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ABSTRACT

A finite difference model for predicting the nearshore
circulation due to wind and waves is presented which attempts to
solve the same problem as an earlier model created by Birkemeier
and Dalrymple (1975). Their model iteratively solved the linear
set of conservation equations of both mass and momentum, which
were time averaged (over one wave period) and depth integrated,
for mean velocities and free surface displacements. The wave
characteristics used in the momentum equations were found using
the wave refraction and shoaling routines, including wave-current
interaction, developed by Noda, et al. (1974). The model also
included a linear bottom friction formulation as well as a surface

wind stress capability.

The present model discussed herein includes the addition of
convective accelerations, horizontal mixing and a quadratic
bottom friction term in the conservation of momentum equations.
This bottom friction term is "exact" in the sense that it includes

the velocity vectors due to both mean and wave-induced currents.

iv



The model is applied to the cases of a single wave train
impinging on a plane beach, a barred profile, and a bottom with a
periodically spaced rip channel. It is also applied, in a
simplified form, to the case of two intersecting wave trains at
oblique angles to a plane beach. Results indicate that these
additions to the model are important in attempts to model the

circulation patterns over bottom bathymetries found in nature.
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CHAPTER I
INTRODUCTION

In recent years there has evolved a special interest in the
environment around our extensive coastline. This interest is a result
of the growing usage of these areas for industry and recreation.

Those industries which rely on water as a primary mode of transporta-
tion for both raw materials and finished products are spending large
amounts of time and money designing efficient access and docking
facilities. Coastal communities are spending more money to maintain
the condition of their recreational facilities located around

water bodies. As people grow to depend on these regions for their
livelihood, they become increasingly concerned with changes to the

coastline and with efforts to maintain it in its present condition.

The problem of sediment transport is a primary concern of
industry and resort communities. Its effects are clearly visible,
yet an understanding of its causes and the ability to predict it
accurately are just starting to unfold. An integral part of the
sediment transport problem is an ability to describe the flows which
serve to move sediment, such as the creation of a velocity field in

the surf zone due to breaking waves.



Noda, et al. (1974) developed a steady state model which
predicted the nearshore circulation due to waves and wind. Liu and
Lennon (1978) also developed a steady state model using finite
element techniques. Birkemeier and Dalrymple (1975), building on the
efforts of Noda, et al., created a time dependent model to describe
nearshore circulation due to the same forces. The effort reflected
in this thesis is an attempt to extend the work of Birkemeier and
Dalrymple one step further; to develop a more complete and accurate
numerical model to predict flows along a coastline by including the
effects of convective accelerations and lateral mixing, and by the
use of a bottom friction term which includes the velocities due to

both waves and mean currents.

There are many advantages to using a numerical model to
investigate this problem. First of all, the problem at hand is so
complex that only through numerical methods can it be solved.

Secondly, the model enables the user to study an unscaled prototype
situation. Thirdly, once the model has been established its generality
enables it to be used theoretically on any stretch of beach. Finally,
the model arrives at solutions rapidly when adapted to use with a

high speed computer.

In order to formulate the problem so that it may be solved

numerically the following requirements must be met:



(1) a set of governing equations must be selected
to accurately describe the physical processes
at hand; the model is only as good as its
governing equations,

(2) boundary conditions must be established over
the region of interest, and

(3) initial conditions must be defined.

Only when these requirements are met can we hope to obtain an accurate

solution.






CHAPTER II
GOVERNING EQUATIONS
INTRODUCTION
The first step in problem formulation, as just mentioned,
is the selection of governing equations that accurately describe the
physical processes at work. This numerical model uses as its
basis the equations describing conservation of both mass and momentum
in a time averaged (over one wave period) and depth integrated

form.

The purpose of the time averaging is to remove the fluctuations
in time due to waves. The model deals only in mean quantities. The
reasons for depth integrating the equations are, again, to deal with
mean quantities, thus time over depth, and to reduce the problem
from two horizontal and one vertical dimension into only two
horizontal dimensions. In the process of depth integration the
Leibnitz Rule was used to remove partial derivatives from within an

integral. It is given by

B(y) B(y)

f AMby) gy = 2 f £ y)ax - £B(y) ,y) —2 4 £aly) ) duly)
4 dy dy

aly) a(y) oy

The remainder of this chapter is devoted to the derivation of

the integrated conservation of mass and momentum equations and the



"forcing" terms found in the momentum equations themselves. The
three basic equations discussed above will be derived in detail.
The equations which are solved to yield the wave characteristics,
the radiation stresses, and the wind stress will be discussed
briefly. For a more detailed derivation the reader is referred to
the work éf Noda, et al. and Birkemeier and Dalrymple. The

bottom stress derivation and the formulation of the lateral mixing
terms, however, will be discussed more fully as they are new

additions to the model.

BOUNDARY CONDITIONS
Certain kinematic boundary conditions are used in the formu-
lation of the mass and momentum equations. The boundary conditions

state that if we move with a surface given by
F(x,y,z,t) =0 ’

then a water particle cannot flow across the surface, otherwise
the surface would cease to exist. Mathematically, this condition
is expressed by the total time rate of change of the function

F(x,y,z,t) equals zero.

D
ot (Flx.y,z,t)) =0

At the free surface the boundary is given by
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Fl(er:z:t) = - n(fort)

and at the bottom

il

i
o

F,(x,¥,2,t) z + h(x,y,t)

Therefore, for the kinematic free surface boundary condition

(KFSBC) ,
oF oF F oF
L, or oF ¥F _o
ot % ax R Ay Y 0z

or

For the bottom boundary condition (BBC) it can be shown that,

an oh oh

=2 Pt —_ = 2

5e b ay aet 5% oy W 0 (2)
where u,v,w are the velocity components in the X,yY, and z directions

and the subscripts denote the location of a specific term whether it

be at the bottom, z = =h, or at the free surface, z = n.

CONTINUITY EQUATION
The general form of the three dimensional continuity equation

which states that mass is conserved 18y

dp , 3lpu) , 3(pv) . 3(ow)

ot % 3y 3z~ 0 (3)



where p is the density of the fluid.
Integrating over depth from z = -h(x,y,t) to z = n(x,y,t) and using

the Leibnitz Rule, Equation (3) becomes

n n
0 an 3 (~h) ]
ot J_h Pdz =P 3 Py Tt T ax J_h ARde

nn ox -~h =h ox v s
on d (~h) _
pnvn 2y + p_hv_h 3y + pnwn p_hw_h =0

Simplifying by substituting in both the KFSBC and the BBC,

the continuity equation can be written

P r’] _ 3 r'l 3 n

— paZ +i— pudz + — J pvdz = 0 (4)

ot -h ox e oy £
Let both u and v be comprised of a time independent mean

flow, a wave induced flow, and an arbitrarily fluctuating component

(turbulence) such that

u=U+14 + u'

v=V+ TV +v

It is important to note that the turbulent fluctuations u'
and v' are of very high frequency and by definition their time

averages (over a short period of tiue) are identically zero.
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By substituting the above expressions for u and v into
Equation (4), time averaging over one wave period so as to eliminate
the wave induced fluctuations, and using the definitions for the
time average of the turbulent components, the continuiéy equation
can be written as

-~

—a{p(h+H)}+~i{ﬁ{h+F)}+i ! pudz
at ax P ax ol

— _ n A
+—3{pv{h+n}}+—3—f pvdz = 0 (5)
Ay dy -h

where the symbol " " denotes the time average over one wave
period and E-the time independent mean free surface displacement.

Note that the time average of the vertically integrated wave induced

velocities u and v is not zero.

