
 
 

  
An Investigation of Continuous 
Compaction Control Systems 

 
 
 

By 
 

 
                CHRISTOPHER MEEHAN 

                FARAZ SADEGHI TEHRANI 
 

 
 

Department of Civil and Environmental Engineering 
College of Engineering 
University of Delaware 

 
 

July 2009 
 
 
 

Delaware Center for Transportation 
University of Delaware 

355 DuPont Hall 
Newark, Delaware  19716 

(302) 831-1446 

DCT 204 



The Delaware Center for Transportation is a university-wide multi-disciplinary research unit reporting to the Chair of the 
Department of Civil and Environmental Engineering, and is co-sponsored by the University of Delaware and the Delaware 
Department of Transportation. 
 
 

DCT Staff 
 
 

 Ardeshir Faghri          Jerome Lewis 
     Director                    Associate Director 

 
        Ellen Pletz        Lawrence Klepner         Matheu Carter Sandra Wolfe       
Assistant to the Director  T2 Program Coordinator           T² Engineer              Senior Secretary 

 
 
 

DCT Policy Council 
 

Natalie Barnhart, Co-Chair 
Chief Engineer, Delaware Department of Transportation 

 
Michael Chajes, Co-Chair 

Dean, College of Engineering 
 

Delaware General Assembly Member 
Chair, Senate Highways & Transportation Committee 

 
Delaware General Assembly Member 

Chair, House of Representatives Transportation/Land Use & Infrastructure Committee 
 

Michael Gamel-McCormick 
Dean, College of Education and Public Policy 

 
Harry Shenton 

Chair, Civil and Environmental Engineering 
 

Ralph Reeb 
Director of Planning, Delaware Department of Transportation 

 
Stephen Kingsberry 

Director, Delaware Transit Corporation 
 

Shannon Marchman 
Representative of the Director of the Delaware Development Office 

 
James Johnson 

Executive Director, Delaware River & Bay Authority 
 

William Osborne 
Executive Director, Transportation Management Association 

 
 

 
 
 

Delaware Center for Transportation 
University of Delaware 

Newark, DE  19716 
(302) 831-1446 



 



 iv

 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................viii 
LIST OF FIGURES....................................................................................................... xi 
ABSTRACT ................................................................................................................. xx 
 
Chapter 
 
1  INTRODUCTION.............................................................................................. 1 
2  LITERATURE REVIEW................................................................................... 3 

2.1 Compaction................................................................................................ 3 
2.2 Fundamentals of Vibration Theory ........................................................... 5 
2.3 Compaction Methods................................................................................. 7 

2.3.1 Static compaction .......................................................................... 7 
2.3.2 Kneading compaction.................................................................... 8 
2.3.3 Dynamic compaction..................................................................... 8 

2.3.3.1 Vibratory compaction................................................... 10 
2.3.3.2 Oscillatory compaction................................................. 11 
2.3.3.3 Vario roller ................................................................... 12 

2.4 Quality Control and Quality Assurance Methods ................................... 14 
2.5 Limitations of the Conventional Methods............................................... 15 
2.6 Continuous Compaction Control and Intelligent Compaction ................ 16 

2.6.1 Background ................................................................................. 17 
2.6.2 Description of CCC/IC Technology............................................ 20 

2.6.2.1 Definition of CCC and IC systems............................... 21 
2.6.2.2 Different parts of a CCC system .................................. 21 

2.6.2.2.1 Roller .......................................................... 22 
2.6.2.2.2 Material....................................................... 23 
2.6.2.2.3 Recording System....................................... 24 
2.6.2.2.4 Global Positioning System (GPS) .............. 25 

2.6.3 Benefits of CCC/IC technology .................................................. 26 
2.7 Operation Modes of Vibratory Roller ..................................................... 28 
2.8 Principal Theories of Operation of CCC/IC Systems.............................. 30 

2.8.1 Compaction Meter Value (CMV)................................................ 30 
2.8.2 Compaction Control Value (CCV).............................................. 34 
2.8.3 OMEGA 34 
2.8.4 Stiffness (ks) ................................................................................ 36 
2.8.5 Vibratory Modulus (Evib)............................................................. 41 



 v

2.8.6 Evaluation of Vibratory Measurement Values............................ 46 
2.8.7 Machine Drive Power (MDP) ..................................................... 49 

2.9 In-situ test approaches that can be used for compaction QA/QC............ 54 
2.9.1 Density-based tests ...................................................................... 54 

2.9.1.1 Nuclear Density Gauge (NDG) .................................... 56 
2.9.1.2 Sand Cone Equivalent .................................................. 57 

2.9.2 Strength-based tests..................................................................... 58 
2.9.2.1 Plate Load Test (PLT) .................................................. 58 
2.9.2.2 Light Weight Deflectometer (LWD) ............................ 61 
2.9.2.3 Falling Weight Deflectometer (FWD).......................... 62 
2.9.2.4 Dynamic Cone Penetrometer (DCP) ............................ 64 
2.9.2.5 Soil Stiffness Gauge (GeoGauge) ................................ 66 

2.10 Current CCC/IC Construction Specifications ......................................... 67 
2.10.1  Earthworks (Austria) .................................................................. 68 

2.10.1.1 Equipment Specifications............................................. 68 
2.10.1.2 Location Specifications (including size, depth, 

and track overlap) ......................................................... 68 
2.10.1.3 Compaction Process and Specifications....................... 68 
2.10.1.4 Miscellaneous Specifications (moisture, speed, 

frequency, etc.) ............................................................. 69 
2.10.1.5 Documentation Requirements ...................................... 69 

2.10.2 Research Society for Road and Traffic (Germany)..................... 70 
2.10.2.1 Equipment Specifications............................................. 70 
2.10.2.2 Location Specifications (including size, depth, 

and track overlap) ......................................................... 70 
2.10.2.2 Compaction Process and Specifications....................... 70 
2.10.2.4 Miscellaneous Specifications (moisture, speed, 

frequency, etc.) ............................................................. 71 
2.10.2.5 Documentation Requirements ...................................... 71 

2.10.3 Vägverket (Sweden) .................................................................... 72 
2.10.3.1 Equipment Specifications............................................. 72 
2.10.3.2 Location Specifications (including size, depth, 

and track overlap) ......................................................... 72 
2.10.3.3 Compaction Process and Specifications....................... 72 
2.10.3.4 Miscellaneous Specifications (moisture, speed, 

frequency, etc.) ............................................................. 73 
2.10.3.5 Documentation Requirements ...................................... 73 

2.10.4  ISSMGE (International Society for Soil Mechanics and 
Geotechnical Engineering) .......................................................... 74 
2.10.4.1 Equipment Specifications............................................. 74 
2.10.4.2 Location Specifications (including size, depth, 

and track overlap) ......................................................... 74 



 vi

2.10.4.3 Compaction Process and Acceptance 
Specifications ............................................................... 74 

2.10.4.4 Miscellaneous Specifications (moisture, speed, 
frequency, etc.) ............................................................. 75 

2.10.4.5 Documentation Requirements ...................................... 75 
2.10.5 Mn/DOT - 2006 TH 64 (Minnesota DOT).................................. 76 

2.10.5.1 Equipment Specifications............................................. 76 
2.10.5.2 Location Specifications (including size, depth, 

and track overlap) ......................................................... 76 
2.10.5.3 Compaction Process and Acceptance 

Specifications ............................................................... 76 
2.10.5.4 Miscellaneous Specifications (moisture, speed, 

frequency, etc.) ............................................................. 77 
2.10.5.5 Documentation Requirements ...................................... 78 

2.11 Other New Methods for Compaction Control ......................................... 78 
3  FIELD STUDY ................................................................................................ 80 

3.1 Introduction ............................................................................................. 80 
3.2 Constructing the Embankment ................................................................ 81 
3.3 In-situ Testing.......................................................................................... 92 
3.3 Factors that May Have Influenced the Measured Data ........................... 94 

4  IN-SITU MEASUREMENTS .......................................................................... 97 
4.1 Introduction ............................................................................................. 97 
4.2 In-situ Measured Values over the Compacted Area................................ 97 
4.3 Summary and Conclusion...................................................................... 118 

5  EVALUATION OF CCC ROLLER MEASUREMENTS............................. 120 
5.1 Introduction ........................................................................................... 120 
5.2 Basic Statistics of the Roller Data ......................................................... 121 
5.3 Histograms of the CCC Data ................................................................. 132 
5.4 Summary and conclusions..................................................................... 141 

6  ORDINARY KRIGING METHOD FOR ROLLER MEASUREMENTS .... 142 
6.1 Spatial Continuity.................................................................................. 143 
6.2  Ordinary Kriging .................................................................................. 147 
6.3  Analytical Assumptions Made in our Analyses ................................... 150 
6.4  Spatial Continuity of CCC Roller Data ................................................ 150 
6.5 Semivariogram and Autocovariance Models ........................................ 152 
6.6 Curve fitting process used to obtain the semivariogram functions ....... 157 
6.7 Evaluation of Ordinary Kriging Models for Prediction of CCC 

Data 161 
6.7.1 Singularity ................................................................................. 162 
6.7.2 Relative Error of the Predicted Values...................................... 164 

6.7.3 Selecting the Kriging Neighborhood..................................................... 174 
6.8 Conclusions and recommendations ....................................................... 178 



 vii

7  UNIVARIATE REGRESSION ANALYSIS ................................................. 180 
7.1 Introduction ........................................................................................... 180 
7.2 Univariate Regression Analysis ............................................................ 182 
7.3 Univariate Regression Analysis of the Field Data ................................ 184 

7.3.1 Correlation Coefficient Analysis............................................... 184 
7.3.2 In-situ Testing Measurements versus Kriged CCC Values....... 187 
7.3.3 Effect of Water Content on the Mechanical Properties of 

Compacted Soil ......................................................................... 211 
7.4 Summary and conclusions..................................................................... 216 

8  MULTIPLE REGRESSION ANALYSIS ...................................................... 219 
8.1 Introduction ........................................................................................... 219 
8.2 Multiple Regression Analysis ............................................................... 220 
8.3 Multiple Regression Analysis of CCC Data Sets .................................. 221 

8.3.1 Regression models employed.................................................... 221 
8.3.2 Multiple regression analysis of individual in-situ test 

values 223 
8.3.3    Analysis of averages of data................................................... 237 

8.4 Summary and Conclusions .................................................................... 260 
9  CONCLUSIONS AND RECOMMENDATIONS......................................... 262 

9.1 Conclusions ........................................................................................... 262 
9.2 Recommendations ................................................................................. 267 

 
Appendix 
 
A  DAILY REPORTS ......................................................................................... 269 
 
B  MDP AND CMV MEASUREMENTS .......................................................... 283 
 
C  SEMIVARIOGRAM AND KRIGING RESULTS ........................................ 294 
 
REFERENCES ........................................................................................................... 405 



 viii

 

LIST OF TABLES 

Table 2.1 Operating modes of a vibratory roller drum............................................ 28 

Table 2.2 Established CCC systems, CCC values, and the associated 
equipment manufacturers ........................................................................ 54 

Table 3.1 General information of the classification results..................................... 82 

Table 3.2 General information of the lift and passes............................................... 92 

Table 4.1 Mean values recorded in the density-based tests................................... 114 

Table 4.2 Mean values recorded in the modulus-based tests ................................ 115 

Table 4.3 Coefficient of variation of values recorded in the density-based 
tests ........................................................................................................ 117 

Table 4.4 Coefficient of variation of values recorded in the modulus-based 
tests ........................................................................................................ 117 

Table 5.1 Statistical properties of the MDP values ............................................... 124 

Table 5.2 Statistical properties of the CMV values (all values shown in the 
table are unitless)................................................................................... 124 

Table 6.1 Mathematical models for semivariogram.............................................. 154 

Table 6.2 R-squared values for “best-fit” semivariogram functions for MDP 
for maximum lag of 1.5 m and 3.0 m .................................................... 161 

Table 6.3 R-squared values for “best-fit” semivariogram functions for CMV 
for maximum lag of 1.5 m and 3.0 m .................................................... 161 

Table 6.4 Summary statistics of the kriging method using RQ model for 
MDP values ........................................................................................... 167 

Table 6.5 Summary statistics of the kriging method using Exponential model 
for CMV values ..................................................................................... 167 



 ix

Table 6.6 Summary statistics of the kriging method using Spherical model 
for CMV values ..................................................................................... 168 

Table 6.7 Summary statistics of the kriging method using Linear model for 
CMV values........................................................................................... 168 

Table 6.8 Frequency of the Relative Error for Final Passes (%) – Maximum 
Lag = 1.5 m............................................................................................ 173 

Table 6.9 Frequency of the Relative Error for Final Passes (%) - Maximum 
Lag = 3.0 m............................................................................................ 173 

Table 6.10 Frequency of the Relative Error for Lift 5 (%) - Maximum Lag = 
1.5 m ...................................................................................................... 173 

Table 6.11 Frequency of the Relative Error for Lift 5 (%) - Maximum Lag = 
3.0 m ...................................................................................................... 174 

Table 6.12 The separation distance (lag) at which the correlation coefficient 
approaches zero ..................................................................................... 178 

Table 7.1 Correlation Coefficients between MDP Measurements and 
Corresponding In-situ Test Results ....................................................... 185 

Table 7.2 Correlation Coefficients between CMV Measurements and 
Corresponding In-situ Test Results ....................................................... 187 

Table 7.3 Summary of univariate regression analysis between CCC values 
and modulus-based tests for single lifts and passes .............................. 195 

Table 7.4 Summary of univariate regression analysis between CCC values 
and modulus-based tests for single lifts and passes .............................. 196 

Table 7.5 R-square values between roller measurements and in-situ testing 
data ........................................................................................................ 209 

Table 7.6 Optimum values for each of the measured CCC and in-situ test 
data sets, and the corresponding optimum water content...................... 215 

Table 8.1 R-squared values from the multivariate regression analyses that 
were performed on individual data points ............................................. 235 

Table 8.2 Components of the first fitted model for all averages ........................... 240 



 x

Table 8.3 Components of the second fitted model for all averages ...................... 241 

Table 8.4 Components of the first fitted model for all averages excluding the 
base layer ............................................................................................... 244 

Table 8.5 Components of the second fitted model for all averages excluding 
the base layer ......................................................................................... 245 

Table 8.6 Components of the first fitted model for averages of final passes ........ 248 

Table 8.7 Components of the second fitted model for averages of final passes.... 249 

Table 8.8 Components of the first fitted model for averages of final passes 
excluding the base layer ........................................................................ 252 

Table 8.9 Components of the second fitted model for averages of final passes 
excluding the base layer ........................................................................ 253 

Table 8.10 Components of the first fitted model for averages of Lift 5.................. 256 

Table 8.11 Components of the second fitted model for averages of Lift 5 ............. 257 

Table 8.12 R-squared values of the utilized model for the employed data sets ...... 258 

 

 



 xi

 

LIST OF FIGURES 

Figure 2.1 Different types of compactors: a) Pad-foot or tamping-foot roller, 
b) Smooth-drum vibratory roller, c) Walk-behind vibratory 
compactor, and d) Jumping-jack tamper .................................................. 4 

Figure 2.2 Pneumatic rubber-tired static roller compacting a clay soil (From 
Boulanger 2002)....................................................................................... 7 

Figure 2.3 Excitation of vibratory roller drum and dynamic compaction 
effect (compression) (modified from Brandl and Adam 2004).............. 10 

Figure 2.4 Excitation of oscillatory roller drum and dynamic compaction 
effect (shearing) (modified from Brandl and Adam 2004) .................... 12 

Figure 2.5 Adjustable excitation direction of a Vario roller drum and specific 
compaction effect (modified from Brandl and Adam 2004).................. 13 

Figure 2.6 Ammann two-piece eccentric mass assembly and variable control 
of eccentric force amplitude and frequency (modified from 
Ammann brochure)................................................................................. 19 

Figure 2.7 GPS system; a) base station, b) GPS equipped roller, c) 
monitoring station .................................................................................. 25 

Figure 2.8 Method to determine CMV involves spectral analysis (right) of 
two cycles of vertical drum acceleration time history data (left) 
(modified from Mooney and Adam 2007) ............................................. 33 

Figure 2.9 One-degree-of-freedom lumped parameter model representation 
of vibratory compactor (modified from Mooney and Adam 2007) ....... 35 

Figure 2.10 Simplified model for roller-soil interaction ........................................... 37 

Figure 2.11 Three basic types of behavior of vibrating drum: (a) contact 
(every time) (b) periodic loss of contact (c) bouncing or rocking 
(modified after Andregg and Kaufmann 2004)...................................... 39 



 xii

Figure 2.12 Illustration of ks during contact (left) and partial loss of contact 
behavior (right) (modified after Mooney and Adam 2007) ................... 40 

Figure 2.13 Increasing stiffness values in a higher gradient of the force-path 
characteristic curve (modified after Kröber et al. 2001) ........................ 42 

Figure 2.14 Relationship between contact force and drum displacement for a 
cylinder on an elastic half-space (modified after Mooney and 
Adam 2007)............................................................................................ 45 

Figure 2.15 Variation of roller measurement value with soil modulus and 
relative drum vibration amplitude - results of numerical 
simulations; a) CMV, b) Evib, c) OMEGA, and d) ks (modified 
after Mooney and Adam 2007) .............................................................. 47 

Figure 2.16 Relative roller measurement values (CCC values) as a function of 
soil modulus as determined from numerical simulations (modified 
after Adam and Kopf 2004, Mooney and Adam 2007).......................... 49 

Figure 2.17 Simplified two-dimensional free-body diagram of stresses acting 
on rigid compaction drum (modified after White et al. 2005) ............... 51 

Figure 2.18 Nuclear density gauge ............................................................................ 56 

Figure 2.19 Sand cone apparatus ............................................................................... 57 

Figure 2.20 Typical loading cycles for PLT test ....................................................... 60 

Figure 2.21 Light weight deflectometer (300 mm and 200 mm plate)...................... 62 

Figure 2.22 Falling weight deflectometer.................................................................. 63 

Figure 2.23 Dynamic cone penetrometer................................................................... 64 

Figure 2.24 Soil Stiffness Gauge (GeoGauge) .......................................................... 66 

Figure 3.1 The designated area for the field study at Burrice Borrow Pit, 
Odessa, Delaware ................................................................................... 80 

Figure 3.2 Gradation results for field samples taken from in situ test 
locations ................................................................................................. 81 

Figure 3.3 Installing the grade stakes; (a) level shooting, (b) driving the 
grade stakes ............................................................................................ 83 



 xiii

Figure 3.4 Location of grade stakes on the construction area ................................. 84 

Figure 3.5 Local GPS station................................................................................... 85 

Figure 3.6 Placing the fill material for spreading .................................................... 86 

Figure 3.7 Spreading the fill material using a GPS-equipped bulldozer ................. 86 

Figure 3.8 Spot-checking the loose lift thickness using a GPS rover unit .............. 87 

Figure 3.9 Adjusting the moisture content to optimize field compaction ............... 88 

Figure 3.10 Caterpillar CS56 compactor; (a) side view, (b) front view, and (c) 
back view, preparing to compact on the test pad ................................... 88 

Figure 3.11 Direction of compaction and in-situ testing plan on each lift and 
pass ......................................................................................................... 90 

Figure 3.12 Color-coded map inside the roller cab ................................................... 91 

Figure 3.13 Sequence of in-situ tests being performed ............................................. 94 

Figure 3.14 Heavy rain fall affected the water content of the compacted 
material (07/23/2008, 7:48 AM) ............................................................ 95 

Figure 3.15 Existence of occasional large rocks and cobbles in the fill material...... 96 

Figure 4.1 Variation of NDG measured dry unit weight along the centerline; 
a) all final passes b) successive passes on Lift 5.................................... 99 

Figure 4.2 Variation of relative compaction values along the centerline; a) all 
final passes b) successive passes on Lift 5........................................... 101 

Figure 4.3 Variation of NDG measured water content along the centerline; a) 
all final passes b) successive passes on Lift 5...................................... 102 

Figure 4.4 Variation of laboratory measured water content along the 
centerline; a) all final passes b) successive passes on Lift 5................ 104 

Figure 4.5 Comparing the NDG water contents with the corresponding 
criteria range around the optimum water contents for the final 
passes of:  a) the base layer, b) Lift 2, c) Lift 3, d) Lift 4, and e) 
Lift 5 ..................................................................................................... 106 



 xiv

Figure 4.6 Comparing the Lab water contents with the corresponding criteria 
range around the optimum water contents for the final passes of:  
a) the base layer, b) Lift 2, c) Lift 3, d) Lift 4, and e) Lift 5 ................ 107 

Figure 4.7 Variation of GeoGauge measured modulus along the centerline; 
a) all final passes b) successive passes on Lift 5.................................. 109 

Figure 4.8 Variation of LWD 300 measured modulus along the centerline; a) 
all final passes b) successive passes on Lift 5...................................... 110 

Figure 4.9 Variation of LWD 200 measured modulus along the centerline; a) 
all final passes b) successive passes on Lift 5...................................... 111 

Figure 4.10 Variation of DCPM index along the centerline; a) all final passes 
b) successive passes on Lift 5 .............................................................. 112 

Figure 4.11 Variation of DCPA index along the centerline; a) all final passes 
b) successive passes on Lift 5 .............................................................. 113 

Figure 5.1 Variation of MDP and CMV Values along the Middle Transect of 
Lift 5 ..................................................................................................... 122 

Figure 5.2 Mean Value of the Roller Measurements:  a) final passes, and b) 
successive passes of Lift 5 ................................................................... 125 

Figure 5.3 Variance of the Roller Measurements:  a) final passes, and b) 
successive passes of Lift 5 ................................................................... 127 

Figure 5.4 Coefficient of variation of the Roller Measurements:  a) final 
passes, and b) successive passes of Lift 5 ............................................ 128 

Figure 5.5 Mean and Variance of RMV values; a) final passes, b) successive 
passes on Lift 5..................................................................................... 130 

Figure 5.6 Mean and Variance of Roller Speed; a) final passes, b) successive 
passes on Lift 5..................................................................................... 131 

Figure 5.7 Histograms of measured MDP values .................................................. 133 

Figure 5.8 Histograms of measured CMV values ................................................. 134 

Figure 5.9 Histogram of the MDP values; a) final passes, b) successive 
passes for Lift 5 .................................................................................... 136 



 xv

Figure 5.10 Histogram of the CMV values; a) final passes, b) successive 
passes for Lift 5 .................................................................................... 137 

Figure 5.11 Cumulative distribution of the MDP values:  a) final passes, and 
b) successive passes for Lift 5.............................................................. 139 

Figure 5.12 Cumulative distribution of the CMV values:  a) final passes, and 
b) successive passes for Lift 5.............................................................. 140 

Figure 6.1 Example h-scatter plot of CMV values.  Base layer for h = 0.6 m ...... 144 

Figure 6.2 Spatial continuity description of CMV data for base layer: (a) 
autocorrelation, (b) autocovariance, and (c) semivariogram ............... 147 

Figure 6.3 Sample semivariogram for MDP and CMV for Lift 5, Pass 7 ............. 151 

Figure 6.4 Sample autocovariance for MDP and CMV for Lift 5, Pass 7............. 152 

Figure 6.5 Semivariogram models: (a) Linear, (b) Spherical, (c) Exponential, 
(d) Gaussian, (e) Rational Quadratic, and (f) Wave............................. 155 

Figure 6.6 The properties of a transition semivariogram ...................................... 156 

Figure 6.7 Effect of lag selection on the resulting semivariogram function 
(results from fitting an RQ model to the Base layer data set) .............. 158 

Figure 6.8 Residual analysis of the fitted curve: a) poor fit and b) good fit.......... 160 

Figure 6.9 Cumulative frequency of relative error vs. relative error for Lift 5, 
Pass 5: a) MDP, 1.5 m, b) CMV, 1.5 m, c) MDP, 3.0 m, and d) 
CMV, 3.0 m.......................................................................................... 165 

Figure 6.10: The improvement of the relative error in Lift 5 for a maximum lag 
of 1.5 m: a) MDP, RQ model, b) CMV, Exponential model ............... 171 

Figure 6.11: The improvement of the relative error in Lift 5 for a maximum lag 
of 3.0 m: a) MDP, RQ model, b) CMV, Exponential model ............... 172 

Figure 6.12 A comparison between the relative errors of different kriging 
neighborhoods for Lift 3, using the selected models: a) RQ model 
for MDP and b) Exponential model for CMV. .................................... 176 



 xvi

Figure 7.1 Univariate regression analyses of CCC, GeoGauge, and LWD 
measured values, vs. kriged CMV and MDP measurements for 
each of the in-situ test locations ........................................................... 189 

Figure 7.2 Univariate regression analyses of DCP and NDG measured 
values, vs. kriged CMV and MDP measurements for each of the 
in-situ test locations.............................................................................. 190 

Figure 7.3 Univariate regression analyses of Lab and NDG water contents, 
vs. kriged CMV and MDP measurements for each of the in-situ 
test locations......................................................................................... 191 

Figure 7.4 Univariate regression analyses of CCC, GeoGauge, and LWD 
measured values, vs. kriged CMV and MDP measurements for the 
Lift 5 in-situ test results........................................................................ 192 

Figure 7.5 Univariate regression analyses of DCP and NDG measured 
values, vs. kriged CMV and MDP measurements for the Lift 5 in-
situ test results ...................................................................................... 193 

Figure 7.6 Univariate regression analyses of Lab and NDG water contents, 
vs. kriged CMV and MDP measurements for the Lift 5 in-situ test 
results ................................................................................................... 194 

Figure 7.7 Univariate regression analyses of average in-situ testing values 
vs. average CCC data for all lift and passes......................................... 198 

Figure 7.8 Univariate regression analyses of average in-situ testing values 
vs. average CCC data for all lift and passes......................................... 199 

Figure 7.9 Univariate regression analyses of average in-situ testing values 
vs. average CCC data for all lift and passes......................................... 200 

Figure 7.10 Univariate regression analyses of average in-situ testing values 
vs. average CCC data for all lifts and passes, excluding the base 
layer ...................................................................................................... 202 

Figure 7.11 Univariate regression analyses of average in-situ testing values 
vs. average CCC data for all lifts and passes, excluding the base 
layer ...................................................................................................... 203 

Figure 7.12 Univariate regression analyses of average CCC values vs. average 
Lab and NDG water contents for all lift and passes, excluding the 
base layer.............................................................................................. 204 



 xvii

Figure 7.13 Univariate regression analyses of average in-situ testing values 
vs. average CCC data for Lift 5............................................................ 206 

Figure 7.14 Univariate regression analyses of average in-situ testing values 
vs. average CCC data for Lift 5............................................................ 207 

Figure 7.15 Univariate regression analyses of average CCC values vs. average 
Lab and NDG water contents for Lift 5 ............................................... 208 

Figure 7.16 Univariate regression analysis of average CCC data and in-situ 
testing values vs. average measured water contents (final passes) ...... 213 

Figure 7.17 Univariate regression analysis of average in-situ testing values vs. 
average measured water contents (final passes)................................... 214 

Figure 8.1 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using the entire data set ............................... 225 

Figure 8.2 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using the entire data set................................ 226 

Figure 8.3 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using the entire data set and excluding 
the base layer........................................................................................ 227 

Figure 8.4 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using the entire data set and excluding 
the base layer........................................................................................ 228 

Figure 8.5 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using only the data for the final passes 
of each lift............................................................................................. 229 

Figure 8.6 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using only the data for the final passes of 
each lift ................................................................................................. 230 

Figure 8.7 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using only the data for the final passes 
of each lift (with the base layer points excluded) ................................ 231 

Figure 8.8 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using only the data for the final passes of 
each lift (with the base layer points excluded)..................................... 232 



 xviii

Figure 8.9 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using only the data for Lift 5 ....................... 233 

Figure 8.10 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using only the data for Lift 5 ....................... 234 

Figure 8.11 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
the entire data set.................................................................................. 238 

Figure 8.12 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using 
the entire data set.................................................................................. 239 

Figure 8.13 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
the entire data set and excluding the base layer ................................... 242 

Figure 8.14 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using 
the entire data set and excluding the base layer ................................... 243 

Figure 8.15 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
only the data for the final passes of each lift........................................ 246 

Figure 8.16 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using 
only the data for the final passes of each lift........................................ 247 

Figure 8.17 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
only the data for the final passes of each lift and excluding the 
base layer.............................................................................................. 250 

Figure 8.18 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using 
only the data for the final passes of each lift and excluding the 
base layer.............................................................................................. 251 

Figure 8.19 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
only the data for Lift 5.......................................................................... 254 



 xix

Figure 8.20 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using 
only the data for Lift 5.......................................................................... 255 

  

 



 xx

 

ABSTRACT 

Continuous Compaction Control (CCC) systems have demonstrated great 

promise for improving the efficiency of field compaction and revolutionizing the 

compaction control process. To evaluate the effectiveness and reliability of CCC 

systems in the State of Delaware, a field study was performed on a local soil (a poorly 

graded sand with silt), with compaction being performed using an MDP-CMV 

equipped compactor.  A variety of in-situ test methods that are currently used for 

compaction control were also performed as compaction progressed in the study, for 

purposes of comparison with the CCC results.  Comprehensive analyses were 

performed on the data obtained from the field study using various statistical 

techniques.   

As a first step, basic statistical analysis was performed on the recorded in-

situ testing values.  In general, it was concluded that there was significant scatter in 

the measured in-situ test results, which made it difficult to make a precise judgment on 

the quality of compaction.  However, based on the dry unit weights measured by the 

nuclear density gauge (NDG), the quality of compaction was determined to be in an 

acceptable range, according to current DelDOT specifications.  In addition, the 

measured water contents indicated that in general the compaction was performed on 

the dry side of the optimum moisture content.   

Statistical analysis of the CCC roller data illustrated a promising trend for 

MDP and CMV values as the compaction progressed:  MDP values decreased and 



 xxi

CMV values increased as the number of passes increased.  It was also realized that 

MDP values contained less variability than simultaneously recorded CMV values.   

The ordinary kriging method was employed to determine the magnitude of 

CCC values at the same locations as the in-situ tests that were conducted.  

Comprehensive analysis of different models showed the appropriateness of the 

Rational Quadratic model for predicting the MDP values and the Exponential, 

Spherical, and Linear models for predicating the CMV values.  Maximum lags of ~ 

1.5 m (3.0 ft) and ~ 3.0 m (10 ft) were also selected as the optimum lag distances for 

kriging the roller data.  

Univariate regression techniques were applied to the in-situ data and 

kriged CCC values to identify possible relationships between the data sets.  It was 

discovered that point-by-point comparisons did not yield strong relationships between 

the data.  However, taking the average values of each lift and pass into consideration 

in the regression analyses yielded much stronger correlations between the in-situ 

testing values and the kriged CCC data.  MDP values showed stronger correlations 

with in-situ testing data than did CMV values.  The GeoGauge did not yield strong 

correlations with CCC values.  Strong correlations were also identified between the 

CCC and in-situ testing values versus the water content of the compacted soil.  

Therefore, it was decided to include the effect of water content in the analysis using 

multiple regression methods.  The results showed a great improvement in the 

relationship between average kriged CCC values and corresponding in-situ testing 

data, which confirmed the effect of water content on the measured CCC and in-situ 

testing values. 
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Chapter 1 

INTRODUCTION 

Recent technological advances for real time monitoring and control of 

compaction field equipment during construction show significant promise for 

improving how soils and asphalts are compacted.  Implementation of Continuous 

Compaction Control (CCC) systems and Intelligent Compaction (IC) systems can 

revolutionize how soils and asphalts are compacted in the field, improving the quality 

of compaction and the long-term performance of roadways and other geotechnical 

structures while reducing the need for continuous technician monitoring during 

compaction.  Although true Intelligent Compaction systems are only in their early 

stages of technological development, Continuous Compaction Control systems have 

been widely used in Europe throughout the 1990’s and have been studied by some 

state DOT’s in the United States in more recent years.   

Successful adoption of CCC technology requires careful calibration, 

validation, and demonstration of utility with commonly used soils.  There is a need to 

calibrate this technology for local soils in the state of Delaware, a need to demonstrate 

the utility of this technology to local contractors to ensure that it is successfully 

adopted, and a need to show engineers at the Delaware Department of Transportation 

(DelDOT) the improvements in compaction monitoring and construction quality that 

can result when this technology is used.  To address all these demands, a DelDOT-

sponsored research project was begun at the University of Delaware in the fall of 

2007.  In the first phase of this project, a comprehensive literature review was 
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performed to assess the current “state of practice” and “state of the art” with respect to 

IC and CCC system technologies and performance.  In the second phase of this 

project, a five-day field study was planned and performed utilizing a roller-integrated 

CCC system in conjunction with a number of in-situ compaction quality control 

methods, in order to evaluate the effectiveness of two CCC technologies (MDP and 

CMV) for use with compaction of local soils.  In the third phase of the study, the 

recorded CCC values and measured in-situ test results were statistically compared to 

assess the abilities of the CCC system for performing quality control of the 

compaction process with respect to the abilities of other currently employed in situ 

quality control methods. 

The goal of this thesis is to present the results from the aforementioned 

research project, providing a detailed description of the activities that were performed 

from the beginning to the end of this project.  In Chapter 2, a summary of the most 

pertinent literature that was reviewed will be presented.  In Chapter 3, the Delaware 

field study that was performed will be explained in detail.  Preliminary evaluations of 

the measured in-situ test data and recorded CCC values will be described in Chapter 4 

and Chapter 5, respectively.  Chapter 6 will focus on the use of kriging methods for 

robust statistical interpolation between measured CCC data points.    In Chapter 7 and 

Chapter 8, regression analysis techniques will be introduced to investigate and identify 

potential relationships between in-situ test measurements and the corresponding CCC 

values.  Finally, Chapter 9 will present the most significant conclusions from this 

research, and will provide recommendations for future research in this area.   
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Chapter 2 

LITERATURE REVIEW 

2.1 Compaction 

Compaction is a process where mechanical energy is applied to particle 

mixtures, to densify the material by minimizing the air voids that are present (Holtz 

and Kovacs 1981).  In civil engineering, a wide variety of particle mixtures such as 

soil, asphaltic concrete, or recycled material mixtures (such as reclaimed concrete, 

crushed glass, shredded or ground tires, etc.) are commonly used in the construction of 

many large structures, due to their relatively low unit cost as a building material 

and/or their widespread availability. In all of these cases, proper compaction improves 

the engineering properties of the compacted material.   

The focus of the literature review in this chapter will be on the 

compaction of soil for use as a civil engineering construction material.  However, 

many of the concepts and principles discussed will have equal applicability to other 

types of particle mixtures that are used in civil engineering construction.  In general, 

there are several improvements to the engineering performance of a soil that can be 

achieved through compaction: 

• Detrimental settlements can be reduced or prevented.  

• Soil strength can be increased.  

• Bearing capacity of pavement subgrades can be improved. 
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• Undesirable volume changes caused by swelling and shrinkage can 

be controlled. 

The most frequently used method for compaction of medium- to large- 

area soil fills or engineered earth structures is roller compaction (Figure 2.1a and 

2.1b).  Small hand compactors such as walk-behind compactors (Figure 2.1c) and 

jumping-jack tampers (Figure 2.1d) are more common for small-area fills or detail 

work on large projects (such as compaction around pipes or other existing utilities, 

near retaining wall faces, etc.).   

 

Figure 2.1 Different types of compactors: a) Pad-foot or tamping-foot roller, b) 
Smooth-drum vibratory roller, c) Walk-behind vibratory 
compactor, and d) Jumping-jack tamper 
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There are various parameters that determine the compactibility of different 

soils and the appropriate type of roller that will work best for compaction of a given 

soil.  The primary soil factors that contribute are (Adam and Kopf 2004):  

• Soil grain size distribution, maximum grain size, grain shape and 

degree of non-uniformity 

• Soil moisture content 

• Permeability of soil (both water and air permeability can affect the 

process)  

The primary compaction machine parameters that contribute are (Adam 

and Kopf 2004): 

• Total weight of roller and static drum load in static and dynamic 

compaction  

• The following parameters in dynamic compaction: 

Direction of resulting dynamic contact force 

Excitation frequency 

Theoretical drum amplitude 

• Surface shape and diameter of drum 

2.2 Fundamentals of Vibration Theory 

Before proceeding to the main portion of this literature review, it is timely 

to define some basic concepts in vibration theory.  This will make future discussion of 

vibratory soil compaction processes clearer. 

Frequency (f, Hz) is the number of occurrences of a repeating event per 

unit time.  
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Angular frequency (ω, rad/s) is defined as the rate of change in the 

orientation angle during rotation (Equation 1): 

fπω 2=    (2.1) 

Period (T, s) is the duration of one cycle of a repeating event.  The period 

is the reciprocal of the frequency. 

Phase (φ, radians) of an oscillation or wave is the fraction of a complete 

cycle corresponding to an offset in the displacement from a specified reference point 

at time t = 0. 

The Harmonic of a wave is a component frequency of the signal that is an 

integer multiple of the fundamental frequency.  For example, if the fundamental 

frequency is f, the harmonics have frequencies f, 2f, 3f, 4f, etc.  The harmonics have 

the property that they are all periodic at the fundamental frequency, therefore the sum 

of harmonics is also periodic at that frequency.  Harmonic frequencies are equally 

spaced by the width of the fundamental frequency and can be found by repeatedly 

adding that frequency.  For instance, if the fundamental frequency is 25 Hz, the 

frequencies of the harmonics are: 25 Hz, 50 Hz, 75 Hz, 100 Hz, etc. 

Subharmonic frequencies are frequencies below the fundamental 

frequency of an oscillation at a ratio of 1/x.  For example, if the fundamental 

frequency of an oscillator is 440 Hz, sub-harmonics include 220 Hz (1/2) and 110 Hz 

(1/4). 

Amplitude (mm) is the magnitude of change in the oscillating variable, 

with each oscillation, within an oscillating system. 
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2.3 Compaction Methods 

Static compaction, kneading compaction and dynamic compaction are the 

three general techniques that are used for soil compaction (Holtz and Kovacs 1981).  

There are also a number of other compaction techniques that fall under the subheading 

of dynamic compaction, such as vibratory compaction, oscillatory compaction and 

Vario compaction, which are explained in more detail in the following sections.  

2.3.1 Static compaction 

During static compaction, the weight of a compactor is distributed over a 

designated contact area, applying a static pressure to a particular surface.  Figure 2.2 

shows an example of a typical static compactor.  

 

Figure 2.2 Pneumatic rubber-tired static roller compacting a clay soil (From 
Boulanger 2002) 

 The compaction process is primarily driven by the contact pressure of the 

roller, as it is this applied pressure that presses soil particles together, effectively 

reducing the volume of voids in the soil.  Adequate compaction by static rollers is 
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normally achieved only in the upper layers of a compacted material, as the effect of 

static compaction is typically limited to low depths (Adam and Kopf 2004).  Suitable 

materials for static compaction include fine-grained soils such as silty and clayey soils 

and bituminous materials like asphalt (Adam and Kopf 1998). 

2.3.2 Kneading compaction  

In the case of cohesive materials, pressures applied using static 

compaction may cause rapid buildup of excess pore water pressure without allowing 

rapid pore pressure drainage or dissipation.  This “undrained” response to loading 

often makes it quite difficult to reduce the volume of air voids in a soil, resulting in 

inadequate soil compaction.  To overcome this limitation, a technique known as 

“kneading compaction” is employed, through which the compactor kneads and 

remolds compacted materials to enhance the removal of the air-voids to achieve the 

appropriate densification.  Pad-foot drum rollers, polygonal drum rollers, and 

sheepsfooted compactors are classified in this category (Adam and Kopf 2004). Figure 

2.1.a, provided earlier, shows an example of a pad-foot roller.  The materials most 

suitable for kneading compaction are cohesive fine-grained soils such as clayey soils 

(Adam and Kopf 1998). 

2.3.3 Dynamic compaction 

Dynamic compaction is a technique used to compact granular materials 

such as sandy and gravelly soils by applying a periodic dynamic impact.  Using this 

approach, a dynamically excited drum delivers a rapid succession of impacts to the 

underlying surface, where the resulting compression waves and shear waves are 

transmitted through the material to set the particles in motion.  This periodic excitation 
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reduces the effect of internal soil friction by changing the nature of particle to particle 

contacts within the soil mass, facilitating the rearrangement of individual soil particles 

into a tighter, more stable particle arrangement (corresponding to a lower void ratio 

and higher density).  The resulting increase in the number of contact points and planes 

between the grains leads to higher stability, and lower long-term settlement behavior 

(Adam and Kopf 2004).  Vibratory compaction and oscillatory compaction are two 

types of dynamic compaction (Adam and Kopf 1998).  Recently, a Vario roller has 

also been introduced by Bomag, which is an alternative for vibratory and oscillatory 

rollers (Brandl and Adam 2004). 
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2.3.3.1 Vibratory compaction 

The drum of a vibratory roller is excited by rotating an eccentric mass 

along a shaft on the drum axis (Figure 2.3).  The rotating mass sets the drum in a 

circular translatoric motion, i.e. the direction of the resulting force corresponds with 

the position of the eccentric mass.  Compaction is achieved mainly by transmitted 

compression waves in combination with the effective static drum load.  Consequently, 

the maximum resulting compaction force is almost vertical with a slight inclination 

(Brandl and Adam 2004). 

 

Figure 2.3 Excitation of vibratory roller drum and dynamic compaction effect 
(compression) (modified from Brandl and Adam 2004) 

The most significant parameters in vibratory compaction are the total 

weight of the roller drum, the excitation frequency, and the theoretical amplitude of 

the drum.  Modern rollers are usually equipped with two vibratory frequencies 

commonly referred to as the “low” and “high” frequencies, and two amplitudes, 

commonly referred to as the “small” and “large” amplitudes.  The speed of the roller 

during compaction usually ranges between 2 to 6 km/h (~ 1.5 to 4 mph), and is 

another parameter affecting the quality of the compaction (Brandl and Adam 2004). 
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2.3.3.2 Oscillatory compaction 

In some cases, vibratory rollers are so powerful that, during compaction, 

soil or asphaltic mix aggregates are fractured, the asphalt mat cracks (for compaction 

of asphaltic concrete), and/or damage to nearby buildings and underground utilities 

occurs.  To resolve this issue, oscillatory compaction has been introduced (Figure 2.4).  

In oscillatory compaction, the drum of the roller oscillates horizontally (parallel to the 

surface that is being compacted).  The applied horizontal oscillation is caused by two 

opposite rotating eccentric masses, whose shafts are arranged on opposite sides of the 

axis of the drum.  The resulting motion of the roller causes the soil to be dynamically 

loaded in a horizontal direction, in addition to the vertical static load that is applied by 

the dead weight of the drum and the contributing roller frame.  These cyclic and 

dynamic horizontal forces result in additional soil shear deformation; dynamic 

compaction is achieved mainly by transmitted shear waves.  Investigations have 

revealed that oscillatory rollers operate in two conditions depending on roller and soil 

parameters.  If the applied force exceeds the friction force (including the adhesion) at 

the soil-drum interface, the drum starts slipping.  During slipping the compaction 

effect is reduced; however, the surface is “sealed” by this slip motion.  Consequently, 

oscillatory rollers are mainly employed for asphalt compaction.  Oscillatory rollers are 

also often used in the vicinity of sensitive structures, because the emitted vibrations 

are significantly lower than those of traditional vibratory rollers (Thurner and 

Sandström 2000, Brandl and Adam 2004). 
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Figure 2.4 Excitation of oscillatory roller drum and dynamic compaction effect 
(shearing) (modified from Brandl and Adam 2004) 

2.3.3.3 Vario roller 

The Vario roller was developed by Bomag Americas, Inc (Bomag) in the 

late 1990’s.  In a Vario roller system two counter-rotating exciter masses which are 

concentrically shafted on the axis of the drum cause a directed vibration.  The 

direction of the excitation can be adjusted by turning the complete exciter unit in order 

to optimize the compaction effect for the corresponding soil type (Figure 2.5).  If the 

exciter direction is vertical or horizontal, the compaction effect of the Vario roller can 

be compared with that of vibratory or oscillatory roller, respectively.  Therefore, Vario 

rollers can be used as a substitute for vibratory and oscillatory compactors (Brandl and 

Adam 2004). 
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 Figure 2.5 Adjustable excitation direction of a Vario roller drum and specific 
compaction effect (modified from Brandl and Adam 2004) 

The Vario roller has another advantage over conventional vibratory 

compaction equipment, which is that it has been proved that vertically directed force 

is more effective in increasing the density in deeper layers (Figure 2.5.a) compared to 

the conventional radially vibrating roller, which generates vibration by means of a 

single, eccentrically-weighted, rotating horizontal shaft located inside the roller drum, 

as shown in Figure 2.3 (Uchiyama et al. 1998).  After Vario compaction in the 

vertically-directed mode, the dry density in deeper layers of the soil and the CBR 

(California Bearing Ratio) are found to be higher than those for soil compacted using 

a traditional radially vibrating roller.  The hypothesis used to explain this observation 

is that the radially directed force amplifies the kneading action between the drum and 

soil, generating a hard surface shell layer incapable of transferring the compacting 

force into deeper layers, while the vertically directed forces with less kneading action 

can influence the deeper layers and compact the whole soil layer efficiently 

(Uchiyama et al. 1998). 
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Deep dynamic compaction is another ground improvement technique that 

is used to improve soil; this technique is typically not used as part of the placement 

process for an engineered fill, and is consequently neglected here since it is out of the 

scope of this literature review. 

