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Abstract

Turbulent bottom boundary layer with possible fine sediment transport is

particularly of interest for the coastal and oceanographic community, where

the turbulence-resolving numerical simulations can be applied to reveal fun-

damental mechanism behind the flow dynamics. Benefit from the significant

advances in computer science in recent years, a novel and scalable numerical

modeling system for turbulence-resolving numerical simulation of multiphase

flow is built and introduced in this report. Model formulation of the numeri-

cal system follows the classical theory for the 3D incompressible Navier-Stokes

equations and pseudo-spectral numerical method, which has been widely used

by many other studies. A two-level parallelization strategy is applied in the sys-

tem for stable computation performance and reliable scalability. Through the

study of three different kinds of boundary layer flows, the numerical modeling

system is rigorously benchmarked after the comparison with analytical solution,

turbulence-model based theory, and corresponding direct numerical simulation

results reported by other studies. Through these simulations, the newly built

system demonstrates its capability in simulating bottom boundary layer flows

with fine sediment transport. Other features, such as the bedforms and multi-

class sediment, are planned to be integrated in this modeling system making it

capable of simulating flow in more realistic situations.
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1. Introduction

The technique of direct numerical simulation (DNS) has been widely used

to investigate turbulent flows, in which the 3D Navier-Stokes equations are nu-

merically solved without any turbulence model. DNS aims at obtaining high

accuracy numerical solution such that the whole range of spatial and tempo-

ral scales of turbulence and the entire energy cascade process from the energy

containing scale down to the Kolmogorov scale are fully resolved (Kim et al.

(1987)). In the past two decades, DNS has also been wide used to study fine

particle transport in turbulent flow. Since the particle phase in most of these

studies are treated as a continuum while the particle sizes are smaller than the

Kolmogorov length scale, the energy cascade processes can still be well-resolved.

Nevertheless, we shall call such simulation methodology simply as turbulence-

resolving numerical simulation (TRNS). In the past decade, the DNS or TRNS

demonstrates its advantage in studying many geophysical flow problems (Nelson

and Fringer (2018); Remmler et al. (2013); Xu et al. (2016); Zhao et al. (2018)).

Although the Reynolds number achieved by these studies remains to be orders

of magnitude lower than the field condition, significant insights on fundamental

dynamics have been revealed to advance our understanding of these complex

phenomena.

In this report, the turbulence-resolving numerical simulation based on the

pseudo-spectral scheme (Canuto et al. (1988); Peyret (2002)) of the two-way

coupled particle-laden flow is of our interest. This type of modeling frame-

work has been extensively used in studying self-sustaining turbidity currents

(Cantero et al. (2009a,b, 2014); Shringarpure et al. (2012)). We are particu-

larly interested in fine sediment transport in the wave bottom boundary layer

over gentle slopes which further relies on the wave-induced fluid turbulence as

the main suspension mechanism. Thus, key processes of interest here may be

fundamentally different from the turbidity current which is sustained by the

forward motion of the current itself (Meiburg and Kneller (2010); Parker et al.

(1986)). For such wave-driven fine sediment transport, the TRNSs have been
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used by the previous studies (Cheng et al. (2015b); Ozdemir et al. (2010)) to

investigate the sediment-induced attenuation effect on flow turbulence and the

resulting sediment transport modes that may lead to the understanding of the

dynamics of wave-supported gravity flows (WSGFs). WSGF is a type of density

(gravity) current driven by sediment-induced buoyancy effect taking place in the

thin wave bottom boundary layer usually observed on continental shelves (Hale

and Ogston (2015); Traykovski et al. (2000, 2007)). Its dynamics are further

controlled by sediment-induced attenuation of flow turbulence in the low to in-

termediate Reynolds number in transitionally turbulent regime (Thorpe (1987)).

This is a remarkable geophysical problem as the Reynolds number is attainable

by DNS/TRNS using the existing computational resources. Moreover, due to

the high sediment concentration within the thin wave bottom boundary layer, it

is highly challenging to measure detailed flow velocity, sediment concentration

and turbulence statistics in laboratory or field (Trowbridge and Lentz (2018)).

Therefore, DNS becomes an unique tool to gain insights of the wave boundary

layer turbulence and flow-sediment interaction at a Reynolds number similar to

that in the field condition. However, existing studies do not directly simulate the

event-scale WSGFs which either require simulation of several tens to hundreds

of wave periods, or do not include complex bathymetry, such as small bedforms.

Bedforms have been observed in WSGF events in the field (Traykovski et al.

(2015)) and are shown in the laboratory experiments to be possibly caused

by a small fraction of very fine sand in the mud (Hooshmand et al. (2015)).

Hooshmand et al. (2015) further suggest that the presence of bedforms can en-

hance turbulence in the wave bottom boundary layer which counteract with the

turbulence-damping effects due to the sediment-induced density stratification.

Equipped with these understandings, there are three steps in our numeri-

cal model development. Firstly, we like to build a highly scalable numerical

framework for turbulence-resolving simulation of bottom boundary layer flow

and fine sediment transport, allowing the usage of hundreds to thousands of

CPUs in distributed memory system. The resulting numerical modeling system

will allow us to carry out simulations of bottom boundary layer processes at
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high Reynolds number for event-scale analysis. Secondly, with such a scalable

numerical framework, the coordinate transformation (Ge et al. (2010); Yang and

Shen (2011)) will be applied in the modeling system such that we can expand

our simulation study for flow over complex bathymetry. Finally, the framework

will be extended for other capabilities, such as multi-class sediment transport

(Shringarpure et al. (2014)). The final goal is to develop a numerical model-

ing system which is capable of turbulence-resolving simulations of fine sediment

transport in a more realistic bottom boundary layer.

This report documents model formulation and detailed numerical implemen-

tation serving as the first step of the model development, namely the numerical

modeling framework for single class fine sediment transport over a flat bottom.

The numerical model is written in object-oriented C++ programming language.

The Message Passing Interface (MPI) with a 2D pencil decomposition of com-

putational domain is used for parallel computing (Pekurovsky (2012)). Other

numerical treatments in the pseudo-spectral method are similar to that reported

in Cortese and Balachandar (1995); Ozdemir et al. (2010) and Cheng et al.

(2015b). The numerical modeling system is further used to simulate several

benchmark problems to verify its scalability and capability.

The remaining of this report is organized as follows. A description of model

formulation for fluid flow and fine sediment transport is given in Chapter 2.

