#### ADDITIVE MANUFACTURING AND CONFORMAL INTEGRATION OF RADIOFREQUENCY CONNECTORS AND BALUNS

Kyle McParland



#### Background: Additive Manufacturing

- Smart pump for printing inks and pastes
- FDM for thermoplastics
- Pick-and-Place for placing bulk components
- Micro-milling for surface smoothing
- Positional accuracy ± 1 um
- Laser scanner
  - Conformal printing







[2]

2

#### Background: Beamforming

#### **Phased Arrays**



#### **Mechanically Steerable Dish**



High performance but expensive. [3]

Less costly but slow, heavy and prone to breakdowns [4]



3

# Feed Design for Conformal AM Printed Feeds

Using hybrid additive manufacturing realize wideband feed antenna arrays that can be conformally integrated within a passive beamsteering lens.

- A completely integrated feed made using a single AM process and machine
- No need for soldering or bonding of many components
- Threaded SMA connector for mating to COTs adapters and cables
- Integrated wideband impedance transforming balun
- Wideband circularly polarized spiral antenna





#### Feed Design for Conformal AM Printed Feeds





- Method of transitioning from COTS RF connectors and adapters is required
- SMA connector was chosen to be modified for its high frequency operation
  - Advantage of mating with 3.5 mm and 2.92 mm connectors
- Seamlessly integrated into substrates
- Shaped into unusual geometries to address volume constraints





Equation for a 50  $\Omega$  characteristic impedance:

 $Z_0 = \frac{138}{\sqrt{\varepsilon_r}} \log_{10}\left(\frac{D}{d}\right)$ 

| Fig.  | D<br>(mm) | d<br>(mm) | <b>E</b> <sub>r</sub> | t<br>(mm) | δ<br>(mm) | a<br>(mm) | E <sub>rc</sub> | E <sub>rs</sub> |
|-------|-----------|-----------|-----------------------|-----------|-----------|-----------|-----------------|-----------------|
| left  | 4.7       | 1.4       | 2.1                   | NA        | NA        | NA        | NA              | NA              |
| right | 3.62      | 1.2       | NA                    | 0.77      | 0.6       | 0.4       | 1.75            | 2.68            |





- Simulations were performed using HFSS to determine the impact of the support bars
  - 15 mm device length







- Fabrication
  - Printed on nScrypt Tabletop platform
  - Polycarbonate filament used for desirable RF properties and mechanical strength [5]







#### Lessons Learned: Choosing the right ink is very important!

#### **Micro-CT Imaging: Custom Ink**

#### Micro-CT Imaging: Commercial Ink









- Several variations of connectors were printed and electrically characterized
  - While printed connectors do not perform as well as COTS connectors, an attenuation of <0.5 dB/cm up to 18 GHz is still reasonable for many applications





- Mechanical Characterization
  - Weight Test
  - Durability Test







#### Feed Design for Conformal AM Printed Feeds





- Baluns are necessary to impedance transform from input connector impedance (e.g., 50 Ω) to an input antenna impedance (e.g., ~160 Ω) <u>AND</u> balance the current densities on balanced two arm antennas
- Leveraged additive manufacturing to integrate a coaxial tapered balun to feed a broadband antenna
  - Seamless integration into printed connector





- Through AM, the impedance can be tailored based on the application
  - Comsol Multiphysics' 2D mode solver was used to generate the relationship between (a), (b), and  $(\theta)$



K. McParland and M. Mirotznik, "Design and Additive Manufacture of Multi-Tapered Coaxial Baluns", *IEEE Transactions on Components, Packaging, and Manufacturing Technology* (2022) (Submitted)







• Common technique to experimentally validate a balun taper is by implementing a Back-to-Back configuration

| Parameter       | Minimum Value | Maximum Value |
|-----------------|---------------|---------------|
| Ζ, Ω            | 50            | 160           |
| b/a             | 1.5           | 3.0           |
| a, mm           | 0.6           | 0.6           |
| L, mm           | 15            | 15            |
| w, mm           | 0.6           | 0.6           |
| f, GHz          | 8.0           | 18.0          |
| $\mathcal{E}_r$ | 1.75          | 1.75          |





• Simulated comparison of the exponential and Klopfenstein tapers





• Three tapers were considered for this study





Identical b/a ratio was utilized for Tapers B and C





• Triple-taper design simulation results indicate better coupling of the desired quasi-TEM mode and less energy transitioning to lossy higher order modes





