncmial form (3.11) is particularly amenable to an optimization
by the geometric programming technique developed largely by Duffin, Peterson,
and Zener (1967) in the 1960's. ' The application of the technique in this

case (see Appendix) yields the following results:

2/3
M = 3 (L + GO,m) Cwl CwZ Cgl Cg2l (3.15)
0 2 B (t,w) B_(t,w) ' f » E
o f
where '
M =M (C,t,w) = min M(h,T';C,t,w),
o o h.T'
]
with the optimal values of the pérameters h and T' given by
b= 3% e /B (0 (3.16)
o o gl' £ . i
SERCRORR ENCROCIN (3.17)
o o o L ] wl E] .
such that
1
CZ 021 /3
1 =t v 'L‘L-Lg .
(b, /T BZ(t,w) BE(E,0) C,, C, (3.18)

The resolutions of the spectral estimate f(t,w) in time-~ and frequency-domains

corresponding to the above optima are
T, ¢ lo = (M0/3) ; (3.19)
Finally, for the estimate f(t,w) in the vicinity of time t, the optimal

minimum sample size required, from (3.3), is

Tmin = ) (ho + Té), (3.20)

assuming that we have a sample X(t) (o < t < T) with T > Tmin'
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At this point several important remarks can be made about the nature

of the preceding results as follows.

(1) Examining (3.15), we can immediately conclude that the optimal

characteristic shapes Gy(x) and W,(x) are those which minimize the coefficient

products Cglcgz.and Cwlcwz’ respectively. Therefore
- min- {Cc.Cc 1, (3.21)
6(x) gl g2 } _ }
and
min {C ¢ (3.22)
W(x) wl WZ}

constitute two formal criteria for choosing and, possibly constructing unique
optimal characteristic shapes. We will elaborate on these possibilities in

section 4.

(2) It is clear from the definition of the relative mean-gquare error

that M < 1. Therefore, in (3.15), the condition

3/2

Bo(t,w) Bo(t,w) > (3777/2)(1 + 8,

s Cwl sz Cgl ng

must be satisfied for the estimation procedure to be meaningful. The parameters
Bo(t,m) and Bf(t,m) have the dimensions of t and t—l, respectively. Therefore,
the product Bo(t,w) Bf(t,m) 1s a dimensionless quantity which can be regarded

as an overall measure of "spectral characteristics" of a given process such

that the larger this parameter is, the more feasible and accuréte the estimation
procedure becomes. Furthermore, the overall statistical quality of spectral
estimates for two processes, one with a relatively smaller Bf(t,m) and a

relatively larger Bo(t,w) than the other, would be the same so long as the
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product Bo(t,w) Bf(t,wj is the same for both processes for all t and w.

(3) The minimal error Ho consists of blas and variability contributions
in a one to two ratio (see Appendix). This result, in retrospect with the
nature of the geometric programming technique, or, simply an examination of
group of terms in (3.10), indicates that errors due to bias in time— and
‘frequency-domains are more sensitive to changes in the design parameters h

and T' than those due to variability,

(4) TFor the particular case as Bo(t,w) + o, corresponding.to stationarity,
we see that ME + o, and ho’ T; + o ag the ratio (hO/T;) + o. This is very
much consistant with the asymptotic sampling properties of spectral estimates
in the classical analysis, and in principle it suggests that, as stationarity
becomes dominant, we should take larger wvalues ho and Té, and therefore larger
sample sizes while decreasing the ratio (ho/Té) until estimates attain a

convergent behavior.

(5) The above optimal results are based on the minimization of the
relative ﬁean—square error at a particular time t and frequency w, and in that
sense they are very generai. That is, the optimal parameters hO and T;, and
therefore the filters g(u) and w(u) that we derive in terms of these parameters
énd optimal characteristic shapes through (3.4) and (3.5), will be dependent
on t and w in computing spectral estimates E(t,m) from (3.1) and (3.2).
However, in practical spectral computations we may want to consider other

possibilities as follows.