The numerical implementation of the proposed mathematical formulation is

discussed in detail in Chapter 3. Three types of benchmark simulation are pre-

sented in Chapter 4 to verify the numerical model and to demonstrate the model

applications. This report is concluded in Chapter 5 along with a discussion on

future model development.

2. Model Formulation

2.1. Problem Setup and Computational Domain

As stated in Section 1, our goal is to develop a high numerical accuracy and

scalable numerical model for turbulence-resolving simulation of bottom bound-
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ary layer and fine sediment transport processes. Due to the transitional nature

of coastal wave bottom boundary layer and turbulence attenuation by the pres-

ence of sediments, the turbulence-resolving simulation technique may be advan-

tageous over the conventional and more widely-used Reynolds-averaged mod-

els. Particularly for coastal and oceanographic community, turbulence-resolving

models can serve as a useful tool to isolate various mechanisms in determining

the resulting complex and coupled processes associated with transitional tur-

bulent flow and sediment transport. Focusing on simulating the near-bed fluid

dynamics, an idealized computational domain (Figure 1) covering the bottom

boundary layer is established. In a coordinate system with its origin defined

at a bottom corner, the rectangular domain has a size of L1 × L2 × L3 in the

streamwise (x1), the spanwise (x2), and the vertical (x3) direction, respectively.

For the numerical simulations presented in this report, the domain can have

a free-slip surface to avoid undesired effects from the treatment of top boundary

on the bottom boundary layer. In contrast, the bottom of domain is regarded as

a no-slip flat wall for the boundary layer flow. When fine sediment transport is

simulated in the domain (see the schematic plot shown in Figure 1), the bottom

x1

x2
x3

L 3

L1
L2

sedim
ent

erosion
deposition

Figure 1. Sketch of computational domain and definition of coordinate system.

4



can be treated as an erodible bed for the sediment phase where the processes of

sediment exchange with the bed are modeled based on local bottom shear stress

and sediment concentration. In this report, the erodible bed is assumed to be

made up of uniform fine sediments. Following Ozdemir et al. (2010), a constant

settling velocity of w∗ is specified and the flocculation process of fine sediment

(Soulsby et al. (2013)) is ignored. As a result, the sediments in suspension

are idealized as monodispersed and assumed to be of a given diameter with

a submerged specific gravity of R = 1.65. For simplicity, all the benchmark

applications to be discussed in Section 4 are assumed to consist of silt sized

sediment of diameter 24 µm and the resulting settling velocity is specified as

w∗ = 0.5 mm/s. In the two horizontal (x1 and x2) directions, periodic boundary

conditions are implemented by assuming that the resultant flow is statistically

homogeneous in these two directions.

2.2. Governing Equations and Boundary Conditions

The model formulation is introduced in this section using dimensionless vari-

ables which are nondimensionlized with a characteristic velocity scale U∗, a

length scale H∗, and the corresponding time scale H∗/U∗. For different appli-

cations presented in Section 4, these scales will be determined accordingly. At

this moment, we also would like to point out that in this report, a variable with

superscript symbol ‘∗’ is dimensional except for general physical constants, such

as the fluid kinematic viscosity ν, the gravitational acceleration constant g, and

the water density ρ.

2.2.1. The Two-Phase Flow Eulerian Method

In this study, the widely used equilibrium Eulerian approach (Balachandar

and Eaton (2010)) is applied for simulations of fine sediment transport in the

bottom boundary layer. Under the assumption that the inertia of suspended fine

sediment particles in water is very small, the suspended sediments can follow the

local carrier flow closely (Ferry and Balachandar (2001); Ferry et al. (2003)). In

terms of the nondimensional parameter, this requires the Stokes number (defined
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here as the ratio of the particle response time to the Kolmogorov time scale)

to be smaller than 0.3 (Cantero et al. (2008)). The validity of applying this

approximation to fine sediment transport in wave bottom boundary layer has

been discussed in Cheng et al. (2015a) and hence we adopt the same assumption

in this study. Consequently, the velocity field of sediment phase vi can be

determined from the velocity field of carrier flow ui and the particle settling

velocity w as

vi = ui + wni, (1)

where ni denotes the ith direction component of the gravitational acceleration

vector. For clarity, tensor notation is utilized hereafter and the subscript i =

1, 2, 3 corresponds to the streamwise x1, spanwise x2 and vertical direction x3,

respectively. The application of the equilibrium Eulerian approach results in the

fast Eulerian method for two-phase flow problems. By avoiding solving particle

momentum equations and the corresponding coupling processes (Ferry et al.

(2003)), this approach distinguishes itself from the full Eulerian two-phase flow

formulation for its simplicity and thus it is more straightforward to be solved

by a pseudo-spectral scheme.

2.2.2. Fluid Dynamic Solver

For dilute fine sediment transport in water, we apply the Boussinesq approx-

imation to further simplify the governing equations for the carrier flow phase.

Subject to the continuity equation ∂ui/∂xi = 0, the incompressible Navier-

Stokes momentum equations for carrier flow read (Shringarpure et al. (2012))

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+
1

Fr2φni + Si, (2)

where Fr = U∗/
√
RgH∗ is the particle Froude number. Here, p is the dynamic

pressure of fluid phase and φ denotes the volumetric concentration of sediment.

In Equation (2), the buoyancy (3rd term on the right-hand-side) term accounts

the coupling-effects from sediment phase, which vanishes for clear flow simula-

tions. The source (last) term represents the flow forcing, which is applied via

a prescribed pressure gradient for the generation of specific flows, e.g. currents
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and/or waves. As shown in Section 4, the computed sediment volumetric con-

centration in this study is less than 0.05 and thus the simplified Equation (2) is

applicable (Cheng et al. (2015b)).

The bottom of the computational domain is modeled as an erodible bed

when sediments present (or a solid wall for clear flow) and the no-slip boundary

condition is applied for the carrier flow phase which can be written as

ui = 0 at x3 = 0. (3)

In contrast, two different types of boundary condition are available on top of the

computational domain. For simulations of channel flow, the no-slip boundary

condition ui = 0 at x3 = L3 should be implemented. However, in many bottom

boundary layer problems, the computational domain can be better modeled as

a shear-free top boundary where the free-slip, rigid-lid boundary condition is

implemented
∂u1

∂x3
= 0,

∂u2

∂x3
= 0, u3 = 0 at x3 = L3. (4)

2.2.3. Sediment Transport Solver

Derived from the principle of mass conservation, the resulting advection-

diffusion equation for the volumetric concentration of sediment is written as

(Shringarpure et al. (2012))

∂φ

∂t
+
∂
(
φvj
)

∂xj
=

1

ReSc

∂2φ

∂xj∂xj
, (5)

where Sc = ν/K is the Schmidt number, and K is the effective diffusivity of

sediment. Following the previous studies (Ozdemir et al. (2010); Cheng et al.

