

Ceramic Printing using NanoParticle Jetting[™]

Maximum built size (500 mm x 280 mm x 25 mm) *future z-height to 100 mm*

24 print heads, each containing 512 nozzles

Material jetting technology

- Layer height 10 μm
- \Box Feature resolution 100 μ m
- Currently works with zirconia (soon with alumina and 316 stainless steel)

for Electromagnetic Applications

Ceramic Printing using NanoParticle Jetting[™]

Ceramic Printing using NanoParticle Jetting[™]

24 Print Heads

- 512 print nozzles per head
- 12,288 print nozzles total

1) Printing

2) Support Removal

3) Drying

4) Sintering

for Electromagnetic Applications

Ceramic Printing using NanoParticle Jetting[™]

for Electromagnetic Applications

Ceramic Printing using NanoParticle Jetting[™]

Electromagnetic Material Properties of Printed Ceramic

$$\varepsilon_r^* = \varepsilon_r' - j\varepsilon_r''$$
Dielectric constant Loss term
$$\tan \delta = \frac{\varepsilon_r''}{\varepsilon_r'}$$
Loss tangent

These properties can vary considerably with frequency

	ε [΄]	tanδ
Polyethylene	2.3	0.0002 @10GHz
Water	80	0.157 @3GHz
Alumina	10.0	0.0003 @10GHz
FR-4	4.2	0.008 @3GHz
ABS	3.0	0.019 @3GHz
Teflon	2.1	0.0003@3GHz

U

Ceramic Printing using NanoParticle Jetting[™]

Material EM Properties

(sintering temperature 1450°C)

- Dielectric constant 31-32
- Loss Tangent < 0.005
- Isotropic volume reduction ~18%
- Density ~6.1 g·cm⁻³ (~99.9 % bulk density)

Measurements

- K-Ka band NSWC Carderock
- W band University of Delaware
- mm band NJIT
- µm band W.L. Gore (not included)

Ceramic Printing using NanoParticle Jetting[™]

<u>Material EM Properties</u> (sintering temperature 1450°C)

- Dielectric constant 31-32
- Loss Tangent < 0.005
- Isotropic volume reduction ~18%
- Density ~6.1 g·cm⁻³ (~99.9 % bulk density)

Additive Manufacturing of RF Devices and Systems

Ceramic Printing using NanoParticle Jetting[™]

Explore the Effect of Sintering Profile on Electromagnetic Properties

for Electromagnetic Applications

Ceramic Printing using NanoParticle Jetting[™]

Temperature (°C)	Scherrer Estimate (nm)
Green (180)	26.2
950	29.3
1050	31.4
1150	32.6
1250	34.4
1350	34.9
1450	36.7

Ceramic Printing using NanoParticle Jetting[™]

1450 °C

Ceramic Printing using NanoParticle Jetting[™]

for Electromagnetic Applications

Ceramic Printing using NanoParticle Jetting[™]

Application: High Temperature Radomes

- Radomes are needed to protect expensive antennas and electronics from both natural and operational conditions
- Radomes are designed to permit electromagnetic waves to be transmitted with little loss over a desired bandwidth.
- □For very high temperature applications designing radomes can be quite challenging

Application: High Temperature Radomes

Ceramic radomes often have high reflective losses due to their high dielectric constant.

Application: High Temperature Radomes

Ceramic radomes often have high reflective losses due to their high dielectric constant.

Application: High Temperature Radomes

Radome

Application: High Temperature Radomes

AR Surface (Textured Surfaces – Motheye Lens)

for Electromagnetic Applications

Application: Ceramic Substrates for Transmission Lines and Antennas

Transmission Lines

Microstrip transmission line

UNCLASSIFIED

Grounded coplanar waveguide

Antennas

Figure 4. Photograph of the fabricated antenna.

Article

NIST Ceramics AM Workshop, November 14th, 2019

A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna

UNCLASSIFIED

Son Trinh-Van, Youngoo Yang, Kang-Yoon Lee and Keum Cheol Hwang *

School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 440-746, Korea; jsonbkhn@gmail.com (S.T.-V.); yang09@skku.edu (Y.Y.); klee@skku.edu (K.-Y.L.) * Correspondence: khwang@skku.edu; Tel.: +82-31-290-7978

Application: Coded Apertures for X-ray Imaging

Zirconia Coded Aperture

X-ray Transmission

Application: Photonic Crystals

Iowa State University Ames Lab

Sandia National Laboratory

Natural photonic crystal (Opal)

Natural photonic crystal (butterflies)

Photonic crystals: periodic dielectric structures.

- interact resonantly with radiation with wavelengths comparable to the periodicity length of the dielectric lattice.
- properties vary with frequency
- may present complete band gaps in which electromagnetic waves will not propagate in any direction over a band of frequencies

Application: Photonic Crystals

High Q Cavities

Waveguides

Integrated RF and Optical Systems

STEVEN G. JOHNSON, MIT

NIST Ceramics AM Workshop, November 14th, 2019 UNCLASSIFIED

UNCLASSIFIED

0.9

X'

Application: Photonic Crystals

Full 3D Photonic Crystals

%Band gap = $100 \times (BW / f_o)$

Application: Photonic Crystals

<page-header>

Full 3D Bandgap Logpile Design

for Electromagnetic Applications

Application: Photonic Crystals

Collaboration with MIT

(S. Johnson and J. Joannopoulos)

- Proposed a diamond lattice design
- Can theoretically achieve a complete band gap of 52%
 - Current record is 30%(Nature Materials, 3, 593-600,2004)
 - Possible only due to extremely high dielectric constant contrast
- Scalable to RF/microwave frequency range of interest

Application: Photonic Crystals

K-Ka and X band Crystal – Designed with center frequency, f_{O} of 26 GHz and 10 GHz.

Application: Photonic Crystals

RF Photonic Crystals

