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ABSTRACT

The objective of the study presented in this repotb investigate the use of
continuous compaction control (CCC) systems withim earthwork compaction
specification framework. For this purpose, the Belee Department of Transportation
(DelDOT) funded a field study to construct a snsalile soil embankment, utilizing
CCC technology simultaneously with conventionasittt compaction verification test
methods during the construction process. The nahtédnat was used to build the
embankment classified as poorly-graded sand with Bhe CCC roller measured
machine drive power (MDP) values, compaction metaiues (CMV), and
corresponding global positioning system (GPS) locavalues. For conventional in
situ compaction verification, numerous density-loagaality assurance test methods
(e.g., Nuclear Density Gauge and Sand Cone) andilinetbased test methods (e.g.,
Lightweight Deflectometer and GeoGauge) were peréat. A holistic analysis of the
data collected from the field study was performeddsess the use of CCC systems in
an earthwork compaction specification framework.

The first goal of this study was to perform statest regression analyses to
compare the results of the in situ spot testing hoet with the two CCC
measurements (MDP and CMV) that were recorded duha compaction process. In
order to accurately compare the in situ spot tgstmeasurements and CCC
measurements, Nearest Neighbor, Inverse Distanaghiifeg, and Ordinary Kriging

interpolation techniques were utilized to predictC@ measurements at the
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corresponding in situ spot test locations. In gaheaegression analyses performed
using the CCC predictions from the Ordinary Krigimgthod showed slightly higher

correlations, however, the difference did not appamificant enough to outweigh the

complex nature of this geospatial interpolatiorhteque.

Univariate regression analysis was performed fifst point-by-point
comparisons of the data and then on a data sehwebimprised of average values for
each lift and pass. The point-by-point comparisgieéded weak correlations, while
the comparison of the average value data sets showeh stronger correlations; this
finding agrees well with observations that havenbesported by other researchers. As
other researchers have also reported that moisturgent can drastically affect the
compaction process and resulting density of sodditeonal analyses using a
multivariate regression technique were performdugckvintroduced the use of in situ
measured moisture content as an independent \aridlfie results from these
regression correlations showed generally much gaooorrelation between the in situ
test measurements and the CCC measurements fothleoploint-by-point and average
data sets. This observation provided confirmatibthe influence of moisture content
on the in situ test measurements and the CCC nerasuts.

The final goal of the study was to evaluate the afs€ECC technology within
an earthwork compaction specification framework. &oscomplish this goal,
implementation of existing CCC compaction verifioatacceptance criteria using the
data collected from the aforementioned field stws performed. The acceptance
criteria that were assessed include: spot testingplter measured weakest areas,
limiting percentage change in roller measured \gluend comparison of roller

measured values to in situ measured values. Eattle dhree acceptance criteria show

XXi



potential for implementation into an earthwork speation; however, since the spot
testing of roller measured weakest areas methdidustizes conventional in situ
methods, it shows the most promise for immediatgpadn and transition into CCC

technology.
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Chapter 1

INTRODUCTION

Earthwork compaction specifications generally maydassified as either a
method/procedure specification or an end-produdtdp@ance specification. Method
specifications will usually specify the exact presefor compaction and will not
require verification of compaction. Method spedtions are typically used when
there is prior experience with the compaction malteor if there is not a reasonable
means to verify compaction through in-situ testing. contrast, end-product
specifications verify that the desired soil projgerthave been achieved through in-situ
testing or other assessment of the “final produb#t results from the compaction
process. Typically, in situ quality assurance/dyationtrol (QA/QC) spot tests are
performed after compaction to assess if the congagirocess has been conducted
near the optimum moisture content, and if it hatd@d a soil density that is close to a
standardized input value (i.e., yielding a soil slgnthat is above 95% of the
maximum density measured during a Standard Proesoy.

In both method-based and end-product based spmins, there is almost
always a maximum lift thickness requirement. TBigécessary to help ensure optimal
compactor energy penetration, and more uniformlyngacted soil. Additionally,
many commonly QA/QC tests cannot be performed arkéh lifts of soil. Although
QA/QC spot tests can provide relatively accuratamaction verification results when
used in an end-product specification frameworkrahere many limitations to using

any type of spot test for in situ compaction vesfion. The most apparent limitations



are the relatively low percentage of material baggjing in comparison to the entire
compaction zone and the inherent construction detaysed by performing the in situ
spot tests. Additionally, the most commonly usedt ¢pst, the nuclear density gauge
(NDG) test, has logistical and safety limitationgedo the use of a radioactive source
within the test device.

Advancements in technology have provided a new ttoatl shows significant
promise for improving the efficiency of the compantand compaction verification
processes. Continuous Compaction Control (CCC) ni@ogy continuously and
instantaneously measures machine parameters, glodstioning system (GPS)
location, and soil response, while offering ned}0% coverage of the compaction
zone. More recently, in recognition of this emegqgitechnology, several state
Departments of Transportation (DOT) have begun dopt earthwork compaction
specifications that utilize CCC systems for comjsactverification. The Delaware
Department of Transportation (DelDOT) set in motiarfield study in 2007 at a
borrow pit in Odessa, DE to better understand CE&¢hriology. The field study
involved the construction of a small-scale embanmehich was compacted using a
compaction roller outfitted to record CCC measunatsieln addition to the collection
of all pertinent CCC data, an extensive in situ Q®&/ spot testing plan was
implemented. Amongst the in situ spot tests peréarmwas the currently popular NDG
test, which measured dry unit weight and moistorgent of the compaction material.
The DelDOT funded this study with the intent of dieping earthwork compaction
specifications that utilize CCC systems for comjuecterification.

The purpose of this study is to analyze the redutism the aforementioned

field study and provide pertinent recommendatianstlie development of earthwork



compaction specifications using CCC systems forDBEOOT. Chapter 2 provides a
summary of existing literature related to the catngroject. Included in the literature
review is a comprehensive discussion on the coretidas, methods, and limitations
of implementing CCC technology into an earthworkmpaction specification. In
Chapter 3, the aforementioned field study, utiligdCC technology, is discussed in a
higher level of detail.

Before evaluating CCC technology in an earthworkpaction specification
framework, it is important to investigate the ralaship between in situ spot test
measurements and the soil response measurememisiegcby the compaction
equipment. Since the locations of the in situ g¢pst measurements do not precisely
match the locations of the CCC measurements, itn@asssary to utilize interpolation
techniques to predict CCC measurement values ainth@tu spot test locations.
Chapter 4 provides the results from examinatiothef relationships between in situ
spot test measurements and kriged CCC measurerkeigisg interpolation has been
widely used in research to predict CCC measuremieetsause it is considered to
produce the most accurate predictions; however,ktiging method is extremely
complex and would be difficult to use in real tirf@@ compaction verification on
active construction projects. Consequently, anuatain of alternative techniques for
interpolating CCC measurements for comparison withitu spot test measurements
is provided in Chapter 5. In Chapter 6, the earthwoompaction specification
methodologies for CCC equipment that were providetthe literature review will be
evaluated using real data which was collected dutire previously mentioned field

study. Finally, in Chapter 7, the most significazdnclusions from the research



performed in this report will be presented, alongthwrecommendations for

development of earthwork compaction specificatifmmsise with CCC systems.



Chapter 2

LITERATURE REVIEW

2.1 Soil Compaction

For many civil engineering applications includinpet construction of
embankments, earthen dams, roadway subgrades|ogas,scompaction is necessary
to increase the unit weight of loose soils (Das&08s defined by Holtz and Kovacs
(1981), compaction is the densification of soilsl aock by application of mechanical
energy to minimize air voids. This densificationogess may be optimized by
modification of the moisture content and/or thedatagon of the soil. For soils, the
degree of compaction is typically measured in teowhghe dry unit weight. The
various laboratory and field tests that are usechéasure the dry unit weight of soil
will be discussed in the following sections.

The overall purpose of soil compaction is to immrothe engineering
properties of the material. The following effectaynresult from compaction (Holtz
and Kovacs 1981):

* Reduction and/or prevention of detrimental settletsie

* Increase in soil strength (e.g., an increase imritlhgacapacity or an
improvement in slope stability)

* Decrease in hydraulic conductivity

» Control of undesirable volume changes (e.qg., facsibn, swelling, and

shrinkage of fine-grained soils)



The extent to which the improvements listed aboway lme seen is reliant on
several factors. These control factors can loobelyclassified into two groups, soil
properties and densification process propertiegielmeral, the specific control factors
that affect the results of compaction are:

* Soil moisture content

» Soil type and gradation
* Compactive effort

* Process of compaction

In soils, the process of compaction is strongleet#d by the soil's moisture
content. The addition of water to soil will act asoftening agent and facilitate the
rearrangement of individual particles within thal soass. If there is zero percent
moisture content, individual particles will havedificult time rearranging, thus, not
much compaction can be achieved. The addition ofewdacilitates particle
rearrangement and allows for better compactiontou@ certain point. The soil mass
will eventually reach a moisture content percent@ye“optimum” moisture content)
beyond which the addition of more water will begm reduce the achievable
compaction. This phenomenon occurs because the wattwas once acting as a
facilitating agent for rearrangement of particleia denser state will now cause the
particles to flow within the soil mass, without @ahng the desired increase in
density. The soil moisture-density relationshipalig®d above is typically referred to
as the compaction curve (Figure 2.1). It should no¢ed that, for soils, better
compaction is defined as a process which achievaigleer dry unit weight for the

soil.



The soil type will greatly influence the compacti@urve. The specific
properties that directly affect the moisture-dgneglationship are the: specific gravity
of soil particles, shape of soil particles, gramesdistribution of particles, and clay
mineralogy (Holtz and Kovacs 1981). Typically, éifént soil types (e.g., granular
soils versus cohesive soils) require different sypd compaction and levels of
compactive effort to achieve the most effective affctient compaction of the soll.
Generally, as the compaction energy per unit voluroeeases, the maximum dry unit
weight achievable by compaction will increase; ithes words, an increase in
compactive energy will increase the maximum dryt wseight (Figure 2.1). The
method of compaction must be selected based osdihéype to ensure that the soil

will be compacted efficiently.

Figure 2.1 Effect of compaction energy on compactiocurves (modified after
Coduto 1999).



In Figure 2.1, typical compaction curves for ideali soils compacted at
different compactive efforts are shown. The comipactcurves are labeled to
correspond with the two most common standard ldaborgrocedures for determining
the compaction curve: the standard proctor testTBAD 698) and the modified
proctor test (ASTM D 1557). The standard test padaces will be discussed in more
detail in Section 2.4.1.2. However, it should beedothat the modified proctor test
utilizes higher compactive energy than the standamatctor test to develop the
compaction curves. Typically, if the modified andrglard proctor tests are performed
on the same soil sample, the compaction curve shift up and to the left,
representing an increasing maximum dry unit we{ght.a) and decreasing optimum

moisture {opy) as compactive energy increases.

2.2 Compaction Methods
There are three general compaction techniques witich all compaction
processes can be classified: static compactionading compaction, and dynamic

compaction.

2.2.1 Static Compaction

Static compaction relies on the weight of a sothpactor and gravity to apply
downward pressure onto the soil. The compactivertefif static compaction relies on
the weight of the equipment and the contact aratathlie equipment has with the soil.
For a given compactor, in order to increase thetamrpressure/compactive effort,
either weight must be added to the compactor orcthreact area must be reduced,
increasing the force that is applied per unit andegher contact pressures will

generally result in increased compression of thensass, more effectively reducing



the volume of voids in the soil and increasing slod’s density (or unit weight). In
general, the benefits of static compaction are téchito the upper layers of a
compacted material, as the depth of influence aficstompaction is typically low
(Adam and Kopf 2004). Static compaction is mostrappate for fine-grained soils

and bituminous materials like asphalt (Adam andKig98).

2.2.2 Kneading Compaction

For cohesive soils, the use of static compactiog n@ be the most efficient
way to achieve densification. The application o$tamtaneous static pressure to
certain cohesive soils will cause a rapid buildfi@xcess pore water pressure which
will make it difficult to minimize the void spacenithe soil and achieve proper
compaction. To reduce this “undrained” responseobiesive soils during compaction,
a kneading process in which the compactor kneadsramolds compacted soil is
employed. This process will facilitate the reduntiaf the void space to achieve the
desired densification. The materials most suitalole kneading compaction are

cohesive fine-grained soils such as clayey soitkafA and Kopf 1998).

2.2.3 Vibratory Compaction

Vibratory compaction applies a periodic mechandralen force, typically by
rotating an eccentric mass along a shaft at theeceh a cylindrical compactor drum
axis (Figure 2.2). For a heavy compactor drum, ristation of this eccentric mass
leads to a downwards vibratory energy that actsisameously with the weight of the
compactor to apply downward pressure and vibratagrgy into the soil. This applied
energy tends to change the nature of particle tocfmcontacts within the soil mass,

facilitating the rearrangement of individual sodrficles into a more compact state



(Adam and Kopf 2004). The materials most suitalole viibratory compaction are

granular soils such as sands and gravels (AdanKapti1998).

vVerlical
—
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Figure 2.2 Excitation of vibratory roller drum and the resulting dynamic
compaction effect (compression) (modified after Bradl and Adam
2004).

In some cases, vibratory rollers provide high uilorss to the soil that may be
detrimental to the compaction process. Excessivégyn energy from a vibratory
compactor may cause fracture of individual soiltiphes and damage to surrounding
buildings and/or utilities. It is for this reasohat two other types of “dynamic
compaction” methods have been developed: oscilatompaction and vario roller

compaction.

2.2.3.1 Oscillatory Compaction

During oscillatory compaction, the roller drum distes parallel to the surface
that is being compacted. The applied oscillatiorrassed by two opposite rotating
eccentric masses, where the shafts are arrangegpposite sides of the axis of the

drum (Figure 2.3).
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Figure 2.3 Excitation of oscillatory roller drum and the resulting dynamic
compaction effect (shearing) (modified after Brandland Adam
2004).

The motion of the roller causes the soil to be dycally loaded in a
horizontal direction, in addition to the verticabwdnward static pressure. The cyclic
and dynamic horizontal forces result in additiorall shear deformation; dynamic
compaction is achieved mainly by transmitted sheaves. Studies have shown that
oscillatory rollers operate in two conditions degiexy on roller operation and soil
parameters. If the applied force exceeds the dncforce (including the adhesion) at
the soil-drum interface, the drum starts slippifigt{rani 2009). During slipping the
compaction effect is reduced; however, the surfactsealed” by this slip motion.
Consequently, oscillatory rollers are mainly empldyfor asphalt compaction
(Tehrani 2009). Oscillatory rollers are also ofteased near sensitive structures,
because the resulting vibrations are typically iicemtly lower than those of

traditional vibratory rollers (Thurner and Sandstr@2000, Brandl and Adam 2004).

2.2.3.2 Vario Roller Compaction
In the late 1990’s, Bomag Americas, Inc (Bomag)edeped the vario roller

(Tehrani 2009). The Vario roller system consiststvad counter-rotating excitation

11



masses which are concentrically shafted on the @ixtee drum to cause a directed
vibration. The direction of excitation can be atiasby turning the entire excitation
unit, in order to optimize the compaction effeat fiee corresponding soil type (Figure
2.4). If the excitation direction is vertical orrmontal, the compaction effect of the
Vario roller is similar to that of the vibratory oscillatory rollers, respectively. Thus,
Vario rollers can be used as a substitute for eithmratory and oscillatory compactors

(Brandl and Adam 2004).
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Figure 2.4 Ammann two-piece eccentric mass assemldnd variable control of
eccentric force amplitude and frequency (modified #er Ammann
brochure; Bomag brochure; Brandl and Adam 2004).

2.3 Compaction Equipment

Most field compaction equipment will use one of greviously mentioned
compaction methods to achieve soil densificatiome Tmost commonly used
compaction equipment on medium to large projectsoimpaction rollers. There are
many different variations of compaction rollers ttltan perform static, kneading,
and/or vibratory compaction (Table 2.1). For smgjects, or detail areas on larger
projects that require the use of low compactiveorgéffsmall compactors such as
vibrating plates and tampers are also commonlyizetdl Commonly utilized

compaction equipment and the associated applictionwhich this equipment is

12



used are provided in Table 2.1 (Broms and Forssb®®; Holtz and Kovacs 1981,

Holtz et al. 2011).

Table 2.1 Types and Applications of Soil CompactoréModified after Holtz et

al. 2011)
Compaction . . . o
Equipment Suitable soils Typical Applications
| Granular and Running surface, base courses,
Smooth-wheel rollers . .
cohesive soils subgrades.

Granular and
cohesive soils
Sheepsfoot rollers Cohesive soils Dams, embankmsmbgrades
Rocky soils,
gravels, and sand

Rubber tired rollers Pavement subgrade.

Mesh (grid) rollers SSubgrade, subbase.

Detail areas. Fills behind bridge

Vibrating tampers Granular soils abutments and retaining walls,
Vibrating plates Granular soils Detail areas. Fills bghlnd bridge
abutments and retaining walls.
0 . Base, subbase, and embankment
Vibrating rollers Granular soils

compaction. Earth dam fills.

2.4 Current Specifications and Compaction Control

For earthwork projects, control of the contractoce@mpaction process is
essential to ensure that the desired design paeesnatsociated with optimal project
performance are achieved. Typically, the designre®y will provide specifications
for the compaction process. It is then the reslitgi of the owner or design
engineer to perform quality assurance (QA) testmgerify that the soil has reached

the required densification specified by the enginee
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2.4.1 Specifications

There are two general types of specifications thevork compaction. They
are: (1) method or procedure specifications, and efad-product or performance
specifications. In addition to the compaction cohportion of the specification, there

is almost always an additional maximum lift thicke€compacted or loose) criterion.

2.4.1.1 Method Specifications

For a method specification, the type and weighthefcompaction equipment,
the number of passes, and the maximum lift thickrea® specified by the design
engineer. This method does not require any QArgsti the field, and therefore the
engineer must be certain that the specified congagirocess will be adequate to
achieve proper compaction. This method requirestiggneer have prior experience
with the material being compacted. In the event the engineer does not have
experience with the fill material and the compatteEguipment being utilized, test
sections (test pad areas) must be constrcutedtéonuiee the necessary number of
compactor passes and adequate lift thickness.pragess can be time consuming and
costly, and thus, is usually only utilized for largcale fill projects such as earth dams

(Holtz and Kovacs 1981).

2.4.1.2 End-Product Specifications

The end-product specification is much more poputar compaction of
highways, building foundations, and embankments lttH@t al. 2011). Most
commonly, for this method, the design engineer wjiecify a relative compaction
(RO value that the contractor must achieve. Relatompaction is defined as the
ratio between the measured field dry density alabaratory measured maximum dry

density determined using a standardized compatg&gtndisplayed in percentage form

14



(Equation 2.1). It is important to note that thare other measurements or criteria in
addition to RC that can be used in an end-product specificatiomyever, for
earthwork compaction specifications tR€ measurement is the most common at this
time.

RC =221 100 (2.1)

Iod max

where p, 4 IS @n in situ measurement of dry density at alsif@gation in the field

and pg..is the maximum dry density of the material as deteed from a

standardized laboratory compaction test on the saihe

The standardized laboratory compaction tests tteatrepst commonly used to
determine the maximum dry density are the stangerdtor test (ASTM D 698) and
the modified proctor test (ASTM D 1557). The remgtdata from these tests allows
for development of a compaction curve for the wstaterials. From the compaction
curve, the maximum dry density and the optimum sodisture content can be
determined (Figure 2.1). Typically, the engineell gpecify that the contractor
compact the soil to 90% or 95% relative compacfidaltz et al. 2011). It should be
noted that the soil unit weight may also be useddtermine theRC value; in this
case, th&RCis the ratio between the field dry unit weight dhd maximum dry unit
weight.

In addition to theRC criteria, the engineer will also typically specity
moisture content range which the soil must be cateplwithin, and a maximum lift
thickness. In the case of end-product specificatidhe contractor is free to use the
compaction equipment of his or her choice, as lasgthe specified end-product

criteria are achieved. For this method, it is ingpee that in situ QA compaction
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verification tests be performed to ensure thatahtractor has achieved the desired

end-product criteria.

2.4.2 In Situ Test Methods

Soil compacted in the field must pass a QA testveadfy that adequate
compaction has been achieved, in order to enswepéinformance of the project.
There are various in situ test methods that maydael for this purpose and most of
them fall into one of two categories: (1) Densigsbkd tests, and (2) Strength-based
tests. The density based tests, as the name impliesnpt to directly or indirectly
measure the in situ soil density or unit weightreBgth-based tests, in contrast,
attempt to directly or indirectly measure the soddulus and/or soil stiffness. Some
of these tests will measure the moisture contaecty as part of the test; if not, then
a sample must be taken at the test location andnibisture content must be later
determined in the laboratory in accordance with M3 2216-10.

Some of the most common in situ test methods, @spective ASTM
references, and the associated units of measuranemrovided in Table 2.2. An in
depth literature review on the in situ test methadsentioned below, including

calculations for all measurements, is providedehrani (2009).
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Table 2.2 Summary of In Situ Test Methods for Competion Verification

Test Method ASTM Reference Measurement (units)
. _J Dry Unit Weight,yg (kN/m?),
Nuclear Density Gauge (NDG) ASTM D 6938 'uﬁloisture Contentg (%)
Sand Cone Equivalent (SC) ASTM D 1556-00  Dry Uniit,yq (kN/m°)
Plate Load Test (PLT) ASTM D 1196-93  Secant Modufissr (MPa)

Light Weight Deflectometer (LWD) ASTM E 2583-07  ElE ModulusE wp (MPa)

'(:If‘\'/{;gg; Weight Deflectometer | \sm D 4694-96 | Elastic Modulug (MPa)

Dynamic Cone Penetrometer (DCP) ASTM D 6951-C

Soil Stiffness Gauge (SSG), also
known as the GeoGauge

enetration IndeRCPl,,
CPly

ASTM D 6758-02 | Elastic Modulu€sss(MPa)

2.4.2.1 Limitations of the In Situ Test Methods
Although the in situ test methods listed in Tah2 &e largely used for QA of
earthwork compaction, there are several problerascésted with these test methods.
A number of the limitations are listed below (Hadtzd Kovacs 1981):
» Statistical quality control of compaction
* Presence of oversized particles
* Measurement depth limitations
» Lack of lift thickness control
The statistical quality control of compactiaefers to the low percentage of the
compaction area being tested. Since the in sitis t®® spot tests, the volume of
material involved in each test is an extremely $palcentage of the total volume of
compacted material, as low as one part in 100,80, (Holtz and Kovacs 1981).
The presence of oversized particlean be extremely problematic for several
of the in situ test methods mentioned above. Famgte, the NDG test is not able to

accurately measure the density soils with a higtvgrcontent. This is more of an
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issue in the density based test methods, but trength based tests also have
maximum particle size limitations which are notedhe respective ASTM references.

The measurement depth limitatiom®rresponds to the measurement depth of
the in situ test method not reaching the influemspth of typical compaction
equipment. Typical in situ test methods have aluémice depth of 20-60 cm and do
not sufficiently represent the real influence deptithe compactor’s applied energy
(Adam 1997, Thurner and Sandstrém 2000).

The maximum lift thickness component of the comipact control
specifications is often overlooked in the discussabcompaction verification. Typical
inspection methods involve a field inspector perfimg visual inspection of the lifts
and approving lifts without taking accurate thickmemeasurements. All of the
aforementioned in situ testing devices havack of thickness controllhe result can
be non-uniform soils lifts that lead to differentsettlements, among other issues
(Adam 1997). In addition, the in situ methods dssad above are somewhat time
consuming, and adequate field testing for a propact in some cases be relatively

expensive (Thurner and Sandstrom 1980, Adam 1997).

2.5 Continuous Compaction Control and Intelligent Compation Systems

In an attempt to account for the limitations asatad with the current in situ
QA test methods mentioned in Section 2.4.2.1, oantis compaction control (CCC)
and intelligent compaction (IC) systems have beevelbped. CCC and IC systems
seek to achieve more efficient compaction by reayi¢he overall compaction time,
effectively avoiding: under-compaction (which inases the risk of settlement

problems), over-compaction (which wastes time a@ag orush aggregates), and non-
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uniform compaction (which increases the risk offedéntial settlements) (Thurner
1993).

As noted in Meehan and Tehrani (2011Eohtinuous Compaction Control
systems are data acquisition systems installed ompaction equipment that
continuously collects real-time information abobe toperation and performance of
the compactor (Thurner and Sandstrom 1980, Adan7,188am and Brandl 2003).
Intelligent Compaction is a machine-driven procesgwreby CCC data is interpreted
and used in real-time to adjust the operation of tompactor in an attempt to
optimize the compaction process and to achieve moiferm soil compaction (Adam

and Brandl 2003, Anderegg et al. 2006).

2.5.1 Components of CCC Systems

Traditional CCC systems consist of several comptsnéine compaction roller,
the material being compacted, a real-time globaltmpming system (GPS), and a data
acquisition system. In addition, IC systems wilvbadocumentation and feedback
control systems built into the compaction rollékdrief discussion of the components
is provided here; a more in-depth discussion caiotyed in Tehrani (2009).

The compaction roller is an integral component GICCand IC systems, as it is
the basis by which compaction will occur and thatfpkm for the remaining
components. Additionally, many of the roller opevaal parameters (e.g., the
excitation frequency, the drum amplitude, the weightio between the effective
weight of the frame and drum, and the speed ofdHher) are used to determine the
roller measured values (MV) which provide a basisnderstanding the degree of

compaction (Adam 1997).
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To date, CCC and IC systems have proven applidablboth coarse-grained
soils (granular soils) and fine-grained soils (cohe soils) (Mooney et al. 2011). The
only limitation is in regards to the types of roll®V that can be taken. As stated
earlier, cohesive materials do not efficiently @@ densification through vibratory
compaction (e.g., Holtz and Kovacs 1981; Adam an@fkL998). Many of the roller
MV rely on soil response to vibratory compactioansequently, these roller MV are
not typically applicable during compaction of colresmaterial.

The integration of GPS systems with the compactmlers allows for the
linkage of the roller MV to measurement point cooates. As a result, the
compaction process can be instantaneously recanmddisplayed in graphical format
(Anderegg et al. 2006). Conventional GPS systenmsisb of an external reference
(base) station that includes a real-time kinemgtabal positioning system (RTK-
GPS), an antenna, and a radio modem transmittexddition, these GPS systems use
a mobile data acquisition and analysis station ihattached to the roller. The final
component of the GPS system is a visual monitostagion, which consists of a

computer with a radio modem receiver (Tehrani 2009)

2.5.2 History of CCC and IC Technology

Continuous Compaction Control (CCC) and Intelliggdbmpaction (IC)
technologies can be traced back to 1930, whenitsieattempt to measure, record,
and monitor vibration-integrated measurements gudompaction were performed
with vibratory plates (Mooney and Adam 2007). klitievelopment of modern roller
integrated measurements dates back to 1974, wheldddvz Thurner of the Swedish
Highway Administration performed field studies w#h5-ton tractor-drawn Dynapac

vibratory roller instrumented with an acceleromdfEnurner and Sandstrom 2000).
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The tests indicated that, in the frequency domidie,ratio between the amplitude of
the first harmonic of the recorded acceleration #re amplitude of the excitation
could be correlated to the induced compaction eénd the soil stiffness measured by
static plate load tests. Dr. Thurner founded thedyramik Company with partner
Ake Sandstrém in 1975, to continue developmentefrbller-mounted compaction
meter. Geodynamik teamed with Dr. Lars ForssbladDghapac to develop and
introduce the compaction meter and the compactietenvalue (CMV) in 1978. This
development was introduced at the “First IntermaloConference on Compaction”
held in Paris, France in 1980 (Thurner and Sanastt®880, Forssblad 1980). Briefly
after Dynapac made the CMV-based compactometer evanatly available, many of
the roller manufacturers (e.g., Caterpillar, Ingrfkand, and Sakai) adopted the
Geodynamik CMV-based system for further researat iastallation on their own
construction equipment (Mooney and Adam 2007).

Following the introduction of the CMV value by Dywec, many other
compactor manufacturers began to develop their mlar-integrated measurement
values and systems. In 1982, Bomag developed thE@Mvalue and corresponding
Terrameter. The OMEGA value provided a continuowasarement of compaction
energy. Bomag then introduced a new roller-integtaheasurement, the vibration
modulus E,ip). The vibration modulus provides a measure of dynasoil stiffness
that was intended to serve as a replacement f0DMEGA value (e.g., Krober et al.
2001). In 1999, Ammann introduced their own soiffretss parameterk{), which
similar to theE,, value, offers an indicator measurement of the stiflness and/or
modulus (Anderegg 1998, Anderegg & Kaufmann 2004)2004, Sakai introduced

the compaction control value (CCV). The theory hdhthe CCV is similar in
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principle to the CMV; it uses the content from theeasured drum vibration to
estimate the compacted state of the soil (Schemv@hal. 2007). Caterpillar realized
that most of the existing roller-based measuremeaies (MV) were related to
vibration theory. Vibratory compaction is not sbifor the densification of cohesive
materials, as described in Section 2.2.3. Conselyuémthe early 2000’s, Caterpillar
developed an alternative CCC system based arourdthingadrive power (MDP)

consumption. The MDP measurement offers the alidityuantify the effectiveness of
compaction in cohesive materials which do not zdilvibratory compaction, instead
using internal measurements of power consumptiahare made by the roller during
the process of soil compaction.

The aforementioned compaction systems and corrdgmpmeasurements fall
under the general category of “Continuous CompacGontrol” (CCC) technology.
“Intelligent Compaction” (IC) systems have also é&roduced to enhance the field
application of CCC technology. IC systems were tpead to help the roller operator
optimize the compaction process, assist the cdotrao a quality pre-test, and
document compaction results (Thurner 1993). Geadynavas the first to develop a
system of this kind, in 1989, referred to as thenpgaction documentation system
(CDS) (Thurner 1993). The introduction of the Varadler in 1990 (e.g., Figure 2.3)
allowed the operator to make real-time roller operaparameter changes during the
compaction process. Similarly, Ammann introducesl Ammann Compaction Expert
(ACE) roller with servo-hydraulic two-piece ecceatmass and frequency control.
Several other compaction roller manufactures inalgCaterpillar and Dynapac have

also pursued and adopted this technology (e.g.népand Adam 2007).
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Introduction of servo-controlled vibratory drum sms has led to the general
advancement of IC technology. For IC systems, ibeatory force amplitude and/or
frequency are automatically adjusted to improvéergberformance and compaction
(Tehrani 2009). The first prototype of a GEODYNAMIHntelligent Compaction
Machine, ICM” was on display in 1992 (Sandstrom drettersson 2004). In the
following years, development of this technology kastinued, but a product has not
been made broadly available to the construction nconity (Sandstrom and
Pettersson 2004). Consequently, some researchers hated that “Intelligent
Compaction” technology is still in the early stage®d there are several important
issues with current CCC technology which need taddressed before IC technology
can become a reliable compaction approach on lieggs (e.g., Mooney and Adam

2007).

2.5.3 Roller Measured Values

The section above offers a brief history of theeadepment of CCC and IC
systems and also the corresponding roller measuntevakies (MV) which have been
developed to measure the soil response. The dewvelupof roller MV is extremely
important, if CCC and IC technology is to be addps a QA method for compaction
verification. The roller MV types that were discedspreviously are summarized in
Table 2.3 with a brief definition. For a more robdscussion of these roller MV, the
author advises the reader to review Tehrani (20@%his section, only the CMV and

MDP parameters will be described in detalil.
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Table 2.3 Established CCC systems, CCC values, andhe associated
equipment manufacturers (Modified after Tehrani 20(®)

CCC System \(/:a(l:t(;a Definition of CCC Value Manufacturer
acceleration amplitude ratio (first
CMvV harmonic divided by excitation :
Compactometer . . Geodynamik
(unitless) | frequency amplitude) — frequency
domain
energy transferred to soil considering
Terrameter OMEGA soil contact force displacement Boma
(N.m) | relationship of two excitation cycles|— 9
time domain
gg&“;ﬁ%ﬁ ccv acceleration amplitude ratio — Sakai
Ve?lue (unitless) frequency domain
dynamic elasticity modulus of soil
E. beneath drum (inclination of soil
Terrameter (MYDIba) contact force displacement Bomag
relationship during loading) — time
domain
spring stiffness of soil beneath drum
Ammann K (derived from soil contact force
Compaction (MNs/m) displacement relationship at Ammann
Expert maximum drum deflection) — time
domain
MacS:)r:I(;eIanve '(\ﬁ\?vF)) net power to propel the roller Caterpillar

2.5.3.1 Compaction Meter Value (CMV)

The Compaction Meter Value (CMV) is a dimensionlessmpaction
parameter developed by Geodynamik that depend®lter dimensions, (i.e., drum
diameter and weight) and roller operation paramseferg., frequency, amplitude,
speed), and is determined using the dynamic radigponse (Sandstrom 1994). CMV

is calculated using the following equation (Thuraed Sandstrém 1980, 2000):
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a(2a)

CMV =Cx—
&)

(2.2)

where C is a constant value chosen to empirically scate @MV output values,

é(Za)o) is the amplitude of the first harmonic of the decation response signal, and

é(a)o)is the amplitude of the excitation frequency (Thrmand Sandstrém 1980,

2000). The typicaC value used for calculating CMV values from meaduwribratory
roller data is 300 (Sandstrém and Pettersson 2004. theory of development of
different harmonic components of drum vibrationhwihcreasing ground stiffness is

presented in Figure 2.5.
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Figure 2.5 lllustration of changes in drum harmonis with increasing ground
stiffness (modified after Thurner and Sandstrom 198).

Many studies have been performed to develop tlaioeships between CMV
and soil parameters (dry unit weight and stiffneBsgeneral, the research has shown
that CMV values tend to increase as the stiffnessday unit weight of soil increases
(e.g., Floss et al. 1983; Samaras et al. 1991;anel2009). Caterpillar, Dynapac, and
Volvo/ingersoll Rand CCC systems have made uskeoGeodynamic CMV.