(2015b)), the Schmidt number is specified as a constant value of 0.5 in this

study.

For sediment phase, the no-flux boundary condition is applied at the top of

computational domain. This condition imposes no net transport of sediment

across the top boundary throughout computation which reads (Ozdemir et al.

(2010))

v3φ−
1

ReSc

∂φ

∂x3
= 0 at x3 = L3. (6)
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At the bottom of computational domain, the no-flux boundary condition can be

applied such that the total amount of sediment is specified by the initial condi-

tion, which can further be quantified by the bulk Richardson number (Ozdemir

et al. (2010)). In addition, the erodible/depositional boundary condition (Cheng

et al. (2015b)) is available in this model framework for modeling more realistic

sediment exchange process, which allows for sediment entrainment/deposition

from/to the bed. Following the expression of Equation (6), this condition is

written as

v3φ−
1

ReSc

∂φ

∂x3
= qe + qd at x3 = 0, (7)

where qe and qd are the erosional and depositional fluxes at the bottom, re-

spectively. Following the continuous deposition formulation (Sanford (2008)),

the depositional flux is modeled as qd = φwn3. The erosional flux is calculated

using the Partheniades-Ariathurai-type formulation (Sanford and Maa (2001);

Winterwerp et al. (2012)) which has the following nondimensional expression

qe =


me

(|τb|
τc
− 1

)
for |τb| ≥ τc

0 for |τb| < τc

, (8)

where τc is the (dimensionless) critical bottom shear stress of erosion, τb is

the bottom shear stress and |τb| denotes its magnitude. According to Equa-

tion (8), the erosional flux is adjusted by the value of |τb| which is a function

of time and space. For simulations reaching a statistical equilibrium state, we

expect the depositional flux balances the erosional flux from the time-averaging

perspective and the corresponding time-averaged depth-integrated sediment in

computational domain becomes temporally invariant.

2.3. Variable Decomposition and Notation

Various averaging procedures are summarized in this section, which will be

used in later section for data analysis. We consider the most general situation

where the bottom boundary layer is driven by waves with a concurrently su-

perimposed mean current. The resulting wave-current interaction makes the
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data analysis difficult, and thus the triple decomposition method is used to

isolate the organized variations in the fluctuating field of turbulent flow (Baj

et al. (2015); Kwon et al. (2016)). By using this method, the fluctuating field

is decomposed into current, wave and fluctuation components. This kind of

decomposition is also applicable for flow with pure current or waves only. In the

triple decomposition, the time and phase-averaged components of an arbitrary

fluctuating quantity ψ (x1, x2, x3; t) are respectively defined as (Reynolds and

Hussain (1972))

ψ =
1

MTw

∫ M2Tw

M1Tw

ψ (x1, x2, x3; t) dt, (9)

〈ψ〉p =
1

M

M−1∑
n=0

ψ (x1, x2, x3; t+ nTw) , (10)

whereM = M2−M1 is the number of wave periods in time interval
[
M1Tw M2Tw

]
during which the data analysis is taken. Corresponding to the definition of time

average, the averaging operation over space is written as

〈ψ〉i =
1

Li

∫ Li

0

ψ (x1, x2, x3; t) dxi. (11)

Note that the average operations defined in Equations (9) and (11) are com-

mutative. As a result, the combination of multiple average operations can be

denoted by the subscripts of the average operator ‘〈 〉’, except for the time aver-

age. Accordingly, for an arbitrary variable ψ, the expression 〈ψ〉123 represents

its domain-averaging while 〈ψ〉p12 represents its phase- and plane-averaging.

Consequently, we apply a triple decomposition for current-wave-turbulence

decomposition similar to the one proposed in Nelson and Fringer (2018). We

decompose a variable ψ into a current component 〈ψ〉c, a wave component 〈ψ〉w,

and a fluctuating component ψ′ as

ψ = 〈ψ〉c (x3) + 〈ψ〉w (x3; t) + ψ′ (x1, x2, x3; t) . (12)

9



In this expression, each component is defined as follows

〈ψ〉c = 〈ψ〉12, (13)

〈ψ〉w = 〈ψ〉p12 − 〈ψ〉c, (14)

ψ′ = ψ − 〈ψ〉c − 〈ψ〉w = ψ − 〈ψ〉p12. (15)

In other words, we approximate the current component of a variable 〈ψ〉c by

the time- and plane-averaging of the simulation results, namely 〈ψ〉12. The

wave component 〈ψ〉w is then extracted by subtracting the current component

〈ψ〉c from the phase- and plane-averaged quantity 〈ψ〉p12. After obtaining the

wave and current components, the turbulent fluctuating component ψ′ can be

computed accordingly.

3. Numerical Implementation

A novel numerical modeling system is built based on the theoretical formu-

lation described in Sections 2.2.2 and 2.2.3. Pseudo-spectral method is used to

solve the governing equations with corresponding boundary conditions, which

follows the pioneering work of Cortese and Balachandar (1995). Detailed numer-

ical discretization in time and space are respectively introduced in Section 3.1

and Section 3.2. The numerical solution procedure is summarized in Section 3.3.

3.1. Time Integration and Boundary Treatment

The equation system (Equations (2) and (5)) is advanced in time by a third-

order low-storage Runge-Kutta scheme (Williamson (1980)) where the Courant-

Friedrichs-Lewy (CFL) condition is implemented to limit the size of time step

by specifying a maximum Courant number. With application of the equilibrium

Eulerian approach (see Section 2.2.1), the carrier flow and fine sediment phases

are solved separately and consecutively in one time step.