(a) We can consider a spectral design minimizing the maximum possible
relative mean-square error over either time or, frequency, respectively,

More formally then, we seek the wvaluesg ho, Té which minimize
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(1) " {SEP‘: . M(h, T'; C, t,w) (3.23)

over time, or

(ii) s:p M(h, T'; C, t,w) | : (3.24)

over frequency. These results are readily included in the optimal design

relations given above, .and they correspond to simply replaping Bo(t,m)

and Bf(t,m) with, say, Bo(w) and Bf(m) such that
inf
= o
Bo(w) Bf(w) {Bo(t,m) Bf(t,w)} (3.25)
0t <?
for the (i) case, and with, say, Bo(t) and Bf(t)-such that

inf
Bo(t) B.(t) = N {Bo(t,w) Bf(t,w)} (3.26)

for the (ii) case, respectively, in the optimal relations (3.15) through

(3.19).

(b) As the simplest possibility we may consider the design minimizing
the maximum possible error over both time and frequency. That is, we

seek the parameters h s T; which minimize



sup Mh, T'; T, t, o) | (3.27)

u
w
t %3

o <
The design relations corresponding to this case is similarly given by replacing
Bo(t,w) and Bf(t,w) in (3.15) through (3.19) simply with, say, B and B; such

that

B B, = i Bo(t,w) Bf(t,m) | (3.28)

This possibility therefore provides the optimal design relations which are

independent of t and w,

4. OPTIMALITY CRITERIA FOR SPECTRAL WINDOWS

As we have mentioned in the preceding section, it is now possible to
consider formal optimality criteria for the class of filters {w(u)} and
{g(u)} on the basis of the optimal design relations. The optimal filters
w(u) and g(u) are evidently those with the characteristic functions W(x)
and G(x) wbich minimize the product functionals CWICWZ and Cglch' respectively,

Uéing the definitions of these coefficients given in (3.6) through (3.9), wa

may rewrite the optimalilty criteria more explicitly as,

1 1
min i J x®2W(x) dx & 2m J ,W(x)!zdx ! ) (4.1)
- -1

W(x) 1
subject to the constraints that W(x) is a real, non-negative, piecewise
continuous function of bounded variation, square-integrable, and identically

zero for values [x[vil, and properly normalized so that

W(x) dx = 1 |
-1
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and
2

atet dy E . (4.2)

1
27 J IQE&EL
-1 dx

1=y
-J G(xty) G(x)dx
-1

5 2
2
dx { i 4w'J
_ o
subject to the constraints that G(x) is a continuous function, identically
zero for values [x[z 1, and properly normalized so that

i
2% J IG(x)I2 dx = 1 .

The solution of (4.1) and (4.2), if they uniquely exist, provide
the optimal characteristic shapes W(x) and G(x), from which the filters w(u)

and g(u) can be coﬁstructed, using (3.4) and (3.5), as

w(u) = (r")7L W(u/T"),
and ' (4.3)

g(u) = (h)-;5 G(u/h)

One possibility for finding thé gsolutions of (4.1) and (4.2) is to
expand W(x) and G(x) in terms of complete orthogonal fuﬁctions such as Fourier
series or, Legendre functions of the first kind with unknown ﬁoefficients,
and to attempt to determine these coefficients by minimizing (4.1) and (4.2)
subject to the relevant constraints. Such an approach turns out to be
especially feasible for (4.1) by virtue of the relatively simple functional

form. In particular, if we let
W(x). =L A P (x),
k=o

.where Ak and Pk(x) are the set of unknown coefficients and Legendre functions
of the first kind, respectively, we can easily show that the unique optimal

solution to (4.1) is obtained, with Ao = 1/2, A2 = (1/2), and Ak = 0 for k#0,2, as
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%(1 - x2) |x] <1

W(x) = h.o4)

0 » Ixl>1

Therefore, we have Cwl = /0.2, sz = (6m)/5, and the minimal product

G = 1.686. It is very interesting to note that (4.4) corresponds to

chwz
the well-known Parzen filter. It might be also useful to compare the filter
(4.4) with others from the standard collection of windows (see for example