It is typical for Compactometer systems to simudtausly calculate resonant

meter values (RMV) when recording CMV measurmeXenfapusa et al. 2010). The
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RMV provides an indication of the drum behaviorg(gecontinuous contact, partial
uplift, double jump, rocking motion, and chaotic tioa) and is calculated using the

following equation:

a(05w,)

RMV = Cx 2
ala,)

(2.3)

where C is a constant value chosen to empirically scate RMV output values,

é(O.Sa)O) is the amplitude of subharmonic acceleration adumsejumping (the drum

skips every other cycle), ané(a)o)is the amplitude of the excitation frequency

(Mooney et al. 2010)lt is important to note that the drum behavior effethe CMV
measurements, and thus RMV values must be integreimultaneously when evaluating
CMV measurements (Brandl and Adam 1997; Vennapush 2010).

As noted in the previous paragraph, there arerfieeles of operation that are
typically encountered during vibratory compactidrsoils: (1) continuous contact; (2)
partial uplift; (3) double jump; (4) rocking motipand (5) chaotic motion (Anderegg
and Kaufmann 2004). Continuous contact occurs dutime beginning of the
compaction process when the soil stiffness is ex¢hg low (Adam 1997, Brandl and
Adam 2004). As the soil stiffness increases théiglarplift and double jump modes
set in. They are the most frequent during vibratopmpaction with the only
difference being that the double jump mode contanuse excitation cycles (Adam
1997). The rocking motion phase can occur as thetidtness increases, as a result of
the misalignment of the drum from the vertical afdslam 1997, Brandl and Adam
2004). The chaotic motion occurs when the soilfretgs becomes extremely high

(Adam 1997). The chaotic behavior of the vibratopfler originates from the
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nonlinearity and occurrence of subharmonics dudampaction. The double jump,
rocking motion, and chaotic motion modes are umdbk as they may have a
loosening effect on the top layer of the soil armluse the roller to lose its
maneuverability (Anderegg and Kaufmann 2004). Tikisvhy it is important to
interpret the RMV simultaneously with CMV measurense The five operation

modes are summarized in Table 2.4.

Table 2.4 Operation Modes of a Vibratory Roller Drun (modified after
Tehrani 2009)

Drum-Soil Cvele Operation | Application Soll Roller Drum
Interaction| =Y Mode of CCC | Stiffness| Speed | Amplitude
Contact 1 Continuous Yes Low Slow Small
contact
Partial
! uplift ves

' Double Not
Partial | 2(4) jump Recommenc l l l
loss )
Rocking

of contact| 2 (4) motion No
) Cha_otlc No High Fast Large
motion

"Cycles are specified as a multiple of the excitatipcle, T = 2t/wo.

2.5.3.2 Machine Drive Power (MDP)

Machine drive power is a mathematically determinedlie of power that
isolates the internal resistance to compactor dmifimg that is provided by the soil
(White et al. 2006).The basic premise of deterngngoil densification from the

changes in roller operational parameters is thatetticiency of mechanical motion
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pertains to the physical properties of the matdr@hg compacted (White et al. 2011).

The calculation process for MDP is shown in Equagat (White et al. 2006).

MDP =P, —\N\/(sina +Sj—(mv+ b) (2.4)

where Py is net power required to propel the compactor dkerfill material, W is
roller weight,V is roller velocity,a is acceleration of the machirgejs acceleration of
gravity, a is the slope angle, anch and b are machine internal loss coefficients
specific to a particular machine. The MDP value bancalculated during both static
and vibratory compaction. Previous research hawshbat when compacting with a
drum roller, as the soil densification increashs, énergy required to propel the roller
decreases, and MDP decreases (White et al. 2006).

It is important to note that MDP calculations apeecific to the compaction
equipment being used. In order to compare the MBIBeg from different research
projects, the MDP value must be standardized. Horisthis reason that machine
calibrated formulas have been developed to cakeuls standardized machine drive
power value (MDP*). The MDP* calculation is differefor each specific compactor
and, therefore, a general formula cannot be preddrdre. It should be noted that it is
typical for MDP* to be referred to simply as MDRByus, it is important to investigate
the specific MDP calculation being used when commgaMDP measurements from

different projects (e.g., Meehan and Tehrani 2011).

2.6 Field Evaluation of Roller MV
Modern CCC and IC systems make it possible to cplleransmit, and
visualize a variety of roller MV (e.g. CMV and MD#) real time (White et al. 2011).

These roller MV were developed to produce a quablé measurement of the
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compaction process. The purpose of the CCC and/id@mms are to facilitate a more
efficient compaction process by offering a realei@A tool with nearly 100 percent
coverage of the compaction area. As described atid®e2.4.2, current compaction
verification tools most commonly utilize “spot” neaements of material unit weight,
modulus, stiffness, and/or moisture content. Thesg properties are measured
because they directly relate to the densificatiomc@ss. Therefore, it is only logical
for the CCC and IC roller MV to be compared witlegk soil properties. Significant
research has been performed comparing various conuompaction verification in
situ test method measurements to the recently deedl roller MV. An extensive
review of this research was performed by Whitel.e2®11), which will be discussed
in more detail later in this chapter. It should beted that in order for direct
comparison of roller MV to be made versus in siggttmeasurements, geospatial
interpolation techniques must be utilized to enstivat measurements are being
compared at the same test locations. These gealsipd¢irpolation techniques will be
discussed in more detail in Section 2.8, and &rlaehapters in this report.

A comprehensive review of previous research compate results of in situ
QA/QC test methods and roller CCC measurementspgdermed by White et al.
(2011). In this literature review, the referencajg@ct location, compaction roller type,
roller MV, soll type, in situ test method, and tkey findings from each study were
summarized. A summary of the literature review ltsspresented by White et al.

(2011) is as follows:

2.6.1 Forssblad (1980)
In Sweden, a Dynapac smooth drum roller measurinty Gvas utilized to

compact fine and coarse rock fill. The in situ testthods performed included
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water balloon, PLT, FWD, and surface settlement fm@dings and comments
include:
* Linear correlations are observed between CMV ard ithsitu test
method MV.
* Moisture content should be considered in corretetifor fine-grained
soils.
* Roller results in a composite value in a layeratcamdition.
« CMV is affected by roller speed (higher roller sgeeesult in lower
CMV).

2.6.2 Hansbo and Pramborg (1980)

In Sweden, a Dynapac smooth drum roller measurinty Gvas utilized to
compact gravelly sand, silty sand, and fine sarmk i situ test methods performed
included sand cone, pressuremeter, PLT, cone meneter test (CPT), and DCP tests.
Key findings and comments include:

» Compaction growth curves showed improvement in CBRd other
mechanical properties (i.e., modulus and cone teegis) with
increasing pass.

* Relative percent compaction (or density) was ®eoisgive to changes

in CMV.

2.6.3 Floss et al. (1983)
In Munich, Germany, a Dynapac smooth drum rollelasoging CMV was

utilized to compact sandy to silty gravel fill. The situ test methods performed
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included water balloon and sand cone, PLT, and OGH. findings and comments
include:
* Correlations with modulus and DCP measurementgamerally better
than density.
« CMV measurements are dependent on speed, vibrisegnency and
amplitude, soil type, gradation, moisture contemtg the strength of

the subsaoill.

2.6.4 Brandl and Adam (1997)
A Bomag smooth drum roller measuring CMV was ugitlzand the in situ test
method performed was the PLT. Key findings and cemisiinclude:

» Correlation between CMV and PLT modulus (initighpgved different
regression trends for partial uplift and double punoperating
conditions.

« Regressions in partial uplift and double jump ctinds yielded R =

0.9 and 0.6, respectively.

2.6.5 Nohse et al. (1999)

In Tomei, Japan, a Sakai smooth drum roller meagu@MV was utilized to
compact clayey gravel, and the in situ test measen¢ recorded was the soil radio-
isotope. Key findings and comments include:

* Dry density and CMV increased with increasing nmolfgass on a
calibration test strip.
« Linear regression relationships with? R 0.9 are observed for

correlations between dry density and CMV.

31



2.6.6 White et al. (2004; 2005)

In Edwards, lllinois, a Caterpillar pad-foot drumller measuring MDP was

utilized to compact lean clay. The in situ testmoels performed included NDG, drive

core, DCP, and clegg hammer. Key findings and comsneaclude:

Correlations between MDP and in situ test measunésngsing simple
and multiple regression analyses are presented.

MDP correlated better with dry densityR 0.86) than with DCP (R
= 0.38) or Clegg impact value {R 0.46).

Including moisture content via multiple regressamalysis improved
the R values for DCP and Clegg impact valué ¢(R0.9). Results are

based on data averaged along a 20m long stripgsst p

2.6.7 Peterson and Peterson (2006)

In Duluth, Minnesota, a Caterpillar smooth drumleoimeasuring CMV and

MDP was utilized to compact fine sand. The in s#st methods performed included

LWD, DCP, and GeoGauge. Key findings and commentiside:

Weak correlations are obtained on an in situ tethod by-point basis
comparison between in situ test measurements anller ro
measurements, likely due to the depth and stregendiency of soil

modulus and the heterogeneity of the soils.

Good correlations are obtained between CMV valued &CP

measurements for depths between 200 and 400 mm.
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2.6.8 White et al. (2006a; 2006b)

In Edwards, lllinois, a Caterpillar smooth drumleolmeasuring MDP was

utilized to compact well-graded silty sand. The Situ test methods performed

included NDG and DCP. Key findings and commenttuithe:

Average MDP values showed a decreasing trend og adale, and dry
unit weight and DCP index values showed an asynepdeicrease with
increasing roller pass.

Correlations between MDP and in situ test method $fiéwed good
correlations (R = 0.5 to 0.9). Incorporating moisture content itte

analysis is critical to improve the correlations dioy unit weight.

2.6.9 Thompson and White (2008)

In Edwards, lllinois, a Caterpillar pad-foot drumller measuring MDP was

utilized to compact silt and lean clay. The in st methods performed included

NDG, DCP, clegg hammer, and LWD. Key findings anchments include:

Correlations between MDP and the in situ test neethdv are
presented using simple and multiple regressioryaisal

Averaging the data along the full length of thet teip (per pass)
improved the regressions.

Multiple regression analyses that incorporating shoe content as a

regression parameter further improved the coralati

2.6.10 White et al. (2008)

In Ackley, Minnesota, a Caterpillar smooth drumlenimeasuring CMV was

utilized to compact poorly graded sand well-gradedd with silt. The in situ test
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methods performed included NDG, DCP, and LWD. Kayihgs and comments
include:

* Project scale correlations by averaging data frafferént areas on the
project are presented, which showet\Rlues ranging from 0.52 for
density and 0.79 for DCP index value. Correlatiatith LWD showed
poor correlations due to the effect of loose matexi the surface.

* The variability observed in the CMV data was simita DCP and

LWD measurements but not to density measurements.

2.6.11 Vennapusa et al. (2009)

In Edwards, lllinois, a Caterpillar pad-foot drumller measuring MDP was
utilized to compact crushed gravel base. The intgist methods performed included
DCP and LWD. Key findings and comments include:

» Correlations were obtained on a test bed with mpleltiifts placed on a
concrete base and a soft subgrade base.

« Correlations between MDP and in situ test method Jidlded R =
0.66 to 0.85 for spatially nearest point data, RAd= 0.74 to 0.92 for

averaged data (over the length of concrete orssdiftjrade).

2.6.12 Mooney et al. (2010)

In 2010, the National Cooperative Highway Reseadfchgram (NCHRP)
published a comprehensive report (Final Report NERR-09) titled “Intelligent Soll
Compaction Systems”. In this report CCC and IC mebdbgies are extensively
discussed and, most relevant for this discussiba, results of research on the

correlations between roller MV and in situ test hoels are presented.
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The report discusses projects which took place imnEkota, Colorado,

Maryland, North Carolina, and Florida. The compactirollers utilized in these

projects included a Caterpillar pad-foot drum nolleeasuring MDP, a Caterpillar

smooth drum roller measuring CMV, and a Dynapacamarum roller measuring

CMV. In addition, several in situ test methods weoaducted including NDG, DCP,

LWD, FWD, PLT, clegg hammer, and GeoGauge. Keyifigd and comments from

these studies include:

Simple and multiple regression analysis resultgageented.

Simple linear correlations between roller MV andsitu test method
MV are possible for a compaction layer underlain t®fatively
homogenous and a stiff/stable supporting layer.

Heterogeneous underlying conditions can adverseffecta the
correlations.

A multiple regression analysis approach is desdritfgat includes
parameter values to represent underlying layer iiond to improve
correlations.

Modulus measurements generally capture the vamidhoroller MV
better than dry unit weight measurements.

DCP tests are effective in detecting deeper “weakdas that are
commonly identified by roller MV and not by compiact layer in situ
test method MV.

High variability in soil properties across the drumidth and soil

moisture content contribute to scatter in relathops.
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* Averaging measurements across the drum width, andrporating
moisture content into multiple regression analyss help mitigate the
scatter to some extent.

* Relatively constant machine operation settings ., (i.emplitude,
frequency, and speed) are critical for calibrastmps and correlations

are generally better for low amplitude settingg.(e0.7 to 1.1mm).

2.6.13 Summary of Findings
Based upon the findings from the aforementioneld f&tudies examining the

relationships between soil properties and CCC mreasents, the common factors that
affect correlations are as follows (White et alLl2pD

* Heterogeneity in underlying layer support condision

* Moisture content variation

* Narrow range of measurements

* Machine operation setting variation (e.g., ampkuftequency, speed,

and roller “jumping”)

* Nonuniform drum/soil contact conditions

» Uncertainty in spatial pairing of point measurenseard roller MV

* Limited number of measurements

* Not enough information to interpret the results

* Inherent measurement errors associated with ther igdlV and in situ

point measurements
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2.7 CCC Specifications

The use of CCC during earthwork compaction as a foo quality
assurance/quality control (QA/QC) has been emplaydeuropean specifications for
nearly 30 years (e.g., Thurner and Sandstrom 198frssblad 1980). CCC
specifications have been developed in Austria (199®3, 1999; see RVS 8S.02.6
1999), Germany (1994, 1997, 2009; see ZTVA-StB 198Weden (1994, 2004; see
VVR VAG 2009), and Switzerland (2006); followed Bye International Society for
Soil Mechanics and Geotechnical Engineering whadsély based it's specifications
on the Austrian CCC specifications (ISSMGE 2005aéd2007).

The United States has been comparatively slow opta@CC technology, but
in recent years several draft specifications haenldeveloped. The first specification
was published by the Minnesota DOT (Mn/DOT 2007,/MDT 2010), then the
Texas DOT (TxDOT 2008) followed suit. In 2011, thElWA established a general
IC specification document to encourage more stadd’® to develop CCC and IC
specifications (FHWA 2011a, 2011b). The Indiana D@DOT 2012) was the last to
develop a specification. An in-depth discussiorcafrent CCC specifications can be
found in Tehrani (2009) and Mooney et al. (2010).

In general, the specifications listed above falldem two compaction
verification approaches. The first is field calitioa of roller MV to stiffness or
moisture content/dry unit weight test data usinigocation areas. The other method is
the identification of weak areas for assessmenh wadnventional QA in situ test
methods (e.g., NDG, LWD, etc.). In this sectiong tthree most commonly
recommended QA/QC acceptance options (QA/QC Optibnga, 2b, and 3a in
Mooney et al. 2010) for compaction control using@@&nd IC technology will be

presented. All of the acceptance methods utilineithé aforementioned specifications,
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both in the United States and in Europe, can begoaized into one of these QA/QC
options.

Prior to introducing specific details of the exgfi specifications and
associated compaction verification approaches taereseveral issues which must be

further clarified, following the recommendationglmed in Mooney et al. (2010).

2.7.1 Specification Terminology

For consistency with current CCC/IC practice in tbaited States, the
following terminology that is presented uses thactxlefinitions that are presented by
Mooney et al. (2010):

* “Automatic Feedback Control automatic adjustment of roller
Operating Parametersuch as vibration frequency and amplitude based
on real-time feedback from measurement system.

» Calibration Area an area representative of Bmaluation Sectiorbut
typically smaller and used to establisM¥-TV.

* Compaction Passa static or vibratory roller pass performed dgrin
earthwork compaction, not necessarily employing lastrumented
Roller.

* Continuous Compaction Control (CCCgontinuous monitoring and
documentation of earthwork compaction using arrimsénted Roller.

» Evaluation Sectionan area of earthwork with consistent properties

where acceptance is evaluated.
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Instrumented Rollera roller compactor outfitted with drum vibration
instrumentation or other means to computdRaller Measurement
Value onboard computer, and position monitoring equigime
Intelligent Compactionthe combined use of amstrumented Roller
and Automatic Feedback Contrah an attempt to improve earthwork
compaction.

Layer. a component of the pavement earthwork with distisoil
properties (e.g., subgrade, subbase, or base ¢ourse

Lift: a unit of material within &ayer that is deposited at one time for
compaction. ALayermay be comprised of a single lift or multiple gift
Measurement Depththe soil depth to whictRoller Measurement
Valuesor In Situ-Test Measuremerdse representative.

Measurement Pasa pass performed by an Instrumented Roller during
which all required information, includingoller Measurement Values
and machine position, are recorded. Rolperating Parametersust
be held constant, and thus Aatomatic Feedback Contrad permitted
during a Measurement Pass.

MV Reporting Ratethe time-dependent rate at which n&wller
Measurement Valuesme reported.

MV-TV. a targetRoller Measurement Valug.g., the measurement
value corresponding to@A-TV).

Operating Parameters roller machine parameters used during
operation, including forward speed, driving direati vibration

frequency, and eccentric force amplitude.
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 Pass Sequencea record of the roller pass history (pass number,
Operating Parametejover a specified area.

e Quality Assurance (QA) evaluation methods and procedures
administered by the owner or owner’s representdbvensure that the
constructed earthwork meets contract obligations.

* QA-TV. theln Situ-Test measuremeitased QA target value specified
in the project contract.

e Quality Control (QC) testing performed by the contractor or
contractor’s representative to ensure that the toacted earthwork
meets contract obligations.

* Roller Measurement Value (MMihe roller-based parameter used for
assessment of soil stiffness during compaction based on roller
vibration measurements.

* Rolling Pattern the path traversed by the roller durinfylaasurement
Pass

* In Situ Test Measuremerd field test used during earthwork QC and
QA that provides a measurement at a discrete mgatcommon
examples include the nuclear gauge for density rantsture and the

lightweight deflectometer.”

2.7.2 Important Considerations

2.7.2.1 Applicable Soil Types
Continuous compaction control specifications argliapble to cohesive soils,

cohesionless soils, and aggregate base mater@age\rér, particular attention must be
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given to the soil moisture content during compagtiespecially for cohesive soils

(Mooney et al. 2010).

2.7.2.2 Personnel Requirements

The implementation of CCC technology for earthwooknpaction verification
requires QA personnel (e.g., Field Techniciansietmrs) that are familiar with the
aspects of CCC and IC equipment, compaction imphiatien, and specification
implementation. The QA personnel must be able tiiftate and verify appropriate
evaluation sections and calibration areas. In addithe QA personnel must be able
to direct the compaction process in regards tortiier operational parameters and
measurement pass procedures. This requires th@Ahgersonnel be able to analyze
measurement pass data in a timely and efficientemat is recommended that all
field personnel assigned to the QA process of CGQ I&€ compaction undergo a

certification process (Mooney et al. 2010).

2.7.2.3 Roller Operating Parameters

As mentioned in Section 2.5.3, the roller MV areeledent on the roller
operating parameters (e.g., the theoretical vériitam vibration amplitude A),
excitation frequency f)f, forward velocity ¥), and roller travel direction.
Consequently, roller operating parameters, inclgdinf, v, and travel direction must
remain constant during all measurement passes.efbier IC technology which
utilizes automatic feedback control cannot be whethg measurement passes.

Variations in rollerOperating Parametershould remain within the following
tolerances: 0.2 mm (0.0008 in) fé; +2 Hz forf, and £0.5 km/h (0.3 mph) for

(Mooney et al. 2010). If provided, vibration ampties recommended by the
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manufacturer should be used. If nd, values between 0.7 and 1.1 mm are
recommended foMeasurement PasseSommon vibration frequencies range from 28
to 32 Hz, and common roller speeds range from 8.6.5 km/h (1.9 to 3.4 mph)
(Mooney et al. 2010). Roller MV acquired duringrig, stopping, and turning should

not be used for QA because they typically violae aforementioned tolerances.

2.7.2.4 Evaluation Section

For compaction verification using CCC and IC tedbg@s, acceptance
testing must be performed on evaluation sectionsofMy et al. 2010). An evaluation
section is a section of the compaction zone whieeecompacted material exhibits
consistent properties. These consistent propemiag be examined by viewing the
spatial map of roller MV. A typical evaluation sect will incorporate the full width
of the compaction zone and a length that is depgnatethe pace of construction and
the longitudinal heterogeneity of the compactedemalf among other factors. In the
longitudinal direction, factors such as changearrdwv material or a transition from a
cut to a fill section could justify the separatioinevaluation sections. In the transverse
direction, the edge material will commonly showHhiigvariable roller MV and, thus,

should not be included within the evaluation set{idooney et al. 2010).

2.7.2.5 Calibration Area

One of the possible acceptance criteria methodsire=ythe development of
correlations between in situ test measurementsaled MV. With these correlations,
a MV-TV can be selected that corresponds to theeaace criteria for the in situ test
approach that is currently employed within a gi¢@w/QC framework (e.g., for NDG

testing, a MV-TV that corresponds with 95 % relatcsompaction may be selected).
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Using this approach, it is necessary to defineliaredion area for determination of the
MV-TV. The calibration area must be representatfeghe evaluation section and,
therefore, it is best that the calibration area Ip®rtion of the evaluation section when
possible. The typical calibration area should raimgsize from a single roller lane
width by 30m (100ft) long to the full width of tlearthwork section by 100 m (330 ft)
long (Mooney et al. 2010). In addition, the caliva area material must be
constructed in the same manner as the evaluatictiose To this end, the roller
operating parameters, material type, material phere procedures, lift thickness,
underlying sub-lift conditions, and the materialistore content must be the same as
the evaluation section. It is recommended thatctdédration area should capture at
least 50 % of the roller MV variation seen in thealeation section. As mentioned
previously, roller start up, stopping, and turnadgdramatically affect the roller MV
and MVs during these operations should not be dedun the calibration of the MV-
TV (Mooney et al. 2010). Additionally, the materstiffness of the edge lanes and
areas near detail work (e.g., compaction abovdashaitilities) can be vastly different
than the rest of the compaction zone. Consequawotlgr MV from these areas should
not be included in the calibration readings. Howevé a large portion of the
compaction zone is to be influenced by these cmmdit then separate MV-TV must
be determined for the detail compaction areas (Mygat al. 2010).

In the event that the evaluation section conditiares significantly changed
from the calibration area, then recalibration c¢ #1V-TV is required. Periodically,
the validity of the MV-TV must be verified by comopag roller MV and in situ-test
measurements from the current evaluation sectidhgaelationship developed in the

initial calibration area (Mooney et al. 2010).
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2.7.3 Instrumented Roller Requirements

The selected instrumented roller for compactiontrbesapproved to meet the
minimum requirements with respect to roller MV ablility, documentation, and
measurement position reporting. Additionally, it éxtremely important that the
selected roller be proven capable of achievingréugiired level of compaction in a

timely manner (Mooney et al. 2010).

2.7.3.1 Roller MV and Position Reporting

Roller MV should be recorded in a constant spaéiablution within a range of
0.2 to 1.0 m (8 to 40 in) and each recorded roMv should be a unique
measurement. Each recorded roller MV should reptegespatial average over, at a
minimum, the distance of the roller MV acquisiti@solution (Mooney et al. 2010).

For all recorded roller MV, a corresponding threeehsional position
measurement, determined via roller-mounted GPSt brisecorded. A RTK-GPS is
recommended for the positional measurements. Esmrded position should reflect
the geometric mid-point of the compacted area awleich the corresponding roller

MV was determined (Mooney et al. 2010).

2.7.3.2 Documentation
The following parameters must be documented by itiserumented roller
(Mooney et al. 2010):
* Roller MV
» Three-dimensional position and corresponding titamp (via GPS)
* Vibration amplitudeA
* Vibration frequencyf

* Roller travel speed
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* Driving direction
» Status of automatic feedback control (on/off)
* Indication of jumping (vibratory mode of operation)

The recorded parameters mentioned above shoulddiy accessible through
the instrumented roller’s on-board computer systénoper units should be recorded
for each of the parameters of interest noted abAdelitionally, the recorded data
should be easily exportable to simple text files &malysis and documentation.
Proprietary formatted files that are only compa&iblith a specific manufacturer’s
software are unacceptable.

Basic statistical variables for the collected noN&/ and operating parameters
should be easily attainable. Of particular impocgarare the minimum, maximum,
mean, standard deviation, and histogram of roll&f, Mbration amplitude, frequency,
and speed. This will provide the QA personnel witecessary information to
efficiently determine if the measurement pass hesched the acceptance criteria

(Mooney et al. 2010).

2.7.3.3 Verification of Roller MV Repeatability
The ability of the instrumented rollers to provideecise repeatable roller MV
is extremely important. The procedure to verify thstrumented roller’'s ability to
provide repeatable roller MV is as follows (Mooretyal. 2010):
1. Perform two measurement passes on a fully compaesedtrip at least
100 m (330 ft) long. The measurement passes mysetbermed in the
same direction, with static passes performed inrdwerse direction

between measurement passes.
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2. Using the recorded roller MV from the two measuratmpasses,
calculate the spatial percent difference arrap\M¥; using the
following equation(Mooney et al. 2010):

MV, =MV, ,

%AMV, = x100 (2.4)

i-1

whereMV; andMV,; represent théV data arrays from passand pass
i—1, respectively. When necessary, simple linear patetion may be
used to transform the data onto a grid for prespsgial comparison. If
the mean of the spatial percent difference argay,(, ) is greater than
5%, the lift has likely not achieved the desireeleof compaction and
the procedure should be repeated.

3. Compute the standard deviation of the spatial perdéference array (

Oyawy, )- The standard deviation offers a quantitative snea of the

roller MV repeatability. The recommended acceptalbdues are
Oyawy, <10%, though visual inspection and engineering judgment
should be employed by the QA personnel during igason of
repeatability and when deciding the necessary lef/e¢peatability on

a given project (Mooney et al. 2010).

2.7.3.4 Roller Position Reporting

The accuracy of the roller-mounted GPS position, ghsition offset between
the receiver and the center of the drum (e.g., &M¥s are computed), and/or errors
due to data averaging must be properly accountedrfo verified. This is particularly

important for acceptance criteria which rely oredtrcomparisons between roller MV
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and in situ test measurements and options thaspagal comparison of roller MV
from consecutive measurement passes. Thereforeadberacy of the roller MV
position recording must be verified, both whenrbléer is stationary and moving.

For stationary verification, the roller-mounted Gp&sition can be compared
with the position from a handheld RTK GPS unit (gfhis commonly referred to as a
“rover”) placed at the drum center. Another metl®db establish a marker having a
known position on the ground and drive over thekaiawith the roller from different
directions. The GPS position measurements from daehtion can then be compared
and a correction should be implemented, if necgssar

To verify the roller MV position recording accuraaile the roller is moving,
the following process is recommended (Mooney e2@l0):

1. Place two obstructions in the compaction zone, matly spaced 10 m
apart, that will result in obvious outlier readingsthe roller MV data.
The obstructions should span the full width of tokker drum and may
include a wooden beam and/or narrow trenches pdipdar to the
direction of roller travel.

2. Perform two measurement passes, in opposite tdinesgitions, over the
obstructions.

3. Overlay the recorded roller MV and position datanir the two
measurement passes. The corresponding spike irnollee MV data
should occur at the same location. Any differennelacation is
indication of GPS position error. If the positiorrag is greater than
one-half of the Roller MV reporting resolution dretaccuracy of the

GPS, the position error must be corrected.
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2.7.4 Acceptance Option 1: Spot Testing of Roller MeasuteWeakest Areas

Option 1 uses CCC roller MV to identify the weakastas of the evaluation
section. The weakest areas are defined as the araoller MV representing lower
compaction. If the roller MV has a positive cortela with the in situ test
measurements, then this area is defined as thevatleaghe lowest roller MV (i.e.,
CMV versus density/unit weight). On the contrarythie roller MV has a negative
correlation with the in situ test measurements, tihés area is defined as the area with
the highest roller MV (i.e., MDP versus densitytuneight). In order for Option 1 to
be valid, it must be shown that a direct correla#xists between the roller MV and
the in situ test measurements. The correlation lsanshown through a direct
comparison of roller MV and in situ spot test measents at identical locations. The
QA personnel must prove this correlation beforei@pl may be used for compaction
verification.

For Option 1, acceptance of compaction will be debeed by the QA
personnel based upon in situ spot test measurena¢nise weakest areas of the
evaluation section. If the in situ spot test restridm the weakest areas meet the spot-
test measurement requirement (QA-TV), then thentiiets the acceptance criteria.
The QA spot testing procedure within the weakesiasrshould be performed in
accordance with existing earthwork compaction dmadions for spot test
measurements. A more detailed explanation of Optionay be found in Mooney et

al. (2010).

2.7.5 Acceptance Option 2: Limiting Percentage Change iRoller Measured
Values

QA Option 2 utilizes the percent change in rolley¥ ¥Mfom successive passes

to determine acceptance of the evaluation secfiooeptance is met when the percent
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change in roller MV from pass to pass has met geeified target percent change in
roller MV for successive passes A%'V). There are two alternative approaches to
implement Option 2. The more simplistic approachQgtion 2a, in which a
comparison of the mean of the roller MV from paspass $Ay,, ) is performed.
The more complex approach, Option 2b, utilizesramarison of the spatial change in
roller MV from pass to pass. This method requires the roller MV from successive
measurement passes be at the exact same locatiatetermine the spatial percent
change in roller MV $AMV.). The nature of the data acquisition systems @n th
rollers does not allow for the roller MV to be reded at identical locations from pass
to pass, therefore, the data must be interpolatéal @ consistent grid for comparison
purposes. Due to the directional influence of thlker on the roller MV, it is important
that the measurement passes be performed witheatiadl driving pattern, speed, and
amplitude of vibration. Option 2 verifies that theaterial has reached the compaction
limit for the roller in use and does not necesgarérify that maximum density has
been met. Verification of the compaction capabidifythe roller to reach the specified

compaction criteria is necessary before Option £ beimplemented.

2.7.5.1 Acceptance Option 2a: Limiting Percentage Change ithe Mean of the
Roller-Measured Values

QA Option 2a requires that th&Ag,,, from two successive measurement
passes be less than or equal to the specified ttargeie for %Ay, . If
%Auy, <%A-TV, then the acceptance criteria is met and compagticomplete.

The computation foPbALu,,, is as follows:

INTIE (M] x100 (2.5)

Hyw,

49



where y,,, is the average roller MV for measurement pgassd 4,  is the average

roller MV for the measurement pass immediately pdatg measurement passA
typical recommended value for theA%8'V is 5 percent (Mooney et al. 2010). Due to
the magnitude of range variability of roller MV atitk influence of material on the
variability of roller MV, a given recommended valae%A-TV may not be applicable
for all projects. Several methods have been praptsaletermine the % TV based
on site specific data; for the sake of brevity éhedgll not be discussed herein —

interested readers are referred to Facas et dl1J20

2.7.5.2 Acceptance Option 2b: Limiting Spatial Percentage Gange in the
Roller-Measured Values

QA Option 2b relies on a spatial comparison ofaoMV from successive
measurement passes. The roller MV for each measmtepass must be interpolated
onto a consistent grid by the QA personnel, and the spatial percent difference in

roller MV for successive measurement pas$éAMV,, may be computed according

to the following equation:
MV, - MV,

i-1

%AMV, = ( J x100 (2.6)

where %AMYV, is a vector of the spatial percent differenceoiter MV for successive
measurement passellV, is a vector of the roller MV for measurement pasand
MV_, is a vector of the roller MV of the pass immeduatereceding measurement
pass.

Theoretically, acceptance would require that 100%he grid points in the
evaluation section meet theAd V requirement. Due to measurement error and soil
variability, it is not practical that all of the @ameet the requirement. Instead,

acceptance of the evaluation section occurs whespecified percentage of
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%AMV, < %A -TV (e.g., acceptance of the evaluation section oostien 95% of

the roller MV increase by %TV). The recommended range for percentage of the
roller MV that meet the %-TV requirement is 80% to 95%. The recommendedevalu
for %A-TV is double the standard deviation of the roller My, y,, determined
through assessment of the measurement repeatatdfilihe CCC roller. This process
is site specific and further explanation can bentbin Mooney et al. (2010). The

maximum allowableo,,,,, is 10% and, therefore, the recommend maximum value

for %A-TVis 20% for QA Option 2b.

2.7.6 Acceptance Option 3: Comparison of Roller-Measure&/alues to In Situ
Measured Values

QA Option 3 relies on statistical regression analpetween roller MV and in
situ spot test measurements. The target roller mneds/alue (MV-TV) is determined
based on the in situ test measurement acceptahee (@A-TV), which is typically

established using a regression analysis approaghré2.6a).
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Figure 2.6 Option 3: (a) Determination of MV-TV; (b) Determination of MV-
TVadj.
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A calibration area constructed with site specitid will need to be tested with
both an instrumented roller and an accepted QA/QSItu test, in order to determine
the appropriate MV-TV via regression analysis (Fgg2.6a). The calibration area
should be compacted to represent areas of low,umedand high compaction, with
the highest level of compaction being greater thaequal to the QA-TV. This will
ensure a statistically representative data setHerearthwork material. In situ test
measurements and roller MV are then collected tjitout the calibration area. The
MV-TV is determined through correlation with the @A/ (Figure 2.6a). For
stiffness-based in situ test measurements (e.g.DLW8SG, FWD), univariate
regression analysis is typically suitable for ctatien purposes(Mooney et al. 2010).
For density-based in situ test measurements (RIDG, Sand Cone), multivariate
regression analysis may be necessary if the earkhmaterial is sensitive to moisture
variability (e.g., Thompson and White 2008, Tehr2009).