3.1.1. The Two-Stage Projection Method

The momentum Equation (2) of the carrier flow phase is numerically solved

following Chorin’s projection method (Chorin (1968)). During each of the three
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time levels of a computational step in the third-order Runge-Kutta scheme, the

standard two-stage projection is utilized to enforce a divergence-free velocity

field of the carrier flow. In the predictor stage, an intermediate velocity u?i is

first computed explicitly using the momentum equation by ignoring the pressure

gradient term

∂2u
(m?)
i

∂xj∂xj
− Re

∆tc3 (m)
u

(m?)
i = − Re

∆tc3 (m)

[
u

(m−1)
i + c2 (m)h

(m)
i

]
− ∂2u

(m−1)
i

∂xj∂xj
,

(16)

where index m =
[
1 2 3

]
indicates the three time levels in a time step ∆t,

and the semi-implicit second-order Crank-Nicolson method is implemented for

the diffusion term to relax the strong stability restriction of time step. In Equa-

tion (16), the temporary variable hi has an expression written as

h
(m)
i = ∆t

[
Si +

1

Fr2φ
(m−1)ni −A

(
u

(m−1)
i , u

(m−1)
j

)]
+ c1 (m)h

(m−1)
i , (17)

whereA(•) denotes the advection operator in which the Arakawa scheme (Arakawa

and Lamb (1981)) is used. Moreover, the classical 3/2 rule is implemented

in the advection operator to remove aliasing error (Peyret (2002)). Arising

from the above equations, the three coefficients are c1 =

[
0 −5

9
−153

128

]
,

c2 =

[
1

3

15

16

8

15

]
, and c3 =

[
1

6

5

24

1

8

]
. Notice that Equation (16) is now

cast in form of the Helmholtz equation and it will be solved with the procedure

to be discussed in Section 3.2.1. In the corrector stage, the intermediate velocity

is corrected with pressure gradient in order to obtain the final solution of the

time level ui as

u
(m)
i = u

(m?)
i − 2∆tc3 (m)

∂p(m)

∂xi
, (18)

where the dynamic pressure p is computed by solving the Poisson’s equation with

Neumann boundary condition ∂p(m)/∂x3 = 0 at x3 = ±1 in vertical direction,

which is written as

∂2p(m)

∂xj∂xj
=

1

2∆tc3 (m)

∂u
(m?)
j

∂xj
. (19)

This equation is further solved with a direct method to be discussed in Sec-

tion 3.2.
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Respectively, boundary conditions of the intermediate velocity and dynamic

pressure are still required for solving Equation (16), which are based on the

linear extrapolation of the dynamic pressure gradient, which reads

∂p(m)

∂xi
=
[
1 + c4 (m)

] ∂p(m−1)

∂xi
− c4 (m)

∂p(m−2)

∂xi
+O

(
∆t2

)
, (20)

where c4 (m) = c3 (m)/c3 (m− 1) and c3 (0) = c3 (3). When m = 1, Equa-

tion (20) has the dynamic pressure gradient ∂p(−1)/∂xi, which refers to the

computed value in second time level (m = 2) of the last time step. From Equa-

tion (18) with u
(m)
i = 0, the no-slip boundary condition for the intermediate

velocity can be expressed as

u
(m?)
i = 2∆tc3 (m)

{[
1 + c4 (m)

] ∂p(m−1)

∂xi
− c4 (m)

∂p(m−2)

∂xi

}
, (21)

where high-order terms of ∆t are neglected. For simulation with a free-slip

boundary on top of the computational domain, the partial derivative with re-

spect to x3 on both sides of Equations (18) and (20) is taken and after some

algebraic manipulation, the corresponding top boundary condition for the in-

termediate velocity reads

∂u
(m?)
i

∂x3
= 2∆tc3 (m)

{[
1 + c4 (m)

] ∂2p(m−1)

∂xi∂x3
− c4 (m)

∂2p(m−2)

∂xi∂x3

}
, (22)

where i = 1, 2 for the two horizontal directions only. In vertical direction,

the free-slip boundary condition requires u
(m)
3 = 0 and the same condition as

Equation (21) but at x3 = 1 is applied.

3.1.2. Solution of Scalar Transport in Flow

Right after the velocity-projection procedure for the carrier flow phase (see

Section 3.1.1) is solved, the sediment concentration is computed by solving

Equation (5) with the boundary conditions (6) and (7) using a procedure sim-

ilar to the predictor stage of carrier flow (Equation (16)). This discretized

advection-diffusion equation is written as

∂2φ(m)

∂xj∂xj
− ReSc

∆tc3 (m)
φ(m) = − ReSc

∆tc3 (m)

[
φ(m−1) + c2 (m)h(m)

s

]
− ∂2φ(m−1)

∂xj∂xj
,

(23)

12



where the temporary variable hs has the following expression

h(m)
s = ∆t

[
−A

(
v

(m)
i , φ(m−1)

)]
+ c1 (m)h(m−1)

s . (24)

Equation (23) is written in the form of a Helmholtz equation and it can be solved

directly (see Section 3.2.1). From Equation (1), the velocity field of sediment in

Equation (24) is updated using the newest computed ui, as

v
(m)
i = u

(m)
i + wni. (25)

3.2. Spatial Discretization and Matrix Representation

The Laplace’s Equation (19) of dynamic pressure can be regarded as a special

case of the more general Helmholtz equation. In fact, along with Equation (16)

and Equation (23), these equations introduced in Section 3.1 can be categorized

as a set of the Helmholtz equations. Thus, the final issue becomes seeking

numerical solution of the resultant Helmholtz equations. For a more concise

presentation, the representation based on matrices is used in this section.

3.2.1. The Resulting Helmholtz Equations

The Helmholtz Equations (16), (19) and (23) of the present model system

can be rewritten as follows[
∂2

∂xj∂xj
−A(m)

]
◦X(m) = B(m), (26)

where the operator symbol “◦” denotes the Hadamard (entrywise) product, and

the bold symbols denote vectors or matrices which read

A(m) =
1

∆tc3 (m)


Re

0

ReSc

 , (27)

X(m) =


u

(m?)
i

p(m)

φ(m)

 , (28)
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B(m) =



− Re

∆tc3 (m)

[
u

(m−1)
i + c2 (m)h

(m)
i

]
− ∂2u

(m−1)
i

∂xj∂xj

1

2∆tc3 (m)

∂u
(m?)
j

∂xj

− ReSc

∆tc3 (m)

[
φ(m−1) + c2 (m)h(m)

s

]
− ∂2φ(m−1)

∂xj∂xj


. (29)

As stated in Section 3.1, each element in X(m) is computed successively fol-

lowing the order ui, p and to φ by solving the corresponding matrix system

(Equation (26)). The matrix system is solved by using the Fourier-Chebyshev

collocation method to be discussed next while the detailed solution procedure

of the numerical framework is summarized in Section 3.3.