Defining Uzg+u
Vzy+v
n R n -
J pudz J pvdz
~ - ~ -h
where u=h— and v =

p(h + 1) p(h + n)



are the mass transport velocities and substituting the total depth
D for (h + E}, the time averaged depth integrated continuity equation

is, in its final form

an ] ]
— —_— 4+ — -~ ]
5t + % (UD) 3y (VD) 0 (6)
Also inherent in the derivation are the assumptions that the bottom

is constant with time and the density is constant in space and

time.

MOMENTUM EQUATIONS

The x and y momentum equations are manipulated in the same
way as the continuity equation in 6rder to achieve equations which
are independent of wave induced oscillations, i.e., they are
integrated over depth and time averaged over a wave period. The
general form of the horizontal momentum equations are; in the x

direction,

9T ot 9T
XX 7x zZX
{ ol ok e } (7)

__lee
p Ox

du % 3u2 Juv uw
ot 9x oy 9z

© |~

and in the y direction,

3_v+ duv + avz + Ivw = - l..a....:g_+ ..]:. {aTxy i BTYY + 3TZY} (8)
ot dx dy 0z p 9y p ox oy 0z

The x momentum equation will be dealt with first. Integrating

the left hand side over depth and using the Leibnitz Rule to remove
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derivatives from within the integrals give term by term,

n n
Ju w3 iy A0 9 (=h)
{LHS) J ot dz 5t J udz u 7S + u_p TS
=h -h
L 5 (M 290 . 2 3(-h)
e 0 YT S T TR
-h % -h
n n
duv __9 _ an d (-h)
J 3y dz = 3y J uvdz unvn 3y + u_hv_h By
-h -h
§ Suw dz =uw =-u.w
L 0% B ~h =h

Rearranging terms the (LHS) becomes,

n n n
3% J udz +-§% I uzdz + —E-J uvdz
-h -h ¥ Jon

—u (30 oo N _
un(at * un X vn oy wn}

oh oh 5h
Sae P My Bt Y sy T Yy

which after substituting the KFSBC and the BBC simplifies to,

n n n
(LHS) 5%-J udz + 5%-[ uzdz +-§i I uvdz
-h -h Y Jn
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Again letting the total velocities u and v be defined as

u="U-++u+u'
v=V+v+ v

Substituting and averaging over a wave period, the (LHS) becomes

term by term,

n n_ n n
-a—i-J uzdz=3—3JU2dz + aa J uzdz+£ [ u'2dz
-h *Jon -h ~h
3 N ey a n iny a n ~
+ -B—J 2Uudz + 5—-[ 2pu'dz + B_J 2uu'dz
*Jon *Jon *Jon
n n__ n_. .
-a-g-I uvdz=3—aj Ude+-5-§-J Uvdz+3—af pv'dz
Y Jon Y )on Y Jon Y Jon
a n ~ n Ao B rl ~
+ E—J wdz + B—I uvdz + S—-J uv'dz
Y Jon ~h Y Jon
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Since the frequency of the fluctuating components is much greater
than the wave frequency, the wave induced velocity is essentially
constant relative to the turbulent fluctuations. Therefore, integrals
which involve products of a turbulent component and a wave induced
component are zero in the time average. Using this result the (LHS)

becomes,

n n n
3 J : J o 3 J 2
— udz = — Udz + — udz
ot i ot o ot iy

n n o_ no n
—é—xa-J uzdz = B_QJ Uzdz + ‘B—BJ uzdz + E%J u'2dz
-h -h * Jon -h
I
+ o j 2U0udz
-h

5 (M 5 (W — no_, s (M
e uvdz = T Uvdz + B—-J Uvdz + ;v I uVdz

¥ J_nh Y Jp -h Y ) p

n n art n 9T n 9t
(RHS) -%J a—idz+-]-'-f xxdz+ij —ﬁdz+lj —ZX 3z
-h -h P Jn h
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assuming the density is constant in space and time. If we also assume
an inviscid fluid such that no horizontal viscous stress exists, then
Tyx and T become zero. Integrating over a wave period and invoking

the Leibnitz Rule on the pressure gradient term, the (RHS) becomes,

1
T b Tax
~h

Assuming that the pressure at the free surface Pﬂ is zero and

realizing that T and L are the time averaged surface and
n -h
bottom shear stresses, the (RHS) is rewritten as

n
1 3 1 oh L=
- — p— + — —— —— - — -
p ox [-h Faz p P—h o9x i p Tex p Tbx

The mean pressure at the bottom P_h can be defined as the

sum of the dynamic, or wave induced pressure at the bottom, and

the hydrostatic pressure at the bottom such that

P. =P + pg(h + 1)

Therefore, P_h 5% can be written as,

s Bl retions G .
-h 3x den_h 5x T Pglh +m)

oh
9x

or alternatively as
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Li—egly . L el 1 d — 2 — an
= oaa = dh 1 ~ . .
P Pon Bx p den——h e T {g(h + n)“} - g(h + n) -

Using the result the time averaged, depth integrated x momentum

equation is given by

TS PR L (P |
ot ax

o - _m
{u (h+n}+2uf
~-h

n
udz + J uzdz
-h ~h

1 n ]- _2 a P iap v n ~ et n ~
+ = Pdz - > gth + n)“} + — {uv(h + n) + U vdz + v udz
p 2 ay
-h ~h =k
+ ” M\dz}—}-P . (h+_)§£+lr ._.1',-1-
uv “p “dyn . ox 9 "ax o Tsx Top
~h ~h
a ™ . g M |
T x uTaR = e u'v'dz . (9) '
-h ~h

The quantities called the radiation stresses, or the excess
momentum fluxes due to the presence of waves are defined as

follows,

w0
i

n - no
[ (P+pﬁz}dz - %-pg(h % n)2 - ————l—:j-{J pudz}2
~h ph + n) ~h
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) S

B ua 1 L no,
Sx EI puvdz - asn J pvdzJ pudz

Y o p(h + ) ’-h ~h
n n
-~ 1 e 1 #

S = J (P+pv2}dz - E‘Og(h + n)2 - ————__:T'{J pvdz}2
W Jon p(h+mn) ’-h

The following assumptions will also be used:

(1) The product of the wave induced pressure at the
bottom and the bottom slope will be assumed
negligible,

(2) The gradient of the pressure due to turbulent
fluctuations,

R :
- u'“dz , is neglected, and
~h

(3) The lateral friction caused by momentum fluxes
due to turbulent fluctuations is assumed to be
independent of depth.

This lateral friction will be called T, and is defined as T, = -putvt,

2 L
Finally letting the total depth D be defined as D = (h + ﬁ), the x

momentum equation in its final form can be written as,

- g oT,
a3 9,2 9 on )5 Vel
— . i == DL
Bt(UD) & Bx{u D+ oy (Ov: T ox p oy
1%y 1 P 1— 1 — 2
p Ay pox p sx p bx -

Following the same procedure the final form of the y

momentum equation can be found to be,
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AT

d 5 R T - R
3y (vp) + e (Uvp) + e (V'p) gD 5~ b b
s 39S
LAY XYYk =— L= : (11)
p 9y p 0y p sy p by

WAVE TRANSFORMATIONS INCLUDING WAVE-CURRENT INTERACTION

The equations which govern both wave refraction and shoaling
as a result of wave-current interaction used in the model are those
of Noda, et al. The original derivation can be found in the report
presented by Noda, et al. The advantage of Nodé's method is that
it predicts the wave angles and wave heights at certain points
rather than along a wave ray. This procedure lends itself well to
use in the finite difference model because calculations are performed
at points which lie in the center of rectangular grid elements

which are part of a larger grid mesh.