The acceptability of the correlation is generalbtedmined by the coefficient
of determination (8. Typically, when correlating soil property measments from
alternative devices, & 0.5 is used to define acceptable correlations,(Pigg et al.
2002, Vennapusa and White 2009). Therefore, iteisommended that the same
criteria be used for correlations between roller MNd in situ test measurements
(Mooney et al. 2010). If the coefficient of detenaition criteria has been reached, the
MV-TV is then calculated from the regression equatbased on the QA-TV (e.g.,
95% relative compaction).

Similar to Option 2a, acceptance of the evaluatoea will require that a
specified percentage of roller MV in the evaluatisection exceed the MV-TV

requirement. The recommended range for percentagfeeaoller MV that meet the
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MV-TV requirement is 80% to 95% (Mooney et al. 2D10he evaluation section is
accepted when this criteria has been reached.

Prediction limits may be used during regressionyaimin order to increase
confidence in compaction. This is implemented bioducing a confidence limit
above and below the regression equation line amugusn adjusted MV-TV that
represents a higher level of compaction (e.g.,@eulimit for CMV, or a lower limit

for MDP); an example of this process is shown guke 2.6b (Mooney et al. 2010).

2.8 Geospatial Statistical Analysis

Geostatistics is an applied branch of mathematsgldped in the 1950’s
mainly to solve ore reserve estimation problemsha mining industry. Since then,
geostatistics has expanded for use in many otheasaof the earth sciences
(Wackernagel 1998). Over the past 30 years, andamoe of publications have
applied geostatistics to geotechnical engineermglpms.

Geostatistical analysis tools offer many advantage®r conventional
statistical analysis tools for application with CBCtechnology. Unlike conventional
statistical approaches, geostatistics can be usetkasure the spatial variability of a
dataset. This is of particular interest becauseffitrs a way to assess the spatial
uniformity of a dataset. The importance of soil famity for performance of
pavement foundations has been shown in recentrods@ag., Dore et al. 2001, White
et al. 2004). Additionally, spatial analysis tookldlow for identification of
“problematic areas” within a dataset. This is matarly useful for identification of
“low compaction zones” when analyzing CCC measurégme

In addition to assessing the spatial variabilityaofiataset, geostatistical tools

may also be used to perform spatial predictionaréas where measurements do not
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exist. Throughout this study, it is necessary tetédmine” or predict a value or
property at unsampled locations. There are margrpotation techniques that exist,
but all are based on the principle of spatial canty; e.g., the fact that data points
that are close to each other are more likely teetamilar values than data points that
are located farther apart from each other (IssakisSzivastava 1989). A select few of
these spatial prediction methods will be presemt@tiin this chapter and used in

subsequent chapters for various purposes.

2.8.1 Interpolation in Geospatial Statistical Analysis

In Geospatial Statistical Analysis, sample poiaiseh at discrete locations in
an area are used to predict values at desiredidosain that area and create
(interpolate) a continuous surface. The sampletpotan be measurements of any
phenomenon such as soil properties, or elevatioghtse In addition to providing
various interpolation techniques, Geostatistical alfsis also provides many
supporting tools. These tools allow exploration anlgetter understanding of the data
so that accurate surfaces may be created basé@ available information.

Three of the most common interpolation methods #ratused to predict a
value at an unmeasured location from a known sodimg data set are Nearest
Neighbor (NN), Inverse Distance Weighting (IDW),daKriging techniques (Krige
1951). The simplest of the techniques, NN, onlysiders the measured value that is
closest in spatial distance to the unsampled logatvhen performing predictions.
IDW is a deterministic technique that uses thet@gsconfiguration of the sample
points to create a surface. Kriging is the mostaaded method of the three, in that it
uses geostatistical techniques to create surfakas ihcorporate the statistical

properties of the measured data. Although krigiag been widely accepted as the
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best linear unbiased predictor (BLUP) from a meguased error (MSE) standpoint
(Facas et al. 2010), NN and IDW are simplistic pres methods with easy
repeatability. Thus, the appropriateness of krigimgst be investigated to justify the
additional computational effort. A more thoroughpenation of the three spatial

predictors is presented herein.

2.8.2 Nearest Neighbor Interpolation

Unlike other interpolation methods that tend to ¢t the data by applying
weighting functions to multiple known values to ¢ a value at an unknown
location, the nearest neighbor (NN) method does utibize weighting functions.
Instead the NN will, simply, find the known value the location that is closest in
spatial distance to the prediction location, ane it value for the prediction. In the
event that there are multiple known locations egtaat from the prediction location
then there will be a tiebreak. The tiebreak is ekt by the user and can either be an
average of the known values or a random selectan. this study, the average

tiebreak method was utilized.

2.8.3 Inverse Distance Weighting Method

Another geospatial statistical method used for rpgkation of spatially
oriented data sets is the inverse distance weightibW) method (e.g., Isaaks and
Srivastava 1989). For the IDW method, a neighbodhabout the prediction location
is identified and a weighted average is taken @f mheasured values within this
neighborhood. The relative weights of known valaes assigned based upon their

spatial distance from the interpolation point. Tinest basic IDW method uses a
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simple inverse power weighting function, with agt#orhood size that was equal to

the domain of the entire data set (Isaaks and S§ava 1989):

n 1
zi:lhip z(x)

1
“h @2.7)

w (h) =

where,h; ... hy are the distances from each of theample locations to the point being
estimated,z(x) ... z(x) are the sample values, and the exporneig the power
weighting function (Isaaks and Srivastava 1989). shewn in Equation 2.6, the
weighting function that is used is dependent upgon delected exponent valug,
Whenp = 1, a linear decay function is applied to all swead values within the
defined neighborhood. Similarly, g = 2, a second order decay function is used to
weight the measured values as a functioh,&nd so on. In general, the valuepas
chosen by the user through assessment of the Ispatidaset, using their judgment and

experience.

2.8.4 Ordinary Kriging Method

As noted previously, kriging is a geostatisticatenpolation method that
predicts values at unmeasured locations. Krigingnases consider both the distance
and the degree of variation while implementing agiveed linear combination of the
sample measured values for prediction. Unlike otiesrstatistical tools, kriging does
not apply the same weighting functions to all sampieasured values. Instead
weighting functions are applied based on the desteemd orientation of the sample
measured values with respect to the location ofeftenated value and the way in

which the sample measured values are grouped. 3$ignanent of these functions
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attempts to minimize the variance error and to iobdavalue of zero for the mean of
prediction errors to prevent over or under estioratiKrige 1951). The user-derived
weighting functions allow the kriging method touksn unbiased estimates making it
the BLUP gridding method. There are several difierkriging techniques; in the
current study, ordinary kriging is used, which ases that a data set has a stationary

variance and also a non-stationary mean value mitié sample measured values.

2.8.4.1 Semivariograms and Models

The concept of empirical semivariance is used tanttatively measure the
degree of spatial dependence between measuredsualtien a dataset (e.g., Isaaks
and Srivastava 1989, Cressie 1993, Clark and Ha2péR). The semivariance is
computed by taking half the variance of the diffexes between measured values for
all possible points in a data set that are spat@dcanstant distance apart (Equation
2.8). The empirical semivariograpth) is a plot of the semivariances as a function of

different point spacing distancds(Olea 2006).

LS 2(x +h) - %))

h) =
y(h) N, 2

(2.8)

where x is the vector of spatial coordinates(x) is the variable under
consideration as a function of the spatial locat{erg., elevation measurements,
density measurements, zinc concentration measutsjretn.). The vectdr is the lag
spacing representing the separation between twtakpacations, andN; is the

number of pairs separated by a lag spacinyg of
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In order to better visualize this process, a seriogaam of zinc concentration

values at measured locations from the topsoil fle@d plain area is shown in Figure

2.7. The data presented in this figure is from kheuse data set, which includes

concentration measurements of four metals thatrazasured at various locations in

the topsoil of a flood plain beside the Meuse RivEte Meuse data set is openly

accessible, and can be found in demonstration @nabls part of the R packagsat

(Pebesma 2004, R Development Core Team 2012).aRasguage and environment

for statistical computing (R Development Core Te2di?2). It is an open-source tool

that contains many packages to aid in geostatistise gstat package provides basic

functionality for univariable and multivariable geatistical analysis, and will be used

throughout this report to generate semivariogramspglPebesma, 2004).
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Figure 2.7 Zinc concentration empirical semivariogam.

The selection of lag spacing, will influence the number of semivariance

values that can be calculated; the larger the [mrieg, the smaller the count of
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semivariance values that are calculated. Conselgughe amount of data points
available for the empirical semivariogram will dease. The lag spacing for a given
data set should be adjusted using judgment andriexpe until a meaningful
empirical semivariogram is established, for whicth@oretical semivariogram model
can be fitted.

Figure 2.8 shows three different empirical semogmams for zinc
concentration data from the Meuse data set (Pehe2@t). The only difference
between Figures 2.8a, 2.8b, 2.8c, and 2.8d isth®eatag spacing was decreased for
each successive semivariogram. The lag spacingevame 500, 100, 50, and 10,
respectively. It is clear that the empirical semivgram shown in Figure 2.8a does
not have adequate data points to be fitted withodeh this is because the selected lag
spacing of 500 is too large. The empirical semognams with a lag spacing of 100,
50, and 10 (Figures 2.8b, 2.8c, 2.8d) each prosmmigh resolution for model fitting.
However, if the lag spacing is too small then tesutting empirical semivariogram
will produce a large number of data points, causingcattered or “cloudy” plot, as
shown in Figure 2.8d. Fortunately, this scatted wdt significantly affect the fitted
theoretical semivariogram model; however, it deexitto make visual assessment of
the model fit more difficult. Although a smallerglaspacing will allow for a more
“true” fit of a theoretical model, lag spacings bay a certain “critical” value tend to
not significantly alter the model fit parameteratthre selected using traditional model

fitting approaches.
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Figure 2.8 Zinc concentration empirical semivariogams: (a) lag spacing = 500
m, (b) lag spacing = 100 m, (c) lag spacing = 50 rand (d) lag
spacing = 10 m (data from Pebesma, 2004, R Developmt Core
Team 2012).
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Empirical semivariogram plots, as shown in Fig2esand 2.8, are typically
used to develop the weighting functions for krigiRgllowing conventional practice,
a theoretical mode}' (h, 6) is fit to the empirical semivariograr(h) data; this
theoretical model is then used to determine thercgumte kriging weighting
functions (e.g., Isaaks and Srivastava 1989, Grel393, Clark and Harper 2002). A
variety of theoretical semivariogram models are wmmly used with ordinary
kriging. For geospatial predictions, the four mosmmon models are probably the
linear, spherical, exponential, and Gaussian mo@ets, Isaaks and Srivastava 1989,
Cressie 1993, Clark and Harper 2002). The matheaiagixpressions for the four
common models previously mentioned are shown ineratb. The “best” model for
use with a given data set may be chosen by onteedhtee following methods:

1) Visual inspection through trial and error (Goexta 1997)

2) Weighted least squares (Jian et al. 1996)

3) Maximum likelihood (Kitanidis 1997)

The implementation of these selection methodsmwatibe discussed herein, the reader

may refer to the respective references for moraildetn the selection process.
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Table 2.5 Mathematical Expressions for Semivariogna Models

Model Name Mathematical Expression
Linear (h.6) = 0 , h=0
rhe) = 6 +bh , hz0
Spherical 0 ’ h=0
3h h?
! =16 . +6,|—+ , O0<h<é@
y(h,H) n s(zer 20 3} r
' , h=6
6 +0,
Exponential 0 , h=0
y'(h,6) = 0, +6, 1—exp{—6’£D , hz0
Gaussian 0 , h=0
' _ 2
yih6=16+4 1‘“{_%}] "0

Note:h = spatial distancdy = slope of the linep, = range;6, = nugget;d, + .= sill.

In addition to the spatial (lag) distankeewhich is present in all of the models
shown in Table 2.5; the modg(h, ) may contain all or some of the following three
parameters: the rangé;), the nuggetd,), and the sill §, + 65), as shown in Figure
2.9. The range is the spatial distance at whichsorea values will no longer
influence the prediction of an unknown value. Isimplistic semivariogram model,
the range is defined as the distaritat which the model reaches the maximum
semivariance or sill. The exponential and Gaussmadels reach their sill
asymptotically (a$—x) and, therefore, never reach a true numericalaahgr these
models, the “effective range” is the distance whbaeevariogram reaches 95% of the

sill. The “effective range i36, and \/549, for the exponential and Gaussian models,

respectively (e.g., Journel and Huijbregts 1978&;istdékos 1992; Deutsch and Journel
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1992). The nugget effect corresponds to the diswoity that can be present at the
origin of the semivariogram. In theory, = 0, but in reality due to micro scale
variation a discontinuity at the origin leads @9 > 0 (Cressie 1993). The possible
reasons for this discontinuity are measurementr®and error as a result of rounding
spatial distances between pairs of points to trereast lag distance that is used to
define the semivariogram. The sill, which is thensaf 6, and the partial silbs, is

equal to the maximum semivariance of the modelth# semivariance increases
asymptotically, then the sill of the semivariogremtheh value that corresponds to the

asymptote. ( DEinskas and Saltyt-Benth 2003).

Effective Range
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Spatial Distance, h

Figure 2.9 A typical theoretical semivariogram.

In order to perform kriging, theoretical predictianodels derived from

empirical isotropic semivariograms are needed, iasudsed above. As part of the
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development of the proper kriging models, it isessary to assess whether the data
that is being analyzed is isotropic or anisotrdpioature. For isotropic data sets, it is
necessary to account for only the magnitude ofdis¢ance between points when
creating the empirical semivariogram, while anigpic empirical semivariograms
require the use of techniques that account for bethmagnitude and direction of the
distance between data points (e.g., Isaaks andsawva 1989). Theoretical variogram
models for kriging are based on isotropic modedscarrection for anisotropy, if it

exists, is necessary to perform kriging interpolati

2.8.4.2 Anisotropy

The previous discussion relies on the assumptianttte spatial correlation of
the variable is the same in all directions, thustragic. For the isotropic case,
omnidirectional semivariograms are used, which ddpmnly on the magnitude of the
lag spacing vecton = || and not the direction. Thus, the empirical semdgram is
computed by nesting data pairs separated by theopipate lag distances with no
regard for direction.

However, if different correlations exist in differespatial directions, then the
data set is considered anisotropic. There are tpest of anisotropygeometric
anisotropy and zonal anisotropy (Budrikaite and Ducinskas 2005). Geometric
anisotropy exists when varying directional semivgrams have different range
values. Alternatively, if the sill significantly elmges between varying directional

semivariograms, then zonal anisotropy exists (Baibe and Ducinskas 2005).
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2.8.4.2.1 Directional Semivariograms

A simple method for evaluating anisotropic behavsoto compare the ranges
and sills of different directional semivariogranBudrikaite and Ducinskas 2005). If
there is a significant difference in the rangeibivalues as the direction changes, this
is evidence that the spatial data has a directionadonal dependence. In order to
create the directional semivariogram, the seminagavalues for data pairs falling
within a certain direction and lag spacing limitsishbe calculated. These data pairs
must fall within the specified directional band etetined by a given azimuthal

directiony, angular tolerance, and bandwidth as shown inrEiguL0 (Olea 1999).
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Figure 2.10 Directional band for directional semiariograms (modified after
Olea 1999).

The azimuth directiony is measured from theé axis and defines the direction
of the semivariogram. Typically, when evaluating ffetent directional
semivariograms, a tolerance angle of 22.5° is impleted (e.g., Budrikaite and
Ducinskas 2005). The bandwidth must be selectedhbyuser to ensure that the

directional band is scaled with respect to theiapatea of the measurements.
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2.8.4.2.2 Geometric Anisotropy

Geometric anisotropy exists when there is a stromgguence in a single
direction of the spatial data in comparison to otfieections. Visually, if the range of
each of the directional semivariograms were plotteda two-dimensional plot, an
ellipse (Figure 2.11) would form where the majod aninor axes of the ellipse would
correspond to the maximum and minimum ranges ofdilectional semivariograms
(Budrikaite and Ducinskas 2005). Geometric anigptr@an also exist in three-

dimensions, but only the two-dimensional case bglldiscussed herein.

er:max

r,min

Figure 2.11 Ranges of directional semivariograms.

In Figure 2.11y is the angle from thg-axis to the major axis of the ellipse add,,,

and @ __ are the minimum and maximum ranges of the direati@emivariograms,

r max

respectively.
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Figure 2.12 Directional semivariograms displayingyeometric anisotropy.

A simplistic way to identify geometric anisotrops/to plot the semivariograms
in various directions. If the ranges are differefdar different directional

semivariograms, then there is likely geometric atnggy (e.g. Figure 2.12). A
common approach to modeling geometric anisotroptp iind the ranges, ., and

7] in the principal, orthogonal, directions of thdipse and transform the two-

r max

dimensional lag spacing vector= (hmin, hmay iNto an equivalent isotropic lag spacing

vector using the following equation (Budrikaite abdcinskas 2005):

e | [ P )
h - min + max 29
\/[ er ,min J [er max j ( )

where hyin andhnax are the lag spacing vectors of the directionaliganograms in

the principal directions of the geometric anisoyreflipse, as shown in Figure 2.11.
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2.8.4.2.3 Geometric Anisotropic Model Determination (GaussianExample)

In order to better understand the development ef ghometric anisotropic
model that is used as the weighting function fdagikg interpolation, an example
using the Gaussian model will be shown. The genfmah for the geometrical

anisotropic Gaussian model is shown in Equatiof.2.1

h2
y'(h,6) =04+ ‘9sgeo[1‘ ex;{— g 2 B
ngeo (2.10)

whereh = spatial distanced, ,.,= anisotropic rangeg, = nugget, andd, ., + ..~

sgeo

anisotropic sill.
When geometric anisotropy exists in the data séte tirectional
semivariogram that corresponds to the major andomaxis must be determined.

Theoretical models must be fit to the directionaimgsariograms to determine the
range of the major axis semivariogrard, (..) and the range of the minor axis

semivariogram €. ... ) (Equation 2.11). Note that the difference in tlugget and the

sill between the directional variograms are corrg@ddnsignificant, by definition of
geometric anisotropy, and they are therefore cemnsil equivalent in all directions

(Equations 2.12 and 2.13).

er max 7 gr ,min (211)
Hn max = gn,min (212)
95 max = Hs,min (213)
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The geometric anisotropic rangg .that corresponds to the semivariogram

created from the equivalent lag spacing vedioshown in Equation 2.9 can be

calculated as follows:

r,geo r,min COSZ(Z//_,G)k2+Sin2(w_ﬂ) (214)

wherey is the angle between the major axis of the ellipsd theY-axis, k is the
anisotropy ratio (Equation 2.15), apdis an angle that defines the argument of the
spatial distance.

Hr min
< 1
g

r, max (2.15)

k =

The explanation above provides the step by stepegsofor determining the
geometrical anisotropic semivariogram model thanhésessary to perform kriging
interpolation. Computer based programs such as Bgf®lopment Core Team 2012)
provide geostatistical tools that will perform gesinical anisotropic kriging
interpolation; specifically, thgstat R package (Pebesma 2004). These geostatistical
tools typically assume that: 1) the direction o thinimum and maximum range is
perpendicular, 2) the type of theoretical modehis same in all directions, and 3) the

sills of the theoretical models are equal in alédiions (e.g., Olea 2006).
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2.8.4.2.4 Zonal Anisotropy

Similar to geometric anisotropy, zonal anisotrogguws in spatial data where
there is strong directional influence. In contrastgeometric anisotropy, pure zonal
anisotropy will produce semivariogram plots in vagy directions that have equal
ranges, but have different sills (Figure 2.13a)pi€ally, in practice, pure zonal
isotropy does not exist. Zonal isotropy usuallyséxiin combination with geometric

anisotropy, as shown in Figure 2.13b (Budrikait®30
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Figure 2.13 Zonal anisotropy: (a) pure zonal anisobpy; (b) a combination of
zonal and geometric anisotropy.
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If zonal anisotropy exists in a data set, the kiggprocess is more difficult
than what is encountered when performing isotrépiging or geometric anisotropic
kriging methods, which can generally be easily gened with computer-based
programs. The difficulty with kriging a zonal anismpic data set lies in the
determination of an equivalent isotropic semivaramg model that properly accounts
for the changes in the range and sill for differeimectional semivariograms. A
nesting process is required to determine the zanmlotropic semivariogram model.
The zonal anisotropic model is determined by taldmgeighted sum of the directional
semivariogram models that are scaled by the respatiodel ranges. The selection of
weights is performed through trial and error witle requirement that the summation
of the weights is equivalent to the sill of the abmnisotropic model (Budrikaite
2005). A more expansive explanation on this proepsovided below.

In order to determine the =zonal anisotropic mod#ie directional
semivariograms with the maximum and minimum continmust first be identified
and fitted independently with a theoretical mod@ldrikaite 2005). The maximum
and minimum directions of continuity typically cespond to the principal directions
of geometric anisotropy. From this point on, theediional semivariogram values for
the maximum and minimum continuity will be denoted y'(hmay and y'(hmin)
respectively, where the subscriptex and min represent the two main directions of
anisotropy.

The zonal anisotropic model has two components: tlHg isotropic
semivariogram model'(h) (model fit to the omnidirectional semivariogramajd 2)

the zonal anisotropic component (Equations 2.16 &R
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Y (s D)=V (Vo + e’ |+ ()

(2.16)

where the sill of the zonal anisotropic componerthe difference between the sill of

the main direction semivariogram models. Since ti®tropic component

y'(\/hﬂaxz + hminz) is equal to the omnidirectional semivariogram madgh), the

overall model may be rewritten as:

Y (e i) = V' () + 7 (D1 2.17)

where the sill of the zonal anisotropic componanthie difference of the sills in the
main directions of continuity. The overall semivgpiam model determined through
Equation 2.17 is an accurate model that can be fmedriging interpolation to

account for geometric and zonal anisotropy (Budi@2005).

2.8.4.2.5 Zonal Anisotropic Model Determination (Gaussian Exanple)

In order to better understand the development efzitnal anisotropic model
that is used as the weighting function for krigingerpolation, an example using the
Gaussian model will be shown. The general formtifigr zonal anisotropic Gaussian
model which adequately considers all directionfilueances in the form of Equation

2.17 is shown in Equation 2.18.

V(ha H) = {Hn.iso + Hsiso[l_ eXF{_ th 2 ]J} + {enzon + Hszo{l_ exr{— ghz 2 ]J}
r,iso r,zon (218)
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whereh = spatial distanced, ,, 6,,,, andé, ., +86.,, are the range, nugget, and sill

n,iso s,iso

of the isotropic semivariogram model fit to the adirectional semivariogramé

r,zon?

g and 6 __ +6 are the range, nugget, and sill of the zonal ampc

nzon ” nzon T Osz0n
component of the model. The zonal component acsdontboth zonal and geometric
anisotropy since, typically, pure zonal anisotrajnes not exist in practice. When
zonal anisotropy exists in the data set the dweeli semivariograms that correspond
to maximum and minimum variability must be deterenin The anisotropic

component of the model is then determined basedliffarences in the selected
directional semivariogram. The directional semiogram with the largest range

6 and the smallest rangé,

r max

mn are typically selected as the directions of
maximum and minimum variability. If the range doeet change for different
directional semivariograms, then the differencsilis must be examined to determine
the directions of maximum and minimum variability.

Unlike the geometric model where only the rangeai@slchanged for different
directional semivariograms, the zonal anisotropimponent of the model will have a
range and sill that are dependent on the parametdle models that correspond to
the semivariograms in the direction of the maximamad minimum variability. As in
the geometric anisotropic case, the differencéaee@mugget are considered negligible.
The equations that summarize the discussion ofpltameters above are shown in
Equations 2.19, 2.20, and 2.21.

Hr max % gr ,min (219)

Hn max = Hn,min (220)
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S max s,min (221)

The calculation of the rang@, , = for the anisotropic component of the model

shown by Equation 2.18 can be found in Equatior?2 ZBudrikaite and Ducinskas
2005).

Hr,zon = gr ,min (222)

The calculation of the sill for the anisotropic qooment of the model shown by
Equation 2.22 can be found in Equation 2.23 (Buadtékand Ducinskas 2005).

Hszon = Hsmax - gs,min (223)

The explanation above provides the step by stepegsofor determining the
zonal anisotropic semivariogram model necessapgttorm zonal anisotropic kriging
interpolation. Computer based programs that prosgletions for zonal anisotropic

kriging are, to the author’s knowledge, not readiilable.
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Chapter 3

PROJECT DESCRIPTION

3.1 Introduction

In July of 2008 at the Burrice Borrow Pit (FigurelBlocated in Odessa,
Delaware, an experimental field study was performoegikamine the effectiveness and
reliability of continuous compaction control (CC@chnology for use as quality
assurance (QA) compaction verification tool undsal ffield construction conditions.
The field project involved the construction of a ahkscale embankment using
conventional earth moving and compaction equipmé&atassess the capabilities of
CCC technology, a number of conventional in sit tmmpaction control tests were
performed within the compaction area in conjunctrath CCC measurements. This
process allowed for comparisons between in siturtethod results and CCC roller
measured values (MV). This chapter provides a sumatson of the field study that
was performed, using information that has been dechfrom previous publications
in this area; a more detailed in-depth discussibthe field study may be found in

Tehrani (2009).
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Figure 3.1 Location of the field study: Burrice Borow Pit, Odessa, Delaware
(Tehrani 2009).

3.2 Embankment Construction
A 61 m long by 6 m wide (200 ft by 20 ft) embankrhesms constructed using

conventional earth moving equipment, following Ded@e general specifications for
road sub-base construction (DelDOT 2001). The thait was used to construct the
embankment was generally uniform (Tehrani 2009, Meeand Tehrani 2011),

falling at the boundary between two USCS soil dfeesdions: a poorly graded sand
with silt (SP-SM) and a silty sand (SM) (ASTM D Z38The fill material that was

used is fairly common for Delaware Department adrigportation (DelDOT) projects,
and it generally conforms to DelDOT class G bormaterial specifications, Grades

V and VI (Figure 3.2).
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Figure 3.2 Gradation results for field samples take from in situ test locations
(Tehrani 2009).

The embankment was constructed to an approximtdkfioal height of 0.9 m
(3.0 ft), by compacting five 20.3 cm (8 in.) loob# layers, following Delaware
general specifications for road sub-base constmcfDelDOT 2001). To construct
each lift, a Caterpillar 980H bucket loader wasduse place fill for spreading by an

on-site bulldozer (Figure 3.3).
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Figure 3.3 Placing the fill material with a Caterpllar 980H bucket loader
(Tehrani 2009).

To spread the material to an approximate looséHifkness of 20.3 cm (8 in),
a Caterpillar D6K dozer was utilized (Figure 3.Bpr some of the lifts that were
spread, a global positioning system (GPS) was nealioh the Caterpillar D6K dozer,

allowing the material to be placed at a relativuatyform and consistent thickness.
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Figure 3.4 Spreading the fill material with a Catepillar D6K bulldozer
(Tehrani 2009).

Prior to roller compaction of the material, a wateck (Figure 3.5) was driven
over the compaction area with its sprayers onntoeiase the moisture content of the
fill material to bring it into a more desirable ggn(to help achieve more optimum soil

compaction).

Figure 3.5 Moisture content conditioning of fill nmaterial before compaction
(Tehrani 2009).
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3.2.1 Compaction of the Embankment Using a CCC Instrumergd Roller

After completion of soil placement and moistureustiinent, each soil lift was
compacted using a Caterpillar CS56 smooth drumataloy roller (Figure 3.6). This
instrumented roller could perform real-time CCC swaments using a Machine
Drive Power (MDP) and Compaction Meter Value (CMaf)proach. An on-board
real time kinematic-global positioning systéRITK-GPS) was used to determine the
location of the instrumented roller in real-timehile it was recording CCC
measurements and roller operational parametersCH% had a roller drum that was
2.1 m (7 ft) wide, and the machine had an overp#rating weight 011,400 kg
(25,100 Ib). During compaction, the roller speedswpt relatively constant, at
around 3.25 km/h (2.02 mph). CCC roller MV and éiddmensional position
measurements were recorded simultaneously, appabeiynevery 0.20 m (8 in.), on

average, in the direction of roller travel (alohg tength of the embankment).

Figure 3.6 Caterpillar CS56 vibratory smooth drumroller (Tehrani 2009).
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Using the CS56 compactor, each lift was compactexdseries of passes using
three side-by-side lanes, with approximately 15 (émn) of overlap at the edges of
each compacted soil lane. For a given lift, betwsienand nine roller passes were
performed. Specific information on the roller passead material lifts is present in

Table 3.1.

Table 3.1 General Information about the Compaction Lifts and Passes
(Tehrani 2009)

Pass
Number
Lift Number of where Data Date Start . End .
Passes Performed Was Compaction| Compaction
Recorded
(Balggt I?ayer 2 2 7/21/2008 14:18 14:29
Lift 1 6 NA 7/22/2008 NA NA
Lift 2 6 6 7/22/2008 18:16 18:22
Lift 3 8 8 7/23/2008 11:30 11:36
Lift 4 9 9 7/23/2008 16:22 16:28
1 7/24/2008 11:08 11:18
2 7/24/2008 12:14 12:20
Lift 5 7 3 7/24/2008 13:14 13:22
4 7/24/2008 14:51 14:57
5 7/24/2008 15:07 15:13
7 7/24/2008 16:22 16:28

As shown in Table 3.1, the CCC data that was rexbifdr Lift 1 was lost
because of a technical issue related to data soaag download from the CCC

equipment. For the sake of time, Lift 5 was theydiit for which CCC measurements
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were taken on successive passes for comparisoninviiu test results. On all other

lifts, CCC measurements were only recorded foffitred passes for each lift.

3.2.2 In Situ Test Methods

As an aid to determine if the compaction acceptdene had been reached for
a given lift, several conventional quality assuerompaction verification in situ test
methods were performed. The in situ test measureniienm these tests could then be
used for comparison with the CCC roller MV, as iscdssed in detail in Chaptrers 4
and 6. The in situ test methods utilized includeel muclear density gauge test, sand
cone test, plate load test, light weight deflectanéest, falling weight deflectometer
test, dynamic cone penetrometer test, and sdiheti§ gauge test. These six in situ test
methods were performed at 19 discreeY) locations spaced at approximately 3 m
(10 ft) intervals along the centerline of the enlbaant for the base layer and the final
passes of each engineered lift. In addition, in &t measurements were recorded for
all passes of Lift 5; however, to expedite compagta lower frequency of testing was
performed for the earlier passes (prior to thelfpess). The location of each in situ
test measurement was measured using a GPS roveAdditional information on the

in situ testing plan can be found in Tehrani (2009)
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Chapter 4

RELATIONSHIPS BETWEEN CONTINUOUS COMPACTION CONTROL
ROLLER MEASUREMENTS AND IN SITU TEST METHOD
MEASUREMENTS

4.1 Introduction

Since the introduction of continuous compactionte@(CCC) and intelligent
compaction (IC) technologies, significant resedral been performed to correlate the
results from in situ spot testing to the differéypes of measurements that are made
by CCC and IC equipment (e.g., Floss et al. 19&8n&as et al. 1991; Brandl and
Adam 1997; Thompson and White 2008; Tehrani 2088furate comparison of in
situ spot testing measurements (e.g. sand condearudensity gauge, lightweight
deflectometer, etc.) and CCC measurements requites the measurements be
recorded at identical field locations. Unfortungiehis location-specific agreement is
difficult to achieve during normal field operatigrad the locations of measured CCC
values often do not correspond exactly to the tun Spot testing locations. If data for
CCC and in situ spot testing measured values gharsame location, then a direct
comparison may be made. However, in most CCC f#ldlies, the CCC measured
values need to be estimated at the locations ointlsé&u spot testing locations. (It is
also possible to estimate in situ test resultsagheof the CCC field locations for
comparison purposes, however this approach is dilpicot utilized, given the
typically large spatial coverage of CCC data selstive to their in situ testing

counterparts). The adopted interpolation technitprethis process is typically the
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kriging method (e.g., Brandl and Adam 2004, Thonmpand White 2007, Petersen et
al. 2007, Tehrani 2009).

Within this chapter, CCC values will be predictezing the ordinary kriging
method, at the location of the in situ measureduesl Then, univariate and
multivariate regression analysis will be performiedexplore and understand the
relationships that exist between the CCC measuadges and the in situ measured

values.