3.2.2. The Matrix Multiplication Technique

The Fourier-Chebyshev collocation method (Canuto et al. (1988)) is used

to solve the matrix Equation (26), and the computation domain is discretized

uniformly in horizontal (streamwise and spanwise) directions but nonuniformly

in vertical direction with N1 × N2 × N3 gird points, respectively. Location of

these grid points in computational domain are

x1j =
jL1

N1
with 0 ≤ j ≤ N1 − 1, (30)

x2j =
jL2

N2
with 0 ≤ j ≤ N2 − 1, (31)

x3j = cos

(
jπ

N3

)
with 0 ≤ j ≤ N3. (32)

For the two horizontal directions, the Fourier expansion is implemented to en-

force the periodic boundary condition, while the Chebyshev expansion on the

Chebyshev-Gauss-Lobatto (CGL) points is utilized in the vertical direction. Af-

ter the application of the matrix multiplication technique (Peyret (2002)), the

governing equation for each element of X(m) can be represented by a set of

linear equations in the wavenumber domain as[
D2 −

(
k2

1α + k2
2β + an(m)

)
I

]
x̂

(m)
nαβ = b̂

(m)
nαβ , (33)

14



where D2 denotes the second-order differentiation matrix in vertical direction,

and I denotes the identity matrix. In Equation (33), an, xn and bn are the

nth element of A, X and B, respectively. Variable marked with an overscore

symbol “ˆ” is in the wavenumber domain due to the discrete Fourier transform

(DFT) in horizontal directions. The subscript α and β indicates the index of

Fourier modes which are in range of

−N1/2 ≤ α ≤ N1/2− 1, (34)

−N2/2 ≤ β ≤ N2/2− 1. (35)

Correspondingly, the wavenumbers in the streamwise and spanwise direction are

k1α and k2β . The resulting linear Equation (33) is solved directly by using the

matrix-diagonalization method (Peyret (2002)) with the boundary conditions

described in Section 3.1.

3.3. Summary of Numerical Solution Procedure

After the time integration (see Section 3.1) and spatial discretization (see

Section 3.2), the governing Equations (2) and (5) are represented by the general

linear Equation (33). With suitable boundary conditions, the equation system

is numerically solved and the solution procedure is summarized as follows

(a) Initialize variable u
(0)
i , p(0) and φ(0) with given input or from the last time

step; Set the time level counter as m = 1.

(b) Update h
(m)
i using Equation (17) and b

(m)
1 using Equation (29); Solve

Equation (33) for u
(m?)
i with n = 1, and boundary conditions (21) and

(22).

(c) Update b
(m)
2 using Equation (29) with the newly computed u

(m?)
i ; Solve

Equation (33) for p(m) with n = 2 and the Neumann boundary condition.

(d) Project u
(m?)
i to u

(m)
i using Equation (18); Update the velocity field of

fine sediment using Equation (25).

15



(e) Update h
(m)
s using Equation (24) and b

(m)
3 using Equation (29); Solve

Equation (33) for φ(m) with n = 3, and boundary conditions (6) and (7).

(f) If m < 3, update the time level counter as m = m+ 1 and goto Item (b)

for the next time level; If m = 3, output ui = u
(3)
i , p = p(3) and φ = φ(3)

as the computed results for current time step; Update time step ∆t based

on a CFL criterion and goto Item (a) for the next circle until meeting a

termination criteria of the computation.

Written in C++ using the object-oriented programming language, the numer-

ical modeling system implements the above solution procedure based on the

Message Passing Interface (MPI) technique. For parallelization, the two dif-

ferent levels discussed below have been used in the system and the scalability

test (Figure 2) demonstrates a good computation efficiency of present numerical

modeling system.

a) The parallelization between computer nodes. For such a level of paral-

lelization, the so-called 2D pencil decomposition (Pekurovsky (2012)) of

computation domain has been applied through the MPI. The well-known

numerical library P3DFFT (Pekurovsky (2012)) is used for the discrete

Fourier transform in the two horizontal directions. This procedure of DFT

turns out to be the major load of computation.

b) The parallelization in a local computer node. Equipped with the user-

friendly numerical library Armadillo (Sanderson and Curtin (2016)), the

programming process becomes relatively easy. More importantly, the li-

brary employs a delayed evaluation approach to combine several oper-

ations into one and reduce (or eliminate) the need for temporaries and

accelerates a lot of chained operations.

4. Model Application

The numerical model introduced in Section 3 is benchmarked through the

study of turbulent boundary layers in several different situations, where the fluid
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Figure 2. Scalability test result for three runs having different total number of grid points

of the present modeling system taken on the LSU (Louisiana State University, USA) super-

computer SuperMIC. The black line marked with squares donates a run of 128 × 128 × 129

grid points, the blue line marked with bullets donates a run of 192 × 192 × 193 grid points,

and the red line marked with triangles donates a run of 256 × 256 × 257 grid points.

(Section 2.2.2) and sediment (Section 2.2.3) solvers are verified correspondingly.

4.1. Statistically Steady Channel Flow

Before simulating the turbulent channel flow, it is fundamental to verify the

model with the laminar flow condition where the analytical solution is available.

Resulting from a sudden application of a spatially constant pressure gradient to

a fluid initially at rest, the transient laminar channel flow is such a good example

of a time-dependent flow problem amenable to exact mathematical analysis with

an analytical solution expressed as (Duarte et al. (2008))

u1a =
Re
(
1− x2

3

)
2

− 16Re

∞∑
n=1

m−3 sin
m (1 + x3)

2
exp

(
−m

2t

4

) , (36)

where m = (2n− 1)π. For numerical setup, the domain has a size of 4πH ×
4πH/3×2H and H = 0.5L3 is the half channel height. Since the flow is laminar,

only two grid points are used in horizontal directions to save computation time.
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Therefore, the domain is discretized into 2 × 2 × 193 grid points. Based on

the friction velocity u∗τ =
√
τ∗b /ρ (where τb is the bottom shear stress), the

Reynolds number has a value of Reτ = u∗τH
∗/ν = 180. With a constant time

step ∆t = 0.01, the simulation starts from rest and terminates at t = 2000

when the flow, driven by a vertically uniform pressure gradient S =
[
1 0 0

]
,

reaches a steady state. The analysis of difference between the numerical and

analytical solution is shown in Figure 3, where the normalized root-mean-square

error (NRMSE) is defined as

NRMSE (tn) =

√∑N3−1
l=0

[
u1 (x3l; tn)− u1a (x3l; tn)

]2
N3

max
(∣∣u1a (x3l; tn)

∣∣) . (37)

In above equation, u1 denotes the numerically computed result, tn denotes the

evolution time at the nth time step, and x3l denotes the position of the lth

grid point in vertical direction. Demonstrated in Figure 3, the relative error

is already very small in the very beginning of the simulation, and the error

decreases rapidly from the order of 10−6 to 10−11 in 500 time units. This small

equilibrium value of error is maintained to the end of the simulation, indicating

that our numerical system has a stable spatial discretization in vertical direction

and it is capable of simulating transient laminar flow with high accuracy.