Starting with a progressive linear gravity wave, the free

surface can be written as,

n(x,y,t) = a(x,y,t)cos{¢ (x,y,t)}

where a is the wave amplitude and ¢ is some phese function. A

wave number vector can be defined as

._’.
k

It

Ve (12)
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and a wave scalar frequency can be defined as

g =~

s

(13)

Using the mathematical property that the curl of a gradient is

identically zero, it is shown that

I
o

Vx V¢

which implies that

4
1}
o

V x

This equality states that the wave number vector is irrotational; i.e.,
the wave in question cannot travel in circles. Assuming ¢ (x,y,t)

is continuous

9 -y 9%
ot (Vé) =V ot

or substituting Equations (12) and (13) into the above expression,

it is found that

4+ Yg = 0 (14)
which is the classical conservation of waves equation.

For the case of a wave propagating on a current with velocity

d=ul + é}, it can be shown that the scalar frequency with respect

to a stationary reference frame is
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—— >
og=0+k = u

The wave frequency with respect to a moving reference frame is

given by the dispersion relation,
02 = gk tanh kh . (15)

If it is also assumed that the wave number field changes slowly

with time then from Equation (14)

2> >
Vo + k » u) =0
or
5
u

o + ﬁ . = constant 5 (16)

y > i ;
This constant can be evaluated for the case where u = 0 in which
2w & F
case 0 = —E-where T is the wave period.

Equation (16) then becomes

>
g+ kruam—", (17)

Using the coordinate system shown in Figure 1 and expanding
Equations (12) and (17) into Cartesian coordinates and using the
dispersion relation, the equations which govern wave refraction
through wave-current interaction are given by

gon § [0t 3Ky 4 yin 0 (284 1 2K
ax oy

k oy k ox =R (18)

1/2

{gk tanh(kh)} + uk cos 8 + vk sin 6 = 3% : (19)

where 0,k,h,u and v are all functions that may vary in both the x

and y directions.
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—y

=
Horizontal k Wave Number

Components
of the n
Current u

0 Wave Angle

Figure 1 Planform Definition Sketch for the Wave Transformation Equations

The shoaling of waves is also affected by the interaction of
waves and currents. The effect on the waves is determined by solving
the energy equation. The form of the energy equation used in the
model is the time averaged (over one wave period), depth integrated
form for the case of a wave propagating on a current given by
4 g -+ A X , .

u = ul + vJ. Turbulent effects and dissipation are neglected in

the derivation which can be found in Phillips (1966). His result

is given by,

3E 3 - 2 u
ot * 9% {E (u+ cbx)} + 3y {E (v+ CQy)} B
Ju v av
+S8 —+8 —+8 —=0 . 20
Xy 0y yy 3y yx 9y 20}
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Dividing by E and expanding in Cartesian coordinates,

Equation (20) can be written,

1 9E 1 3E . 13
= 5 + (u + Cg cos 0) S + (v + Cg sinb ) E By

9 ]
=ity e + — 4 2
+ B (u + Cg cos 0) By (v Cg sin 8)

Mo Myg By

E "xx ox Xy 55- vy oy Xy §§_ -9

In the above equation, E is the total energy, both potential plus

kinetic of a progressive linear water wave and is given by

. 2
E—Bng

where H is the wave height.

Using this result, carrying out the differentiation, and

letting a quantity Q be defined as

=1 du du Ll 3y,
2= {sxx = # sxy 3y + sxy o Syy ax}
the energy equation becomes,
2 9H 2 OH \ 2 oH Ju v
i + (u + Cg cos 0) o + (v + Cg sin 06 i dy + % + 3y
ac ac

90 90
o o - Bk, : - ) =
Cg sin 0 == + cos 6 i + Cg cos e + sin 0 5y +R=0 . (21)
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For all applications of the model the wave height H is assumed
constant in time so %% = 0. From linear wave theory the group

velocity Cg is given by

2kh
}

c
¢ =7 U+ s

where

2
¢ = {2 tanh(kn) }/
is the wave speed or celerity, k is the wave number, and h is the

water depth.

RADIATION STRESSES

In the derivation of the momentum equations the radiation
stress terms S , S and S were defined. Those forms can be
xx' "xy vy
simplified, and it has been shown, Longuet-Higgins and Stewart
(1962) , that to second order for a progressive, linear, small

amplitude wave they can be approximated by,

E{ (2n-1/2) cos28 + (n-1/2)sin26}

s -

b & 4

S = En cos O sin 0

Xy

Sy = E{(2n-1/2)sin%0 + (n-1/2)cos20}

where E is the wave energy, 0 is the wave angle, and n is the

ratio of group velocity to wave celerity:
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_ a3l 2
E = 8 pg H
c
. 2kh
el +
Ry Y s
where
2m
k = wave number (= —Ej
L = wave length
h = water depth and
H = wave height.
WIND STRESS

The capability to handle a wind stress was retained from the
work of Birkemeier and Dalrymple (1975). The wind stress is included
as the surface stress in the horizontal momentum equations. No
wind effects were included in applications of the present version
of the model. A brief summary of the wind stress formulation is given

below.

The form for the wind stress terms was assumed to be

~
I

sx px|w[wx

I

oie [l

sy Yy
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where w is the magnitude of the wind speed and W and wy are the
x and y horizontal components of the wind épeed. The density of
water is p and the wind stress coefficient k is based on the work of
Van Dorn (1953) and assumed to be a function of the wind speed such

that

L is a critical wind speed taken as 14 knots and the

6

coefficients Kk, and K, are taken to be 1.1 x 10—6 and 2.5 x 10 ’

1
respectively. A comparison of this coefficient, k, with real

data is given in the work of Pearce (1972).

BOTTOM STRESS

- The bottom friction used in the model is of the quadratic form

—_ 1 > >
T, = E—pf u |u

b eluel

n n

where again denotes the time average over one wave period.

+
The total velocity vector u,

is comprised of both mean currents
and wave orbital velocities. The quantities p and f are the water
density and the Darcy-Weisbach friction factor, respectively.

Referring to Figure 2, the mean current, y, can be broken into its

x and y components u and v.
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Figure 2 Definition Sketch for the Bottom Friction Formulation

The wave angle is given by theta and { and § are unit vectors

in the x and y directions.

i ->
The total velocity vector u, can be expressed as
= (u + u cos B}? + (v + u sin 9)?

whose magnitude is given by,

lﬁtl = ifw® . Gz + 2uucos B + 2vusin 8 )

The wave orbital velocity u can be expressed as
.u =u_ cos 0t ,
m

where u the maximum wave orbital velocity, is



i T RN D S B ik, e N e g o
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s TH
u

m T sinh kh

The x and y components of the time averaged bottom friction

then become,

of 2m
~ .|
T IE;-JO (u + uo cosf cos ot) |ut|d(0t) (22)
o & 2m " 2
o T, (0 i s o0l Jaen

=
where [ut| can now be written as,

-+ 2 & 2 = A ;
]ut[ = V/uz L R cos%ot + 2uum cos ot cosf + 2vu cos ot sinf

Both of these stress components Tbx and Tby are of the form

,_.l
Il

- o f 2m
b Ig;-fo f(ot)d(ot) (24)

or

where Sn is a sum of terms to approximate the integral in Equation (24)

by Simpson's Rule:

_ A(ot)

sn 3 {fO(ct} + 4fl(ct) + 2f2[0t} + 4f3(0t) +

+ 2fn_2(Ut) + 4fn_l(at) 4 fn(ct}} (25)

s IF B 0 W W DWW W DWW W oYW oW O
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where n is some positive even integer and

A(ot) = ul

To find the x component'of the shear stress the sum Sn can be found
by taking the integrand in Equation (22) for the function f(ot).
Similarly, for the ¥y direction the function f(ot) is given by the
integrand in Equation (23). The value of n was chosen to be

16. This choice was based on a comparison between the increased
accuracy achieved with an n value greater than 16 and the increased

computation time associated with a higher n value.