4.2 Ordinary Kriging Method for CCC Roller Measurement Predictions

In this section, the ordinary kriging method wille bused for spatial
interpolation of roller measured values (MV) of M@Rd CMV at each of the in situ
spot testing locations, for various lifts and passkcompaction for the embankment
that was constructed. The short-hand notation ith&d be used to describe each lift
and pass for which data is collected for the caiestd embankment is shown in Table
4.1. In order to expedite construction of the enkipaent, CCC measurements were
not recorded for successive passes for Lifts Onstead CCC and in situ
measurements were only taken during the final pEsshe lifts. As mentioned
previously, due to problems with the field datawsijion system, there is no recorded
CCC data for Lift 1. Within this section, CCC megsiivalues recorded for the final
pass of Lifts 0-4 and successive passes for Liftilb be used to interpolate the
corresponding CCC values that would be expectezhelt of the in situ spot testing
locations for each lift and pass of interest, sat ttegression analysis may then be

performed.
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Table 4.1 Description of Notation Used in Kriging hterpolation of CCC
Measured Values for the Constructed Embankment

CCC
Measurement Description
Notation
Lift O Final roller pass of base layer (2/2)
Lift 2 Final roller pass of Lift 2 (6/6)
Lift 3 Final roller pass of Lift 3 (8/8)
Lift 4 Final roller pass of Lift 4 (9/9)

Lift 5 Pass 1 First roller pass of Lift 5 (1/7)
Lift 5 Pass 2 Second roller pass of Lift 5 (2/7)
Lift 5 Pass 3 Third roller pass of Lift 5 (3/7)
Lift 5 Pass 4 Fourth roller pass of Lift 5 (4/7)
Lift 5 Pass 5 Fifth roller pass of Lift 5 (5/7)
Lift 5 Pass 7 Final roller pass of Lift 5 (7/7)

As mentioned in Section 2.5.3 of Chapter 2, the Ckélues collected during
compaction may be unreliable if the roller is ire tdouble jump, rocking motion,
and/or chaotic motion modes of operation. Typicatgsonant meter value (RMV)
data is collected in conjunction with CMV data arsd to indicate the roller mode of
operation. A sudden increase in RMV data obsenledgaide a decrease in CMV
data often indicates that an undesirable mode efatipn has occurred; in this case,
the CMV data collected during that time must eitberremoved or adjusted. The
CMV data sets used in this study were carefullyngxad along with the RMV data
sets, and it has been determined that the openatomte of the roller remained within
acceptable limits for the vast majority of the cawfion process. This desirable
pattern of behavior was likely due to the relayvelw vibratory amplitude values that

were applied by the roller during the compactioacess (Table 6.1). Consequently,
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the CMV data sets that were recorded during theeatirstudy did not need to be

adjusted to account for undesirable modes of ojperat

4.2.1 Determination of Weighting Functions for the Ordinary Kriging Method

As mentioned in Chapter 2, the first step in théirary kriging method is to
establish the empirical semivariograms of the gfigtoriented data, which are then
used to develop theoretical semivariogram modelt @re used to define the
weighting functions for the kriging process. Atdlstep, the presence of anisotropy
will be investigated. If the spatial data set does show a directional influence then
isotropic kriging methods utilizing omnidirectionsg¢mivariograms will be used.

First, the directional semivariograms must be @atd to assess any
anisotropy. The lag spacing for the respective eng)i semivariograms has been
selected by the author following the process thateiscribed in Chapter 2. Due to the
nature of the data acquisition system that is comueto the RTK-GPS on the CCC
rollers, the resolution in some directions, speaify the Y-direction, will be much
lower than in others. The minimum required lag spato develop adequate empirical
semivariograms in the direction of the lowest regsoh of measured values (the
directional semivariogram) was determined tchbbe0.05 m. Since decreasing the lag
spacing will not impact the nature of the otherediional semivariograms, for
consistency purposes, a lag spacinghof 0.05 m will be used for all empirical
semivariograms developed in this chapter.

Once proper empirical semivariograms have beertextean order to properly
assess the anisotropy of the semivariograms, theratical model type must be
selected. For the theoretical semivariogram motlels were assessed in the current

study (Linear, Spherical, Gaussian, and Expongnttae Exponential model was
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selected as the one that tended to yield the ‘fi&$b the empirical MDP and CMV
semivariogram data. These results are consisteilit previous work that was
performed on this data set using a different spatialysis kriging approach (Tehrani
2009). In order to keep the analysis consistehthabretical semivariograms in this
chapter will be fitted with the exponential model.

The empirical semivariograms in this chapter wesaggated using the gstat
package (Pebesma 2004) in the R statistics platignDevelopment Core Team
2011). The code requires an input of the measuaktes and their respectiveandY
locations, and then requires the user to spec#yldly spacing of the semivariogram.
As previously mentioned, a lag spacing of 0.05 ns gecified by the author for the
semivariograms generated in this chapter. If dioeed semivariograms are desired,
the angle corresponding to the direction of theiganogram measured from thé
axis () and the tolerance angle must be specified. Adalee angle of 45 degrees is
used for all of the directional semivariograms thia presented in this chapter.

Additionally, the “gstat” package (Pebesma 2004)udes a code that will
“fit” a theoretical semivariogram model to the geated empirical semivariograms.
The code requires that the user input the empisealivariogram data and the desired
theoretical semivariogram model type (e.g., LineBxponential, Gaussian, or
Spherical). The code then will fit the selected elotype using a weighted least
squares fitting approach. It should be noted thatdstat package (Pebesma 2004)
forces the nugget to be zero when fitting expoméntodels. Consequently, the
weighting functions presented in this chapter willy have two parameters (sill and
range), as opposed to typical weighting functidret have three parameters (nugget,

sill, and range).
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Typical investigation of anisotropic behavior wilkview the directional
semivariograms corresponding #oangles of 0°, 45°, 90°, and 135°. The author has
selected to perform a more thorough analysis ofitta and, therefore, has selected to
study directional semivariograms correspondingnglesy of 0°, 30°, 60°, 90°, 120°,
and 150°. It should be noted that an angke 0° represents the semivariogram in the
Y-direction, whereas, the angle= 90° represents thédirectional semivariogram.

Due to the nature of the acquisition of the CCC snead values, it is expected
that theX-axis will correspond to the major axis of the afigpy ellipse. The inherit
assumption of geometrical anisotropy, which alldarskriging interpolation, requires
that the minor axis of the ellipse be perpendictdathe major axis. If examination of
the directional semivariograms for each lift andsgashows that the 90°
semivariograms have the largest range values,theXaxis is, in fact, the major axis
of anisotropy. However, in order to perform anieptc kriging interpolation, it is also
necessary to find the range of the directionalogtam corresponding to the minor
axis. If the nature of the data acquisition resutmsufficient data for development of
the minor axis direction variogram, then, anisoicdgriging cannot be used and, by
default, isotropic kriging methods must be used.

If anisotropy exists and the models have been t®eleand fit to the directional
semivariograms, then, the anisotropy r&tican be determined. At this point the gstat
package be used to perform ordinary kriging inte&tion using the fitted models as
the weighting functions; more discussion of thisgass can be found in Chapter 2.
The code requires that the user input the fitteddehdor the omnidirectional
semivariogram and then specify the anisotropy tatib performing isotropic kriging,

k =1, otherwise, 0 k <1 for anisotropic kriging (Pebesma 2004).
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4.2.1.1 Investigation of Anisotropy in CCC Measured Values

The MDP and CMV data for all the lift and passedh& embankment were
examined using the process described in Chaptem® Section 4.2.1 above.
Insufficient data in thé&/-direction did not allow for the development of &/ range
of directional semivariogram models and, thereftie,true major and minor axis of
anisotropy could not be determined. Consequentily, isotropic ordinary kriging can
be used for interpolation. The determination of igm@ropic weighting functions for

respective lift and pass data will be presentddliowing sections.

4.2.1.2 Determination of Weighting Functions

In this section, the process for determining theightng functions for
isotropic ordinary kriging will be shown using MD#hd CMV data from Lift 0. The
resulting weighting function parameters will thea $hown in summary Tables 4.3
and 4.4. The unique empirical semivariograms amoretical semivariogram model
equations for all other lifts are presented in Ampig A.

The omnidirectional semivariograms for the CCC dztaift O are presented
in Figure 4.1. The theoretical semivariogram mogqetsduced by the gstat package

are shown on the figure to allow for visual vertiion of the selected models.

89



e Empirical
Theoretical

Semivariance, y (kJ/s)’
oo
1

2]

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Spatial Distance, h (m)

»
o

70

e Empirical

60 Theoretical

Semivariance, y

) 10 15 20 25 30 35 40 45 50 55 60 65
(b) Spatial Distance, h (m)

Figure 4.1 Lift 0 CCC isotropic semivariograms: a)MDP; b) CMV.

The values of the sill and range correspondinghi® selected theoretical

exponential models for the MDP and CMV data setspaovided in Table 4.2.
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Table 4.2 Lift 0 CCC Theoretical Isotropic Semivarogram Model Parameters

CCC Measurement Sill Range
MDP 5.05065 (kJ/$) 0.69870 m
CMV 35.0775 3.22487 m

The exponential weighting functions may now be dgwed for the Lift O
CCC data. The functions will follow the form of thexponential mathematical
expression shown in Table 2.1. The resulting wanghtfunctions for isotropic
ordinary kriging of the MDP and CMV Lift O data apeovided in Equations 4.1 and

5.2, respectively.

- — — h
V(h,H)—S.OE(l exp{ _0.70D

- — — h
y'(h,H)—BSOE{l exy{ —322D

The process shown above, for Lift O data, is thé¢hoak for determination of

4.1)

(4.2)

the isotropic weighting functions for kriging ingeiation of MDP and CMV values.
The resulting theoretical isotropic semivariogranodel parameters for MDP and
CMV for all lifts and passes for which data wasessed are presented in Tables 4.3

and 4.4, respectively.
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Table 4.3 Theoretical Isotropic Semivariogram ModeParameters (MDP)

Lift/Pass Sill (kJ/s) | Range (m)
Lift 5.05065 0.6987
Lift 2 3.01366 0.42015
Lift 3 8.57653 0.62732
Lift 4 7.87483 0.97623

Lift 5 Pass 1| 5.86992 0.65154
Lift 5 Pass 2| 2.79728 0.45731
Lift 5 Pass 4| 2.48635 0.71695
Lift 5 Pass 5| 2.00821 0.70273
Lift 5 Pass 7| 1.62237 0.57548

Table 4.4  Theoretical Isotropic Semivariogram ModeParameters (CMV)

Lift Sill Range (m)

Lift O 35.0775 3.22487

Lift 2 16.2647 2.07007

Lift 3 14.2811 2.22519

Lift 4 15.9249 2.30816
Lift 5 Pass 1| 9.8133¢ 0.76514
Lift 5 Pass 2| 14.8977 1.08072
Lift 5 Pass 4| 17.0005 1.31186
Lift 5 Pass 5| 14.744¢ 1.44228
Lift 5 Pass 7| 14.5383 1.47182

4.3 Regression Analysis
In order for CCC technology to be used as a conguaeferification tool in a

specification framework, a correlation must exigtvieen current in situ method
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measurements (i.e., soil density or modulus) amdnttieasurements made by CCC
rollers. During this study, both CCC measurements.,(MDP and CMV) and
common in situ testing methods (i.e., NDG, LWD, $S®@.) were used as part of the
compaction verification process for constructiorthed embankment. This chapter will
attempt to find correlations between the CCC mesaments and the in situ method
measurements.

Regression analysis is one of the most commonlyg g&atistical methods for
investigation of correlations between variables.ividnate regression analysis is
performed between a dependent variable and a singlependent variable.
Multivariate regression is the analysis of a depemdvariable and multiple
independent variables (Draper and Smith 1998). @hesls can be used to access the
strength of the relationship between variablesdaalop numerical models to predict
the dependent variable. The previous section mahapter describes the process (the
ordinary kriging method) by which CCC measuremevese predicted at the locations
of the in situ method measurement locations. Thisecessary to ensure that the CCC
and in situ measured values are representativeeatame soil.

The ordinary least squares (OLS) regression methlbdbe used in this study.
The model used for OLS regression is shown in BEguak.3 below.

Y=pX+¢& (4.3)

whereY is a vector of the actual values of the respodspdndent) variableg,
is a vector of regression coefficienksis the matrix of the predictor variables, and
the error of the model. The following assumptiongsinbe made when performing
OLS regression analysis: (1) the errors are nogmdhfitributed with a mean equal to

zero and a constant variance; (2) errors are intkpe of each other; (3) the
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independent variables are measured without erfoeath of these assumptions is
satisfied, the OLS regression models will provideefécients with the minimum
variance of all linear unbiased estimators. Howewdren the assumptions are not
satisfied and/or there are many outliers that erfhe the model, then the coefficients
produced by the models may not predict a respoasable that accurately represents
the collected data. For purposes of this studig &ssumed that the CCC and in situ
data meet all of the requirements of OLS regresaralysis. Additionally, the error of
the models: will be ignored when developing the mathematiegiression equations.

As previously discussed, in situ data was colleeledg with CCC data for the
final passes of each lift and for all successivespa of Lift 5, as shown in Table 4.1.
Data for Lift 1 does not exist due to data acqigisitproblems during construction.
Additionally, the Lift 5, Pass 1 CMV data will ndte included in the regression
analysis. This is because, during constructionathglitude of the vibratory roller was
increased during the first pass of each lift toezhfe the compaction process. For all
other passes the amplitude during compaction wasned the normal value and kept
constant. Since the calculation of CMV is a functimf the amplitude, as shown in
Chapter 2, the data cannot be used during thesgigreanalysis.

Throughout this chapter, regression analysis wal performed on five
different subsets of the CCC and in situ data. d&= sets are as follows: @) lifts
and passeq2) all lifts and passes excluding the base lay8j final passes(4) final
passes excluding the base Igyand (5)Lift 5 passesThe reasons for sub-sampling
the data in this way will be discussed within tiater. For each data set, the CCC
data will be compared to each of the following itu gest method measurements:

GeoGaugeE, LWD 300E, LWD 200 E, DCPly E, DCPK E, and NDGyq. An in-
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depth explanation of each of the in situ test mashand their respective
measurements can be found in Chapter 2 and wilbeatiscussed here. In addition to
comparisons of CCC measurements to in situ measmsm the two CCC
measurements (MDP and CMV) will be compared to eatiter. For univariate
regression analysis, CCC measurements will be coedpto laboratory moisture
content values (lalw) and nuclear density gauge measured moisture rongdues
(NDG w). For multivariate regression analysis moisturateot will be introduced as
the second independent variable. Further explamaifothe regression models used
will follow within the chapter.

Figures will be provided for all regressions toually assess the scatter of the
original data and the fit of the selected modelse Toefficient of determination {R
will be presented on each figure and also preseintegimmary tables, to assess the
strength of the correlation between the CCC medsumkies and the in situ measured
values. In addition, the significance of each mddedccurately represent the data has
been determined by examining the significance ity (p-value) of the generated
models. The p-value represents the probability éima¢ffect at least as extreme as the
current observation has occurred by chance (Sdted®96). Statisticians generally
have accepted a p-value of 0.05 as the maximumeviau acceptance of the fitted
model (Schervish 1996). In the summary tables éefftcient of determination values
provided within this chapter, all models which dat meet this criteria (models with
p-value greater than 0.05) will be denoted withaaterisk (*). It is the opinion of the
author that while suitable for most mathematicgliptions, an acceptance limit p-
vale equal to 0.05 may be too restrictive for gelotécal applications. However, the

reader may make their own assessment by viewindiglnees and tables provided
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within this chapter. In order to enable better alsassessment of the data, the author
has decided not to present the mathematical exprsssepresenting the fitted models
on the figures. Instead the coefficients for thedeis will be provided in summary

tables located in Appendix B.

4.3.1 Univariate Regression Analysis of Individual CCC Kiiging Predictions
versus In Situ Testing Data

Simple univariate regression analyses were perfdrioelook for a direct
relationship between CCC measurements, or rollesroed valuesRRj, and in situ
method measurementsTM). Two different univariate regression forms wersed
throughout the univariate analysis. The first applothat was utilized is a linear

regression model (Equation 4.4) which is shown sglid line on the figures.

ITM, =C, + C,RRV (4.4)

whereCy is they-intercept, andC; is the univariate regression coefficient RRV.
The notation of B on the figures and in the summary tables will refe the
coefficient of determination for the fitted lineaegression models. The second
approach that was utilized is a second-degree patyad model (Equation 4.5) which

is denoted as a dashed line on the figures.

ITM, =C, + C,RRV ++C,RRV’ (4.5)

whereCy is they-intercept, andC; andC; are the univariate regression coefficients for
the respective terms. Similarly, the notation & &n the figures and in the summary
tables will refer to the coefficient of determirati for the fitted second-degree

polynomial regression models. Additionally, the swa&d CCC and in situ data will
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be shown in the figures (denoted as solid dotsghabthe overall scatter of the data

and fit of the model may be visually examined.
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Figure 4.2 Univariate regression analyses of CCC, €Gauge, and LWD
measured values, vs. kriged MDP and CMV measuremestfor all
lifts and passes.
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Figure 4.3 Univariate regression analyses of DCP dnNDG measured values,
vs. kriged MDP and CMV measurements for all lifts @d passes.
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Figure 4.4 Univariate regression analyses of Lab ahNDG water contents, vs.
kriged MDP and CMV measurements for all lifts and pmsses.

The univariate regression models for the data getlldifts and passesre
shown in Figures 4.2 through 4.4. Examination effigures reveals that there is not a
strong linear or second-degree polynomial correhatbetween the CCC measured
values and the in situ measured values. Additignahere is not a significant
improvement in correlation for the second-degredyrmmomial model, with the
exception of the moisture content data. Both sétsasture content data show that
although there is not a strong second-degree poliaiocorrelation with the CCC
data, it is much better than the linear model.

Since this data set includes measurements frorpaabes of all of the lifts
there may be some underlying factors which couldjatieely influence the
correlations. One of these factors could be thieémice of the measured data from the
base layer of the embankment. While Lifts 1 thro&givere “man-made” lifts, the

base layer soils were “naturally existing”, and venly proof-rolled prior to the start
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of construction; as a result, it is reasonable xpeet that their behavior may be

different than what would be observed for well-camied engineered soil lifts. In

order to determine if the base layer measuremeadsain effect on the correlations,

univariate regressions analysis was also perforfoedall lifts and all passes

excluding the base layethe results are shown in Figures 4.5 through 4.7.
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Figure 4.5 Univariate regression analyses of CCC, €Gauge, and LWD
measured values, vs. kriged MDP and CMV measuremestfor all
lifts and passes, excluding the base layer.
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Figure 4.6 Univariate regression analyses of DCP dnNDG measured values,
vs. kriged MDP and CMV measurements for all lifts ad passes,
excluding the base layer.
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Figure 4.7 Univariate regression analyses of Lab ahNDG water contents, vs.
kriged MDP and CMV measurements for all lifts and pmsses,
excluding the base layer.

Observation of the results provided in Figures thréugh 4.7 shows that the
correlations slightly improve by eliminating thesedayer measured values; however,
the resulting correlations are still not strong.diebnally, the polynomial models do
not offer much improvement over the linear modelgh the exception of the MDP
versus the modulus-based in situ methods (GeoGaundelLWD) and, again, the
moisture content values.

Another factor which may affect the strength of toerelations could be the
“relative compaction” range of the values in theretation. By performing the
univariate regression analysis on only the finaspmeasurements, the range of the
data will be minimized. This is true because thelfipass of each lift represents
“dense” soil which has passed other more traditi@®QC compaction verification

standards. The Lift 5 pass 1, 2, 3, 4, and 5 dateepresentative of less “dense”
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material than the final pass data (pass 7), tlmspval of these measurements reduces
the range of the measurements. Univariate regmessgults performed on ttadl final

passeglata set are presented in Figures 4.8 through 4.10
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Figure 4.8 Univariate regression analyses of CCC, €&Gauge, and LWD
measured values, vs. kriged MDP and CMV measuremestfor all
final passes.
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Figure 4.9 Univariate regression analyses of DCP dnNDG measured values,
vs. kriged MDP and CMV measurements for all final @sses.
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Figure 4.10 Univariate regression analyses of Labna NDG water contents, vs.
kriged MDP and CMV measurements for all final passs.

As shown in Figures 4.16 through 4.18, the qualftyhe correlations tends to
slightly decrease when only data from the finalsgasof each lift is considered in the
regression process. Similarly, the polynomial medahi not offer much improvement
over the linear models, with the exception of thBRversus the modulus-based in
situ methods (GeoGauge and LWD) and, again, thetorei content values.

As was assessed previously, the influence of tlse be@yer on the correlation
results is examined for the final pass data. Theaniate regression analysis results

for the all final passes excluding the base lagta set are shown in Figures 4.11

through 4.13.
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Figure 4.11 Univariate regression analyses of CCCGeoGauge, and LWD
measured values, vs. kriged MDP and CMV measuremestfor all
final passes, excluding the base layer.
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Figure 4.12 Univariate regression analyses of DCPnd NDG measured values,
vs. kriged MDP and CMV measurements for all final @sses,
excluding the base layer.
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Figure 4.13 Univariate regression analyses of Labna NDG water contents, vs.
kriged MDP and CMV measurements for all final passs, excluding
the base layer.

Similar to excluding the base layer from the entiisa set, Figures 4.19
through 4.21 show a slight improvement for omittthg base layer from the final pass
analysis. However, the correlations that are pteseare generally still weak and
worse than that of the entire data set. Againpthignomial models do not offer much
improvement over the linear models, with the exiceptof the MDP versus the
modulus-based in situ methods (GeoGauge and LWI) tae moisture content
values.

For the final univariate regression sample, onlasueements from Lift 5 will
be used in the analysis. Although sieve analysis pexformed at each in situ test
location and the soils were generally classified ex¢remely similar, it is not
unreasonable to expect the soil from lift to diféightly in gradation and/or moisture

content in comparison to other lifts. To investeg#te influence of these factors the
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univariate regression analysis results for Ltfé 5 passmeasurements are shown in

Figures 4.14 through 4.16.
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Figure 4.14 Univariate regression analyses of CCCGeoGauge, and LWD
measured values, vs. kriged MDP and CMV measuremesntfor Lift
5.
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Figure 4.15 Univariate regression analyses of DCPnd NDG measured values,
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Figure 4.16 Univariate regression analyses of Labna NDG water contents, vs.
kriged MDP and CMV measurements for Lift 5.

As seen in Figures 4.22 through 4.24, the coraiatiremain fairly weak for
the modulus-based in situ test methods (GeoGaudeL®WD), however, the MDP
versus CMV (and vice versa) correlations are vergng in comparison to all the
analysis done to this point. In addition, the clatiens between the CCC
measurements and the DCP and NDG test measurearerttgher than the strongest
correlations that were previously observed whenmemieg the entire data set
excluding the base layer measurements. For this, ¢tas polynomial models do not
offer a significantly better fit than the linear dels, even for the moisture content data
which did show significant differences between &oefnts of determination for all
the other data sets.

To allow for easy comparison of the five differediéita sets used in the
regression analysis, all of the coefficient of det@ation values are summarized in

Tables 4.5 and 4.6. As previously mentioned, tlggassion models that have a p-
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value greater than 0.05 will be denoted with arerssk (*). The coefficient of
determination values for the linear models aregmesi in the R columns (shaded in
grey), and the coefficient of determination valdesthe second-degree polynomial

models are presented in th& Rolumns.
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Table 4.5 Coefficients of Determination from the Uivariate Regression
Analyses that were Performed on Individual Data Paits (In Situ
Data as Dependent Variable)

All Finals
_ All Excluding Finals Excluding Lift 5
Variables Base Layer Base Layer

R | R | R | R | R R | R R R R,

MDP (kJ/s) 048 | 050| 0.53 | 055| 043 | 0.46| 048 | 052| 0.69 | 0.73
vs. CMV
Geogaugé (MPa) 0.01* | 0.01*| 0.02* | 0.03*| 0.00* | 0.01*| 0.01* | 0.02*| 0.00* | 0.00*
vs. CMV
LWD 300E (MPa) 0.01* | 0.03*| 0.04* | 0.04*| 0.00* | 0.03*| 0.01* | 0.02*| 0.04* | 0.04*
vs. CMV
LWD 200E (MPa) 0.14 | 0.15| 0.14 | 0.15| 0.12 | 0.13f| 0.12 | 0.13f| 0.07* | 0.09*
vs. CMV
DCPhy (mm/blow) 0.28 | 0.28| 0.38 | 0.39| 0.26 | 0.26| 0.36 | 0.39| 0.55 | 0.55
vs. CMV
DCP1, (mm/blow) 0.21 | 0.22| 0.38 | 0.38| 0.16 | 0.17| 0.35 | 0.35| 0.55 | 0.55
vs. CMV

3
NDG ya (kN/’) 0.05* | 0.12*| 0.17 | 0.23| 0.05* | 0.13*| 0.08* | 0.16*| 0.36 | 0.38
vs. CMV
CMV
vs. MDP (kJ/s) 048 | 048] 053 | 0.54| 043 | 0.44| 0.48 | 0.49| 0.69 | 0.70
Geogaugé (MPa)

* *
vs. MDP (kJ/s) 0.10 | 0.19| 0.12 | 0.21| 0.12 | 0.25| 0.12 | 0.27| 0.01* | 0.03

LWD 300E (MPa)

* * * * *
vs. MDP (kJ/s) 0.10 | 0.10| 0.18 | 0.18| 0.00* | 0.06*| 0.03* | 0.21 | 0.01* | 0.05

LWD 200E (MPa)

* *
vs. MDP (kJ/s) 0.29 | 0.30| 0.33 | 0.33| 0.14 | 0.27| 0.14 | 0.27| 0.02* | 0.12

DCPIly (mm/blow)

vs. MDP (kJ/s) 0.29 | 0.30| 0.40 | 0.41| 0.19 | 0.22| 0.30 | 0.32| 0.54 | 0.56

DCPIlx (mm/blow)

vs. MDP (kJ/s) 0.25 | 0.26| 0.42 | 0.42| 0.12 | 0.13| 0.29 | 0.29| 0.53 | 0.56

NDG y4 (KN/m®)

vs. MDP (kJ/s) 0.18 | 0.18| 0.25 | 0.32| 0.10* | 0.12*| 0.00* | 0.04*| 0.41 | 0.45

*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05
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Table 4.6 Coefficients of Determination from the Uivariate Regression
Analyses that were Performed on Individual Data Paits

All Finals
_ All Excluding Finals Excluding Lift 5
Variables Base Layer Base Layer

R%, R?, R R, R R?, R R, R R?,

CMV vs. Labw 0.04*| 0.38| 0.33 | 0.38]|0.00*| 0.37| 0.26 | 0.36| 0.34 | 0.35

CMV vs. NDGw 0.04* | 0.30| 0.21 | 0.27| 0.00* | 0.221| 0.07* | 0.19*| 0.39 | 0.39

MDP (kJ/s) vs. Lab
w

0.11* | 0.23*| 0.32* | 0.33*| 0.00* | 0.28*| 0.33* | 0.33*| 0.29* | 0.31*

MDP (kJ/s) vs. NDG
w

0.24* | 0.42*| 0.48* | 0.50*| 0.01* | 0.09* | 0.25* | 0.37*| 0.34* | 0.34*

*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05

As shown in the summary tables, the removal of daien the base layer
results in slightly stronger univariate correlagdior both the overall data set and the
final passes data set. This is likely due to the that the base layer was not an
“engineered” lift (it was not mixed like the othdayers, sampled to confirm
uniformity with the other soil types, moisture carwhed, or sufficiently compacted).
Consequently, the author has decided to excludeetiression figures for the two data
sets that include the base layer data for all &rrthgression analysis in this chapter.

In evaluation of the remaining three data sets whixclude the base layer, the
Lift 5 data set has, in general, a stronger univariateelation followed by theall
excluding base layedata set and then tli@als excluding base layewhich has only
slightly lower correlation values. The data setsdialy the final passes were evaluated
in an attempt to improve upon the correlations seehe data sets which included all
the passes for each lift, however, in general, deelations became weaker when

evaluating only the final pass data. Consequetitly,author has decided to exclude
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the regression figures fdinals excluding base laydor all further regression analysis
in this chapter.

Unfortunately, there is not a strong linear or sekdegree polynomial
univariate regression relationship between indialdo situ test measurements and the
corresponding CCC measurements for the majorith@tata. Previous research done
with CCC technology has exhibited consistent okegrus to those presented here
(e.g. Krdber et. al. 2001, White and Thompson 20@8% clear that a point-by-point
comparison of in situ measurements and the cornebpg kriged CCC measurements
does not result in a strong relationship; therefareother approach must be used to
achieve better correlations between measured in #tst results and CCC
measurements. Previous researchers have attengpgedobth the data sets, in order
to remove point-to-point discrepancies in the dbataperforming regression analysis
of average lift and pass data. The smoothing psoaed resulting regression analysis

for the average data sets will be presented irfidift@ving section.

4.3.2 Univariate Regression Analysis of Average CCC Krigig Predictions
versus Average In Situ Testing Data

In an attempt to achieve a stronger univariateession relationship between
in situ test method results and kriged CCC measanesnthe average in situ test value
and the corresponding average CCC measurement f@lweach lift and pass were
calculated. Univariate regression analysis was pgeformed on the resulting data set
of average in situ measurement values and the ge€2€C measurement values. Just
as in Section 4.3.1, two different univariate ragren forms are used throughout the
univariate analysis. The first is a linear regressmodel which is shown as a solid

line on the figures. The notation of:Fon figures and in summary tables will refer to
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the coefficient of determination for the fittedd&r regression models. The second is a
second-degree polynomial model which is denote@a asshed line on the figures.
Similarly, the notation of B on figures and in summary tables will refer to the
coefficient of determination for the fitted secodelgree polynomial regression
models. Additionally, the measured CCC and in data will be shown in the figures
(denoted as solid dots) so that the overall scaftéhe data and fit of the model may
be visually examined.

As previously discussed, the exclusion of the bager data is justifiable
because it is not an “engineered lift” and its realoimproves the regression
correlations. Additionally, the examination of ortlye final pass data did not offer
improvement in coefficient of determination valwexl, therefore, is not presented in
this analysis. Consequently, univariate regresaialysis of average data will only be
performed on two of the five original subsets o tACC and in situ data. The data
sets are as follows: (H)I lifts and passes excluding the base layerd (2)Lift 5. The

univariate regression analysis results are predenteigures 4.17 to 4.19.
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Figure 4.17 Univariate regression analyses of avega CCC, GeoGauge, and
LWD measured values, vs. kriged MDP and CMV measuraents for
all lifts and passes, excluding base layer.
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Figure 4.18 Univariate regression analyses of avega DCP and NDG measured
values, vs. kriged MDP and CMV measurements for allifts and
passes, excluding base layer.
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Figure 4.19 Univariate regression analyses of avega Lab and NDG water
contents, vs. kriged MDP and CMV measurements for lalifts and
passes, excluding base layer.

As shown in Figures 4.17 through 4.19, the coedfits of determination, in
general, greatly improve compared to the univareggession models developed from
the analysis of individual data points (Figures #hfmugh 4.7). The results shown here
are consistent with those noted by other reseasctiet have also used regression
analysis of CCC measurements (Thompson and Wh@8)20 hese results show that
univariate regression analysis of average lift pads data may be a suitable method
for determining correlations between CCC measurésnand in situ test method
measurements.

Examination of Figures 4.17 through 4.19 reveads there is a strong linear
and second-degree polynomial correlation betweerC8C measured values and the
in situ measured values for the DCPI and NDG, wheoth the MDP and CMV

models show similar Rvalues. The regression models for the GeoGauge @id
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results show a much stronger relationship with MiDBasurements than with the
CMV measurements. Additionally, all of the datasttbat there is a stronger second-
degree polynomial correlation with the CCC datanttiee linear model, although the
differences vary.

For the next univariate regression sample, onlysmesments from Lift 5 will
be used in the analysis. The results for Lift 5 sseaments are shown in Figures 4.20

through 4.22.
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Figure 4.20 Univariate regression analyses of avega CCC, GeoGauge, and
LWD measured values, vs. kriged MDP and CMV measuraents for

Lift 5.
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Figure 4.21 Univariate regression analyses of avega DCP and NDG measured
values, vs. kriged MDP and CMV measurements for Lif5.
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Figure 4.22 Univariate regression analyses of avega Lab and NDG water for
Lift 5.

As shown in Figures 4.20 through 4.22, the coeffits of determination, in
general, greatly improve compared to the univaneggession models developed from
the analysis of individual data points (Figures though 4.16), as was observed
when examining thall lifts and all passeslata set. This is further confirmation that
univariate regression analysis of average lift @ads data is a suitable method for
determining correlations between CCC measurements ia situ test method
measurements.

Figures 4.20 through 4.22 reveal that there isangtlinear and second-degree
polynomial correlation between the CCC measuredesland the in-situ measured
values for the DCPI and NDG, where both the MDP @V models show similar
R? values. The regression models for the GeoGaugeL#id results show a much
stronger relationship with MDP measurements whenpaored to the relationship with

the CMV measurements. Additionally, all of the dateow that there is a stronger
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second-degree polynomial correlation with the CC&tadthan the linear model,
although the differences vary.