Since the pioneering work of Kim et al. (1987), the direct numerical sim-

ulation of fully developed turbulent channel flow at Reτ = 180 becomes the

standard benchmark test for a DNS code. Same as the configuration in Moser

et al. (1999), the domain size is set to be 4πH×4πH/3×2H and we implement

256× 192× 193 grid points in the streamwise, spanwise and vertical directions,

respectively. Having a Reynolds number Reτ = 180 and driven by the constant

pressure gradient S =
[
1 0 0

]
, the flow is initialized with a mean current and

divergence-free sinusoidal perturbations which are functions of x3. The turbu-

lence develops after several time units and the whole computation lasts for 120

units of time with a maximum Courant number of 0.25. After time- and plane-

averaging over the last 100 time units, vertical profile of the streamwise velocity

18



0 500 1000 1500 2000
10

-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

N
R

M
S

E

Figure 3. Normalized root-mean-square error analysis of the velocity profile for transient

laminar channel flow under a constant pressure gradient at Reτ = 180.

is shown in Figure 4. For better presentation, variables denoted by superscript

‘+’ are non-dimensionalized with the viscous length scale ν/uτ (thus in terms

of the wall unit) and the friction velocity uτ . In this report, the Von Karman

constant has a typical value of κ = 0.41 and Figure 4 illustrates the very good

approximation of the entire streamwise velocity profile using the law of the wall.

To quantify turbulent fluctuation, the turbulence intensity for each fluctuating

velocity component is computed and a comparison is presented in Figure 5.

The present simulation results agree very well with the DNS results reported by

Moser et al. (1999), demonstrating that the present numerical scheme is capable

of simulating turbulent channel flow at low Reynolds number.

4.2. Statistically Steady Open Channel Flow

As mentioned in Section 2.1, for many sediment transport applications, it is

more desirable to have a free-slip surface rather than a no-slip wall at top of the

computational domain. Another commonly encountered example is the simula-

tion of wave boundary layer with a superimposed mean current. In present work,

the simulation of a fully turbulent open channel flow at Reτ = u∗τL
∗
3/ν = 180
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Figure 4. Ensemble-averaged streamwise velocity profile of the turbulent channel flow at

Reτ = 180. The black line represents the result from the present simulation, while the red

crosses are corresponding model results reported by Moser et al. (1999).
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Figure 5. Turbulence intensity for each fluctuating velocity component of the turbulent

channel flow at Reτ = 180. The black lines represent the results from current simulation,

while the red crosses are corresponding model results reported by Moser et al. (1999).
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is also carried out where the domain height L∗3 (total channel height) is taken

to be the characteristic length scale. In this case, the domain has a size of

4πL3×3πL3/2×L3 while the number of grid point is specified as 128×128×129

in the three directions, correspondingly. Still driven by a constant pressure

gradient S =
[
1 0 0

]
, the streamwise flow becomes fully turbulent quickly

from a initially perturbed state. After establishing a statistically steady state,

turbulence statistics are computed based on the data of last 150 time units.

The ensemble-averaged (time and plane averaged) streamwise velocity profile

is rescaled in wall units and plotted in Figure 6(a). As the figure shows, the

resulting velocity profile follows the analytical expression very well in both the

viscous sublayer (x+
3 < 5) and the log-law region (x+

3 > 30). In the buffer layer

(5 < x+
3 < 30), the two computed velocity profiles are close to each other and

shows a transitional feature connecting the viscous sublayer and the log-law

region smoothly. The computed turbulence intensities are presented in Fig-

ure 6(b). Compared to an earlier DNS results reported in Handler et al. (1999),

a very good agreement is found which indicates that the present model is capa-

ble for the numerical simulations of fully turbulent open channel flow at a low

Reynolds number.

We further verify the model’s capability in simulating dilute fine sediment

transport in the turbulent open channel flow at Reτ = 180. We keep all the

settings for carrier flow the same and the critical bottom shear stress of erosion

in this case is set to be τc = 0.99 which is close to but slightly smaller than the

analytical mean bottom shear stress (〈τb〉c = 1). The resulting sediment suspen-

sion has a time and domain averaged concentration Φ = 〈φ〉123 = 4.85× 10−5

(Figure 7(b)) which is dilute enough such that the turbulence damping effects

caused by the sediment-induced density stratification is negligible. After taking

the time and plane-averaging on both sides of Equation (5), the following bud-

get equation of sediment flux in vertical direction is derived (Nelson and Fringer

(2018))

〈u′3φ′〉c − w〈φ〉c −
1

ReSc

∂〈φ〉c
∂x3

= 0, (38)
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Figure 6. (a) Ensemble-averaged profile of the streamwise velocity; (b) Turbulence intensities

in the three directions of the turbulent open channel flow at Reτ = 180. The black lines

represent the results from the present simulation, while symbols are the corresponding DNS

results reported by Handler et al. (1999).

where the three components on left-hand side are the turbulent flux, the settling

flux, and the diffusive sediment flux, respectively. Shown in Figure 7(a), the

upward diffusive flux roughly balances the downward settling flux in the near-

bed region (in the viscous sublayer). In the buffer layer (x+
3 < 30), the turbulent

flux becomes larger as the height increases and it eventually takes over the

role of diffusive flux in this budget at x+
3 ≈ 30. In the log-law region, the

upward turbulent flux dominates and it is the only term that balance with the

downward settling flux, which results in the well-known Rouse profile for vertical
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Figure 7. Sediment flux budget and concentration distribution of dilute fine sediment trans-

port in the turbulent open channel flow at Reτ = 180. (a) Three components in the sediment

flux budget: the turbulent (solid line), the diffusive (dash-dot line), and the settling (dashed

line) fluxes; (b) Ensemble-averaged profile of the volumetric concentration (solid line) with

the matched theoretical Rouse profile (dash-dot line) in the log-law region.

distribution of sediment concentration (Rouse (1937))

φR = φa

(
1− x3

x3

a

1− a

)Z

, (39)

where φa is the reference concentration at a specific height x3 = a, and Z =

w/κuτ = 0.14 is the Rouse number. Following Nelson and Fringer (2018), the

reference height is chosen to be the top of the buffer layer (x+
3 = 30) where

the reference concentration φa = 5.75× 10−5 in current simulation. Figure 7(b)

shows a good fit of the theoretical Rouse profile with the computed concentra-

tion distribution in the log-law region. This also confirms that the turbulence

damping effects from suspended sediment are negligible.