2.4 Quality Control and Quality Assurance Methods 

The most common approach to quality control in road construction is to 

carry out a series of periodic in-situ tests (Briaud and Seo 2003).  Evaluation of the 

quality of the compaction is based on the engineering properties of the compacted soil 

including strength and density. 

The most common density-based quality control methods consist of 

measurements of in situ density and moisture content using the nuclear density gauge, 

sand cone equivalent test, and water balloon method.  Recently, some other density-

based methods have been added to this list, most notably the electrical density gauge 

(EDG) and time domain reflectometer (TDR), which rely on correlations between 

electrical properties of the soil and in situ density and moisture content. 

The most common strength-based methods attempt to generate 

representative measurements of the in-situ modulus or stiffness of the soil.  The elastic 

modulus E [FL-2] is defined as the quotient of stress to strain in the elastic part of the 

stress-strain curve of a material.  The stiffness k [FL-1] is defined as the ratio of the 

force applied on a boundary through a loading area divided by the displacement 

experienced by the loaded area.  The elastic modulus is a fundamental soil property, 

while the stiffness is affected by both the soil response and the test approach that is 

used, as it depends on the size of the loaded area.  Therefore, for an elastic material, 

the stiffness measured with one test will be different from the stiffness measured with 
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another test if the loading areas are different (Briaud and Seo 2003).  The most 

commonly utilized strength-based in-situ test methods are the:  plate load test (PLT), 

falling weight deflectometer (FWD), light weight deflectometer (LWD), dynamic cone 

penetrometer (DCP), Clegg-impact hammer, and soil stiffness gauge or GeoGauge 

(Mooney and Rinehart 2007).  

In addition to the methods mentioned above, many state DOTs use static 

proof-rolling as another technique for quality assurance and final acceptance of 

earthwork compaction.  Using this approach, a heavy truck (e.g., loaded water truck or 

dump truck) is driven at walking speed along the alignment.  Quality assurance agents 

walk alongside the truck looking for signs of inadequate compaction such as cracking 

and excessive settlement.  Problematic areas are identified and reworked until the 

acceptance criteria are met.  Vibratory compaction has been proven to be a more 

effective proof rolling technique than static proof rolling, as it has an easier time 

identifying potentially weak zones (Mooney and Rinehart 2007). 

2.5 Limitations of the Conventional Methods  

The current state-of-practice for compaction quality assurance and/or 

quality control (QA/QC) relies primarily on process control (lift thickness and number 

of passes) or end-result in-situ testing techniques to ensure that adequate compaction 

and proper moisture control has been achieved (White et al. 2005). 

Traditionally, compaction has been carried out by means of a 5-15 ton 

roller running over a fixed number of passes  (5-10 passes) per layer, often resulting in 

relatively non-uniform compaction (Thurner 1993).  For vibratory rollers, during this 

process their vibration frequency and amplitude are kept constant while the roller 

operator controls the roller’s speed (Thurner and Sandström 2000, Sandström and 
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Pettersson 2004).  The degree of non-uniformity in the engineering properties of a 

compacted soil lift is therefore dependent on a combination of roller parameters (e.g. 

linear load, vibration frequency, vibration amplitude and roller speed) and on soil 

parameters (e.g. layer material, layer thickness and characteristics of the soil beneath 

the lift that is being compacted).  This non-uniformity will cause differential 

settlements in the final construction (Thurner 1993).  

The in-situ testing techniques mentioned in Section 2.4 provide only 

moderately accurate measurements of the properties of the compacted material 

(Thurner and Sandström 1980).  The relatively local area of test influence and the 

limited effective depth of these control methods (20-60 cm (0.6-2.0 ft)) are not 

sufficient enough to represent the real volume of compacted soil (Adam 1997, Thurner 

and Sandström 2000).  Therefore, it is not possible to detect all weak zones in the 

compacted area using the traditional techniques.  This may lead to non-uniform 

compaction, followed by differential settlement, low bearing capacity and some cracks 

in the final construction (Adam 1997).  In addition, the in situ methods discussed 

above are somewhat time consuming and can be relatively expensive (Thurner and 

Sandström 1980, Adam 1997). 

2.6 Continuous Compaction Control and Intelligent Compaction 

Continuous compaction control systems (CCC) and intelligent compaction 

(IC) were introduced to the compaction industry in an attempt to address the 

limitations of commonly used in situ QA/QC tests stated above, In this portion of the 

literature review, the history and evolution of CCC and IC systems is presented 

followed by a detailed description of different systems used in the new technology as 

well as the theoretical background of different CCC/IC systems. 
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2.6.1 Background 

The first attempts to measure, record, and monitor vibration-integrated 

measurements during compaction were performed with vibratory plates in the 1930s 

(Mooney and Adam, 2007).  Initial research development of roller integrated 

measurements occurred in 1974 when Dr. Heinz Thurner of the Swedish Highway 

Administration performed field studies with a 5-ton tractor-drawn Dynapac vibratory 

roller instrumented with an accelerometer (Thurner and Sandström 2000).  A 

miniature roller that travelled behind the compacting roller was used to record 

vibrations in the area surrounding the large roller.  Additionally, triaxial geophones 

were buried in the ground in order to measure ground vibrations.  Simultaneous 

recordings from all sensors were analyzed and it was realized that the accelerometer 

on the roller recorded significant changes in the time history of the sensor signal 

(Thurner and Sandström 2000).  These tests indicated that the ratio between the 

amplitude of the first harmonic of the recorded acceleration and the amplitude of the 

excitation frequency could be correlated to the compaction effort and the stiffness of 

the soil measured by the static plate load test.  In 1975, Dr. Thurner founded the 

Geodynamik Company with partner Åke Sandström to continue development of the 

roller-mounted compaction meter.  In cooperation with Dr. Lars Forssblad from 

Dynapac, Geodynamik developed and introduced the compaction meter and the 

compaction meter value (CMV) in 1978.  The CMV is described in more detail in 

section 2.8.  This new approach to compaction monitoring was introduced at the “First 

International Conference on Compaction” held in Paris, France in 1980 (Thurner and 

Sandström 1980, Forssblad 1980).  Subsequently, many of the roller manufacturers 

(e.g., Caterpillar, Ingersoll Rand, and Sakai) adopted the Geodynamik CMV-based 
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system for further research and installation on their construction equipment (Mooney 

and Adam 2007). 

In the late 1980s, Bomag developed the OMEGA value and corresponding 

Terrameter.  The OMEGA value provided a continuous measurement of compaction 

energy, and at the time served as the only CCC alternative to CMV.  In the late 1990s, 

Bomag then developed a measurement value Evib, which provides a measure of 

dynamic soil modulus (e.g., Kröber et al. 2001).  Ammann followed suit with the 

development of a soil stiffness parameter ks (Anderegg and Kauffmann 2004).  These 

Evib and ks parameters signaled an important evolution towards the measurement of 

more mechanistic soil properties, e.g., soil stiffness and modulus (Mooney and Adam 

2007).  In the early 2000’s, Caterpillar developed an alternative CCC system based 

around machine drive power (MDP) consumption, which provided a means for 

assessing the effectiveness of compaction in fine-grained materials – soils where 

vibratory compaction is traditionally not that effective. 

To enhance the field application of CCC technology, Geodynamik 

developed a compaction documentation system (CDS) in 1989, which was intended to 

help the driver to optimize the compaction process, assist the contractor in a quality 

pre-test, and document compaction results (Thurner 1993). 

In the 1990s, vibratory roller technology became much more sophisticated 

when Bomag introduced the Vario control roller with counter-rotating eccentric 

masses and servo-hydraulic control of the vertical centrifugal force (see Figure 2.5).  

Likewise, Ammann introduced the Ammann Compaction Expert (ACE) roller with 

servo-hydraulic two-piece eccentric mass and frequency control (Figure 2.6).  Other 
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manufacturers such as Caterpillar and Dynapac followed suit (Mooney and Adam 

2007). 

 

Figure 2.6 Ammann two-piece eccentric mass assembly and variable control of 
eccentric force amplitude and frequency (modified from Ammann 
brochure) 

The introduction of servo-controlled vibratory drum technology has 

catalyzed a new initiative termed intelligent compaction, where the vibratory force 

amplitude and/or frequency are automatically adjusted to improve roller performance 

and compaction.  The first prototype of a GEODYNAMIK “Intelligent Compaction 

Machine, ICM” was on display in 1992 (Sandström and Pettersson 2004).  In the 

following years afterwards, development has continued but a product has not been 

made broadly available to the construction community (Sandström and Pettersson 

2004).  Currently, the so-called “intelligence” of available intelligent compaction 

equipment is limited.  Most rollers can now automatically decrease the vertical 

vibration force when a jumping (double jump) mode is sensed (see section 2.7).  
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Furthermore, some rollers (e.g., Bomag, Ammann) have the ability to automatically 

reduce the eccentric force amplitude when a user-defined threshold measurement 

value has been reached.  In a broader sense however, it can be stated that intelligent 

compaction is in its early stages and considerable advances are anticipated towards 

achieving truly intelligent compaction over the next decade (Mooney and Adam 

2007). 

2.6.2 Description of CCC/IC Technology 

The primary purpose of continuous compaction control and intelligent 

compaction systems is to enhance the final quality of the compacted material.  Quality 

in compaction of unbound soil layers means achievement of both uniform compaction 

and sufficient bearing capacity.  Efficient compaction requires compaction to be 

concentrated in areas where further compaction is useful (where there is the potential 

to further increase the bearing capacity).  Efficient compaction reduces the overall 

compaction time for a given lift of soil, while effectively avoiding under-compaction 

(which causes a higher risk of settlement problems) as well as overcompaction (which 

wastes time and has the tendency to crush aggregates) (Thurner 1993).  “Ideal” 

compaction on a given project can be characterized by the following factors (Brandl 

and Adam 2004):  

• Compaction optimization  

• Compaction documentation, which is essential not only for site 

acceptance but also for quality control and long-term risk 

assessment. 

• Compaction control  
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2.6.2.1 Definition of CCC and IC systems 

Continuous Compaction Control (CCC) systems are data acquisition 

systems installed on compaction equipment that continuously collect real-time 

information about the operation and performance of the compactor (Thurner and 

Sandström 1980, Adam 1997, Adam and Brandl 2003).  For vibratory compactors (see 

Sections 2.8.1 to 2.8.5), the data that is often collected includes the vibratory 

frequency, the amplitude of the roller drum, and the speed of the roller (Adam 1997).  

For machine drive power based systems (see 2.8.7), the engine gross power of the 

compacting roller is typically recorded, in addition to other properties such as roller 

speed, roller acceleration, and the slope angle (White et al. 2005). 

Intelligent Compaction (IC) is a machine-driven process whereby CCC 

data is interpreted and used in real-time to adjust the operation of the compactor in an 

attempt to optimize the compaction process and to achieve more uniform soil 

compaction (Adam and Brandl 2003, Anderegg et al. 2006).  As an example of this 

process, on a typical granular-soil compaction project, IC optimization begins by 

compacting the soil using high amplitude and low frequency vibratory energy for the 

initial compactor passes, which encourages effective compaction of the layer to deeper 

depths.  As the compaction progresses, in order to avoid crushing soil aggregates and 

to encourage compaction of more surficial soil layers, the IC system raises the 

excitation frequency and decreases the amplitude automatically using a machine feed 

back loop in conjunction with the CCC system (Anderegg and Kaufmann 2004).  

2.6.2.2 Different parts of a CCC system 

As mentioned in 2.6.1, CCC systems were initially developed for 

vibratory rollers.  A vibratory CCC system is composed of three fundamental 
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elements: the vibratory roller, the underlying material that is being compacted, and a 

data recording system.  In addition, a real-time global positioning system (GPS) is 

essential for identifying the locations of the recorded data points that are measured by 

the CCC system. 

2.6.2.2.1 Roller 

The roller itself is the integral measuring tool in a CCC/IC system.  There 

are various parameters in vibratory rollers that are used to measure the degree of 

compaction such as excitation frequency, drum amplitude, the weight ratio between 

the effective weight of the frame and drum, and the speed of the roller (Adam 1997). 

As mentioned in 2.2, amplitude is a nonnegative scalar measure of the 

magnitude of oscillation.  The amplitude of the roller is dictated by the position of the 

eccentric masses inside the roller (Camargo et al. 2006).  Adjustment of the amplitude 

is performed via an eccentric shaft and a tube mounted coaxially in relation to the 

shaft, each producing half of the centrifugal force.  The die relative position of these 

two components to one another is continuously adjustable by means of a differential 

gear so that any desired eccentricity of the unbalanced mass (mere) between 0 and the 

maximum can be obtained (Anderegg and Kaufmann 2004).  When the weights are 

180° opposite each other, amplitude is at the minimum and if the weights are aligned 

with each other, amplitude is at the maximum (White et al. 2008). 

Frequency is the number of oscillations per unit time.  The frequency of 

the drum can be adjusted to optimize compaction of a specific soil type.  The 

continuous variation of the frequency is achieved by changing the pivoting angle of 

the vibropump (Anderegg and Kaufmann 2004).  Matching the frequency of the drum 

with that of the underlying soil increases the efficiency of compaction (Anderegg and 
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Kaufmann, 2004).  However, others believe that altering drum frequency may lead to 

increased maintenance and a reduced operational life for the roller (Camargo et al. 

2006). 

The speed of the roller dictates how much energy, per unit length of soil, 

is delivered to the underlying soil layer (Camargo et al. 2006).  It should be constant 

during compaction to give the best results.  As an example, a higher CMV is obtained 

by driving at a lower speed (Forssblad 1980). 

The travel direction of the roller also influences the roller measurements.  

In some cases, a higher degree of compaction is achieved via reverse direction 

(driving the roller backwards) rather than forward direction, because the transmission 

of the dynamic compactive force to the soil occurs at a more favorable angle to the 

soil surface (Forssblad 1980). 

2.6.2.2.2 Material 

The type of material that is being compacted plays a key role in the 

efficiency of the compaction process.  In general, there are three broad categories of 

soil, which are compacted using different approaches.  In cohesionless soils, dynamic 

compaction is generally the most effective approach to achieving efficient, acceptable 

compaction.  Cohesive soils should be compacted using tamping foot, pad foot, or 

sheepsfooted static rollers, since dynamic compaction of cohesive soils typically 

causes buildup of excessive pore water pressure and subsequently poor compaction.  

In stabilized soils, shrinkage is problematic which causes large cracks in the road 

pavement; consequently, these soils should not be subjected to heavy compaction, and 

are best compacted using pad-footed compactors (Chang et al. 2009).  CCC can find 

those cracks and prevent damages in the upper layers (Adam 1997).  
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The best materials for compaction using vibratory CCC technology are 

well graded coarse-grained soils consisting of primarily sands and gravels (Adam 

1997).  Poorly graded sands and gravels also work relatively well.  The compaction of 

coarse-grained soils containing a larger proportion of fine grains, such as silty sands or 

clayey sands, does not work as well, as the compaction process is strongly influenced 

by the water that is present in the soil voids.  For these soils, if the moisture content 

varies in the neighborhood of the optimum moisture content, CCC can play an 

effective role in the compaction process.  As an example, in fine-grained materials, the 

CMV decreases when the water content exceeds the optimum water content 

(Forssblad, 1980).  Vibratory CCC approaches generally do not work well for heavily 

cohesive soils like silts or clays, unless CCC is performed at moisture contents close 

to the plastic limit of the soil; the same issue noted above with respect to the 

undrained soil response is present in an even stronger fashion for these soils (Adam 

and Kopf 1998).   

In terms of lift thickness, research has shown that thicker lifts of material 

can be more efficiently compacted using CCC/IC technology (McVay and Ko 2005; 

Camargo et al. 2006). 

2.6.2.2.3 Recording System 

Early research into CCC systems showed that various indices 

incorporating drum acceleration amplitude and the amplitude of its harmonics (i.e., 

multiples of the excitation frequency) could be correlated to soil density and 

underlying stiffness (Forssblad 1980).  This approach forms the basis of many 

onboard compaction “meters” used today (Thurner and Sandstöm 2000, Sandstöm and 
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Pettersson 2004, Mooney and Rinehart 2007).  Various recording systems are 

comprehensively presented in section 2.8. 

2.6.2.2.4 Global Positioning System (GPS) 

If measurements made by an IC/CCC roller are linked to the 

corresponding measurement point coordinates (and associated time stamps) supplied 

by the GPS system, the compaction process can be recorded and presented in a 

graphical form in real time (Anderegg et al. 2006).  Typical GPS set ups consist of a 

external reference station (commonly referred to as the “base station”) which includes 

real-time kinematic GPS (RTK-GPS), a GPS-antenna and a radio modem transmitter 

(Figure 2.7a).  The system also utilizes a mobile data recording and analysis station 

that is attached to the roller, which includes on-board RTK-GPS, a GPS-antenna, a 

radio modem transmitter and a computer (Figure 2.7b).  The third part of the GPS 

system is a visual monitoring station, which consists of a computer with a radio 

modem receiver (Figure 2.7c). 

 

Figure 2.7 GPS system; a) base station, b) GPS equipped roller, c) monitoring 
station 



 26

The “base station” GPS receiver, which must be located relatively close to 

the area that is being compacted, is often referenced to a global coordinate system for 

projects that necessitate precise positioning controls.  Positioning errors accumulate 

between the ground-based GPS receivers and the satellites, which have to be corrected 

in order to display precise location coordinates in real time (the RTK portion of the 

GPS).  These correction messages are sent to the GPS in the mobile stations by a radio 

modem transmitter to correct its position.  A computer fixed on the operator’s console 

displays the travel locus of the roller or the number of passes, and records these input 

data, while simultaneously transmitting its position to the monitoring station (Nohse et 

al. 1999).  The in-situ tests that are conducted for quality control are also registered 

together with the current GPS position, which allows observing a correlation between 

the in-situ test results and the respective values measured by the CCC/IC roller 

(Anderegg et al. 2006). 

2.6.3 Benefits of CCC/IC technology 

The primary advantage of CCC/IC systems is that they provide 

instantaneous and continuous measurements of the properties of a compacted material, 

while also providing complete coverage of the entire compacted area.  A second 

significant benefit of these systems is that they can potentially provide more uniform 

compaction with a fewer number of passes, resulting in a more optimum expenditure 

of time and energy on a project site (Thurner and Sandström 1980, Anderegg and 

Kaufmann 2004).   

After conducting several projects in Europe, a comparison between 

projects that utilized CCC equipped compactors and the those which utilized 

conventional compaction equipment and traditional in-situ tests showed that by using 
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new technology, the costs for construction work increase slightly while the costs for 

external control tests and repair were reduced significantly (Adam 1997).  In addition, 

using CCC/IC systems showed that the overall lifetime of the compactors could be 

increased because of the reduction in vibrations and mechanical loads (Anderegg and 

Kaufmann 2004). 

Another significant potential benefit and area for cost savings with 

CCC/IC systems is that they have the potential to significantly reduce the required 

quantity of conventional QA/QC tests (such as sand cone equivalent or nuclear density 

gauge tests) on a given project, which typically require skilled operators and impose 

additional time and costs to the project (Camargo et al. 2006).  Recent research has 

shown that newer QA/QC tests such as dynamic cone penetrometer (DCP) or light 

weight deflectometer (LWD) may be more appropriate for independent comparison 

and evaluation of CCC roller data (Camargo et al. 2006). 

In summary, the benefits of CCC/IC systems are classified in two 

categories: 

1- Improved compaction control 

• Full coverage of compacted area 

• More uniform compaction 

• Providing real-time soil modulus/stiffness for compacted area 

• Spotting weak zones 

2- Increased compaction efficiency  

• Avoiding overcompaction 

• Decrease in number of passes 
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• Higher adaptability (thin/thick layers, soft/stiff subbase) 

• Decreasing the number of conventional proof tests 

Continuous compaction control and intelligent compaction have also been 

criticized in some cases.  The most commonly referenced drawbacks are as follows 

(Petersen et al. 2006): 

• Require the use of sophisticated/sensitive equipment in a rugged 

environment 

• Can require additional operator training 

• Require more expensive equipment than conventional compaction 

• Need RTK GPS for precise compactor location 

2.7 Operation Modes of Vibratory Roller 

When a given vibratory roller is compacting, five modes of operation may 

occur, which can influence the dynamic compaction values distinctively (Table 2.1) 

(Anderegg and Kaufmann 2004).  Generally, soil stiffness influences the operating 

condition of the drum, but roller parameters also contribute (Brandl and Adam 2004). 

Table 2.1 Operating modes of a vibratory roller drum 

Drum-soil 
interaction 

Cycle
1 

Operating 
condition 

Application 
of CCC 

Soil 
stiffness 

Roller 
speed 

Drum 
amplitude 

Contact 1 Continuous 
Contact Yes Low Slow Small 

1 Partial 
uplift Yes 

2 (4) Double 
jump Yes 

2 (4) Rocking 
motion No 

   

Partial loss 
of contact 

- Chaotic 
motion No High Fast Large 

 1 Cycles are specified as a multiple of the excitation cycle, T = 2π/ω0. 
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Continuous contact happens in the early stages when the soil stiffness is 

very low, i.e. in the case of uncompacted or soft clayey layers (Adam 1997, Brandl 

and Adam 2004).   

Partial uplift and double jump are the most frequent modes of operation 

during vibratory compaction.  The distinction between these two conditions is that the 

double jump mode contains more excitation cycles (Adam 1997). 

Rocking motion is the other mode that occurs when the stiffness of the soil 

increases.  As the roller runs into this mode, the drum axis is no longer vertical and the 

drum starts rocking (Adam 1997, Brandl and Adam 2004).  Bouncing (double jump) 

and rocking are not desirable modes since they tend to have a loosening effect on the 

top layer of the soil and the roller loses its maneuverability.  The only difference 

between bouncing and rocking is a phase shift of 180° that occurs between the 

subharmonic vibrations of the right and left edges of the drum.  The theory predicts 

rocking if the natural frequency of the rocking motion is lower than that of the vertical 

vibration; otherwise, bouncing will occur (Anderegg and Kaufmann 2004). 

Chaotic motion is the last one, which occurs on soils with a very high 

stiffness (Adam 1997).  At this point, the roller is not maneuverable any more (Brandl 

and Adam 2004).  The chaotic behavior of the vibratory roller originates from the 

nonlinearity and occurrence of subharmonics during compaction.  In a chaotic mode 

of vibration, the dynamic behavior of the roller may be unstable and erratic.  To 

prevent this condition, one solution can be to reduce the power of excitation by 

increasing the static moment mere (see 2.8) (Anderegg and Kaufmann 2004). 
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In summary, as the soil stiffness increases, the drum goes into the later 

modes of vibration (rocking and chaotic), which make the continuous compaction 

control process inaccurate and unreliable (Adam 1997).  Among the previously 

discussed modes of operation, continuous contact, partial uplift, and double jump can 

be described theoretically by a one-degree-of-freedom interaction system while the 

rocking motion and chaotic motion require a more sophisticated multi-degree-of 

freedom system (Brandl and Adam 2004).  

2.8 Principal Theories of Operation of CCC/IC Systems 

There are various recording systems that have been introduced into the 

CCC/IC industry over the years, which are briefly reviewed in 2.6.1.  In this section, 

these recording systems are discussed in more detail.  In the first few sections, 

vibratory-based systems are reviewed and at the end, a machine drive power-based 

system is described. 

All of the following vibratory-based systems that are discussed consist of 

a sensor set containing one or two accelerometers attached to the bearing of the 

vibratory roller drum, a processor unit, and a display to visualize the measured values.  

The sensor continuously records the acceleration of the drum.  The time history of the 

acceleration signal is analyzed in the processor unit in order to determine dynamic 

compaction values with respect to specific roller parameters (Brandl and Adam 2004). 

2.8.1 Compaction Meter Value (CMV) 

The drum of a vibratory roller exposes the soil to repeated blows – one per 

cycle of the vibration.  These blows can be considered analogous to a repeated 

dynamic plate load test of the soil.  It can be shown that the force amplitude F of the 
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blows is proportional to the first harmonic of the vertical acceleration.  The vertical 

displacement zd during the blow can be approximated by the amplitude of the double 

integral of the fundamental acceleration component (Sandström 1993, Adam 1996, 

Thurner and Sandström 2000).  Therefore, it is relevant to express the “cylinder 

deformation modulus” Ec as the ratio of the applied force and the corresponding 

displacement: 
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where, C1 and C2 are constants, ω = fundamental angular frequency of the vibration, 

( )02ˆ ωa  = Amplitude of the first harmonic of the acceleration response signal, and 

( )0ˆ ωa  = Amplitude of the exciting frequency (Thurner and Sandström 2000). 

Using the general framework of Equation 2.2, engineers at Geodynamik 

(Thurner and Sandström 1980) developed a roller measurement value called 

Compaction Meter Value (CMV).  CMV is calculated by dividing the amplitude of the 

first harmonic of the acceleration signal by the amplitude of the exciting frequency 

(Equation 2.3). 
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where, C = A constant value chosen to empirically scale the output CMV values to an 

easier-to-interpret range.  Using C = 300 has become a commonly accepted and 

standardized approach for calculating CMV values from measured vibratory roller data 

(Sandström and Pettersson 2004).  

Thurner and Sandström tested the CMV equation shown above on 

compacted soils at a range of different densities and stiffnesses.  It was observed that 

if the drum of the roller moves on a very soft zone, then there was no first harmonic.  
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In this case, CMV was approximately zero.  When the drum moves over a loose, 

coarse-grained material (beginning of compaction) the amplitude of the first harmonic 

will be low and consequently CMV will remain at a low value.  As compaction 

progresses, the amplitude of the first harmonics becomes relatively high and the 

corresponding CMV values increase. 

The ratio of )(ˆ/)2(ˆ 00 ωω aa  is a measure of nonlinearity.  In a truly linear 

roller-soil system, a roller with an excitation frequency of 30 Hz (a reasonable value) 

would produce a 30 Hz drum acceleration response and )(ˆ/)2(ˆ 00 ωω aa  would equal 

zero.  However, because the roller-soil system is nonlinear, the drum acceleration 

response is distorted and is not purely sinusoidal.  (The response of soil to vibratory 

compaction is actually nonlinear elastic-plastic, and because a partial loss of contact 

occurs, the contact surface varies nonlinearly during each cycle of loading).  Fourier 

analysis can reproduce a distorted waveform by summing multiples of the excitation 

frequency.  Therefore, the ratio )(ˆ/)2(ˆ 00 ωω aa  is a measure of the degree of distortion 

or nonlinearity (Mooney and Adam 2007).  

From an analytical stand point, the value of CMV is determined by 

performing spectral analysis of the measured vertical drum accelerations over two 

cycles of vibration (Figure. 2.8).  The reported CMV values are the average of a 

number of two-cycle calculations.  Geodynamik typically averages the values over 0.5 

sec; however, this can be modified as needed.  CMV precision is governed by a 1% 

distortion resolution of the accelerometer.  By using Equation 2.3 with C = 300, a 1% 

acceleration distortion equates to a CMV = 3 or ± 1.5.  However, Geodynamik reports 

less reliability for CMV when recorded values are below 8-10 (Mooney and Adam 

2007). 
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Figure 2.8 Method to determine CMV involves spectral analysis (right) of two 
cycles of vertical drum acceleration time history data (left) 
(modified from Mooney and Adam 2007) 

Another control value that is commonly used in Compactometer systems 

is the Resonant Meter Value (RMV), which is proportional to the quotient of the 

amplitude of the half frequency of the acceleration signal divided by the amplitude of 

the exciting frequency (Equation 2.4).  A non-zero RMV indicates that the drum is not 

in the mode of continuous contact (Adam 1997). 
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where ( )05.0ˆ ωa  = Amplitude of subharmonic acceleration caused by jumping, i.e., the 

drum skips every other cycle, and ( )0ˆ ωa  = Amplitude of the exciting frequency. 

Currently, Dynapac, Caterpillar and Ingersoll Rand (via Geodynamik 

equipment) are utilizing a Compactometer system for CCC roller monitoring (Mooney 

and Adam 2007). 

A compaction meter for oscillatory rollers has also been developed that is 

based on a measurement of the horizontal acceleration of the center axis of the drum.  

When the drum is operating at frequencies above the resonance frequency, and there is 
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no slip, the amplitude of this signal is a function of soil stiffness as well as the roller 

parameters.  This stiffness value, called the Oscillometer Value (OMV), is not 

sensitive to moderate variations in the excitation frequency.  When there is slip 

between the drum and soil, the signal processor of the oscillometer uses a special 

algorithm to calculate the OMV.  This calculation is based solely on the time intervals 

during which the soil and the drum move together without slipping (Thurner and 

Sandström 2000, Sandström and Pettersson 2004). 

2.8.2 Compaction Control Value (CCV) 

In an attempt to improve upon the Compaction Meter value, the Japanese 

company Sakai has introduced a continuous compaction value (CCV), which considers 

the first subharmonic (0.5ω0) and higher-order harmonics in addition to the 

fundamental and first harmonic (Mooney and Adam 2007). 

100
)3()5.2(

)3()5.2()5.1()5.0(

00

0000 ×⎥
⎦

⎤
⎢
⎣

⎡
+

+++
=

ωω
ωωωω

aa
aaaaCCV  (2.5) 

2.8.3 OMEGA 

In 1988, Kröber from the American-German company Bomag, developed 

the OMEGA value and incorporated it into the Terrameter system (Mooney and Adam 

2007).  The OMEGA value provides a measure of the energy transmitted to the soil.  

The concept is illustrated by the schematic of the roller compactor and the forces 

acting on the drum in Figure 2.9.  Here, Fs is the force transmitted to the soil, which is 

determined by summing the static force (roller weight), drum inertia and eccentric 

force 2
00 ωem  while ignoring the effect of frame inertia (Adam 1997). 
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Figure 2.9 One-degree-of-freedom lumped parameter model representation of 
vibratory compactor (modified from Mooney and Adam 2007) 

The drum acceleration dz&&  is measured in two perpendicular directions.  

An accelerometer provides the time history of the drum acceleration.  The OMEGA 

value is determined by integrating the transmitted force Fs and drum displacement dz  

time history over two consecutive cycles of vibration to consider the operating 

condition of double jump (Adam 1997): 
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where, dz&  =Drum vertical velocity (m/s2), dm  = Drum mass (kg), fm  = Frame mass 

(kg) , 0m  = Mass of the rotating eccenter (kg),  0e  = Eccentricity (m), ω = Circular 

frequency (rad/s), g = Gravitational acceleration (9.81 m/s2), and effW  = Absorbed 

energy by soil (N·m). 

Like CMV, OMEGA values increase as drum behavior transitions from 

continuous contact to double jump.  Consequently, under similar operating conditions, 

OMEGA values increase with increasing soil stiffness.  Upon entering the double 

jump mode, a sudden drop in OMEGA values occurs, followed by a continued 
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increase with increasing soil stiffness within the double jump mode (Adam 1997).  

OMEGA values correlate well to soil stiffness, provided that a linear transformation 

between dynamic compaction values is performed.  However, this conformity is valid 

only for values within a particular mode of drum vibrational behavior.  The correlation 

between CMV and OMEGA is approximately linear within the operating conditions of 

continuous contact and partial uplift (Brandl and Adam 1997). 

2.8.4 Stiffness (ks) 

In the late 1990s, Ammann introduced a roller-determined soil stiffness 

parameter ks (Anderegg 2000).  Using this approach, the roller free body shown in 

Figure 2.10 is treated as a lumped parameter model to represent the vertical 

kinematics of the soil-drum-frame system.  Within this framework, the soil behavior is 

modeled using a Kelvin-Voigt spring-viscous dashpot model (Mooney and Adam 

2007).  As shown in Figure 2.10, the roller can be subdivided into two separate pieces, 

the frame and the drum, where the frame is supported using an elastic suspension 

element whose behavior is modeled using stiffness kt and damping ct.  The subgrade 

behavior can then be modeled as a spring with stiffness ks and a viscous damper 

connected in parallel, having a damping constant cs .  In conjunction with the drum, 

this creates the spring-mass-dashpot vibration system, which describes the 

characteristics of a dynamic compactor (Anderegg and Kaufmann 2004).  This model 

is valid provided that the excitation frequency is well above the resonance frequency 

for the frame-suspension elements (Anderegg et al. 2006).   
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Figure 2.10 Simplified model for roller-soil interaction 

As the compaction progresses, the stiffness increases and the damping 

decreases.  Assuming constant machine parameters, the vibration behavior of the 

system varies accordingly and this can be used as a measurement indicator value in a 

continuous compaction control system.  The steady-state dynamic behavior of the soil-

machine system is described by the following equations (Anderegg and Kaufmann 

2004): 

gmzzczzktrmzmF dfdtfdtdds +−+−++−= )()()cos(2
00 &&&& ωω  (2.7) 

gmzzczzkzm fdftdftff +−+−+−= )()(0 &&&&  (2.8) 

where, Fs is soil-drum interaction force, 

dsdss zczkF &+=  if Fs ≥ 0 (2.9) 

0=sF  else (2.10) 
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where, f = Frequency of excitation (Hz), m0r0 = Eccentric moment of unbalanced mass 

(kgm), ks = Soil stiffness (MN/m), cs = Soil damping (MNs/m), kt  = Suspension 

stiffness (MN/m), ct = Suspension damping (MNs/m), t = Time (s).  The other 

parameters used in Equations 2.7 through 2.10 have been defined previously (for 

Equation 2.6).  In the equations above, the subscripts d and f denote drum and frame, 

respectively. 

The nonlinearity caused by drum lift-off can be recognized by the 

occurrence of additional frequency overtones that correspond to integral multiples of 

the excitation frequency.  As an example, subharmonic vibrations may occur at 

harmonic frequency multiples of 1/2, 1/4, 1/8. etc. of the excitation frequency 

(Anderegg and Kaufmann 2004).  As shown in Figure 2.11, this characterization 

makes use of the time progression of the soil reaction force Fs or the frequency 

analysis of the drum motion zd: 

∑ −Ω=
i

iid tiAz )cos( φ   (2.11) 

where, Ai is the amplitude at frequency if and φi is the phase lag between the generated 

dynamic force and the part of the drum displacement with frequency if (Anderegg and 

Kaufmann 2004).  Depending on the operational status, the vibration displacement has 

one or more frequencies: Permanent drum-ground contact, linear: i = 1; Periodic loss 

of contact, nonlinear: i = 1, 2, 3; Bouncing or rocking: i = 1/2, 1, 3/2, 2, 5/2, 3 
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Figure 2.11 Three basic types of behavior of vibrating drum: (a) contact (every 
time) (b) periodic loss of contact (c) bouncing or rocking (modified 
after Andregg and Kaufmann 2004) 
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By summing Equations 2.7 and 2.8, while considering only the static 

frame mass and neglecting the dynamic forces imposed by the elastic frame, Equation 

2.12 can be obtained (Andregg and Kaufmann 2004): 

ddfds zmtrmgmmF &&−++= )cos()( 2
00 ωω   (2.12) 

The resulting Fs vs. zd response is graphically illustrated in Figure 2.12 for 

continuous contact and partial uplift behavior (after Mooney and Adam 2007).  The 

Ammann ks is the ratio of sF  to dz  and is computed when the drum is at the bottom of 

its trajectory and dz  is at its maximum (see Fig. 2.12). This ks represents a composite 

static stiffness (spring constant) for the soil and is only valid to the degree which the 

Kelvin-Voigt model is a reasonable approximation for the soil behavior.  The spring-

dashpot model has been shown to be effective in representing roller-soil system 

behavior (e.g., Yoo and Selig 1979, Adam 1996, Mooney and Rinehart 2007). 

 

Figure 2.12 Illustration of ks during contact (left) and partial loss of contact 
behavior (right) (modified after Mooney and Adam 2007) 
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Assuming linear elastic soil behavior and nonlinear vibration of the roller, 

the measured vibration amplitude “A”, and the measured phase angle “φ” can be used 

to determine the corresponding value of ks (Andregg Kaufmann 2004): 

A
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where, || dzA =  if 0=dz& , and if 0<dz&&  no bouncing or rocking (A1/2=0) 

In the case of linear vibration without a loss of contact between the drum 

and soil,  ks can be calculated using the following equation: 
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max|sF  is the maximum of the soil-drum interaction force during one period T, and 

colt .. is the time where there is a loss of contact between the drum and soil during one 

period T (Anderegg and Kaufmann 2004).  

2.8.5 Vibratory Modulus (Evib) 

Using stiffness (ks) as an indicator for compaction improvement has some 

disadvantages.  The stiffness ks increases with the drum width and the drum diameter.  

Furthermore, it depends on the vibrating mass, the mass of the frame structure and the 

installed unbalanced mass.  Generally, it can be observed that, in contrast to the 
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formerly common indirect characteristic quantities (e.g. OMEGA value), the stiffness 

(ks) is a physically verifiable characteristic magnitude; unfortunately however, its 

measured values cannot be directly transferred from one type of roller to another.  

Consequently, a variety of approaches that use modulus have been developed to 

address this limitation (Kröber et al. 2001). 

Bomag has more recently utilized a lumped parameter vibration model 

developed using elastic half-space theory to calculate an additional compaction 

control value called vibratory modulus (Evib) (Kröber et al., 2001).  The same 

assumptions and definitions used for calculating the stiffness value are used in this 

derivation (see Figure 2.9).  The stiffness is extracted from the loading portion of the 

drum-force deflection curves (Fig. 2.13) to come up with a vibration modulus value 

(Evib) (Mooney and Adam, 2007).  

 

Figure 2.13 Increasing stiffness values in a higher gradient of the force-path 
characteristic curve (modified after Kröber et al. 2001) 

The ratio of ΔFs to Δzd represents a characteristics quantity for the 

evaluation of the soil stiffness (Kröber et al. 2001): 
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A similar but more simple mechanistic load-response process takes place 

during a field plate load test (PLT).  In a PLT, a circular plate is gradually loaded and 

unloaded to determine the deformation modulus, as follows: 
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where, G = Shearing modulus, r = Radius of plate, and ν = Poisson ratio. 

Equation 2.17 is derived using a closed-form solution for the linear, 

elastic, isotropic half volume and can be interpreted using the following approach:  

Based on a measured force-displacement interrelationship (ΔF, Δzd) and in the 

presence of a certain geometry (r), the following equations can be applied (Kröber et 

al., 2001):  
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Combining equation 2.15 to 2.17, we have: 
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As noted previously, true soil behavior cannot be captured using a linear, 

elastic, and isotropic material model.  If it would fulfill these conditions, the 

deformation modulus would be the same as the E-modulus.  In contrast to a PLT, 

where the loaded area is defined by the precisely circular load plate, the shape of the 

contact area for a vibratory roller can be modeled as a cylinder that is lying on its side.  

The contact width (b), which controls the overall area of roller contact and the 
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corresponding applied static and dynamic pressures, can be determined from the depth 

of the depression that the drum makes in the soil using Lundberg’s formulas (Kröber 

et al. 2001): 
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where, b = Contact width, R = Radius of drum, ν = Poisson’s ratio, E = Modulus, Fs = 

Ground contact force, L = Width of drum, and zd  = Depth of depression.  These 

formulas are derived based on a parabolic load area acting across the contact width, 

where the contact width is always smaller than the width of the drum and the 

cylindrical roller body is supposed to have a slightly spherical shape (Kröber et al. 

2001).   

During the PLT, the load curve is used for evaluation.  As an analogy to 

this, the compression part of the indicator diagram is used for calculating the soil 

modulus, which is called Evib.  The relationship between ks and Evib is shown in Figure 

2.14 (Mooney and Adam 2007). 
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Figure 2.14 Relationship between contact force and drum displacement for a 
cylinder on an elastic half-space (modified after Mooney and Adam 
2007)  

By treating the roller like the plate in a PLT, and the underlying soil as the 

elastic half space, a similar relationship can be derived between the measured stiffness 

(ks) and the vibratory modulus (Evib) of the compacted material based on Lundberg’s 

theory (Anderegg and Kaufmann 2004): 

( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅+⋅⋅−
⋅⋅

⋅+⋅−⋅

⋅⋅
=

gRmm
EL

LEk

df

vib

vib
s

161
ln

2
114.212 2

3
2

ν
πν

π  (2.23) 

As a result of these calculations, a compaction indicator value can be 

derived which is not dimensionless, and which can be transferred to different 

machines using a special calibration process.  This allows the vibration modulus of the 

ground to be determined with different machines and machine types.  Although this 

approach has been developed for vertical vibration, it is also promising for oscillatory 
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rollers, provided that the direction of oscillation deviates more than 12-15 degrees 

from the horizontal plane (Kröber et al. 2001).  In summary, the benefits of the 

compaction indicator value Evib are as follows: 

• It allows direct determination of soil stiffness in the form of the 

vibration modulus Evib, which has units of MPa (tsf) during the 

compaction process 

• Evib is directly related to Ev1 and Ev2, which are the first and second 

loading modulus values obtained from two cycle plate load tests.   

• Evib is relatively independent from the amplitude, frequency, and 

working speed of the roller. 

2.8.6 Evaluation of Vibratory Measurement Values  

A number of independent studies have been performed to investigate 

dynamic roller measurement values.  Adam and Kopf (2004) numerically simulated 

roller-soil behavior using finite element analysis of a roller vibrating on an elastic 

half-space to explore the influence of the soil’s Young’s modulus (E-modulus in 

Figure 2.15) on the roller measurement values.  The y-axis in Figure 2.15 depicts the 

relative drum vibration amplitude, i.e., the ratio of zd to the theoretical maximum 

zd(max) given by Equation 2.24.  The theoretical maximum drum displacement zd(max) is 

determined by measuring the drum vibration in air (e.g. frame propped up on jack 

stands); zd(max) is a term often cited in the soil compaction community (Mooney and 

Adam 2007). 

d
d m

emz 00
(max) =   (2.24) 
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Figure 2.15 Variation of roller measurement value with soil modulus and 
relative drum vibration amplitude - results of numerical 
simulations; a) CMV, b) Evib, c) OMEGA, and d) ks (modified after 
Mooney and Adam 2007) 

Figure 2.14 shows the relative location of various contact modes, their 

presence as a function of relative drum displacement, amplitude, and soil modulus, 

and how they are influenced by relative amplitude and soil modulus.  Since double 

jump, rocking, and chaos are now typically avoided via feedback control of the roller, 

it is most interesting to focus on the behavior of the system during continuous contact 

and partial uplift modes.  As illustrated in Figure 2.14, values of CMV are very low 
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and constant when the drum is operating in a continuous contact mode, regardless of 

the soil modulus.  Given that the soil is modeled here as linear elastic, only the curved 

drum/soil interaction nonlinearity is contributing to the CMV during the continuous 

contact mode.  This figure also illustrates how CMV values respond to soil stiffness 

during partial uplift; CMV increases as the soil modulus E increases.  However, CMV 

at a constant soil modulus is amplitude dependent; therefore, a higher eccentric force 

will yield a greater CMV for the same soil.  The amplitude dependency of CMV is 

more pronounced for softer soils than for stiffer soils (Mooney and Adam 2007). 

Evib is sensitive to changes in soil modulus during continuous contact and 

partial uplift modes; an increase in soil modulus leads to an increase in Evib.  Evib 

exhibits little or no amplitude dependency in continuous contact mode but increases 

with increasing amplitude during partial uplift.  This amplitude dependency is more 

pronounced for stiffer soil.  Similar to Evib, ks increases with soil modulus and is 

amplitude dependent during partial uplift.  However, ks decreases with increasing 

amplitude during partial uplift, particularly for stiffer soil.  The amplitude-dependency 

of soil stiffness was also demonstrated in field testing by Mooney and Rinehart 

(2007).  Finally, the OMEGA value was found to be much less sensitive to underlying 

soil stiffness for constant amplitudes of input vibration.  CMV, Evib, and ks each exhibit 

amplitude dependency at a constant soil modulus.  Ideally, one would like the 

measurement value to be independent of eccentric force and amplitude, particularly 

for variable amplitude control compaction (Mooney and Adam 2007).  

Figure 2.16 presents the numerically derived measurement values as a 

function of soil modulus for a given relative amplitude.  OMEGA, Evib and ks are 

linearly dependent on soil modulus during continuous contact mode and CMV is fairly 



 49

constant.  During partial uplift, CMV is the most sensitive and OMEGA is the least 

sensitive to changes in soil modulus.  Again, the performance of each measurement 

value during double jump is not so relevant given today’s roller technologies (Mooney 

and Adam 2007). 