Parzen, 1961). Table I illustrates this comparison for various filters which

conform to the constraints of the class of filters {w(u)} considered in this

paper.
TABLE I
Filter W(x) C.q €.y G
3 (1-x2) (0.2) (61)/5 1.686
(w/4) cosl(mx) - 73/8 1.687
1 2.%
L(1 + cosmux) CE - ;z) (3n)/2 1.704
1 - |x| C o (1/6) 4m)/3 1.710
1 (rectangular) (1/3)% i 2,178

Unfortunately, the problem of finding the optimal G(x) in a similar wmanner
is not satisfactorily solved on account of the more complicate nature of the
functional (4.2). Nevertheless, we can use (4.2) as a figure of merit for
choosing an optimal form G(x) from the available collection of spectral windows.

With this purpose in mind, Table IT was prepared to iilustrate the relevant
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properties of most of the well-known window shapes consistent with the class
of functions {g(u)}. It is evident that among the four different shapes

examined the optimal filter is the "hanning" window given by

(61r)“li (1 + cosmx), |x|<1

G(x) = (4.5)
0 ' s ’xlll
TABLE II
Filter G(x) Cgl ng lecgE
(6 w)‘;’ (1L + cosmx) w/V3 .1528 ' .2778
e2x)"% cos % (e /2 .1875 .2946
@ a-|xh /3 .1725 2988
{15/(3270}!E (1 - x2) /(5/2) .1926 . 3045

5. ANALYSIS OF ARTIFICIAL PROCESSES

It is worthwhile to illustrate the application of the optimal design
relations and to re-examine the validity of the evolutionary spectral theory
by studying artificial processes. With these objectives in mind, we consider
here the uniformly modulated processes, quite similar to the example given

by Priestley (P-1,2), generated from the model in continucus time

5(e) = e 282 gy, (5.1)

where Y(t) is a stationary normal process with the mean-square spectral density

function

-

e = {dul-02+a2 }, Juler 6.
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and, a and B are constants to be specified. The evolutionary spectral density

function of X(t) is given by

—+2/a2
faﬁ(t.w) = et /8 £, () . _(5.3)

In so much as faB(t’m) is symmetric with respect to t and w, we may
restrict the analysis to the values t,w>o, and write, using the definitions
(2.10), (2.11), and from (5.3),

1

%
B (t,w) =B (t) = (82/v2)|2t2 - g2|

and

B.(t,0) = B_(u) = {(w~l)2 + aZ} |6 (w-1)2 - 202|7%,

For the simplicity of illustration, let us consider the spectral design
minimizing the maximum estimation error over frequency and time in the interval;

say, 0 < t < 2. Hence, we have

B = inf B (t) = g/V/14 (5.4)
¢ Duuzig ¥

and
B, = i::f Be(w) = alv2 (5.5)

corresponding to the values of Bo(t) and Bf(m) at t = 28 and v = 1, respectively.
It i1s 'clear now that the parameters o and g directly control how fuﬂ(t,M)
varies over frequency and time. That is, as a and B become larger faﬂ(t’w)

varies more smoothly as a function of frequency and time, and vice versa.

Table III illustrates the approximate values of the optimal design

parameters based on two different sets of constants o and B, and corresponding
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to the filters

um

('Enrho)-';i (1L + cos E—) , |ul< h0
g(u) = % ° (5.6)
0 !u]i h'o L]
with cgl = 1/V3, c82 = ,1528, and
2a0™ {1 - wrp?}, Jul< g
w(u) = ¥ : (5.7)
0 » 'uli T' ¥
with C , = /0.2, and Cio = (6w)/5.
TABLE III
' =
o B B, Bg MO(Z) h T ¥ ® U,
0.5 600 1160 .354 S . 13 145 0.40
0.3 . 360 96 . L212 15.5 18 103 0.48