LATERAL MIXING

In a paper by Longuet-Higgins (1970), the author presented
a formulation for the steady state velocity distribution as a
result of waves breaking on a plane beach at some angle to the
beach normal. This formulation was based on a balance between the
bottom friction and the excess momentum flux in the longshore

direction due to the presence of waves. The resulting longshore
velocity distribution increased linearly from zero at the beach

to its maximum at the breaker line. Outside the breaker line the

velocity was everywhere zero.

However, physical observation and both laboratory and field

data indicate that mean longshore flows are present beyond the
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breaker zone. In a companion paper Longuet-Higgins presented a
formulation which included lateral mixing as the means for the
alteration of the linear velocity distribution into profiles found

in nature as shown in Figure 3. These profiles have the discontinuity

Without
Longshore Mixing
Velocity
With
Mixing

1

Breaker Line

DISTANCE OFFSHORE

Figure 3 Longuet-Higgins' Analytical Solution for Oblique
Wave Attack on a Plane Beach

at the breaker line removed and the peak velocity shifted shoreward.
The velocities do tend to zero some distance outside of the breaker

line.

There is a physical model to explain the mechanism of mixing
and it is based on momentum exchange between fluid elements as
they fluctuate. Consider a velocity distribution as shown in Figure 4.
Allow the fluid element at x. with mean velocity v

1

turbulent fluctuation ' in the direction parallel to the x axis.

1 to have a
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Figure 4 Definition Sketch for the Lateral Mixing Formulation

If this fluctuation u' caused the fluid element to move to its new

position x then the element would be accelerated by the faster

27
moving fluid with velocity Vor thereby increasing the momentum of
the fluid element. The flux of momentum in translating fluid from
X to x, is pu'. Multiplying by =v' which is the difference in
velocities between the two fluid layers gives the momentum change
per unit time in the direction of the mean flow or conversely, the

shear stress exerted by the fluid layer at x, on the fluid layer

1
at X, given by 1 = -pu'v'. The negative sign is a consequence of a
positive turbulent velocity u' causing a negative shear stress

because the layer at X, is impeded by the fluctuation of the fluid

element from layer 1.
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Using a Taylor series approximation to first order between

the points X, and X, to find an expression for v' gives,

= {vl + 2 25 = v, = & s

=
¥ ¥ v X 90X 1l X 90X

2 L

Therefore, the lateral shear stress between the fluid layers can be

written as,

Since for an arbitrary coordinate system the velocity

distribution could vary in two directions the shear could also

include a term

du

T = —pv' L —
P y 3y

For this reason the lateral shear stress Ty will be assumed to be,

a =p(v" L EE-+ u's '

& y 9y X 00X

£

Two coefficients of lateral mixing, one for each direction x and vy,

are defined such that,

The lateral shear stress is finally written as

u
y 9y

v,

+ E
X 0%

1'_'2 L — -p".“



30

Longuet-Higgins argued that the mixing coefficient €y
must tend to zero as the shoreline was approached since the turbulent
eddies responsible for mixing cannot be of a scale greater than the
distance to shore. He assumed that €L is proportional to the distance
offshore, x, multiplied by some velocity scale which he chose to
be /EE, the speed of a wave in shallow water where h is the local

water depth. Therefore, Ex can be written as

where N is a dimensionless constant whose limits Longuet-Higgins gave

as -

0<N<0.016 .

In this model the coefficient, € r wWas allowed to vary linearly
with x to some Yﬁlue around the breaker line. From this point
seaward the coefficient remained at this constant value. The reason
for this approximation is that physically there must be some limit
on the scale of these eddies. This limit is at presentnot known.
The coefficient, Ey' was chosen to be constant. It is important to
note that the purpose of the model is to present a stable numerical
scheme which includes the effects of mixing. It is not an attempt

to verify the choice of the mixing coefficients used.






CHAPTER III
FINITE DIFFERENCE
FORMULATION
At this point we have established a set of three governing

equations, both mass and momentum, to be solved along with wave
transformation equations and forcing terms from the momentum equations.-
This set of equations cannot be solved analytically so another method
of solution must be found. In this chapter a means for solving the
mass, momentum, and wave transformation equations numerically is

presented. In the following chapter the boundary and initial

conditions will be formulated along with the actual solution technique.

To solvej the problem numerically a numerical scheme must be
defined which leads to a systematic method of solution. This
requires the following: (1) a breakdown of the area under study
into a well defined grid system with a systematic way of defining
variables of interest, and (2) the conversion of the governing

equations into their finite differenced forms.

A rectangular grid mesh was established over the area of
interest as shown in Figure 5 where x and y denote the offshore and

longshore directions, respectively. The size of the grid blocks is

31
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i
1 2 3 4 N N+1 N+2
>y
1
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~ Ax

Ay
M-2
M-1
M

Figure 5 Grid Scheme Definitions

given by Ax in the x direction and Ay in the y direction. At each
grid block, designated by the subscripts i and j as shown in Figure 6,
certain variables must be defined. The velocities u, 3 and v, 3

r r

are defined as being positive if they enter the i,j grid block in the

positive x and y directions. Every other variable will be defined
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at the grid center. The choice of this definition scheme lends

itself well to the boundary conditions used in the model.

The methods used to transform the confinuity and momentum
equations into their differenced forms will be dealt with in detail.
The derivation for the other equationé will be mentioned only
briefly. Again, the more detailed derivation can be found in
Birkemeier and Dalrymple. Following the methods of Blumberg t1977)
and Lilly (1965), certain operators are used throughout the derivation of
the integrated mass and momentum equations. The first two operators aré‘

essentially central finite differences and are given by,

1 A A
§ (P(x,y,00} = = (Fix+ =y, 8) - Flx- —’;—,y,t)}
2

{F(x+ Ax,y,t) - F(x-Ax,y,t)}

i

5 (F(x,y,t)} A%
In the first case the differencing takes place over one spacial
grid (Ax) and in the second case, over two full grids (2Ax). Also
defined are the following two operators which are merely averages
in space, first in one direction, then in two.

These are given by,

e A
Flx,y,t)" = % {F(x+ —:;ryft) + F(x- &—;,yyt)

r SRS
F(x,y,t)Ay = F(x,y,t)" ¢
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Note that in all four operators , F(x,y,t) is some arbitrary function
which varies in space and time. Similar operators also exist for

time t and in the other horizontal dimension, y.

The governing continuity and momentum equations, Equations (6),

(10) and (11), can be written in the following differenced forms,

CONTINUITY :
=t o e
Gt(n ) + GX(D u) -+ Gy(D v) 0 ‘ (26)
X MOMENTUM:
— e o Y
Gt(D u) + Gx(D u u) + ﬁy(D v ut) =
e N R Y T Tl (27)
x p sx p bx p Y xy
_ L boa o 5 Wt o —xXy
~ Gx(sxx) + D SY {ey6ytu)}-+ D GY{Ex Gx(v)}
y MOMENTUM:
agﬁ%} + 6 (Du vY) + 68 (Dlv V) =
X y
—y 1 v, 1 —y 1
-g D* § + =T - = T - =48 (s 28
L y™ * o Ty "o Ty T Sy (28)

I S P { —xy
. ax(sxy ) + D' 6 {Eyﬁy(u)} + DY § (e~ 8.}
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It is important to note that when using the above differenced
equations that the x,y coordinate is defined wherever the quantity
to be solved for is defined. For example, since the x momentum
equation is used to solve for the u velocity component, the x,y
coordinate is located where ui,j is defined. 1In the continuity
equation, the free surface displacement n is to be solved for so
the x,y coordinate is defined to be at the center of the grid
where n, . is defined. This is important in converting from x,y

1i,]

notation into i,j notation.