 

Figure 2.16 Relative roller measurement values (CCC values) as a function of 
soil modulus as determined from numerical simulations (modified 
after Adam and Kopf 2004, Mooney and Adam 2007) 

2.8.7 Machine Drive Power (MDP) 

As noted previously, early development of CCC systems focused on 

technologies that could be used in conjunction with vibratory compaction equipment.  

As discussed in Section 2.3, the use of CCC systems with vibratory rollers is more 
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effective for compaction of coarse-grained materials, while fine-grained soils such as 

clayey soils needs static and kneading compaction where vibratory-based CCC 

systems may not be applicable.  In addition to the challenges that are present for 

compaction of fine-grained soils, CCC systems also have some difficulty dealing with 

compaction control on inclined surfaces (Adam and Kopf 1998).  

To broaden the useful domain of CCC systems into cohesive and fine-

grained soils and to address potential problems with compaction control for inclined 

surfaces, Caterpillar has introduced a new compaction monitoring system that uses 

machine drive power (MDP) with either static or vibratory rollers (White et al. 2005).  

Caterpillar’s MDP system provides a semi-empirical measure of the compaction 

energy delivered to the soil by measuring the energy necessary to overcome the roller’s 

resistance to motion.  The theory behind the operation of this system is that the energy 

required to move the roller drum is strongly affected by the sinkage of the roller drum 

into the soil that is being compacted (and the associated resistance to rolling), which in 

turn is related to the stiffness and modulus of the soil.  The technology that is used in this 

MDP system is comprised of sensors that monitor hydraulic pressure and flow at the 

roller’s torque converters.  The resulting product of these machine parameters can be used 

to calculate the net power (Pn or MDP) that propels the roller (Thompson and White 

2008).  The operating principles behind this type of CCC system are explained in more 

detail in the following paragraphs. 

In 1966, Schuring developed workable formulas identifying motion 

resistance and the associated energy loss in soil (White et al. 2005).  Equation 2.25 

presents a simplified two-dimensional relationship relating the energy loss in a soil 

(Es) to the torque (M) applied to the roller (Figure 2.17), the radius of the roller (r), the 
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drawbar pulling force (R), the horizontal distance traveled by the roller (l) and the 

wheel slippage (i) (White et al. 2005). 

 

Figure 2.17 Simplified two-dimensional free-body diagram of stresses acting on 
rigid compaction drum (modified after White et al. 2005) 
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By substituting simplifying relationships for R and M, Equation 2.24 can 

be rewritten in terms of the resultant horizontal and vertical stresses acting on the 

roller (σh and σv) and the circumference of contact between the roller and soil: 
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The interface contact angle (Equation 2.27) is further related to the 

sinkage depth (z), which varies with the shear strength and compressibility of the 

compacting soil (Equation 2.28). 
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Equation 27 shows that sinkage depends on the diameter (D) and weight 

of the roller (W), the roller width (b), the cohesion and friction moduli of deformation 

(kc and kφ) of the soil, and the exponent of soil sinkage (n).  These three parameters 

empirically define the stress-strain relationship of the soil and require PLT tests of 

multiple sizes for extrapolation to be determined (White et al. 2005).  Moduli kc and kφ 

depend on soil shear strength parameters, and n is highly sensitive to changes in soil 

density.  Thus, sinkage is directly related to soil compaction.  Unfortunately, accurate 

values of sinkage are nearly impossible to predict because of the inherent variability in 

soil and unknown sources of error in machine-soil interaction.  Thus, using theory as a 

guide, a more reliable estimate of energy loss as a function of compaction has been 

developed through semi-empiricism (White et al. 2005). 

Using this semi-empirical approach, the gross power (Pg) (energy/time) 

required to move the compactor drum through an uncompacted layer of fill can be 

determined using Equation 2.29.  Here, Ps represents that portion of the power needed 

to overcome resistance from moving through the soil and Psa is the additional machine 

power that is associated with overcoming a sloping grade or compensating for 

machine accelerations.  Pml is the internal machine power loss. 

sasmlg PPPP ++=   (2.29) 

Equation 2.29 can be rewritten in terms of the energy lost to the soil by rearranging 

terms and multiplying by a unit time (t) to obtain: 
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where, a = Acceleration of the machine, g = Acceleration of gravity, α  = Slope angle 

(positive for uphill and negative for downhill), t = Time, and V = Velocity of the roller 

(White et al. 2005). 

Considering the various mathematical models introduced by Bekker 

(1969) for terrain-vehicle interaction, Equation 2.30 can be rewritten to determine the 

net power (Pn) required to propel the compactor through an uncompacted layer of fill 

(White et al. 2006): 
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where, m and b are machine internal loss coefficients specific to a particular machine.  

As mentioned previously, Pg represents the gross power needed to move the machine.  

A portion of the gross power is the power lost or gained by working on a sloping 

grade, and this factor, as well as machine accelerations and internal machine losses, 

must be accounted for so that Pn only represents the machine power (MDP) associated 

with changes in soil physical parameters (i.e. density, strength, and stiffness) (White et 

al. 2006). 

A summary of commonly used CCC values, their descriptions, and the 

associated compaction equipment manufacturers are presented in Table 2.2. 
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Table 2.2 Established CCC systems, CCC values, and the associated 
equipment manufacturers 

CCC System CCC 
Value Definition of CCC Value Manufacturer 

Compactometer CMV 
(unitless) 

acceleration amplitude ratio (first harmonic div. 
by excitation frequency amplitude) - frequency 

domain 

Geodynamik, 
Sweden 

Terrameter OMEGA 
(N.m) 

energy transferred to soil (considering soil 
contact force displacement relationship of 2 

excitation cycles) - time domain 
Bomag, Germany 

Continuous 
Compaction 

Value 

CCV 
(unitless) acceleration amplitude ratio - frequency domain Sakai, Japan 

Terrameter Evib 
(MPa) 

dynamic elasticity modulus of soil beneath drum 
(inclination of soil contact force displacement 

relationship during loading) - time domain 
Bomag, Germany 

ACE ka 
(MN/m) 

spring stiffness of soil beneath drum (derived 
from soil contact force displacement relationship 

at maximum drum deflection) - time domain 

Ammann, 
Switzerland 

Machine Drive 
Power 

MDP 
(kW)  net power to propel the roller Caterpillar, USA 

 
 

2.9 In-situ test approaches that can be used for compaction QA/QC 

An important step in the assessment of CCC and IC systems is 

establishing a reliable approach for validation of these technologies.  Historically, a 

number of in-situ test methods have been used for QA/QC of the compaction process, 

falling into two general categories:  density-based tests and strength-based tests.  

Details about these different in-situ testing techniques are provided in the following 

sections. 

2.9.1 Density-based tests 

The conventional approach that is used for controlling the quality of 

compaction is to measure the dry unit weight and moisture content of a compacted soil 
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at random locations throughout a compacted area.  The measured values and then 

compared with acceptable ranges of dry unit weight and moisture content for that 

specific material.  There are two methods to specify a target range for the dry unit 

weight and moisture content.   

The first method is the 5-pt Proctor test, in which five (or sometimes 

more) specimens are compacted in a uniform, controlled fashion at five different 

moisture contents.  After performing the compaction tests, the dry unit weights and 

moisture contents of the compacted specimens are measured and plotted, and a 

compaction curve is drawn that shows the relationship between the measured dry unit 

weight (y-axis) and the water content (x-axis).  From this curve, a maximum dry unit 

weight can be determined, and this value and the corresponding “optimum” moisture 

content for compaction are recorded.  In general, there are two types of 5-point 

Proctor tests are commonly used; the standard Proctor test (ASTM D 698) and the 

modified Proctor test (ASTM D 1557). 

The second method is the 1-pt Proctor test (AASHTO T 272) in which 

only one compaction test is performed and the resulting dry unit weight and moisture 

content are used with a “family” of compaction curves to determine the optimum 

moisture content and maximum dry unit weight.  The family of curves that are used 

for a given soil are developed from over time, based on long-term experience with 5-

point Proctor tests for a given borrow material.  Consequently, it is necessary to have a 

separate family of curves for each material type that is placed.  

Values of dry unit weight obtained from in situ measurements on a 

compacted lift are then divided by the maximum dry unit weight that is achieved from 

one of the above methods (1-pt Proctor or 5-pt Proctor), providing the relative 
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compaction (RC), also commonly referred to as the degree of compaction.  The 

measured field moisture content (ω) is also compared with the optimum moisture 

content (ωopt) obtained from one of the above methods (1-pt Proctor or 5-pt Proctor).  

Both the relative compaction and moisture content must meet the corresponding 

acceptance criteria (e.g. RC ≥ 95%  and ωopt – 2% ≤ ωfield ≤ ωopt + 2% (DelDOT 

2001), otherwise compaction of the lift that was placed in the field must be repeated.      

As noted above, the most commonly used methods for compaction control 

use measurements of in situ soil density and moisture content to assess the 

effectiveness of the compaction process.  The most common in situ tests that are 

utilized with this approach are the nuclear density gauge test and sand cone equivalent 

test. 

2.9.1.1 Nuclear Density Gauge (NDG) 

The Nuclear Density Gauge (NDG), shown in Figure 2.18, is a quick and 

fairly accurate way to determine the in situ density and moisture content of a 

compacted soil. 

 

Figure 2.18 Nuclear density gauge 
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The NDG uses a radioactive isotope source (Cesium 137) at the soil 

surface (a backscatter technique) or from a probe placed into the soil (a direct 

transmission technique).  The isotope source gives off photons (usually Gamma and 

Beta rays), which radiate back to the gauge’s detectors on the bottom of the unit.  The 

wet density (ASTM D 2922–05) and water content of the soil (ASTM D 3017–05) are 

calculated based on the calibrated gauge readings. 

2.9.1.2 Sand Cone Equivalent 

The Sand Cone Apparatus (Fig. 2.19) is used to determine the in-situ 

density of any soil that can be excavated to a stable condition with hand tools (test 

procedure described in ASTM D 1556).  According to ASTM D 1556, this method is 

generally limited to materials with a maximum particle size of 5.1 cm (2 in). 

 

Figure 2.19 Sand cone apparatus 

To perform a sand cone replacement test, a hole is excavated in the area 

where the soil has been compacted, and the dry weight of the soil is obtained by 

determining the weight of the moist soil that is excavated and its moisture content.  
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The volume for the hole that has been excavated is determined by placing a uniform, 

standard sand into the hole, using a controlled “cone” placement procedure.  The in 

situ dry unit weight of the soil is then calculated by dividing the dry weight of the soil 

by the volume of the hole. 

2.9.2 Strength-based tests 

Strength-based test approaches provide an estimate of the modulus and/or 

stiffness of a soil layer, by applying a load to the soil and then measuring the resulting 

displacement response.  While such devices can be used to estimate a value for the 

elastic modulus of the soil layer, which is in theory an independent soil parameter, 

factors such as stress variability, moisture content, and unknown spatial effects 

influence the measurement.  The effects of stress are primarily due to differences in 

the applied mean and deviator stress levels, the applied strain level, and the applied 

strain rate.  These factors vary from device to device and they greatly affect the 

estimation of soil modulus (Briaud and Seo 2003).  This complicates comparative 

analysis of field devices and characterization of subgrade spatial variability (Camargo 

et al. 2006).  Common strength-based tests include the Plate Load Test (PLT), Light 

Weight Deflectometer (LWD) test, Falling Weight Deflectometer (FWD) test, 

Dynamic Cone Penetrometer (DCP) test, and the Soil Stiffness Gauge (GeoGauge) 

test. 

2.9.2.1 Plate Load Test (PLT) 

The static plate load test (PLT) is a commonly used approach for testing 

the performance of pavement and foundation layers in both rigid and flexible 

pavements.  The test involves loading a circular plate resting on the layer to be tested, 
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and measuring the associated deflection of the layer under varying load increments.  

Different sizes of load plate can be used for this test; however, for roadway testing, the 

plates are typically 30.5 cm (12 in) in diameter (ASTM D 1196-93).  Typically, load is 

applied to the plate by a hydraulic jack.  The plate must be loaded continuously until 

all measured settlement has subsided so that the actual deflection for each load 

increment is obtained.  The amount of time required for the preliminary settlement to 

take place is determined by plotting a time-deformation curve during the test.  At the 

point when the curve becomes horizontal, or when the rate of deformation nears 

0.0025-cm/min, the next load increment is applied.  According to the ASTM D 1196-

93 testing method, the test should continue until a peak load is reached or until the 

ratio of load increment to settlement increment reaches a minimum, steady magnitude. 

Usually, a PLT is run for two cycles of loading (Figure 2.20), which results in two 

modulus values, E1 and E2.  Normally, E2 is two to three times greater than E1 

(Forssblad 1980).   
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Figure 2.20 Typical loading cycles for PLT test 

The elastic modulus of the soil layer that is tested is calculated using 

Equation 2.32 (Alshibli et al. 2005). 
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where, EPLT = Secant modulus for each cycle of loading (MPa), k = π/2 and 2 for rigid 

and flexible plate, P = Applied load (kN), r = Plate radius (m), δ = Deflection of the 

plate (mm).  According to ASTM D 1196, a “rigid plate” is defined as a plate with 

deflection of less than 0.0025 mm (0.0001 in) from the center to the edge of plate, 

when the maximum load is applied. 
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2.9.2.2 Light Weight Deflectometer (LWD) 

The light weight deflectometer (Figure 2.21) induces a soil response by 

dropping a weight onto a plate resting on the test layer (ASTM E 2583–07).  A load 

cell within the instrument measures the time history of the load pulse and a geophone 

in contact with the test layer measures the time history of the soil’s velocity.  The 

velocity is then integrated to determine the displacement.  The time history files are 

automatically exported to a data acquisition system, where the peak load and 

displacement values are used to calculate modulus values.  Time history files can also 

be analyzed using a fast Fourier transform for a more accurate modulus calculation 

(Hoffmann et al 2003, Camargo et al. 2006). 

The elastic modulus of the subgrade soil is calculated from the surface 

deflection using the following Boussinesq equation (Rahman et al. 2007): 

( )
ave

LWD z
rkE ⋅⋅−⋅

= 0
21 σν   (2.33) 

where,  ELWD = LWD modulus (MPa);  k = π/2 and 2 for rigid and flexible plate, 

respectively (criteria used to determine plate rigidity are the same as for the PLT 

discussed above); zave = Average of three measured deflection at center of the plate 

(μm); σ0 = Applied stress (kPa); ν = Poisson’s Ratio; and r  = Plate radius (mm). 
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Figure 2.21 Light weight deflectometer (300 mm and 200 mm plate) 

Generally, there is a good correlation between PLT modulus and LWD 

modulus (Adam and Kopf 2004).  With cohesive soils, a linear relationship is often 

valid for the entire range of test results.  For cohesionless soils, a bi-linear relationship 

or a logarithmic function shows stronger correlative agreement (Adam and Kopf 

2004). 

2.9.2.3 Falling Weight Deflectometer (FWD) 

The falling weight deflectometer (FWD), shown in Figure 2.22, is a test 

device which imparts a load pulse to the soil surface to simulate the load produced by 

a rolling vehicle wheel (ASTM D 4694).  The load is produced by dropping a large 

weight, and the impact energy from this falling weight is transmitted to the pavement 
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through a circular load plate (typically 300 mm (12 in) diameter).  A load cell 

mounted on top of the load plate measures the load imparted to the pavement surface.  

Deflection sensors, usually consisting of geophones or force-balance seismometers 

that are mounted radially off the center of the load plate, measure the deformation of 

the pavement in response to the load.  Some typical deflection sensor offsets are 0 

mm, 200 mm (8 in), 300 mm (12 in), 450 mm (18 in), 600 mm (24 in), 900 mm (36 

in), 1200 mm (480 in), and 1500 mm (60 in).  The measured deflections at different 

stations are then used to back-calculate the modulus of the subgrade soil using 

Boussinesq’s equations (Rahman et al. 2007). 
 

 

Figure 2.22 Falling weight deflectometer 
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2.9.2.4 Dynamic Cone Penetrometer (DCP) 

The dynamic cone penetrometer (DCP), shown in Figure 2.23, is a test 

device that provides measurements of penetration resistance over depth, which are 

indicative of the stability characteristics of pavement layers (ASTM D 5169).  The 

DCP uses the impact force generated by a falling mass to drive a shaft with a conical 

point into a compacted material.  The conical point is sloped at 60°, the falling mass is 

8 kg (17.64 lbs), and the drop height is 575 mm (22.64 in) (Camargo et al. 2006).  

 

Figure 2.23 Dynamic cone penetrometer 

The shaft’s penetration into the soil is measured following every blow, 

and the resulting measurements of penetration per blow are used to determine the 

penetration index (DCPI) (Camargo et al. 2006).  Penetration index (DCPI), which 

typically has units of mm per blow, is inversely related to penetration resistance (i.e. 

soil strength). Equations 2.34 and 2.35 introduce two typical methods to calculate 



 65

“average” and “weighted mean” DCPI from the soil surface to a depth (z) (White et al. 

2007). 
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DCPI can be correlated to other soil or pavement performance indicator 

values such as California Bearing Ratio (CBR) (Equation 2.36) (Hossain et al. 2006) 

or elastic modulus (Equation 2.37) (DeBeer 1991).  

5.1)(log71.0220log DCPICBR −=   (2.36) 

)(log06166.104785.3log DCPIEDCP −=   (2.37) 

where, EDCP is the effective elastic modulus. 

The California bearing ratio test (CBR) (ASTM D 1883), discussed in the 

previous paragraph, measures the static penetration resistance of a soil as a function of 

penetration of a cylinder prior to reaching the ultimate shearing value of the soil.  The 

CBR is defined as a percentage determined by the ratio of the resistance in kPa at 2.5 

mm (0.1 in) penetration of the soil being tested to the resistance of a standard, well 

graded, crushed stone at the same penetration (2.5 mm) (percentage usually expressed 

as out of 100%).  The standard penetration stress for well-graded crushed stone is 

usually taken to be 6,895 kPa (1,000 psi) (Rahman et al. 2007). 
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2.9.2.5 Soil Stiffness Gauge (GeoGauge) 

The soil stiffness gauge, commonly referred to as the GeoGauge (see 

Figure 2.24), may be the least destructive device for obtaining the in-situ deformation 

characteristics of soil. 

 

Figure 2.24 Soil Stiffness Gauge (GeoGauge) 

This device has a height of 250 mm (0.8 ft), rests on a 280 mm (0.9 ft) 

diameter base, and weighs about 10 kg (22 lbs).  The base is a rigid ring-shaped foot 

on the soil surface (with a radius of 57.15 mm (2.25 in) (ASTM D 6758).  The 

GeoGauge works by applying a vibrating force via the underneath rigid ring to the 

underlying soil.  A mechanical shaker, which is attached to the base, vibrates the 

GeoGauge from 100 to 196 Hz in 4 Hz increments.  It produces 25 different 

frequencies generating a quasi static force of ~ 9 N and a small deflection (Alshibli et. 

al. 2005).  The applied force and the displacement-time history are measured by two 

velocity sensors.  The in-situ soil stiffness is measured at each frequency and finally, 
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the average value is recorded.  It measures the stiffness up to 220 to 310 mm (0.7 to 1 

ft) of depth from the contact surface (Humboldt Mfg. Co. 2000, White et al. 2007).  

The corresponding soil modulus can also be calculated from the measured stiffness 

values (Equation 2.38) if the Poisson’s ratio of the soil is available (Humboldt Mfg. 

Co. 2000, White et al. 2007): 

R
FESSG 77.1

1 2ν
δ

−
⋅=   (2.38) 

where, ESSG = GeoGauge modulus (MPa), F = Dynamic force caused by the vibrating 

device (N), δ  = Deflection measured with a geophone (mm), ν  = Poisson’s ratio, and 

R = Radius of the annular ring (mm).  

2.10 Current CCC/IC Construction Specifications 

The first specifications for Intelligent Compaction of soils and aggregate 

were established in the early 1990's in Europe.  The following is a timeline of 

specification development for CCC/IC of soils and aggregates. 

• Earthworks (Austria) - 1990 (revised in 1993 and 1999) 

• Research Society for Road and Traffic (Germany) - 1994 (updated 

in 1997) 

• Vägverket (Sweden) - 1994 (current specification is 2005) 

• ISSMGE (International Society for Soil Mechanics and 

Geotechnical Engineering) - 2005 

• Mn/DOT - 2006 TH 64 (Minnesota DOT) - Pilot Specification in 

2006  
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In this section, a brief review of current specifications that are currently 

being used for compaction control in conjunction with CCC/IC equipment are 

presented (White et al. 2007).  

2.10.1  Earthworks (Austria) 

2.10.1.1 Equipment Specifications  

Vibrating roller compactors with rubber wheels and smooth drums that 

can also be propelled are preferred, but other configurations are acceptable in certain 

circumstances.  The vibration behavior of the drum must be reproducible. 

2.10.1.2 Location Specifications (including size, depth, and track overlap)  

Sizes of measuring fields and tracks should correspond to those of the test 

field, usually 100 m (300 ft) long and the width of the site.  Test section should be 

characteristic of the entire site.  Track overlap should be less than 10% of the roller 

drum width.  These factors should be attended to: evenness, inhomogeneities of 

materials or water content, loose surface, and location correspondence of the 

measurement locations (between the roller and the plate load test). 

2.10.1.3 Compaction Process and Specifications 

 On a compacted test field, a forward measuring pass and then a reverse  

static pass must occur twice on each track.  If the result on a track differs widely from 

the average of the others, further passes must be performed to attempt additional 

compaction.  Measuring passes for construction should continue until the mean of a 

pass is no more than 5% higher than the mean of the preceding pass.  
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Calibration involves the correlation of dynamic measuring values with the 

modulus of the static 30 cm (12 in) load-bearing plate test (Ev1).  In the test field, Ev1 

values should be measured immediately after the measurement run in locations with 

low, medium, and high dynamic measurement values (9 runs in places where no jump 

mode occurred).  A linear regression must show a correlation coefficient greater than 

0.7.  The minimum value must be greater than 95% of the required Ev1 value, and the 

mean must be more than 105% (or greater than 100% during jump operation).  No 

more than 90% of the track should be below the specified minimum for each 

measuring pass.  The measured minimum must be greater than 80% of the specified 

minimum.  The percent standard deviation (relative to the median) must be less than 

20% within a measuring pass.  The measured maximum within a run cannot exceed 

the set maximum (i.e., 150% of the determined minimum). 

2.10.1.4 Miscellaneous Specifications (moisture, speed, frequency, etc.) 

The excitation frequency should be kept constant (within a tolerance of ± 

2 Hz).  Forward travel velocity should be constant at 2–6 km/h, ± 0.2 km/h (1.2-3.7 

mph  ± 0.1 mph ).  When the fraction of fine particles smaller than 0.06 mm (0.002 in 

) is larger than 15%, special emphasis is laid on water compliance. 

2.10.1.5 Documentation Requirements 

Measurements must be linked to location coordinates, clearly displayed to 

the driver, and available for future review.  Surface and track plots must be printable.  

The following should be recorded during calibration: compaction run plan, sequence 

of compaction and measurement runs, change in amplitude and/or speed (with 

explanation), and inter-comparison (location and allocation for every measurement 
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run).  For measurement runs, the system should automatically document the minimum, 

maximum, median, and deviation of dynamic measuring values, amplitude, frequency, 

speed, and jump mode. 

2.10.2 Research Society for Road and Traffic (Germany) 

2.10.2.1 Equipment Specifications 

Self-propelled rollers with rubber tire drive are preferred; towed vibratory 

rollers with an associated towing vehicle are suitable.  The acceleration transducer 

must be correctly fitted at the drum of the roller.  The Operator must be able to read 

the measuring value, travel speed, and frequency on a display or recording unit. 

2.10.2.2 Location Specifications (including size, depth, and track overlap) 

Surface must be level and free of puddles.  Conditions of the calibration 

area must be almost identical to that of the testing area in regards to soil type, water 

content, layer thickness, bearing capacity of the support ground, type of compaction 

equipment and measuring roller, measuring system, and rest time after compaction. 

Track overlap should not exceed 10% of the machine width. 

2.10.2.2 Compaction Process and Specifications 

The calibration field is compacted over the full width, outside strips first.  

Each calibration area must cover at least 3 partial fields approximately 20 m (66 ft) in 

length and have areas of light, medium, and high (full) compaction.  Testing drives 

should occur in the same direction as calibration drives, must cover entire area to be 

evaluated, and cannot be performed during or immediately after heavy rain. Values 

detected during jump operation cannot be used if not auto-corrected by the system.  
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Calibration available from a similar construction site may be used with customer 

agreement. 

Calibration is based on either (1) the correlation of the dynamic measuring 

value and the static modulus of deformation Ev2 or (2) the degree of compaction.  The 

correlation coefficient resulting from a regression analysis must be greater than 0.7 for 

the calibration to be valid.  Individual area units (the width of the roller drum) must 

have a dynamic measuring value within 10% of adjacent area units to be suitable for 

calibration measurements.  After the test, poorly compacted spots must be 

subsequently compacted and re-tested.  If widespread, the calibration may no longer 

be valid.  Further examination of soil characteristics may be required. 

2.10.2.4 Miscellaneous Specifications (moisture, speed, frequency, etc.) 

Frequency and travel speed of the roller should be kept constant. 

2.10.2.5 Documentation Requirements 

Data must be recorded in a contractually agreed form and must be 

associated with the exact location of the testing lot, including the measuring value, 

speed, frequency, jump operation, amplitude, travel distance, time of measurement, 

roller type, soil type, water content, and layer thickness.  Test report also includes 

purpose of test drive; date, time, file name, or registration number; weather conditions; 

position of test tracks and rolling direction in test lot; application position or absolute 

height; local conditions and embankments in marginal areas; machine parameters; and 

any perceived deviations that occurred in the test drive.  Graphical presentations of 

measuring data should be provided. 
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2.10.3 Vägverket (Sweden) 

2.10.3.1 Equipment Specifications 

Roadbases shall be compacted using a vibratory or oscillating single-drum 

roller exerting a linear load of at least 15–30 kN/m (0.5-1.0 tnf/ft). 

2.10.3.2 Location Specifications (including size, depth, and track overlap) 

Compaction shall be performed on homogenous layers of non-frozen 

material.  Thickness of the largest layer is typically 0.2-0.6 m (0.6-2.0 ft).  The 

allowable deviation of surface levelness depends on layer type.  An accepted layer 

must be inspected again if (1) an intervening frost season occurs before placement of 

the next layer, (2) surface has been used by traffic, or (3) adjustment is performed 

after the inspection. Protective layers less than 0.5 m (1.6 ft) may be compacted with 

the sub-base. 

2.10.3.3 Compaction Process and Specifications 

Gravel wearing courses shall be compacted by two passes of a roller 

exerting a static linear load greater than 15 kN/m (0.5 tnf/ft ).  For unbound roadbases 

of surfaced roads in evenness classes 1-2 and for gravel roads, the roller shall make at 

least 4 passes if a compaction meter with documentation system is used.  Areas 

exhibiting bearing capacity growth shall be compacted further. 

Requirements for bearing capacity or degree of compaction should be met 

for the following objects: protective layers > 0.5 m (1.6 ft) thick and ≤ 6000 m2 ( 1.5 

acre), sub-bases ≤ 6000 m2( 1.5 acre), and roadbases ≤ 4500 m2 (1.1 acre).  When a 

roller-mounted compaction meter is employed during compaction of unbound 

pavements, the bearing capacity or degree of compaction should be measured at two 
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points in the inspection object, at the weakest sections, as indicated by the compaction 

meter. 

Requirements for compaction and for the bearing capacity ratio (Ev2:Ev1) 

of the static plate loading test are dependent upon layer type.  The mean of the two 

bearing capacity ratio values must be greater than 40 for individually compacted 

protective layers, greater than 110 for sub-bases under roadbases less than 100 mm (4 

in) in thickness, greater than 95 for sub-bases under roadbases thickness more than 

100 mm (4 in), and greater than 130 for roadbases.  The mean of the two degree of 

compaction values should be greater than 89% for protective layers greater than 0.5 m 

(1.6 ft) thick and for any sub-base under a roadbase, and the mean should be greater 

than 90% for roadbases.  Other formulas are also in effect for determining the 

acceptability of measured Ev2:Ev1 values and ratios. 

2.10.3.4 Miscellaneous Specifications (moisture, speed, frequency, etc.) 

Best compaction is achieved if moisture content is close to optimal (as 

determined by separate procedure).  Compactor must move at a constant speed of 2.5-

4.0 km/h (1.5-2.5 mph), and low amplitude should be used during compaction.  Dry 

density may be measured via isotope meter (e.g. NDG). 

2.10.3.5 Documentation Requirements 

None specified. 
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2.10.4  ISSMGE (International Society for Soil Mechanics and Geotechnical 
Engineering) 

2.10.4.1 Equipment Specifications 

The CCC/IC measuring system must enable a clear presentation of the 

required values, and these values must be displayed directly to the roller operator.  

The roller should be chosen by experience, considering parameters of the specific 

construction site. 

2.10.4.2 Location Specifications (including size, depth, and track overlap) 

The surface of the compacted soil should be homogenous and even, 

allowing the roller drum to have full ground contact.  The Contractor and Controller 

should jointly determine the measuring field.  The sizes of the measuring fields and 

tracks should correspond to those of the test field.  Usually, a section 100 m (300 ft) 

long by the width of the road (or embankment) is selected as a test field within the 

construction section.  Overlap of roller tracks should not exceed 10% of the roller 

drum width. 

2.10.4.3 Compaction Process and Acceptance Specifications 

On a compacted test field, a forward measuring pass and then a reverse 

static pass must occur at least twice on each track.  If any track differs widely from the 

average of the others, further passes must be performed to attempt additional 

compaction.  Measuring passes for construction should be continued until the mean of 

a pass is no more than 5% higher than the mean of the preceding pass.  Immediately 

after the test compaction passes, nine measurements of the Ev1 value must be 

performed at areas with low, medium, and high measuring values, where no double 

jump occurred.  The “tester” selects measurement points.   
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The common calibration procedure involves the correlation of dynamic 

measuring values with the modulus of the static load plate test (Ev1); other tests are 

also allowed.  A linear regression between this data must show a correlation 

coefficient more than 0.7.  The minimum must be greater than 95% of the required Ev1 

value, and the mean must be greater than 105% (or more than 100% during jump 

operation).   

No more than 90% of the track should be below the specified minimum 

for each measuring pass.  The measured minimum must be greater than 80% of the 

specified minimum. The percent standard deviation (relative to the mean) must be less 

than 20% within a measuring pass. 

2.10.4.4 Miscellaneous Specifications (moisture, speed, frequency, etc.) 

 Rollers must be operated at a constant travel speed of 2-6 km/h, ± 0.2 

km/h (1.2-3.7 mph ± 0.1 mph).  The excitation frequency must be kept constant during 

each measuring pass (within a tolerance range of ± 2 Hz).  If the fine grained portion 

of smaller than 0.06 mm (0.002 in) exceeds 15%, special attention must be given to 

the water content. 

2.10.4.5 Documentation Requirements 

Calibration must document the following: rolling pattern, sequence of 

compaction and measuring passes, change of amplitude and/or travel speed (with 

associated reasons), and comparative tests (locations, allocation to the specific 

measuring pass).  Prior to each measuring pass, a track plot of the dynamic measuring 

values must be recorded (and must be printable).  The minimum, maximum, mean, 

deviation, and other values must also be automatically documented for the following: 
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dynamic measuring values, theoretical amplitude, frequency, travel speed, and jump 

operation. The area plot must be printed. Values must have assigned coordinates, must 

be stored for future review, and be guaranteed to be free of manipulation. 

2.10.5 Mn/DOT - 2006 TH 64 (Minnesota DOT) 

2.10.5.1 Equipment Specifications  

A smooth drum or padfoot vibratory roller weighing at least 11,300 kg 

(25,000 lbs) is recommended.  The roller must be equipped with an onboard GPS 

system to allow continuous recording of roller location and corresponding compaction 

output (e.g., number of roller passes and CCC/IC measurements).  The Contractor 

shall provide at least one roller equipped with a Continuous Compaction Control 

(CCC) or Intelligent Compaction (IC) system during earthwork construction.  The 

CCC/IC roller must be the final roller used to obtain compaction on the proof layers. 

2.10.5.2 Location Specifications (including size, depth, and track overlap) 

 Each control (calibration) strip must be at least 100 m x 10 m (300 ft x 32 

ft) at its base (or another size as approved by the Engineer).  The control strip 

thickness should equal that of the planned granular treatment thickness that will be 

constructed (up to a maximum of 1.2 m (4.0 ft).  It is recommended to construct one 

control strip for each different type/source of grading material that will be used on the 

construction site. 

2.10.5.3 Compaction Process and Acceptance Specifications 

The Contractor and Engineer should save material samples from each of 

the control strips for comparison with the embankment materials that will be placed.  
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Compaction and mixing shall be uniform from bottom to top and for the entire length 

and width of the embankment.  Optimum compaction is reached when the engineer 

determines that additional compaction passes do not result in a significant increase in 

stiffness.  Intelligent Compaction Target Values  (IC-TV) for all proof layers shall be 

the values obtained on the 1.2 m (4.0 ft) layer of each control strip unless the layer 

thickness is less than 0.75 m (2.5 ft).  In that case, IC-TV is the value obtained on the 

0.6 m (2.0 ft) layer of the strip.  All segments shall be compacted so at least 90% of 

the IC stiffness measurements are at least 90% of the IC-TV prior to placing the next 

lift.  If localized areas have IC stiffness of less than 80% of the IC-TV, the areas shall 

be re-compacted.  If a significant portion of the grade is more than 30% in excess of 

the selected IC-TV, the engineer shall re-evaluate the IC-TV. 

2.10.5.4 Miscellaneous Specifications (moisture, speed, frequency, etc.) 

 Water content should be within 65% to 100% of the optimum moisture 

content, as determined by the standard Proctor density method (ASTM- D 698).  The 

Contractor shall add water, and/or perform blending as needed to meet the moisture 

requirements.  Control strips constructed at each moisture content extreme can be used 

to determine a linear IC-TV correction trendline.  The Engineer may order the 

Contractor to provide a light weight deflectometer and/or electronic moisture meter or 

other moisture testing device.  The Engineer grants final approval, based on 

observation of final compaction/stiffness recording pass, approval of weekly QC 

reports, moisture tests, and test rolling requirements. 
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2.10.5.5 Documentation Requirements 

 Weekly QC report must document all compaction results, IC stiffness 

measurements, moisture testing results, QC activities, and corrective construction 

actions taken in order to meet specs.  Roller output must be immediate to allow for 

real-time corrections, must be available for review on demand, and must include a 

plan-view, color-coded plot of roller stiffness and/or pass number measurements (or 

other approved data format). 

2.11 Other New Methods for Compaction Control 

Automated compaction control can also be achieved by the spectral 

analysis surface wave method (SASW) or the continuous surface wave technique 

(CSW) (Brandl and Adam 2004).  Both compaction control methods are non-intrusive 

and applicable for soils and other granular materials of all types.  In contrast to the 

CCC methods discussed earlier in this chapter, SASW and CSW techniques require 

separate external testing equipment that has to be placed on a level ground surface, 

often consisting of an electromagnetic vibrator to generate surface waves and a row of 

geophones to detect these waves.  Consequently, real-time continuous compaction 

optimization is not possible, and trying to use a continuous compaction control 

technique with this approach may require extensive calibration.  However, a 

significant advantage of the CWS technique is its deep-reaching capacity which 

enhances the post-evaluation process of the compaction quality for the entire soil 

structure (Brandl and Adam 2004). 

Continuous density control of a compacted layer has been studied as well 

using a nuclear-based approach.  The first American attempt at continuous density 

readings was performed in 1984 and was called Density on the Run (DOR) (Minchin 
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and Thomas 2005).  This system utilizes gamma photons in the same manner as the 

nuclear density gauge does, and was mounted on the compactor at a fixed distance 

from the asphalt surface.  It also uses the same air-gap ratio method as the one that is 

used by stationary NDGs, and involves mounting a radioactive source and a gamma 

detector below the axle shaft.  The detector converts the data to density and percent 

compaction (Minchin and Thomas 2005).  Recently, a new recording system has been 

developed for making density measurements in pavement construction, called the 

Onboard Density Measuring System (ODMS). The approach used by this system is 

patented by Penn State University (patent no. 6,122,601), and offers density 

measurements in real time at a rate of one per second during the compaction process, 

thereby providing the constructor with the opportunity to recognize and correct 

compaction problems immediately while maintaining a permanent record of the entire 

compaction process.  The basis of this method is to establish a relationship between a 

compactor's vibratory response and the density of the asphalt mat being compacted 

(Minchin and Thomas 2005). 
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Chapter 3 

FIELD STUDY 

3.1 Introduction 

An experimental study was performed at Burrice Borrow Pit (Figure 3.1) 

in Odessa, Delaware in July of 2008 to independently investigate the use of 

continuous compaction control (CCC) systems under real field conditions and to 

evaluate the effectiveness and reliability of this technology as a new quality control 

technique.   

 

Figure 3.1 The designated area for the field study at Burrice Borrow Pit, 
Odessa, Delaware 
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In pursuit of this goal, a number of state-of-the-art in-situ tests were 

performed in areas that had been compacted by a CCC equipped roller, to allow for 

comparisons between in situ test results (more conventional methods) and CCC 

measurements.  This chapter describes in detail the field study that was conducted. 

3.2 Constructing the Embankment 

A 61 m long by 6 m wide (200 ft by 20 ft) embankment was built out of 

poorly-graded sand with silt (SP-SM) and silty sand (SM) (the former was 

predominant) (ASTM D 2487), a commonly used borrow material for the Delaware 

Department of Transportation, which conforms to DelDOT class G borrow 

specifications, Grades V and VI (Figure 3.2).   

 

Figure 3.2 Gradation results for field samples taken from in situ test locations 
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Table 3.1 provides overall gradation information for the compacted soil, 

as determined from the 53 samples that were analyzed from the field site.  In the 

“Unified Classification” row, the numbers in parentheses refer to the number of 

samples of each type that were observed:  36 were classified as SP-SM and 17 were 

classified as SM.  However, as shown in Figure 3.2, there was relatively uniform 

consistency for the soil types that were tested, despite the differing classifications that 

were observed.  A few Atterberg limit tests (ASTM D 4318-05) conducted on the fine 

portion of the soils indicated that the finer portion of the soils examined in this study 

were nonplastic (NP) in nature. 

Table 3.1 General information of the classification results 

Sieve Results Min Max Mean Std. Dev. CV (%) 
> No. 4 (%) 3.11 21.73 10.01 3.86 38.50 

< No. 200 (%) 8.89 16.41 11.67 1.65 14.12 
< 2μm (%) 4.23 7.10 5.46 2.81 51.52 

Cu 21.71 128.07 66.84 38.52 57.64 
Cc 6.78 30.93 16.77 9.45 56.33 

Unified Classification. SM (17) SP-SM (36) SP-SM NA NA 
 
 

The embankment was constructed to an approximate total final height of 

0.9 m (3.0 ft), by compacting five 20.3 cm (8 in.) loose lift layers, in accordance with 

Delaware general specifications for road sub-base construction (DelDOT 2001).  

Before beginning construction, the designated area was marked by 

installing grade stakes at approximately 3.0 m (10 ft) intervals on either sides of the 

construction pad.  Elevation readings for independent control of the construction 

process were taken using a surveyor’s level and level rod (Figure 3.3).  These tools 

were also used to align the boundary of the proposed pad and to direct the installation 
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of grade stakes in a relatively straight line.  GPS survey was later used to confirm the 

location of the 26 grade stakes that were installed, as shown in Figure 3.4. 

 

Figure 3.3 Installing the grade stakes; (a) level shooting, (b) driving the grade 
stakes  
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Figure 3.4 Location of grade stakes on the construction area 

A GPS base station was also set up before starting construction in the fill 

area, as shown in Figure 3.5.  As described in Chapter 2, all GPS measurements were 

conducted relative to the defined base station location, which was constant and located 

in a safe place away from the on-site construction traffic.   
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Figure 3.5 Local GPS station 

To construct each lift, a Caterpillar 980H bucket loader was used to place 

fill for spreading by the on-site bulldozer, as shown in Figure 3.6.  The material was 

supplied from a nearby borrow area and deposited in rows at various locations along 

the test pad for easy and efficient spreading with a bulldozer.  The 980H bucket loader 

did not traffic on the test pad area itself during the construction process. 

 



 86

 

Figure 3.6 Placing the fill material for spreading 

A Caterpillar D6K dozer was then utilized for spreading the material to an 

approximate loose-lift thickness of 20.3 cm (8 in), as shown in Figure 3.7.  The D6K 

dozer was equipped with a GPS system, which proved beneficial in establishing a 

more uniform loose-lift thickness.   

 

Figure 3.7 Spreading the fill material using a GPS-equipped bulldozer  
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Two methods were used to verify the expected loose-lift thickness of each 

lift; during fill placement the dozer operator checked lift thickness via the GPS control 

system mounted on the dozer blade, after lift completion the thickness was confirmed 

by spot-checking elevations throughout the test pad area using a GPS rover unit 

(Figure 3.8). 

 

Figure 3.8 Spot-checking the loose lift thickness using a GPS rover unit 

After spreading each lift, a water truck was driven through the test area as 

needed to adjust the moisture content of the fill material to achieve optimum 

compaction (Figure 3.9). 
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Figure 3.9 Adjusting the moisture content to optimize field compaction 

Upon completion of loose-lift soil placement and moisture conditioning, 

each soil lift was compacted using a Caterpillar CS56 vibratory smooth drum roller 

(Figure 3.10).   

 

Figure 3.10 Caterpillar CS56 compactor; (a) side view, (b) front view, and (c) 
back view, preparing to compact on the test pad 

This prototype compaction equipment has been specially modified by 

Caterpillar research engineers to measure both MDP and CMV values simultaneously 

(refer to Chapter 2 for a detailed discussion of these properties), while also using an 

on-board GPS system to accurately establish the location of the compactor as it makes 
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in-situ measurements.  The roller drum was 2.1 m (7 ft) wide, and had an operating 

weight of 11414 kg (25164 lbs).  Compaction was performed using both low and high 

amplitude vibration (0.85 and 1.87 mm, 0.033 and 0.074 in), at a vibratory frequency 

of about 31.9 Hz (1,914 vibrations per minute).  Typically, to speed up the compaction 

process, high amplitude compaction was performed on the loose materials in the first 

pass for each layer, and the following passes were performed using low amplitude 

compaction.  This approach was used to prevent overcompaction and to generate 

CMV values that were more representative of the layer that was being compacted (this 

was necessary because higher amplitude compaction was assumed to cause the 

measured CMV values to be more affected by the stiffness of underlying soil layers).   

In addition, it was assumed that using high amplitude compaction for all passes 

increased the probability to enter into the mode of double jump, which was not 

desirable.  MDP and CMV values were collected approximately every 30 cm (1 ft) 

along the length of the test sections. The working speed of the roller was about 3.2 

km/h (2 mph). 

Using the modified Caterpillar CS56 compactor, each lift was compacted 

in a series of passes using three side-by-side lanes (the roller width was 2.1 m (7 ft), 

the test pad width was 6 m (20 ft), which left approximately 15 cm (6 in) of overlap at 

the edges of each compacted soil “lane”).  For each lift, between 6 and 9 compactor 

passes were performed to achieve the desired level of compaction (target dry unit 

weights > 95% of the maximum dry unit weight obtained from a 1-pt Standard Proctor 

test, used with a “family of curves” compaction approach).  Figure 3.11 shows the 

direction of the roller movement during the compaction of each lift.  The numbers that 

are shown ranging between 1 and 3 give the sequence of lane compaction for each lift.   
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Figure 3.11 Direction of compaction and in-situ testing plan on each lift and 
pass 

During compaction, a computer screen in the cab displayed real-time 

MDP and CMV measurements to the roller operator using a color-coded map (Figure 

3.12).   
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Figure 3.12 Color-coded map inside the roller cab 

Once relatively little change in MDP value was observed by the operator, 

compaction for a given lift was stopped.  The number of compactor passes that were 

performed to achieve compaction in this study are consistent with the level of 

compactive effort that is typically required to meet the current DelDOT dry-density 

specifications, based on technician experience with this borrow soil at other field 

construction projects (DelDOT representative, personal communication).  