• COMSOL Multiphysics was used to simulate the current density amplitude and phase difference





• Simulations of exponential taper were performed to demonstrate impact of various conductivities



**K. McParland** and M. Mirotznik, "Design and Additive Manufacture of Multi-Tapered Coaxial Baluns", *IEEE Transactions on Components, Packaging, and Manufacturing Technology* (2022) (**Submitted**)



- Similar print parameters were used to fabricate Back-to-Back balun as printed connectors
- Video illustrating how the balun is printed to show the 3 tapers in a single device





#### Fabricated back-to-back balun with integrated SMA connectors





- Back-to-Back balun experimental results of exponential taper
  - Conductivity of 10<sup>6</sup> S/m shows good agreement with measured data





#### Feed Design for Conformal AM Printed Feeds







| Parameter                                    | Dimension/Value |
|----------------------------------------------|-----------------|
| Arm width (w)                                | 1.25 mm         |
| Gap width (g)                                | 0.9 mm          |
| Spiral Diameter (D)                          | 29 mm           |
| Feed Gap (t)                                 | 0.95 mm         |
| Balun Length (L).                            | 7.5 mm          |
| Substrate Thickness (h)                      | 1.6 mm          |
| Substrate Permittivity ( $\mathcal{E}_{r}$ ) | 1.75            |



- Spiral antenna designed using HFSS
  - Initial design utilized lumped port to have an ideal source where the currents are known to be balanced
  - Lumped port was replaced with balun feed to simulate what will be printed
  - Axial ratio over the X- and Ku-bands < 2 dB
  - Radiation patterns between ideal source and balun feed show good agreement in simulation









- Simulated axial ratio
  - Axial ratio is defined as the ratio of the major and minor axis of a circularly polarized antenna











#### **Presentation Outline**

- Introduction
  - Motivation
  - Problem Statement
  - List of Contributions
  - Background
- Integrated Feed Design
  - Printed Connectors
  - Printed Broadband Baluns and Spiral Antennas
- Conformal Antenna Array for Beamforming
- Conclusion and Future Work







- Luneburg lens
  - Polycarbonate filament
  - Fabricated via FFF using space filling curves [7]







- Spiral antenna design
  - Compact spiral antenna was used to fit more elements behind Luneburg lens
  - Antenna uses a capacitive ring to reduce the total footprint by ~30% while maintaining operational bandwidth and gain [8]

| Parameter               | Dimension/Value |
|-------------------------|-----------------|
| Arm width (w)           | 0.95 mm         |
| Gap width (g)           | 0.6 mm          |
| Spiral Diameter (D)     | 20 mm           |
| Feed Gap (t)            | 0.7 mm          |
| Balun Length (L).       | 7.5 mm          |
| Substrate Thickness (h) | 1.6 mm          |









 Compact spiral antenna showed good impedance matching over wide frequency band (6 – 18 GHz)







- Implemented a ball-and-socket joint that enables modular array and reconfigurability
  - Polycarbonate bases were printed at low infill
  - Ball-and-socket joint was printed on the Fortify DLP system





















- Compact spiral antenna maintained good performance in the presence of the lens
- To evaluate the effect of the lens on the spiral antenna, a return loss measurement was performed





42

- Crosstalk interference
  measurements were taken into
  consideration
- Negligible interference between antenna elements





/FRSITYOF





- Maximum Gain was measured from 12 to 18 GHz
  - Reasonably consistent results were obtained although we did see measurable antenna to antenna variations due to uncertainties in the fabrication process
  - More comprehensive antenna measurements are underway including detailed beam patterns and axial ratios.



| Antenna | Scan Angle | 12 GHz   | 15 GHz   | 18 GHz   | Average Gain |
|---------|------------|----------|----------|----------|--------------|
| Feed    |            |          |          |          |              |
| Port -2 | -70°       | 18.5 dBi | 19 dBi   | 19 dBi   | 18.85 dBi    |
| Port -1 | -35°       | 18.1 dBi | 19.1 dBi | 19.4 dBi | 19.1 dBi     |
| Port 0  | <b>0</b> ° | 19.4 dBi | 19.8 dBi | 19.9 dBi | 19.6 dBi     |
| Port 1  | 35°        | 17.8 dBi | 18.2 dBi | 18.5 dBi | 18.2 dBi     |
| Port 2  | 70°        | 18.9 dBi | 19.1 dBi | 19.4 dBi | 19.2 dBi     |