In the i,j notation defined in Figure 6 these three governing

equations become term by term,

ol ;

i-1,35-1 | i-1,5 |i-1,§+1

i,3-1 i3 i,3+1

¥ x i+1,35-1 | i+1,3 |di+1,9+1

Figure 6 Differencing Coordinate (i,j) Sketch
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CONTINUITY :

D, D ; i = . kD, i 5 Eig
41,3 3, u1+1,j s B | l—l,j)ul,j} (29)

5 (D%v) = =—— {(D

+ -
” Ay 'Pi,4+1%P1,47 V4,941 = P }

. LD, L v, .
i,] 1,3—1) i,]

¥ MOMENTUM:

—x 1
§ (Du) = {(

n+l+ n+1 n+l n-1 _n-1 n-1
t 4At 133 i~1:3

B oy - T 4 o I PR
)1,3 L M Ut W R

—p == I
5x(Duu = {(13i+l A4+D, )

F . 148
8hx 301,37 M, A

. .+D, Jl a3
1,3 . 3=1.3" 1.3

Pz TR - e ” i y LD ; ; oF"
{1 u1:J+lJ} {(Dlr]+Di:J_l)vlrJ+(D1_lr]+Dl“ltJ_l)Vl_l!J} {(uirj+uirj"1) }]

- e o oG
gD Gx(n) W = { (D, J+D ) (n,

T —l-(
sX 2p ¥

il

i 4 . .
sx i,3 Tsx 1—1,3) (30)
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- . .+D, . . 3 . LV,
{(virj+1+virj)} {(Difj+Dlrj-1]vifj+(DitJ""l Dlrj-z)vlrj-l} {(vlrj Vl!:]_l} }]
= W - -
BV St == g W 0 e e M
(31)
}'T Y - —é-{r v BT -
p sy 2p sy i,j sy i,j-1
X ——%F 1
— — T = — + ” =
p Tby 2p (Tbx S Tby s I
1 1
- =46 (s = - — (8 . i
p y( ) pAy ( vy i,3 “yy 1.3-1)
B —XY 1
- — = - - + P N .
p ¥ (Sxy ) 4p Ax (Sxy i+l,35-1 Sxy i=-1,3~1 Sxy i+l,J Sxy 1—1,]J
= RPRSR ¢ n+l. n=l -l n=l __n=1 _
" 8, {e 8 ful} = opa(D, *D giliey Wi 4T g-1)
n=1. n=1 n=1
y 9,57, 5107
=AF PV L 1 n-1 n-1 n-1 n-1 n—1 n-1
B8 Lo 0 tvh } 7 L%, 501, 3-1) 1064 101, 5%%x 591,51 1,37%x 1,3-1
8(Ax)
.(vn-l —vnﬂl)-(e n-1 n-1 4 n-1 " n-1 )(vn—l_vn—l )i]
i+1,3 Vi, x 1,9 °x 1,3-1" °x i-1,§ °x i-1,5-1' “Vi,3 'i-1,3

The superscripts n,n+l,n-1 denote the time level of a particular
quantity. If the time level is not specified it is assumed to be
equal to n. Also, the horizontal mixing terms are lagged in time

for stability reasons, as mentione in Holland and Lin (1975).
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Looking back at the set of equations, Equations (18), (19) and
(21) , which govern the refraction and shoaling of waves through wave—
current interaction, if Equation (19) is differentiated with respect
ok < ok s
to x to get gg-and with respect to y to get 5;; these quantities can

be substituted into Equation (18), which can then be written in the

following form:

30 , 5 20 _

™ Y € (32)

A
where A, B and C are functions of the quantities sin 6, cos 6, k, h, u
and v. By taking a forward difference in x to approximate sg-and a

backwards difference in y to approximate %%} Equation (32) becomes:

F 6 (33)

. 1 + . ; :
0 D+E 6 141,

i:3 i,j=-1 T
where D, E, and F are now functions of the quantities sin ei 5
r
cos O, ., k. ., h, ., u, ., v. .. To evaluate sin 6., ., and
o 1 | 1,] 1,7 1,.] 1,] i,]

cos Bi . Noda used a first order Taylor series expansion to the four
r

neighboring grids i+l,j. i-1,j, i,3j+1 and i,j-1, summed the results

and took an average value.

The theta field ei,j is solved for in the following way.
Snell's Law is used to approximate the angles at the offshore row.
Working shoreward Equation (33) is solved for in a row-by-row relaxation
until the angles converge to their correct values with wave-current

interaction included. After each updated value of theta, a new wave

number must be solved for.
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Equation (19) can be written as

1/2

E(k) = {gk tanh(kh)} + ukcosb + vksin® - 3% =0 . (34)

To solve for the wave number, k, after each updated angle is found,
the Newton-Raphson Method, or "method of tangents", is used. This

method states that;

Bk,

=k -
new old E (kold)

Differentiating Equation (34), knew is iteratively solved for until

|k -x

new oldlif-'OOl |k

new

The wave height field is calculated in much the same way as

the wave angle field. Multiplying Equation (21) by % and letting

—gi = 0, the energy equation can now be written in the form
oH oH
e o . = C
A % B 3y CH (35)

where A, B and C are functions of u, v, cos 0, sin 0, Cg, Ax, Ay and
the radiation stresses. Taking a forward difference in x to

approximate g%-and a backward difference in y to approximate %%—and

solving for Hi 4 it can be shown that
r
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where D and E are functions of the same quantities as A, B and C.
Again the offshore row of wave heights are obtained from shoaling
and refraction due to Snell's Law and the wave height field is
determined by relaxing row by row in the shoreward direction.

On each row a solution for the wave height is reached when

H H < Ol H . After each updated value of H, - |
new old' — new 13
breaking wave height is also calculated from the breaking criteria

given by the Miche formula

(f?b = .12 tanh(kh)b .

If the calculated Hi 3 is larger than the allowable breaking height,
r

the height Hi 3 was set equal to the breaking height.
!






CHAPTER IV
METHOD OF SOLUTION

In the previous chapter the three governing equations,
conservation of both mass and horizontal momentum, were derived in
their finite difference forms. The numerical procedure, used by
Birkemeier and Dalrymple and Noda, et al., to calculate the wave
characteristics used in the "forcing terms" in the momentum
equations was also presented. 1In this chapter the initial and
boundary conditions will be stated completing the problem formula-

tion, whereupon a method of solution will be given.

In every application of the present model the initial
conditions were assumed to be the state of rest. The velocity field,
both u and v components as well as the mean free surface displacement,
n, were initially set equal to zero. An initial depth field is
inputted into the model and the wave characteristics, both angles
and heights, were calculated initially using Snell's Law. The ﬁave
height was built up from zero to its full deep water value over a
certain number of iterations using the hyperbolic tangent function in
order to prevent "shock loading" the model. The form for this

build-up is,

42
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2t
H = H0 tanh (—T)

where
HO = deep water wave height
t = time the model has progressed
T = time allowed for wave build-up.