To allow for easy comparison of the five differetidita sets used in the
regression analysis, all of the coefficient of deti@ation values are summarized in
Tables 4.7 and 4.8. As previously mentioned, tlggession models that have a p-
value greater than 0.05 will be denoted with arerssk (*). The coefficient of
determination values for the linear models aregmesd in the R columns (shaded in
grey), and the coefficient of determination valdesthe second-degree polynomial

models are presented in th& Rolumns.
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Table 4.7 Coefficients of Determination from the Uivariate Regression
Analyses that were Performed on Average Data (In & Data as
Dependent Variable)

All Finals
_ All Excluding Finals Excluding Lift 5
Variables Base Layer Base Layer
R%, R?, R R R R?, R R R R?,

E"I\[A)\F;(”/S)VS' 092 | 0.92| 0.92 | 0.931 0.87*| 0.88*| 0.86* | 1.00* | 0.99 | 0.99*

Geogaugd (MPa) | 5 54« | .05+ | 0.04* | 0.06*| 0.01* | 0.05*| 0.01* | 1.00* | 0.16* | 0.18*

vs. CMV

LWD 300E (MPa) | 53+ | 0.09%| 0.08*| 0.17*| 0.06* | 0.97*| 0.00* | 1.00* | 0.01*| 0.41*

vs. CMV

LWD 200E (MPa) | o 14+ | 0.31%| 0.24*| 0.31*| 0.12%| 1.00* | 0.12* | 1.00* | 0.00*| 0.69*

vs. CMV

DCPly (mmiblow) | 354 | o 35+| 0.75t| 0.931] 0.18*| 0.93*| 0.99%| 1.00* | 0.65* | 0.91*

vs. CMV

DCPL (mm/blow) | 4 59+ | 0.24%| 0.681| 0.85* 0.04* | 0.98*| 0.96* | 1.00* | 0.61* | 0.91*

vs. CMV
3;

NDG yq (kN/m) 0.19* | 0.38*| 0.691| 0.70* 0.25* | 0.99 | 0.54* | 1.00* | 0.88* | 0.93*

vs. CMV

fk'g'/;/)"s' MDP 0.92 | 0.97| 0.92 | 0.98| 0.87*| 0.94*| 0.86* | 1.00* | 0.99 | 0.99*

GeogaUQE (Mpa) * * * * * * * * * *

vs. MDP (kJ/s) 0.23* | 0.41*| 0.23* | 0.43*| 0.21* | 0.61*| 0.21* | 0.74*| 0.04* | 0.13

LWD 300E (MPa) " x « " x " . o N

vs. MDP (kJ/s) 0.23* | 0.31*| 0.551| 0.55*| 0.02* | 0.03*| 0.12* | 0.93*| 0.50* | 0.63

LWD 200E (MPa) . . . . . . . .

vs. MDP (kJ/s) 0.65t| 0.65*| 0.651| 0.65*| 0.43* | 0.78*| 0.43* | 0.78*| 0.51* | 0.65

DCPIly (mm/blow) . " . . N .

vs. MDP (kJ/s) 0.461| 0.49*| 0.78 | 0.791| 0.08* | 0.29*| 0.72* | 0.73*| 0.791| 0.86

DCPIl, (mm/blow) . . " . . N . .

vs. MDP (kJ/s) 0.36* | 0.38*| 0.80 | 0.821| 0.01* | 0.15*| 0.78* | 0.79*| 0.75* | 0.84

NDG Vd (kN/ms) * * * * * *

vs. MDP (kJ/s) 0.29* | 0.29*| 0.72 | 0.85| 0.18*| 0.19*| 0.19* | 0.94*| 0.95 | 0.96%

Italics: Models that have too many coefficients for thenber of data points
*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05
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Table 4.8 Coefficients of Determination from the Uivariate Regression
Analyses that were Performed on Average Data

All Finals
_ All Excluding Finals Excluding Lift 5
Variables Base Layer Base Layer

R%, R?, R R, R R?, R R, R R?,

CMV vs. Labw 0.08* | 0.55*| 0.50* | 0.56*| 0.02* | 0.91*| 0.75* | 1.00* | 0.44* | 0.74*

CMV vs. NDGw 0.13* | 0.61*| 0.46* | 0.63*| 0.01* | 0.66* | 0.38* | 1.00* | 0.74* | 0.74*

MDP (kJ/s) vs. Lab
w

0.08* | 0.20*| 0.28* | 0.41*| 0.01* | 0.62*| 0.61* | 0.61*| 0.21* | 0.85*

MDP (kJ/s) vs. NDG
w

0.30* | 0.72*| 0.67* | 0.74*| 0.01* | 0.34*| 0.44* | 0.49*| 0.88* | 0.89*

Italics: Models that have too many coefficients for thenber of data points
*. Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05

While performing the univariate regression analgsighe average data sets, a
simple statistical problem arose. The reductiothefdata into average values for each
lift and pass resulted in data sets that have dl smmber of data points. When the
number of data points approaches the number offiiciesits in a fitted model, the
coefficient of determination value of the modellvinicrease and ultimately reach the
maximum value of R=1.0Q, showing a false strong correlation.

Due to this problem it is important not to soleblyr on the coefficient of
determination value when evaluating the suitabgityhe regression models. A simple
way to identify and disregard the models with tew fdata points is to use the p-value
criteria, previously discussed throughout this ¢bgpwhich will determine the
model’s significance. As previously discussed, frarpurely statistically standpoint,
the p-value criteria alone would be adequate; hewavis the opinion of the author

that from a geotechnical engineering perspecthe use of the standard p-value limits
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of 0.01 and/or 0.05 may be too restrictive. Theefao further distinguish the
regression models that are unacceptable, from &stgtal and geotechnical
perspective due to lack of an adequate number ¢& gaints, the regression
coefficients of determination will be italicized summary Tables 4.7 and 4.8 and on
any figures if necessary. The regression models @dha unreliable based on the
coefficients of the model and number of data pomtd be easily recognizable

because the coefficient of determination will alwée preciselyt.00and italicized.

As shown in the Tables 4.7 and 4.8, consistent thighanalysis of individual
points, the removal of data from the base layeultesn slightly stronger univariate
correlations for both the overall data set andfthal passes data set. Additionally,
strong correlations are seen between CCC measureraeres and the DCPI, NDG,
and Moisture content values. For a number of theletsp a higher correlation was
seen with the MDP measurements than with the CM¥sueements. In addition, the
second-degree polynomial regression model imprd¥edalues when compared to
the linear models.

It is important to note that just as in the anayai individual data points, the
analysis of the average data points show strongletions between moisture content
and CCC measurements. This is expected since nmmistintent has largely been
considered a significant factor that influencesrierhanical properties of compacted
soils (Adam 1997, White et al. 2007). To investigtte influence of moisture content
in more detail, multivariate regression analysiss warformed introducing moisture
content as an additional independent variable & tégression model, and the

associated results are shown in Section 4.4 ottiapter.
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4.4 Multivariate Regression Analysis of CCC Kriging Pralictions versus In Situ
Testing Data

In the previous section, univariate regression yamslwas performed on
individual and average data sets of CCC measuramamd in situ test method
measurements. The average data sets showed saghiiiprovement in correlations
when compared to the individual data sets, likakg do the fact that point-to-point
discrepancies were removed as a result of this 6shireg” process. In addition, it was
shown that evaluation of only the final pass ofheéft did not offer a significant
improvement in correlations when compared to th@ dats that included additional
passes. In contrast, it was shown that the exclusidhe base layer data resulted in a
stronger relationship between CCC measurementsnasitl test measurements. This
observation is consistent with the fact that theeblayer was not an engineered lift,
meaning that it potentially had significantly movariability in soil characteristics
since the soil was not mixed, spread, and compaeide other lifts were.

The strong relationship between moisture contedtthte CCC measurements
for the univariate regression analysis warrantarthér investigation of the effect of
moisture content on the relationship between CCGsmements and in situ test
method measurements. Therefore, multivariate regrnesanalysis techniques will be
used to develop correlations between the CCC meamnts and in situ test
measurements, including the corresponding moisttoatent as an additional
independent variable. The same approach has biéieediby other researchers in this
area (e.g., White et al. 2005, White and Thomp€82Tehrani 2009).

As previously mentioned, multivariate regressionalgsis uses multiple
independent variables to predict the dependentblari The multivariate regression

analysis performed herein will follow the lineardéttye model, which is described in
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Rawlings et al. (1998). The general form of theeéinadditive model that is used to
relate a dependent variablegindependent variables is shown in Equation 4.6.

Yi =6y + B Xy + By Xip +ooo+ B X €, (4.6)

wheref, is the intercept, and thi#'s are the rate of change in the dependent vasable
(Y}) per unit change in the independent variabl¢'s) Thee¢’'s are the random error
associated with each independent variable.

The equation may be extended into matrix form hasve in Equation 4.7.

Yl 1 X11 le ,80 &
LI e Bl I (@.7)
Y“ nxi _1 an an_nxp_'gp_ pxi _gp_nxl

or, simply, as:

Y=XB+g (4.8)

Solving Equation 4.8 will result in the predictioralues of the dependent
variable. Note that the independent variabl¥gsY can be a function of other
variables. The adequacy of the resulting modeaddit be evaluated using coefficients

of determination and p-value significance criteraandiscussed in Section 4.3.

4.4.1 Regression Models for Analysis

In order to include the influence of moisture, thmiltivariate regression
analysis approach that was employed included a ow@hbn of roller-recorded values
(RRV} and moisture content values)(as the two independent variables that were
used to predict the value of the in situ test mesment (TM), the dependent variable.
Two different linear regression equation forms wemployed herein. The first

regression form is as follows:
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ITM, =C, +C,RRV +C,«, (4.9)
whereCy is the y-intercept, an@; andC, are the multivariate regression coefficients
for the respective terms.

The second regression model form introduces amrantion term. The
interaction term is the product BRVandw, as shown in Equation 4.10.

ITM, =C, +C,RRV +C,«, + C,RRV, (4.10)
where Cy is the y-intercept, an®;, C,, and C; are the multivariate regression
coefficients for the respective terms.

The NDG dry unit weight values and the modulusugal of the GeoGauge,
LWD’s, and DCPI's were used separately as dependimbles for their respective
models. The MDP and CMV values, predicted at thsitun testing locations using the
ordinary kriging method described in Section 4.2ravused as the roller-recorded
independent variables. The laboratory measuredtareigontent values taken at the
in situ testing locations were utilized as the secaondependent variable in the
regression models. Unfortunately, laboratory meesteontent values were not
available for all of the in situ testing locatiomsinsequently, the number of points in
the overall data sets will differ from the respeetunivariate regression analysis data
sets that were previously analyzed and presentddsichapter.

Similar to the univariate regression analysisurfieg of the generated models
and summary tables containing the coefficient aéawrination values for each model
will be presented. As mentioned, two different nwvaltiate regression models were
used in the analysis. The first is a linear regogssnodel (Equation 4.23) which is

shown as a solid line on the figures. The notatbiR? on figures and in summary
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tables will refer to the coefficient of determirmatifor these fitted linear regression
models. The second is a linear regression modetacong an interaction term
(Equation 4.24) which is denoted as a dashed lmehe figures. Similarly, the
notation of B, on figures and in summary tables will refer to #mefficient of
determination for the fitted linear regression nmedmntaining the interaction term.
Additionally, the measured CCC and in situ datd el shown in the figures (denoted
as solid dots) so that the overall scatter of i@ @nd fit of the model may be visually

examined.

4.4.2 Multivariate Regression Analysis of Individual CCCKriging Predictions
versus In Situ Testing Data

The presentation of the multivariate regressionyamafor the individual in
situ test measurements versus the CCC measuremmedtsorresponding moisture
content will follow in suit with the presentationtyle for the univariate regression
analysis shown in Section 3. Accordingly, multieéae regression analysis will be
performed on five different subsets of the CCC anditu data. The data sets are as
follows: (1) all lifts and passes(2) all lifts and passes excluding the base lay8)
final passes (4) final passes excluding the base lgyand (5)Lift 5 passesThe

results are presented in Figures 4.23 through @82summary Table 4.9.
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Figure 4.23 Multivariate regression analyses of CCC, GeoGauge, and LWD
measured values, vs. kriged CCC measurements and istre
content for all lifts and passes.
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Figure 4.24 Multivariate regression analyses of DCRnd NDG measured values,
vs. kriged CCC measurements and moisture content fall lifts and

passes.

As shown in Figures 4.31 and 4.32, there is sigaifi improvement in the

coefficient of determination values in comparisoritte univariate regression models.

However, the coefficient of determination values still fairly low, meaning there is

not a strong relationship between the in situvaiies and the CCC measurements for

the data set dll lifts and all passes

The next data set that was analyzed removed thelagsr measurements and

the results are presented in Figures 4.25 and 4.26.
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Figure 4.25 Multivariate regression analyses of CCC GeoGauge, and LWD
measured values, vs. kriged CCC measurements and istre
content for all lifts and passes, excluding the badayer.
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Figure 4.26 Multivariate regression analyses of DCRnd NDG measured values,
vs. kriged CCC measurements and moisture content fall lifts and
passes, excluding the base layer.

In an attempt to strengthen correlations, multatgriregression analysis was
performed on the data setalf final passesThe results are shown in Figures 4.27 and

4.28.
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Figure 4.27 Multivariate regression analyses of CCC GeoGauge, and LWD

measured values, vs. kriged CCC measurements and istre
content for all final passes.
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Figure 4.28 Multivariate regression analyses of DCRnd NDG measured values,

vs. kriged CCC measurements and moisture content foall final
passes.

To further investigate the effect of the base lay@asurements, multivariate

regression analysis was performed on the datafsaell dinal passes excluding the

base layerThe resulting regression models are shown inregé.29 and 4.30.
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Figure 4.29 Multivariate regression analyses of CCC GeoGauge, and LWD
measured values, vs. kriged CCC measurements and isire
content for all final passes, excluding the baseyar.
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Figure 4.30 Multivariate regression analyses of DCRnd NDG measured values,
vs. kriged CCC measurements and moisture content foall final
passes, excluding the base layer.

For comparison purposes, multivariate regressioralyaas were also
performed on the data set bift 5 passes only, and the corresponding results are

shown in Figures 4.31 and 4.32.
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Figure 4.31 Multivariate regression analyses of CCC GeoGauge, and LWD
measured values, vs. kriged CCC measurements and istre
content for Lift 5.
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Figure 4.32 Multivariate regression analyses of DCRnd NDG measured values,
vs. kriged CCC measurements and moisture content fa.ift 5.

To allow for easy comparison of the five differesiata sets used in the
multivariate regression analysis, all of the caeéint of determination values are
summarized in Table 4.9. As previously mentionbd, regression models that have a
p-value greater than 0.05 will be denoted with atersk (*). The coefficient of
determination values for the linear models withaaitinteraction term are presented in
the R, columns (shaded in grey), and the coefficient etethination values for the

linear models with the interaction term presentethe R, columns.
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Table 4.9 Coefficients of Determination from the Mitivariate Regression
Analyses that were Performed on Individual Data Paits (In Situ
Data as Dependent Variable)
All Finals
. All Excluding Finals Excluding Lift 5
Variables Base Layer Base Layer
R | R | R | R | R R | R R | R R,
MDP (kJ/s) .
vs. CMV 0.52 | 0.53| 0.75 | 0.75| 0.32 | 0.32t| 0.671| 0.69* 0.70 | 0.70
Geogaugd (MPa) | 55 | 221| 0.44 | 0.44] 0.241| 0.261 0.61 | 0.620.07*| 0.07*
vs. CMV
LWD 300E (MPa) 0.71| 0.72| 050 | 0.51| 0.75 | 0.76| 0.54 | 0.55| 0.15* | 0.15*
vs. CMV
LWD 200E (MPa) 0.47 | 0.50| 0.47 | 0.50| 0.40 | 0.45| 0.40 | 0.45| 0.15* | 0.16*
vs. CMV
DCPIv (mm/blow) 0.56 | 0.57| 0.49 | 0.51| 0.48 | 0.55| 0.42 | 0.64| 0.55 | 0.60
vs. CMV
DCPL, (mm/blow) | 5 6g1 69| 0.58 | 0.59| 0.60 | 0.68| 0.49 | 0.61| 0.56 | 0.60
vs. CMV
3
NDG yq (kN/n) 0.22 | 0.28|0.17t| 0.27| 0.28t| 0.341 0.08* | 0.30*| 0.42 | 0.43
vs. CMV
CMV 042 | 0.45| 050 | 0.53| 0.30 | 0.311 0.35 | 0.371 0.70 | 0.70
vs. MDP (kJ/s) ’ ’ ’ ’ ’ ) ’ ) ’ )
Geogaugé& (MPa) " .
vs. MDP (kJ/S) 0.25| 0.35| 0.36 | 0.40| 0.38 | 0.44| 0.45 | 0.46| 0.07* | 0.07
LWD 300E (MPa) . .
vs. MDP (kJ/S) 0.68 | 0.68| 051 | 051| 0.75| 0.76| 0.52 | 0.52| 0.14* | 0.17
LWD 200E (MPa) . .
vs. MDP (kJ/s) 0.57 | 0.58| 057 | 0.58| 0.31 | 0.33| 0.31| 0.33|0.16* | 0.16
DCPIly (mm/blow)
vs. MDP (kJ/s) 050 | 0.51| 0.46 | 0.46| 0.33 | 0.36| 0.241| 0.251 0.58 | 0.64
DCPIl, (mm/blow)
vs, MDP (kJ/s) 0.63| 0.64| 055 | 0.55| 0.54 | 0.59| 0.33 | 0.33| 0.57 | 0.63
NDG y4 (KN/m®) . .
vs. MDP (kJ/s) 0.39 | 0.40| 0.26 | 0.33| 0.40 | 0.44| 0.04* | 0.04*| 0.44 | 0.44

Italics: Models that have too many coefficients for thenber of data points
*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05
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As shown in Table 4.9, although the coefficient ddgtermination values
improved, consistent with the univariate regressamralysis, there is not a strong
relationship between the individual measured CCQiesaand in situ test method
values. Additionally, there is no significant diémce between the coefficients of
determination of the two regression models employddybe the most important
observation is the result of excluding the baserddyom the analyses of the entire
data set and the data set of only the final pasBes.result was a decrease in the
coefficient of determination values, supporting thgothesis that moisture content
has a significant contribution in the correlatiostdeeen CCC measurements and in
situ testing measurements. Additionally, it suppdhte observation that the inclusion
of the base layer measurements may have negatffelgted correlations because of
the drastically lower moisture content values asded with the measurements, and
the fact that the base layer material was diffetean the fill material used for all

other lifts of the embankment (as this layer watsamoengineered lift).

4.4.3 Multivariate Regression Analysis of Individual CCCKriging Predictions
versus In Situ Testing Data

As a result of the observations shown by the urataregression analysis in
Section 4.3, multivariate regression analyses ifopaed on the average lift and pass
measurements of the CCC values, in situ test vahresmoisture content values. The
same general procedure that was performed in Sedt®.2 will be followed here.
The results of this analysis are seen in Figur@3 through 4.42 and Table 4.10.

It is important to note that just as with the umiate regression analysis on the
average data sets there will be cases were theerumhldata points in the data set will

be equal to or less than the number of coefficiemthe regression equations. As a
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result, for a number of the models, the high catreh will need to be disregarded
because it is falsely identifying an exact corielatoetween CCC measurements and
the in situ test measurements when in reality igh borrelation is a result of having
an excessive number of regression model coeffisiehhese cases will be easily
identifiable because &= 1.00 for these models and the coefficient of deterniimat

will be italicized on the associated figures and @ble 4.10.
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Figure 4.33 Multivariate regression analyses of avage CCC, GeoGauge, and
LWD measured values, vs. kriged CCC measurements drmmoisture
content for all lifts and passes.
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Figure 4.34 Multivariate regression analyses of avage DCP and NDG
measured values, vs. kriged CCC measurements and istre
content for all lifts and passes.

Observation of Figures 4.33 and 4.34 shows a stconglation for all of the
models, except for the GeoGauge models and the InubddDP values vs. NDG
values.

For comparison, Figures 4.35 and 4.36 presentetethdts of the multivariate

analyses after removing the base layer measurements

146



15 25

e MDP (kJ/s) e CMV
" 20 -
=]
© 15
>
3 191Rr2,= 098 N
N
© > R2,= 1.00 .
0 T T T I I I
20 4 6 8 10 12 14 16 18
T 90 90
a L d
= 50 80 - N
Iﬂ [ ] (N ]
g 04 ™~ 70 - A
g ">~ — P ° - -
O 60+ 60 -
8 R2,=0.72 R2,=0.72 R2,=0.50 R2,=0.56
(V] 50 T T T T 50 T T T T T T
10 12 14 16 18 20 4 6 8 10 12 14 16 18
— 40 40
©
s
= 30 - 30
o = ) o /,\Q
S 20 - ¢ == 20 4 °
o e
= R2,=0.85 R2,=0.93 R2,=0.76 R2,=0.87
- 10 T T T T
10 12 14 16 18 20 18
— 40
©
o
S 35
w
o 30 1 D
o
N [ ]
a 25
= R2,=0.94 R?%,=0.95
= 20 . . l T
10 12 14 16 18 20 4 6 8 10 12 14 16 18
cmv MDP (kJ/s)

Figure 4.35 Multivariate regression analyses of avage CCC, GeoGauge, and
LWD measured values, vs. kriged CCC measurements drmmoisture
content for all lifts and passes, excluding the badayer.
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As shown in Figures 4.35 and 4.36, the coefficiehtletermination values

decrease as a result of the exclusion of the ey ldata, except for the models

which showed poor correlations previously (i.ee theoGauge models and the MDP

values versus NDG values model).

The next data set being analyzed is dfiefinal passesdata set, with results

shown in Figures 4.37 and 4.38.
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Figure 4.37 Multivariate regression analyses of avage CCC, GeoGauge, and
LWD measured values, vs. kriged CCC measurements drmoisture
content for all final passes.
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Figure 4.38 Multivariate regression analyses of avage DCP and NDG
measured values, vs. kriged CCC measurements and isture
content for all final passes.

Unfortunately, after observation of Figures 4.3d dn38, it can be seen
that a number of the models do not have an adequatder of data points, as
can be seen by the models withrR.000n the figures above. This lack of data
prevents a meaningful relationship from being deteed.

For comparative purposes, multivariate regressianalysis is
performed on the data set of all final pass afterremoval of the base layer,

results shown in Figures 4.39 and 4.40.
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Figure 4.39 Multivariate regression analyses of avage CCC, GeoGauge, and
LWD measured values, vs. kriged CCC measurements drmoisture
content for all final passes, excluding the baseyar.
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Figure 4.40 Multivariate regression analyses of avage DCP and NDG
measured values, vs. kriged CCC measurements and istre
content for all final passes, excluding the baseyar.

As expected, since the removal of the base laysrced the number of data
points available for regression analysis, almdstfahe models shown in Figures 4.39
and 4.40 lack the adequate number of data poirdgwelop meaningful relationships
between the average in situ test values and CCGurgraents.

The final data set to be analyzed is thi¢ 5 passesdata set. The results are

shown below in Figures 4.41 and 4.42.
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Figure 4.41 Multivariate regression analyses of avage CCC, GeoGauge, and
LWD measured values, vs. kriged CCC measurements drmoisture
content for Lift 5.
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Figure 4.42 Multivariate regression analyses of avage DCP and NDG
measured values, vs. kriged CCC measurements and istre
content for Lift 5.

Inspection of Figures 4.50 and 4.51 shows thainagaany of the models lack
the sufficient number of data points to develop mmagful relationships. However,
when looking at the meaningful models for th# 5 passeslata set, it is clear that the
CCC measurements show the weakest correlations tvehGeoGauge measured
values.

For easy comparison, the coefficient of determomatvalues from the

multivariate regression analysis of the averaga dats are summarized in Table 4.10.
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Table 4.10 Coefficients of Determination from the Miltivariate Regression
Analyses that were Performed on Average Data (In & Data as
Dependent Variable)

All Finals
_ All Excluding Finals Excluding Lift 5
Variables Base Layer Base Layer

R | R | R | R | R R | R R R R,

MDP (kJfs) 0.91 | 1.00 | 0.99 | 1.00 | 0.90* | 1.00* | 1.00* | 1.00*| 1.00t| 1.00*
vs. CMV

Geogaug& (MPa) | g 50« | 0.63¢| 0.72* | 0.72*| 0.16* | 1.00* | 1.00* | 1.00%| 0.11* | 1.00*
vs. CMV

LWD SO0E (MPa) | 696 | 0.97| 0.85%| 0.93*| 1.00t| 1.00%| 1.00% | 1.00%| 0.43* | 1.00*
vs. CMV

LWD 200E (MPa) | g 941 | 0.95¢ 0.941| 0.95%| 1.00*| 1.00%| 1.00% | 1.00*| 0.70* | 1.00*
vs. CMV

DCPh (mm/blow) | g g4t | 0.88% 0.78* | 0.78*| 0.81* | 1.00* | 1.00* | 1.00*| 0.96* | 1.00*
vs. CMV

DCPL (mm/blow) | 6 99 | 0.941 0.81* | 0.83*| 0.88* | 1.00* | 1.00* | 1.00*| 0.95* | 1.00*
vs. CMV

3

NDGya (KNIM) | g ggt| 0.921 0.80% | 0.85*| 0.97* | 1.00* | 1.00% | 1.00%| 0.97* | 1.00*
vs. CMV

cMV - N
ve MDP (JS) 0.90 | 1.00 | 0.98 | 1.00 | 0.90* | 1.00* [ 1.00* | 1.00*| 1.00t| 1.00
Geogaugé& (MPa)

* * * * * * * * *
vs. MDP (kJ/s) 0.29* | 0.52*| 0.50* | 0.56*| 0.29* | 0.64*| 0.48* | 1.00* | 0.03* | 0.20

LWD 300E (MPa)

* * * *
vs. MDP (kJ/s) 0.90 | 0.95| 0.761| 0.871 0.94* | 0.95*| 0.71 | 1.00* | 0.81 0.93

LWD 200E (MPa)

* * * * * * *
vs. MDP (kJ/s) 0.76* | 0.83*| 0.761| 0.831 0.60* | 1.00* | 0.60* | 1.00* | 0.86* | 0.98

DCPIly (mm/blow)

* * * * * * *
vs. MDP (kJ/s) 0.84 | 0.86*| 0.80t1| 0.81*| 0.75* | 0.93*| 0.72* | 1.00* | 0.87* | 0.96

DCPIl, (mm/blow)

* * * * *
vs. MDP (kJ/s) 0.90 | 0.92| 0.85 | 0.85t| 0.87* | 0.99*| 0.85* | 1.00* | 0.84* | 0.95

NDG y4 (KN/m®)

vs. MDP (kJ/s) 0.91 | 0.91*| 0.82t| 0.961 0.95* | 0.96*| 0.73* | 1.00* | 0.98t| 0.98

Italics: Models that have too many coefficients for thenber of data points
*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05
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The results in Table 4.10 show that a large nundbehe models lacked a
sufficient number of data points to develop meafuhgelationships between CCC
measurements and in situ test method measurenasnghiown in italics in the table.
Additionally, nearly all of the models did not meke p-value criterion of 0.05. This
may or may not be meaningful as the criterion mai/be suitable for geotechnical
engineering purposes.

In general, the second multivariate regression inslt@ved higher coefficient
of determination values. This is expected, sinesitkroduction of the interaction term
increased the number of coefficients for the praticnodels. As seen in the analysis
of the individual points, the removal of the basger data resulted in decreased
coefficient of determination values. Since thishis opposite of what occurred for the
univariate analyses, it is believed that the lowstuwe content values of the base layer
caused the problems for the univariate comparisons.

For the models which offer reliable coefficientsdetermination, it is clear
that there is a strong multivariate relationshipieen the CCC measurements and the
in situ test measurements (except for the GeoGaifigd)e moisture content is

considered.

45 Summary and Conclusions

In this chapter, possible relationships between @@@&surements and in situ
test method measurements were explored using usti@and multivariate regression
analysis. In order to perform the regression amglyise CCC measurements needed to
be predicted at the exact locations of the measuresitu testing data. Isotropic
ordinary kriging interpolation was selected as ltest method for the predications of

the CCC data.
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Two regression models were used for the univanatgession analysis: a
linear model and a second-degree polynomial modiee univariate regression
analyses were performed first on the data setdividual CCC measurements and the
various in situ test method results. However, groorrelations were not observed in
the point-to-point analysis of the CCC and in $ést method data sets. Consequently,
univariate regression analyses were performed @mage values for each lift and
pass. The results of the univariate regressionysesl resulted in the following
observations:

» Comparisons of the individual values of CCC meawnar@s and in situ
test measurements at point-to-point locations skloweeak
correlations.

» Comparisons of the average values of CCC measutemaed in situ
test measurements at point-to-point locations gelcelatively strong
correlations. However, a number of the average sketadid not have a
sufficient number of data points; therefore, sevefahe models and
corresponding coefficient of determination valuesrevunreliable and
should be ignored.

e For a number of the cases, the second-degree poighanodel
showed significantly stronger correlations than lihear model (e.g.,
DCPI values, NDG dry unit weight values, and maisttontents).

* The removal of the base layer measurements frometbgective data
sets resulted in increased coefficients of deteation. This
phenomenon is likely due to the relatively low ntoie content of the

base layer in comparison to the “engineered” lifithjch indicates that
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the moisture content had a significant influencetba density and
modulus of the compacted soils.

Examination of only the measurements collectedhhenfinal pass of
each respective lift did not improve correlatiohewever examination
of the Lift 5 data on its own did slightly improw®rrelations. This
observation is likely due to the fact that the swithin a given lift is

likely more uniform in soil gradation and moistu@ntent in

comparison to the soils from all five lifts and thase layer of the
embankment.

Generally, MDP measurements showed better comektwith the in

situ test methods, in comparison to the CMV measargs. This is
likely related to the different influence depths dhe CCC

measurements. The influence depth of MDP measursnmismmuch

closer to that of the in situ test methods whicmge from

approximately 20 cm to 60 cm. In contrast, theuefice depth of CMV
measurements is roughly 80 cm to 150 cm, as nateWhite and

Thompson (2008).

In general, the DCP indices show much strongeretations with the
CCC measurements, in comparison to the other untegting methods
used in the study.

In general, the GeoGauge moduli values showed tleakest
correlations with the CCC measurements, in comparie the other in

situ testing methods used in the study.
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* In general, both sets of moisture content valuesveld much stronger
correlations with the CCC measurements, in comparie the density-
based and modulus-based in situ testing methods mséhe study.
This indicates that moisture content has a sigmificontribution to the
density of compacted soils, which agrees with @tassil mechanics
theory.

Examination of the univariate regression analysssilts ultimately showed
that, even when comparing the average CCC measaotemad in situ test method
measurements, the correlations were relatively virdikating that there may not be a
direct univariate relationship. Additionally, seakrobservations indicated that the
moisture condition of the soil may be a significtatdtor when measuring the modulus
and dry unit weight of compacted soils. Therefong]tivariate regression techniques
were examined so that influence of moisture contmild be more thoroughly
investigated.

Similar to the univariate regression analysis, tfeg multivariate regression
analysis two regression models were used: a limemtel without an interaction term
and a linear model with an interaction term. Theesgrocedure that was used for the
univariate analyses was followed for the multiverianalyses. The multivariate
regression analyses were performed first on thea dat of individual CCC
measurements and the various in situ test metlsudtse Then, multivariate regression
analyses were performed on average values for lfaeimd pass. The results of the
multivariate regression analyses resulted in thevidng observations:

» Comparison of the individual values of CCC measweis and in situ

test measurements at point-to-point locations skiovwaproved
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correlations compared to those seen in the unibear@nalyses,
however, correlations were still relatively weak.

Comparison of the average values of CCC measurasnar in situ
test measurements at point-to-point locations wgieldsery strong
correlations. However, a majority of the averagedats did not have
a sufficient number of data points; therefore, nafsthe models and
corresponding coefficient of determination valuesrevunreliable and
needed to be ignored. To improve this, future ssidihould consider
recording CCC and in situ test measurements fografeant number
of passes and lifts of compacted soil, in ordecrgate robust data set
that does not have limitations due to a small arhotidata.

In general, the regression model with the intecacterm resulted in
slightly stronger coefficient of determination vefu This observation
is expected, considering that the additional tezsults in an additional
regression model coefficient, which allows for &defit model.

The removal of the base layer measurements frometbgective data
sets resulted in decreased coefficient of detertiminavalues. This is
contrary to the observation seen in the univargatalyses. This likely
is an indication that the relatively low moisturentent values of the
base layer caused the measurements to be outhietsei univariate
regression analyses. Since the multivariate regressalyses include
the influence of moisture content in the modelsartirelusion in the

data set did not negatively affect the correlations
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Overall examination of the regression results preskin this chapter shows
that fairly strong relationships exist between ager measurements of CCC values
and in situ test method values. Unfortunately, ptorpoint comparisons of individual
CCC measurements and in situ testing measuremeatsiod tend to yield good
agreement in a regression framework; i.e., thaerddd to be a lot of data scatter about
the trends that are predicted using a regressialysia approach. Additionally, it was
determined that moisture content significantly etfethe dry unit weight and modulus
of compacted soils, validating the need to use iwaisiaite regression analysis if the
moisture content is not kept constant for all staelsted. As it is nearly impossible to
keep uniform moisture content while compacting,dbils the recommendation of the
author that all further regression analyses peréafroomparing CCC measurements
with in situ test method measurements use mulat@riechniques to include moisture
content as an additional independent variableerrégression models.

In this chapter, regression analyses were perfortnecompare in situ test
measurements with predicted MDP and CMV valueshatcorresponding locations.
As mentioned, the selected prediction method wasrapic ordinary kriging
(anisotropic ordinary kriging could not be perfodrdue to the nature of the collected
data) largely because it has been the method afelused previously in this research
area for geospatial data (Brandl and Adam 2004 migson and White 2007, Petersen
et al. 2007, Tehrani 2009). However, the ordinargikg method is a complicated and
nontrivial interpolation technique which requireggnificant user interpretation
resulting in user sensitive results; evidence & ih displayed throughout this study,

specifically in Chapter 2 and Section 4.2.
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Later in this report, the framework for specificets of CCC equipment to be
used for compaction verification will be presentadd evaluated. Several of the
methods rely in part on the relationship betweenCG@Geasurements and in situ
method measurements. It is the belief of the authairthe use of the ordinary kriging
method for interpolation is not practical, due ts ccomplexity, for practicing
Geotechnical Engineers and Field Technicians tdoper Additionally, the user
sensitivity of the interpolation technique does radlow for standardization in
specifications which could ultimately result inidation issues. Therefore, a simple,
repeatable interpolation technique, that does mgfativity affect the relationships
between predicted CCC measurements and the congigsigoin situ testing method
measurements, must be found if CCC equipment ibetoused in a compaction
verification specification. Chapter 5 will examitiee use of alternative interpolation

techniques for the prediction of CCC measurements.
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Chapter 5

EVALUATION OF ALTERNATIVE TECHNIQUES FOR INTERPOLAT ING
CONTINUOUS COMPACTION CONTROL ROLLER MEASUREMENTS
FOR COMPARISON WITH IN SITU TEST METHOD MEASUREMENT S

5.1 Introduction

For CCC and IC technologies to be adopted as a QABQmpaction
verification method, relationships must be showtwieen CCC measured values (e.g.,
MDP and CMV) and the in situ QA/QC testing methamsrently used for this
process. In Chapter 4, univariate and multivanatgession analyses were performed
to compare interpolated CCC values to in situ tesithod measurements. A
sophisticated geospatial interpolation techniquagirkg, was used for predicting the
expected CCC measurements at the in situ testocagitms; this interpolation process
was necessary to allow for direct comparisons betwtbe data collected using these
two approaches. This interpolation method has lbeed by a variety of others for this
purpose in previous research (e.g., Brandl and A@&@, Thompson and White
2007, Petersen et al. 2007, Meehan et al. 2013khag/n in Chapter 4, the kriging
method is extremely complex and precise repeatalibm user to user is unlikely.
The author does not believe the kriging methodssitable interpolation technique to
be used in a specification framework, where important that the methods be simple
and repeatable. Other similar interpolation appnea are desirable to encourage
adoption of CCC and IC technologies as a compaat@ification technique in the

United States.
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In this chapter, alternative interpolation techm@gwvhich are simple in nature
and repeatable will be investigated to predict Q@€asurements of MDP and CMV.
The interpolation techniques that will be examireed inverse distance weighting
(IDW) and nearest neighbor (NN) interpolation. As fiast step, the CCC
measurements that are predicted using IDW and N&rgolation will be directly
compared to the interpolated CCC values that adigied using kriging, in an effort
to find a simplistic technique that will provide mparable results to those that are
yielded by the kriging process. After direct comgpan of predicted CCC measured
values, results that show strong agreement wittktiged predictions will be used in
univariate and multivariate regression analysesjlai to those that are described in
Chapter 4. The results of the regression analysksevcompared to the regression
results from Chapter 4, to further verify if a silispc interpolation technique can be
used in place of the more sophisticated kriginghmétfor QA/QC specification

purposes.