4.3. Statistically Steady Oscillatory Flow

In addition to the statistically steady channel (Section 4.1) and open channel

(Section 4.2) flow, the scenario of oscillatory flow is also of interest for many
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coastal bottom boundary layer applications. Similar to the transient laminar

channel flow discussed previously, the transient laminar oscillatory flow is an-

other good example of time-dependent flow problem amenable to exact mathe-

matical analysis and the analytical solution which reads (Duarte et al. (2008);

Langlois and Deville (2014))

u1a = Re

i
cosh

(√
iαx3

)
cosh

(√
iα
) − 1

 exp (it)

 , (40)

where i2 = −1 and α =
√

Re. In this laminar flow, an oscillatory pressure

gradient S =
[
cos t 0 0

]
with a period of Tw = 2π is applied in streamwise

direction. Taking the amplitude of free stream velocity U∗w and half domain

height H∗ as the velocity and length scales, the resulting Reynolds number

has a value of Re = 180. We use the same configuration used for the laminar

channel flow (Section 4.1) and thus the domain size and grid number are of

4πH×4πH/3×2H and 2×2×129, respectively. Initialized with the analytical

velocity profile at t = 0 based on Equation (40), the simulation terminates at

t = 8Tw with a time step ∆t = Tw/12000. Still, a very small relative error

around 10−9 to 10−8 is found from the analysis of NRMSE (Equation (37)),

though it is relatively larger than the one found in Figure 3 which is about 10−11.

The reason for this difference is caused by the discretization of a continuous

time-varying driving force. However, we still can conclude that the numerical

treatment of the time-dependent force in Equation (2) in our modeling system

is sufficiently accurate.

The turbulent Stokes boundary layer (SBL) is also a classical flow for DNS

benchmarking. Unlike its steady counterpart illustrated in Section 4.2, the

SBL can be intermittently turbulent, having a transition between laminar and

turbulent states (Ozdemir et al. (2014)). Hence, it attracts many researchers’

attention, particularly for testing the capability of a DNS code. In this study,

we carry out a simulation at Stokes Reynolds number Re∆ = U∗w∆∗/ν = 1000.

This is equivalent to an energetic field condition with a free-stream velocity

amplitude U∗w = 0.56 m/s and wave period T ∗w = 10 s in which WSGFs were
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observed (Traykovski et al. (2000)). By defining ω∗ = 2π/T ∗ as the angular

frequency of wave, the thickness of SBL is ∆∗ =
√

2ν/ω∗ = 1.78 mm. For the

configuration of numerical model, the domain has a size of 60∆ × 30∆ × 60∆

and the number of grid is specified as 192 × 192 × 193 in the three directions,

respectively. The time step is chosen to be ∆t = π/5760 and a time-dependent

oscillatory pressure gradient force S =
[
2/Re∆ cos

(
2t/Re∆

)
0 0

]
is applied

in the streamwise direction to drive the boundary layer flow. The plane- and

phase-averaged streamwise velocity profiles for six different phases in a wave

period is shown in Figure 8, where the phase function is defined as ϕ = ωt.

The agreement with previous DNS results of Cheng et al. (2015c) is excellent.

Comparing with the corresponding laminar solutions, we can see that at the

intermittently turbulent condition with Re∆ = 1000, the oscillatory boundary

layer thickness becomes significantly larger.

Fine sediment transport in oscillatory bottom boundary layer is one of our

key objectives to develop this numerical model. Applying the same Eulerian-

Eulerian framework (Equations (2) and (5)), the regimes of sediment trans-

port in an oscillatory channel show the correlation with turbulence modulation

due to particle-turbulence interaction (Cantero et al. (2014); Cantero-Chinchilla

et al. (2015)), which is controlled by a specified constant sediment availability

(Ozdemir et al. (2010)). Relying on the critical bottom shear stress and settling

velocity of sediment, variable sediment availability demonstrates the existence

of three transport modes of fine sediment in the wave boundary layer due to dif-

ferent degrees of sediment-induced density stratification (Cheng et al. (2015b)).

Here, we select the critical bottom shear stress and the settling velocity simi-

lar to the configuration of Case 2 reported in Cheng et al. (2015b), in which a

two-layer-like transport mode of fine sediment was obtained. In this simulation,

the erodible bed has a critical bottom shear stress of erosion of τ∗c = 0.025 Pa

and an empirical erosion rate of m∗e = 3× 10−7 m/s. With the specified settling

velocity, these bed erodibility parameters allow for a sediment load close to the

carrying capacity of flow as discussed in Cheng et al. (2015b). The oscillatory

flow is driven by the same parameters used in the Stokes boundary layer study
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Figure 8. Phase-averaged streamwise velocity profiles at six phases (phase function ϕ = 0π/6

to 5π/6) of the turbulent oscillatory flow at Re∆ = 1000. Black dashed lines are corresponding

laminar solutions, red dash-dot lines are numerical results of Cheng et al. (2015c), and black

solid lines are present simulation results

discussed above. Based on the Stokes boundary-layer thickness ∆∗, the compu-

tational domain has a size of 60×30×60 which is discretized with 256×192×193

grid points in the two horizontal and bed-normal directions, respectively.

Data analysis of 20 wave periods is performed after the flow reaches a quasi-

steady state. Transitional features of the flow is examined first through the

visualization of coherent turbulent structures during the acceleration (Figure 9)

and deceleration (Figure 10) instants. In this study, we use the method of
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Figure 9. Coherent turbulent structures of flow (left) and corresponding isosurfaces of near-

bed sediment concentration (right) of Case 2 at wave phases ' = 0⇡/6, 1⇡/6 and 2⇡/6. The

turbulent coherent structures are visualized using the swirling strength (�ci) where the contour

levels are set to be 10% of the corresponding maximum values where max (�ci) = 13.75, 7.28

and 5.85 for the three phases, respectively. The contour levels of sediment concentration are

chosen to be the averaged value at position x3 = 1.5 which are 7.14 ⇥ 10�3, 7.01 ⇥ 10�3 and

7.22 ⇥ 10�3, correspondingly.