Table 3.2 shows the number of passes and time of construction for each 

compacted lift, and those passes for which CCC and in situ data was recorded for 

comparison purposes. 
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Table 3.2 General information of the lift and passes 

Lift  Number of Passes 
Performed 

Passes #’s where 
Data was Recorded Date 

Start of 
Compaction 

for this 
Pass 

End of 
Compaction 

for this 
Pass 

Base Layer 2 2 7/21/2008 14:18 14:29 
Lift 1 6 NA 7/22/2008 NA NA 
Lift 2 6 6 7/22/2008 18:16 18:22 
Lift 3 8 8 7/23/2008 11:30 11:36 
Lift 4 9 9 7/23/2008 16:22 16:28 

1 7/24/2008 11:08 11:18 
2 7/24/2008 12:14 12:20 
3 7/24/2008 13:14 13:22 
4 7/24/2008 14:51 14:57 
5 7/24/2008 15:07 15:13 

Lift 5 7 

7 7/24/2008 16:22 16:28 
 
 

As shown in Table 3.1, the CCC data that was recorded for Lift 1 was lost 

because of an on-site technical issue related to data storage and download from the 

CCC equipment.  For the sake of time, Lift 5 was the only lift for which successive 

passes were recorded by the roller operator for comparison with in situ test results; for 

the other lifts, CCC data were only collected for the final passes for each lift. 

3.3 In-situ Testing 

During this study, additional in-situ testing was performed for the base 

materials underlying the test pad and at the completion of the final compactor pass for 

each lift.  In addition, for the 5th lift, in-situ tests were performed after the 1st, 2nd, 3rd, 

5th and 7th passes (out of 7 passes total for this lift).  For each lift, 19 test stations were 

established at ≈ 3 m (10 ft) intervals along the centerline.  For the 1st, 2nd, 3rd, and 5th 

passes of lift 5, a reduced in-situ testing plan was followed, to speed the rate of in-situ 

testing, so the compactor could return to the lift quickly before a significant change in 
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water content could occur.  For each in-situ testing series, confirmation of in-situ test 

locations was performed using the GPS rover unit.  

Six types of in-situ tests were performed at various test locations during 

this study, including the:  light weight deflectometer (LWD), GeoGauge, nuclear 

density gauge (NDG), electronic density gauge (EDG), dynamic cone penetrometer 

(DCP), and sand cone testing.  Each test series was accompanied by disturbed soil 

sampling, for later determination of the moisture content, particle size characteristics, 

and Proctor compaction curve.  The order of in-situ tests was adopted based on the 

effect that soil disturbance could have on the in-situ test results.  In general, the in-situ 

tests noted above are listed in the order in which they were performed at each location.  

Figure 3.13 shows the sequence of in-situ tests being performed on the compacted 

pad.  On the last day, thanks to support provided by the Maryland Department of 

Transportation, a falling weight deflectometer (FWD) was also added to the in-situ 

testing methods that were used. 
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Figure 3.13 Sequence of in-situ tests being performed 

In order to effectively accomplish each test series, a slight test location 

offset was performed with respect to previous test locations.  This offset was 

performed in an attempt to minimize the influence of prior soil sampling for 

underlying layers on the in-situ test results for the soil layer that is being tested. 

3.3 Factors that May Have Influenced the Measured Data  

Some significant natural factors had the potential to influence the in-situ 

test results and associated CCC measurements during the field study.  Weather 

conditions were the first contributing factor, which caused variabilities over time with 

respect to the in situ moisture content of the soil.  Daytime temperatures were in the 

range of 90 ˚F during the study, which had the tendency to dry the soil over time.  In 

addition, in the evening of 07/22/2008, overnight heavy rains increased the in situ 

water content of the soil prior to the beginning of the next day’s compaction (Figure 

3.14). 
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.  

Figure 3.14 Heavy rain fall affected the water content of the compacted material 
(07/23/2008, 7:48 AM) 

Another factor which had the potential to impact the measured values was 

the existence of some cobbles in the fill material that could be a potential source of 

variation in the recorded data (Figure 3.15).  Manual “rock-picking was performed 

periodically in the fill area to try to remove these cobbles when they were encountered 

(which was not all that frequently).  However, the potential presence of these types of 

rocks in the fill material should be noted, as they can influence the measured test 

results. 
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Figure 3.15 Existence of occasional large rocks and cobbles in the fill material 

More details on the daily activities that were conducted in this field study 

can be found in Appendix A, in the form of a daily report of site construction 

activities. 
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Chapter 4 

IN-SITU MEASUREMENTS 

4.1 Introduction  

As described in Chapter 3, several in-situ testing techniques were 

employed in the field study to evaluate the effectiveness of the continuous compaction 

control system.  Prior to any statistical analysis of the recorded CCC data, it is 

beneficial to see the variation of the recorded in situ test values along the compacted 

area.  This data is presented to provide a brief insight into the nature and quality of the 

compaction process, prior to further discussion and analysis of the measured CCC 

results (Chapter 5).  This chapter provides an overview of the results from the in situ 

tests that were performed.  

4.2 In-situ Measured Values over the Compacted Area 

As discussed in detail in Chapter 2, the goal of compaction is to improve 

the mechanical and physical properties of the soil.  The conventional method that is 

used to control the quality of the compaction process is to perform a number of 

random spot tests on the compacted area and to compare the results with standardized 

laboratory control tests (DelDOT 2001, ASTM D 698, ASTM D 1921, ASTM D 

2216).  In this study, the types of in situ quality control tests that were performed can 

be grouped into two general categories:  density-based and modulus-based test 

methods.  The nuclear density gauge (NDG) was used for density-based testing.  The 
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following devices were used to conduct modulus-based tests:  a light weight 

deflectometer (LWD) with plate diameter of 200 mm (LWD 200), a falling mass of 10 

kg (22 lbs), and a drop height of 540 mm (21.3 in); a LWD with a plate diameter of 

300 mm (LWD 300), a falling mass of 10 kg (22.0 lb), and a drop height of 730 mm 

(28.7 in); a dynamic cone penetrometer (DCP) with falling mass of 8 kg (17.6 lbs), a 

drop height of 575 mm (22.6 in), and an overall penetration depth of 152.4 mm (6 in); 

and a GeoGauge.  The basic operating principles behind each of these tests are 

described in more detail in Chapter 2.  Although other in situ tests were performed 

periodically during the field study (as described in Chapter 3), these in-situ tests were 

the most frequently utilized, and consequently their results are the most useful for 

understanding how compaction progressed for each lift.  

All of the data presented in this chapter correspond to in situ tests that 

were conducted along the middle lane of compaction (in general, along the centerline 

of the test pad area, with only minor location offsets).  Data recorded correspond to in 

situ tests conducted after the final passes of each lift and for sequential compactor 

passes on Lift 5.  Figures 4.1a and 4.1b show the values of dry unit weight that were 

measured using the NDG test. 
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Figure 4.1 Variation of NDG measured dry unit weight along the centerline; a) 
all final passes b) successive passes on Lift 5 

As shown in Figure 4.1, the dry unit weight measured by the NDG varied 

in the range of 16.5 kN/m3 to 19.0 kN/m3.  Among the compacted lifts, the base layer 

had the lowest final dry unit weight and Lift 5 exhibited the largest values overall 

(note however that the values for Lift 5 were generally consistent with those measured 
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for other lifts at various points along the centerline).  The gradual improvement of the 

soil with successive compaction passes is also apparent in Figure 4.1b.   

Figures 4.2a and 4.2b show the degree of compaction or relative 

compaction (RC) along the centerline.  Commonly used for performing compaction 

control in the State of Delaware, a given value of relative compaction is calculated by 

dividing the dry unit weight of the soil by the maximum dry unit weight determined 

using a “family of curves” approach along with data from a 1-pt standard Proctor test 

(ASHTO T 272).  To present the results in percent, the calculated relative compaction 

value is multiplied by 100.   

The Delaware DOT earthwork construction specifications dictate an 

acceptance criteria of ≥ 95% for the relative compaction; for comparison purposes, 

this criteria is also shown in Figures 4.2a and 4.2b (DelDOT 2001).  As shown in 

Figure 4.2a, with the exception of the base layer (which was only proof-rolled), the 

degree of compaction for the final passes of each lift generally met the DelDOT 

relative compaction criteria (only 3 of the points would have failed by this criteria).  

Unfortunately, values of relative compaction could not be determined for the 

successive passes of Lift 5, as 1-pt Proctor tests could not be run at the same location 

for each pass without extensive soil sampling in the zone of interest, which would 

have affected the overall test results from the field study.  Consequently, 

corresponding “per pass” values were not available for presentation in Figure 4.2b.   

 



 101

 

Figure 4.2 Variation of relative compaction values along the centerline; a) all 
final passes b) successive passes on Lift 5 

Figures 4.3a and 4.3b display the variation of NDG measured water 

contents for the compacted lifts.  According to DelDOT specifications, the moisture 

content of the select borrow base course material at the time of compaction shall be 

within 2% of the optimum moisture content, which is also provided for each point 

(from the 1-pt Proctor tests) on the relevant figures.  It should be noted that the 
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average of the optimum moisture contents for the compacted material was 11.7%, as 

determined using the 1-pt Proctor method with the associated family of curves for this 

borrow material.  

 

Figure 4.3 Variation of NDG measured water content along the centerline; a) 
all final passes b) successive passes on Lift 5 
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The water content of the compacted soil was also measured by performing 

oven-dried laboratory water content measurements (ASTM D 2216) on specimens 

taken from the specified stations, as shown in Figure 4.4.  For comparison purposes, 

the associated water content criteria ranges provided in Figure 4.3 are also shown in 

this figure.  
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Figure 4.4 Variation of laboratory measured water content along the 
centerline; a) all final passes b) successive passes on Lift 5 

Figure 4.3 and Figure 4.4 both indicate that the base layer was compacted 

at a significantly lower moisture content than the other lifts (this is not surprising, as 

moisture conditioning was not performed for the base layer, which was only proof-

rolled), and that the successive passes of Lift 5 were compacted at approximately the 

same water content, within the range of acceptable water content values.  In general, 
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compaction of the soil at this project site was performed on the dry side of optimum 

with respect to the standard Proctor curve for this soil. Figures 4.5 and 4.6 provide a 

comparison between the measured NDG water contents and the associated Lab water 

contents, respectively, with their corresponding allowable ranges of water content 

around the optimum (based on data from 1-pt Proctor tests conducted on the final 

passes).  The measured water contents are presented with solid lines while the 

corresponding  ωopt – 2% and ωopt + 2% values are specified with dashed lines.   
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Figure 4.5 Comparing the NDG water contents with the corresponding criteria 
range around the optimum water contents for the final passes of:  a) 
the base layer, b) Lift 2, c) Lift 3, d) Lift 4, and e) Lift 5 
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Figure 4.6 Comparing the Lab water contents with the corresponding criteria 
range around the optimum water contents for the final passes of:  a) 
the base layer, b) Lift 2, c) Lift 3, d) Lift 4, and e) Lift 5   
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By examining Figures 4.5 and 4.6, it can be seen that the base layer and 

Lift 2 were compacted below the range of acceptable water content.  The same issue 

holds for half of the measurements for the final pass of Lift 5 and small portion of Lift 

4.  Lift 3 was the only lift which completely passed the acceptance criteria for 

moisture content.  However, Lifts 4 and 5 were extremely borderline cases, and 

probably would be considered acceptable by a field engineer, provided that the 

relative compaction specification was being met in a robust fashion.      

Figures 4.7 through 4.11 show the results of modulus-based in-situ tests 

conducted at the same locations along the compacted lane.  In the following figures 

the modulus is denoted by E.  
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Figure 4.7 Variation of GeoGauge measured modulus along the centerline; a) 
all final passes b) successive passes on Lift 5 
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Figure 4.8 Variation of LWD 300 measured modulus along the centerline; a) 
all final passes b) successive passes on Lift 5 
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Figure 4.9 Variation of LWD 200 measured modulus along the centerline; a) 
all final passes b) successive passes on Lift 5 
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Figure 4.10 Variation of DCPM index along the centerline; a) all final passes b) 
successive passes on Lift 5 
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Figure 4.11 Variation of DCPA index along the centerline; a) all final passes b) 
successive passes on Lift 5 

In general, there are significant differences between the results of the 

modulus-based in-situ testing methods that were utilized, and it is difficult to compare 

the variation of the results based solely on the figures that are presented.  Variations in 

the measured values that are presented could be caused by variations in their 

respective methods of modulus measurement, their different influence depths, or their 



 114

degree of sensitivity to the site conditions (such as water content) and operator 

expertise.  To provide a better understanding of the measured values, the mean and the 

coefficient of variation (CV) (Equation 4.1) of the recorded data are presented in 

Tables 4.1 through 4.4. 

μ
σ

=CV   (4.1) 

where, σ = Standard deviation, and μ = Mean or average.  

In the last row of each table, the average of the above values for each lift 

and pass is provided accordingly. 

Table 4.1 Mean values recorded in the density-based tests 

Lift - Pass NDG γ (kN/m3) NDG 
ω (%) RC (%) Lab ω (%) 

Base - 2/2 17.42 6.07 93.80 5.50 
Lift 2 - 6/6 18.30 7.80 96.10 8.33 
Lift 3 - 8/8 18.49 10.70 97.00 10.90 
Lift 4 - 9/9 18.21 10.29 97.99 10.90 
Lift 5 - 1/7 17.78 12.05 NA 10.23 
Lift 5 - 2/7 18.08 10.83 NA 10.42 
Lift 5 - 3/7 18.13 10.92 NA 10.41 
Lift 5 - 5/7 18.50 10.30 NA 10.45 
Lift 5 - 7/7 18.58 9.75 99.37 9.48 
Average 18.17 9.86 96.85 9.62 

 
 

As mentioned previously, the optimum moisture content of the compacted 

material was in the range of 10.4% to 15.0%, with an average value of 11.7%.  By 

examining the water content data shown in Table 4.1, Figure 4.5, and Figure 4.6, it 

appears that the minimum water content criteria was not met for compaction of the 

Base Layer or Lift 2, but that this criteria was reasonably satisfied for the remainder of 
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the lifts.  Clearly, compaction occurred on the dry side of optimum for nearly the 

entire project.   

Table 4.2 Mean values recorded in the modulus-based tests 

Lift - Pass GeoGauge 
(MPa) 

LWD 300 
(MPa) 

LWD 200 
(MPa) 

DCPM 
(mm/blow) 

DCPA 
(mm/blow) 

Base - 2/2 71.18 39.88 NA 20.80 13.00 
Lift 2 - 6/6 83.52 30.81 37.24 30.47 26.68 
Lift 3 - 8/8 72.64 25.46 33.18 36.63 33.47 
Lift 4 - 9/9 70.78 26.89 30.97 41.63 36.37 
Lift 5 - 1/7 67.70 16.36 19.94 47.20 43.80 
Lift 5 - 2/7 70.62 24.70 30.38 40.80 38.40 
Lift 5 - 3/7 65.57 21.12 26.44 44.20 42.20 
Lift 5 - 5/7 72.48 24.98 29.70 33.00 31.60 
Lift 5 - 7/7 63.56 24.06 29.98 28.74 27.05 
Average 70.89 26.03 29.73 35.94 32.51 

 
 

By examining the data shown in Tables 4.1 and 4.2, the following 

conclusions can be drawn: 

• The NDG test was the only in situ test method that showed a 

consistent increase in measured index values with successive 

compactor passes.  The DCP also appeared to work well in this 

regard, only with the measured index values decreasing with 

successive compactor passes (an inverse relationship).  The other 

tests that were conducted seemed to show more sensitivity in the 

test results to various test factors such as variations in their 

influence depths or their degree of sensitivity to site conditions 

(such as water content) or operator expertise. 
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• The water content values measured by the NDG were different 

from the water contents measured in the laboratory. 

• The average water content of the material placed in the upper three 

lifts was generally within -2% of the optimum moisture content, 

which conforms to current DelDOT specifications (DelDOT 

2001).  The Base Layer and Lift 2 did not satisfy this criteria, 

although the associated density criteria were satisfied. 

• The GeoGauge yielded larger measured values of moduli, as 

compared to the LWD 300 and LWD 200.  

• The measured values of modulus from the LWD 300 were slightly 

lower than those from the LWD 200.   

• The DCPM index values were larger than the corresponding DCPA 

index values.  This observation is consistent with the nature of 

their formulation.   

Tables 4.3 and 4.4 summarize the coefficient of variation of the measured 

values for each of the in-situ tests that were conducted:  
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Table 4.3 Coefficient of variation of values recorded in the density-based tests 

Lift - Pass NDG γd NDG ω RC  Lab ω  
Base - 2/2 2.33 17.50 2.26 26.86 
Lift 2 - 6/6 1.86 5.53 1.60 6.07 
Lift 3 - 8/8 2.02 7.01 2.92 7.63 
Lift 4 - 9/9 2.52 5.41 0.80 5.70 
Lift 5 - 1/7 1.94 9.85 NA 9.65 
Lift 5 - 2/7 0.95 8.24 NA 5.35 
Lift 5 - 3/7 0.76 4.93 NA 5.89 
Lift 5 - 5/7 1.05 7.86 NA 2.90 
Lift 5 - 7/7 1.15 5.63 1.80 5.69 
Average 1.62 8.00 1.88 8.42 

 
 

Table 4.4 Coefficient of variation of values recorded in the modulus-based tests 

Lift - Pass GeoGauge LWD 300 LWD 200 DCPM DCPA 
Base - 2/2 13.94 11.81 NA 24.37 14.39 
Lift 2 - 6/6 8.76 9.38 9.04 17.31 23.44 
Lift 3 - 8/8 6.80 15.40 7.82 13.00 14.24 
Lift 4 - 9/9 6.42 10.97 15.28 20.94 20.38 
Lift 5 - 1/7 6.74 26.44 14.51 14.48 15.52 
Lift 5 - 2/7 4.89 15.19 12.30 13.69 12.43 
Lift 5 - 3/7 21.79 14.85 8.44 6.67 8.44 
Lift 5 - 5/7 4.28 12.40 9.81 16.32 15.76 
Lift 5 - 7/7 20.87 20.54 17.37 10.43 13.18 
Average 10.50 15.22 11.82 15.25 15.31 

 
 

By examining the data shown in Tables 4.3 and 4.4, the following 

conclusions can be drawn: 
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• NDG measurements of dry density had the smallest amount of 

overall variation of all of the in situ test results that were analyzed, 

based on the average CV of the results.   

• The average CV of the water contents measured using the NDG 

and the oven-based lab procedure were almost the same. 

• The GeoGauge test results exhibited the lowest relative variation 

out of the modulus-based in situ tests that were performed. 

• The LWD 300 measurements had a greater CV than the LWD 200 

values. 

• DCPM and DCPA indices had almost the same CV.  

4.3 Summary and Conclusion 

In this chapter, the results from a series of in-situ tests were presented, to 

provide insight into the nature and quality of the compaction process, prior to further 

discussion and analysis of the measured CCC results in the following chapter (Chapter 

5).  In order to illustrate the behavior of the recorded data, the values of each in-situ 

test were plotted versus the location along the centerline for each of the test points 

(distance X, in meters).   

According to the NDG measurements, the compaction that was performed 

generally met the DelDOT density criteria for fill acceptance (RC ≥ 95%).  The 

optimum moisture content for the compacted soil was in the range of 10.4%-15.0%, 

with an average of 11.7%, and the measured water content for most of the engineered 

lifts and final passes was generally within or very close to the acceptable range around 

the corresponding optimum moisture contents.  The Base layer did not meet the 

relative compaction and water content specifications.  Lift 2 was also placed too dry of 



 119

optimum, although the relative compaction specifications were still satisfied for this 

lift.  

In general, the density-based in-situ testing measurements exhibited less 

variability, as compared to the modulus-based in-situ test results.  Among the 

modulus-based in-situ test techniques, the Geogauge test results exhibited less 

variation than the other modulus-based tests, as indicated by the tests’ average CV 

values.  The LWD 300 and LWD 200 showed a general consistency in the measured 

test results.  However, the measured modulus of the LWD 300 and its associated CV 

were greater than those of the LWD 200.  The average DCPM index values were 

generally greater than DCPA index values, while their CV’s were the same. 
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Chapter 5 

EVALUATION OF CCC ROLLER MEASUREMENTS  

5.1 Introduction 

This chapter is dedicated to analyzing the overall CCC roller 

measurements and to evaluating the respective behavior of these CCC measurements 

for different lifts and passes.  The essential values that are recorded by the CCC 

system that was used in this study are MDP, CMV, RMV, and the speed of the roller.  

A detailed discussion of how these values are determined from the raw measured 

roller data is provided in Chapter 2.   

The prototype CS56 roller that was used in this study recorded roller-

specific machine drive power values, which are commonly referred to as MDP2 values 

(Tehrani and Meehan 2009) or MDP* values (White et al. 2009).  In order to compare 

the machine drive power values measured in this study with data collected by other 

researchers (e.g. White et al. 2007), it is useful to calculate standardized MDP values 

that are not machine-specific (also referred to as MDP1 values, as noted in Tehrani and 

Meehan 2009).  For the roller used in this study, these values were back-calculated 

from the machine output data (MDP2) using Equation (5.1), which is a Caterpillar 

proprietary relationship (Tehrani and Meehan 2009).   

)150(
150
23.54

2 −⎟
⎠
⎞

⎜
⎝
⎛−= MDPkWMDP   (5.1) 
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By combining the resulting MDP and CMV values with their 

corresponding point-specific coordinates determined using the onboard GPS system, a 

spatial map of CCC measurements can be built, and these roller-measured values can 

be used to provide additional quality control over the compaction process. 

In order to develop a basic understanding of what typical CCC data values 

look like for compacted Delaware soils, it was necessary to perform basic statistical 

analysis of the measured roller data.  This step was essential for obtaining a more 

thorough understanding about the data that was generated during the field study.  In 

the following sections, the most critical recorded roller data (MDP and CMV values) 

will be presented in the form of histograms, and the shape of the histograms will be 

assessed.   

5.2 Basic Statistics of the Roller Data 

During the CCC process, the recorded roller measurements consist of four 

main measured values:  Machine Drive Power (MDP), Compaction Meter Value 

(CMV), Resonant Measured Value (RMV), and the speed of the roller.  As described 

in Chapter 2, MDP and CMV are the roller-soil properties that indicate the quality of 

compaction.  All of the recorded MDP and CMV values for each Lift, Pass, and Lane 

of compaction are provided in Appendix B.  In general, as shown in Appendix B and 

as presented comparatively in Figure 5.1, the spatial distribution of the recorded MDP 

and CMV values over the compacted area is quite uneven and highly variable from 

point to point.  Note that only the data relevant to the middle lane of compaction for 

Lift 5 are presented in Figure 5.1; this is to make the shape of the measured traces 

clearer, and to avoid cluttering the resulting data plot.  The solid lines shown in these 

figures reflect the average of the measured data along each transect.  The change in 
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these average values from Pass 2 to Pass 7 (with increasing compactive effort) is quite 

apparent.  However, the point to point variability in recorded MDP and CMV values is 

quite large in all cases, which makes point-specific comparisons with in-situ test 

results quite difficult.  These comparisons will be discussed further in later chapters. 

 

Figure 5.1 Variation of MDP and CMV Values along the Middle Transect of 
Lift 5 
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There are a number of possible reasons for the “noisy” MDP and CMV 

behavior shown in Appendix B and Figure 5.1.  Most likely, the primary cause of this 

variability is the fact that the soil under compaction is not homogeneous and the grain 

size, grain shape, and in-situ void ratio (and density) of the compacted material can 

vary significantly along the roller path.  Soil-water characteristics can also play a 

significant role.  As noted in Chapter 4, the moisture content of the soil is not constant 

throughout the compacted area.  In addition, it was verified that moisture content had 

a significant influence on the mechanical properties of compacted soil, particularly 

strength or modulus based soil measurements (see Chapter 7 and Chapter 8).  Other 

unknown measurement factors also likely have some effect, but are believed to have 

only a second-order contribution, including:  electrical noise in the data acquisition 

system, variable response of the monitoring instruments, or possible instrumentation 

errors.  Despite the irregular shape of the CCC data over the study area, a clear trend 

in the average of the data (as can be seen by looking at the solid lines) shows that for 

increasing compactor passes, the overall CMV values increase and MDP 

measurements decrease.  This behavior is consistent with the relative definitions of 

these CCC values (Chapter 2).   

To develop a greater understanding of the roller measured values, 

statistical properties for the CCC data sets for each lift were calculated.  Table 5.1 and 

Table 5.2 summarize the essential statistical properties of the MDP and CMV values 

for different lifts and passes, respectively.  It should be noted that the statistical 

properties shown are for the complete data set for each lift.  To further clarify, this 

means that they are for the total data set that was gathered over all three parallel lane 
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widths for each lift/pass; for comparison purposes, raw data and some basic statistical 

properties recorded for each lane are provided separately in Appendix B. 

Table 5.1 Statistical properties of the MDP values 

Lift / Pass Base  2/6 3/8 4/9 5/1 5/2 5/3 5/4 5/5 5/7 
Min (kW) 1.77 0.10 4.70 5.30 0.60 8.10 7.30 3.80 5.20 4.40 

1st Qu. (kW) 8.82 5.50 10.00 11.00 16.18 12.80 10.90 9.80 8.70 7.60 
Mean (kW) 10.31 6.61 11.29 12.98 18.00 14.48 12.02 10.65 9.62 8.48 

Median (kW) 10.45 6.50 11.20 12.50 17.70 14.30 11.90 10.50 9.50 8.40 
3rd Qu. (kW) 11.89 7.60 12.30 14.70 19.60 15.80 13.00 11.40 10.30 9.20 

Max (kW) 17.32 20.00 24.10 33.90 32.60 26.90 20.40 20.90 20.90 16.80 
Total N 996 993 986 884 1056 1079 1083 1053 1038 1095 

Variance 
(kW2) 5.43 3.39 3.86 9.85 8.58 6.23 3.25 2.92 2.24 1.99 

Std Dev. (kW) 2.33 1.84 1.96 3.14 2.93 2.50 1.80 1.71 1.50 1.41 
CV (%) 22.61 27.87 17.39 24.17 16.28 17.23 14.99 16.06 15.57 16.62 

Table 5.2 Statistical properties of the CMV values (all values shown in the 
table are unitless) 

Lift / 
Pass Base 2/6 3/8 4/9 5/1 5/2 5/3 5/4 5/5 5/7 

Min 3.40 6.80 3.00 1.70 1.30 1.60 1.40 2.90 4.80 5.60 
1st Qu. 10.80 15.10 10.20 8.60 9.40 6.50 9.00 11.40 12.50 13.40 
Mean 14.82 18.20 12.72 10.97 11.92 8.69 11.68 14.10 15.38 15.82 

Median 13.90 17.90 12.60 10.70 11.70 8.60 11.50 14.00 15.30 15.50 
3rd Qu. 17.70 20.80 15.10 13.30 14.70 10.70 14.30 16.60 18.10 18.20 

Max 36.30 31.10 22.40 23.20 21.60 18.40 22.80 44.90 27.30 27.30 
Total N 996 993 986 884 1056 1079 1083 1053 1038 1095 

Variance 31.67 17.85 12.50 12.19 13.87 9.43 13.92 18.18 14.82 13.33 
Std Dev. 5.63 4.22 3.54 3.49 3.72 3.07 3.73 4.26 3.85 3.65 
CV (%) 37.97 23.21 27.79 31.83 31.26 35.34 31.94 30.24 25.03 23.07 

 
 

Figures 5.2a and 5.2b present the variation of the mean values of MDP 

and CMV for final passes and the successive passes of Lift 5, respectively. 
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Figure 5.2 Mean Value of the Roller Measurements:  a) final passes, and b) 
successive passes of Lift 5 

As shown in Figure 5.2, average values of CMV tend to vary inversely 

when compared with the corresponding average values of MDP.  In addition, by 

examining the sequential passes for Lift 5 (Figure 5.2b), it is clear that the values of 

MDP reflect the effect of progressive compactor passes.  The same general trend 

exists for CMV as well, provided that the average data from Pass 1 is disregarded.  

The reason for the inconsistency between Pass 1 and the other passes for Lift 5 arises 
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from the difference in applied vibratory compaction amplitude for these passes.  As 

indicated in Chapter 3, the first pass of each lift was compacted using high-amplitude 

vibration (1.87 mm) and the other passes were compacted using low-amplitude 

vibration (0.85 mm).  As discussed in Chapter 2, the amplitude of the first harmonic of 

the acceleration response signal ( ( )02ˆ ωa ) is used to determine the CMV values 

(Equation 2.3).  However, the magnitude of the acceleration response signal is 

affected by the amplitude of the input vibration ( ( )0ˆ ωa ), which means that the 

measured CMV values shown in Figure 5.2 are also a function of the amplitude of the 

input vibration.  This observed effect of compaction amplitude on recorded CMV 

values is consistent with what has been observed by other researchers (Mooney and 

Adam 2007).  As a result of this relationship, care must always be taken when 

interpreting CMV data, making sure to only compare passes that are compacted using 

similar amplitudes of vibratory compaction.  

Another statistical property that provides useful information about the 

characteristics of the CCC measurements is the variance of the data.  Figures 5.3a and 

5.3b present the variance of the MDP and CMV values for the final passes of each lift 

and the sequential passes of Lift 5, respectively.   

As shown in Figure 5.3, CMV values exhibit more variation around the 

mean than do MDP values.  Figure 5.3b confirms this observation and reveals that the 

variation of MDP measurements typically decreases with further compaction of the 

soil.  Since MDP generally corresponds to the surficial properties of the compacted 

soil, the reduction in the measured variances with each pass of the compactor supports 

the conclusion that more uniform surficial compaction is achieved by increasing the 

number of passes.  The trend in variance for CMV values is not as clear.  This is not 
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surprising, as CMV values are significantly affected by the stiffness of underlying 

layers, and consequently more sophisticated analyses are likely warranted to develop a 

more complete understanding of the observed behavior.   

 

Figure 5.3 Variance of the Roller Measurements:  a) final passes, and b) 
successive passes of Lift 5 

The coefficient of variation (CV (%)) is a useful normalized, unitless 

statistical value that can be used to compare data sets of differing units.  Coefficients 
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of variation were useful for visualizing the relative uncertainty of different in-situ tests 

in Chapter 4, and similarly provide a useful technique for performing relative 

comparisons of the CCC values.  Figure 5.4 shows the varying CV values that were 

recorded for MDP and CMV for the final passes of each lift and for successive passes 

on Lift 5. 

 

Figure 5.4 Coefficient of variation of the Roller Measurements:  a) final passes, 
and b) successive passes of Lift 5 
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Examination of Figure 5.4a reveals that, with the exception of Lift 2, 

CMV and MDP behaved similarly in the final passes with respect to their CV values.  

Figure 5.4b shows that the recorded MDP values had almost the same CV for 

successive passes on Lift 5, while the coefficient of variation of CMV values 

decreased as the number of passes increased (disregarding Pass 1, as differing 

compaction amplitude was applied for this pass).  In general, recorded CMV values 

had a greater CV than the corresponding MDP values.  

As mentioned in the introduction to this chapter, there are two other 

values of interest that were recorded by the CCC system during the compaction 

process:  RMV and the speed of the roller.  As discussed in Chapter 2, the RMV value 

equals zero for compaction in a “continuous contact” mode of operation, which is 

usually only observed during compaction of very soft soils.   RMV values typically 

become non-zero as the roller leaves the “continuous contact” mode of compaction, 

going sequentially into partial uplift and then into double-jump modes of operation 

(double-jump is undesirable, as it greatly reduces the reliability of CMV 

measurements, as discussed in detail in Chapter 2).  In this project, the RMV values 

ranged between 0 and 5, which indicated the compaction that was performed was 

primarily in the partial uplift mode (Nick Oetken, personal communication).  Figure 

5.5 shows the mean and variance of RMV values for the final passes for each lift and 

for successive passes of Lift 5.  
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Figure 5.5 Mean and Variance of RMV values; a) final passes, b) successive 
passes on Lift 5 

As shown in Figure 5.5, recorded RMV values generally fluctuated in the 

range of 0 to 1.8.  The low average RMV values recorded for the first pass of Lift 5 

are caused by the low degree of compaction of the freshly placed soil.  For this pass, 

when the soil was compacted, it exhibited more continuous contact (less partial uplift) 

between the drum of the roller and the underlying soil.  Considering the range of 

RMV values shown in Figure 5.5 and comparing it with the range of RMV values that 
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are commonly observed for the partial uplift mode of vibration (Nick Oetken, personal 

communication), it is concluded that compaction was performed in the partial uplift 

mode.  

The variation of mean and variance of the roller speed is shown in Figures 

5.6a and 5.6b. 

 

Figure 5.6 Mean and Variance of Roller Speed; a) final passes, b) successive 
passes on Lift 5 
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As shown in Figures 5.6a and 5.6b, the roller speed varied slightly around 

3.2 km/h (2.0 mph).  Slight variations in roller speed in this range do not affect the 

MDP or CMV measurements significantly (Forssblad 1980).  

5.3 Histograms of the CCC Data 

Another useful approach for presenting and analyzing the roller measured 

values is to present the measured data for each lift and pass in the form of histograms.  

Figures 5.7 and 5.8 show the histograms of the recorded MDP and CMV values for 

each lift and pass that was recorded.  Note that the mid point of the histograms 

approximately corresponds to the mean value of the data and its width is indicative of 

the variance of the depicted data; for comparison purposes, the mean and variance of 

each data set are included on their respective histograms. 
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Figure 5.7 Histograms of measured MDP values 
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Figure 5.8 Histograms of measured CMV values 
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In order to compare the respective shape of the histograms presented in 

Figure 5.7 and Figure 5.8, the data points corresponding to the midpoint of each 

histogram bar in a given histogram were connected to create an outline or “trace” of 

the histogram.  By drawing this sort of trace for each histogram series, the relative 

shape of the histograms can be presented in the same plot.  Figure 5.9 and Figure 5.10 

show a comparison of the resulting histogram shapes for the recorded MDP and CMV 

data sets, respectively.  
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Figure 5.9 Histogram of the MDP values; a) final passes, b) successive passes 
for Lift 5 
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Figure 5.10 Histogram of the CMV values; a) final passes, b) successive passes 
for Lift 5 

By examining Figures 5.7 through 5.10, it can be observed that the 

recorded MDP values resulted in relatively well-shaped histograms, as compared with 

the recorded CMV values.  This is not surprising, as recorded CMV values are 

affected by the characteristics of underlying soil layers, which makes them more 

variable and which can cause the histrogram data sets to have secondary peaks around 

the mean.    
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As shown in Figures 5.9 and 5.10, analysis of sequential passes on a given 

lift is quite instructive about the general behavior of the roller measured values with 

increasing compactive effort.  As shown in Figure 5.9, the relative location of the 

MDP histograms shifts to the left and become narrower and taller as the number of 

passes increases.  This result is in complete agreement with the observations made in 

Section 5.2 with respect to the mean and variance of the MDP values with sequential 

passes.  Consequently, interpretation of MDP values may be more direct and 

straightforward than interpretation of CMV values, as the results do not appear to be 

strongly affected by the behavior of underlying layers. 

As shown in Figure 5.10, the CMV histograms shift to the right as the 

number of passes increases, which is consistent with the statistical nature of the mean 

behavior noted for CMV values in Section 5.2.  However, the general shape of the 

CMV histograms is not as clear as what was observed for MDP values, which is likely 

caused by the influence of underlying layers on the recorded data.  This effect is also 

supported by the observation that the value of CMV variance does not decrease with 

additional compactive effort for sequential compactor passes (Figure 5.3).  This means 

that interpretation of CMV data (at least with respect to their histograms) for a given 

lift and pass may be more difficult than interpretation of MDP data.  Additionally, this 

can make a CMV-based construction specification difficult to apply uniformly to all 

projects, where the nature of underlying layers may have variable effects on the 

measured data for a newly-constructed lift.  This is of particular concern for field 

cases where underlying layers may not have been placed by the Contractor (e.g. proof-

rolled base layers), and which therefore were out of his or her control. 
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To minimize the dependence of binning on the histogram traces presented 

in Figures 5.9 and 5.10, the measured data can also be presented by comparing the 

cumulative distributions of the data sets.  Figure 5.11 and Figure 5.12 show a 

comparison of the resulting cumulative frequency distribution (CFD) shapes for the 

recorded MDP and CMV data sets, respectively. 

 

Figure 5.11 Cumulative distribution of the MDP values:  a) final passes, and b) 
successive passes for Lift 5 
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Figure 5.12 Cumulative distribution of the CMV values:  a) final passes, and b) 
successive passes for Lift 5 

It should be noted that the mid point of a given cumulative distribution 

curve represents its mean value, and the slope of the resulting curve illustrates the 

standard deviation of the data set.  As the standard deviation increases, the slope of the 

curve decreases. 
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5.4 Summary and conclusions 

The roller-measured values were statistically analyzed in this chapter.  

The analyses that were performed indicated that in general MDP reflects the quality of 

surficial compaction with less variation than CMV does, while CMV has the tendency 

to capture the behavior of underlying layers.  All in all, MDP demonstrated a 

descending trend in values with increasing compactive effort, and CMV showed an 

ascending trend.  It should also be noted that the amplitude of the excitation frequency 

must always be taken into account in interpretation of CMV data, as measured results 

indicated that there is a significant difference in CMV values between high amplitude 

and low amplitude compaction.  Additionally, it was realized that either the variance 

or coefficient of variation values could be used to describe the variable results that 

were observed for a given lift during the compaction process, with each statistical 

measure having its own relative advantages and disadvantages for interpretation of the 

CCC roller data sets.  

The CCC systems also recorded additional measurements such as RMV 

and roller speed that were useful for data interpretation.  The evaluation of RMV 

values showed that the CCC roller operated predominantly in a “partial uplift” mode 

of vibration.  The average RMV values ranged between 0 and 1.8 in this study.  The 

speed of the roller is another parameter that can influence the final results if it varies 

excessively; in this study, the roller speed was approximately constant around 3.2 

km/h (2.0 mph), which effectively minimized the effect of variation in roller speed on 

the measured MDP and CMV values. 
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Chapter 6 

ORDINARY KRIGING METHOD FOR ROLLER MEASUREMENTS  

Since the introduction of continuous compaction control systems (CCC) 

and intelligent compaction technology (IC), the primary approach that has been used 

to evaluate the reliability of CMV and MDP-type roller measurements has been to 

compare them with the results of common in-situ testing techniques (e.g. Thurner and 

Sandström 1980, Adam 1997).  To accurately perform these types of comparisons, the 

first step is to obtain the roller measurements at the same locations as where the in-situ 

tests have been conducted.  Existing CMV and MDP-based compactor systems 

commonly use on-board GPS systems to establish field data point locations.  In the 

event that field-recorded CCV or MDP data points are recorded at the exact location 

as in-situ test data points, then comparisons between roller-measured and in situ test-

measured data is direct and relatively straightforward.  However, for projects of this 

type, it is much more common that the array of data points measured with the CCC 

equipment does not exactly correspond to the in-situ test data point locations.  

Historically, sophisticated kriging methods have been used to interpolate between 

roller measured points for comparison with in-situ test results in an attempt to address 

this issue (e.g. Brandl and Adam 2004, Thompson and White 2007, Petersen et. al. 

2007).  However, even within commonly accepted statistical analysis methodology, a 

variety of approaches can be used for kriging-based applications, and clear consensus 

in the engineering literature about how to best interpret this type of spatially varying 

data for CCC applications is not apparent.  In general, to our knowledge, a detailed 
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discussion of how best to perform these types of analyses for reliable interpretation of 

CCC data (a specific process that could be followed) could not be found in other 

geotechnical engineering literature. 

6.1 Spatial Continuity 

Spatial continuity exists in most geotechnical field studies.  The 

underlying assumption in spatial continuity analysis is that two data points measured 

close to each other are more likely to have similar values than two data points 

measured that are far apart.  The first step in finding the spatial continuity of a set of 

data is to show all possible pairs of data – values whose locations are separated by a 

certain distance (Isaak and Srivastava 1989).  Therefore, a one to one plot, commonly 

called an h-scatter plot, is provided whose abscissa is the data value (Vi) at location i 

and whose ordinate is the data value (Vi+h) at location i+h, where h is the distance 

between the two locations that is independent of the direction between the points 

(Figure 6.1). 
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Figure 6.1 Example h-scatter plot of CMV values.  Base layer for h = 0.6 m 

From this point onwards, h will be referred to as the separation distance or 

lag distance between points.  Using the approach shown above, h-scatter plots can be 

built for all possible lags.  The statistical nature of the scatter plots can then be 

characterized using various approaches such as the correlation coefficient (Equation 

6.1), the covariance (Equation 6.3), or the moment of inertia (Equation 6.4). 
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where, N(h) is the number of pairs of data whose locations are separated by h, n is the 

number of data points in each set of data, μ(i) is the mean or average of data whose 

locations are denoted by i’s, μ(i+h) is the mean of data which are located a distance h 

away from the i data set, and σ(i) and σ(i+h) are the standard deviations of their 

respective data sets (Equation 6.2).   

The correlation coefficient ρ ranges between -1 and +1.  A correlation 

coefficient ρ = +1 means that two variables vary together exactly.  A correlation 

coefficient ρ = −1 means that two variables vary exactly inversely.  A correlation 

coefficient ρ = 0 means that the two variables are unrelated to one another (Baecher 

and Christian 2003).  By looking closely at Equations 6.1 and 6.3, it becomes apparent 

that the covariance is the numerator of the fraction that defines the correlation 

coefficient, or in the other words, the correlation coefficient is the covariance 

normalized by the standard deviations.  

The variation of correlation coefficient, covariance and moment of inertia 

at different lags is called autocorrelation, autocovariance, and semivariogram 

respectively (Isaak and Srivastava 1989).  However, in some literature (e.g. Baecher 

and Christian 2003), these names have been used for the corresponding single 

functions as well (i.e. correlation coefficient, covariance and moment of inertia).  

In general, as the separation distance (lag) is increased, the correlation 

coefficient and covariance of a pair of data decreases and the semivariogram 

increases.  This implies a descending trend for the autocorrelation and the 

autocovariance and an ascending one for the semivariogram.  An example of this 
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relationship for typical CCC data measured for the base layer (Lift 0, Pass 2/2) is 

provided in Figure 6.2.  These clear trends reveal that the consistency between the 

primary variables diminishes as h increases, and that there is no significant correlation 

between the data beyond a certain value of h. 

It should be noted that the shape of the autocorrelation and autocovariance 

functions is not strictly identical since the standard deviations of Vi and Vi+h change 

from one h-scatter plot to the next (Cressie 1993).  
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Figure 6.2 Spatial continuity description of CMV data for base layer: (a) 
autocorrelation, (b) autocovariance, and (c) semivariogram 

6.2  Ordinary Kriging 

One of the most commonly used spatial continuity analysis techniques is 

ordinary kriging, which provides a reliable approach for spatial interpolation of data 
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for many data sets (Isaak and Srivastava 1989).  This technique, which is most 

commonly referred to simply as kriging, is often associated with the acronym B.L.U.E 

for “best linear unbiased estimator”.  Ordinary kriging is “linear” because its estimates 

are weighted linear combinations of the available data; it is “unbiased” since it tries to 

have μR, the mean residual or error, equal to 0; it is “best” because it aims at 

minimizing σ2
R, the variance of the errors. However, the distinguishing feature of 

ordinary kriging is its aim of minimizing the error variance (Isaak and Srivastava 

1989).   

The most commonly used application of kriging, like other spatial 

interpolation methods, is for predicting the unknown value of a variable at a certain 

location whose nearby sample values are known.  Using this approach, the unknown 

value at a point is estimated using a weighted linear combination of the available 

samples (Equation 6.5).   
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where, V
)

 is the estimated value, iw is the weight given to a known value at a nearby 

location, and iV  is the known value at a nearby location. 

As implied by Equation 6.5, the weight assigned to nearby variables is 

essential for determining their respective contribution to the final value predicted at 

the point of interest.  In order to estimate the unknown value, it is therefore necessary 

to first find the respective weighting factors that will be used for points around the 

chosen location.  For convenience, we denote the proposed location with unknown 

value by 0 and assign the label of 1 to n to the nearby points having known values.  

This leads to the following relationship: 
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where, ijC~ is the value of the autocovariance function between ith and jth neighbors 

with respect to the distance between them, 0
~

iC  is the value of the autocovariance 

function between the ith neighbor and the point of interest having an unknown value, 

and λ is the unknown Lagrange multiplier which is introduced to the equation to 

convert a constrained minimization problem into an unconstrained one.  Equation 6.6 

can be rewritten in the form of matrix notation as: 

C . w = D   (6.7) 

To obtain the necessary weighting values, both sides of Equation 6.7 are multiplied by 

C-1, which is the inverse of the autocovariance matrix shown on the left-hand side 

above: 

C-1 . C . w = C-1 . D 

I . w = C-1 . D  (6.8) 

w = C-1 . D   

By plugging the weighting factors ( iw  values) derived using the above approach into 

Equation 6.5, the unknown value at the point of interest can be predicted.  The 

autocovariance function that is used with this approach is a mathematical expression 

of a “best fit” curve that is passed through the sample autocovariance of the spatial 

data shown in Figure 6.2b.  

To find the value of the weights (the iw  values), it is also common to use 

the semivariogram function instead of the autocovariance function, which means that 

ijC~ and 0
~

iC  in Equation 6.6 are replaced by ijγ  and 0iγ , respectively.  If 
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semivariograms are used, the matrix forms C and D presented in Equation 6.7 are 

replaced by Γ and Λ, respectively.  