5.2 Point-to-Point Comparison of Interpolation Techniques

Throughout this chapter, alternative interpolatieahniques are compared to
the isotropic kriging method which is explaineddetail in Chapters 2, 4, and 5. The
reason for this, as mentioned, is because krigagy bbeen generally accepted as the
best interpolation technique for this purpose (Bgandl and Adam 2004, Thompson
and White 2007, Petersen et al. 2007, Meehan 20&B). For this reason, the kriging
predictions from the kriging method will be treatasl the observed data set and all
other predictions will be treated as estimated esl(The two alternative interpolation
techniques to be examined are NN and IDW. Eachhetd methods has been

discussed in detail in Chapter 2.
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The NN method simply selects the measured valueishelosest in spatial
distance to the prediction location and assignsuwake as the interpolated value. The
NN approach is extremely simple and has commongnhesed by roller manufacturer
software to provide spatial maps of CCC indicatalue measurements (e.g., Facas et
al. 2011). The inherent limitation with the NN methis that for data sets which show
high measured value variability from point-to-poithe measured value closet in
spatial distance may not be the most useful vatuether words, the NN method does
not smooth the data in any way, which is not idaalCCC data sets tend to have high
variability from point-to-point.

The IDW method uses a decaying weighting functiwat is based on spatial
distance in conjunction with a series of existingasured values to make value
predictions at other locations where measuremeetiat available. This method is
less affected by point-to-point variations in measiwalues than the NN method. The
IDW method requires that an exponent value be asdigo develop the inverse
distance weighting function. A more detailed expkgon of IDW may be found in
Chapter 2.

For this study, predictions were made using NN rpatation and IDW
interpolations with five different exponent valuep = 1, 2, 4, 8, and 64. The
resulting predictions are compared to the krigimgdictions in one-to-one plots, as
shown in Figures 5.1 and 5.2. Hypothetically, & tlesults matched precisely, the data
points would fall on the “line of equality”. Thigmk is represented as a 45 degree line
on each of the plots in Figures 5.1 and 5.2 andrefl way to visually assess the

accuracy of the predictions being made.
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The point-to-point error between observed (krigad)l predicted (NN, IDW)
values will be assessed using the associated reahrequare error (RMSE). In this
case, the smaller the RMSE value, the better tiigyadsl the interpolation method to
predict results that match the results of the kggprediction of CCC measurements.

Examination of Figures 5.1 and 5.2 shows agreerbeitween the general
trends that are observed in the MDP and CMV pratictesults. The lowest RMSE
value for both the MDP and CMV data sets, whichregponds to more precise
predictions, is seen for the IDW method with anangnt value op = 4. Therefore,
predictions of CCC measurements using IDW waith 4 most closely match the CCC
prediction results from the ordinary kriging methdéids important to note that there is
no convergence of RMSEs when increasing or deergakie exponent value in the
IDW method.

Additional review of Figures 5.1 and 5.2 shows tihat CCC predictions made
by the NN interpolation technique were the fiftlade precise of the six interpolation
techniques that were utilized. This would indicdtat NN is, likely, not an accurate
alternative to the isotropic kriging method. Howevalthough this point-to-point
assessment is excellent for initial comparisong thange in the strength of
correlations between the in situ test measuremamisthe CCC measurements is of
more importance. Therefore, it is the author's sieci to not rule out the NN
interpolation method at this point. Consequenthg possibility of using the NN
method and the IDWp = 4 method as alternatives to the kriging method ke

assessed from a regression correlation standpawingy forward in this chapter.
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5.3 Regression Analysis

In Chapter 4 (Section 4.3), regression analyses werformed on data sets of
kriging predicted CCC values and in situ test meaments. As previously discussed,
kriging has been established as the “state-of-ttiehaterpolation technique for this
purpose. Therefore, in this chapter, regressiorlyses will be performed on the
resulting CCC measurements predicted from NN imtetpn versus in situ test
measurements, and ID\ = 4 interpolation versus in situ test measuremenie
resulting correlations will be compared to the elations that were previously
developed using kriging interpolation. The intendgmhl is to find an alternative
interpolation method to kriging that does not shawignificantly lower quality of
correlations with the in situ test measurements.

In Section 4.3, five different subsets of data wanalyzed: (1) ll lifts and
passes (2) all lifts and passes excluding the base lay@) final passes (4) final
passes excluding the base lgyand (5)Lift 5 passesFor purposes of comparison of
interpolation methods, in this section, only #ikelifts and passes excluding the base
layer data set is evaluated. The reasoning for the tsaheof this subset is previously
discussed in the conclusion of Chapter 4. The fraonke provided in Section 4.3 will
still be followed. That is, four regression typedlvoe performed: (1) univariate
regression of individual data points, (2) univagietgression of the mean data for each
lift and pass, (3) multivariate regression of indual data points, and (4) multivariate

regression of the mean data for each lift and pass.

5.3.1 Univariate Regression Analysis of Individual CCC IDNV & NN Predictions
versus In Situ Testing Data

As in Section 4.3.1, two different univariate reggien forms are used

throughout the univariate analysis. The first idinear regression model which is
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shown as a solid line on the figures. The notatbiR? on figures and in summary
tables will refer to the coefficient of determiraati for the fitted linear regression
models. The second is a second-degree polynomiaeimohich is denoted as a
dashed line on the figures. Similarly, the notatarR%; on figures and in summary
tables will refer to the coefficient of determirati for the fitted second-degree
polynomial regression models. Additionally, the swa&d CCC and in situ data will
be shown in the figures (denoted as solid dotghabthe overall scatter of the data
and fit of the model may be visually examined.

Figures 5.3 through 5.8 show the univariate regpassodels for the NN
prediction and IDWp = 4 data sets. Observation of the results showdtikee is not a
strong linear or second-degree polynomial corretatbetween the in situ test
measurements and either of the predicted CCC vahdditionally, the polynomial
models do not offer much improvement over the linreadels with the exception of

the CMV versus moisture content values.
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To allow for easy comparison of the results of theee different data sets
(Kriging, IDW, NN) used in the regression analysa| of the coefficient of
determination values are summarized in Tables Bdl5a2. As previously mentioned,
the regression models that have a p-value grelaser ®.05 will be denoted with an
asterisk (*). The coefficient of determination vedu for the linear models are
presented in the &R columns (shaded in grey), and the coefficient efechination

values for the second-degree polynomial modelpasented in theRcolumns.

Table 5.1 R-Squared Values from the Univariate Reggssion Analyses that
were Performed on Individual Data Points (In Situ [ata as
Dependent Variable)

Kriging IDW P=4 NN
Dependent Variable R, R R =3 R, RS,
MDP (kJ/s) vs. CMV 0.53 | 0.55| 044 | 0.45| 0.34 | 0.36
Geogaugé& (MPa) vs. CMV 0.02* | 0.03* | 0.01* | 0.01* | 0.01* | 0.01*
LWD 300E (MPa) vs. CMV 0.04* | 0.04* | 0.02* | 0.03* | 0.03* | 0.03*
LWD 200E (MPa) vs. CMV 0.14 | 0.15| 0.12 | 0.13| 0.13 | 0.13
DCPIly (mm/blow) vs. CMV 0.38 | 0.39| 0.34| 0.35| 0.33 | 0.34
DCPIy (mm/blow) vs. CMV 0.38 | 0.38| 0.34 | 0.34| 0.33 | 0.33
NDG y4 (kN/m®) vs. CMV 0.17 | 0.23|0.161| 0.22 | 0.13f| 0.17%
CMV vs. MDP (kJ/s) 0.53 | 0.54| 044 | 0.44| 0.34 | 0.34

Geogaug (MPa) vs. MDP (kJ/s] 0.12 | 0.21] 0.12 | 0.20| 0.11 | 0.18
LWD 300E (MPa) vs. MDP (kJ/s] 0.18 | 0.18| 0.19 | 0.19| 0.16 | 0.17
LWD 200E (MPa) vs. MDP (kJ/s] 0.33 | 0.33| 0.32 | 0.33| 0.25 | 0.26
DCPl, (mm/blow) vs. MDP (kJ/s] 0.40 | 0.41| 0.38 | 0.38| 0.35 | 0.35
DCPI, (mm/blow) vs. MDP (kJ/s) 0.42 | 0.42| 0.40 | 0.40| 0.37 | 0.37
NDG yg4 (kN/m®) vs. MDP (kJ/s) | 0.25 | 0.32| 0.22 | 0.30| 0.21 | 0.26

*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05
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Table 5.2 R-Squared Values from the Univariate Reggssion Analyses that
were Performed on Individual Data Points (Moisture Content as
Dependent Variable)

. Kriging IDW P=4 NN
Dependent Variable R, R, R, R R, =3
Labw vs. CMV 0.33 | 0.38| 0.32| 0.38] 0.32 | 0.42
NDG w vs. CMV 0.21 | 0.27| 0.18 | 0.25| 0.18 | 0.27

Labw vs. MDP (kJ/s) | 0.32* | 0.33* | 0.29* | 0.30* | 0.25* | 0.26*
NDG w vs. MDP (kJ/s) | 0.48* | 0.50* | 0.47* | 0.49* | 0.47* | 0.50*

*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05

Observation of summary Tables 5.1 and 5.2 show thageneral the
coefficient of determination trends that are seethe Kriging results are also seen in
IDW p =4 and NN results. In general, the coefficientdefermination values for IDW
p = 4 are slightly lower than for kriging and the Nidefficient of determination
values are slightly lower than that of the IDpV= 4. However, with the possible
exception of the MDP vs. CMV results, the differeacin the coefficient of
determination values appear to be fairly insigaificbetween the different methods (a
matter of a few hundredths or so change fix Results from this analysis seem to
support the conclusion that both IDF\&= 4 and NN interpolation could be used as an
alternative for the kriging method, with IDV = 4 being the more accurate

alternative.

5.3.2 Univariate Regression Analysis of Average CCC IDW &NN Predictions
versus Average In Situ Testing Data

The same univariate regression analysis perfornhedeawill be followed in
this section with the only exception being that ta¢a sets here now consist of the

average measurements for each lift and pass of actop data. This is done in
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attempt to “smooth” the data and remove the infbgerof any point-to-point
discrepancies in the individual data. Consequettiy number of data points is
significantly reduced, therefore, the regressiordet® must be inspected carefully to
ensure that the coefficient of determination valaesurately reflect the models and
are not influenced by the small sampling size (damsjzes that are very small may
result in high coefficient of determination valubst do not appropriately portray the
accuracy of the model fit for the data series).

Figures 5.9 through 5.14 show the univariate resgpeasmodels for the NN
prediction and IDWp = 4 average data sets. The data shown in FiguGethfbugh
5.14 indicates that there is generally a strongdinand second-degree polynomial
correlation between the CCC measured values andntlseu measured values for
DCPI and the NDG, where both the MDP and CMV modélsw similar R values.
The regression models for the GeoGauge, and LWDItseshow a much stronger
relationship with MDP measurements when comparethéorelationship with the
CMV measurements. Additionally, all of the datasttbat there is a stronger second-
degree polynomial correlation with the CCC datanttiee linear model, although the

differences vary.
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To allow for easy comparison of the results of ttinee different average data
sets (Kriging, IDW, NN) used in the regression gs@l, all of the coefficient of
determination values are summarized in Tables Bd35a4. As previously mentioned,
the regression models that have a p-value grelaser ®.05 will be denoted with an
asterisk (*). The coefficient of determination vedu for the linear models are
presented in the &R columns (shaded in grey), and the coefficient efechination

values for the second-degree polynomial modelpasented in theRcolumns.

Table 5.3 R-Squared Values from the Univariate Reggssion Analyses that
were Performed on Average Data (In Situ Data as Demdent

Variable)
. Kriging IDW P=4 NN

Dependent Variable R, RS, R, =3 R, R

MDP (kJ/s) vs. CMV 0.92 | 0.93t1| 0.87 | 0.88f] 0.86 | 0.88%
Geogaugé& (MPa) vs. CMV 0.04* | 0.06* | 0.03* | 0.03* | 0.04* | 0.05*
LWD 300E (MPa) vs. CMV 0.08* | 0.17*| 0.06* | 0.14* | 0.09* | 0.16*
LWD 200E (MPa) vs. CMV 0.14* | 0.31*| 0.11*| 0.27* | 0.18* | 0.28*
DCPly (mm/blow) vs. CMV 0.75t| 0.93t| 0.721| 0.90t| 0.84 | 0.87%
DCPIy (mm/blow) vs. CMV 0.68t| 0.85* | 0.64* | 0.81* | 0.751| 0.81*
NDG y4 (kN/m®) vs. CMV 0.691| 0.70* | 0.671| 0.68* | 0.66* | 0.66*
CMV vs. MDP (kJ/s) 092 | 0.98| 0.87 | 0.98| 0.86 | 0.877
Geogaugé& (MPa) vs. MDP (kJ/s) | 0.23* | 0.43* | 0.24* | 0.43* | 0.25* | 0.44*
LWD 300E (MPa) vs. MDP (kJ/s) | 0.55%| 0.55* | 0.61t| 0.62* | 0.611| 0.62*
LWD 200E (MPa) vs. MDP (kJ/s) | 0.65%| 0.65* | 0.72 | 0.731 0.691| 0.70*
DCPly (mm/blow) vs. MDP (kJ/s) | 0.78 | 0.791] 0.80 | 0.801| 0.81 | 0.82%
DCPI, (mm/blow) vs. MDP (kJ/s) | 0.80 | 0.821 0.81 | 0.831| 0.84 | 0.86
NDG y4 (KN/m°) vs. MDP (kJ/s) 0.72 | 0.85| 0.73 | 0.831 0.76 | 0.86

*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05
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Table 5.4 R-Squared Values from the Univariate Reggssion Analyses that
were Performed on Average Data (Moisture Content aPependent

Variable)
5 dent Variabl Kriging IDW P=4 NN
ependen arianie

p I R R, R, R, R, R,
Labw vs. CMV 0.50* | 0.56* | 0.50* | 0.58* | 0.63* | 0.75*
NDG w vs. CMV 0.46* | 0.63* | 0.43* | 0.58* | 0.49* | 0.64*

Labw vs. MDP (kJ/s) | 0.28* | 0.41* | 0.26* | 0.40* | 0.24* | 0.39*
NDG w vs. MDP (kJ/s) | 0.67* | 0.74* | 0.70* | 0.78* | 0.68* | 0.78*

*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05

Observation of summary Tables 5.3 and 5.4 show, timtgeneral, the
coefficient of determination trends that are seethe Kriging results are also seen in
IDW p =4 and NN results. It seems that the differenneefficient of determination
values for the three different interpolation teciua results do not follow any pattern.
For some analyses the kriging results have higbefficient of determination value
and for other the NN interpolation method has high&ues. However, again, the
differences in coefficient of determination valuggpear to be fairly insignificant
(typically a matter of a few hundredths). The restrdom this analysis seem to support
the conclusion that both IDW = 4 and NN interpolation could be used as an

alternative for the kriging method, for averagethdsets.

5.3.3 Multivariate Regression Analysis of Individual CCCIDW & NN
Predictions versus In Situ Testing Data

The implementation of the multivariate regressioalgsis for the individual in
situ test measurements versus the prediction seexftCCC measurements and
corresponding moisture content values will follawsuit with the presentation style

for the multivariate regression analysis that isvet in Section 4.4.2. However, in the
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current section, multivariate regression analysit bve performed on just one of the
five different subsets of the CCC and in situ dath]ifts and passes excluding the
base layer The associated multivariate regression resutpersented in Figures 5.15

through 5.18.
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Figure 5.15 Multivariate regression analyses of CCC GeoGauge, and LWD
measured values, vs. IDWp = 4 predicted MDP and CMV
measurements for all lifts and passes, excluding ba layer.
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Figure 5.16 Multivariate regression analyses of CCC GeoGauge, and LWD

measured values, vs. NN predicted MDP and CMV measements
for all lifts and passes, excluding base layer.
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Figure 5.17 Multivariate regression analyses of DCRnd NDG measured values,
vs. IDW p = 4 predicted MDP and CMV measurements for all lifs
and passes, excluding base layer.
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Figure 5.18 Multivariate regression analyses of DCRnd NDG measured values,
vs. NN predicted MDP and CMV measurements for all ifts and
passes, excluding base layer.

The results shown in Figs. 6.15 through 6.18 areeg@ly in agreement with
the results of the multivariate analysis with knigipredictions presented in Section
4.4.2, where it was first shown that the introdoictiof moisture content as an
additional independent variable greatly improves strength of the correlations. To
allow for easy comparison of the results of thee¢hdifferent average data sets
(Kriging, IDW, NN) used in the regression analysa| of the coefficient of
determination values are summarized in Table 5.%.pfeviously mentioned, the

regression models that havepavalue greater than 0.05 will be denoted with an
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asterisk (*). The coefficient of determination vedu for the linear models are
presented in the &R columns (shaded in grey), and the coefficient efechination

values for the second-degree polynomial modelpasented in theRcolumns.

Table 5.5 R-Squared Values from the Multivariate Rgression Analyses that
were Performed on Individual Data Points (In Situ [ata as
Dependent Variable)

. Kriging IDW P=4 NN

Dependent Variable R, RS, R, R R, R

MDP (kJ/s) vs. CMV 0.50 | 0.53| 0.69 | 0.70| 0.61 | 0.62
Geogaugé (MPa) vs. CMV 0.22 | 0.271| 0.43 | 0.44| 0.43 | 0.43
LWD 300E (MPa) vs. CMV 0.21f| 0.22t| 0.50 | 0.51| 0.50 | 0.50
LWD 200E (MPa) vs. CMV 0.24 | 0.241| 0.48 | 0.50| 0.49 | 0.50
DCPly (mm/blow) vs. CMV 045 | 0.47| 047 | 0.49| 0.46 | 0.47
DCPIy (mm/blow) vs. CMV 0.44 | 0.46| 0.57 | 0.57| 0.56 | 0.56
NDG y4 (KN/m®) vs. CMV 0.31 | 0.39| 0.161| 0.251| 0.13* | 0.19*
CMV vs. MDP (kJ/s) 0.75| 0.75| 040 | 0.43| 0.29 | 0.32
Geogaugé& (MPa) vs. MDP (kJ/s) | 0.48 | 0.49| 0.36 | 0.40| 0.36 | 0.40
LWD 300E (MPa) vs. MDP (kJ/s) | 0.50 | 0.51| 0.52 | 0.52| 0.50 | 0.50
LWD 200E (MPa) vs. MDP (kJ/s) | 0.60 | 0.62| 0.59 | 0.59| 0.55 | 0.55
DCPly (mm/blow) vs. MDP (kJ/s) | 0.59 | 0.62| 0.44 | 0.44| 0.42 | 0.42
DCPIy (mm/blow) vs. MDP (kJ/s) | 0.58 | 0.61| 0.53 | 0.53| 0.52 | 0.52
NDG y4 (KN/m°) vs. MDP (kJ/s) 0.58 | 0.64| 0.23 | 0.31| 0.21 | 0.27

*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05

Observation of summary Table 5.5 shows that therdifices in the coefficient
of determination values for the three differenermblation technique results do not
follow any pattern. For several of the analyses kiniging results have higher
coefficient of determination values, and for oth#re NN interpolation method has

higher values. Still, in general, the differencesthe coefficient of determination
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values appear to be fairly insignificant (i.e., attar of a few hundredths). However,
there are a few exceptions were kriging analyder ehuch stronger correlations (e.g.,
for the NDG vs. MDP and Geogauge vs. MDP data satg) others where NN and
IDW offer much stronger correlations (e.g. the Gagge vs. CMV, LWD 300 vs.
CMV, and LWD 200 vs. CMV data sets). In generadutes from this analysis seem to
support the conclusion that both IDp\= 4 and NN interpolation could be used as an

alternative for the kriging method.

5.3.4 Multivariate Regression Analysis of Average CCC IDW& NN Predictions
versus Average In Situ Testing Data

The same multivariate regression analysis perforaiede will be followed in
this section, with the only exception being that thata sets here now consist of the
average measurements for each lift and pass of actiop data. As mentioned in
Section 5.3.2, this is done in attempt to “smodh® data and remove the influence of
any point-to-point discrepancies in the individdalta. Consequently the number of
data points is significantly reduced, therefore, tbhgression models must be inspected
carefully to ensure that the coefficient of deteration values accurately reflect the
models and are not influenced by the small samding (sample sizes that are very
small may result in high coefficient of determimativalues that are not reasonably
representative of the data series).

Figures 5.19 through 5.22 show the multivariateesgion models for the NN
prediction and IDWp = 4 average data sets. Examination of Figures thitugh 5.22
reveals that, in general, there is a strong lin@ad second-degree polynomial
correlation between the CCC measured values anuh thieu measured values for all

of the in situ test methods. Additionally, the C\todels show consistently highef R
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values than the MDP models, with the exception e DCP and NDG models.
Contrary to the univariate results and multivariatealyses of individual data, the
regression models for the GeoGauge show a muchgaraelationship with CMV
measurements when compared to the relationship thiéh MDP measurements.
Additionally, all of the data show that there is equal or stronger second-degree
polynomial correlation with the CCC data than theed&r model, although the

differences vary.
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Figure 5.19 Multivariate regression analyses of avage CCC, GeoGauge, and
LWD measured values, vs. IDW P =4 predicted MDP andCMV
measurements for all lifts and passes, excluding ba layer.
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Figure 5.20 Multivariate regression analyses of avage CCC, GeoGauge, and
LWD measured values, vs. NN predicted MDP and CMV
measurements for all lifts and passes, excluding ba layer.
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To allow for easy comparison of the results of tiiree different average data

sets (Kriging, IDW, NN) used in the multivariategression analyses, all of the

coefficient of determination values are summarizedTable 5.6. As previously

mentioned, the regression models that have a pe\gkeater than 0.05 will be denoted

with an asterisk (*). The coefficient of determiioat values for the linear models are

presented in the 4R columns (shaded in grey), and the coefficient efechmination

values for the second-degree polynomial modelpasented in the®Rcolumns.
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Table 5.6 R-Squared Values from the Multivariate Rgression Analyses that
were Performed on Average Data (In Situ Data as Demdent

Variable)
. Kriging IDW P=4 NN
Dependent Variable R, RS, R, R R, R
MDP (kJ/s) vs. CMV 0.98 | 1.00| 0.98 | 0.991| 0.94t1| 0.97%
Geogaugé& (MPa) vs. CMV 0.62* | 0.64* | 0.78*| 0.78* | 0.81* | 0.81*
LWD 300E (MPa) vs. CMV 0.70* | 0.83* | 0.891| 0.96* | 0.891| 0.94*
LWD 200E (MPa) vs. CMV 0.80* | 0.89* | 0.96* | 0.96* | 0.941 | 0.94*
DCPly (mm/blow) vs. CMV 0.76* | 0.77* | 0.75* | 0.76* | 0.85* | 0.87*
DCPIy (mm/blow) vs. CMV 0.68* | 0.72* | 0.80* | 0.81* | 0.84* | 0.89*
NDG y4 (KN/m®) vs. CMV 0.87t| 0.87* | 0.75* | 0.80* | 0.77* | 0.96*
CMV vs. MDP (kJ/s) 0.99 | 1.00| 0.96 | 0.98t| 0.89t| 0.90*
Geogaugd (MPa) vs. MDP (kJ/s) | 0.70f| 0.77* | 0.50* | 0.56* | 0.50* | 0.56*
LWD 300E (MPa) vs. MDP (kJ/s) | 0.70* | 0.78* | 0.771| 0.87t1| 0.77t1| 0.87t
LWD 200E (MPa) vs. MDP (kJ/s) | 0.74t| 0.78* | 0.78t1| 0.841| 0.771| 0.84t
DCPIy (mm/blow) vs. MDP (kJ/s) | 0.84 | 0.861| 0.80t| 0.80* | 0.82t| 0.82*
DCPI, (mm/blow) vs. MDP (kJ/s) | 0.82t1| 0.841| 0.85 | 0.851| 0.87 | 0.87t
NDG 74 (kN/m°) vs. MDP (kJ/s) 0.92 | 0.921| 0.85 | 0.911 0.88 | 0.94

*: Models that have a p-value greater than 0.05
t: Models that have a p-value between 0.01 and 0.05

Observation of summary Table 5.6 shows that tHemifces in the coefficient
of determination values for the three differenerpblation technique results do not
follow any pattern. For several of the analyses kiniging results have higher
coefficient of determination values and for othiee tNN interpolation method has
higher values. Still, in general, the differencescoefficient of determination values
appear to be fairly insignificant (i.e., a mattéadew hundredths). However, there are
a few exceptions where the kriging analysis off@rsch stronger correlations (e.g.,
Geogauge vs. MDP), and others were NN and IDW offach stronger correlations

(e.g., Geogauge vs. CMV, LWD 300 vs. CMV, LWD 208. €MV, andDCPI, vs.
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CMV). In general, this results from this analysis sdernsupport the conclusion that
both IDW p = 4 and NN interpolation could be used as an aitere for the kriging

method.

5.4 Summary and Conclusions

In Chapter 4, it was shown that, in order to buéthtionships between CCC
measurements and in situ test method measurenientas necessary to predict the
CCC measurements at the locations of the measarsidui testing data. As noted in
Chapter 4, isotropic ordinary kriging interpolatiaas the most appropriate (and best)
method for interpolating the CCC data. However, l@i is the most appropriate
approach to use from a mathematical standpoingjrigiis not recommended by the
author for performing interpolation in a QA/QC sifieation framework, due to the
complexity and sensitivity of user judgment on tesulting prediction values.

In this chapter two alternative methods were exanhifor prediction of CCC
values at the spatial locations of the recordesitintest measurements. The intent of
this chapter is to find an alternative interpolatimethod that does not result in
significant changes to the accuracy of the coiniat (i.e., coefficient of
determination values) that exist between the kggiredicted CCC values and the in
situ test methods. This alternative interpolatioetmod could then be recommended
for use in specifications for the use of CCC tedbgy for compaction verification.

Similar to Chapter 4, for the univariate regress@ralysis, two regression
models were used: a linear model and a second-elggoénomial model. The
univariate regression analyses were performeddinsthe data set of individual CCC
values (predicted using IDW and NN) and the varigusitu test method results.

Then, just as in Chapter 4, univariate regressioalyges were performed on the

198



average values for each lift and pass. Additionathe resulting coefficient of
determinations from the models using IDW and NNdpr&éons were compared to the
coefficient of determination values from the krigirmodels. The results of the
univariate regression analyses resulted in the neodirtiie same general conclusions
presented in Section 4.5, which are restated below:

» Comparison of the individual values of CCC measwm®is and in situ
test measurements at point-to-point locations skloweeak
correlations.

 Comparison of the average values of CCC measursnamd in situ
test measurements at point-to-point locations gelcelatively strong
correlations. However, a number of the average skt did not have a
sufficient number of data points; therefore, sevefahe models and
corresponding coefficient of determination valuesrevunreliable and
needed to be ignored.

* For a number of cases, the second-degree polynanodel showed
significantly stronger correlations than the lineandel (e.g. DCP
values, NDG dry unit weight values, and moisturetenots).

* Generally, MDP measurements showed better comektivith the in
situ test methods, in comparison to the CMV measargs. This is
likely related to the different influence depths dhe CCC
measurements. The influence depth of MDP is muoketlto that of
the in situ test methods, which range from appratety 20 cm to 60
cm. In contrast, the influence depth of CMV measwe®ts is roughly

80 cm to 150 cm, as noted by White and Thompso@8R0
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* In general, the DCP indices show much strongeretations with the
CCC measurements, in comparison to the other untsgting methods
used in the study.

* In general, the GeoGauge moduli values showed tleakest
correlations with the CCC measurements, in comparie the other in
situ testing methods used in the study.

* In general, both sets of moisture content valuesveld much stronger
correlations with the CCC measurements, in comparie the density
and modulus based in situ testing methods usdueistudy.

As concluded in Chapter 4, the moisture conditibthe soil is a significant
factor when measuring the modulus and dry unit tted compacted soils. Following
this conclusion, multivariate regression analysesewalso performed using CCC
values from IDW and NN predictions, for compariswith the kriging model
regression analyses from Chapter 4.

Similar to the univariate regression analysis, floee univariate regression
analysis two regression models were used: a limemtel without an interaction term
and a linear model with an interaction term. Theneaprocedure used for the
univariate analyses was followed for the multiverianalyses. The multivariate
regression analyses were performed first on thea dat of individual CCC
measurements and the various in situ test metlsdtse Then, multivariate regression
analyses were performed on average values for lfaeimd pass. The results of the
multivariate regression analyses resulted in mainyhe same general conclusions

presented in Section 4.5, which are restated below:
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» Comparison of the individual values of CCC measwm®is and in situ
test measurements at point-to-point locations skiovwaproved
correlations compared to those seen in the uniear@nalyses,
however, correlations were still relatively weak.

 Comparison of the average values of CCC measursnamd in situ
test measurements at point-to-point locations wgieldsery strong
correlations. However, a majority of the averagedats did not have
a sufficient number of data points; therefore, nafsthe models and
corresponding coefficient of determination valuesrevunreliable and
needed to be ignored. To improve this, future ssidihould consider
recording CCC and in situ test measurements fografeant number
of passes and lifts of compacted soil, in ordecrgate robust data set
that does not have limitations due to a small arhotidata.

* In general, the regression model with the intecacterm resulted in
slightly stronger coefficient of determination vefu This observation
is expected considering the additional term resintsan additional

regression model coefficient, which allows for &demodel fit.

The general conclusions mentioned thus far reaontire general conclusions
from Chapter 4; however, the true purpose of thepter was to evaluate the effect of
using IDW and NN interpolation methods for prediatiof CCC values, by examining
the effect that these interpolation methods hadhernrelationships between the CCC
measurements and in situ test method measurendésby side comparisons of the

coefficient of determination values from the regies analyses were provided in
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summary tables throughout this chapter. Observatidghe results led to the following

conclusions:

In general, for univariate regression analysishef individual values
of CCC measurements and in situ test measuremepisird-to-point
locations, the coefficient of determination valdes IDW p = 4 are
slightly lower than for kriging. Similarly, the NNoefficient of
determination values are slightly lower than thathe IDW p = 4.
However, the overall differences in coefficientdgftermination values
between kriging, IDW, and NN appear to be fairlgignificant (i.e., a
matter of a few hundredths).

For univariate regression analysis of the averaghies of CCC

measurements and in situ test measurements, tlieredies in

coefficient of determination values for the thraeedent interpolation

technique results do not follow any pattern. Fomeoanalyses the
kriging results have higher coefficient of deteration value and for
others the NN interpolation method has higher \alitowever, again,
the differences in the coefficient of determinatialues appear to be
fairly insignificant (a matter of hundredths).

For multivariate regression analysis of the indinatvalues of CCC
measurements and in situ test measurements attpgpaint locations,

none of the interpolation methods provides consiBtestronger

correlations. In general, the differences in cegdfit of determination
values appear to be insignificant (a matter of medths). However,

there are a few exceptions where kriging analyfe anuch stronger
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correlations (e.g., NDG vs. MDP and Geogauge vsP)[and others
where NN and IDW offer much stronger correlatioagy(, Geogauge
vs. CMV, LWD 300 vs. CMV, and LWD 200 vs. CMV).

* For multivariate regression analysis of the averagkies of CCC
measurements and in situ test measurements, nahe aiterpolation
methods provides consistently stronger correlatidnsgeneral, the
differences in the coefficient of determination ued appear to be
insignificant (a matter of hundredths). Howevererth are a few
exceptions where kriging analysis offer much steyngorrelations
(e.g., Geogauge vs. MDP), and others were NN al tidfer much
stronger correlations (e.g., Geogauge vs. CMV, LB vs. CMV,
LWD 200 vs. CMV, and DCPIA vs. CMV).

As mentioned previously, it is the belief of thethar that the use of the
ordinary kriging method for interpolation with CCQA/QC applications is not
practical, due to its complexity, for practicing @echnical Engineers and Field
Technicians. Therefore, a simple, repeatable iotatjpn technique that does not
significantly affect the relationships between pecesti CCC measurements and the
corresponding in situ testing method measuremestsneeded to use these
relationships in a specification framework.

Assessment of the conclusions from this chapteensouraging for the
possibility of using IDW or NN interpolation in gla of the more rigorous isotropic
ordinary kriging method for use in a QA/QC speatfion framework. Based on the
results, in the case of univariate regression amalyetween CCC measurements and

in situ method measurements, ID@= 4 and NN interpolation can be used in
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confidence as a replacement for isotropic ordirkaiging predictions of CCC values.
However, if multivariate regression analyses meshade specified, then careful
examination of the correlations between the threerpolation methods should be
examined, due to inconsistent correlations for sdvef the in situ testing methods
with the three predicted CCC data sets.