Certain boundary conditions were also invoked. Referring to
the grid system shown in Figure 5, no offshore flow was allowed

into row m. This is represented by

which essentially simulates a wall at the offshore end of the grid
mesh. The reason behind this choice of boundary condition is this:
at, or near, steady state, if row m is far enough offshore so that
the effects of rip currents and longshore currents are negligible,
the assumption of zero onshore-offshore velocity is valid. A more
correct boundary condition would be to.let the mean free surface be
zero in deep water which would entail the addition of grid blocks
offshore, thereby increasing computational time and expense. At the
inshore end of the grid mesh no velocities were allowed to enter the
first dry grid row. Again, this implies the existance of a wall at

the beach boundary.

In the longshore direction periodic boundary conditions were

imposed. Again referring to Figure 5, for any quantity, Q, periodicity
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requires that,

Q(i,1) = Q(i,N)
Q(i,2) = Q(i,N+1)
Q(i,3) = Q(i,N+2)

and so forth. Periodic boundary conditions were used because circu-
lation patterns along coastlines often tend to have a periodicity
associated with them. Also if it is desired to model an arbitrary
stretch of beach that has no periodicity, we can éhoose boundaries
far enough away from this area of interest, such that periodic

boundary conditions in the longshore direction become applicable.

The differenced mass and momentum equations from the preceding
chapter were derived using a central difference in time for the

time dependent terms. These three equations can also be written in

the following abbreviated form,

n+l = n-1
g,y =Nyt 2AEF (36)
A w2t F (37)
i) b 2 | 2

" i3 "
Vs vl oA (38)
i,] e 3

where A and B are functions of the depth alone and Fl’ F2, and F3
are functions of all the variables in the problem. Also remember that

Fl' Fz, and F3 contain quantities evaluated at time level, n, and n-1.
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These three equations could have also been derived using a forward

difference in time in which case,

nt+l _

n. . =mn, .+ At F
i,] 1,] 1
et Ty
i,J 1.9 4

o
v? % =Dv. .+ At F
| 3.3 5

This set of equations will be used to start the computation scheme

as will be seen in the following discussion.

The problem has now been formulated with a set of three
differenced, governing equations (Equations (36), (37), and (38)),
initial conditions and boundary conditions. The next step is to
develop a computational scheme to solve the problem. Given the
initial conditions, the wave characteristics and the values of
n, u, and v at time zero (n=0), the functions C, D, Fl, F4, and FS,
in the set of Equations (39) through (41), become known. Using a

time step of 1/2At instead of At, to increase the accuracy of the

first calculations, the new values of n, u, and v at time n+l can

(39)

(40)

(41)

be calculated. Knowing these new values the wave-current interaction

equations can be solved to find wave heights, angles, and wave

numbers at time At/2.
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The next calculation is done using a computational scheme
called the "leapfrog" technique, which uses the set of Equations
(36-38). To employ the leapfrog scheme variables must be defined
for the two previous time steps, which has been established using
the initial conditions and the results from the first forward
difference calculation. Referring to Figure 7, the variables are
known at time levels n-l1 and n. The functions Fl' Fz, F3, A and B
are thus known and u, v, and n at time level n+l can be calculated
using the same time step of 1/2At. The wave-current equations are

again solved at time n+l making all of the variables defined at 0

and At.
time level n-1 n n+l
time 0 LAt At
A
Forward
Difference
Leapfrog

Figure 7 1Initial Forward Difference and the First Leapfrog
Solution Steps
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The leapfrog scheme is now employed with a time step of At,
illustrated in Figure 8. The quantities at time level n+l are calcu-
lated knowing the quantities at time levels n-1 and n. This procedure
continues throughout the remaining steps of computation except for
a slight modification. Using strictly the leapfrog scheme for this
particular set of equations resulted in a stability problem which

will be discussed in the foliowing chapter.

time level n-1 n n+1 n+2
time 0 LAt At 2At 3At
A A |
leapfrog
leapfrog
leapfrog

Figure 8 General Leapfrog Solution Scheme



CHAPTER V
STABILITY ANALYSIS
The exact stability criteria for the full sets of equations

used in the model cannot be determined analytically. In the applica-
tions of this model, stability can be expressed in the following manner.
Thé speed of propagation of some disturbance in the model must be )
less than or: equal to the speed it takes the disturbance to cross

a computational grid block in a computational time step. If this

criterion is not met, the model will not be able to "see" the

disturbance.

The disturbance speed is in general the speed of a shallow
water gravity wave plus some time independent mean current.

Therefore, in general, the stability criteria can be expressed as,

. Yuw? s op?
= lul+ Von

At

The maximum magnitude of the wave speed exceeds the minimum current
speed in general so the stability criterion used in applications of

this model is,

48
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. Viax) 2 + (ay)2

At

which is a type of two-dimensional Courant number. In all cases,
the time step actually used is much less than that given by the

above criteria. The determination of a better stability criteria
and the probable limits on the time step were not investigated in

much detail.

As mentioned in the preceding chapter an instability
resulted from using the leapfrog technique to integrate the

equations in time. As the model approached a steady state, the

solution diverged into two disjoint solutions; one associated with

the even time steps and the other the odd steps. These solutions

oscillated with growing amplitudes about the steady state solution.

In Roache (1972), the author referred to this as time splitting.

To alleviate the problem, a leapfrog-backward correction

scheme, Kurihara (1965), was initiated every tenth time step. The

scheme is shown below as,

1

h* = h™ — + 2At G"

n+1

h = h" + At G*

where h may be u, v, or n. Equation (42) is simply the leapfrog

calculation done by the Equations (36-38) where * denotes the new or

(42)

(43)
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"interim" time level. Using the new values u, v, n at time *, the
functions G* like the functions Fis Fz, and Fq from Equations (36-38)
are calculated and used in Equation (43), which is merely a backwards

difference in time to the level n.

This scheme was chosen because it damps the computational
mode of the solution while leaving the physical mode relatively
unaffected. For a more in-depth discussion the reader is referred
to the work by Kurihara. With this correction scheme included,
which essentially "ties" the solutions together, every tenth
iteration, the model proceeded to reach a steady state without any

further time—-splitting instability.






CHAPTER VI
RESULTS

PLANE BEACH APPLICATIONS

The model was first applied to the case of a single progres-
sive wave train approaching a planar beach at some angle to the
beach normal. Periodic boundary conditions were imposed in the
longshore direction making the beach infinitely long. The purpose
of this application was to compare the model to the earlier efforts
of Birkemeier and Dalrymple and to the analytical work of Longuet-
Higgins (1970) on longshore currents generated by obliquely incident

waves.

For the series of plane beach runs, the same input data was
used. The deep water wave characteristics were: (1) wave period
of 8.0 seconds, (2) wave angle of 30.0 degrees from the beach
normal, and (3) a wave height of 2.0 meters built up over 200
(At = 0.5 second) iterations. The time step of 0.5 seconds is
well below the "allowable" value of about 1.8 seconds computed from
the stability criteria presented in the previous chapter. The

region of interest was broken into a 6 x 30 grid mesh with a grid

51
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spacing of 10.0 meters in the x direction and 15.0 meters in the

y direction. The beach slope was chosen to be 0.025 which resulted
in water depths of 0.0 to 7.00 meters. 1In all runs the bottom
friction factor, £, was chosen to be 0.08. When applicable, the
mixing coefficients N and ey were chosen to be 0.01 and 0.5 meters/

sec?, respectively.