6.3  Analytical Assumptions Made in our Analyses 

The following assumptions were made in our analyses: 

• The data we are dealing with have second-order stationarity which 

means that the mean μ and variance σ2 is constant for each pair of 

data and cov(Vi , Vi+h) is a function of only h. 

• The data in the field are distributed in a two-dimensional fashion.  

This assumption means that omni directional analysis will be 

performed on the data.  In the analyses presented herein, only the 

magnitude of the distance between two values is taken into 

account, and the direction of the distance vector between two 

points is assumed not to affect their spatial continuity. 

• The data set has a normal (Gaussian) distribution. 

6.4  Spatial Continuity of CCC Roller Data 

As noted in Chapter 3, two types of CCC indicator values of soil-roller 

interaction were measured during the field study:  compaction meter value (CMV) and 

machine drive power (MDP).  The methodology and approach used to calculate these 

values, as well as the numerous associated details of the CCC field study that was 

performed are provided in Chapter 2 and Chapter 3.   

To evaluate the spatial continuity of the MDP and CMV values, 

semivariograms of the final pass for each lift and individual passes for the fifth lift 

(passes 1, 2, 3, 4, 5, and 7) are taken into account in the analysis.  A computer 
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program written using the MATLAB™ platform was developed to generate the 

autocorrelation, autocovariance, and semivariogram functions for each of the roller 

data sets.  Representative semivariogram shapes for MDP and CMV data sets over the 

entire range of possible lag values are shown in Figure 6.3; the final compaction pass 

performed on Lift 5 (Pass 7) is shown, and is typical of the type of semivariogram 

shapes that were observed. 

 

Figure 6.3 Sample semivariogram for MDP and CMV for Lift 5, Pass 7 

As shown in Figure 6.3, over the entire range of possible lag values, the 

sample semivariograms for the base layer show approximately an asymptotic behavior 

for both MDP and CMV values.  This type of behavior is also seen in the other lifts 

and passes which are presented in Appendix C. 
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Figure 6.4 shows the sample autocovariance for the same data sets, which 

can be compared with the semivariogram shapes. 

 

Figure 6.4 Sample autocovariance for MDP and CMV for Lift 5, Pass 7 

6.5 Semivariogram and Autocovariance Models 

Although a set of sample semivariograms and autocovariances provide a 

good descriptive summary of the spatial continuity of the data, a mathematical model 

is needed for use with kriging which can be used to estimate the values at unknown 

points (Isaak and Srivastava 1989).  It is unwise to choose an arbitrary mathematical 

function to define this relationship, even if the model fit through the sample variogram 

(or autocovariance) appears reasonable; certain conditions must be followed in 

selecting the mathematical fitting functions (Cressie 1993). 
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As noted earlier, the resultant semivariogram and autocovariance 

functions can be used in kriging techniques such as ordinary kriging.  It is desirable to 

have one (and only one) stable solution for kriging.  To satisfy this criteria, the C or Γ 

matrix in Equation 6.7 must satisfy the positive definiteness condition. A necessary 

condition that guarantees the positive definiteness of the Γ (or C) matrix is given by 

wt Γ w > 0  (6.9) 

where, w is any vector of weights presented in Equation 6.6 which has at least one of 

its arrays as non-zero.  Table 6.1 summarizes the most popular models that meet the 

positive definiteness condition (Cressie 1993, Isaak and Srivastava 1989).  
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Table 6.1 Mathematical models for semivariogram 

Model Mathematical Equation θ  

Linear  

 
 c0  ≥ 0    

bl ≥ 0 

Spherical  
c0  ≥ 0    
cs ≥ 0     
as ≥ 0 

Exponential  

 
 c0 ≥ 0    

ce ≥ 0     
ae ≥ 0 

Gaussian  
c0 ≥ 0    
cg ≥ 0    
ag ≥ 1 

Rational 
Quadratic  

 
 c0 ≥ 0    

cr ≥ 0     
ar ≥ 0 

Wave  

 
 c0 ≥ 0    

cw ≥ 0    
aw ≥ 0 

 
 

Figure 6.5 provides a graphical demonstration of the models introduced in 

Table 6.5.  The same models can also be used for autocovariance functions with 

respect to Equation 6.10. 
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where, C(0) is the variance of the set of data σ 2 . 

⎩
⎨
⎧

≠+
=

=
0,
0,0

);(
0 hhbc

h
h

l

θγ

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥+

<<
⎭
⎬
⎫

⎩
⎨
⎧

−+

=

=

ss

s
ss

s

ahcc

ah
a
h

a
hcc

h

h

,

0,)(
2
1)(

2
3

0,0

);(

0

3
0θγ

⎪
⎩

⎪
⎨

⎧

≠
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

=

= −

0,1

0,0
);(

3

0 hecc

h
h ea

h

e
θγ

⎪
⎪
⎩

⎪⎪
⎨

⎧

≠
+

+

=

= 0,
1

0,0

);( 2

2

0 h

a
h

hcc

h

h

r

rθγ

⎪⎩⎨ ≠⎭⎬⎫⎩⎨⎧ −+= 0,)sin(1);( 0 ha hhacch wwwθγ

⎪
⎪
⎩

⎪⎪
⎨

⎧

≠
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

=

= −

0,1

0,0

);( 2

23

0 hecc

h

h ga
h

g
θγ

⎪⎩

⎪
⎨
⎧

≠
⎭
⎬
⎫

⎩
⎨
⎧

−+

=
= 0,)sin(1

0,0
);(

0 h
a
h

h
acc

h
h

w

w
w

θγ



 155

 

Figure 6.5 Semivariogram models: (a) Linear, (b) Spherical, (c) Exponential, 
(d) Gaussian, (e) Rational Quadratic, and (f) Wave 

The semivariogram functions introduced above are commonly considered 

to be the basic semivariogram model functions (Cressie 1993).  These models can be 

divided generally into two major categories:  the ones which reach a plateau at greater 

separation distances and those that do not (Isaak and Srivastava 1989).  The models in 

the first category are commonly referred to as transition models; in the list shown 

above, the transition models are the Exponential, Rational Quadratic, Spherical, and 

Gaussian models.  The plateau they reach is called the sill and the lag over which this 

plateau is reached is called the range (Figure 6.6).  Practically speaking, the range is 
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the distance beyond which there is only a very small amount of spatial continuity 

remaining between data points.  The second category of semivariogram model does 

not behave asymptotically as the separation lag is increased; the models mentioned 

above in this category include the Linear model and Wave model. 

 

Figure 6.6 The properties of a transition semivariogram 

For a theoretical semivariogram (Equation 6.4), it is expected that )(hγ  

approaches zero at h = 0.  In reality however, it is common that micro scale variation 

causes a discontinuity at the origin that leads to 0)0( 0 >= cγ  (Cressie 1993).  The 

value c0 > 0 is commonly referred to as the nugget effect.  The possible reasons for c0 

> 0 are measurement errors (Cressie 1993) and also the effect of errors caused by the 

“binning” process (which is described in detail in section 6.6), where spatial distances 

between a pair of data points are rounded slightly to the nearest lag distance that was 

used to create the semivariogram.  
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6.6 Curve fitting process used to obtain the semivariogram functions 

As noted in Section 6.4, the sample semivariograms and autocovariances 

of all existing CCC roller measurements were obtained using a MATLAB code that 

utilized Equations 6.1 to 6.4; the resulting plots are provided in Appendix C.  

Separation distance multiples of  h=0.3048 m (1 ft) were used in the code, and varied 

using ~ 0.3 m (1 ft) multiples from a minimum h of zero to a maximum h 

corresponding to the longest distance between two points that was recorded for the 

lifts and passes that were analyzed.  In order to achieve a well-structured sample 

semivariogram and autocovariance, the measured distance between each pair of points 

having coordinates of x and y was rounded to the nearest multiple of 0.3 m (1 ft).  

The next step that was performed was to utilize the mathematical models 

introduced in Table 6.1 to obtain the appropriate semivariogram functions over 

different lag distances.  This is a critical step, because the choice of lag distance over 

which the model fit is performed can significantly affect the shape of the resulting 

model.  This concept is illustrated in Figure 6.7. 
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Figure 6.7 Effect of lag selection on the resulting semivariogram function 
(results from fitting an RQ model to the Base layer data set) 

Examining Figure 6.7 shows the importance of choosing the maximum lag 

on the resulted semivariogram function.   

For these analyses, the wave model was disregarded, because the roller 

data did not show periodic behavior over short separation distances.  Lag distances of 

~ 1.5 m (5 ft ), ~ 3 m (10 ft), ~ 6 m  ( 20 ft), and  ~ 15 m (50 ft) were employed for the 

curve fitting operation.  The reason for examining a variety of separation lags was to 

identify both the optimal lag and set of semivariogram functions for the kriging 

process, in order to minimize the kriging model prediction errors (Isaak and Srivastava 

1989). 

The method of linear-least squares was applied for curve fitting using the 

curve fitting toolbox in MATLAB™.  The quality of model fit was evaluated by using 

residual analysis and the associated R-squared value that is shown in Equation 6.11. 
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where, SSerr is the sum of square differences of the actual and estimated data 

(Equation 6.12) and SStot is the sum of the square differences between the actual data 

and the mean (Equation 6.13). 
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where, n is the number of data points in each set of data, iw is an assigned weighting 

value (in this case assumed to be equal to one – no weighting factors were used), iy)  is 

the estimated value (from the fitted curve), iy  is the measured data that was recorded 

at a given point, and y is the mean of the measured data.  Using residual analysis, the 

resulting R-squared values can vary between 0 and 1, with a value closer to 1 

indicating a better fit. 

In order to perform the residual analyses, the differences between the 

fitted models and the sample semivariograms at available points were plotted against 

the separation lag.  A randomly distributed scatter plot around a value of zero on the 

abscissa (which in this case is the lag) indicates an appropriately fitted curve, while a 

patterned scatter plot means that a better fit may exist.  Figures 6.8a and 6.8b illustrate 

this concept.  
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Figure 6.8 Residual analysis of the fitted curve: a) poor fit and b) good fit.   

The resultant R-squared values for each model curve that was fit to the 

sample semivariograms for MDP and CMV are presented in Table 6.2 and Table 6.3 

respectively.  For the sake of space, data corresponding only to maximum lags of 1.5 

m (5 ft) and 3.0 m (10 ft) are presented here; more detailed information and data from 

additional lag spacings is provided in Appendix C. 
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Table 6.2 R-squared values for “best-fit” semivariogram functions for MDP 
for maximum lag of 1.5 m and 3.0 m 

Exponential Gaussian RQ Spherical Linear Lift/Pass 
1.5 m 3.0 m 1.5 m 3.0 m 1.5 m 3.0 m 1.5 m 3.0 m 1.5 m 3.0 m 

Base 0.99 0.98 0.99 0.93 1.00 0.97 0.94 0.85 0.82 0.72 
2 0.98 0.96 1.00 0.98 0.99 0.96 0.89 0.53 0.75 0.39 
3 0.98 0.95 1.00 0.96 0.99 0.96 0.88 0.63 0.75 0.48 
4 0.89 0.87 0.94 0.88 0.89 0.88 0.67 0.68 0.49 0.59 

5/1 0.98 0.89 0.94 0.92 0.95 0.90 0.98 0.80 0.98 0.64 
5/2 0.98 0.96 0.99 0.92 0.99 0.96 0.94 0.84 0.84 0.74 
5/3 0.98 0.98 1.00 0.99 0.99 0.99 0.91 0.66 0.78 0.53 
5/4 0.98 0.78 0.96 0.82 0.97 0.79 0.98 0.51 0.98 0.35 
5/5 0.98 0.89 0.93 0.90 0.95 0.90 0.97 0.68 0.97 0.51 
5/7 0.98 0.91 1.00 0.92 0.99 0.92 0.93 0.67 0.81 0.58 

 
 

Table 6.3 R-squared values for “best-fit” semivariogram functions for CMV 
for maximum lag of 1.5 m and 3.0 m 

Exponential Gaussian RQ Spherical Linear Lift/Pass 
1.5 m 3.0 m 1.5 m 3.0 m 1.5 m 3.0 m 1.5 m 3.0 m 1.5 m 3.0 m 

Base 1.00 0.90 0.99 0.94 1.00 0.93 1.00 0.90 0.98 0.90 
2 0.96 0.95 0.95 0.98 0.95 0.97 0.96 0.97 0.96 0.90 
3 0.99 0.97 0.97 0.98 0.98 0.98 0.99 0.98 0.99 0.90 
4 1.00 0.92 0.99 0.93 1.00 0.93 1.00 0.92 0.95 0.92 

5/1 0.86 0.88 0.98 0.93 0.98 0.92 0.86 0.88 0.86 0.88 
5/2 0.99 1.00 0.98 0.97 0.99 0.99 0.99 0.92 0.94 0.80 
5/3 0.97 0.96 0.94 0.95 0.96 0.95 0.96 0.96 0.95 0.88 
5/4 0.99 0.98 0.99 0.96 1.00 0.97 1.00 0.98 0.95 0.91 
5/5 0.98 0.88 0.95 0.89 0.97 0.88 0.98 0.86 0.97 0.75 
5/7 0.88 0.88 0.92 0.94 0.92 0.92 0.88 0.91 0.88 0.85 

 
 

6.7 Evaluation of Ordinary Kriging Models for Prediction of CCC Data 

To evaluate the use of ordinary kriging for estimation of CCC data, 

kriging was applied to the recorded MDP and CMV data sets using the five models 
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shown in Tables 6.2 and 6.3.  Using this approach, the five kriging models were used 

to estimate MDP and CMV values at each of the locations in the data set where point 

values were already known.  Comparison between the values predicted by the kriging 

model and the values that were actually recorded at each point provided insight into 

the reliability of the kriging method for each of the models that were examined. 

According to Table 6.2 and Table 6.3, some models appeared to have a 

better mathematical fit than others, as indicated by the relative magnitude of the R-

squared values.  However, care must be taken when assessing the reliability of a given 

kriging method to not use only the semivariogram R-squared values as the model 

selection criterion.  The data sets examined in this study indicate that other criteria 

should also be considered when selecting the “best” model for point-estimation of 

CCC values at unknown locations.  These criteria are discussed in more detail in the 

following sections. 

6.7.1 Singularity 

One of the most common problems encountered when solving a matrix 

equation such as Equation 6.7, Γw = Λ, is the appearance of singularities in the 

multiples matrix Γ (in the left hand side of the equation) that lead to a zero value for 

the associated matrix determinant.  Matrix singularity occurs when there are some 

rows or columns in the matrix that are dependent on each other.  More specifically, 

singularities occur when one row (or column) is the linear combination of one or more 

other rows (or columns).  Singularities also occur when there is a row or column in the 

matrix that has the same values repeated throughout.  Another problem that is 

sometimes encountered is when the matrix Γ is “poorly structured”, which means that 
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the determinant of the matrix is close to zero.  In this case, solving the matrix equation 

leads to abnormally large values in the w matrix, which is undesirable.   

In general, there are two ways for dealing with these types of 

mathematical problems: the first is to disregard the solution of the matrix equation 

altogether, and the second is to make adjustments to the matrix to resolve or remove 

the associated singularities.  For this project, the second approach was utilized, and 

associated singularities were removed by omitting the rows and columns that created 

the dependence in the matrix.  This method is satisfactory if the omission of the 

dependent matrix values does not significantly influence the accuracy of the kriged 

point values.  Since the size of the square matrices used in these data analyses was 

usually large, deleting a few rows and columns in many cases does not significantly 

change the end results.  However, the results from kriging using these types of 

modified Γ matrices should be examined carefully and treated with caution.  Although 

this method is a simple method, it generally worked well for the data sets that were 

recorded in our field study.   

In this study, as a first step in the kriging process, five different models 

were used to fit the associated semivariogram functions:  Exponential, Gaussian, 

Rational Quadratic (RQ), Spherical, and Linear.  Semivariogram fit functions were 

developed for each of these five models by fitting the models over four different lag 

ranges; ~ 1.5 m (5.0 ft), ~ 3.0 m (10 ft), ~ 6.0 m (20 ft), and ~ 15.0 m (50 ft).  This 

approach allowed for independent examination of the effect of both the nature of the 

semivariogram fit function (model type) and the lag range over which each model was 

fit (lag range for model fit).   
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The resulting number of singularities encountered for each model run are 

presented in Appendix C.  Of the five models that were examined, the Gaussian model 

and the RQ model tended to have the most problems with matrix singularity or poorly-

structured Γ matrices.  The Gaussian model in particular exhibited numerous 

singularities for many of the MDP and CMV data sets, while the RQ model seemed to 

only have these problems with the CMV data sets.  Therefore, given the significant 

amount of matrix singularities that were encountered, results from the Gaussian 

kriging model were disregarded for both the MDP and CMV data sets, and results 

from the RQ kriging model were disregarded for the CMV data sets.   

6.7.2 Relative Error of the Predicted Values 

 A second criteria that was found to be useful for selecting the best model 

for kriging was the relative error between kriging-predicted values at known data 

points and the actual recorded values themselves (Equation 6.14).  
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where, iV  is the actual recorded value at a given point and iV̂  is the value predicted by 

a given kriging model at the same point.   

To gain a better insight into the distribution of the relative errors for the 

different kriging models that were examined, the normalized cumulative frequency of 

each of the relative errors was plotted versus the associated relative error for each lift-

pass and model.  Figures 6.9.a to 6.9.d compare the relative error distributions for each 

of the model types and lag ranges for the kriging models that were found to be of the 

most interest (fewest errors, better results, etc.).  The raw results from these runs, as 

well as a variety of results from additional model runs (other lag spacings, model 
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types that exhibited more significant singularity errors, etc.) are presented in 

Appendix C.  

 

Figure 6.9 Cumulative frequency of relative error vs. relative error for Lift 5, 
Pass 5: a) MDP, 1.5 m, b) CMV, 1.5 m, c) MDP, 3.0 m, and d) CMV, 
3.0 m 
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The same trends shown in Figure 6.9 were also observed for all other lifts 

and passes where values were predicted using kriging models fitted with a maximum 

lag of ~ 1.5 m (5 ft) and ~ 3.0 m (10 ft).  As shown in this figure, the RQ kriging 

model resulted in the least amount of relative error when examining the MDP data, 

while the Exponential, Spherical, and Linear models showed the least amount of error 

(with relative errors all in good agreement) for the CMV data.  From these results, the 

RQ model was selected as the most accurate model for kriging of the MDP data and 

the Exponential, Spherical and Linear models were selected for kriging of the CMV 

data.  

Table 6.4 to Table 6.7 show the resulting correlation coefficients between 

the actual and predicted values for each data set, as well as the average relative and 

absolute errors (Equation 6.15) between the actual and predicted values using the 

kriging models that were selected for the MDP and CMV data sets.  The last two rows 

of each table present the average of the associated data for the final passes of each lift 

and the successive passes of Lift 5, respectively. More detailed information is 

provided in Appendix C. 
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Table 6.4 Summary statistics of the kriging method using RQ model for MDP 
values 

Max lag = 1.5 m Max lag = 3.0 m 
Lift / Pass 

ρ(h) μRE (%) μAE (%) ρ(h) μRE (%) μAE (%) 

Base 0.9545 5.3280 -0.6031 0.9547 5.2635 -0.4329 
Lift 2 0.9337 10.3786 -3.9781 0.9285 11.6579 -5.1155 
Lift 3 0.9542 4.0402 -0.3241 0.9534 4.0686 -0.2819 
Lift 4 0.9360 6.8405 -1.1179 0.9491 5.9686 -0.6887 

Lift 5 - Pass 1 0.9320 3.5845 0.1692 0.9846 2.2736 -0.2044 
Lift 5 - Pass 2 0.9698 3.0985 -0.1317 0.9670 3.2481 -0.0677 
Lift 5 - Pass 3 0.9558 3.3438 -0.1680 0.9558 3.3654 -0.1707 
Lift 5 - Pass 4 0.9493 3.5707 -0.0233 0.9761 2.5689 -0.0947 
Lift 5 - Pass 5 0.9710 2.7344 -0.0586 0.9775 2.4850 -0.0748 
Lift 5 - Pass 7 0.9759 2.7455 -0.1446 0.9756 2.7547 -0.1524 
Final Passes 0.9509 5.8666 -1.2336 0.9523 5.9426 -1.3343 

Lift 5 0.9590 3.1796 -0.0595 0.9728 2.7826 -0.1274 

Table 6.5 Summary statistics of the kriging method using Exponential model 
for CMV values 

Max lag = 1.5 m Max lag = 3.0 m 
Lift / Pass 

ρ(h) μRE (%) μAE (%) ρ(h) μRE (%) μAE (%) 

Base 0.9885 5.1696 -0.6153 0.9884 5.1705 -0.5985 
Lift 2 0.9786 4.0437 -0.3564 0.9785 4.0473 -0.3789 
Lift 3 0.9728 5.6696 -0.7515 0.9728 5.6967 -0.8474 
Lift 4 0.9637 6.9934 -1.1250 0.9635 6.9851 -1.0712 

Lift 5 - Pass 1 0.9853 4.8911 -0.5645 0.9852 4.8942 -0.5699 
Lift 5 - Pass 2 0.9076 14.4923 -3.9723 0.9076 14.5800 -4.1564 
Lift 5 - Pass 3 0.9386 10.5288 -2.0842 0.9385 10.5598 -2.1641 
Lift 5 - Pass 4 0.9561 8.0045 -1.2512 0.9559 8.0033 -1.3016 
Lift 5 - Pass 5 0.9500 6.7169 -0.8475 0.9500 6.7309 -0.9006 
Lift 5 - Pass 7 0.9652 5.1888 -0.5517 0.9653 5.1833 -0.5687 
Final Passes 0.9737 5.4130 -0.6800 0.9737 5.4166 -0.6930 

Lift 5 0.9504 8.3037 -1.5453 0.9504 8.3252 -1.6102 
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Table 6.6 Summary statistics of the kriging method using Spherical model for 
CMV values 

Max lag = 1.5 m Max lag = 3.0 m 
Lift / Pass 

ρ(h) μRE (%) μAE (%) ρ(h) μRE (%) μAE (%) 

Base 0.9886 5.1427 -0.5684 0.9884 5.1705 -0.5985 
Lift 2 0.9786 4.0437 -0.3564 0.9786 4.0401 -0.3677 
Lift 3 0.9728 5.6695 -0.7514 0.9729 5.6809 -0.8270 
Lift 4 0.9639 6.9319 -0.9991 0.9635 6.9821 -1.0782 

Lift 5 - Pass 1 0.9853 4.8911 -0.5645 0.9852 4.8942 -0.5820 
Lift 5 - Pass 2 0.9081 14.3301 -3.7014 0.9078 14.4186 -3.8178 
Lift 5 - Pass 3 0.9386 10.4934 -1.9919 0.9358 10.5524 -2.0445 
Lift 5 - Pass 4 0.9561 7.9988 -1.1826 0.9563 7.9874 -1.2646 
Lift 5 - Pass 5 0.9500 6.7139 -0.8115 0.9499 6.7150 -0.8390 
Lift 5 - Pass 7 0.9652 5.1888 -0.5517 0.9654 5.1837 -0.5959 
Final Passes 0.9738 5.3953 -0.6454 0.9737 5.4115 -0.6935 

Lift 5 0.9505 8.2693 -1.4673 0.9500 8.2919 -1.5240 

Table 6.7 Summary statistics of the kriging method using Linear model for 
CMV values 

Max lag = 1.5 m Max lag = 3.0 m 
Lift / Pass 

ρ(h) μRE (%) μAE (%) ρ(h) μRE (%) μAE (%) 

Base 0.9886 5.1533 -0.5972 0.9884 5.1705 -0.5985 
Lift 2 0.9786 4.0437 -0.3564 0.9785 4.0450 -0.3570 
Lift 3 0.9728 5.6696 -0.7515 0.9728 5.6795 -0.7609 
Lift 4 0.9639 6.9110 -1.0173 0.9635 6.9850 -1.0697 

Lift 5 - Pass 1 0.9853 4.8911 -0.5645 0.9852 4.8942 -0.5698 
Lift 5 - Pass 2 0.9077 14.4074 -3.7931 0.9076 14.4084 -3.7952 
Lift 5 - Pass 3 0.9385 10.5117 -2.0396 0.9385 10.5259 -2.0469 
Lift 5 - Pass 4 0.9565 7.9874 -1.2078 0.9562 7.9881 -1.2300 
Lift 5 - Pass 5 0.9500 6.7114 -0.8286 0.9500 6.7130 -0.8223 
Lift 5 - Pass 7 0.9652 5.1888 -0.5517 0.9653 5.1784 -0.5346 
Final Passes 0.9738 5.3933 -0.6548 0.9737 5.4117 -0.6642 

Lift 5 0.9505 8.2830 -1.4975 0.9505 8.2847 -1.4998 
 
 

Some interesting conclusions can be drawn by examining the resulting 

statistical data in the above tables.  The correlation coefficients for each of the data 
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sets for all of the models that were examined are quite high (ranging from 0.91 to 

0.99).  This is consistent with the “best linear unbiased estimator” (b.l.u.e) approach 

that is employed by ordinary kriging, as all of the models that were used minimized 

the errors of the predicted values, resulting in generally high correlation coefficients.  

This means that the correlation coefficient between predicted and existing values can 

reasonably be used for “first pass” kriging model assessment; if the resulting 

correlation coefficients for kriging of a given CCC data set are less than 0.9, the 

semivariogram model should probably be discarded in favor of a more accurate 

model.   

Another interesting observation is that the relatively high correlation 

coefficients that were observed in Tables 6.4 through 6.7 occurred despite the much 

lower R-squared values that were often observed (in some cases in the range of 0.4 to 

0.7, as shown in Tables 6.2 and 6.3) for each of the semivariogram fitting functions.  

Broadly speaking, this means that the semivariogram R-squared values are not 

necessarily reliable indicators about the relative accuracy of a given kriging model. 

Unfortunately, the subtle variations that were observed in the correlation 

coefficient values did not provide enough information to allow for final model 

selection between each of the three “short-listed” models that were used for analysis 

of the CMV data (Exponential, Spherical, Linear) or for selection of the ideal lag 

length for model fit in the kriging analysis.  Consequently, it is concluded that 

although the correlation coefficient is a useful tool for “first pass” kriging model 

assessment, it is not by itself a robust enough indicator for selecting the best 

semivariogram model or lag spacing. 
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As indicated by the average absolute error values shown in Tables 6.4 

through Table 6.7, the average absolute error of the kriging results is always negative, 

which means that, on average, the kriging methods that were used tended to 

overpredict the estimated values for our data set. 

The average relative errors of the final passes for both MDP and CMV are 

almost the same but for the successive passes of Lift 5 they are quite different, as the 

corresponding differences in average relative error for MDP is relatively small (~ 

3.2%) and that of CMV is relatively high (~ 8.3%).  One possible reason could be the 

nature of the models that were selected as the best ones for MDP and CMV.  The other 

reason is the inherent difference between MDP and CMV values and their 

characteristics, which were discussed in detail in Chapter 5.  

Another significant finding indicated by the data in Table 6.5 to Table 6.7 

is that the average relative error for predicted CMV values decreases as the number of 

passes increases from 2 to 7 (also shown clearly in Figures 6.10 and 6.11).  Pass 1 of 

Lift 5 was intentionally ignored for this comparison, because different amplitude 

compaction was used for this pass; the significance of this is discussed in Chapter 5.  

This observation indicates that, as the soil becomes more compacted, the relative error 

of the predicted values decreases.  In addition, it is clear that Pass 1 of Lift 5, which 

was compacted using a higher vibratory amplitude, generated the least average 

relative error compared to the other passes.  This deviation might be caused by the fact 

that a higher compaction amplitude was applied for this pass relative to the other 

passes.   
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These above-mentioned trends in behavior were not as clear for MDP, as 

the MDP data was much more tightly grouped when compared pass by pass, as shown 

in Figures 6.10 and 6.11. 

 

Figure 6.10: The improvement of the relative error in Lift 5 for a maximum lag 
of 1.5 m: a) MDP, RQ model, b) CMV, Exponential model 
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Figure 6.11: The improvement of the relative error in Lift 5 for a maximum lag 
of 3.0 m: a) MDP, RQ model, b) CMV, Exponential model 

In order to conclude the current discussion on relative error, and to make 

final comparisons between different models, it is useful to compare the frequency of 

the predicted values existing within specific ranges of relative error for each model 

that was analyzed.  Tables 6.8 to Table 6.11 provide the frequency of occurrence of 

relative error values for the predicted data sets for MDP and CMV.  As the relative 

error for final passes is technically different from the sequential passes, these data sets 

are presented separately.   
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Table 6.8 Frequency of the Relative Error for Final Passes (%) – Maximum 
Lag = 1.5 m 

MDP CMV Range (%) 
RQ Exponential Spherical Linear 

< 5 67.1 63.3 63.3 63.4 
5 - 10 20.8 24.6 24.7 24.5 

10 - 20 9.3 10.3 10.3 10.3 
20 - 40 2.3 1.5 1.5 1.5 
40 - 60 0.3 0.1 0.1 0.1 

> 60 0.2 0.1 0.1 0.1 
 
 

Table 6.9 Frequency of the Relative Error for Final Passes (%) - Maximum 
Lag = 3.0 m 

MDP CMV Range (%) 
RQ Exponential Spherical Linear 

< 5 68.2 63.6 63.4 63.7 
5 - 10 20.0 24.4 24.5 24.2 

10 - 20 9.1 10.2 10.3 10.3 
20 - 40 2.2 1.6 1.5 1.6 
40 - 60 0.4 0.1 0.1 0.1 

> 60 0.2 0.1 0.1 0.1 

Table 6.10 Frequency of the Relative Error for Lift 5 (%) - Maximum Lag = 1.5 
m 

MDP CMV Range (%) 
RQ Exponential Spherical Linear 

< 5 84.3 50.6 50.3 50.5 
5 - 10 12.6 24.7 25.1 24.8 

10 - 20 2.7 17.2 17.1 17.3 
20 - 40 0.3 5.8 5.9 5.8 
40 - 60 0.0 1.0 1.0 1.0 

> 60 0.0 0.6 0.6 0.6 
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Table 6.11 Frequency of the Relative Error for Lift 5 (%) - Maximum Lag = 3.0 
m 

MDP CMV Range (%) 
RQ Exponential Spherical Linear 

< 5 87.7 50.6 50.6 50.6 
5 - 10 10.5 26.6 26.7 26.8 

10 - 20 1.7 17.2 17.3 17.2 
20 - 40 0.1 5.8 5.8 5.8 
40 - 60 0.0 1.1 5.8 1.0 

> 60 0.0 0.6 0.6 0.6 
 
 

By examining the figures presented earlier in the chapter, and looking 

closely at Tables 6.8 through 6.11, it can be observed that a high percentage of the 

predicted data have a low relative error.  This observation demonstrates the reliability 

of the ordinary kriging method for each of the semivariogram models that were used 

for both the MDP and the CMV data sets.  In all cases, it is clear that the frequency of 

the predicted data having relative errors greater than 20% is trivial, which gives 

confidence to our use of the ordinary kriging method for point-estimation with CCC 

data sets.  

6.7.3 Selecting the Kriging Neighborhood 

One of the most essential issues in kriging is selecting an appropriate 

maximum separation lag or “kriging neighborhood”.  There are various opinions about 

how to select the proper neighborhood in the literature.  In some cases the reliable 

maximum lag is defined as the range of the semivariogram function (e.g. Petersen et 

al. 2007).  Although this recommendation seems practically reasonable, it has some 

limitations.  The primary disadvantage of this method is that it is only applicable for 

transition semivariogram models (e.g. Exponential, RQ), and is not valid for other 

model types of interest in this study (e.g. Linear).  There is another potential drawback 
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for this type of “range” approach to kriging:  The most commonly used procedure for 

choosing a model for kriging is to first estimate a maximum lag and to then fit a series 

of semivariogram models through the data over the selected lag distance (Isaak and 

Srivastava 1989).  However, by employing this approach for kriging, each model that 

is fit is not separately optimized for the data set that it is being fit to.  That is, separate 

ranges are not calculated for each of the models, and the effect of model sensitivity to 

the selection of lag distance is not explored in detail.  

An alternative method proposed by Rivoirard (1987) suggests that a 

reliable kriging neighborhood can be determined by selecting the lag that minimizes 

the Lagrange multiplier in the matrix equation of kriging.  Cressi (1993) 

recommendeds that the kriging domain be increased until the Lagrange multiplier 

becomes as small as possible (even negative).  Although these suggestions may 

theoretically be correct, they do not consider practical kriging issues for large data 

sets, such as the run time of the kriging program (which can be quite large if the lag 

distance is increased significantly) or the nature of the material properties for which 

the kriging is applied.  Additionally, for this study, these recommendations to increase 

the maximum lag did not yield reliable minimum (or negative) Lagrange values.  

As noted above, kriging of CCC data sets is a computationally intensive 

process that can have a long run time using conventional computing systems.  As a 

result of this observation, it was decided to run the kriging code in a few cases for 

maximum separation lags of ~ 6.0 m (20 ft) and ~ 15 m (50 ft), which took 

approximately 1 hr and 10 hrs, respectively.  The results from analyses conducted 

using these larger separation lags were compared to results from 1.5 m and 3.0 m 

separation lag analyses, and it was concluded that there was not a significant 
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difference between the point-estimated kriging values or the corresponding relative 

errors.  Figure 6.12 clearly confirms this observation.   

 

Figure 6.12 A comparison between the relative errors of different kriging 
neighborhoods for Lift 3, using the selected models: a) RQ model 
for MDP and b) Exponential model for CMV. 

It should be noted that for the sake of space Exponential model was 

selected as a representative model for CMV.  The same results was also obtained for 

Linear and Spherical models. 
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Although the recommendations made by others make more mathematical 

and statistical “sense”, it was concluded that practical considerations impose an 

equally important criteria, which must be satisfied when selecting the kriging 

neighborhood.  The density of the distributed data in the area of interest was found to 

play a remarkable role in choosing the maximum lag for the kriging models.  The run 

time of the kriging code exhibited a practically significant obstacle at larger separation 

lags, especially when there was a large amount of data that needed to be analyzed.  

Based on these factors, it is desirable to minimize the kriging neighborhood as much 

as possible, while taking into account the relative data population size in the 

neighborhood of the point of interest.  In the other words, if the density of the overall 

population is not large, it is acceptable to increase the maximum lag, but if the density 

of the scattered data around the point of interest is high, then having a relatively small 

kriging neighborhood may be reasonable.  

As discussed in the initial portion of this chapter, one of the parameters 

that can reveal the spatial continuity of the data is the correlation coefficient.  As 

mentioned earlier, a correlation coefficient of zero means that there is no spatial 

relation between corresponding data sets.  This fact was used to provide confidence in 

our selection of a relatively small kriging neighborhood for analysis of our CCC data 

set:  1.5 m and/or 3.0 m were the final values that were recommended as appropriate.  

Both of these lags gave relatively accurate results with very quick run times in the 

model.  The model results for these two lags were also consistent with each other, and 

did not improve with selection of larger lag distances.  To provide insight in this area, 

Table 6.12 presents the distances at which the autocorrelation or coefficient of 
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correlation of the CCC data became close to zero for each of the final passes that were 

analyzed in the data set. 

 

Table 6.12 The separation distance (lag) at which the correlation coefficient 
approaches zero 

Lag (m) Lag (m) Lift / Pass 
MDP CMV 

Lift / Pass 
MDP CMV 

Base / 2 4.0 6.4 5 / 2 2.1 2.1 
2 / 6 3.4 9.4 5 / 3 5.2 1.8 
3 / 8 1.8 7.9 5 / 4 3.7 3.7 
4 / 9 4.0 2.4 5 / 5 2.4 4.3 
5 / 1 4.0 1.8 5 / 7 5.8 1.8 

 
 

Based on Table 6.12 it can be stated that the minimum distance that 

correlation coefficient approaches zero is 1.8 m which is greater than our selected 

minimum kriging neighborhood of 1.5 m.  This implies that our selected neighborhood 

distance was conservative enough.   

6.8 Conclusions and recommendations 

This chapter presented the use of the ordinary kriging method as a robust 

tool for assessing the spatial continuity of CCC roller data and for performing point 

estimation of unknown values in CCC and IC field studies.   

A number of basic semivariogram models were examined for use with the 

ordinary kriging method, and eventually the Rational Quadratic model was selected as 

the most reliable semivariogram model for analyzing MDP data, and the Exponential, 

Spherical, and Linear semivariogram models were selected as the most reliable 

approaches for analyzing the CMV data.  The main criteria that was used for model 
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selection, in order of importance, was as follows: 1- The most useful models are the 

ones that have little or no singularities and well-structured Γ matrices. 2- The models 

that generate lthe least amount of relative error over the entire area of data sampling 

are the most desirable.  Based on the analyses that were performed, it was concluded 

that the R-squared value of the model-fit sample semivariograms is not necessarily a 

reliable indicator of the quality of the point-estimated values that are later determined 

via kriging.  Additionally, as the kriging method itself inherently minimizes the error 

of the predicted values, the correlation coefficient between actual and predicted values 

is not generally a robust tool for selecting a better model, as all the resulting 

correlation coefficients tend to be quite high.   

Additional examination of the resulting kriged data points indicated that, 

in general, the relative error of the predicted MDP values was less than the predicted 

CMV values.  This is consistent with the nature of these respective data sets, which is 

discussed in detail in Chapter 5.  Another interesting observation about the calculated 

relative error is that there is a direct relationship between the degree of compaction of 

the soil and the associated accuracy of the kriging method.  As the soil becomes 

denser and stiffer, the values predicted using kriging become closer to the actual 

values.  

For selecting the kriging neighborhood or maximum separation lag, it is 

recommended to take practical conditions into account since there are not any 

significant changes in the kriging results as the separation lag is increased beyond 1.5 

m (5.0 ft).  This means that the runtime of the kriging computer program and the 

density of the scattered data around the proposed kriging point are playing essential 

role in selecting the kriging neighborhood. 
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Chapter 7 

UNIVARIATE REGRESSION ANALYSIS 

7.1 Introduction 

As noted in Chapter 2, one of the primary objectives of continuous 

compaction control and intelligent compaction systems is to develop a reliable method 

for quality control of the compaction process, which minimizes dependence on 

conventional quality control methods.  To achieve this objective, it is first necessary to 

establish a reliable correlation between CCC roller measurements and conventional in-

situ testing measurements that are used as part of the compaction QA/QC process.  

These types of correlations allow new CCC methods for compaction control to be 

verified against existing in-situ test methods, where a large amount of historical 

experience with successful project construction exists.  On a given project, calibration 

of the CCC roller data with the in-situ test methods that are currently being utilized 

can be performed by constructing a test pad, or by performing the calibration process 

in the early stages of the construction process itself.  Once a reasonable relationship 

between roller measured values and the associated in-situ tests has been developed, 

this relationship can be used throughout the remainder of the project, potentially 

allowing for significant minimization of the in-situ testing program over time.   

A statistical tool that is commonly used to establish correlations between 

different types of data is regression analysis.  In statistics, regression analysis refers to 

techniques for analyzing and modeling numerical data consisting of values of a 
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dependent variable and an independent variable (univariate or simple regression 

analysis) or a dependent variable with more than one independent variable 

(multivariate or multiple regression analysis) (Draper and Smith 1998). 

As presented in Chapters 4 and 5, there was a significant amount of 

variation in both the in-situ test measured values and the CCC data itself.  Even 

though significant amounts of scatter were observed in both the in-situ test and CCC 

values over the compacted area, it is hoped that there is still a reasonably strong 

relationship that exists between the current in-situ test methods and the measured CCC 

data.  Without this type of relationship, CCC data cannot reasonably be used for 

QA/QC of the compaction process in the same ways that we currently use in-situ tests 

for applying end-result compaction specifications.   

If a strong correlation exists between CCC results and the associated in-

situ test data points, both in-situ test methods and CCC results will show consistent 

trends of improvement with additional soil compaction, and should be able to identify 

those zones of soil where insufficient compaction has been applied.  The current 

chapter will use univariate regression analysis to explore the relationships between 

CCC roller measured values (i.e. MDP and CMV) and the results from commonly 

performed in-situ tests that are used for QA/QC of the soil compaction process (i.e. 

soil modulus, dry unit weight, and water content).  The effect of water content on the 

mechanical properties of the compacted soil will also be studied separately using 

univariate regression analyses.  

In order to establish a relationship between CCC data and the 

corresponding in-situ test measurements, there is a need to predict the CCC values at 

the same location as each in-situ test that was performed using a spatial interpolation 
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method.  As discussed in Chapter 6, a universally accepted geostatitistical method for 

spatial interpolation of the CCC data is the ordinary kriging method.  The results of 

extensive kriging analyses performed in Chapter 6 indicated that the RQ model was 

the most accurate for interpolation of MDP values and the Exponential, Spherical, and 

Linear models were the most accurate for interpolation of CMV values, with 

approximately the same amount of relative errors being observed for each of these 

models.  In addition, it was discovered that maximum lags of 1.5 m (5 ft) and 3.0 m 

(10 ft) gave relatively accurate and consistent kriging results for the selected kriging 

models mentioned above, and proved to be computationally efficient choices for the 

kriging neighborhood.  As a result of these analyses, the RQ model and Exponential 

model were selected for kriging the MDP and CMV data sets, respectively, with a 

maximum lag of 1.5 m (5 ft) being used for the kriging neighborhood over which each 

of these models were fit.  The results from these kriging analyses are what is presented 

for comparison purposes with the in-situ test results in the univariate analyses 

described in this chapter and the multivariate analyses described in Chapter 8 

7.2 Univariate Regression Analysis 

The simplest univariate model involves only one independent variable and 

states that the true mean of the dependent variable changes at a constant rate as the 

value of the independent variable increases or decreases (Draper and Smith 1998).  

Thus, the function relationship between the true mean of Yi, denoted by E(Yi), and Xi is 

the equation of a straight line as follows: 

ii XYE 10)( ββ +=   (7.1) 

where, β0 is the y-intercept of the line, and β1 is the slope of the line, or the rate of 

change in E(Yi) per unit change in X.  
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Using this model, observations of the dependent variable Yi are assumed 

to be randomly performed on populations of randomly occurring variables that have a 

mean of each population that is given by E(Yi).  The deviation of an observation Yi 

from its population mean E(Yi) is taken into account by adding  a random error εi to 

yield the statistical model shown in Equation 7.2. 

iii XY εββ ++= 10   (7.2) 

The subscript i indicates the particular observational unit, i = 1, 2, …, n.  The Xi values 

correspond to the n observations that are made on the independent variable, and they 

are assumed to be measured without error.  The random error εi’s have zero mean and 

are assumed to have common variance σ 2 and to be pairwise independent.  Since the 

only random element in the model is εi , these assumptions imply that the Yi’s also 

have a common variance σ 2 and are pairwise independent.  

The method of least squares is then used with the above model to predict 

the parameters that correspond to the “best fit”.  The least squares estimation 

procedure uses the criterion that the solution must give the smallest possible sum of 

the squared deviations of the observed Yi from the estimates of their true means that 

are provided by the solution (Draper and Smith 1998).  By letting 0β̂ and 1̂β be 

numerical estimates of the parameters β0 and β1 , respectively, we have: 

ii XY 10
ˆˆˆ ββ +=   (7.3) 

Equation 7.4 can then be used to calculate the sum of the squares of the 

residuals, denoted by SSR. 

∑ ∑
=

=−=
n

i
iii eYYSSR

1

22)ˆ(   (7.4) 

where, )ˆ( iii YYe −= is the observed residual for the ith observation.   
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The least squares principle then chooses 0β̂ and 1̂β such that the SSR is 

minimized (Equations 7.5 and 7.6). 

XY 10
ˆˆ ββ −=   (7.5) 

∑ ∑
∑ ∑ ∑

−

−
=

n
X

X

n
YX

YX

i
i

ii
ii

2
2

1 )(

))((

β̂   (7.6) 

where, Y and X are the corresponding sample means.  

Among the various methods that are commonly used to evaluate the 

resulting fit function, the R-squared value is probably the most common term that is 

used to assess the quality of the resulting model fit (this parameter is discussed in 

detail in Chapter 6).  The correlation coefficient between the real and predicted values 

can also be used for final model evaluation (see Chapter 6).   

There are other univariate regression models, such as polynomial and 

trigonometric models, which use the same general approach and concepts as the 

simple model, but which use higher order polynomial expressions or other more 

sophisticated mathematical expressions in the right hand side of Equations 7.1 and 7.2. 