The estimates of faB(t’m) can now be evaluated in a digital manner by
' generating samples of X(t) from (5.1) and (5.2). The techniques for digitally
simulating stationary and non-stationary processes with prescribed spectral
density funﬁtions are described elsewhere (see,e.g., Shinozuka and Jan, 1971),
and therefore, will not be discussed here. However, it might be useful to
indicate various modifications that can'be made in the digital spectral analysis
of a continuous parametered process., In particular, 1f we have a continuous
sample X(u) (0 < u < T) digitized at a periodic sampling interval of At sec.,
we can form the discrete parametgred sequence Xl,Xz,...,XN where Xt = X(tAt),

and N is the largest integer smaller than T/At. When At is chosen (Nyquist
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interval) so that the spectral density, say, f(u,w) of the continuous para-

metered process X(u) satisfies, for all u, the condition

f(u,w) = 0, lw[l r/At

then it is convenient to regard the sequence {Xt} as 1f it consisted of points
at unit time intervals. This is equivalent to transforming the original .
frequency scale into a standardized dimensionless frequency, say w*, defined

* w At Consequently, the spectral density, say

in (-w,m), and such that w
fd(t,w*), of the discrete sequence {Xt} and that of the actual process X(tAt)

are related to one ancther in the form

£(tat, w*/At) = At fd(t,w*), [w*|< (5.8)
where
T*' :
* o - % ?
fd(t,m ) = % x 'Ut_j(w )l . (5.9)
h| “'To i
and
h* %
* o ~-1jw
Ut(m ) = I Ej Xt-j e (5.10)
j= -h

are the discrete time analogues of (3.1) and (3.2), with gj = g(jAt) and

Wj = w(jAt) derived from the continuous versions such that

h

L x
2 lg,|2 =1, and = w, =1
% j * j

J = ~h, J =T

™0 *

%* %*
The parameters hy, and T, are now interpreted as the largest integers smaller
than (h,/At) and (T}/At), respectively, where h_ and Ty are defined as before.
In general then, we may say that the optimal deslign relations remain invaviant

except for a minor modification by the scaling factor At.
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In the examples considered here, we have At = 1, and, therefore, the
processes {X(t)} generated from (5.1) have a dimensionless character. With

h* = h_ and Tg = T', we can now write
o o 0
gj = (611110)“1! (1 + cos %E )’ (j - ';ho:-'- ’—190!1!""h0) ‘ (5-11)

and, for T' >>1,
o

3

v, v 2t

{1= N2} o G = =T enes=1,0,140004 )« 53D
The estimated forms Df.faB(t’w) at various times in the interval

0 <t < 2B were obtained from the two simulated samples corresponding,

respectively, to (o = 0.5, B = 600) and (o = 0.3, B = 360), using equations

(5.8) through (5.12). These estimates are shown in Figs. 1 and 2 together

with the corresponding theoretical forms for comparison. It is noted that

the scale of ordinates for the theorétical and estimated forms at t = 600

in Fig. 2 is magnified by ten times to achieve a better resolution.
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FIG. 1 Theoretical evolutionary spectra (continuous curves) and corresponding
estimates at t=0, 300, 600, 900, (a = 0.5, B = 600).
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CONCLUSIONS

Sampling properties of the evolutionary spectral estimates were
re-examined with respect to a class of_filters with finite widths. The
finiteness restriction on the filter widths is consistent with the practical
objective to compute spectra from a limited recoxd length, and with the
inherent requirement that the filters used in estimating time-dependent
spectra have a locally instantaneous character (see P-1,2,3).- This approach
coﬁsequently led to the construction of a set of uniquely determined design .
relations in terms of the filter width and shape parameters and the spectral
bandwidth characteristics of a process, and provided formal criteria for .

choosing or constructing optimal filter shapes.