In each case the model was run for 1200 iterations which is
nearly steady state. This is demonstrated in plots of mean free
surface displacement, or velocity, versus time at selected grid
points which, for the case using the present model without horizontal
mixing, are shown in Figures 9 through 12. Note the dominant period
of oscillation of about 112 seconds. This corresponds well to the
seiche period (of 113 seconds) for the first mode of oscillation for

a triangular basin given by the expression (Wilson, 1966),

e 3.28 L
vgh
max
where, T = period of oscillation in the basin
L = length of the basin
h = maximum depth in the basin.
max

The area of interest for the plane beach applications is essentially
an infinitely long triangular basin as a result of the flow conditions

imposed at the inshore and offshore boundaries.
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In the first run the data was inputted into the lincar model
of Birkemeier and Dalrymple. The resulting longshore current profile
is shown in Figure 13. Note the monotonic increase in the magnitude
of the velocity from zero at the dry beach to a maximum of about
1.15 meters per second, 110 meters offshore, which is approximately
the location of the breaker line. From the maximum, the velocity
decreases rapidly to zero and remains essentially zero outside the

breaker line, indicating no offshore mixing effects.

Note the similarity between the form of this current profile
and the form given by Longuet-Higgins (1970) analytical solution
for the case of a wave approaching a planar beach at some oblique
angle, neglecting the effects of mixing, as shown in Figure 3. The
major difference between the two profiles is that the linear model
result shows less of a discontinuity at the breaker line. This is
caused by the use of a discrete, onshore-offshore grid size in the
numerical model which obscures the breaker line. As this grid
dimension is reduced the location of the breaker line becomes
better defined thus reducing the effect of "breaker line smoothing"
on the velocity distribution. Also associated with this grid size
reduction is an increase in the magnitude of the peak velocity to
something on the order of that predicted by Longuet-Higgins, which

for the input data, is about 1.5 meters per second.
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A lesser point to note is that in all the plane beach applica-
tions, there is a slight discontinuity in the velocity profile at the
inshore region. This is due to the fact that initially a small amount
of water was placed in each block of the first "dry" grid row. As
time proceeded, this block was then allowed to fill, in essence,
simulating the effects of flooding. Had a procedure been implemented
that would have allowed for the flooding of more than one grid row,

this discontinuity would have disappeared.

Figure 14 shows the longshore current profile resulting from
the present non-linear version of the model excluding the effects of
horizontal mixing. The form is similar to the linear result except for
the decrease in peak velocity and the extension of the profile a
small distance outside the breaker zone. The existence of velocities
outside the breaker zone is due to the fact that the advective
acceleration terms in the differenced y momentum equation caused
velocities outside the breaker zone to be calculated using velocities
inside the breaker zone. The deviation between peak velocities
predicted by the two models is attributed to the use of the quadratic,
"exact" bottom friction formulation used in the non=linear model.

Liu and Dalrymple (1978) showed that the use of this bottom friction
term caused the peak velocities of Longuet-Higgins linear approximation
to be decreased by about 20% for a breaking wave angle of around

10 degrees. 1In the plane beach applications of the linear and non-

linear models the breaker angle is about 12 degrees and the discrepancy
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in peak velocities between the two models is about that same 20%.

The final run using the plane beach data was made with the
non-linear model including lateral mixing. The steady state long-
shore velocity profile is shown in Figure 15. This profile exhibits
the following differences from that predicted by the model neglecting
mixing:

(1) in the inner one half of the surf zone the

velocities are increased slightly,

(2) the peak velocity is shifted to a new
location shoreward of the breaker line, and

(3) the velocity distribution extends well
beyond the breaker line eventually decreasing
towards Zzero.

The form of this profile is similar to the analytic result of

Longuet-Higgins including the effects of mixing shown in Figure 3.

BARRED PROFILE APPLICATION

Since, in nature, beach topography is often comprised of
fragmented longshore bars, the present version of the model was
run on a bottom configuration that included an infinitely long
longshore bar. A comparison of the barred profile with a planar
beach (with a slope of 0.025) is shown in Figure 16. The remaining
input into the model was identical to that used in the series of
plane beach runs. The model was run both with and without the effects

of mixing included.
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The results for the case without mixing are shown in
Figure 17. Notice the two distinct regions where a longshore
current distribution exists. The velocity "spike" offshore is due
to waves breaking on the bar. As the wave height decreases, as a
result of breaking, an onshore-offshore gradient of y momentum flux
is created which drives a longshore current. In the trough, however,
the wave height starts to reform (no more breaking) resulting in
the absence of a longshore current in this region. In reality, a
longshore current does exist in the trough, Allender, et al. (1978),
due to the mechanisms of turbulent dissipation during breaking
within a bore, lateral mixing which has been included in the model,

and a set-up of water within the trough, Dalrymple (1978).

Figure 18 shows the resulting longshore current profile for
the model run including horizontal mixing. The effects of mixing
are very much evident as the amplitude of the longshore velocity
"spike" is reduced, the discontinuities in the velocity profile
disappear, and a longshore current now exists in the bar trough. Had
the turbulent energy dissipation mechamism.been included in the
model, the results would probably have approached those found in

nature.

PERTIODIC BOTTOM TOPOGRAPHY APPLICATION
The model was next applied to the periodic bottom topography

developed by Noda, et al., which is essentially a channel at some
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angle to the beach normal. "The formulation for Lthis bottom
configuration is given in Appendix A. The present version of the
model, including the effects of mixing, was compared to the linear
model of Birkemeier and Dalrymple. The following wave characteristics

were used in both instances:

(1) deep water wave height of 1.0 meters,
(2) wave period of 4.0 seconds, and
(3) a deep water wave angle of 30.0 degrees to
the beach normal.
The bottom friction factor, f, was chosen to be 0.08, and the mixing
coefficients, N and Ey' were chosen to be 0.005 and 0.5 m/secz, respectively.
In both runs the wave height was built up to its deep water value

over 100 seconds.

Both models were run until they reached approximately a
steady state, about 500 seconds. The wave-current interaction process
was halted in the linear model after 150 seconds because the
offshore velocity components grew too large for the refraction
routines to handle. 1In the non-linear model, however, the wave-
current interaction process was included for the duration of the
run time. The circulation patterns after 500 seconds are shown in

Figures 19 and 20.

Note the strength of the rip and its offshore extent in

the linear model compared to non-linear model. The peak velocity in



70

the linear model run is about 3.0 meters per second where, as in the
non-linear model, it is about 0.8 meters per second. This large
discrepancy is due to the inclusion of mixing in the non-linear
model. The mixing tends to spread the rip out and decrease its
offshore velocity components thus causing the rip to turn more in
the longshore direction as shown in Figure 20. The effects of the
convective acceleration terms are not clearly visible because it
seems as though the form of the rip itself is governed primarily by

horizontal mixing.

INTERSECTING WAVES APPLICATION

The final application of the model was to the case of inter-
secting wave trains of the same frequency on a plane beach which
Dalrymple (1975) showed could generate rip currents. The purpose
of this application was to investigate thé effect of the convective
acceleration terms in the model. The following derivation closely

follows the work of Dalrymple.