7.3 Univariate Regression Analysis of the Field Data 

7.3.1 Correlation Coefficient Analysis 

As discussed in Chapter 6, one way to identify a linear correlation 

between a set of actual values and set of corresponding predicted values is to calculate 

and analyze the relevant correlation coefficient.  In this section, the correlation 

coefficients between in-situ test results and the “best-guess” (kriged) CCC roller 

values at each of the corresponding in-situ test locations are calculated.  By examining 
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these correlation coefficient values, it is hoped that an initial understanding of possible 

relationships between CCC results and in-situ test results can be developed.  Table 7.1 

presents the resulting correlation coefficients between the kriged MDP values at each 

in-situ test point and the corresponding values measured in each of the in-situ tests.  

For comparison purposes, the correlation coefficient between the kriged MDP values 

and the associated kriged CMV values is also presented. 

Table 7.1 Correlation Coefficients between MDP Measurements and 
Corresponding In-situ Test Results 

Lift - 
Pass CMV GeoGauge 

(MPa) 

LWD 
300 

(MPa) 

LWD 
200 

(MPa) 

DCPIM-152.4 
(mm/blow) 

DCPIA-152.4 
(mm/blow) 

Lab ω 
(%) 

NDG γd 
(kN/m3) 

NDG ω 
(%) 

Base – 
2/2 -0.27 -0.47 -0.40 NA 0.71 0.27 0.27 -0.40 0.16 

Lift 2 – 
6/6 -0.16 -0.44 -0.43 -0.44 0.21 0.14 -0.39 -0.51 0.32 

Lift 3 – 
8/8 -0.21 -0.21 0.25 0.02 -0.13 -0.21 -0.21 0.16 0.10 

Lift 4 – 
9/9 0.02 -0.17 0.02 0.10 0.31 0.31 0.21 0.10 -0.02 

Lift 5 – 
1/7 -0.73 -0.51 -0.10 -0.56 0.08 0.20 0.86 -0.30 0.62 

Lift 5 – 
2/7 -0.33 -0.57 -0.55 -0.93 0.37 0.45 0.19 -0.39 0.60 

Lift 5 – 
3/7 0.12 -0.46 -0.20 0.13 -0.72 -0.65 0.64 0.17 0.14 

Lift 5 – 
5/7 0.24 -0.93 0.23 0.65 -0.10 -0.08 0.05 -0.53 0.48 

Lift 5 – 
7/7 -0.33 -0.25 -0.10 -0.35 0.17 -0.12 0.50 0.84 0.38 

All -0.53 -0.37 -0.37 -0.60 0.61 0.54 0.39 -0.45 0.58 
Averag

e -0.57 -0.48 -0.78 -0.82 0.90 0.91 0.63 -0.80 0.91 

 
 

In the table above, the term “All” corresponds to the correlation 

coefficient that was calculated by examining the entire data set at once, instead of pass 

by pass.  The term “Average” corresponds to the correlation coefficient that was 
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calculated by looking at the relationship between the average of the kriged CCC 

values for each lift and pass as compared to the average of the in-situ values for each 

lift and pass.  In order to use this approach, kriging is first performed on the CCC data 

set to determine the CCC test values for comparison with each in-situ test point.  The 

resulting kriged values for each lift and pass are then averaged to come up with a 

single representative value for each lift and pass.  The in-situ test results are also 

averaged for each lift and pass.  The averaged in-situ values are then compared with 

the averaged kriged CCC values, using the correlation coefficient.  This approach to 

looking at the average of the kriged values for each lift and pass is consistent with 

what has been performed by others (e.g. White et al. 2005).  

By examining Table 7.1, it is apparent that there is generally not a strong 

correlation between MDP and the other measurements if individual lifts and passes are 

considered.  However, the average of the measured in-situ data show more promising 

relationships when compared with average MDP values.  The nature of these 

relationships will be explored in more detail in the following sections. 

Table 7.2 presents the resulting correlation coefficients between the kriged 

CMV values at each in-situ test point and the corresponding values measured in each 

of the in-situ tests.  For comparison purposes, the correlation coefficient between the 

kriged CMV values and the associated kriged MDP values is also presented. 
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Table 7.2 Correlation Coefficients between CMV Measurements and 
Corresponding In-situ Test Results 

Lift - 
Pass 

MDP 
(kW) 

GeoGauge 
(MPa) 

LWD 
300 

(MPa) 

LWD 
200 

(MPa) 

DCPIM-152.4 
(mm/blow) 

DCPIA-152.4 
(mm/blow) 

Lab ω 
(%) 

NDG γd 
(kN/m3) 

NDG ω 
(%) 

Base – 
2/2 -0.27 -0.65 0.05 NA -0.77 -0.20 0.63 -0.50 0.55 

Lift 2 – 
6/6 -0.16 0.07 0.19 0.64 -0.10 -0.16 -0.07 -0.07 0.31 

Lift 3 – 
8/8 -0.21 -0.17 -0.02 -0.10 0.11 0.05 -0.10 0.22 -0.06 

Lift 4 – 
9/9 0.02 0.04 -0.08 0.21 -0.22 -0.18 0.49 0.14 0.71 

Lift 5 – 
1/7 -0.73 0.06 0.73 0.95 0.51 0.42 -0.36 -0.26 -0.10 

Lift 5 – 
2/7 -0.33 0.82 0.35 0.62 -0.35 -0.44 -0.54 0.67 -0.37 

Lift 5 – 
3/7 0.12 0.53 0.77 0.76 -0.01 -0.22 -0.37 -0.50 -0.29 

Lift 5 – 
5/7 0.24 -0.42 0.94 0.75 -0.48 -0.56 -0.48 -0.20 -0.68 

Lift 5 – 
7/7 -0.33 0.09 0.20 0.30 -0.40 -0.24 -0.47 -0.09 -0.45 

All -0.53 0.07 0.12 0.27 -0.45 -0.37 -0.23 0.17 -0.21 
Averag

e -0.57 0.17 0.07 0.08 -0.61 -0.59 -0.68 0.38 -0.47 

 
 

As shown in Table 7.2, for some lifts and passes relatively high 

correlation coefficients were observed.  However, these trends were generally not 

consistent for the other lifts and passes, and in general no robust trend could be 

determined.  In addition, taking the averages of the kriged values into account, as was 

done for the MDP analysis, did not appear to yield as successful results.   

7.3.2 In-situ Testing Measurements versus Kriged CCC Values 

In order to explore the nature of the relationships between CCC data and 

in-situ testing measurements further, a series of univariate regression analyses were 

performed to determine correlation functions between data sets.  Univariate regression 

analysis were performed using linear regression (denoted by L and a solid line) and 
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second-degree polynomial regression (denoted by P and a dashed line) to generate the 

trend lines shown in the following figures. 

To illustrate the overall scatter in the measured data, a series of plots are 

used to compare the in-situ test measurements with the kriged CCC data points at each 

in-situ test location (Figure 7.1 to Figure 7.3).  These figures present comparisons 

between in-situ test and CCC measured values for the entire data set – that is, that the 

data are not broken down by lift and pass.  The only data omitted in this analysis (and 

from all of the regression analyses from here on out) is the CMV values that were 

recorded for Pass 1 of Lift 5.  The detailed reasoning for not including these values in 

the regression analysis is provided in Chapter 5, and has to do with the relative effect 

of the differing degree of vibratory compaction amplitude that was applied for this lift 

and pass (the compaction for Pass 1 of Lift 5 was high amplitude, while for all other 

lifts and passes low amplitude compaction was used).  In all the presented figures, if 

the R-squared value is greater than 0.7, the mathematical function of the fitted curve 

will be presented in the corresponding figure. 
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Figure 7.1 Univariate regression analyses of CCC, GeoGauge, and LWD 
measured values, vs. kriged CMV and MDP measurements for each 
of the in-situ test locations 
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Figure 7.2 Univariate regression analyses of DCP and NDG measured values, 
vs. kriged CMV and MDP measurements for each of the in-situ test 
locations 
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Figure 7.3 Univariate regression analyses of Lab and NDG water contents, vs. 
kriged CMV and MDP measurements for each of the in-situ test 
locations.  

As shown in Figures 7.1 through 7.3, there is not a strong linear or 

quadratic relationship between the measured in-situ test results and the corresponding 

kriged CCC values at each of the in-situ test locations.  This conclusion is in 

agreement with the preliminary findings shown by the correlation coefficients 

presented in Tables 7.1 and 7.2. 

In an attempt to see whether or not the data from the final passes of each 

lift was obscuring the univariate regression results, it was useful to perform separate 

univariate regression analyses on only the kriged results from Lift 5, Passes 1 through 

7, to see if a consistent trend emerged that could be used for CCC data calibration.  As 

noted earlier (in the previous section and in Chapter 5), the CMV values that were 

recorded for Pass 1 of Lift 5 were omitted from this analysis, as the vibratory 

compaction amplitude that was applied for this pass was high amplitude, while the 
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other passes were subjected to low amplitude compaction.  The results from these 

univariate regression analyses are provided in Figures 7.4 through 7.6. 

 

Figure 7.4 Univariate regression analyses of CCC, GeoGauge, and LWD 
measured values, vs. kriged CMV and MDP measurements for the 
Lift 5 in-situ test results 



 193

 

Figure 7.5 Univariate regression analyses of DCP and NDG measured values, 
vs. kriged CMV and MDP measurements for the Lift 5 in-situ test 
results 
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Figure 7.6 Univariate regression analyses of Lab and NDG water contents, vs. 
kriged CMV and MDP measurements for the Lift 5 in-situ test 
results 

As shown in Figures 7.4 through 7.6, there is not a strong linear or 

quadratic relationship between the measured in-situ test results and the corresponding 

kriged CCC values that could be developed by analyzing only the Lift 5 data, even 

though a significant amount of pass-by-pass data exists for this lift.   

Further univariate regression analyses were also performed between in-

situ test data points and kriged CCC values on a lift-by-lift, pass-by-pass basis.  The 

R-squared values resulting from these analyses are presented in Tables 7.3 and 7.4.  

Consistent with the previous section, in all of the analyses that were performed, the 

associated CCC values (MDP and CMV) were the independent variables (with the 

exception of the NDG and Lab water content results shown in Table 7.4, which used 

the corresponding water contents as the independent variables; this is consistent with 

the earlier univariate analyses that are shown in this chapter).  The associated values 
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of MDP are presented in gray.  To highlight strong correlations that may be of interest, 

R-squared values greater than or equal to 0.7 are presented in boldface text in the 

tables.  

Table 7.3 Summary of univariate regression analysis between CCC values and 
modulus-based tests for single lifts and passes 

CMV 
MDP (kW) 

CCC GeoGauge E 
(MPa) 

LWD 300 E 
(MPa) 

LWD 200 E 
(MPa) 

DCPIM 
(mm/blow) 

DCPIA 
(mm/blow) 

Lift / Pass 

L P L P L P L P L P L P 
0.07 0.07 0.42 0.91 0.00 0.03 NA NA 0.60 0.86 0.04 0.39 

Base - 2/2 
0.07 0.44 0.22 0.29 0.16 0.81 NA NA 0.51 0.62 0.07 0.93 
0.03 0.20 0.01 0.02 0.04 0.04 0.41 0.41 0.01 0.08 0.03 0.13 Lift 2 - 

6/6 0.03 0.10 0.19 0.20 0.18 0.27 0.20 0.22 0.04 0.15 0.02 0.05 
0.05 0.05 0.03 0.03 0.00 0.14 0.01 0.04 0.001 0.40 0.00 0.38 Lift 3 - 

8/8 0.05 0.07 0.04 0.05 0.06 0.08 1E-04 0.01 0.02 0.02 0.04 0.05 
0.001 0.04 0.002 0.002 0.01 0.10 0.04 0.07 0.05 0.05 0.03 0.03 Lift 4 - 

9/9 0.001 0.03 0.02 0.08 0.01 0.02 0.01 0.04 0.08 0.14 0.09 0.14 
0.54 0.54 0.00 0.68 0.53 0.62 0.90 0.93 0.26 0.39 0.18 0.38 Lift 5 - 

1/7 0.54 0.77 0.26 0.32 0.01 0.04 0.32 0.32 0.06 0.11 0.04 0.11 
0.11 0.12 0.68 0.88 0.12 0.45 0.38 0.96 0.13 0.42 0.19 0.51 Lift 5 - 

2/7 0.11 0.90 0.32 0.50 0.30 0.31 0.87 0.88 0.13 0.98 0.20 0.96 
0.01 0.34 0.28 0.30 0.59 0.61 0.58 0.60 7E-05 0.53 0.05 0.66 Lift 5 - 

3/7 0.01 0.02 0.21 0.22 0.04 0.05 0.02 0.02 0.52 0.70 0.43 0.53 
0.12 0.23 0.18 0.88 0.89 0.93 0.56 0.98 0.23 0.52 0.32 0.63 Lift 5 - 

5/7 0.12 0.98 0.95 0.96 0.22 0.53 0.73 0.85 0.06 0.29 0.06 0.18 
0.11 0.24 0.01 0.01 0.04 0.08 0.09 0.09 0.16 0.18 0.06 0.06 Lift 5 - 

7/7 0.11 0.11 0.06 0.07 0.01 0.02 0.12 0.16 0.03 0.03 0.02 0.04 
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Table 7.4 Summary of univariate regression analysis between CCC values and 
modulus-based tests for single lifts and passes 

CMV 
MDP (kW) 

NDG γd 
(kN/m3) NDG ω (%) Lab ω (%) 

Lift / Pass 

L P L P L P 
0.25 0.92 0.30 0.37 0.39 0.54 

Base - 2/2 
0.16 0.58 0.02 0.45 0.07 0.22 
0.003 0.12 0.06 0.37 0.01 0.01 Lift 2 - 

6/6 0.18 0.22 0.07 0.11 0.15 0.30 
0.01 0.33 0.004 0.02 0.16 0.01 Lift 3 - 

8/8 0.06 0.24 0.01 0.07 0.08 0.42 
0.44 0.87 0.04 0.27 0.08 0.35 Lift 4 - 

9/9 0.18 0.77 0.21 0.30 0.20 0.60 
0.07 0.73 0.01 0.62 0.13 0.44 Lift 5 - 

1/7 0.04 0.11 0.39 0.66 0.74 0.74 
0.45 0.62 0.14 0.15 0.29 0.36 Lift 5 - 

2/7 0.15 0.73 0.36 0.69 0.03 0.38 
0.25 0.27 0.09 0.41 0.14 0.14 Lift 5 - 

3/7 0.03 0.43 0.02 0.02 0.41 0.84 
0.04 0.67 0.46 0.56 0.24 0.25 Lift 5 - 

5/7 0.59 0.88 0.17 0.41 0.02 0.13 
0.01 0.01 0.15 0.15 0.27 0.34 Lift 5 - 

7/7 0.39 0.46 0.08 0.08 0.15 0.32 

 
 

As shown in Tables 7.3 and 7.4, in some cases there is a strong univariate 

regression relationship between CCC values and their corresponding in-situ 

measurements.  Unfortunately, these trends only appear for correlations developed 

using only a few points for specific lifts and passes, and are not consistent for different 

lifts and passes.  Consequently, upon careful examination of Figures 7.1 through 7.6 

and Tables 7.3 and 7.4, it appears that in general there is not a significant linear or 
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quadratic univariate relationship between the roller and in-situ testing data that can be 

found by making point-to-point comparisons of the kriged CCC values with the in-situ 

test results.  This observation is consistent with what has been observed by other 

researchers that have studied the use of CCC technology (e.g. White and Thompson 

2008, Kröber et. al. 2001).   

In an attempt to resolve this issue, another approach is needed to develop 

better correlations between the measured in-situ test results and the corresponding 

kriged CCC values at each of the in-situ test locations.  In order to smooth the data 

and minimize the point-specific inaccuracies that are characteristic of both the CCC 

and in-situ test data sets,  average in-situ test value were calculated for each lift and 

pass, and compared to the average of the kriged CCC data points for each lift and 

pass.  Regression analysis was then performed on the resulting data set of average 

CCC and in-situ test values.  The results from these univariate regression analyses are 

provided in Figures 7.7 through Figure 7.9. 
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Figure 7.7 Univariate regression analyses of average in-situ testing values vs. 
average CCC data for all lift and passes 
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Figure 7.8 Univariate regression analyses of average in-situ testing values vs. 
average CCC data for all lift and passes 
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Figure 7.9 Univariate regression analyses of average in-situ testing values vs. 
average CCC data for all lift and passes 

As shown in Figures 7.7 through 7.9, the corresponding R2 values for both 

the linear and quadratic regression analyses are significantly higher than the values 

that were calculated when regression analyses were performed on individual data 

points (Figures 7.1 through 7.6).  This means that linear regression analysis of the 

average values for each lift and pass is a technique that shows significant promise for 

interpretation and calibration of CCC test results.  These findings are consistent with 

what has been observed by other researchers that have analyzed CCC data sets 

(Thompson and White 2008). 

By examining Figures 7.7 through 7.9, it can also be observed that there 

was a significant data outlier in many of the plots.  This outlier value, which is noted 

by an arrow in a number of the presented regression plots, belongs to the average 

values that were recorded for the base layer.  As the base layer is itself not an 
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engineered lift (it was not mixed like the other layers, sampled to confirm uniformity 

with the other soil types, moisture conditioned, or sufficiently compacted), it is 

reasonable to exclude this data point from consideration for purposes of regression 

analysis.  Consequently, it was decided to repeat the univariate regression analyses 

using the average lift/pass approach and excluding the base layer data point from each 

of the plots; the results from these analyses are provided in Figures 7.10 through 

Figure 7.12. 
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Figure 7.10 Univariate regression analyses of average in-situ testing values vs. 
average CCC data for all lifts and passes, excluding the base layer 
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Figure 7.11 Univariate regression analyses of average in-situ testing values vs. 
average CCC data for all lifts and passes, excluding the base layer 
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Figure 7.12 Univariate regression analyses of average CCC values vs. average 
Lab and NDG water contents for all lift and passes, excluding the 
base layer 

By examining Figures 7.10 through 7.12, it can be observed that removing 

the base layer data point from the regression analyses leads to improved R-squared 

values in a number of the cases, most notably the LWD 300 modulus, the LWD 200 

modulus, DCP indices, and the NDG dry unit weight.  One possible reason for such 

improvement in the resulting analyses is that the base layer was not an engineered lift, 

which means that it may exhibit significantly different behavior than the other 

compacted lifts (as discussed previously).  Another possible reason for this point being 

such a significant outlier is the fact that it had a significantly lower water content than 

what was observed for the other layers that were placed in a more controlled fashion 

(see Chapter 4).  The influence of water content on the test results can be examined 
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more effectively using multiple regression analysis, which is discussed in detail in the 

next chapter.  

In order to develop an understanding of the type of calibrations that could 

be developed from analysis of a single lift only, univariate regression analyses were 

also performed looking only at the results from the various passes of Lift 5.  The 

results from these univariate regression analyses are provided in Figures 7.13 through 

Figure 7.15.   
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Figure 7.13 Univariate regression analyses of average in-situ testing values vs. 
average CCC data for Lift 5 
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Figure 7.14 Univariate regression analyses of average in-situ testing values vs. 
average CCC data for Lift 5 
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Figure 7.15 Univariate regression analyses of average CCC values vs. average 
Lab and NDG water contents for Lift 5 

By comparing the univariate regression results of analyses performed only 

on the averaged data from Lift 5 with regression results from analyses performed on 

the averaged data from all lifts and passes, it can be observed that the quality of the fit 

(as indicated by the R2 values) generally improves for most of the cases.  In most of 

these cases, it is likely that the quality of the fit improves due to a reduction in the 

number of sample data points, with the points being omitted generally being redundant 

intermediate values that exhibited some significant scatter. 

Table 7.5 presents a summary of the R-squared values that are shown in 

Figures 7.1 through 7.15.  In the following table, L and P reflect respectively the linear 

and polynomial models for each complete data set, while Lave and Pave are related to 

the linear and polynomial models for the averaged values of each lift and pass.  L*
ave 

and P*
ave describe the linear and second-degree polynomial models for the average 
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values of all lift and passes, excluding the base layer results.  To highlight strong 

correlations that may be of interest, R-squared values greater than 0.7 are presented in 

boldface text in the table.  

Table 7.5 R-square values between roller measurements and in-situ testing 
data 

RMV Model MDP 
(kW) CMV GeoGauge 

(MPa) 

LWD 
300 

(MPa) 

LWD 
200 

(MPa) 

DCPIM 
(mm/blow) 

DCPIA 
(mm/blow) 

NDG γd 
(kN/m3) 

L 0.39 1.00 0.01 0.02 0.10 0.23 0.17 0.03 
Lave 0.89 1.00 0.04 0.15 0.10 0.36 0.23 0.12 
L*

ave 0.90 1.00 0.04 0.08 0.10 0.72 0.65 0.51 
P 0.39 1.00 0.01 0.05 0.12 0.24 0.19 0.08 

Pave 0.91 1.00 0.06 0.55 0.18 0.36 0.24 0.20 

CMV 
(all) 

P*
ave 0.91 1.00 0.06 0.18 0.18 0.85 0.78 0.54 

L 0.62 1.00 0.003 0.04 0.06 0.51 0.48 0.37 
Lave 0.98 1.00 0.15 0.003 0.0003 0.63 0.59 0.86 
P 0.62 1.00 0.004 0.050 0.08 0.52 0.48 0.38 

CMV 
(Lift 5) 

Pave 0.99 1.00 0.16 0.48 0.75 0.94 0.95 0.95 
L 1.00 0.39 0.13 0.12 0.31 0.32 0.26 0.17 

Lave 1.00 0.89 0.24 0.23 0.65 0.47 0.35 0.28 
L*

ave 1.00 0.90 0.24 0.60 0.65 0.83 0.83 0.66 
P 1.00 0.39 0.19 0.13 0.31 0.33 0.27 0.18 

Pave 1.00 0.95 0.38 0.31 0.67 0.49 0.37 0.28 

MDP 
(all) 

P*
ave 1.00 0.95 0.4 0.61 0.67 0.83 0.84 0.82 

L 1.00 0.62 0.002 0.19 0.31 0.63 0.56 0.58 
Lave 1.00 0.98 0.02 0.58 0.59 0.81 0.76 0.97 
P 1.00 0.65 0.004 0.23 0.34 0.64 0.57 0.60 

MDP 
(Lift 5) 

Pave 1.00 0.99 0.09 0.72 0.75 0.89 0.87 0.98 
 
 

Analysis of the data presented in Table 7.5 and Figures 7.1 to 7.15 leads 

to the following general conclusions: 

• In a number of the cases (e.g. DCP indices, NDG dry unit weight, 

and NDG and Lab measured water content, the use of second-
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degree polynomial regression models resulted in significantly 

higher R-squared values than the use of a linear regression models. 

• In general, point-by-point comparisons between kriged CCC data 

and individual in-situ test results yield poor-quality correlations. 

• Comparisons between average kriged CCC data points and 

average in-situ test results for each lift and pass yield relatively 

high-quality correlations. 

• Exclusion of the base layer average values from the associated 

regression analyses yields improved R-squared values, and reveals 

that there is a relatively strong relationship between CCC data and 

some of the in-situ testing measurements.   

• In general, MDP values tend to correlate more strongly with in-

situ test results than the CMV values do.  This observation is likely 

linked to the fact that the influence depth of MDP is closer to the 

influence depths of the various in-situ testing methods that were 

utilized in this study (~ 20 to 60 cm (0.6 ft to 2 ft)).  This is in 

contrast with the deeper influence depths that are commonly cited 

for CMV data (e.g 0.8 m – 1.5 m (2.6 ft – 4.9 ft), as noted by 

White and Thompson 2008). 

• Average NDG measured dry unit weight and DCP indices showed 

the strongest correlation with average CCC values, as compared to 

those values measured in the other in-situ tests.   

• LWD 200 test results showed better correlation with the measured 

CCC data than the LWD 300 test results did. 
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• Of the in-situ testing methods that were utilized, the Geogauge 

tended to show the poorest correlation with the recorded CCC 

data.   

7.3.3 Effect of Water Content on the Mechanical Properties of Compacted Soil 

Water content has widely been referred to as one of the most significant 

factors that can influence the mechanical properties of a compacted soil (see Adam 

1997, White et. al. 2007).  To investigate the influence of water content on the 

recorded CCC data and the in-situ test results for this project, univariate regression 

analyses were performed on the available data from the final passes of each lift.  The 

justification for selecting only the final passes was to remove a primary source of 

variability in the results, the degree of compaction, from the analysis (although it 

should be noted here that there is also some variability in the relative compaction 

values after the final passes for each lift, as shown in Figure 4.2. 

As discussed earlier in this chapter, it was difficult to discern a clear trend 

between the single measured values for each lift or pass.  Therefore, the average 

values of each lift and pass are the only ones analyzed in this section.  The same 

process as the previous section was adopted to explore possible relationships between 

the water content of the soil and the corresponding measured mechanical properties.  

It is worth mentioning that the water content of the compacted soil was measured by 

two methods; first by conducting in-situ measurements using a Nuclear Density Gauge 

(NDG) (ASTM D 3017) and then by taking in-situ samples and using an oven-based 

laboratory determination procedure (ASTM D 2216).  For simplicity, and to 

differentiate these water contents with respect to those measured by the NDG, this 

type of water content was called the laboratory water content, or Lab ω. 
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Figure 7.16 and Figure 7.17 show the effect of water content on the 

physical and mechanical properties of the compacted soil.   
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Figure 7.16 Univariate regression analysis of average CCC data and in-situ 
testing values vs. average measured water contents (final passes) 
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Figure 7.17 Univariate regression analysis of average in-situ testing values vs. 
average measured water contents (final passes) 
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As shown in Figure 7.16 and Figure 7.17, there is often excellent 

agreement between the water content of the soil and other CCC roller data or in-situ 

test measured values, provided that the data sets are examined for relatively similar 

amounts of compactive effort.  As demonstrated in Figure 7.16 and Figure 7.17, many 

of the data sets that were examined exhibited a strong polynomial relationship 

between the average measured properties of the soil and the corresponding average 

water content.  This trend is consistent with the characteristics of a standard Proctor 

compaction curve, where γd values are shown to have a maximum value at an 

optimum water content for a constant amount of applied compactive effort.  

Interestingly, this strong quadratic trend was not observed for either the GeoGauge or 

the DCP measured results, which indicates that the results from these tests may not be 

as strongly influenced by water content.   

For those data sets shown in Figures 7.16 and 7.17 that exhibited high-

quality second-order polynomial relationships, it is interesting to find the 

corresponding optimum moisture content and optimum CCC or in-situ test value.  The 

resulting “measured point” (MP) optimum values are presented in Table 7.6. 

Table 7.6 Optimum values for each of the measured CCC and in-situ test data 
sets, and the corresponding optimum water content  

Data Set Analyzed Lab ωopt (%) MPopt NDG ωopt (%) MPopt 

MDP (kW) 8.1 6.7 NA NA 
CMV 8.0 20.0 NA NA 

LWD 300 E (MPa) 9.8 22.2 10.4 25.6 
LWD 200 E (MPa) 9.7 28.0 9.4 28.1 
NDG γd (kN/m3) 9.1 18.4 9.4 18.9 

RC (%) 9.7 97.7 9.5 98.7 
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The “optimum” values presented in Table 7.4 should be treated with 

caution, as only some of the optimum values correspond to maximum recorded data 

values (CMV, NDG dry unit weight, and relative compaction), while others 

correspond to minimum data values (MDP, LWD 300, and LWD 200).   

As noted in Chapter 4, the average optimum water content for the 

compacted material was 11.7%.  In addition, the average of the maximum dry unit 

weights resulting from the series of 1-pt standard Proctor tests (and the assocated 

family of curves approach) was 18.8 kN/m3.  The average measured modulus from the 

LWD 300 and LWD 200 tests for the final passes were 27.6 MPa and 32.8 MPa, 

respectively.  As shown in Table 7.4, the optimum moisture content calculated from 

polynomial regression analysis of the measured CCC values was about 8.0%.  The 

optimum moisture contents back-calculated from regression analysis of the in-situ test 

values yield results ranging from 9.1% to 9.8%.  These back-calculated optimum 

values are lower than the average optimum water contents resulted from the 1-pt 

standard Proctor test (11.7%), as described in Chapter 4.   

7.4 Summary and conclusions 

In this chapter, potential relationships between the CCC data and the in-

situ testing methods were examined using univariate regression analysis.  Linear and 

second-degree polynomial models were employed in the univariate regression 

analyses.   

At the beginning of this chapter, the relationship between individual CCC 

data points and a variety of in-situ test measurements was explored.  Examination of 

the entire data set for regression analysis indicated that there were not any strong 

correlations between these measured values.  As a result, regression analyses of 
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average values from each lift and pass were performed.  Overall, regression analysis 

results from this chapter showed that: 

• In some cases, the use of second-order polynomial regression 

models significantly improved the quality of the model fit, as 

compared with the relationships developed from the linear 

regression analyses that were performed. 

• Point-by-point comparisons between kriged CCC data and 

individual in-situ test results yield poor-quality correlations. 

• Comparisons between average kriged CCC data points and 

average in-situ test results for each lift and pass yield relatively 

high-quality univariate regression correlations. 

• Exclusion of the base layer average values from the associated 

regression analyses yields improved R-squared values, and reveals 

that there is a relatively strong relationship between CCC data and 

some of the in-situ testing measurements.   

• In general, MDP values tend to correlate more strongly with in-

situ test results than the CMV values do.  This observation is likely 

linked to the fact that the influence depth of MDP is closer to the 

influence depths of the various in-situ testing methods that were 

utilized in this study.  This is in contrast with the deeper influence 

depths that are commonly cited for CMV data. 

• Average NDG measured dry unit weight and DCP indices showed 

the strongest correlation with average CCC values, as compared to 

those values measured in the other in-situ tests.   
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• LWD 200 test results showed better correlation with the measured 

CCC data than the LWD 300 test results did. 

• Of the in-situ testing methods that were utilized, the Geogauge 

tended to show the poorest correlation with the recorded CCC data 

• The water content had a significant influence on roller and in-situ 

testing measurements. 

• The optimum water content for the recorded average CCC values 

was ~8.0%, as back-calculated from univariate regression 

analyses.   

• In addition, it was realized that the resulted LWD moduli for this 

value of water content were greater than the average LWD’s 

measured moduli. 

In the next chapter (Chapter 8), the effect of water content on the 

mechanical and physical properties of the compacted soil will be discussed, using the 

results from a series of multivariate regression analyses. 
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Chapter 8 

MULTIPLE REGRESSION ANALYSIS 

8.1 Introduction 

In Chapter 7, univariate regression analysis was applied to the measured 

field data and in some cases, significant relationships were observed between the CCC 

and in-situ testing data sets.  In order for these strong correlations to be identified, it 

was necessary to perform univariate regression analysis of the average values that 

were recorded for each lift and pass, for each data set.  In addition, it was realized that 

the corresponding average measured values of the base layer produced an outlier in 

most of the regression analyses.  This observation is consistent with the fact that the 

base layer was not an engineered lift, which means that it had significantly more 

variability in potential soil characteristics (as the soil was not mixed, spread, and 

compacted like the other lifts).  Additionally, its measured water contents were lower 

than the other lifts that were placed.  The effect of water content on the measured 

mechanical properties of the compacted soil was also evaluated and the analyses 

showed a significant influence of water content on both the measurements from the 

CCC roller and the in-situ tests that were performed.  As a result of the water content 

based regression analyses that were performed in Chapter 7, it seems reasonable to 

include the effect of water content in regression analysis to discover the relationship 

between the CCC values, the measured water contents, and the associated in-situ 
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testing measurements.  This approach has been recommended by other researchers 

doing work in this area (e.g. White and Thompson 2008; White et al. 2005).   

The objective of the current chapter is to use multiple regression analysis 

techniques to develop correlations between the CCC roller data and in-situ testing 

measurements, which include the associated water content as one of the independent 

variables.   

8.2 Multiple Regression Analysis 

As mentioned in 7.1, multiple regression techniques use more than one 

independent variable in the regression analysis.  Multiple regression analyses using a 

linear additive model are considered here, as described in Rawlings et al. (1998).    

Equation 8.1 illustrates the general form of a linear additive model that 

can be used to relate a dependent variable to p independent variables.    

iippiii XXXY εββββ ++⋅⋅⋅+++= 22110   (8.1) 

where, β0 is the intercept, and the βi’s  are the rate of change in Yi (the dependent 

variables) per unit change in Xi’s (the independent variables).  The εi’s are the random 

errors associated with each independent variable.   

Equation 8.1 can be extended into a matrix form, as follows: 
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or, more briefly, as:  

Y = Xβ + ε  (8.3) 
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The predicted values for the dependent variable are obtained by solving 

Equation 8.3.  It should be noted that the Xi’s themselves can be a function of other 

variables. 

The quality of the resulting model fit can be evaluated using R-squared 

values as described in Chapter 6.  There are some other criteria for evaluation of the 

regression results which were followed in this study, as will be explained in the 

following sections.   

8.3 Multiple Regression Analysis of CCC Data Sets 

8.3.1 Regression models employed 

To include the effect of water content in the regression analysis, two types 

of regression models were utilized.  In the first model, a combination of roller-

recorded values (RRV) and water contents (ω (%)) were used as the independent 

variables to predict the value of each in-situ testing measurement (ITM), the dependent 

variable.  The general form of the equation that was used is shown in Equation 8.4. 

ITMi = A + B(RRVi)b + C(ωi)c  (8.4) 

where, A is the intercept at the origin, B and C are the multiple regression coefficients 

for each term, and b and c are the exponents of the independent variables. 

In the second model, a term consisted of the product of RRV and ω was 

added to the previous model, as shown in Equation 8.5. 

ITMi = A + B(RRVi)b + C(ωi)c + D(RRVi.ωi)d  (8.5) 

where, B, C, and D are the coefficients and b, c, and d are the exponents of the 

independent variables.  
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Measured modulus values from the GeoGauge, LWD 300, and LWD 200, 

as well as the DCPM index, the DCPA index, and the NDG dry unit weights were used 

separately as the dependent variables.  The individual MDP and CMV values 

predicted by the kriging method were utilized as the roller-recorded independent 

variables.  The laboratory measured water contents (not the NDG measured water 

contents) were used as the other independent variable in the multiple regression 

models shown above.   

As laboratory water contents were not available for all of the test locations 

for which data was recorded, there are some differences in the overall data sets for the 

regression analyses presented in this chapter, as compared with the data sets that were 

used for the univariate regression analyses performed in Chapter 7. 

To perform the multiple regression analyses, a computer program was 

developed using MATLAB™.  The code consisted of two loops for the first model 

and three loops for the second model.  In each loop, an iterative process was 

performed for the corresponding exponent (b, c, or d), assigning consecutive values of 

0.1 to 4.0 with a step interval of 0.1, in an attempt to obtain the highest quality model 

fit results, as determined by the resulting R-squared values.    

Some criteria were used in evaluating the fitted models.  The first criterion 

was the R-squared value, which was calculated according to Equation 6.10.  In the 

analyses that were performed, an R-squared value greater than 0.70 was assumed to be 

an acceptable value.   

The second criterion for model evaluation was minimization of the overall 

variance of errors between the predicted and actual values (Draper and Smith 1998) 

(Equations 8.6 and 8.7). 
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iii APAD −=   (8.6) 

where, ADi = Absolute difference for each pair of predicted and actual values, Pi = 

Predicted value, Ai = Actual value 
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where, σ 2AD = Error variance, μ (ADi) = Mean of absolute differences, n = Number of 

predicted values or number of RRV data, n΄ = Number of missing data.  More 

information on n and n΄ is provided in the following section (8.3.2).  With respect to 

model selection criterion, a low magnitude of error variance indicates a higher quality 

of model fit.   

Another criterion that was used to make a decision on the quality of the 

model fit was the p-values that were generated as a result of the model analysis.  In 

statistics, the p-value (or significance probability) refers to the probability that an 

effect at least as extreme as the current observation has occurred by chance (Schervish 

1996).  P-values of less than 0.05 are universally accepted as an acceptance limit for 

different types of regression models (Schervish 1996).  In some cases, a p-value less 

than 0.01 is also used as the acceptance limit (Schervish 1996); however, it is felt that 

this criteria is too restrictive for analysis of the current data set.   

8.3.2 Multiple regression analysis of individual in-situ test values 

As a first attempt at multiple regression, analyses of each of the entire data 

sets were performed, comparing each of the in-situ test values of interest vs. each of 

the CCC recorded values and the corresponding water content.  The results of these 

analyses are presented in Figure 8.1 and Figure 8.2.  R2
1 and R2

2 are the resulting R-

squared values for the first model (Equation 8.4 – solid line) and the second model 
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(Equation 8.5 – dashed line), respectively.  The number of independent variables in 

each set is denoted by n.  In some locations, the in-situ testing measured values were 

not available at the locations where laboratory measured water contents were 

measured (e.g. NDG γd and LWD 200 E).  The number of points excluded from the 

analysis because of missing in-situ testing values is shown by n΄ in the following 

figures.  As noted earlier in Chapters 5 and 7, values of CMV for Pass 1 of Lift 5 were 

eliminated from these analyses, due to the differing amplitude of vibratory compaction 

that was applied for this pass.  This omission is consistent with the univariate 

regression analyses that were performed in Chapter 7. 



 225

 

Figure 8.1 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using the entire data set  
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Figure 8.2 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using the entire data set 

As shown in Figures 8.1 and 8.2, there is a significant improvement in the 

resulting R-squared values over the univariate regression analysis results presented in 

Chapter 7.  However, similar to what was concluded for the entire data set univariate 

regression analyses, the resulting R-squared values are still quite low, which indicates 

that there is not a strong correlation between the measured data sets.   

As univariate regression analyses in Chapter 7 indicated that the base 

layer data points were significant outliers, it was desirable to repeat the point-by-point 
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multivariate regression analyses while excluding these values from the data set.  

Figures 8.3 and 8.4 show the results of these multivariate regression analyses.   

 

Figure 8.3 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using the entire data set and excluding the 
base layer 
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Figure 8.4 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using the entire data set and excluding the 
base layer 

For comparative purposes, similar multivariate regression analyses were 

performed looking only at the final passes for each of the compacted lifts.  Figures 8.5 

and 8.6 show the results of these multivariate regression analyses. 
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Figure 8.5 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using only the data for the final passes of 
each lift 
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Figure 8.6 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using only the data for the final passes of 
each lift 

To examine the sensitivity of the measured results to the outlying base 

layer data points, the same regression analyses on the final passes of each lift were 

repeated while disregarding the base layer points.  The results from these analyses are 

presented in Figures 8.7 and 8.8. 
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Figure 8.7 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using only the data for the final passes of 
each lift (with the base layer points excluded) 
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Figure 8.8 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using only the data for the final passes of 
each lift (with the base layer points excluded)  

For comparative purposes, multivariate regression analyses were also 

performed looking at all of the data points that were recorded for each of the passes 

for Lift 5.  Figures 8.9 and 8.10 show the results of these multivariate regression 

analyses. 
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Figure 8.9 Multiple regression analysis of in-situ testing measurements vs. 
kriged CMV data points, using only the data for Lift 5 
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Figure 8.10 Multiple regression analysis of in-situ testing measurements vs. 
kriged MDP data points, using only the data for Lift 5 

As shown in Figures 8.1 through 8.10, numerous multiple regression 

analyses have been performed, looking at the relationships been the measured in-situ 

test results (dependent variable) and the kriged CCC data points and corresponding 

laboratory-measured water contents (independent variables).  To compare the results 

from these analyses, the resulting R-squared values from Figures 8.1 to 8.10 are 

presented in Table 8.1.  Models that have a p-value for model fit greater than 0.05 are 

specified by an asterisk (*), and the models that have a p-value between 0.01 and 0.05 
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are marked with a cross (†).  As the resulting models did not have high R-squared 

values, their error variances are not presented here. 

Table 8.1 R-squared values from the multivariate regression analyses that 
were performed on individual data points 

All 
All 

excluding 
base layer 

Finals 
Finals 

excluding 
base layer 

Lift 5 
In-sit testing 

R2
1 R2

2 R2
1 R2

2 R2
1 R2

2 R2
1 R2

2 R2
1 R2

2 
Geogauge E (MPa) 

vs. CMV 0.12† 0.14† 0.22 0.26 0.09* 0.14* 0.21† 0.29 0.03* 0.09* 

Geogauge E (MPa) 
vs. MDP (kW) 0.27 0.34 0.28 0.38 0.33 0.42 0.32 0.45 0.01* 0.05* 

NDG γd (kN/m3) vs. 
CMV 0.29 0.37 0.16† 0.21† 0.32 0.42 0.08* 0.18* 0.38 0.42† 

NDG γd (kN/m3) vs. 
MDP (kW) 0.46 0.46 0.36 0.39 0.45 0.47 0.04* 0.13* 0.60 0.73 

LWD 300 E (MPa) 
vs. CMV 0.60 0.60 0.38 0.40 0.57 0.58 0.31 0.34 0.08* 0.15* 

LWD 300 E (MPa) 
vs. MDP (kW) 0.61 0.65 0.49 0.54 0.58 0.67 0.38 0.53 0.28† 0.36 

LWD 200 E (MPa) 
vs. CMV 0.37 0.42 0.37 0.42 0.29 0.36 0.29 0.36 0.09* 0.11* 

LWD 200 E (MPa) 
vs. MDP (kW) 0.56 0.6 0.56 0.60 0.38 0.5 0.38 0.5 0.41 0.49 

DCPIM (mm/blow) 
vs. CMV 0.47 0.48 0.38 0.39 0.43 0.47 0.33 0.39 0.53 0.57 

DCPIM (mm/blow) 
vs. MDP (kW) 0.5 0.51 0.47 0.48 0.33 0.37 0.28 0.3 0.6 0.67 

DCPIA (mm/blow) 
vs. CMV 0.54 0.55 0.4 0.43 0.51 0.56 0.33 0.34 0.51 0.56 

DCPIA (mm/blow) 
vs. MDP (kW) 0.56 0.57 0.47 0.49 0.44 0.46 0.24 0.25† 0.55 0.62 

 *: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
 
 

As shown in Table 8.1, the strongest measured relationship that could be 

determined by regression analysis of individual values had an R2 value of 0.73.  This 

result corresponded to the multivariate relationship between the NDG dry unit weight 

and the kriged values for MDP (including the effect of the measured water content).  
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The resulting mathematical form of the regression equation is presented in Equation 

8.8. 

γd = -130.03 + 219.44 (MDP)0.1 + 0.14 (ω)2 – 56.58 (MDP.ω)0.2  (8.8) 

where, the error variance was 0.042 and the p-value was less than 0.01. 

In addition, the following conclusions were drawn from the regression 

results presented in Table 8.1: 

• In general, there is not a significant relationship between 

individual kriged CCC values and their corresponding in-situ test 

results for any of the data sets that were examined (the 

corresponding R2 values were all less than 0.8).  This observation 

is consistent with observations made when performing the 

univariate regression analyses discussed in the previous chapter. 

• In general, kriged MDP data points showed better correlation with 

in-situ measured values than did kriged CMV data points. 

• Adding additional terms to the form of the multivariate regression 

model (e.g. the second model as compared to the first model) 

improved the resulting R-squared values, which seems reasonable.  

• Of all of the in-situ tests that were used, the GeoGauge showed the 

weakest relationship with the measured CCC data. 

• Excluding the base layer from the analysis of either the entire data 

set or the final pass data set tended to lower the R-squared values.  

This trend supports the hypothesis that water content plays a 

significant role in the correlation between the CCC data and the in-

situ testing values.  Additionally, it supports the conclusion that 
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the reason that the base layer points were such significant outliers 

in the univariate regression analyses had to do with the 

significantly lower water contents that were present in this layer at 

the time of testing. 

8.3.3    Analysis of averages of data 

As a result of the observations that made during univariate analyses in 

Chapter 7, comparisons between the average in-situ test results and the average kriged 

CCC values for each lift and pass were considered in the multiple regression analysis.  

The same general steps as what were performed in section 8.3.2 are followed in this 

section.  Figures 8.11 and 8.12 present the results of multiple regression analysis 

performed using the entire data set of averaged values. 
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Figure 8.11 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
the entire data set 
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Figure 8.12 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using the 
entire data set 

As shown by a pair of arrows in Figure 8.11, it is clear that the second 

model significantly mispredicted the missing values for the LWD 200 results.  

Compared to the corresponding plot for LWD 300 and the corresponding actual and 

predicted values at the same point, it seems that the first model yielded better 

predictions of the corresponding missing value of  LWD 200 modulus.  
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Tables 8.2 and 8.3 present the regression coefficients that resulted from 

the multivariate regression analysis of the CMV and MDP data sets.  The coefficients 

shown correspond to those shown in Equations 8.4 and 8.5.  For consistency, results 

are shown for all of the in-situ testing techniques that were analyzed, even those that 

exhibited less-than-desirable model fit results.  It should be noted that in all of the 

following tables in this chapter, the corresponding values of MDP are shown in gray 

cells, the regression coefficients are rounded to the nearest 0.0001, and the R-squared 

values and error variance are rounded to the nearest 0.01.   