24

Figure 9. Coherent turbulent structures of flow (left) and corresponding isosurfaces of near-

bed sediment concentration (right) at wave phases ϕ = 0π/6, 1π/6 and 2π/6. The turbulent

coherent structures are visualized using the swirling strength (λci) where the contour levels are

set to be 10% of the corresponding maximum values where max (λci) = 13.75, 7.28 and 5.85

for the three phases, respectively. Red lines in those plots denote the plan-averaged velocity

in the streamwise direction. The contour levels of sediment concentration are chosen to be

the averaged value at position x3 = 1.5 which are 7.14 × 10−3, 7.01 × 10−3 and 7.22 × 10−3,

correspondingly.
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Figure 10. Continue of Figure 9 but at wave phases ' = 3⇡/6, 4⇡/6 and 5⇡/6. For the

three phases, the maximum swirling strength are max (�ci) = 88.21, 59.16 and 23.61, while

the contour levels of sediment concentration are 7.63 ⇥ 10�3, 7.73 ⇥ 10�3 and 7.48 ⇥ 10�3,

correspondingly.

The time series of ensemble-averaged bottom shear stress |⌧̄b| is shown in ??.443

Compared to the laminar solution, there is an evident di↵erence in mean stream-444

wise velocity profiles and phase lag in bottom shear stress including significant445
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Figure 10. Continue of Figure 9 but at wave phases ϕ = 3π/6, 4π/6 and 5π/6. For the

three phases, the maximum swirling strength are max (λci) = 88.21, 59.16 and 23.61, while

the contour levels of sediment concentration are 7.63 × 10−3, 7.73 × 10−3 and 7.48 × 10−3,

correspondingly.
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swirling strength λci (Zhang et al. (2018)) to visualize turbulent coherent struc-

tures. Note that the value represented by the iso-surface of λci in each phase is

determined as 10% of the maximum value in the domain. We observe that these

maximum values during the acceleration stage are generally lower than those

of deceleration stage (see the captions of Figures 9 and 10), which is consistent

with the temporal evolution of the bottom shear stress shown in Figure 12(b).

At ϕ = 0 and π/6, we observe weaker turbulent coherent structures with larger

sizes elevated from the bed and as it is demonstrated in Figure 11, these are

mostly leftover turbulent features generated in the previous wave phase. On

the other hand, more intense turbulent coherent structures at ϕ = 3π/6 and

4π/6 are observed close to the bed. Compared to those observations during

the acceleration phase, these coherent structures are of smaller size and very

densely populated. Interestingly, the iso-surface of λci at ϕ = 2π/6 shows very

high spatial variability. A part of the domain has almost no turbulent coherent

structures with λci exceeding the corresponding iso-value compared to other

portion of the domain. Due to the fine sediment assumption (see Section 2.2.1),

the iso-surfaces of sediment concentration generally respond directly to the co-

herent turbulent structures and the intensity of turbulence throughout the entire

wave cycle.

Figure 11 presents the turbulence-averaged (via plane- and phase-averaging)

profiles of the streamwise flow velocity, the suspended sediment concentration,

and the turbulence kinetic energy (TKE, 〈k〉p12 = 0.5〈u′iu′i〉p12) at phase of

the lowest (ϕ = π/6) and the highest (ϕ = 3π/6) turbulence intensity. Al-

though the magnitude of TKE increases by about ten times from ϕ = π/6 to

ϕ = 3π/6, the sediment concentration only increases slightly due to relatively

low settling velocity. More importantly, both concentration profiles show the

feature of a sharp negative sediment concentration gradient, called the lutocline,

located around x3 = 15.5. As discussed in previous studies Cheng et al. (2015b);

Ozdemir et al. (2010), the formation of lutocline is a prominent feature resulting

from the sediment-induced stable density stratification which attenuates fluid

turbulence. Thus, a majority of suspended sediments is confined below the luto-
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Figure 11. Phase- and plane-averaged (a,d) streamwise velocity; (b,e) volumetric concen-

tration of sediment; (c,f) turbulence kinetic energy of flow. Subplots in the first and second

row represent results at wave phase ϕ = 1π/6 and 3π/6, respectively.

cline and a remarkable amount of persistent sediment load is suspended between

x3 = 0 and x3 = 16 throughout the entire wave period.

Figure 12 shows the temporal evolution of the free-stream velocity, the

phase-averaged magnitude of bottom shear stress
∣∣〈τ∗b 〉p12

∣∣, and phase-domain-

averaged sediment concentration. Demonstrated in Figure 12(b), there is an

almost persistent erosion of sediment (upward erosional flux) because the plane-

averaged bottom shear stress magnitude is greater than the critical shear stress
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of erosion (0.025 Pa) nearly the entire wave cycle. Moreover, these bottom shear

stress is different from the corresponding laminar solution. During the first ac-

celeration stage between ϕ = 0 and 2π/6, the bottom shear stress more or less

follows the laminar solution, and the well-known phase lead of π/4 (Cheng et al.

(2015b)) is evident. Soon after ϕ = 2π/6, the bottom shear stresses increase

rapidly to reach their peak values of about 0.85 Pa at around the wave crest of

ϕ = 3π/6. During the corresponding deceleration stage between ϕ = 3π/6 and

6π/6, the bottom shear stresses decrease to zero before the flow reversal. These

features are distinctly different from the laminar solution. Figure 12(c) confirms

that the turbulent suspension dominates the settling effect of sediment and thus

the sediments can be almost constantly suspended in the computational domain

without significant temporal change (note the scale in the vertical axis). How-
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Figure 12. Phase evolution of (a) free-stream velocity; (b) amplitude of bottom shear stress;

(c) domain-averaged volumetric concentration of sediment. The blue dashed line in subplot

(b) is the corresponding laminar solution, while the green dash-dot line represents the critical

bottom shear stress.
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ever, a notable increase of sediment concentration still can be observed around

the burst of bottom shear stress.

5. Conclusion and Future Work

A novel numerical modeling system for simulating bottom boundary layer

and fine sediment transport is developed. Aiming at modeling fine sediment

transport in water in which the Stokes number is often small, the model utilizes

the equilibrium Eulerian approximation instead of the Eulerian two-phase flow

for fluid-particle system. The mathematical formulation is numerically solved by

a pseudo-spectral scheme written in C++. The numerical framework functioned

by the Massage Passage Interface is suitable for a distributed memory computer

system and a good scalability is obtained.

The numerical model is benchmarked by simulating statistically steady (open)

channel and oscillatory flows in both laminar and turbulent situations. The

numerical modeling framework is currently applied to study the dynamics of

wave-supported gravity-driven sediment flows over flat bed. In near future, the

numerical model will be extended in the same framework established in this

report for modeling turbulent flow and fine sediment transport over bedforms,

and mixed sediment transport condition with multiple classes of sediment.
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