Given two intersecting wave trains A and B with amplitudes
a and b and a common frequency, o, in terms of the coordinate system
shown in Figure 21, the free surface displacements for the two

wave trains can be written as,

n, =a cos(k cos ax + k sin ay + ot)

=
[

b cos(k cos fx + k sin By + ot)



T
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Figure 21 Definition Sketch for the Intersecting Waves Application

The total free surface Np = o n, can then be written as,

1

n. = 2a cos {%{cosa + cos B)x + E{sinu + sin B)y + ot} -

T

cos {%{cosa - cos B)x + %(sina - sin B)y}

+ (b-a)cos {k cos Bx + k sin By + ot} . (44)

Using the linearized dynamic free surface boundary condition the
velocity potential ¢T can be shown to equal,

b = 2ag cosh k (h+z)
1 g cosh kh

sin{%icosa + cos B)x + %{sina + sin B)+ ot}

cos {%{cosu - cos B)x + %{sina - sin B)y!}

(b-a)g cosh k(h+z)
o cosh kh

+ sin{k cos Bx + k sin By + ot}
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From the velocity potential the total orbital velocities can be

found from,

The radiation stresses, which are essentially the forcing terms, are

defined as,

0 — n Ty
2 i —

s = pu-dz + 27, AR pg(h+n)2 - pPg n2
XX 2 2

-h -h

0 — M e
S = szdz + Pdz - & pg(h+n}2 ¥ pPg n2
vy 2 2

~h -h

0 e —e
Sx B J puv dz

¥ Jop

where
— — 9 9 s 9 L , 2
P = pg(n-z) + — puw dz + — pvw dz - pw .
ax ay
z Z
Through tedious calculations the radiation stresses are found to be,

PR RS N (5 O 2 2 L .
Sxx = Zsinh2kn E‘ cos“a + b cos”B + 2ab cosacosBeos{2(2)} | {2kh+sinh2kh)

_ _Pg ab " 2 . o
Sci— o (cosB-cosa) 2cos{2(2) }* {2khcosh2kh-sinh2kh )

- —Ppg ab -sing) 2 .
Bsinh2kh (sino~sing) cos{z(é)} {2khcosh2kh-sinh2kh }
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- Pg_[,2,,2 )1 (s .
doinhakn L8 b +2ab cos{2(2)} {sinh2kh~2kh}

+ pgabc032 @ + %‘pq(b"a)z

Sy = EEI%EEEE-[?2sin2u+hzsin28+ 2absinasinscos{2(§)£]'{2kh+sinh2kh}

pgab

2 R :
e (cosB-cosa) “cos{2(2) }* {2khcosh2kh-sinh2kh}

pgab

_ ____g_ 5 e 2 = . —
P (sina s:.nBr) cos {2(2) }* {2khcosh2kh-sinh2kh}

5 pg ‘2 2 . - ‘ o,
Zsinhokn L2 P +2a1\3cos {2(2) }] {sinh2kh-2kh}
+ pgabcosz(_é) + % pg(b=-a) ¢
_ __og [:2 . 2 . (:) . .
sxy Talsinm |8 sinacosa+b“cosBsinB+abcos{2(2)} sin(o+B)
{2kh+sinh2kh}
where the expression "@" is defined as,

@ = -];—{cosa—cosﬁ)x + lzc—{sind-sinﬁ}y g

The time independent mean free surface displacement, n_,,

is defined by
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1 u2+v2+w2}

where "—' denotes the time average over one wave period.
Substituting the expressions for the velocity components u, v, and
w from the velocity potential ¢T, E-can be written as,

- -k 3 : P i

S S ————— + - ey

nS g {? +b+2abcos{2(2) }* (cos (a-B) cosh?kh-sinh k#] (45)
where “(?)“ is the same quantity defined previously. Notice that
the mean free surface displacement is modulated in the x and y

directions by,

cos{k (cosa-cosB)x + k(sina~sinf)y} p

Using Snell's Law which says,

k sina = k sin o and k sinf_ = k sin B
o o o o
and using the fact that ko = %E ; where "o" denotes deep water values
o

for the wave length, L, and the wave angles, o and B, we see that
there is a periodicity of the mean displacement in the longshore
direction with a periodic spacing, %, given by,

L
o}

sina - sin B
o o
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This periodicity in water level and wave height causes water to
be driven from regions of high mean water level displacement to
regions of lower displacement resulting in the formation of

circulation cells.

In order to attempt to model this phenomena, certain
simplifications to the model had to be made. Since the refraction
and shoaling routines borrowed from the work of Noda, et al., could
not treat more than one wave train, they were replaced with
routines governed by Snell's Law neglecting wave-current interaction.
Again a quadratic, "exact," bottom friction was used including
velocities due to both mean currents and, this time, the two wave
trains. In the momentum equations the advective acceleration terms
were retained, horizontal mixing was neglected, and the radiation
stresses were calculated using the results presented earlier in this
section. A procedure for determining the wave heights for use in
the radiation stresses and the bottom frictional stresses is given

in Appendix B.

Three runs were made using different combinations of wave
heights and wave angles. The remainder of the input data for all
three runs, however, was the same and is given as follows. The
waves were run on a plane beach with a slope of 0.025. The planform
area of interest was comprised of 25 grids in the x direction with

an Ax grid size of 5.0 meters, and 21 grids in the longshore direction
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with a Ay grid size of 4.0 meters. The time step was chosen to be
0.2 seconds and the model was run for 1500 iterations for all three
cases. A wave period of 7.159366 seconds was used which resulted

in rip spacings of 80.0 meters. The bottom friction factor was

set equal to 0.12 to allow the system to reach steady state after the

1500 iterations and to decrease the magnitude of the resultant currents.

The first case run used waves of equal heights and equal
angles on either side of the beach normal. The deep water wave
heights were 0.25 meters and the deep water angles were + 30.0
degrees. For this case, referring to Equation (44), a=b and a=-

resulting in a free surface displacement given by

n., = 2a cos(ko sin aoy)cos{k cos ax + ot)

T

This free surface describes a wave train moving in the
—x direction with a modulated wave height that is periodic in the
longshore direction only. The periodicity in wave height is the
driving mechanism producing the rip current perpendicular to
the beach as shown in Figure 22. Note the constricted width of the
rip current in relation to the width of the inflow region. This
is a result of the convective acceleration terms. Also note.the
weak rip head where the currents diverge from the rip axis and

return towards shore.
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CHAPTER VII'
CONCLUSIONS

A model that can accurately predict currents and wave
transformations in the nearshore zone is a necessary step in attempt-
ing to predict actual changes to our coastlines. From the work
done in this project and the results found, it appears that the
inclusion of the convective acceleration terms and lateral mixing
terms in the horizontal momentum equations have important effects
on models used to predict nearshore circulation. The terms become
especially significant in attempté to model circulation over

irregular bottom topographies which include bars and channels.

There are still many aspects of the model that could be
changed to make it even more complete. Among them are:
(1) enable the model to handle more than one wave
train within the wave-current interaction process,
(2) include a better wave-current interaction scheme,
especially in the surf zone, which could treat
strong offshore flows that oppose the wave

orbital velocities,

(3) treat the continuity and momentum equations with
an implicit scheme to avoid stability problems, or

81
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where D = v/(a cos € + b cos 6}2 + (a sin € + b sin 6)2 .

Therefore, the total wave height due to the intersecting waves is
2D. Substituting in the expressions for € and 6§, the total wave

height can be written,

Hi = 2.0\/%2+b2+2ab cos[ﬁ(cosa—cosﬂ)x + k(sina—sinB}i]

. (46)
The amplitudes a and b are given by the expressions
a=ip ko« (47)
T2

A rA sA

p=du g g (48)
B :
2 rm Sp

where Ky and Ky are the refraction and shoaling coefficients derived

using Snell's Law.

To determine if breaking occurs, this total wave height is
compared to a limiting breaker height of kh, here k. is a breaking
coefficient chosen as 0.78. If the total wave height exceeded the
value given by the breaking criterion, that value of ¢h was substi-

tuted into Equation ( 46) for H A parameter B was defined such

o
that b = Ba. This result was substituted into Equation (46 ) for
b. The equation was then solved for a which gave b. The wave

heights in the surf zone were then found using Equations (47) and (48).
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