Table 8.2 Components of the first fitted model for all averages 

In-situ testing b c A B C R2
1 σ2

AD 
Geogauge E (MPa) vs. CMV  4.0 3.8 73.47 9.30E-06 -5.96E-04 0.09*  54.09 

Geogauge E (MPa) vs. MDP (kW) 0.1 1.5 175.83 -80.4480 -0.13 0.25* 37.99 
NDG γd (kN/m3) vs. CMV 4.0 3.4 16.91 6.92E-06 3.46E-04 0.96  0.01 

NDG γd (kN/m3) vs. MDP (kW) 1.3 0.1 4.54 -0.04 11.57 0.93 0.01 
LWD 300 E (MPa) vs. CMV 0.1 0.1 313.57 -27.20 -200.57 0.89 5.29 

LWD 300 E (MPa) vs. MDP (kW) 4.0 0.1 263.54 -1.29E-04 -187.99 0.87 7.57 
LWD 200 E (MPa) vs. CMV 4.0 0.1 332.22 -2.08E-05 -237.94 0.43* 9.27 

LWD 200 E (MPa) vs. MDP (kW) 4.0 0.1 145.17 -1.82E-04 -88.96 0.70† 10.12 
DCPIM (mm/blow) vs. CMV 3.0 0.1 -212.84 -1.58E-03 203.03 0.86 12.09 

DCPIM (mm/blow) vs. MDP (kW) 2.3 0.1 -235.86 0.03 210.95 0.88 11.51 
DCPIA (mm/blow) vs. CMV 3.6 0.1 -301.88 -1.83E-04 269.53 0.88 13.97 

DCPIA (mm/blow) vs. MDP (kW) 2.8 0.1 -314.05 6.30E-03 272.33 0.91 10.81 
*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
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Table 8.3 Components of the second fitted model for all averages 

In-situ testing b c d A B C D R2
2 σ2

AD 
Geogauge E (MPa) 

vs. CMV 2.0 4.0 2.8 15.41 0.25 3.35E-03 -3.11E-05 0.36* 47.30 

Geogauge E (MPa) 
vs. MDP (kW) 0.9 0.1 1.0 2317.29 -36.77 -1758.57 2.54 0.68 19.66 

NDG γd (kN/m3) vs. 
CMV 4.0 3.6 0.2 19.73 1.07E-05 3.02E-04 -1.26 0.96 0.01 

NDG γd (kN/m3) vs. 
MDP (kW) 0.7 0.2 0.6 -37.82 2.87 38.34 -1.19 0.98 0.01 

LWD 300 E (MPa) 
vs. CMV 1.7 4.0 0.9 36.79 0.65 3.31E-03 -1.27 0.97 1.92 

LWD 300 E (MPa) 
vs. MDP (kW) 1.9 0.1 1.4 1094.58 -0.70 -866.41 0.12 0.95 3.47 

LWD 200 E (MPa) 
vs. CMV 0.5 3.1 0.1 1955.10 135.85 0.07 -1544.45 0.97 0.63 

LWD 200 E (MPa) 
vs. MDP (kW) 2.3 0.1 2.2 674.72 -0.23 -511.05 1.68E-03 0.91† 3.97 

DCPIM (mm/blow) 
vs. CMV 1.0 1.3 0.1 -2330.50 -22.78 -14.02 1816.65 0.98 1.83 

DCPIM (mm/blow) 
vs. MDP (kW) 0.2 0.1 0.2 6526.91 -2128.69 -5242.98 1386.02 0.94 6.80 

DCPIA (mm/blow) 
vs. CMV 2.0 3.6 0.1 -1201.67 -0.39 -0.01 843.41 1.00 0.53 

DCPIA (mm/blow) 
vs. MDP (kW) 0.1 0.1 0.1 9236.52 -7538.97 -7469.32 6114.06 0.94 9.02 

*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
 
 

From analysis of the data shown in Figures 8.11 and 8.12 and in Tables 

8.2 and 8.3, it can be concluded that adding an extra term to the multiple regression 

model increased the R-squared values and decreased the error variance significantly.  

For the average values from the in-situ and CCC data sets (with the exception of the 

GeoGauge), there are strong correlations between all average in-situ testing 

measurements and average CCC values.   

Figures 8.13 and 8.14 present the results of regression analysis on all 

averages excluding the base layer. 
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Figure 8.13 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
the entire data set and excluding the base layer 
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Figure 8.14 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using the 
entire data set and excluding the base layer  

Tables 8.4 and 8.5 present the regression coefficients that resulted from 

the multivariate regression analysis of the entire CMV and MDP data sets, with the 

base layer data points excluded.   
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Table 8.4 Components of the first fitted model for all averages excluding the 
base layer 

In-situ testing b c A B C R2
1 σ2

AD 
Geogauge E (MPa) vs. CMV 4.0 0.1 725.17 -7.06E-05 -515.62 0.35* 48.39 

Geogauge E (MPa) vs. MDP (kW) 0.1 0.1 371.83 -49.38 -189.90 0.29* 43.06 
NDG γd (kN/m3) vs. CMV 4.0 4.0 17.06 6.77E-06 7.21E-05 0.86† 0.01 

NDG γd (kN/m3) vs. MDP (kW) 0.9 0.1 1.94 -0.15 13.98 0.86 0.02 
LWD 300 E (MPa) vs. CMV 0.1 0.1 319.66 -28.19 -204.38 0.49* 6.61 

LWD 300 E (MPa) vs. MDP (kW) 4.0 0.1 148.85 -1.42E-04 -96.88 0.68† 7.54 
LWD 200 E (MPa) vs. CMV 4.0 0.1 332.22 -2.08E-05 -237.94 0.43* 9.27 

LWD 200 E (MPa) vs. MDP (kW) 4.0 0.1 145.17 -1.82E-04 -88.96 0.70† 10.12 
DCPIM (mm/blow) vs. CMV 4.0 4.0 48.29 -1.27E-04 -2.47E-04 0.85† 8.61 

DCPIM (mm/blow) vs. MDP (kW) 1.4 4.0 19.10 0.50 4.16E-04 0.82† 11.86 

DCPIA (mm/blow) vs. CMV 4.0 4.0 42.17 -1.09E-04 -5.87E-05 0.79† 11.40 
DCPIA (mm/blow) vs. MDP (kW) 0.8 4.0 7.20 3.69 2.94E-04 0.83† 10.33 

*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
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Table 8.5 Components of the second fitted model for all averages excluding the 
base layer 

In-situ testing b c d A B C D R2
2 σ2

AD 
Geogauge E (MPa) 

vs. CMV 0.2 2.7 0.1 2429.94 1510.37 0.40 -3129.83 0.69* 30.26 

Geogauge E (MPa) 
vs. MDP (kW) 0.2 1.5 0.3 5995.25 -7989.61 -47.12 2064.13 0.86† 10.79 

NDG γd (kN/m3) 
vs. CMV 1.5 2.4 0.1 54.43 0.07 0.01 -26.58 0.88* 0.01 

NDG γd (kN/m3) 
vs. MDP (kW) 0.1 0.2 0.1 -443.25 742.02 298.26 -596.36 0.96 0.01 

LWD 300 E (MPa) 
vs. CMV 0.4 1.9 0.1 2370.14 296.58 2.47 -2073.82 0.96† 0.71 

LWD 300 E (MPa) 
vs. MDP (kW) 1.0 3.3 1.0 121.31 -33.85 -0.04 3.20 0.91† 2.68 

LWD 200 E (MPa) 
vs. CMV 0.5 3.1 0.1 1955.10 135.85 0.07 -1544.45 0.97 0.63 

LWD 200 E (MPa) 
vs. MDP (kW) 2.3 0.1 2.2 674.72 -0.23 -511.05 1.68E-03 0.91† 3.97 

DCPIM (mm/blow) 
vs. CMV 0.9 1.0 0.1 -2472.44 -36.42 -39.42 2017.19 0.97 2.32 

DCPIM (mm/blow) 
vs. MDP (kW) 0.1 2.7 0.2 -4271.39 6082.48 0.50 -1434.16 0.90† 8.33 

DCPIA (mm/blow) 
vs. CMV 2.2 4.0 0.1 -1063.87 -0.19 -0.0048 744.25 0.99 0.70 

DCPIA (mm/blow) 
vs. MDP (kW) 0.1 2.3 0.2 -3391.09 4775.79 1.16 -1122.13 0.85† 11.04 

*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
 
 

In general, the same findings were achieved for analysis of this data set as 

were achieved from the data analysis on the entire set of data.  The one notable 

difference is that the GeoGauge correlations do improve somewhat with exclusion of 

this data point.  However the error variance is still relatively high and the 

corresponding p-value is between 0.01 and 0.05, which means that these results are 

still less than desirable.   

For comparative purposes, and to be consistent with the data sets that 

were examined and the analyses that were performed earlier in this chapter, similar 

multivariate regression analyses were performed looking only at the final passes for 
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each of the compacted lifts.  Figures 8.15 and 8.16 show the results of these 

multivariate regression analyses.  

 

Figure 8.15 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
only the data for the final passes of each lift   
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Figure 8.16 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using 
only the data for the final passes of each lift   

Once more, it is clear that the second model mispredicts the missing value 

of the LWD 200 modulus.  In general, the R-squared values of the models 

significantly improved as compared with the previous case that was analyzed.  

However, it is suspected that much of this improvement is due to the overall reduction 

in the number of points that are used for regression, as sophisticated models with only 

a few data points will usually have relatively high R-squared values.  Tables 8.6 and 
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8.7 present the regression coefficients that resulted from the multivariate regression 

analysis of the CMV and MDP data sets, using only the data for the final passes of 

each lift.   

Table 8.6 Components of the first fitted model for averages of final passes 

In-situ testing b c A B C R2
1 σ2

AD 
Geogauge E (MPa) vs. CMV  0.1 4.0 83.10 -6.45 -4.19E-04 0.08* 122.63 

Geogauge E (MPa) vs. MDP (kW) 0.1 0.1 314.95 -146.99 -48.49 0.32* 90.90 
NDG γd (kN/m3) vs. CMV 0.5 2.2 13.51 0.91 7.94E-03 1.00 0.00 

NDG γd (kN/m3) vs. MDP (kW) 4.0 0.9 16.74 -3.81E-05 0.25 0.97† 0.01 

LWD 300 E (MPa) vs. CMV 4.0 3.2 46.31 -6.83E-05 -8.94E-03 0.97†  2.63 
LWD 300 E (MPa) vs. MDP (kW) 4.0 0.1 256.51 1.55E-04 -184.31 0.93* 6.15 

LWD 200 E (MPa) vs. CMV 4.0 0.1 491.44 -7.38E-05 -360.09 0.78* 7.59 
LWD 200 E (MPa) vs. MDP (kW) 0.1 4.0 175.86 -117.95 3.31E-04 0.50* 16.95 

DCPIM (mm/blow) vs. CMV 0.1 0.1 -29.55 -128.74 186.01 0.94* 7.44 
DCPIM (mm/blow) vs. MDP (kW) 4.0 0.1 -229.53 3.95E-04 207.14 0.91* 12.33 

DCPIA (mm/blow) vs. CMV 0.1 0.1 -193.60 -64.38 246.18 0.97† 4.97 
DCPIA (mm/blow) vs. MDP (kW) 4.0 0.1 -293.59 1.78E-04 256.89 0.96† 6.91 

*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
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Table 8.7 Components of the second fitted model for averages of final passes 

In-situ testing b c d A B C D R2
2 σ2

AD 
Geogauge E (MPa) 

vs. CMV 0.8 3.8 3.3 -261.42 37.33 0.01 -4.77E-06 1.00 0.00 

Geogauge E (MPa) 
vs. MDP (kW) 2.8 2.1 0.5 340.31 0.14 1.47 -55.74 1.00 0.00 

NDG γd (kN/m3) vs. 
CMV 3.7 3.1 0.7 15.60 -6.30E-06 -3.05E-05 0.09 1.00 0.00 

NDG γd (kN/m3) vs. 
MDP (kW) 3.6 1.8 1.3 19.31 -7.52E-04 -0.08 0.02 1.00 0.00 

LWD 300 E (MPa) 
vs. CMV 0.3 2.7 1.6 -243.89 132.31 0.06 -0.02 1.00 0.00 

LWD 300 E (MPa) 
vs. MDP (kW) 3.5 3.0 1.0 57.15 0.0087 0.04 -0.99 1.00 0.00 

LWD 200 E (MPa) 
vs. CMV 0.1 0.1 0.1 1.75E+06 -1.30E+06 -1.38E+06 1.02E+06 1.00* 0.00 

LWD 200 E (MPa) 
vs. MDP (kW) 0.1 0.1 0.1 1.32E+04 -1.08E+04 -1.04E+04 8.50E+03 1.00* 0.00 

DCPIM (mm/blow) 
vs. CMV 2.6 1.6 3.9 -4.37 8.17E-03 1.05 -3.60E-08 1.00 0.00 

DCPIM (mm/blow) 
vs. MDP (kW) 3.7 1.6 0.7 39.04 5.42E-03 2.36 -5.16 1.00 0.00 

DCPIA (mm/blow) 
vs. CMV 2.3 2.9 3.0 -19.47 0.05 0.05 -6.12E-06 1.00 0.00 

DCPIA (mm/blow) 
vs. MDP (kW) 0.3 4.0 3.8 82.51 -34.88 9.81E-04 1.32E-07 1.00 0.00 

*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
 
 

Tables 8.6 and 8.7 illustrate the limitations of using only R-squared values 

for assessment of model fit, particularly for cases where there are only a few points 

that are being analyzed to develop the regression equation.  As shown here, R-squared 

values may sometimes be quite high, while the significance probability values (p-

values) are unacceptable (as they are greater than 0.05).  

Similar multivariate regression analyses were performed looking only at 

the final passes for each of the compacted lifts, with the base layer data points 

excluded.  Figures 8.17 and 8.18 show the results of these multivariate regression 

analyses.   
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Figure 8.17 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
only the data for the final passes of each lift and excluding the base 
layer  
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Figure 8.18 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using 
only the data for the final passes of each lift and excluding the base 
layer 

Tables 8.8 and 8.9 present the regression coefficients that resulted from 

the multivariate regression analysis of the CMV and MDP data sets, using only the 

data for the final passes of each lift and excluding the base layer data points.   
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Table 8.8 Components of the first fitted model for averages of final passes 
excluding the base layer 

In-situ testing b c A B C R2
1 σ2

AD 
Geogauge E (MPa) vs. CMV 4.0 0.1 1368.93 -2.34E-04 -1016.57 0.72* 74.90 

Geogauge E (MPa) vs. MDP (kW) 0.1 4.0 505.58 -360.77 1.40E-03 0.40* 160.34 
NDG γd (kN/m3) vs. CMV 1.3 3.6 15.84 0.04 2.26E-04 1.00 0.00 

NDG γd (kN/m3) vs. MDP (kW) 4.0 0.1 -1.95 -4.23E-05 16.49 0.87* 0.02 
LWD 300 E (MPa) vs. CMV 4.0 0.1 508.40 -0.0001 -378.24 0.95* 1.66 

LWD 300 E (MPa) vs. MDP (kW) 4.0 0.1 304.11 2.22E-04 -222.61 0.61* 11.82 
LWD 200 E (MPa) vs. CMV 4.0 0.1 491.44 -7.38E-05 -360.09 0.78* 7.59 

LWD 200 E (MPa) vs. MDP (kW) 0.1 4.0 175.86 -117.95 3.31E-04 0.50* 16.95 
DCPIM (mm/blow) vs. CMV 3.3 2.9 55.70 -1.27E-03 -0.0085 1.00 0.00 

DCPIM (mm/blow) vs. MDP (kW) 4.0 4.0 25.64 5.76E-04 3.66E-04 0.87* 15.02 

DCPIA (mm/blow) vs. CMV 4.0 4.0 38.68 -9.22E-05 1.98E-05 1.00† 0.07 
DCPIA (mm/blow) vs. MDP (kW) 4.0 4.0 21.65 3.01E-04 6.51E-04 0.92* 6.66 
*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
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Table 8.9 Components of the second fitted model for averages of final passes 
excluding the base layer 

In-situ testing b c d A B C D R2
2 σ2

AD 
Geogauge E (MPa) 

vs. CMV 0.1 0.1 0.1 5.50E+06 -4.10E+06 -4.33E+06 3.23E+06 1.00* 0.00 

Geogauge E (MPa) 
vs. MDP (kW) 0.1 0.1 0.1 4.17E+04 -3.42E+04 -3.27E+04 2.69E+04 1.00* 0.00 

NDG γd (kN/m3) 
vs. CMV 0.1 0.1 0.1 9.43E+03 -7.03E+03 -7.43E+03 5.55E+03 1.00* 0.00 

NDG γd (kN/m3) 
vs. MDP (kW) 0.1 0.1 0.1 -8.30E+02 6.72E+02 6.84E+02 -5.42E+02 1.00* 0.00 

LWD 300 E (MPa) 
vs. CMV 0.1 0.1 0.1 1.12E+06 -8.37E+05 -8.85E+05 6.59E+05 1.00* 0.00 

LWD 300 E (MPa) 
vs. MDP (kW) 0.1 0.1 0.1 1.22E+04 -9.84E+03 -9.65E+03 7.79E+03 1.00* 0.00 

LWD 200 E (MPa) 
vs. CMV 0.1 0.1 0.1 1.75E+06 -1.30E+06 -1.38E+06 1.02E+06 1.00* 0.00 

LWD 200 E (MPa) 
vs. MDP (kW) 0.1 0.1 0.1 1.32E+04 -1.08E+04 -1.04E+04 8.50E+03 1.00* 0.00 

DCPIM (mm/blow) 
vs. CMV 0.1 0.1 0.1 7.33E+05 -5.46E+05 -5.77E+05 4.30E+05 1.00* 0.00 

DCPIM (mm/blow) 
vs. MDP (kW) 0.1 0.1 0.1 1.86E+04 -1.52E+04 -1.48E+04 1.22E+04 1.00* 0.00 

DCPIA (mm/blow) 
vs. CMV 0.1 0.1 0.1 7.72E+05 -5.75E+05 -6.08E+05 4.53E+05 1.00* 0.00 

DCPIA (mm/blow) 
vs. MDP (kW) 0.1 0.1 0.1 1.26E+04 -1.05E+04 -9.98E+03 8.32E+03 1.00* 0.00 

*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
 
 

As shown in Tables 8.8 and 8.9, with the exception of the relationship 

between CMV and the NDG dry unit weight and DCP indices for the first model, all 

of the correlations that are obtained are rejected, because their p-values are all greater 

than 0.05.  Additionally, the corresponding p-value for the relationship between CMV 

and the DCPA index is greater than 0.01 and the results from this regression analysis 

should be treated with caution.   

Figures 8.19 and 8.20 show the results of regression analysis on the 

average values of Lift 5.  
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Figure 8.19 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged CMV data points, using 
only the data for Lift 5   
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Figure 8.20 Multiple regression analysis using pass-by-pass average in-situ 
testing measurements vs. average kriged MDP data points, using 
only the data for Lift 5   

Tables 8.10 and 8.11 present the regression coefficients that resulted from 

the multivariate regression analysis of the CMV and MDP data sets, using only the 

data from Lift 5.   
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Table 8.10 Components of the first fitted model for averages of Lift 5 

In-situ testing b c A B C R2
1 σ2

AD 
Geogauge E (MPa) vs. CMV 4.0 4.0 32.88 2.63E-05 2.99E-03 0.76* 20.16 

Geogauge E (MPa) vs. MDP (kW) 0.1 0.1 -934.20 -17.95 812.25 0.74* 11.04 
NDG γd (kN/m3) vs. CMV 4.0 4.0 17.71 5.25E-06 2.12E-05 0.95* 0.01 

NDG γd (kN/m3) vs. MDP (kW) 0.1 0.1 32.62 -9.81 -1.50 0.98† 0.00 
LWD 300 E (MPa) vs. CMV 4.0 4.0 20.79 9.34E-06 1.99E-04 0.03* 8.95 

LWD 300 E (MPa) vs. MDP (kW) 4.0 4.0 20.82 -1.29E-04 4.19E-04 0.72* 7.17 
LWD 200 E (MPa) vs. CMV 0.1 0.1 179.67 -19.01 -99.69 0.10* 8.16 

LWD 200 E (MPa) vs. MDP (kW) 4.0 4.0 26.91 -1.56E-04 3.79E-04 0.73* 10.12 
DCPIM (mm/blow) vs. CMV 4.0 0.1 -164.23 -1.08E-04 165.45 0.81* 29.94 

DCPIM (mm/blow) vs. MDP (kW) 0.1 0.1 -651.74 192.83 352.44 0.88* 14.30 
DCPIA (mm/blow) vs. CMV 4.0 0.1 -285.02 -9.59E-05 258.98 0.80* 29.99 

DCPIA (mm/blow) vs. MDP (kW) 0.1 0.1 -727.49 167.64 436.18 0.87* 14.44 
*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
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Table 8.11 Components of the second fitted model for averages of Lift 5 

In-situ testing b c d A B C D R2
2 σ2

AD 
Geogauge E (MPa) 

vs. CMV 0.1 0.1 0.1 -1.62E+06 1.20E+06 1.28E+06 -9.51E+05 1.00* 0.00 

Geogauge E (MPa) 
vs. MDP (kW) 1.4 0.1 1.7 4926.4361 -26.1527 -3736.5165 0.1938 1.00 0.00 

NDG γd (kN/m3) vs. 
CMV 0.1 0.1 0.1 -5.85E+04 4.36E+04 4.63E+04 -3.45E+04 1.00* 0.00 

NDG γd (kN/m3) vs. 
MDP (kW) 1.4 1.3 1.7 34.37 -0.67 -0.57 4.74E-03 1.00 0.00 

LWD 300 E (MPa) 
vs. CMV 0.1 0.1 0.1 -1.02E+06 7.62E+05 8.09E+05 -6.03E+05 1.00* 0.00 

LWD 300 E (MPa) 
vs. MDP (kW) 2.6 2.1 2.9 178.46 -0.50 -0.94 2.41E-04 1.00 0.00 

LWD 200 E (MPa) 
vs. CMV 0.1 0.1 0.1 -9.62E+05 7.16E+05 7.61E+05 -5.67E+05 1.00* 0.00 

LWD 200 E (MPa) 
vs. MDP (kW) 0.9 0.5 1.0 3088.74 -244.88 -883.52 16.66 1.00 0.00 

DCPIM (mm/blow) 
vs. CMV 0.1 0.1 0.1 2.34E+06 -1.74E+06 -1.85E+06 1.38E+06 1.00* 0.00 

DCPIM (mm/blow) 
vs. MDP (kW) 3.0 3.3 3.5 -113.48 0.22 0.05 -1.49E-05 1.00 0.00 

DCPIA (mm/blow) 
vs. CMV 0.1 0.1 0.1 2.28E+06 -1.70E+06 -1.80E+06 1.34E+06 1.00* 0.00 

DCPIA (mm/blow) 
vs. MDP (kW) 2.2 0.7 2.6 -728.03 2.38 133.14 -1.70E-03 1.00 0.00 

*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
 
 

The data presented in Tables 8.10 and 8.11 indicates that the models that 

were utilized were not able to establish reliable correlations between the average 

kriged CMV values and the corresponding in-situ test results for successive passes of 

Lift 5.  This is not surprising, as the water content values did not vary significantly for 

additional compaction of Lift 5, and as such, there was not sufficient data in this data 

set to clearly discern the relative contribution of the second variable in the bivariate 

regression analyses (water content).  Similar to the analyses performed looking at only 

the final passes for each lift, many of the cases that were examined here were rejected 

because their p-values were greater than 0.05.   
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As shown in Table 8.11, there are excellent correlations between MDP 

and the measured in-situ test values.  It should be noted that this outstanding 

relationship between MDP and other measurements in Lift 5 likely originates from the 

reduction in the number of data points in this data set (as compared with the other data 

sets, which were larger), as noted for analysis of the base layer data points.  In general, 

these results conform to the results of the univariate regression analyses presented in 

Chapter 7. 

Similar to Section 8.3.2, a summary of all of the analyses that were 

performed are presented in Table 8.12.   

Table 8.12 R-squared values of the utilized model for the employed data sets 

All All without 
base layer Finals 

Finals 
without 

base layer 
Lift 5 

In-sit testing 

R2
1 R2

2 R2
1 R2

2 R2
1 R2

2 R2
1 R2

2 R2
1 R2

2 
Geogauge E (MPa) vs. CMV  0.09* 0.36* 0.35* 0.69* 0.08* 1.00 0.72* 1.00* 0.76* 1.00* 

Geogauge E (MPa) vs. MDP (kW) 0.25* 0.68 0.29
* 0.86† 0.32* 1.00 0.40* 1.00* 0.74* 1.00 

NDG γd (kN/m3) vs. CMV 0.96 0.96 0.86† 0.88* 1.00 1.00 1.00 1.00* 0.95* 1.00* 
NDG γd (kN/m3) vs. MDP (kW) 0.93 0.98 0.86 0.96 0.97† 1.00 0.87* 1.00* 0.98† 1.00 

LWD 300 E (MPa) vs. CMV 0.89 0.97 0.49* 0.96† 0.97† 1.00 0.95* 1.00* 0.03* 1.00* 
LWD 300 E (MPa) vs. MDP (kW) 0.87 0.95 0.68† 0.91† 0.93* 1.00 0.61* 1.00* 0.72* 1.00 

LWD 200 E (MPa) vs. CMV 0.43* 0.97 0.43* 0.97 0.78* 1.00* 0.78* 1.00* 0.10* 1.00* 
LWD 200 E (MPa) vs. MDP (kW) 0.70† 0.91† 0.70† 0.91† 0.50* 1.00* 0.50* 1.00* 0.73* 1.00 

DCPIM (mm/blow) vs. CMV 0.86 0.98 0.85† 0.97 0.94* 1.00 1.00 1.00* 0.81* 1.00* 
DCPIM (mm/blow) vs. MDP (kW) 0.88 0.94 0.82† 0.90† 0.91* 1.00 0.87* 1.00* 0.88* 1.00 

DCPIA (mm/blow) vs. CMV 0.88 1.00 0.79† 0.99 0.97† 1.00 1.00† 1.00* 0.80* 1.00* 
DCPIA (mm/blow) vs. MDP (kW) 0.91 0.94 0.83† 0.85† 0.96† 1.00 0.92* 1.00* 0.87* 1.00 
*: Models that have a p-value greater than 0.05 
 †: Models that have a p-value between 0.01 and 0.05 
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By examining Table 8.12, it is possible to make the following 

observations (Note that in all the conclusions that are presented in the following bullet 

points, the acceptable criteria for R-squared values is those that are greater than 0.70, 

and the criteria for p-values corresponds to those that are less than 0.05): 

• In most cases, the second multivariate regression model that was 

used resulted in stronger correlations than the first model that was 

used.  This is not surprising, as the general form of these two 

equations was the same, with the second equation just having 

another term that allowed for more accurate model fit results. 

• In general, removing the base layer data point from the analyses 

that were performed did not improve the quality of model fit.  As 

this conclusion is the opposite of what was observed in the 

univariate regression analysis chapter, it is believed that it is the 

water content of this layer that causes this point to be so 

problematic in the univariate regression analyses.     

• In general, significant reduction in the number of regression points 

that are used, decreases the reliability of the fitted models.  This 

decrease in reliability does not show up in the R-squared values, 

but is rather reflected in the high p-values that are observed.  

Unfortunately, this is an inherent limitation of only comparing the 

“average” data sets that are recorded for each compacted layer, 

rather than individual test points.  As a result of this observation, 

the Author believes that a significant number of layers ought be 
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compacted in order to build a well-calibrated, reliable regression 

model for each soil type that is studied.       

• As was observed in the univariate regression analyses that are 

discussed in Chapter 7, excellent correlations can be achieved 

between averaged in-situ testing measurements for a given lift and 

pass and average kriged CCC data points.   

• The GeoGauge showed strong correlations with CCC values in 

only 20% of the overall cases (i.e. 4 models for both CMV and 

MDP). 

• The NDG dry unit weight was strongly correlated to the CCC 

measurements in 65% of the analyses that were performed.   

• The LWD 300 measured modulus values showed a significant 

relationship with CCC values in 50% of the calculations. 

• The LWD 200 measured modulus values were well-correlated to 

the CCC values in 30% of the experiments.   

• DCPM and DCPA indices showed strong correlation with CMV and 

MDP values in 60% and 70% of the cases, respectively.  

• MDP and CMV make strong correlations with in-situ testing 

values in 57% and 45% of all cases, respectively. 

8.4 Summary and Conclusions 

In this chapter, multiple regression analysis techniques were utilized to 

include the effect of water content in the correlations between the in-situ testing data 

and CCC roller values.  At the beginning of the chapter, the entire set of data was 
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considered in the analysis, on a point-by-point basis.  Strong correlations were not 

achieved using any of the point-by-point analysis approaches that were utilized.   

As a next step, the average values of measured data were taken into 

account.  As was observed with the univariate regression analyses, the resulting R-

squared values remarkably improved.  Results from these analyses also showed that 

R-squared values are not the only condition that must be reasonably satisfied for 

model acceptance, particularly for models fitted to only a few data points.  The use of 

a p-value acceptance limit of 0.05 was found to be an additional criteria that was 

useful for acceptance of model fit results. 

The analyses of the average values showed that DCP indices and NDG 

dry unit weights have the strongest correlation with CCC values, as compared to the 

other in-situ testing techniques that were used in this study.  In particular, the 

GeoGauge had trouble correlating with the CCC results.  The LWD 300 modulus 

values yielded stronger correlations than the LWD 200 modulus values.   In general, 

MDP showed more robust correlations with the in-situ testing methods than did CMV, 

which is the same observation as was made from the univariate regression analyses 

described in Chapter 7.   
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Chapter 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

The effectiveness of two Continuous Compaction Control systems were 

evaluated in this research project.  A CCC roller equipped with MDP and CMV 

measurement systems was used for compaction of a five-lift embankment.  The 

compacted soil used in this study was a common borrow material for the Delaware 

Department of Transportation, which conforms to DelDOT class G borrow 

specifications, Grades V and VI, and which can be classified as predominantly a 

poorly-graded sand with silt (SP-SM), according to the unified soil classification 

system (USCS).  A series of in-situ quality control tests were performed along the 

centerline of the designated pad after compaction for each lift.  The primary testing 

methods consisted of a Light Weight Deflectometer (LWD) with plate diameters of 

300 mm (12 in) and 200 mm (8 in), a GeoGauge, a Nuclear Density Gauge (NDG), 

and a Dynamic Cone Penetrometer (DCP).   

The preliminary evaluation of the in-situ testing data indicated that: 

• The NDG-measured dry unit weights of the compacted lifts passed 

DelDOT’s acceptance criteria for relative compaction (RC ≥ 95 

%). 
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• In most cases, the compaction was conducted on the dry side of the 

optimum water content, with field measured water contents 

ranging between 4.2% and 12.9%. 

• In general, the GeoGauge showed significant inconsistencies with 

the range of modulus values measured in the other modulus-based 

tests.  

Statistical analysis of the roller data showed that: 

• The MDP measured values decreased as the number of compaction 

passes increased for a given lift.   

• For soils compacted using the same input amplitude of compaction 

vibration, the measured values of CMV increased as the number of 

compaction passes increased for a given lift. 

• As compaction progressed, the variation of MDP values decreased. 

• In general, the variation of CMV values was greater than the 

variation of MDP values. 

• MDP measurements appeared to reflect the surficial properties of a 

compacted lift, while CMV values appeared to be influenced by 

both the lift that was being compacted and the relative stiffness of 

soil layers that were underlying the lift that was being compacted. 

• The average RMV values ranged between 0 and 2, indicating that 

the vibratory compaction was predominantly conducted in the 

“partial uplift” mode of vibration. 

The key findings of the geostatistical analysis of the roller data follows: 



 264

• Kriging analyses are essential for spatially interpolating between 

measured CCC data points, in order for the most accurate 

comparisons of CCC values with point-specific in-situ tests. 

• The R-squared value of a model that is fit to a sample 

semivariogram is by itself not a useful enough indicator for 

selecting a semivariogram model for kriging analysis of CCC data. 

• Cumulative frequency distributions of relative errors between the 

values predicted by a given kriging model and the actual value 

recorded at a specific point were extremely useful for selecting the 

most reliable semivariogram model for each type of CCC 

measurement (i.e. MDP and CMV). 

• Among the semivariogram models that were examined, the 

Rational Quadratic model was selected for kriging of the MDP 

values and the Exponential, Spherical, and Linear models were all 

recommended as equally reliable models for kriging of the CMV 

values.  

• Additional examination of the resulting kriged data points 

indicated that, in general, the relative error of the predicted MDP 

values was less than the predicted CMV values. 

• There was a direct relationship between the degree of compaction 

of the soil and the associated accuracy of the kriging method.  As 

the soil became denser and stiffer, the values predicted using 

kriging became closer to the actual values.   
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• Beyond a separation distance (or lag) of 1.5 m (5.0 ft), the 

resulting accuracy of the kriging models that were chosen was not 

found to be significantly different. Consequently, the lag that was 

chosen for kriging was 1.5 m (5.0 ft), based on the fact that this lag 

had the shortest model run time in the kriging algorithm that was 

used. 

Univariate regression analysis between the kriged CCC data points and 

the corresponding in-situ testing values showed that: 

• In general, there was not a strong relationship between the 

individual kriged CCC values and the corresponding in-situ 

measured values. 

• Relatively strong correlations were observed between the average 

in situ measured values for each lift and pass vs. the average of the 

kriged MDP and CMV values for each lift and pass. 

• Excluding the base layer average values from the related 

univariate regression analysis resulted in a significant 

improvement in the R-squared values of the fitted curves for a 

number of the in-situ tests that were analyzed and revealed a 

number of strong correlations between the CCC data and some of 

the in-situ testing measurements.   

• In general, MDP values were better correlated with the in-situ 

testing measurements than were the CMV values.   
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• NDG measured dry unit weights and DCP indices showed the best 

correlation with CCC values, relative to the other in-situ 

measurements that were analyzed.   

• The LWD 200 showed a better correlation with the measured CCC 

data than did the LWD 300. 

• Among the in-situ testing methods that were utilized, the 

GeoGauge showed the least amount of correlation with the CCC 

data. 

• Water content was shown to have a significant influence on the 

roller data and many of the in-situ testing measurements, and there 

were strong correlations between the average laboratory measured 

water contents and the average values of roller data and in situ 

testing methods that were developed. 

To include the effect of water content in the correlation between CCC 

values and in-situ testing measurements, a series of multiple regression analysis were 

performed.  The results from these analyses confirmed that: 

• Similar to the univariate regression analysis, there was no strong 

correlation between individual CCC values and in-situ measured 

values, considering the data set as a whole. 

• It was discovered that R-squared values could not be used as the 

sole reliable acceptance criterion for fitting a regression model.  

The use of a p-value criterion of 0.05 was found to be a useful 

supplemental criterion for model acceptance. 
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• The results from multivariate regression analyses of average in situ 

test values vs. average kriged model results showed that the DCP 

indices and NDG dry unit weights had the strongest correlation 

with the average of the kriged CCC values.  The GeoGauge test 

results exhibited the least amount of correlation with the average 

of the kriged CCC values.   

• The LWD 300 modulus yielded stronger correlations than the 

LWD 200 modulus.  

• In general, MDP values showed more robust correlations with the 

in-situ testing methods than did the CMV values. 

9.2 Recommendations 

For future utilization of CCC technology by the Delaware DOT, the 

following recommendations are made: 

• To evaluate the effectiveness and productivity of CCC systems, 

extra field studies are needed on a variety of commonly used soils 

and other construction materials which are utilized by the DOT for 

road-embankment construction.  

• If a CMV-based CCC roller is utilized, it is recommended to apply 

high amplitude compaction for all lifts and passes in future field 

studies.  This produces a larger numerator in the CMV formula, 

and will likely yield more rapid compaction and possibly more 

reliable CCC results.    

• Since the CMV values showed a relatively high variation it is 

recommended to examine other types of vibratory CCC rollers 
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equipped with direct modulus-stiffness measurement systems in 

future studies. 

• CCC values should be recorded for every compaction pass that is 

run in a project. 

For quality control methods, the followings are recommended: 

• It is recommended to use Plate Load Tests (PLT) and Falling 

Weight Deflectometer tests, which are considered to be better 

modulus-based in-situ testing methods, for validating CCC 

measurements.  

• To obtain the variation of soil properties along the width of the 

drum of the CCC roller it is recommended to distribute the test 

spots in at least three parallel lines which are located in the width 

of the roller drum.   

• The sand cone equivalent test is an old but reliable test, as  

compared to other density-based tests.  Therefore, it is 

recommended to perform more sand cone tests for the final passes 

of each constructed lift.   

• For DCP tests, it is recommended to penetrate the rod to greater 

depths to obtain a better understanding about the underlying 

layers.   

• Since the moisture content showed a significant influence on the 

measurements, more attention should be paid to maintain it in the 

range of optimum moisture content.    
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Appendix A 

DAILY REPORTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Date:
Start Time:

Hours

6:30-18:0

6:30 7:30
8:00 8:15

8:15 9:00

8:30
9:00
9:15

10:00
11:10 11:40
11:30
12:15 14:15
14:35

2 Nuclear Gauge

Type & Number

1

DESCRIPTION OF WORK & ACTIVITY

Hours Description

1 EDG, 1 GeoGauge
Greggo & Ferrara Inc

University of Delaware/Geotech. Group

1 Wheel Loader 924H, 1 Water Truck
Kessler Soils Engineering Products, Inc.

Sand Cone Supplies, Level, Misc Other Supplies
1 LWD

Humboldt

Del DOT
Caterpillar & Ransome Dealership

Kessler Soils Engineering Products, Inc.
Humboldt

Greggo & Ferrara Inc

NUMBER OF MAJOR MACHINES AND EQUIPMENTS

Organization/Contractor/Subcontractor

1 Dozer D56K, 1  Wheel Loader 980H, 1 Roller CS56, 1 GPS Rover, 1 DCP, 1 LWD

University of Delaware/Geotech. Group

Del DOT

Caterpillar & Ransome Dealership

University of Delaware
Departmenet of Civil and Environmental Engineering

DAILY PROGRESS REPORT (PAGE 1 / 10)
Project Title: Investigation of CCC Technology

Weather:

Site:
End Time:
Temp.:

Monday 7/21/2008
6:30
Sunny

NUMBER OF PERSONNEL

Te
ch

ni
ci

an
s

Tr
uc

k 
D

riv
er

s 

La
bo

rs

Tr
ai

ne
es

Organization/Contractor/Subcontractor

1 4

Su
pe

rv
is

or
s

St
af

f E
ng

in
ee

rs
1 6
1 2

1

18:00
Burrice Pit (Odessa)

1

1st point set as reference point for local coordinate system in GPS rover (6000',6000',200')

Meet on campus, load van and depart UD
Arrive on site, unload van

DCP and LWD training by Caterpillar team members (Nick & Mario)
Dozer starts pre-leveling (no working GPS).  Variable elevation, lowest pt was 199.55'.  Roller set up.
Begin compacting the base layer. 2 passes in total. Final Elevation was 200.14'

270

Adam (Humboldt), Fan and Baris get donuts, ice and coffee

Level shooting and put 26 grade stakes in stations (see Figure 3.4) at 10 or 20 ft intervals (Faraz and Farshid)

33 C (91 F)

Start In-situ tests on the base layer at 5 points (St. 0+10, 0+50, 0+90, 1+30 and 1+70, centerline)

Meet with Jim Reynolds (Site Manager) and Al Strauss (Del DOT) by Dr. Meehan
All parties on site, setup GPS



14:35 14:55
14:45 15:04
14:52 15:15
14:57 15:22
15:28 15:43

15:33 15:46

16:30 17:00
17:00
17:20
17:50

No.

1
2
3
4

Staff Names:
UD Team Dr. Meehan, Faraz, Majid, Yeuru, Fan, Farshid, Baris
Del DOT Al Strauss, Tyrone Nelson, Tony Marcozzi
Caterpillar AJ Lee, Dick Costello, Mario Souraty, Nick Oetken, Brett Barrett
Humboldt Adam Houghton
Greggo & Ferrara Dave McQuiry

Date: Monday 7/21/2008

Leave site
Arrive at campus, unload van and schedule for next day

PREPARED BY:  Farshid Vahedifard and Faraz S.Tehrani

PROJECT VISITORS

REMARKS

Del DOT
Greggo & Ferrara Inc Nicky Ferrara, Jim Reynolds, Dave 

Jim Pappas, Hani Fakri

Departmenet of Civil and Environmental Engineering
University of Delaware

Was unable to get GPS control for bulldozer blade.  Initial elevations cut by eye using operator judgement.

DESCRIPTION OF WORK CONTINUED

Nuclear gauge tests by Tony (Del DOT) at 5 pts on the base layer
EDG tests by Adam (Humboldt) at 5 pts on the base layer
DCP tests by Faraz and Fan at 5 pts on the base layer

GeoGauge tests by Yueru and Majid at 5 pts on the base layer

Description

GPS Rover shooting post-compaction elevations to determine 1st lift target elevation (see attached)
Loading van

Significant loss of roller data due to bad card reader.

EFFECTS ON WORK (WEATHER, ACCIDENTS, BREAKDOWNS, DELAYS, PERSONNEL, ETC.)

1 point Proctor samples at 5 locations (DelDOT).  Sampling (w%) at 5 test stations (UD).  1 bucket for 5 point 
proctor at side of fill area.  (See sample list for sample locations).
GPS Rover shooting for test locations (see attached sheets)

DAILY PROGRESS REPORT (PAGE 2 / 10)

271

First day set up and checking of equipment was time consuming.
Problems with on-board GPS on the roller caused delay in compaction progress.

Hours Description

LWD tests by Farshid and Baris at 5 pts on the base layer



Date:
Start Time:

Hours

6:00-18:20

6:00 6:45
7:15 7:30
7:15 7:20
7:00 7:30
7:34 9:00
7:30 7:35
7:45
8:05
8:31
8:25 8:40
8:40
9:08 9:15
9:00 11:27
9:15 10:00

10:10 12:40
10:10 11:16

Caterpillar & Ransome Dealership 1 Dozer D56K, 1  Wheel Loader 980H, 1 Roller CS56, 1 GPS Rover, 1 DCP, 1 LWD

Meet on campus, load van and depart UD, pick up Farshid then Adam
Arrive on site, unload van
Passes with water truck on base layer (2 passes)

Ken Kessler arrives in site, immediately begins discussion and training with grad students

33 C (91 F)

Tony Marcozzi (Del DOT) arrives on site with second Del DOT van, Al Strauss left

Fill stockpiled and mixed from cut face using 980H loader (C & G material)
Start spreading first lift in the test pad using D6K bulldozer.
One pass with dust control outside of fill area
Al Strauss (Del DOT) arrives in site

Dan Sajedi (MD DOT) on site with colleagues
Roller started running on fisrt lift (comp. elv. 200.6) 

Type & Number

Kessler Soils Engineering Products, Inc.
Sand Cone Supplies, Level, Misc Other Supplies
1LWD

2 Nuclear Gauge

Burrice Pit (Odessa)
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1
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Weather:

Site:
End Time:
Temp.:

Tuesday 7/22/2008

University of Delaware
Departmenet of Civil and Environmental Engineering
DAILY PROGRESS REPORT (PAGE 3 / 10)

Project Title: Investigation of CCC Technology

Organization/Contractor/Subcontractor

6:00
Sunny

University of Delaware/Geotech. Group

Del DOT
Humboldt

Del DOT
Caterpillar & Ransome Dealership

Kessler Soils Engineering Products, Inc.
Humboldt

Greggo & Ferrara Inc

NUMBER OF MAJOR MACHINES AND EQUIPMENTS

Organization/Contractor/Subcontractor

Al Strauss takes field hot plate moisture of soil from stockpile (dug down a bit), w=8.7%
Faraz rock picking first lift, one sample from loose lift (samples 59)

LWD small (200mm dia.) and large (300 mm dia.) at 19 pts by Farshid and Baris (St. 0+10, 0+20, ..,1+90)

2 passes water truck

6th pass vibration (CMV)
In-situ testing on first lift  (on centerline location)

1st pass Max. Amplitude (1.8 mm), 3 more passes low amplitude (0.8 mm) (CMV & MDP)
5th pass proof roll, no vibration (MDP)

DESCRIPTION OF WORK & ACTIVITY

Hours Description

1 EDG, 1 GeoGauge
Greggo & Ferrara Inc

University of Delaware/Geotech. Group

1 Wheel Loader 924H, 1 Water Truck

1

272

1



10:12 11:30

10:42 11:49

11:20 11:40
12:00 12:20
12:43
13:00 13:30
13:43 13:46
13:50 14:36

14:50 17:40
14:55 16:10
15:00

15:15 16:44

16:30 16:45
17:45
18:20

No.

