

Goal

Fabricate complex 3D geometries in which the electrical properties (e.g. dielectric constant) vary nearly arbitrarily in three dimensions

3D Printed Graded Dielectrics

Use of Space Filling Curves

Example Applications: Luneburg Lens

3D Luneburg Lens Beamformer

Example Applications: Luneburg Lens

Additive Manufacturing of Multifunctional RF Devices and Systems

Example Applications: Luneburg Lens

Fabricated Luneburg Lens using 3D Printing

Additive Manufacturing of Multifunctional RF Devices and Systems

W-Band Luneburg Lens (70-110 GHz)

Fabricated W-band Luneburg Lens using FDM printing with a 50 μm

Z. Larimore, S. Jensen, A. Good, J. Suarez and M.S. Mirotznik, "Additive Manufacturing of Luneburg Lens Antennas Using Space-Filling Curves and Fused Filament Fabrication", under review IEEE Transactions on Antennas and Propagation, August 2017.

Additive Manufacturing of Multifunctional RF Devices and Systems

W-Band Luneburg Lens (70-110 GHz)

Example Applications: Luneburg Lens

Additive Manufacturing of Multifunctional RF Devices and Systems

Example Applications: Luneburg Lens

- No boresight drift at different measured frequencies
- Supports -30°→+30° field of view with negligible performance reduction
- Can support larger FOV with reduced performance

Modified Luneburg Lens

Quasi-Conformal Transformation Optics

Additive Manufacturing of Multifunctional RF Devices and Systems

Modified Luneburg Lens

Quasi-Conformal Transformation Optics

Modified Luneburg Lens

Quasi-Conformal Transformation Optics

Fabricated Luneburg Lens using FDM Printing

Made from polycarbonate (ϵ_r =2.7)

Modified Luneburg Lens

Modified Luneburg Lens

Modified Luneburg Lens with integrated Antireflective Coating

Modified Luneburg Lens with integrated Antireflective Coating

UNCLASSIFIED

Modified Luneburg Lens with integrated Antireflective Coating

Higher permittivity lens for very wide angle scanning

Luneburg Lens based Direction of Arrival Sensor

3D Luneburg Lens Passive Imager

- Good return loss across Ka-band and part of K-band (<-10 dB)
- Linearly polarized
- Balun to create balanced antenna

Simulated current density

Luneburg Lens based Direction of Arrival Sensor

Complete System

Antenna Matrix

October 16th , 2019

Backside Showing LED Indicators and Battery

Side View of Power/Digital Board and Antenna Matrix

UNCLASSIFIED

UNCLASSIFIED