For both univariate and multivariate regressionlym®s, caution should be
taken when speculating the use of the NN interpmiamethod for prediction of the
CCC values at the precise locations of the in tgith method measurements. The NN
method fails to smooth the data and is highly spisicle to outliers, in the event the
closest measurement to the prediction locatiomiareomaly, the NN will not be able
to adjust and consider other more representativasarements. It is for this reason
that the author does not recommend the use of Ndtpalation for this application.
However, the author does see potential for usén@flDW interpolation method for
use in a specification framework. Nonethelesss ihécessary to evaluate the IDW
interpolation method on additional data sets framilar projects before making a
blanket conclusion for prediction of CCC measuretsien

Chapter 6 will provide a discussion on techniques implementation of
several different proposed CCC compaction verificatnethodologies using the data

collected from this study.
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Chapter 6

AN EVALUATION OF SPECIFICATION METHODOLOGIES FOR US E
WITH CONTINUOUS COMPACTION CONTROL EQUIPMENT

6.1 Introduction

Continuous compaction control (CCC) and intelligeompaction (IC)
technology offers an improvement over conventianaitu spot-testing methods for
earthwork compaction verification in that real-tim@mpaction results are determined
with 100% test coverage (e.g., Vennapusa et al0R@4s noted in previous chapters,
CCC systems are data acquisition systems installedompaction equipment that
read real-time feedback about the operation andonmeance of soil compaction
(Thurner and Sandstrom 1980; Adam 1997; Adam amehdr2003). The compaction
monitoring system consists of an instrumented railith sensors to monitor machine
power output in response to changes in soil-macimtazaction, in the form of roller
measured values (MV). It is also fitted with a glblpositioning system (GPS) to
monitor roller location in real time (Vennapusa el 2010; White et. al. 2011).
Therefore, it produces spatially referenced compadterification in real time.

In Chapter 2, the current approach to end-prodesessment of compacted
soils is presented and discussed, along with aisissen of the in situ test methods that
are most commonly employed for QA/QC of compacteis e.g., compacted soil
acceptance requires 95% relative compaction asureghby a nuclear density gauge).
Additionally, the limitations and problems assoedtvith these in situ test methods

are discussed. One of the largest problems witlctineent in situ test methods is the

205



fact that they are spot-tests. These spot-tesés offimpaction verification at discrete
locations, which represent a small percentage ef dabtual compaction area. In
comparison, the introduction of CCC and IC techggland the ability to record roller
MV continuously and instantaneously allows for caetpon verification of a much

larger percentage of the compaction area.

For this reason and others, CCC technology has &gepted in Europe (e.qg.,
Austria 1999; Germany 2009; Sweden 2005; Switzdri2®06; ISSMGE 2009) as a
guality assurance (QA) method for compaction veaifon. More recently, several
United States Departments of Transportation (DOMWY dahe Federal Highway
Administration (FHWA) have developed similar CCCdaiC specifications for
compaction verification (Minnesota DOT 2007; Texa®T 2008; FHWA 2011,
Indiana DOT 2013). The acceptance criterion usedha@se specifications can be
classified into four specification methodologies proposed by Mooney et al. 2010.

In this chapter, these four acceptance methods Qp#ons 1, 2a, 2b, and 3
from Chapter 2) will be implemented for the datatthwas collected from the
construction of the embankment described in thiel f¢udy from Chapter 3. Only a
brief description of the compaction process willdiecussed within this chapter. An
in-depth account of the field study performed canfound in Tehrani (2009) and
Chapter 3. This chapter will attempt to retrospasyi use the roller MV and NDG
density and moisture content measurements recdrgleitie modified roller during
compaction to evaluate the four QA CCC specificatioethodologies for compaction
of Lift 5. It should be noted that since the folCC QA Options were not considered
at the time of the field study, the current setlafa is not adequate to accurately and

completely implement each of the proposed methtdsead, the purpose of this
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chapter is to provide the general framework forlynag real CCC data in a

specifications format for compaction verification.

6.2 Implementation of CCC Specification Methods

The project was performed at the BurriBerrow Pit in Odessa, Delaware in
the United States. A 6fn long by 6 m wide (200 ft by 20 ft) embankment was
constructed using conventional earth moving equigna&d compacted in five soil
lifts. The soil that was used to construct the emkb@ent was generally uniform
(Meehan and Tehrani 2011), falling at the clasaifan boundary between two soil
types: a poorly graded sand with silt (SP-SM) asdtg sand (SM).

Using a modified Caterpillar CS56 compactor, eaftrmlas compacted in a
series of passes using three side-by-side lanese&ah lift, between six and nine
compactor passes were performed to achieve theedekvel of compaction. To
verify the level of compaction, conventional inusiQA/QC spot tests (e.g., NDG,
LWD) were performed, while CCC measurements wekertaduring select lifts and
passes. For the final lift of the embankment (Bift CCC roller MV and in situ test
measurements were taken for all seven lifts. Tdta dcom Lift 5 will allow for the
implementation of the four CCC specification QA/@@tions on a real set of data.

As discussed in Section 2.7.2.3 in Chapter 2, nreasent passes require that
roller operational parameters including roller spesnd vibration amplitude be
consistent. Shown in Table 6.1 are the roller ajpmral parameters for all passes of
Lift 5 and the corresponding measurement pass ioptaRoller pass 1 is not
considered a measurement pass due to the hightigibramplitude used during

compaction, which is inconsistent with the othesges and, therefore, the roller MV
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cannot be compared. Complete roller MV for rollas® 6 was not recorded and, thus,

roller pass 6 is not considered a measurementgiidies.

Table 6.1 Roller Parameters During Compaction

Compaction Amplitude Mean Roller
Roller Passg (mm) Speed (km/h) Measurement Pa3s |(
1 1.87 3.13 -
2 0.85 3.06 1
3 0.85 3.07 2
4 0.85 3.13 3
5 0.85 3.17 4
6 0.85 3.02 -
7 0.85 3.00 5

For purposes of the current study, the contractiBpd QA-TV will be
assumed to be 95% of the maximum dry density, &ith2% optimum moisture
content range, which is similar to the specificasiothat are used in Delaware
(DelDOT 2001). The maximum dry density is 18.83 kRland the optimum moisture
content is 11.70%, therefore, QA-TV = 17.89 kN/and the allowable range of
moisture content during compaction is 9.70% to Q%7 Since a proper calibration
area (Section 2.7.2.5) was not constructed, atetations that are developed here are
determined from the data that was collected durocmgnpaction of Lift 5.
Consequently, the coefficient of determination iegment (e.g., R> 0.5) will be
ignored. The purpose of this section is to simgipvs the process by which data

should be analyzed when utilizing CCC measurementsrify compaction.
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6.2.1 Acceptance Testing Using Option 1

A detailed explanation of Option 1 can be foundettion 2.7.4. However, in
essence, Option 1 relies on spot checking of NDG@smements at areas of lower
compaction identified by the roller MV during theeasurement pass. It is required
that a correlation be shown between the roller M BIDG measurements to ensure
that the “weak areas” identified by the roller MNdicate areas of low compaction.
Univariate regression equations are shown in Figutor MDP and CMV. The data
used for the CMV regression analysis includes datdlected only during
measurement passes of Lift 5. Simple linear regressas performed for the roller
MV and NDG dry unit weightsyf) to determine if there is a positive or negative
relationships. The correlation equations develogedin the form of Equations 2.6
presented in Chapter 2. The results indicate tlglt MDP values correlate to “weak

areas” and low CMV values correlate to “weak” areas

19.0 19.0

—— v,=19.12-0.075*MDP —— y,=17.69 -0.042¢CMV
~ 188 . 1838
o
£ &
@ 18.6 @ 18.6
= 18.4 = 18.4
el c I
(] [}
2 182 2 182
= 180 = 18.0
[ ] ° ° [ ]
17.8 178 ————r——
4 6 8 10 12 14 16 8 10 12 14 16 18 20 22 24 26
(a) MDP (kJ/s) (b) CMV

Figure 6.1 Univariate linear regression (a) MDP vsyg; (b) CMV vs. yg.
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Since Option 1 was not actually used during corsitva of the embankment,
the ideal amount of NDG data is not available witthe roller MV identified “weak
areas”. The contour plots of MDP and CMV valuesrf@asurement passes 1 through
5 (Figures 6.2 and 6.3) identify the “weak area&signated by red boxes, that would
hypothetically have been spot tested with the NB& can be seen from the contour
plots NDG testing done in the “weak areas” is leditand, therefore, adequate
compaction cannot be verified in many of the deslozations. More importantly, for
purposes of this study, it can be seen that comtmis for MDP and CMV show, in
general, good agreement in identifying the “weadaal that should be spot-tested.

Assessment of the NDG data that was collected lgeubat only six of the
NDG measurement locations fall within these “weakas”. Three locations for
measurement pass 1; they are locations 1.2, 1@, lah (Figures 6.2 and 6.3).
Additionally, three locations for measurement pasthey are locations 5.4, 5.5, and
5.10 (Figures 6.2 and 6.3). Proper compaction ieatibn would require more NDG
measurements in the “weak areas” but for this esercption 1 will be continued
using these six test measurements. In order tdyeasify compaction in the “weak
areas” a summary of the dry unit weights, moistostents, and relative compaction
percentage values corresponding to all the NDG mesasurement locations are

presented in Table 6.2.
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Figure 6.2 MDP contour plots: (a) Measurement Pas$; (b) Measurement Pass
2; (c) Measurement Pass 3; (d) Measurement Pass 4nd (e)
Measurement Pass 5.
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Figure 6.3 CMV contour plots: (a) Measurement Pasg; (b) Measurement Pass
2; (c) Measurement Pass 3; (d) Measurement Pass 4nd (e)
Measurement Pass 5.

212



Table 6.2 “Weak Area” NDG Results

Test Location Dry Unit Weight, | Moisture Content,| Relative Compaction),
v4 (KN/m3) o (%) RC (%)
1.1 18.33 10.28 97.4
1.2 17.99 10.92 95.5
1.3 17.88 10.02 94.9
1.4 18.05 10.62 95.9
1.5 18.13 12.31 96.3
2.1 18.27 10.49 97.0
2.2 18.11 10.49 96.2
2.3 18.21 10.61 96.7
2.4 17.91 11.40 95.1
2.5 18.14 11.60 96.4
4.1 18.74 8.97 99.5
4.2 18.25 10.24 96.9
4.3 18.43 10.40 97.9
4.4 18.39 10.93 97.7
4.5 18.63 10.96 98.9
5.1 18.62 8.66 98.9
5.2 18.53 9.64 98.4
5.3 18.51 10.55 98.3
5.4 18.15 9.92 96.4
55 18.63 9.30 98.9
5.6 18.68 9.98 99.2
5.7 18.75 9.56 99.6
5.8 18.28 9.51 97.1
5.9 18.80 10.39 99.9
5.10 18.79 10.03 99.8

In Table 6.2, the measurements that are locatetidnroller MV identified
“weak areas” are denoted in bold-faced text. Addaily, points that fail either the
moisture content criterion or the relative compattcriterion are denoted in italic
text. NDG measurement at location 1.3 shows anfaipoint based on the relative

compaction criterion, therefore, it can be conctudkat additional compaction is
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needed. The state of densification for measurerpasses 2, 3, and 4 cannot be
properly assessed because there is no NDG ddta inveak areas”. For measurement
pass 5 all the NDG measurements taken signifydbiatpaction has been completed.
However, a few of the locations for measuremens faslo not meet the moisture
content criteria. Each of these points is slightgéfow the 9.7 % minimum moisture
content required, however, since the values arg siijhtly lower, on a full-scale
projects these points would likely be accepted.eBasn the data collected it may be
possible to conclude that compaction is completgeding measurement pass 5,
however, the author cautions against confirming maction on real projects without

performing NDG spot-test in all of the roller MVtdemined “weak areas”.

6.2.2 Acceptance Testing Using Option 2a

A detailed explanation of Option 2a can be foun&eéttion 2.7.5.1. However,
in essence, Option 2a defines compaction compfeteei percentage change in the
mean of roller MV from successive passes is less tbhr equal to a specified
percentage change target valdeAl,,,, < %A-TV). For this study the %-TV was
chosen to be 5%. This compaction verification mettexjuires that th&Awu,,, being
calculated be based on data from successive padgeddentical roller patterns,
speeds, and vibration amplitudes. This is why aentaller passes have been ignored
and measurement passes have been established le ®db To preface the
implementation of this Option, it is assumed tlet tcompaction equipment utilized is
completely capable of achieving the required desadibn levels.

The %Auyy, has been calculated according to Equation 2.3hemMDP and
CMV data from measurement passes 1 through 5. @hdts are shown side by side

in Table 6.3, and offer easy comparison of the tdifferent roller MV type
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evaluations. Using Option 2a there is agreemenwdmt the MDP and CMV mean

percentage change in RMV that the compaction @i@bAu,y, < 5 %) is reached at
measurement pass 5 (Table 6.3). This indicates dbipaction is complete after

measurement pass 5.

Table 6.3 Percentage Change in Mean of the CCC Data

Measurement Pass$ MDP (?;;)A“MVL' CMV(Z//‘(’))A“MVL-
1to 2 17.0 34.4
2103 11.5 20.7
3to4 9.7 9.1
4105 3.1 2.9

It is important to note that the 2TV was chosen arbitrarily by the author for
purposes of this implementation study. Howevethd criteria was changed to/%
TV = 10 %, revaluation of Table 6.3 would determic@mpaction complete after
measurement pass 4. The selection of theT4 is extremely critical and will
drastically alter the results of compaction vedtfion process. Therefore, theAddV

should be selected by the engineer on a site-¢dssisis.

6.2.3 Acceptance Testing Using Option 2b

A detailed explanation of Option 2b can be foun&ettion 2.7.5.2. However,
in essence, Option 2b relies on a specified mininpercentage of the roller MV
increasing by less than theA%T'V. Since more variation is observed when comparin
spatial data from pass to pass versus comparing weaes (e.g., Option 2a), it is
expected that the ATV be higher here than it is for Option 2a. Thi#etia chosen

for this paper is that at least 90% of the spat@atentage change in roller MV from
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successive passes be less than or equal to 10np€ZAMYV; < 10 %). Similar to
Option 2a, it is again assumed that the compa@nipment is capable of providing
adequate compaction. An additional requirementCption 2b is that the roller MV
recorded at each measurement pass be interpolated ao consistent grid, thus,
enabling the calculation of the percent changeller MV on a point-to-point basis.
Based on the conclusions and reasoning providedhiapter 5, an inverse distance
weighting (IDW) interpolation technique with an exyent value equal to foup € 4)
has been utilized.

Table 6.4 shows the percentage of th@MV; < 10% for successive
measurement pass data for all measurement passesxp&cted, the percentage of
data meeting the criteria increases with the nundbgrasses (Table 6.4). A simple
way to visualize the process is to view a cumuéatistribution frequency (CDF) plot
for the%AMYV; data. Figure 6.4 shows the CDF data for the dpagiccentage change
of roller MV in the MDP and CMV measurements. Byadimg the area of data
passing the percentage change target value crifgaTV < 10%), it is easy to

identify the percentage of the data meeting therdai.

Table 6.4 Spatial Percentage Change of the CCC Datal0 %

. MDP-Percent Passing CMV-Percent Passing
Measurement Pas$ 0
(%) (%)
lto2 24.6 23.9
2103 43.4 37.8
3to4 55.6 52.2
4t05 92.2 58.3
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Figure 6.4 CDF of spatial percentage change in r@t MV: (a) MDP; (b) CMV.
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Analysis of the data in Figure 6.4 shows that, etiog to the MDP
measurements, the compaction criterion is reaclpee eompletion of measurement
pass 5. In contrast, the CMV data never reachesettpeired 90 %; in fact, it falls
extremely short of the value at 58.3 % after mezmment pass 5. There are several
reasons why this could occur. For one, as mentiame&ection 2.5.3 of Chapter 2, if
the roller is compacting in an undesirable opegatimode, the resulting CMV data
may be detrimentally affected (Adam 1997; Adam &ogf 2004). Previous studies
have used resonant meter values RMV collected guwmampaction to determine the
operation mode of the roller during the CMV datguasition, and then corrected the
CMV values (e.g., Vennapusa et al. 2010). As disedsn Section 4.2 of Chapter 4,
the RMV and CMV data was examined for the dataectdld in this field study. After
assessment of the data, it was concluded that dlier roperation mode did not
significantly affect the CMV results. Thereforeetlhoot cause of why the CMV data
never reaches the acceptance criteria for QA O@Bmust be attributed to another
phenomenon.

Another possible phenomenon that may have lededitcrepancies between
the MDP and CMV compaction completion results fagk Qption 2A could be that
CMV measurements have a much greater depth ofeinfle beneath the surface;
variations in the sub-lift material may greatly eaff the readings. This depth of
influence factor leads to much more variation ire t&MV measurements, in
comparison to the MDP measurements, as indicatatidoyigher standard deviation

and coefficient of variation values that are préséimn Table 6.5.
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The general observations that are made here arce salpported by the
statistically-based analysis approach that isz¢tiliin Meehan and Tehrani (2011). As
they noted:

“The practical implications of these deviations froormality need

to be understood when imposing percentage-basesingasriteria

when writing CCC or IC specifications that are te bsed to control

the construction process (e.g., a desirable spmatiin approach

might be to say that 80 % of the recorded data tsomust be smaller

than (MDP) or larger than (CMV) a pre-specified gat value from

test pad construction). These data indicate thatmiay not be

reasonable to use the same percentage passingiarita different

types of CCC indicator values (e.g., MDP, CMV, ))etas these data

are sampled from distributions that are differerdnfi normal, and

more importantly, different from each otlHe(Meehan and Tehrani

2011).

Since there is a higher variation in the CMV data] because the distributions
that the data are sampled from are different frammal (and different from each
other), it appears the acceptance criteria neefle whanged for different CCC roller
measurements. Otherwise, a given lift will not Sgaafter the same number of
compactor passes using a MDP versus a CMV modeoofitating. Adjusting the
acceptance criteria for roller measured valuesh=mdone in two ways: (1) Increase
the 9%-TV; and/or (2) Reduce the percentage valudsdfMV; < % A —TV that is

required for acceptance.

219



Table 6.5 Summary Statistics of CCC Measurement Dat
MDP CMV
Measurement Standard Coefficient Coefficient
Mean L of Standard of
Pass Deviation o~ Mean o .y
(kJd/s) (kd/s) Variation Deviation| Variation
(%) (%)
1 14.49 2.49 17.22 8.69 3.07 35.34
2 12.02 1.80 14.98 11.68 3.73 31.94
3 10.65 1.71 16.05 14.10 4.26 30.24
4 9.62 1.50 15.57 15.38 3.85 25.03
5 8.48 1.41 16.61 15.82 3.65 23.07

A simple sensitivity analysis was performed to dwaiee the necessary
acceptance criteria for CMV data that would closebtch the results of acceptance of
compaction after measurement pass 5 for the MDR. ddie resulting acceptance
criteria for the CMV measurements is 80 % of haMV,; < 25%. Table 6.6 shows

the percentage of data meeting the netw%V = 25 %.

Table 6.6 Spatial Percentage Change of the CMV Dat25 %
Measurement Pass CMV-Pe(r;oe)nt Passing
1to2 38.5
2t03 55.2
3to4 68.6
4t05 81.3

This implementation of Option 2b is a perfect ex@mghowing the importance
in the selection of the acceptance criteria (e.9—%/). Even with consistent soils,

site conditions, compaction equipment, and rollgreration parameters, the

acceptance criteria are still drastically affedbgdhe type of CCC measurement used.
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In Chapter 2, there is a discussion about all tagous types of proprietary CCC
measurements. The author believes that even withtiawkl field studies, until
consistent universally accepted CCC measurememistgoe determined, it will be
difficult to implement Option 2b into a compactioverification specification

framework.

6.2.4 Acceptance Testing Using Option 3

A detailed explanation of Option 3 can be foun&ettion 2.7.6. However, in
essence, Option 3 relies on the determination 6C& target value (MV-TV) based
on correlation with the contract-specified requirethtive compaction (QA-TV), and
then requiring that a specified percentage of tlerMV exceed the MV-TV. Option
3 allows the engineer to develop correlations usaitper univariate regression
analysis or multivariate regression analysis. Ifivariate regression analysis is
utilized, it must be shown that the moisture contariability does not significantly
affect the correlation equations. Multivariate eggion analysis will account for the
moisture content; however, the selection of a MV-W be difficult due to the
introduction of moisture content as a variablehi@ tegression equations. Currently, to
the author’s knowledge, a solution for determinaid the MV-TV using multivariate
regression has not been developed.

For the sake of simplicity, Option 3 will be implented using simple linear
univariate correlations between the NDG relativempaction percentageR(C)
measurements and the corresponding predicted [p¥4 CCC values. The CCC
measurement locations do not precisely match theatilns of the NDG
measurements; however, the abundance of CCC dédated allows for prediction of

the CCC value at the NDG measurement locations,bliega point-to-point
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comparisons. The reasoning for selection of IPW 4 as the interpolation technique
is thoroughly discussed in Chapter 5. The requiesgdumption for performing
univariate regression analysis with density-baseath ds that the variability of
moisture content during compaction did not sigaifitty affect the results.

The univariate simple linear regression analyse&s sfmown in Figure 6.5.
Provided on the plots are the correlation equatiocogelation curves, and the Lift 5
data points used in the analysis. The NDG taRf@tpercentage value (QA-TV) of
95 % relative compaction was used to determinedler MV target value (MV-TV).

The graphical construction can be seen in Figuse 6.
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Figure 6.5 Determination of QA-TV using Option 3: @) MDP; (b) CMV.

The resulting MV-TV values for MDP and CMV are 13.RJ/s and 13.65,
respectively. It should be noted that the MV-T\W; lmth CCC measurements, falls on

the correlation equation line outside of the ranfjdata or almost all of the range. In
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reality, this is not an acceptable data set foemheining the MV-TV; however, since
this method is being performed on data previousliected it will be used to show the
process for acceptance for Option 3.

The hypothetical acceptance criteria utilized fos study will be that 95 % of
the roller MV meet the MV-TV requirement. As candeen in Figure 6.5, as the dry
unit weight of soil increases, MDP values decreasd CMV values increase.
Therefore, MDP roller measurements less than oaleiguthe MV-TW,pp and CMV
values greater than or equal to the MVl are considered passing measurements.
The percentages of roller MV passing the MV-TV eni& for each successive
measurement pass are presented in Table 6.7. Aogaia the specified acceptance
criteria, the MDP data defines compaction compédter measurement pass 3, while

the CMV data suggest that the acceptance criteaganet met.

Table 6.7 Percentage of CCC Measurements MeetingeahMV-TV (Option 3)

MDP-Percent PassingCMV-Percent Passing
Measurement Pass

(%) (%)
1 31.1 6.7
2 79.9 324
3 96.1 53.3
4 98.7 65.9
5 99.1 71.6

Similar to the results seen in the implementatibi®©ption 2b, the MDP and
CMV data sets do not show agreement for when tlepaance criteria is met. One
reason for this anomaly in the CMV results may béumrction of the regression
equation and data set used for CMV to determineMieTV. Observation of Figure

6.5b shows that all the data points used for catiidon meet the QA-TV criteria.
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Proper calibration data would have data points befbw and exceeding the QA-TV.
In addition, there is significant scatter around thgression line. These issues likely
contributed to the selection of a MV-TV that was tow for the given soil conditions.
However, without more data there is no way to giyartie error in selection of the
MV-TV.

As mentioned in Section 6.2.3 and shown in Talde the spatial variability of
CMV data is much higher than MDP data, which mayunes that different acceptance
criteria values be used for CMV and MDP. As presgigudetermined, the effect of
roller operation mode on the CMV data set may bkedruwout because it was
determined that undesirable operation modes digigoificantly affect the measured
CCC results.

Consequently, even with consistent soils, site tmms, compaction
equipment, and roller operation parameters, the@aace criteria are still drastically
affected by the type of CCC measurement used. Besen here further confirm the
author’s belief that additional field studies arecessary to determine adequate

acceptance criteria requirement values for diffetgpes of roller measured values.

6.3 SUMMARY AND CONCLUSIONS

Four QA earthwork compaction verification methodpés that utilize CCC
technology were examined in this chapter. QA Optiomses CCC roller MV to
identify “weak areas” of low compaction to be testesing conventional in-situ QA
compaction verification devices. QA Option 2 impkms a limiting percentage
change in roller MV from successive measurementsgmsto verify relative

compaction of the earthwork material. There are #diternate approaches for QA
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Option 2: (1) a limit on the percentage changehefmean roller MV for successive
measurement passes; and (2) a limit on the sgegrabntage change of roller MV for
successive measurement passes. QA Option 3 relidseealetermination of a MV-TV
based on correlation to the contract specified QA#bm a calibration area. Each of
the options listed above have been retrospectivgiyemented on the MDP and CMV
data recorded during compaction of Lift 5 for constion of the embankment
described in Chapter 3.

Of the three methods examined, QA Option 3 is tlwstntomplex because
correlations must be made between the roller MV andventional compaction
verification measurements. If a density-based aeidaised for acquisition of data for
correlations, special consideration must be takeguiantify the influence of moisture
content on the roller MV.

QA Option 2 offers a much higher verification pertzge of the evaluation
area compared to conventional in-situ spot-testiogpaction verification methods.
The downside to both the mean percentage changespaithl percentage change of
roller MV methods for Option 2 is they are relatigcempaction methods. These
methods do not guarantee that the contract spéciiative maximum dry density has
been reached but only that the earthwork materad bheen compacted to the
maximum capability of the compaction equipment. réf@re, conventional
compaction verification is necessary to ensure that compaction equipment is
capable of compacting the earthwork material tordwpiired density. In addition, the
moisture content of the material must be carefallynitored and remain within the

contract specified range. Since QA Option 2 doesawoount for moisture content
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variability, failure to compact the soil within threquired range could result in false-
passing lifts.

QA Option 1 still utilizes conventional in situ gpesting (e.g., NDG and
Sand Cone), however the spatial map of roller MMved for the spot-testing to be
performed in the areas of lowest compaction orvarglift. This method increases the
confidence that compaction has been completedynmparison to spot-testing random
locations that could be representative of higheasiof compaction.

Based on the implementation of the four specifaatiQA Options
implemented within this chapter, the following lmations were realized:

* Option 1 still relies on the use of conventional situ compaction
verification spot testing (e.g., NDG, Sand Cone,)et

 Option 2a and 2b only verifies that the materiak haached the
compaction limit of the compaction equipment bemnized. The
ability of the roller to achieve the required corojen level must be
shown.

* Option 2a and 2b do not account for moisture cdnfiensitu moisture
content testing is still necessary to confirm ttheg material moisture
content is within the contract specified range migicompaction).

* Option 2b requires the roller MV to be interpolat@ato a consistent
grid in order to determine the percentage changelier MV at point-
to-point locations from successive passes.

» Option 2b and 3 require the use of interpolatiorthods. The complex
nature of kriging interpolation methods, currentlged in research

applications, makes it difficult to produce considtinterpolation from

226



user to user. Consequently, future research shbelgerformed to
access the reasonability of utilizing simpler iptdation methods (e.g.,
NN or IDW).

* Option 3, when utilizing univariate regression etations, requires
that variability in material moisture content doest significantly
influence the correlations.

* Option 3, when utilizing multivariate regressionrredations, makes
determination of the MV-TV difficult due to the m@nce of multiple
varying variables (e.g., dry unit weight and maistaontent).

* Options 2a, 2b, and 3 cannot be utilized unlesmgtcorrelations (e.qg.,
R?> 0.5) exist between the roller MV and compactiorierial density.

* Options 2a, 2b, and 3 currently rely on arbitracgegptance criteria: a
specified percentage of the roller MV from a givaeeasurement pass
must meet the target value (e.gA%V, MV-TV). Additional field
studies implementing the CCC QA Options are necggsacalibrate

these acceptance criteria target values.

It is the recommendation of the author that QAiI@pt be implemented into
practice by State Department of Transportationgndua “transition period” in order
for contractors and inspectors to become more famwith CCC equipment and
procedures. Only after an adequate *“transition goérihas been employed is it
recommended that QA Options 2 and 3 be considarexttive earthwork compaction

projects.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The effectiveness of using continuous compactiontrob (CCC) systems
within an earthwork specification framework was leased during this research
project. A small-scale embankment, constructed gupioorly-graded sand with silt
material, was compacted in five lifts with a comjpat roller that was retrofitted to
record machine drive power (MDP), compaction metues (CMV), and real time
kinematic-global positioning system (RTK-GPS) piosit measurements; amongst
other roller operating parameters.

As a first attempt to utilize data collected duri@@C compaction for an
earthwork specification, a comparison of in sitat tsmethod measurements with the
CCC measurements recorded during the field study pexformed. In order for
adequate regression analyses to be performed, @& r@easurements needed to be
predicted at the precise locations that the in teft methods were performed. Three
different geospatial interpolation techniques wexamined for this purpose and are
listed here in order from highest complexity to &str ordinary kriging method,
inverse distance weighting method, and nearesthbeig (NN) interpolation. The
following conclusions can be made when evaluatirg three previously mentioned
interpolation techniques:

* In general, for univariate regression analysishef individual values of CCC

measurements and in situ test measurements attpepaint locations, the
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coefficient of determination values for IDYW= 4 are slightly lower than those
from kriging. Similarly, the NN coefficient of detaination values are slightly
lower than the IDWp = 4 values. However, the overall differences in
coefficient of determination values between thegikg, IDW, and NN
interpolation methods appear to be fairly insigraft (i.e., a matter of a few
hundredths).

For univariate regression analysis of the averadees of CCC measurements
and in situ test measurements, the difference®adtficient of determination
values for the three different interpolation tecju@ results do not follow any
pattern. For some analyses the kriging results Hagler coefficient of
determination value and for others the NN interpora method has higher
values. However, again, the differences in the faweht of determination
values appear to be fairly insignificant (a mattehundredths).

For multivariate regression analysis of the indidl values of CCC
measurements and in situ test measurements attpepaint locations, none
of the interpolation methods provides consisterstivonger correlations. In
general, the differences in coefficient of deteration values appear to be
insignificant (a matter of hundredths). Howeverrthare a few exceptions
where kriging analysis offer much stronger coriels (e.g., NDG vs. MDP
and Geogauge vs. MDP), and others where NN and diféf much stronger
correlations (e.g., Geogauge vs. CMV, LWD 300 vsI\C and LWD 200 vs.
CMV).

For multivariate regression analysis of the averagdues of CCC

measurements and in situ test measurements, nahe witerpolation methods
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provides consistently stronger correlations. Inggah the differences in the
coefficient of determination values appear to bsignificant (a matter of

hundredths). However, there are a few exceptiorerevkriging analysis offer
much stronger correlations (e.g., Geogauge vs. MBxR) others were NN and
IDW offer much stronger correlations (e.g., Geogaug. CMV, LWD 300 vs.

CMV, LWD 200 vs. CMV, and DCPIA vs. CMV).

CCC measurement predictions were made using eactheothree interpolation
technigues mentioned above. Regression analysestinan performed for each of the
respective data sets. Univariate regression aralysee performed, first, on a point-
by-point data set and, then, on a data set comgisti averaged CCC measurements
and in situ test measurements of each lift and. gdss influence of moisture content
was then examined by performing multivariate regjas analyses on the same data
sets.

The general conclusions that can be made from wi$en of the univariate
regression analyses results are as follows:

» Comparisons of the individual values of CCC measms and in situ test

measurements at point-to-point locations showedkweaelations.

» Comparisons of the average values of CCC measutenaaml in situ test
measurements at point-to-point locations yieldéatinely strong correlations.
However, a number of the average data sets dilana a sufficient number of
data points; therefore, several of the models awdesponding coefficient of

determination values were unreliable and shouldjbered.
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For a number of the cases, the second-degree poighanodel showed
significantly stronger correlations than the lineaodel (e.g., DCPI values,
NDG dry unit weight values, and moisture contents).

The removal of the base layer measurements fronrdbpective data sets
resulted in increased coefficients of determinatibims phenomenon is likely
due to the relatively low moisture content of thesd layer in comparison to
the “engineered” lifts, which indicates that the istore content had a
significant influence on the density and modulushef compacted soils.
Examination of only the measurements collected len final pass of each
respective lift did not improve correlations; howeexamination of the Lift 5
data on its own did slightly improve correlatiofi$is observation is likely due
to the fact that the soil within a given lift iskély more uniform in soil
gradation and moisture content in comparison tasthks from all five lifts and
the base layer of the embankment.

Generally, MDP measurements showed better comektivith the in situ test
methods, in comparison to the CMV measurements iSHikely related to the
different influence depths of the CCC measureméritg. influence depth of
MDP measurements is much closer to that of thatintest methods, which
range from approximately 20 cm to 60 cm. In confriee influence depth of
CMV measurements is roughly 80 cm to 150 cm.

In general, the DCP indices show much strongeretations with the CCC
measurements, in comparison to the other in s#tingg methods that were

used in the study.
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* In general, the GeoGauge moduli values showed #akest correlations with
the CCC measurements, in comparison to the oth&turtesting methods that
were used in the study.

* In general, both sets of moisture content valueswskd much stronger
correlations with the CCC measurements, in comparts the density-based
and modulus-based in situ testing methods usetianstudy. This indicates
that moisture content has a significant contributo the density of compacted

soils, which agrees with classic soil mechanicsithe

The general conclusions that can be made from wés@n of the multivariate

regression analyses results are as follows:

e Comparison of the individual values of CCC measuais and in situ test
measurements at point-to-point locations showed rongd correlations
compared to those seen in the univariate analysegever, correlations were
still relatively weak.

 Comparison of the average values of CCC measuremamd in situ test
measurements at point-to-point locations yieldedy vetrong correlations.
However, a majority of the average data sets dichage a sufficient number
of data points; therefore, most of the models amesponding coefficient of
determination values were unreliable and neededetagnored. To improve
this, future studies should consider recording C@@d in situ test

measurements for a significant number of passesifssmdf compacted soil, in
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order to create robust data set that does not han&tions due to a small
amount of data.