1

Staff Names:
UD Team Dr. Meehan, Faraz, Majid, Yeuru, Fan, Farshid, Baris
Del DOT Al Strauss, Tyrone Nelson, Tony Marcozzi
Caterpillar Aj Lee, Dick Costello, Mario Souraty, Nick Oetken
Humboldt Adam Houghton
Kessler Ken Kessler
Greggo & Ferrara Dave McQuiry

GPS Rover shooting for test locations, 2nd lift, final pass (see attached)

Taking 1 bucket and 1 bag sample (1+00) middle lane and 5 moisture tin samples (0+10,0+50, ...,1+50)

Nuclear gauge tests by Tony (Del DOT) in 10 pts on the second layer (St. 0+12, 0+32, ..,1+92)
DCP tests by Faraz and Fan in 19 pts on the second layer (St. 0+12, 0+22, ..,1+92)

1 pass water truck
Spreading second lift 

EDG tests by Adam (Humboldt) at 10 pts on the second layer (St. 0+12, 0+32, ..,1+92)

GeoGauge tests by Yueru and Majid in 19 pts on the second layer (St. 0+12, 0+22, ..,1+92)

Sand Cone tests by Yueru and Majid in 3 points on the second layer (St. 1+00) 

3 passes  water truck

GPS Rover shooting for test locations, 1st lift, final pass (see attached)

DAILY PROGRESS REPORT (PAGE 4 / 10)

University of Delaware
Departmenet of Civil and Environmental Engineering

Roller started running on second lift (loose elv. 201.3)
1st pass Max. Amplitude (1.8 mm), 3 more passes low amplitude (0.8 mm) (CMV & MDP)

LWD small (200mm dia.) and large (300 mm dia.) in 19 pts by Farshid and Baris (St. 0+12, 0+22, ..,1+92)

5th pass proof roll, no vibration (MDP)
6th pass low amplitude vibration (CMV)
In situ testing on second lift  (on centerline location)

Again, On-board Roller's GPS had problem couple of times and it caused delay in compaction progress

Hours Description

GeoGauge tests by Yueru and Majid at 19 pts on the first  layer (St. 0+10, 0+20, ..,1+90)

Tuesday 7/22/2008

Leave site
Arrive in campus, unload van and schedule for newt day

EFFECTS ON WORK (WEATHER, ACCIDENTS, BREAKDOWNS, DELAYS, PERSONNEL, ETC.)

Dan Sajedi, Raj Chavan, Bob Kochen

PREPARED BY:  Farshid Vahedifard and Faraz S.Tehrani

Description

Date:

PROJECT VISITORS

REMARKS

DESCRIPTION OF WORK CONTINUED

DCP tests by Faraz and Fan at 19 pts on the first layer (St. 0+10, 0+20, ..,1+90)
EDG tests by Adam (Humboldt) at 9 pts on the first layer (St. 0+10, 0+30, …, 1+70)
Sand Cone test by Yueru and Majid at 1 point on the first layer (St. 1+00) - check this point

Nuclear gauge tests by Tony (DelDOT) at 10 pts on the first layer (St. 0+10, 0+30, …, 1+90)

MD DOT

273



Date:
Start Time:

Hours

6:00-18:50

6:00 6:54
7:20 7:40
8:00 8:20

8:16 GeoGauge tests by Yueru and Majid in 5 pts on the second layer (St. 0+10, 0+50, ..,1+70)
8:20 9:13
8:43
9:15

(DD=110.9, WD=120.1, m%+8.2 for 0+50 and DD=110.9, WD=120.1, m%+8.2 for St. 1+50)
10:11 10:15
10:21 11:46
10:21
10:56
11:03
11:32
11:41

11:45 13:40

Caterpillar & Ransome Dealership 1 Dozer D56K, 1  Wheel Loader 980H, 1 Roller CS56, 1 GPS Rover, 1 DCP, 1 LWD

(GPS Rover not used to shoot test locations due to equipment problems, CHECK LOCATION WITH DATA SHE

2 LWD's plus one DCP

2 Nuclear Gauge

2 passes water truck
Roller started running on third lift (loose elv. 202.4)
1st pass Max. Amplitude (1.8 mm), 4 more passes low amplitude (0.8 mm) 

1 Wheel Loader 924H, 1 Water Truck
Kessler Soils Engineering Products, Inc.

Sand Cone Supplies, Level, Misc Other Supplies

Type & Number

1
1

DESCRIPTION OF WORK & ACTIVITY

Hours Description

1 EDG, 1 GeoGauge
Greggo & Ferrara Inc

University of Delaware/Geotech. Group

University of Delaware/Geotech. Group

Del DOT
Humboldt

Del DOT
Caterpillar & Ransome Dealership

Kessler Soils Engineering Products, Inc.
Humboldt

Greggo & Ferrara Inc

NUMBER OF MAJOR MACHINES AND EQUIPMENTS

Organization/Contractor/Subcontractor

Organization/Contractor/Subcontractor

6:00
Sunny, some rain in afternoon

University of Delaware
Departmenet of Civil and Environmental Engineering
DAILY PROGRESS REPORT (PAGE 5 / 10)

Project Title: Investigation of CCC Technology

Weather:

Site:
End Time:
Temp.:

Wednesday 7/23/2008
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Burrice Pit (Odessa)

1

1

18:50

In situ testing on second lift  (on centerline location) (repeated tests runs on this lift after last night rain)
LWD small (200mm dia.) and large (300 mm dia.) in 5 pts by Farshid and Baris and Faraz and Adam(St. 0+10, 
0+50, ..,1+70)

8th pass, proof roll, low amplitude vibration (CMV)

In situ testing on third lift  (on centerline location)

6th pass no vibration

9th pass proof roll, no vibration (MDP)

274

29 C (85 F)

GPS back on-line
Dozer grading side slopes of fill area

Meet on campus, load van and depart UD, pick up Farshid then Adam
Arrive on site, unload van

Spreading third lift in the test pad

2 Nuc. test on uncompacted fill from spreading, freshly made stockpile (DD=110.9, WD=120.1, m%+8.2)

7th pass low vibration

8:00 8:18



11:45 13:00
12:01 13:15

12:16 13:17

13:36 13:46
14:10
14:12 15:13
14:42
15:21
15:24 16:28
15:24
15:53
15:59
16:13
16:22
16:38 18:10
16:40 17:50
16:54

17:14 18:04

16:38 16:50
18:05
18:30

18:50

No.
1
2

Staff Names:
UD Team Dr. Meehan, Faraz, Majid, Yeuru, Fan, Farshid, Baris
Del DOT Al Strauss, Richard Taylor, Tony Marcozzi
Caterpillar Aj Lee, Dick Costello, Mario Souraty, Nick Oetken
Humboldt Adam Houghton
Kessler Ken Kessler
Greggo & Ferrara Dave McQuiry

GPS Rover shooting for test locations, 3rd lift, final pass (see attached)

EDG tests by Adam (Humboldt) at 10 pts on the third layer (St. 0+8, 0+28, …, 1+88)
Sand Cone tests by Yueru and Majid in 3 points on the third layer (St. 1+00) - check data points here

DESCRIPTION OF WORK CONTINUED

GeoGauge tests by Yueru and Majid in 19 pts on the third layer (St. 0+8, 0+18, ..,1+88)

Departmenet of Civil and Environmental Engineering

Wednesday 7/23/2008

6th pass no vibration

Date:

DAILY PROGRESS REPORT (PAGE 6 / 10)

University of Delaware

DCP tests by Faraz and Fan in 19 pts on the fourth layer (St. 0+14, 0+24, ..,1+94)
EDG tests by Adam (Humboldt) at 5 pts on the fourth layer (St. 0+14, 0+54, ..,1+74)

Taking 5 bucket samples for 5-pts proctor tests from St.0+14, 0+54, 0+94,1+34 and 1+74

Description

GeoGauge tests by Yueru and Majid in 19 pts on the fourth layer (St. 0+14, 0+24, ..,1+94)
Nuclear gauge tests by Tony (Del DOT) at 5 pts on the fourth layer (St. 0+14, 0+54, ..,1+74)

GPS Rover shooting for test locations, 4th lift, final pass (see attached)

EFFECTS ON WORK (WEATHER, ACCIDENTS, BREAKDOWNS, DELAYS, PERSONNEL, ETC.)

Some rain in afternoon (15:30)

PROJECT VISITORS

REMARKS

Leave site

Arrive in campus, unload van and schedule for next day

1 pass water truck
Roller started running on fourth lift (loose elv. 203.1)

Hours Description
LWD small (200mm dia.) and large (300 mm dia.) in 19 pts by Farshid and Baris (St. 0+8, 0+18, ..,1+88)

7th pass low vibration

In situ testing on fourth lift  (on centerline location)

8th pass proof roll, no vibration (MDP)

1st pass Max. Amplitude (1.8 mm), 4 more passes low amplitude (0.8 mm) 

Again, On-board Roller's GPS had problem couple of times and it caused delay in compaction progress

LWD small (200mm dia.) and large (300 mm dia.) in 19 pts by Farshid and Baris (St. 0+14, 0+24, ..,1+94)
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PREPARED BY:  Farshid Vahedifard and Faraz S.Tehrani

Nuclear gauge tests by Tony (Del DOT) in 10 pts on the third layer (St. 0+8, 0+28, …, 1+88)
DCP tests by Faraz and Fan in 19 pts on the third layer (St. 0+8, 0+18, ..,1+88)

9th pass, proof roll, low amplitude vibration (CMV)

1 pass water truck
Spreading fourth lift in the test pad by Dozer
GPS on dozer down again



Date:
Start Time:

Hours

6:00-20:20

6:00 6:57
7:23 7:40
7:25 8:10
8:24 9:10
8:25
8:25 8:50

8:45 8:59

8:35
8:57
9:50
9:24 10:23

10:59 11:07
11:09
11:09 11:17

11:10 11:37
11:26

11:32 11:49

12:13 12:19
12:20

In situ testing on fifth lift, first pass (CL)
LWD small (200mm dia.) and large (300 mm dia.) in 5 pts by Farshid and Baris (St. 0+10, 0+50, ..,1+70)
GeoGauge tests by Yueru and Majid in 5 pts (St. 0+10, 0+50, ..,1+70)
Nuclear gauge tests by Tony (Del DOT) in 5 pts (St. 0+10, 0+50, ..,1+70)
DCP tests by Faraz and Fan in 5 pts (St. 0+10, 0+50, ..,1+70)
EDG tests by Adam (Humboldt) in 5 pts (St. 0+10, 0+50, ..,1+70)

In situ testing on fifth lift, second pass (off+2'L)

GPS Rover shooting for test locations, 5th lift, first pass (see attached)

28 C (82 F)

Roller started running on fifth lift (loose elv. 203.1)

In situ testing on fourth lift  (off+2'R) (second run of testing on this lift after last night rain)
LWD small (200mm dia.) and large (300 mm dia.) in 5 pts by Farshid and Baris (St. 0+14, 0+54, ..,1+74)

1st pass high amplitude (1.8 mm) on fifth layer 

Drain ponded water due to last night heavy rain with shovel, taking photo

2nd pass low amplitude (0.8 mm) on fifth layer 

DCP tests by Faraz and Fan in 5 pts on the fourth layer (St. 0+14, 0+54, ..,1+74)

GPS Rover shooting for test locations, 4th lift, final pass after heavy rain (see attached)

Meet on campus, load van and depart UD, pick up Adam, gas station
Arrive on site, unload van

Nuclear gauge tests by Tony (Del DOT) in 5 pts on the fourth layer (St. 0+14, 0+34, ..,1+94)

EDG tests by Adam (Humboldt) in 5 pts on the fourth layer (St. 0+14, 0+54, ..,1+74)

Dr Meehan and Baris left job site to buy buckets and water
Spreading fifth lift in the test pad by Dozer
3 passes water truck

GPS rover used to shoot test points

Burrice Pit (Odessa)
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Weather:

Site:
End Time:
Temp.:

Thursday 7/24/2008

University of Delaware
Departmenet of Civil and Environmental Engineering
DAILY PROGRESS REPORT (PAGE 7 / 10)

Project Title: Investigation of CCC Technology

Organization/Contractor/Subcontractor

6:00
Sunny, some cloudy in afternoon

University of Delaware/Geotech. Group

Del DOT
Humboldt

Del DOT
Caterpillar & Ransome Dealership

Kessler Soils Engineering Products, Inc.
Humboldt

Greggo & Ferrara Inc

NUMBER OF MAJOR MACHINES AND EQUIPMENTS

Organization/Contractor/Subcontractor

1

DESCRIPTION OF WORK & ACTIVITY

Hours Description

1 EDG, 1 GeoGauge
Greggo & Ferrara Inc

University of Delaware/Geotech. Group

Type & Number

1

Kessler Soils Engineering Products, Inc.

2 Nuclear Gauge

Caterpillar & Ransome Dealership 1 Dozer D56K, 1  Wheel Loader 980H, 1 Roller CS56, 1 GPS Rover, 1 DCP, 1 LWD

1 Wheel Loader 924H, 1 Water Truck

276

Sand Cone Supplies, Level, Misc Other Supplies
1LWD

Al Strauss took two fry pan water contents from stockpile (freshly mixed: 10.7, mixed yesterday: 11.9)

GeoGauge tests by Yueru and Majid in 5 pts on the fourth layer (St. 0+14, 0+54, ..,1+74)



12:20 12:45

12:31 12:52

12:40 12:56

12:00 12:10

13:14 13:20
13:38 14:40
13:40 14:05
13:40 14:12

13:56 14:16

14:45 16:00
14:50 15:13
15:20 16:10
15:23 15:45

15:34 15:54

16:16 16:28
16:30 19:15
16:50 18:23
17:00 18:23

17:16 18:39

17:00 17:15

19:10
19:30
20:20

No.

1

Staff Names:

UD Team Dr. Meehan, Faraz, Majid, Yeuru, Fan, Farshid, Baris
Del DOT Al Strauss, Tyrone Nelson, Tony Marcozzi
Caterpillar Aj Lee, Dick Costello, Mario Souraty, Nick Oetken
Humboldt Adam Houghton
Kessler Ken Kessler
Greggo & Ferrara Dave McQuiry

EDG tests by Adam (Humboldt) in 5 pts (St. 0+10, 0+50, ..,1+70)

load van and leave site

Found large rock (photos taken) at St.0+32 test location for final lift

This day, as announced before, open house was held in afternoon. 15-20 participants from Del DOT, MD DOT, contractors attended  
talks by Dr. Meehan Aj Lee and Ken Kessler about IC technology, undertaken research plan and goals, in-situ tests, used equipments 
and machines and etc.

On-board Roller's GPS had problem couple of times and it caused delay in compaction progress

Arrive in campus, unload van and schedule for next day

EFFECTS ON WORK (WEATHER, ACCIDENTS, BREAKDOWNS, DELAYS, PERSONNEL, ETC.)

PROJECT VISITORS

Description

In situ testing on fifth lift, seventh pass (off+2L)
LWD small (200mm dia.) and large (300 mm dia.) in 19 pts by Farshid and Baris (St. 0+12, 0+22, ..,1+92)
GeoGauge tests by Yueru and Majid in 19 pts (St. 0+12, 0+22, ..,1+92)

Taking 5 bucket samples for 5-pts proctor tests from St.0+12, 0+52, 0+92,1+32 and 1+72

Sand Cone test by Yueru and Majid in 1 point (St. 1+00) - check this data later

DCP tests by Faraz and Fan in 19 pts  (St. 0+12, 0+22, ..,1+92)
EDG tests by Adam (Humboldt) in 10 pts  (St. 0+12, 0+32, ..,1+92)
GPS Rover shooting for test locations, 5th lift, 7th pass, final pass (see attached)

Nuclear gauge tests by Tony (Del DOT) in 10 pts  (St. 0+12, 0+32, ..,1+92)

Nuclear gauge tests by Tony (Del DOT) in 5 pts  (St. 0+12, 0+52, ..,1+72)

LWD small (200mm dia.) and large (300 mm dia.) in 5 pts by Farshid and Baris (St. 0+10, 0+50, ..,1+70)

DCP tests by Faraz and Fan in 5 pts  (St. 0+12, 0+52, ..,1+72)
EDG tests by Adam (Humboldt) in 5 pts  (St. 0+12, 0+52, ..,1+72)

GeoGauge tests by Yueru and Majid in 5 pts (St. 0+10, 0+50, ..,1+70)

DCP tests by Faraz and Fan in 5 pts (St. 0+10, 0+50, ..,1+70)
EDG tests by Adam (Humboldt) in 5 pts (St. 0+10, 0+50, ..,1+70)
GPS Rover shooting for test locations, 5th lift, 3rd pass (see attached)

Nuclear gauge tests by Tony (Del DOT) in 5 pts (St. 0+10, 0+50, ..,1+70)

LWD small (200mm dia.) and large (300 mm dia.) in 5 pts by Farshid and Baris (St. 0+10, 0+50, ..,1+70)

DAILY PROGRESS REPORT (PAGE 8 / 10)

University of Delaware

Hours

Thursday 7/24/2008Date:

Description

6th pass of Roller on fifth layer w/o vibration and 7th pass with low amplitude (0.8 mm)

GeoGauge tests by Yueru and Majid in 5 pts  (St. 0+10, 0+50, ..,1+70)

Nuclear gauge tests by Tony (Del DOT) in 5 pts (St. 0+10, 0+50, ..,1+70)

DCP tests by Faraz and Fan in 5 pts (St. 0+10, 0+50, ..,1+70)

GeoGauge tests by Yueru and Majid in 5 pts (St. 0+12, 0+52, ..,1+72)

4th and 5th passes of Roller on fifth layer with low amplitude (0.8 mm)
In situ testing on fifth lift, fifth pass (off+2R, see attached)
LWD small (200mm dia.) and large (300 mm dia.) in 5 pts by Farshid and Baris (St. 0+12, 0+52, ..,1+72)

OPEN HOUSE

GPS Rover shooting for test locations, 5th lift, 5th pass (see attached)

3rd pass of Roller on fifth layer with low amplitude (0.8 mm)
In situ testing on fifth lift, third pass (off+2R)

GPS Rover shooting for test locations, 5th lift, 2nd pass (see attached)
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PREPARED BY:  Farshid Vahedifard and Faraz S.Tehrani

DESCRIPTION OF WORK CONTINUED

REMARKS

Departmenet of Civil and Environmental Engineering



Date:
Start Time:

Hours

6:20-14:00

6:20 7:12
7:50 8:00
8:34 9:00
9:00 10:12

10:27 11:32

11:30

11:35

11:35

12:20
13:50
14:00 Arrive in campus, unload van

Caterpillar & Ransome Dealership

Meet on campus, load van and depart UD, pick up Adam
Arrive on site, unload van
FWD testing by Dr Meehan and Faraz in 5pts on fifth layer (St. 0+16, 0+56, 0+96, 1+36, 1+76 CL) on 7/7

EDG tests by Adam (Humboldt) in 5 pts on the fifth layer (St. 0+16, 0+56, ..,1+76 CL)

Nuclear gauge tests by Tony (Del DOT) in 5 pts on the fifth layer (St. 0+16, 0+56, ..,1+76 CL)

1LWD
University of Delaware/Geotech. Group Sand Cone Supplies, Level, Misc Other Supplies

FWD

GPS Rover shooting for FWD test locations, 5th lift, no additional passes from 7-24-08 (see attached)
Taking 5 bucket samples at St.0+16, 0+56, …, 1+76 CL and gave to CJ to take to Dan Sajedi for Resilient 
Modulus tests
Taking 5 bag samples for sieve and moisture testsat St.0+16, 0+56, …, 1+76 CL

Burrice Pit (Odessa)

1

1

31 C (87 F)
14:00
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Weather:

Site:
End Time:
Temp.:

Friday 7/25/2008

University of Delaware
Departmenet of Civil and Environmental Engineering
DAILY PROGRESS REPORT (PAGE 9 / 10)

Project Title: Investigation of CCC Technology

Organization/Contractor/Subcontractor

6:20
Sunny

University of Delaware/Geotech. Group

Del DOT
Humboldt

Del DOT
Caterpillar & Ransome Dealership

Kessler Soils Engineering Products, Inc.
Humboldt

Greggo & Ferrara Inc

NUMBER OF MAJOR MACHINES AND EQUIPMENTS

Organization/Contractor/Subcontractor

1

DESCRIPTION OF WORK & ACTIVITY

Hours Description

1 EDG, 1 GeoGauge
Greggo & Ferrara Inc

MD DOT

Type & Number

1

Back-filed holes and tumped with foot and shovel
Roller proof, no vibration (MDP) again on fifth lift - 5th lift, 8th pass

1 Wheel Loader 924H, 1 Water Truck

1 Dozer D56K, 1  Wheel Loader 980H, 1 Roller CS56, 1 GPS Rover, 1 DCP, 1 LWD

2 Nuclear Gauge

Kessler Soils Engineering Products, Inc.

FWD testing by Dr Meehan and Faraz in 15pts on fifth layer (St. 0+16, 0+56, 0+96, 1+36, 1+76 CL+5'L & 5'R)

278

LWD testing by Faraz and Adam

DCP testing by Faraz and Adam

Roller proof, low amplitude vibration (CMV) - 5th lift, 9th pass
Leave site, Cat packing up their equipment, roller still on site 
Drop off Adam



No.

MD DOT

Staff Names:

UD Team Dr. Meehan, Faraz
Del DOT Al Strauss, Richard Taylor, Tony Marcozzi
Caterpillar Aj Lee, Jeff Ogborn
Humboldt Adam Houghton
Greggo & Ferrara Jim Reynolds, Dave McQuiry

Hours Description

EFFECTS ON WORK (WEATHER, ACCIDENTS, BREAKDOWNS, DELAYS, PERSONNEL, ETC.)

Date:

PROJECT VISITORS

REMARKS

CJ Swank

Description

DAILY PROGRESS REPORT (PAGE 10 / 10)

University of Delaware
Departmenet of Civil and Environmental Engineering

Friday 7/25/2008
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DESCRIPTION OF WORK CONTINUED



Start End
East1 6006.879 6019.335 201.03
East2 5997.995 6022.828 201.139
East3 5980.117 6030.636 201.78
East4 5960.82 6037.454 201.864
East5 5942.143 6044.694 201.931
East6 5923.847 6051.95 201.826
East7 5914.673 6055.872 201.869
East8 5905.289 6059.248 201.874
East9 5886.787 6066.885 202

East10 5868.228 6074.313 201.643
East11 5849.535 6081.613 201.958
East12 5830.926 6088.876 201.429
East13 5821.7 6092.624 201.851
West1 6000 6000 201.769
West2 5991.119 6003.556 201.799
West3 5972.699 6010.72 201.694
West4 5953.828 6017.272 201.603
West5 5935.049 6024.431 201.729
West6 5916.272 6031.214 201.761
West7 5907.09 6035.328 201.352
West8 5897.768 6038.77 201.641
West9 5879.306 6045.767 201.185

West10 5860.972 6052.791 201.164
West11 5842.153 6060.813 201.466
West12 5813.847 6070.224 201.643
West13 5823.032 6067.149 201.852

8 5996.138 6012.826 201.821 2 - 6/6 7/22/2008 16:30 16:45
18 5988.470 6015.011 201.900
28 5978.539 6018.310 201.858
38 5968.723 6022.114 201.992
48 5959.789 6025.649 201.867
58 5949.616 6029.133 201.975
68 5940.718 6032.732 201.950
78 5931.380 6036.593 201.872
88 5923.014 6039.975 201.853
98 5912.801 6043.927 201.941

108 5903.900 6047.509 201.746
118 5894.148 6051.429 201.878
128 5885.445 6054.800 201.865
138 5876.060 6058.748 201.909
148 5865.836 6062.681 201.894
158 5857.135 6066.867 201.878
168 5847.074 6070.051 201.803
178 5838.358 6073.607 201.840
188 5828.158 6076.791 201.949

Test Locations

Lift - Pass Date
Time

Station North (ft) East (ft) Elevation (ft)

Locations of Grade Stakes
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Start End
8 5996.138 6012.826 201.821 3 - 8/8 7/23/2008 13:36 13:46

18 5988.470 6015.011 201.900
28 5978.539 6018.310 201.858
38 5968.723 6022.114 201.992
48 5959.789 6025.649 201.867
58 5949.616 6029.133 201.975
68 5940.718 6032.732 201.950
78 5931.380 6036.593 201.872
88 5923.014 6039.975 201.853
98 5912.801 6043.927 201.941

108 5903.900 6047.509 201.746
118 5894.148 6051.429 201.878
128 5885.445 6054.800 201.865
138 5876.060 6058.748 201.909
148 5865.836 6062.681 201.894
158 5857.135 6066.867 201.878
168 5847.074 6070.051 201.803
178 5838.358 6073.607 201.840
188 5828.158 6076.791 201.949

14 5989.827 6014.218 202.476 4 - 9/9 7/23/2008 16:38 16:50
24 5980.551 6017.080 202.500
34 5971.771 6021.123 202.489
44 5962.335 6024.469 202.404
54 5952.731 6028.622 202.424
64 5942.894 6031.128 202.536
74 5933.865 6034.890 202.489
84 5924.683 6038.638 202.455
94 5915.294 6041.845 202.457

104 5906.255 6045.689 202.537
114 5897.024 6049.084 202.509
124 5887.838 6052.993 202.504
134 5878.244 6056.377 202.476
144 5869.160 6059.732 202.449
154 5859.983 6063.308 202.501
164 5850.868 6066.769 202.479
174 5841.951 6070.456 202.424
184 5832.493 6073.957 202.459
194 5823.405 6078.179 202.410

10 5989.366 6012.290 202.485 4 - 9/9 7/24/2008 - -
50 5951.641 6026.522 202.460
90 5914.554 6040.244 202.489

130 5877.159 6054.205 202.435
170 5839.408 6069.148 202.441

Station North (ft) East (ft) Elevation (ft) Lift - Pass Date
Time
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Start End
10 5994.148 6013.437 203.037 5 - 1/7 7/24/2008 - -
50 5957.186 6027.309 202.996
90 5919.944 6041.571 203.024

130 5882.489 6056.511 202.981
170 5845.554 6070.002 202.977

10 5994.356 6014.461 203.047 5 - 2/7 7/24/2008 - -
50 5958.122 6028.766 203.112
90 5920.359 6043.398 203.150

130 5882.675 6058.249 203.071
170 5846.248 6071.917 203.063

10 5993.499 6011.004 203.053 5 - 3/7 7/24/2008 - -
50 5956.737 6025.548 203.027
90 5919.426 6039.734 203.036

130 5882.039 6054.335 203.011
170 5845.428 6067.985 203.015

12 5991.812 6011.421 202.867 5 - 5/7 7/24/2008 - -
52 5955.079 6026.361 203.076
92 5917.333 6040.037 202.961

132 5880.376 6055.100 202.980
172 5843.484 6068.615 202.901

12 5992.753 6014.994 202.893 5 - 7/7 7/24/2008 - -
22 5983.875 6017.953 204.050
32 5974.219 6021.290 203.941
42 5964.703 6025.386 203.999
52 5955.149 6028.727 203.948
62 5945.794 6032.322 203.989
72 5936.577 6036.014 203.896
82 5927.577 6039.806 204.023
92 5918.188 6043.372 203.936

102 5908.865 6047.124 203.975
112 5899.626 6050.812 203.962
122 5890.218 6054.279 203.946
132 5880.428 6057.956 203.957
142 5871.481 6061.417 203.925
152 5862.209 6064.768 203.969
162 5852.645 6068.763 203.950
172 5843.442 6072.039 203.921
182 5833.974 6075.598 203.943
192 5824.759 6079.331 203.991

Time
Station North (ft) East (ft) Elevation (ft)
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Lift - Pass Date
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Appendix B 

MDP AND CMV MEASUREMENTS 

This appendix contains figures that demonstrate the variation of MDP and 

CMV measurements for each lift and pass on three parallel lanes, as referred to in 

Chapter 5.  Note that in the left lane of Lift 4, Pass 9/9 (Figure B.4) the GPS signal 

was lost for a short period of time and the corresponding MDP and CMV values were 

not recorded. 

The “KP” points shown on the “Middle Lane” roller transects in the 

following Appendix pages correspond to the kriged MDP and CMV values at each of 

the corresponding in situ test point locations.  These values are the ones that were used 

and the univariate and multivariate regression analyses discussed in Chapters 7 and 8. 
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.  

Figure B.1 Variation of CCC values for Base Layer, Pass 2/2 
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Figure B.2 Variation of CCC values for Lift 2, Pass 6/6 
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Figure B.3 Variation of CCC values for Lift 3, Pass 8/8 
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Figure B.4 Variation of CCC values for Lift 4, Pass 9/9 



 288

 

Figure B.5 Variation of CCC values for Lift 5, Pass 1/7 
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Figure B.6 Variation of CCC values for Lift 5, Pass 2/7 
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Figure B.7 Variation of CCC values for Lift 5, Pass 3/7 
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Figure B.8 Variation of CCC values for Lift 5, Pass 4/7 
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Figure B.9 Variation of CCC values for Lift 5, Pass 5/7 
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Figure B.10 Variation of CCC values for Lift 5, Pass 7/7 
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Appendix C 

SEMIVARIOGRAM AND KRIGING RESULTS 

This appendix contains figures that demonstrate the semivariogram and 

kriging results.  Figures C.1 through C.10 illustrate the sample semivariograms for 

each lift and pass.  Figures C.11 through C.110 present the results of kriging 

interpolation using Exponential, Gaussian, Rational Quadratic, Spherical and Linear 

models for maximum lags of 1.5 (5.0 ft) and 3.0 m (10 ft).  It should be noted that 

subscripts R and P denote real (actual) and predicted values, respectively.  In addition, 

the term N0 denotes the initial number of input data points that were used in the 

kriging analysis and Nf corresponds to the number of data points that remain after 

correcting the kriging matrix when singularities occurred.  In the cases where N0 is 

equal to Nf, then there are no singularities in the kriging matrices.   
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Figure C.1 Spatial continuity of CCC values for Base layer, pass 2/2 



 296

 

Figure C.2 Spatial continuity of CCC values for Lift 2, pass 6/6 
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Figure C.3 Spatial continuity of CCC values for Lift 3, pass 8/8 
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Figure C.4 Spatial continuity of CCC values for Lift 4, pass 9/9 
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Figure C.5 Spatial continuity of CCC values for Lift 5, pass 1/7 
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Figure C.6 Spatial continuity of CCC values for Lift 5, pass 2/7 
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Figure C.7 Spatial continuity of CCC values for Lift 5, pass 3/7 
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Figure C.8 Spatial continuity of CCC values for Lift 5, pass 4/7 
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Figure C.9 Spatial continuity of CCC values for Lift 5, pass 5/7 
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Figure C.10 Spatial continuity of CCC values for Lift 5, pass 7/7 
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Figure C.11 Kriging results of CCC values for Base layer, Pass 2/2, using 
Exponential model and maximum lag of 1.5 m (5 ft) 
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Figure C.12 Kriging results of CCC values for Base layer, Pass 2/2, using 
Gaussian model and maximum lag of 1.5 m (5 ft) 
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Figure C.13 Kriging results of CCC values for Base layer, Pass 2/2, using 
Rational Quadratic (RQ) model and maximum lag of 1.5 m (5 ft) 
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Figure C.14 Kriging results of CCC values for Base layer, Pass 2/2, using 
Spherical model and maximum lag of 1.5 m (5 ft) 



 309

 

Figure C.15 Kriging results of CCC values for Base layer, Pass 2/2, using Linear 
model and maximum lag of 1.5 m (5 ft) 
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Figure C.16 Kriging results of CCC values for Base layer, Pass 2/2, using 
Exponential model and maximum lag of 3.0 m (10 ft) 
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Figure C.17 Kriging results of CCC values for Base layer, Pass 2/2, using 
Gaussian model and maximum lag of 3.0 m (10 ft) 
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Figure C.18 Kriging results of CCC values for Base layer, Pass 2/2, using 
Rational Quadratic (RQ) model and maximum lag of 3.0 m (10 ft) 
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Figure C.19 Kriging results of CCC values for Base layer, Pass 2/2, using 
Spherical model and maximum lag of 3.0 m (10 ft) 
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Figure C.20 Kriging results of CCC values for Base layer, Pass 2/2, using Linear 
model and maximum lag of 3.0 m (10 ft) 
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Figure C.21 Kriging results of CCC values for Lift 2, Pass 6/6, using Exponential 
model and maximum lag of 1.5 m (5 ft) 
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Figure C.22 Kriging results of CCC values for Lift 2, Pass 6/6, using Gaussian 
model and maximum lag of 1.5 m (5 ft) 
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Figure C.23 Kriging results of CCC values for Lift 2, Pass 6/6, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 m (5 ft) 
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Figure C.24 Kriging results of CCC values for Lift 2, Pass 6/6, using Spherical 
model and maximum lag of 1.5 m (5 ft) 
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Figure C.25 Kriging results of CCC values for Lift 2, Pass 6/6, using Linear 
model and maximum lag of 1.5 m (5 ft) 
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Figure C.26 Kriging results of CCC values for Lift 2, Pass 6/6, using Exponential 
model and maximum lag of 3.0 m (10 ft) 
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Figure C.27 Kriging results of CCC values for Lift 2, Pass 6/6, using Gaussian 
model and maximum lag of 3.0 m (10 ft) 
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Figure C.28 Kriging results of CCC values for Lift 2, Pass 6/6, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 m (10 ft) 



 323

 

Figure C.29 Kriging results of CCC values for Lift 2, Pass 6/6, using Spherical 
model and maximum lag of 3.0 m (10 ft) 
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Figure C.30 Kriging results of CCC values for Lift 2, Pass 6/6, using Linear 
model and maximum lag of 3.0 m (10 ft) 
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Figure C.31 Kriging results of CCC values for Lift 3, Pass 8/8, using Exponential 
model and maximum lag of 1.5 m (5 ft) 
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Figure C.32 Kriging results of CCC values for Lift 3, Pass 8/8, using Gaussian 
model and maximum lag of 1.5 (5 ft) 
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Figure C.33 Kriging results of CCC values for Lift 3, Pass 8/8, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 m (5 ft) 
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Figure C.34 Kriging results of CCC values for Lift 3, Pass 8/8, using Spherical 
model and maximum lag of 1.5 m (5 ft) 
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Figure C.35 Kriging results of CCC values for Lift 3, Pass 8/8, using Linear 
model and maximum lag of 1.5 m (5 ft) 
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Figure C.36 Kriging results of CCC values for Lift 3, Pass 8/8, using Exponential 
model and maximum lag of 3.0 (10 ft) 
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Figure C.37 Kriging results of CCC values for Lift 3, Pass 8/8, using Gaussian 
model and maximum lag of 3.0 (10 ft) 
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Figure C.38 Kriging results of CCC values for Lift 3, Pass 8/8, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 (10 ft) 
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Figure C.39 Kriging results of CCC values for Lift 3, Pass 8/8, using Spherical 
model and maximum lag of 3.0 (10 ft) 
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Figure C.40 Kriging results of CCC values for Lift 3, Pass 8/8, using Linear 
model and maximum lag of 3.0 (10 ft) 
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Figure C.41 Kriging results of CCC values for Lift 4, Pass 9/9, using Exponential 
model and maximum lag of 1.5 (5 ft) 
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Figure C.42 Kriging results of CCC values for Lift 4, Pass 9/9, using Gaussian 
model and maximum lag of 1.5 (5 ft) 



 337

 

Figure C.43 Kriging results of CCC values for Lift 4, Pass 9/9, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 (5 ft) 



 338

 

Figure C.44 Kriging results of CCC values for Lift 4, Pass 9/9, using Spherical 
model and maximum lag of 1.5 (5 ft) 
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Figure C.45 Kriging results of CCC values for Lift 4, Pass 9/9, using Linear 
model and maximum lag of 1.5 (5 ft) 
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Figure C.46 Kriging results of CCC values for Lift 4, Pass 9/9, using Exponential 
model and maximum lag of 3.0 (10 ft) 
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Figure C.47 Kriging results of CCC values for Lift 4, Pass 9/9, using Gaussian 
model and maximum lag of 3.0 (10 ft) 
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Figure C.48 Kriging results of CCC values for Lift 4, Pass 9/9, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 (10 ft) 
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Figure C.49 Kriging results of CCC values for Lift 4, Pass 9/9, using Spherical 
model and maximum lag of 3.0 (10 ft) 
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Figure C.50 Kriging results of CCC values for Lift 4, Pass 9/9, using Linear 
model and maximum lag of 3.0 (10 ft) 
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Figure C.51 Kriging results of CCC values for Lift 5, Pass 1/7, using Exponential 
model and maximum lag of 1.5 (5 ft) 
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Figure C.52 Kriging results of CCC values for Lift 5, Pass 1/7, using Gaussian 
model and maximum lag of 1.5 (5 ft) 
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Figure C.53 Kriging results of CCC values for Lift 5, Pass 1/7, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 (5 ft) 



 348

 

Figure C.54 Kriging results of CCC values for Lift 5, Pass 1/7, using Spherical 
model and maximum lag of 1.5 (5 ft) 
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Figure C.55 Kriging results of CCC values for Lift 5, Pass 1/7, using Linear 
model and maximum lag of 1.5 (5 ft) 
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Figure C.56 Kriging results of CCC values for Lift 5, Pass 1/7, using Exponential 
model and maximum lag of 3.0 (10 ft) 
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Figure C.57 Kriging results of CCC values for Lift 5, Pass 1/7, using Gaussian 
model and maximum lag of 3.0 (10 ft) 
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Figure C.58 Kriging results of CCC values for Lift 5, Pass 1/7, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 (10 ft) 
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Figure C.59 Kriging results of CCC values for Lift 5, Pass 1/7, using Spherical 
model and maximum lag of 3.0 (10 ft) 
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Figure C.60 Kriging results of CCC values for Lift 5, Pass 1/7, using Linear 
model and maximum lag of 3.0 (10 ft) 
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Figure C.61 Kriging results of CCC values for Lift 5, Pass 2/7, using Exponential 
model and maximum lag of 1.5 (5 ft) 
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Figure C.62 Kriging results of CCC values for Lift 5, Pass 2/7, using Gaussian 
model and maximum lag of 1.5 (5 ft) 
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Figure C.63 Kriging results of CCC values for Lift 5, Pass 2/7, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 (5 ft) 
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Figure C.64 Kriging results of CCC values for Lift 5, Pass 2/7, using Spherical 
model and maximum lag of 1.5 (5 ft) 
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Figure C.65 Kriging results of CCC values for Lift 5, Pass 2/7, using Linear 
model and maximum lag of 1.5 (5 ft) 
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Figure C.66 Kriging results of CCC values for Lift 5, Pass 2/7, using Exponential 
model and maximum lag of 3.0 (10 ft) 
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Figure C.67 Kriging results of CCC values for Lift 5, Pass 2/7, using Gaussian 
model and maximum lag of 3.0 (10 ft) 
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Figure C.68 Kriging results of CCC values for Lift 5, Pass 2/7, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 (10 ft) 



 363

 

Figure C.69 Kriging results of CCC values for Lift 5, Pass 2/7, using Spherical 
model and maximum lag of 3.0 (10 ft) 
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Figure C.70 Kriging results of CCC values for Lift 5, Pass 2/7, using Linear 
model and maximum lag of 3.0 (10 ft) 
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Figure C.71 Kriging results of CCC values for Lift 5, Pass 3/7, using Exponential 
model and maximum lag of 1.5 (5 ft) 
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Figure C.72 Kriging results of CCC values for Lift 5, Pass 3/7, using Gaussian 
model and maximum lag of 1.5 (5 ft) 
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Figure C.73 Kriging results of CCC values for Lift 5, Pass 3/7, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 (5 ft) 
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Figure C.74 Kriging results of CCC values for Lift 5, Pass 3/7, using Spherical 
model and maximum lag of 1.5 (5 ft) 



 369

 

Figure C.75 Kriging results of CCC values for Lift 5, Pass 3/7, using Linear 
model and maximum lag of 1.5 (5 ft) 
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Figure C.76 Kriging results of CCC values for Lift 5, Pass 3/7, using Exponential 
model and maximum lag of 3.0 (10 ft) 
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Figure C.77 Kriging results of CCC values for Lift 5, Pass 3/7, using Gaussian 
model and maximum lag of 3.0 (10 ft) 
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Figure C.78 Kriging results of CCC values for Lift 5, Pass 3/7, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 (10 ft) 



 373

 

Figure C.79 Kriging results of CCC values for Lift 5, Pass 3/7, using Spherical 
model and maximum lag of 3.0 (10 ft) 
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Figure C.80 Kriging results of CCC values for Lift 5, Pass 3/7, using Linear 
model and maximum lag of 3.0 (10 ft) 
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Figure C.81 Kriging results of CCC values for Lift 5, Pass 4/7, using Exponential 
model and maximum lag of 1.5 (5 ft) 
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Figure C.82 Kriging results of CCC values for Lift 5, Pass 4/7, using Gaussian 
model and maximum lag of 1.5 (5 ft) 
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Figure C.83 Kriging results of CCC values for Lift 5, Pass 4/7, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 (5 ft) 
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Figure C.84 Kriging results of CCC values for Lift 5, Pass 4/7, using Spherical 
model and maximum lag of 1.5 (5 ft) 
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Figure C.85 Kriging results of CCC values for Lift 5, Pass 4/7, using Linear 
model and maximum lag of 1.5 (5 ft) 
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Figure C.86 Kriging results of CCC values for Lift 5, Pass 4/7, using Exponential 
model and maximum lag of 3.0 (10 ft) 
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Figure C.87 Kriging results of CCC values for Lift 5, Pass 4/7, using Gaussian 
model and maximum lag of 3.0 (10 ft) 
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Figure C.88 Kriging results of CCC values for Lift 5, Pass 4/7, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 (10 ft) 
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Figure C.89 Kriging results of CCC values for Lift 5, Pass 4/7, using Spherical 
model and maximum lag of 3.0 (10 ft) 
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Figure C.90 Kriging results of CCC values for Lift 5, Pass 4/7, using Linear 
model and maximum lag of 3.0 (10 ft) 
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Figure C.91 Kriging results of CCC values for Lift 5, Pass 5/7, using Exponential 
model and maximum lag of 1.5 (5 ft) 
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Figure C.92 Kriging results of CCC values for Lift 5, Pass 5/7, using Gaussian 
model and maximum lag of 1.5 (5 ft) 
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Figure C.93 Kriging results of CCC values for Lift 5, Pass 5/7, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 (5 ft) 
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Figure C.94 Kriging results of CCC values for Lift 5, Pass 5/7, using Spherical 
model and maximum lag of 1.5 (5 ft) 
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Figure C.95 Kriging results of CCC values for Lift 5, Pass 5/7, using Linear 
model and maximum lag of 1.5 (5 ft) 
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Figure C.96 Kriging results of CCC values for Lift 5, Pass 5/7, using Exponential 
model and maximum lag of 3.0 (10 ft) 
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Figure C.97 Kriging results of CCC values for Lift 5, Pass 5/7, using Gaussian 
model and maximum lag of 3.0 (10 ft) 
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Figure C.98 Kriging results of CCC values for Lift 5, Pass 5/7, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 (10 ft) 
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Figure C.99 Kriging results of CCC values for Lift 5, Pass 5/7, using Spherical 
model and maximum lag of 3.0 (10 ft) 
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Figure C.100  Kriging results of CCC values for Lift 5, Pass 5/7, using Linear 
model and maximum lag of 3.0 (10 ft) 
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Figure C.101  Kriging results of CCC values for Lift 5, Pass 7/7, using 
Exponential model and maximum lag of 1.5 (5 ft) 
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Figure C.102  Kriging results of CCC values for Lift 5, Pass 7/7, using Gaussian 
model and maximum lag of 1.5 (5 ft) 
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Figure C.103  Kriging results of CCC values for Lift 5, Pass 7/7, using Rational 
Quadratic (RQ) model and maximum lag of 1.5 (5 ft) 
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Figure C.104  Kriging results of CCC values for Lift 5, Pass 7/7, using Spherical 
model and maximum lag of 1.5 (5 ft) 
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Figure C.105  Kriging results of CCC values for Lift 5, Pass 7/7, using Linear 
model and maximum lag of 1.5 (5 ft) 
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Figure C.106  Kriging results of CCC values for Lift 5, Pass 7/7, using 
Exponential model and maximum lag of 3.0 (10 ft) 
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Figure C.107  Kriging results of CCC values for Lift 5, Pass 7/7, using Gaussian 
model and maximum lag of 3.0 (10 ft) 
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Figure C.108  Kriging results of CCC values for Lift 5, Pass 7/7, using Rational 
Quadratic (RQ) model and maximum lag of 3.0 (10 ft) 
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Figure C.109  Kriging results of CCC values for Lift 5, Pass 7/7, using Spherical 
model and maximum lag of 3.0 (10 ft) 
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Figure C.110  Kriging results of CCC values for Lift 5, Pass 7/7, using Linear 
model and maximum lag of 3.0 (10 ft) 
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