In the minimal mean-square error of spectral estimates, the importance
of thelproduct Bo(t,w) Bf(t,w) emerges as an overall measure of the spectral
characteristics of a process, and constitutes an effecti&e criterion to
assess the feasibility and accuracy of the_estimation procedure in a given
situation. Of the various possible interpretations of the optimal design
relations, the interpretation based on a minimization of.the maximum possible
mean-square errér ovef both frequency and time is the simplest and the most
amenable to the practical computation of spectra. A particuiarly interesting
point about these time- and frequency independent design relations is that,
given an arbitrarily long interval, they provide the filters which require
the smallest widths, and therefore, the shortest record length to construct
spectral estimates which are, in sampling quality, at least equal to or better

than the estimate characterized by the worst minimal error M.
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An examination of Figs. 1 and 2 indicates that the general character
of the estimates here in all cases compares very favorably with the
theoretical forms (in contrast tojthe results obtained by Priestley, 1965).
It 1s evident that the optimal design relations eliminate the inadequacies
and subjectivity associated with the available torms of spectral design
relations and illustrate very effectively the salient features and validity

of the concepts involved in the evolutionary spectral theory.
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APPENDIX

* Derivation of Optimal Design Relations

The geometric programming teéhnique proceeds by identifying the non-

negative weights p, defined by

.

uy = Ly vyt Vg, G = 1,2,3,8, (A.1)

where the subscript zero denotes the optima, and kj’ yj (j ==1,2,3,4)
are defined in (3.12) through (3.14), with

M =M (C,t,w) = min M(h,T'; C,t,n). (A.2)
o o h.T!
»

The weights pj(j = 1,2,3,4) describe the fraction of the total minimal error
Mo that should be assigned to the corresponding terms of Mo to achieve this
minimum. Clearly, then (ui + My + u3) and My correspond, respectively, to
the contributions of the bias and variability errors to Mo. The weights

satisfy the normality and orthogonality conditions defined, respectively, as

4
K pj =1, (A.3)
j=1
and
4 4
I au, =0 |, L b,u, =0, (A.4)
j=l j J jzl j j :

where aj and bj (j=1,2,3,4) are defined in (3.13). These conditions constitute

j(j=l,2,3,4). The fourth

three simultaneous equations in four unknowns p

equation is the dual function defined as

4 uj
d(ul,uz,u3,u4)= j:l (kj/uj)

(A.5)
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A basic result in the geometric programming -technique is that the maximum
of the dual function equals the minimum of the primal function M. Hence,
we proceed by solving first (A.3) and (A.4) for, say, uj(j=2,3,4)_in terms

of Hys and obtain

Hy = (1/3) - 21y
Mg = My ¥ (A.6)
M, = 2/3.

At this point we note that Hy -+ My + u3 = 1/3 and w = 2/3 indicate that the
minimal error Mo should consist of bias and variability errors in a one to
two ratio. Therefore, the optimal design rulé as to how bias and variability
should be proportioned has already emerged before we have evaluated either

Mo'or, the corresponding parameters ho and T;. Using now (A.6), we may

rewrite (A.5) as

| 2/3
= - 2u
3 1

{ x, /@19

d(u,) = {(klkB)/ w2 }ul { K,/ G = 2uy) }
Maximizing the dual function d(ul), subject to the condition 0 < ul-i (1/6)
imposed by the non-negativity requirement on uj's and resglts in (A.6), yields
the optimal wvalue

, s %
My o= [ 3 {2 + VTQEQESF'} ] = 1/12,

by noting that sz/(k1k3) = 2. Therefore,

& _ oy 18,5 1/12
Mo d(1/12) 3(klk2k3k4/4) s
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or, on account of the definitions (3.14),

' 2/3
(l+¢ YEC_ C.C.,C

M =3 o,w” wl w2 gl "g2 i.

o .

2 Bo(t,m) Bf(t,m)

We may now, using (A.l), determine the optimal parameters, ho and T;, as

!
h, = GME {c /e ),

and

¥ %
Tg = (MO/B) { Bo(t’m)/cwl } ’

so that

B, wl 1
(h /1)) = ! e

c2. c2 £1/3
L A
Bo(t,m)le(t,w) C.ro c32

~ The resolution of spectral estimates f£(t,w) in frequency- and time-domains

corresponding to the optima is given by

W™ ko = (MOIS)% X
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