* In general, the regression model with the intecscterm resulted in slightly
stronger coefficient of determination values. Tloisservation is expected
considering the additional term results in an addél regression model

coefficient, which allows for a better model fit.

The final portion of this study was the implemeitatof the four earthwork
compaction verification methodologies utilizing CG@€:hnology. QA Option 1 uses
CCC roller MV to identify “weak areas” of low comgén to be tested using
conventional in-situ QA compaction verification dms. QA Option 2 implements a
limiting percentage change in roller MV from suige measurement passes to
verify relative compaction of the earthwork materidhere are two alternate
approaches for QA Option 2: (1) a limit on the petage change of the mean roller
MV for successive measurement passes; and (2) ia dimthe spatial percentage
change of roller MV for successive measurementggas3A Option 3 relies on the
determination of a MV-TV based on correlation te ttontract specified QA-TV from
a calibration area. Based on the implementatioth@ffour specification QA Options
implemented within this chapter, the following lmations were realized:

* Option 1 still relies on the use of conventionakitu compaction verification
spot testing (e.g., NDG, Sand Cone, etc.).

» Option 2a and 2b only verifies that the materiad heached the compaction
limit of the compaction equipment being utilizecheTability of the roller to

achieve the required compaction level must be shown

233



Option 2a and 2b do not account for moisture cdn(iarsitu moisture content
testing is still necessary to confirm that the matanoisture content is within
the contract specified range during compaction).

Option 2b requires the roller MV to be interpolattto a consistent grid in
order to determine the percentage change in rdd®r at point-to-point
locations from successive passes.

Option 2b and 3 require the use of interpolationhmés. The complex nature
of kriging interpolation methods, currently used riesearch applications,
makes it difficult to produce consistent interpmat from user to user.
Consequently, future research should be perforrmeattess the reasonability
of utilizing simpler interpolation methods (e.gNNr IDW).

Option 3, when utilizing univariate regression etations, requires that
variability in material moisture content does nain#icantly influence the
correlations.

Option 3, when utilizing multivariate regression rredations, makes
determination of the MV-TV difficult due to the m@nce of multiple varying
variables (e.g., dry unit weight and moisture catjte

Options 2a, 2b, and 3 cannot be utilized unlesmgtcorrelations (e.g.,R
0.5) exist between the roller MV and compactionenat density.

Options 2a, 2b, and 3 currently rely on arbitrargeptance criteria: a specified
percentage of the roller MV from a given measurenpass must meet the
target value (e.g. 26TV, MV-TV). Additional field studies implementinthe

CCC QA Options are necessary to calibrate thesbadst

234



7.2 Recommendations
For future utilization of CCC systems to monitodarerify compaction in an
earthwork specification, the following recommendas are made:

* QA Option 1 should be implemented in practice bwat&tDepartment of
Transportations during a “transition period” in erdfor contractors and
inspectors to become more familiar with CCC equiphaad procedures.

» During this transition period, CCC data will belected on live construction
projects. The data acquired can be used to cadibitae target levels of
acceptability (e.g. %-TV, MV-TV, percentage passing) required for
implementation of QA Options 2a, 2b, and 3.

* Only after target levels of acceptability for QA f@ms 2a, 2b, and 3 have
been determined, and local contractors and engirtesare become adequately
familiar with CCC systems, is it recommended that Qptions 2a, 2b, and/or

3 be implemented on active earthwork compactiofepts.
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Figure A.1  Lift 0 CCC isotropic semivariograms: a)MDP; b) CMV.

Lift O isotropic ordinary kriging weighting functio n for MDP:

. —exd -
V(h,@)—S.OE(l exp( 070)}

Lift O isotropic ordinary kriging weighting functio n for CMV:
y/(h,6) = 3508 1- exg -
’ 322

Table A.1 Lift 0 CCC Theoretical Isotropic Semivariogram Model Parameters

(A.1)

(A.2)

CCC Measuremen Sill Range
MDP 5.05065 (kJ/8) | 0.69870 m
CMV 35.0775 3.22487 m

246



Ng 25 Empirical
x Theoretical A0
- v
g 15-
£ N
$ 5 _;,‘;I—A-A.‘ -
(a) 0 T T T T T T T T T T T T
50 A
;: 40 . -,-‘-‘..i.:-,':s::. :.N""
[*] s.\. o0 % ». w . .
2 O ety 53 "'}ﬁés-?"«r‘a;.s A
£ 20 ol R St -l T
3 oo TN 5
(b) 0 ~ T T T T T T T T T T T I‘.
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Spatial Distance, h (m)
Figure A.2  Lift 2 CCC isotropic semivariograms: a)MDP; b) CMV.
Lift 2 isotropic ordinary kriging weighting functio n for MDP:
V' (h,6) = 301 1-ex -
’ ' 042
(A.3)
Lift 2 isotropic ordinary kriging weighting functio n for CMV:
y'(h,0) = 1626 1-ex __h
’ 207
(A.4)

Table A.2 Lift 2 CCC Theoretical Isotropic Semivariogram Model Parameters

CCC Measuremen Sill Range
MDP 3.01366 (kJ/$) 0.42015m
CMV 16.2647 2.07007 m
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Figure A.3  Lift 4 CCC isotropic semivariograms: a)MDP; b) CMV.

Lift 4 isotropic ordinary kriging weighting functio n for MDP:

. —exd -
y'(h, 6?)—855{1 ex;{ 0-63D

Lift 4 isotropic ordinary kriging weighting functio n for CMV:
V' (h,6) = 1428 1-ex] -
’ 223

Table A.3 Lift 4 CCC Theoretical Isotropic Semivariogram Model Parameters

(A.5)

(A.6)

CCC Measuremen Sill Range
MDP 8.57653 (kJ/$) 0.62732 m
CMV 14.2811 2.22519 m
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Figure A.4  Lift 5 Pass 1 CCC isotropic semivariogams: a) MDP; b) CMV.

Lift 5 Pass 1 isotropic ordinary kriging weighting function for MDP:

. —exd -
y'(h,8) = 787(1 exp( 0.98))

Lift 5 Pass 1 isotropic ordinary kriging weighting function for CMV:

. —exd -
V(h,6’)—1592(1 ex;{ 231)}

(A7)

(A.8)

Table A.4 Lift 5 Pass 1 CCC Theoretical Isotropic 8mivariogram Model
Parameters
CCC Measuremen Sill Range
MDP 7.87483 (kJ/8) | 0.97623 m
CMV 15.9249 2.30816 m
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Figure A.5 Lift 5 Pass 2 CCC isotropic semivariogams: a) MDP; b) CMV.

Lift 5 Pass 2 isotropic ordinary kriging weighting function for MDP:

. —exd -
y'(h, 6?)—587(1 ex;{ 055)}

Lift 5 Pass 2 isotropic ordinary kriging weighting function for CMV:
v (h,6) = 981 1-exd -
’ ' 077

Table A5 Lift 5 Pass 2 CCC Theoretical Isotropic 8mivariogram Model

(A.9)

(A.10)

Parameters
CCC Measuremen Sill Range
MDP 5.86992 (kJ/3) 0.65154 m
CMV 9.81336 0.76514 m
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Figure A.6  Lift 5 Pass 3 CCC isotropic semivariogams: a) MDP; b) CMV.

Lift 5 Pass 3 isotropic ordinary kriging weighting function for MDP:

- cexd - N
' (h,8) = 28({1 exp( OAGD

Lift 5 Pass 3 isotropic ordinary kriging weighting function for CMV:
V' (h, ) = 149 1—exp(—L
’ ' 108

Table A.6 Lift 5 Pass 3 CCC Theoretical Isotropic 8mivariogram Model

(A.11)

(A.12)

Parameters
CCC Measuremen Sill Range
MDP 2.79728 (kJ/$) 0.45731 m
CMV 14.8977 1.08072 m
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Figure A.7  Lift 5 Pass 4 CCC isotropic semivariogams: a) MDP; b) CMV.

Lift 5 Pass 4 isotropic ordinary kriging weighting function for MDP:

. —exd -
y'(h,8) = 2.4{1 exp( 072})

Lift 5 Pass 4 isotropic ordinary kriging weighting function for CMV:

‘(h ) = —exd -
y(h,6’)—17.0({1 exr{ 131D

(A.13)

(A.14)

Table A.7 Lift 5 Pass 4 CCC Theoretical Isotropic 8mivariogram Model
Parameters
CCC Measuremen Sill Range
MDP 2.48635 (kJ/8) | 0.71695 m
CMV 17.0005 1.31186 m
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Figure A.8 Lift 5 Pass 5 CCC isotropic semivariogams: a) MDP; b) CMV.

Lift 5 Pass 5 isotropic ordinary kriging weighting function for MDP:

. —exd -
y'(h,8) = 2.0{1 exr{ O.7OB

Lift 5 Pass 5 isotropic ordinary kriging weighting function for CMV:
V' (h,6) = 147 1—ex;{—ij
’ ' 144

Table A.8 Lift 5 Pass 5 CCC Theoretical Isotropic 8mivariogram Model

(A.15)

(A.16)

Parameters
CCC Measuremen Sill Range
MDP 2.00821 (kJ/8) | 0.70273 m
CMV 14.7449 1.44228 m
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Figure A.9  Lift 5 Pass 7 CCC isotropic semivariogams: a) MDP; b) CMV.

Lift 5 Pass 7 isotropic ordinary kriging weighting function for MDP:

— 164 1-exd -
y'(h, 6?)—1.62(1 ex;{ OSSD

Lift 5 Pass 7 isotropic ordinary kriging weighting function for CMV:
v (h,6) = 145 1—ex;{—ij
’ 147

Table A.9 Lift 5 Pass 7 CCC Theoretical Isotropic 8mivariogram Model

(A.17)

(A.18)

Parameters
CCC Measuremen Sill Range
MDP 1.62237 (kJ/8) | 0.57548 m
CMV 14.5383 1.47182 m
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Table B.1 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Individual Data Points (Linear Model)

All Finals
Dependent Variable All Excluding Finals Excluding Lift 5
Vs. Base Layer Base Layer
Independent Variable
Co C1 Co Cl Co C1 CD Cl CD Cl
\';ASDEI\(AI(\‘/]/S) 17.24 | -0.4591| 17.31 | -0.4714 16.07| -0.4069 16.82 | -0.4557 18.00( -0.4772
\(/;Seog;‘\‘/gf(wa) 67.78 | 0.2565| 65.36 | 0.4041 | 70.76| 0.1039 67.89 | 0.2799 | 68.49| -0.1353

LWD 300 E (MPa)

vs. CMV 2483 | 0.1560( 22.91 [ 0.2190 | 28.03| 0.0147| 25.57 | 0.0998 | 20.09| 0.2230|

LWD 200 E (MPa)

vs. CMV 24.00 | 0.4868| 24.05 | 0.4806 | 25.01| 0.4561| 25.01 | 0.4561 | 24.56| 0.2908

DCPIly (mm/blow)

51.93 -1.113 | 54.91 | -1.228 50.31| -1.0548 54.23 | -1.218 56.38 -1.360
vs. CMV

DCPIlx (mm/blow)

45.40 | -0.9283| 49.62 | -1.102 41.69| -0.7753 47.13 | -1.010 53.26| -1.264
vs. CMV

NDG yq (KN/m®)

17.86 0.0225| 17.84 | 0.0297 17.81| 0.0237| 17.99 | 0.0222 17.72 0.0403
vs. CMV

CMV

vs. MDP (kJ/s) 26.39 -1.039 | 27.16 | -1.125 26.55 -1.055| 26.59 | -1.061 31.34 -1.453

Geogaugee (MPa)

vs. MDP (kJ/s) 82.93 -1.116 | 84.10 | -1.254 86.79 -1.567| 86.50 | -1.542 61.30| 0.4939

LWD 300 E (MPa)

vs. MDP (ikJ/s) 32.50 | -0.6083| 33.08 | -0.7517 | 28.68| -0.1174 29.88 | -0.3422 | 25.42| -0.157(Q

LWD 200 E (MPa)

vs. MDP (kJ/s) 41.36 | -0.9924| 42.46 | -1.120 39.81| -0.7737 39.81 | -0.7737 | 32.41| -0.294

DCPIly (mm/blow)

vs. MDP (kJ/s) 19.47 1572 | 18.13 | 1.815 19.89 1.499| 18.44 | 1.771 10.01 2.354

DCPIlx (mm/blow)

vs. MDP (kJ/s) 17.37 1.435 | 16.08 | 1.699 19.63 1117 | 17.52 | 1.487 10.38 2.166

NDG yq (KN/m®)

vs. MDP (kJ/s) 18.85 | -0.0614| 18.93 | -0.0626 | 18.96| -0.0769 18.47 | -0.0070 | 19.17| -0.0764
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(Linear Model)

Table B.2 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Individual Data Points for Moisture Content

. All Finals
Dependent Variable All Excluding Finals Excluding Lift 5
vs. ) Base Layer Base Layer

Independent Variable

Co Ci Co Ci Co Cy Co Cy Co Cy
Labe 21.43 | -0.5351| 37.77 | -2.207 18.04| -0.0291 35.86 -1.9713 50.67 -3.451
vs. CMV
NDG w
vs. CMV 21.31| -0.5464| 31.55 | -1.552 16.08 0.1597| 26.42 -0.9439 49.57 -3.241
Labw
vs. MDP (kJ/s) 3.609 0.6449 | -5.402 | 1.535 7.703 0.0484| -0.7098 | 0.9174 -8.240 1.869
NDG o 1.980 | 0.8357| -4.865 | 1.467 | 7.893| 0.0887| 1.389 | 0.7365 | -7.168| 1.713
vs. MDP (kJ/s) ! ’ : : ’ : . . ! '
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Table B.3 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Individual Data Points (Polypomial Model)

Al
Dependent Variable All Excluding
VvS. ) Base Layer
Independent Variable
Co Cl Cz Co Cl CZ
MDP (kJ/s) 2205 | -1.088| 00192] 2159 | -1.019 | 0.0165
vs. CMV
Geogaugd (MPa) | 7541 | _94414| 00213 75.38 | -0.8779 | 0.0385
vs. CMV

LWD 300E (MPa)

33.52 -0.9798 0.0347| 26.56 | -0.2484 | 0.0140
vs. CMV

LWD 200E (MPa)

31.28 -0.4546 0.0285 31.69 | -0.4978 | 0.0294
vs. CMV

DCPIy (mm/blow)

vs. CMV 52.77 -1.223 0.0034| 65.10 [ -2.532 | 0.0392

DCPIx (mm/blow)

N q B
vs. CMV 35.41 0.3786 0.0399 52.66 1.491 | 0.0117

NDG y4 (KN/n)

vs. CMV 16.78 0.1632| -0.0044 17.02 | 0.1335 | -0.0031

CMV

vs. MDP (kJ/s) 22,75 | -0.2534| -0.0391 20.92 | 0.2582 | -0.0709

Geogaugee (MPa)

vs. MDP (kJ/s) 115.21| -7.6204| 0.3012 118.19 | -8.268 | 0.3329

LWD 300E (MPa)

vs. MDP (kJ/s) 29.25 0.0459 | -0.0303 35.02 | -1.151 | 0.0190

LWD 200E (MPa)

vs. MDP (kJ/s) 44.92 -1.713 0.0333| 44.04 | -1.445 | 0.0154

DCPIy (mm/blow)

vs. MDP (kJ/s) 27.70 | -0.0879| 0.0769] 22.24 | 0.9696 | 0.0401

DCPIs (mm/blow)

vs. MDP (kJ/s) 24.83 | -0.0686| 0.0696( 17.05 1.490 0.0100

NDG y4 (kN/m°)

vs. MDP (kJ/s) 18.54 | -0.0007| -0.0027 17.80 | 0.1620 | -0.0103
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Table B.3 cont.

. Finals
Dependent Variable Finals Excluding Lift 5
VvS. ) Base Layer
Independent Variable
G ) G G C C Co I C,
MDP (kJ/s) 2088 | -1.013| 00179 23.00 | -1.217 | 0.0222 | 2453| -1.366| 0.028
vs. CMV
\C/ESeOCgsIL\J/géE (MPa) | g167 | -1.2720| 0.0407| 8578 | -1.927 | 0.0643 | 72.20| -0.6534 0.016
b;’vga?/OE(MPa) 39.76 | -1.4647| 0.0438 31.40 | -0.6199 | 0.0210 | 23.80| -0.203d 0.016
b;’vgﬁ?/OE(MPa) 3236 | -04503| 0.0264 32.36 | -0.4503 | 0.0264 | 33.86| -0.9744 0.040
DCPW (mm/blow) | 5806 | 035 | 00200 7234 | -3.453 | 0.0651 | 55.30| -1.213| -0.004
vs. CMV
\'?SCZ";A(\V/”“’ blow) | 3324 | 0.2006| -00314 5347 | -1.792 | 0.0228 | 53.86| -1.346| 0.002¢
NDG g (kN/r) 16.44 | 0.1933| -0.0044 16.83 | 0.1571 | -0.0037 | 17.16| 0.1162 -0.002
vs. CMV
MV |
vo MDP (kifs) 2192 | -00102| -0.0548 2156 | 0.0754 | -0.0591| 2320| 01073 -0.071
Geogauge (MPa) | 15 65| 1396 | 0.6441] 146.18| -14.79 | 0.6870 | 100.80| -7.102| 0.346
vs. MDP (kJ/s)
LWD 300E(MPa) | 4506 | _4177| 02110 56.04 | -6.148 | 0.3011 | 47.46| -4.385| 0.1921
vs. MDP (kJ/s)
LWD 200E(MPa) | ¢347 | 137| 02782 6397 | -6.137 | 0.2782 | 67.74| -7.074| 0.309
vs. MDP (kJ/s)
DCPIy (mm/blow)
. S 4265 | 3552 | 02626 3261 | -1.376 | 0.1632 | -1873| 7.868| -0.251
DCPI,y (mm/blow) } : :
Ui 3238 | -1.714| 01472 2023 | 08849 | 0.0312 | -21.34| s8251| -0.277
NDG 7 (kN/nT) 17.44 | 02750 -0.0194 17.17 | 0.2980 | -0.0169| 17.84| 01769 -0.011
vs. MDP (kJ/s)
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Table B.4 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Individual Data Points for Moisture Content
(Polynomial Model)

All

Dependent Variable All Excluding

VS. . Base Layer
Independent Variablg

Co C; C, Co Cy Cy

Labo -19.82 10.11 -0.6515 -36.71 | 13.81 | -0.8490
vs. CMV
NDG o 27.94 | 11.34| -0.6860 -21.80 | 9.988 | -0.6121
vs. CMV
Labw

vs. MDP (kJ/s) 22,75 | -4.123| 0.2827| -26.10 | 5.899 | -0.2267

NDG o

vs. MDP (kJ/s) 27.17 | -4.920| 0.3151| 10.25 | -1.648 | 0.1573

Table B.4 cont.

Finals

Dependent Variable Finals Excluding Lift 5
VvS. ) Base Layer
Independent Variablg
Co Ci C; Co Cy C Co Cy C.

Labw

-19.37 10.04 -0.644q4 -51.84 17.03 -1.016 -22.35 11.35 -0.7462
vs. CMV
NDG w

-33.05 12.71 -0.76871 -91.83 25.82 -1.489 44.96 -2.350 -0.0428
vs. CMV
Labw

vs. MDP (kJ/s) 23.14 | -3.889| 0.2389| -0.7595 | 0.9279 | -0.0006 | 46.08 -9.139 0.5551

NDG o

vs. MDP (kJ/s) 20.09 | -2.889| 0.1739| -34.99 8.690 | -0.4262 | 4.892| -0.620% 0.1122
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Table B.5 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Average Data (Linear Model)

. All Finals
Dependent Variable All Excluding Finals Excluding Lift 5
VS. . Base Layer Base Layer
Independent Variablg
Co C1 Co Cl Co C1 CD Cl CD Cl
\"gD(P;,\(Ak\fls) 2236 | -0.7697| 22.37 | -0.7699 | 22.84| -0.8064 22.37 | -0.7699 | 20.95| -0.6533
\(,;Seog&‘\‘/g‘f(wa) 65.15| 0.3878| 65.11 | 0.3886 | 67.18| 0.3086| 65.11 | 0.3886 | 74.60| -0.4299

LWD 300 E (MPa)

vs. CMV 2436 | 0.2039| 21.44 | 0.2592 | 39.44| -0.5489 21.44 | 0.2592 | 23.22| 0.0325

LWD 200 E (MPa)

vs. CMV 25.25| 0.3597| 25.25 | 0.3597 | 26.79| 0.3514| 25.25 | 0.3597 | 28.82| 0.0199

DCPIly (mm/blow)

57.25 -1.499 | 60.50 | -1.560 49.42 -1.155| 60.50 | -1.560 58.89 -1.458
vs. CMV

DCPI, (mm/blow)

51.73 -1.366 | 55.98 | -1.446 35.26| -0.5765 55.98 | -1.446 54.98 -1.316
vs. CMV

NDG yq (KN/m®)

vs. CMV 17.41| 0.0494| 17.58 | 0.0461 | 16.84| 0.0781| 17.58 | 0.0461 | 17.40| 0.0601]

CMV

vs. MDP (kJ/s) 27.98 | -1.197 | 27.99 | -1.197 | 26.80| -1.082| 27.99 | -1.197 32.02| -1.527

Geogaugeée (MPa)

vs. MDP (iJ/s) 80.36 | -0.8606( 80.36 | -0.8605 | 85.36| -1.387| 80.36 | -0.8605 | 65.25| 0.2261

LWD 300 E (MPa)

vs. MDP (kJ/s) 36.90 | -0.9884| 34.53 | -0.9273 | 25.72| 0.3940| 34.53 | -0.9273 | 31.58| -0.772%

LWD 200 E (MPa)

vs. MDP (kJ/s) 43.02 | -1.204 | 43.02 | -1.204 | 40.18| -0.8089 43.02 | -1.204 | 38.70| -0.9439

DCPIly (mm/blow)

vs. MDP (kJ/s) 15.81 1.830 | 18.36 | 1.764 22.64| 0.9597| 18.36 | 1.764 13.68 2.076

DCPIlx (mm/blow)

vs. MDP (kJ/s) 12.73 1.799 | 16.04 | 1.713 23.04| 0.4550| 16.04 | 1.713 14.81 1.811

NDG yq (kN/m®)

N o N q ¥ N
vs. MDP (kJ/s) 18.86 0.0634| 18.99 | -0.0668 | 18.95 0.0809 18.99 | -0.0668 | 19.37 0.0961
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Table B.6 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Average Data for Moisture Catent (Linear

Model)
. All Finals
Dependent Variable All Excluding Finals Excluding Lift 5
VS. . Base Layer Base Layer
Independent Variable
Cg Cl Co C1 Co Cl Co cl CO cl
Labe 20.02 -0.4989 42.54 -2.715 17.94 -0.1732| 42.54 -2.715 71.22 -5.495
vs. CMV
NDG o
vs. CMV 21.60 -0.6624 | 36.60 -2.124 17.72 -0.1490| 36.60 -2.124 80.65 -6.260
Labw

vs. MDP (kJ/s) 6.200 0.4987 | -10.02 2.077 8.512 0.0972| -10.02 2.077 -26.04 3.739

NDG o

vs. MDP (kJ/s) 1.768 0.9361 | -12.25 2.254 8.152 0.1386| -12.25 2.254 -27.07 3.636
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Table B.7 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Average Data (Polynomial Moel)

All
Dependent Variable All Excluding
VvS. ) Base Layer
Independent Variable
Co C C, Co C C;

MDP (kfs) 1876 | -0.2676| -0.0168| 17.51 | -0.0853 | -0.0229
vs. CMV

Geogaugd (MPa) 80.65 | -1775 | 00722| 8575 | -2.516 | 0.0971
vs. CMV

LWD 300E (MPa)

vs. CMV -18.27 6.148 -0.1984| 44.70 -3.013 0.1094

LWD 200E (MPa)

vs. CMV 61.67 -4.765 0.1713| 61.67 -4.765 0.1713

DCPIy (mm/blow)

vs. CMV 71.13 -3.434 0.0646 | -7.549 8.014 -0.3201

DCPIx (mm/blow)

vs. CMV 90.36 -6.753 0.1798| -7.386 7.470 -0.2981

NDG 74 (kN/m°)

vs. CMV 21.35 -0.4997 0.0183| 17.98 -0.0091 0.0018

CMV

vs. MDP (kJ/s) 16.97 1.062 -0.1093| 14.69 1.56 -0.1330

GeogaugeéE (MPa)

vs. MDP (kJ/s) 111.03 -6.590 0.2493| 114.14 -7.237 0.2780

LWD 300E (MPa)

vs. MDP (kJ/s) 13.41 3.401 -0.1910 31.18 -0.2946 | -0.0276

LWD 200E (MPa)

vs. MDP (kJ/s) 39.34 -0.5086 -0.0303| 39.34 -0.5086 | -0.0303

DCPIy (mm/blow)

vs. MDP (kJ/s) 32.53 -1.292 0.1359| 12.54 2.862 -0.0479

DCPIx (mm/blow)

vs. MDP (kJ/s) 31.31 -1.674 0.1511| 5.001 3.796 -0.0908

NDG 74 (KN/m°)

vs. MDP (kJ/s) 18.92 -0.0760 0.0006( 17.80 0.1585 -0.0098
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vs. MDP (kJ/s)

Table B.7 cont.
. Finals
Dependent Variable Finals Excluding Lift 5
vS. ) Base Layer
Independent Variable
Co Cy C, Co Cy C, Co Cy C,
MDP (kJ/s) 34.33 2280 | 00458 22071 | -26.82 | 0.8201 | 2074 | -0.6234| -0.001(
vs. CMV
\%ecga‘\‘/gi (MPa) -16.72 11.060 | -0.3344| -1613.69 | 221.30 | -6.9688 | 63.54 1.170 | -0.0544
b;"’ga?/o E (MPa) 307.73 | 43938 | -1.3835| -539.12 | 74.40 | -2.3448 | 4546 | -3.182| 0.1097
b;"’ghi?/o E (MPa) 595.06 | 82.077 | -2.5767| -595.06 | 82.08 | -2.5767 | 5857 | -4279|  0.1467
\E/’SC'::'K'A@”‘"‘/ blow) 44256 | -51.533| 1.5667| -7.856 7.764 | -0.3045 | -12.74 8.804 | -0.3533
\E’SCE"“‘A(\;“”"/ blow) 52028 | -63.881| 1.9688| 229.99 | 2448 | 07254 | -1564| 8.890 | -0.3483
NDG yq (kN/nT) 39.61 2840 | 0.0907| 39.45 2819 | 0091 | 1858 | -0.1100] 0.0058
vs. CMV
CMv 12.23 2.160 | -0.1695| 1.911 4454 | 02843 | 31.11| -1.360| -0.0073
vs. MDP (kJ/s) : : : : : : : : 0973
Geogaugd (MPa) 169.72 | -19.808| 0.9557| 195.09 | -25.24 | 1.2175 | 44.21 3.819 -0.1444
vs. MDP (kJ/s)
LWD 300E (MPa)
vs. MDP (kI/S) 16.77 2349 | -0.1014| 77.87 11073 | 05290 | 5.388 3.702 | -0.1804
LWD 200E (MPa)
vs. MDP (kI/S) 74.83 8345 | 0.3855| 74.83 8345 | 03855 | 5.126 4791 | -0.2308
DCPy (mm/blow) 90.30 | -13.814| o0.7665| 3039 | -0.9892 | 0.1483 | -27.76| 9153 | -0.284d
vs. MDP (kJ/s)
DCPl, (mm/blow) 8432 | -12.925| 06942 4.908 4073 | 01252 | -2860| 9.225| -0.2084
vs. MDP (kJ/s)
NDG 4 (kN/nr) 2001 | -0312 | 00120 1600 | 05467 | -0.0294 | 19.74 | -0.1595|  0.0026
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Table B.8 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Average Data for Moisture Catent
(Polynomial Model)

All
Dependent Variable All Excluding
VvS. . Base Layer
Independent Variable
Co C, C; Co C Cy
Labw
vs. CMV -31.57 13.02 -0.8259| -80.87 23.35 -1.362
NDG o
vs. CMV -52.44 17.55 -1.065 -96.06 26.91 -1.560
Labw
vs. MDP (kJ/s) 33.99 -6.718 0.4371| -182.52 38.27 -1.880
NDG o
vs. MDP (kJ/s) 51.25 -10.71 0.6526 30.10 -6.531 0.4480

Table B.8 cont.

Dependent Finals
Variable Finals Excluding Lift 5
VS. Base Layer
Independent
Variable Co C: C, Co C: C, Co C C,
Labw
-30.66 12.67 | -0.7940 | -139.62 | 35.38 | -1.964 | 11747.92 | -2356.94 | 118.12
vs. CMV
NDG @ -62.00 20.17 -1.239 | -364.77 | 88.33 | -5.019 -35.07 16.16 -1.084
vs. CMV
Labw
vs. MDP 41.66 -8.509 | 05210 | -12.48 | 2.739 | -0.0562 | -3858.17 775.51 -38.78
(kJ/s)
NDG o
vs. MDP 49.38 -10.15 | 0.6118 -56.28 | 12.97 | -0.6340 -66.41 10.87 -0.3308
(kJ/s)
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Table B.9 Regression Coefficients from the Multivaate Regression Analyses
that were Performed on Individual Data Points (Without Interaction

Term)
All
Dependent Variable All Excluding
VS. Base Layer
Independent Variable
Co C C» Co C C,
MDP (kJ/s) 1030 | -03050| 04736 2902 | -0.2458 | 1.109
vs. CMV
Geogauge (MPa) 97.50 0.0263 | -2.817| 131.13 | -0.2634 | -5.673
vs. CMV

LWD 300E (MPa)

vs. CMV 56.05 -0.0461 -3.013| 46.64 0.0116 -2.175

LWD 200E (MPa)

vs. CMV 49.76 0.1841 -2.182| 49.76 0.1841 -2.182

DCPIy (mm/blow)

vs. CMV 20.11 -0.8371 2.861| 33.75 -0.9913 1.764

DCPIx (mm/blow)

vs. CMV 2.469 -0.5866 3.968 | 21.37 -0.8348 2.497

NDG 74 (kN/m°)

vs. CMV 16.76 0.0320 0.1017{ 17.92 0.0288 -0.0067

CMV

vs. MDP (kJ/s) 26.41 -1.303 0.2827| 24.28 -1.498 0.6804

Geogaugee (MPa)

vs. MDP (kJ/s) 96.71 -0.7555 -1.815| 112.09 0.1003 -4.123

LWD 300E (MPa)

vs. MDP (kJ/s) 54.85 0.0507 -3.017| 47.61 -0.3092 -1.970

LWD 200E (MPa)

vs. MDP (kJ/s) 53.17 -0.9396 -1.285| 53.17 -0.9396 -1.285

DCPIy (mm/blow)

vs. MDP (kJ/s) -0.8140 0.9607 2.668 | 8.930 1.443 1.270

DCPIx (mm/blow)

vs. MDP (kJ/s) -10.30 0.5725 3.699 | 1.681 1.214 1.928

NDG 74 (KN/m°)

vs. MDP (kJ/s) 18.08 -0.1078 0.1266( 18.72 -0.0729 0.0311
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Table B.9 cont.

Finals
Dependent Variable Finals Excluding Lift 5
vs. Base Layer
Independent Variable
Co C C Co C C, Co C, C,
MDP (kJfs) 1072 | -02603| 03099 1524 | 02053 | 1170 | 1092 | -0.3615| 0.5046
vs. CMV
\(,;Seogal\‘/gf (MPa) 100.79 | 0.0434 | -3.339| 148.04 | -0.2720 | -7.703 | 114.18| -0.4009|  -3.854
LWD 300E (MPa) 5816 | -00350| -3.303| 4921 | -00396 | -2.361 | 37.47 | 0.0659| -1.412
vs. CMV
\I;LNI(DZISI?/O E (MPa) 48.45 | 02437 | -2139| 4845 | 02437 | -2130 | 4283 | 0.1058| -1.455
DCPl (mm/blow) 2056 | -0.8558| 2.811| 3757 | -1.030 | 1358 | 3528 | -1144| 1775
vs. CMV
DCP (mm/blow) 2583 | -05443| 3814| 2568 | -0.8201 | 1.907 | 2985 | -1026| 1.964
vs. CMV
\';‘SD%W‘(N’ m) 1656 | 00207 | 0.1518 17.73 | 00240 | 0.025 | 1860 | 0.0340| -0.0766
cmv 2347 | -1130 | 04631 2063 | -1483 | 1079 | 3953 | -1304| -0.8671
vs. MDP (kJ/s) ' ' ' : ' ' : ' :
Geogauge (MPa) 11211 | 2144 | -2282| 12105 | -1.027 | -4140 | 9970 | 08246 -3.916
vs. MDP (kJ/s)
LWD 300 E (MPa) 5111 | 05454 | -3054| 4711 | 02271 | -2377 | 4092 | 00322 1674
vs. MDP (kJ/s)
LWD 200 E (MPa) 50.38 | -0.5466| -1.305| 50.38 | -0.5466 | -1.305 | 46.15 | -0.2746|  -1.337
vs. MDP (kJ/s)
DCPIy (mm/blow) )
AT 2689 | 05823 | 2610| 9815 | 1313 | 1278 | -4696| 2.365 1.497
DCPIlx (mm/blow) } ] }
. e 4134 | -00221| 3518| 3980 | 09252 | 1892 | -6410| 2062 1811
NDG yq (kN/r) 17.63 | -00869| 0.1554| 18.07 | -0.0276 | 0.0604 | 19.79 | -0.0699|  -0.068¢
vs. MDP (kJ/s)
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Table B.10 Regression Coefficients from the Multivaate Regression Analyses
that were Performed on Individual Data Points (With Interaction

Term)
. Al

Dependent Variable All Excluding

VvS. ) Base Layer
Independent Variable

G G G C Co C C Cs

MDP (kJ/s) 75015 | -0.1175| 0.7777| -0.021d -3.109 | 01239 | 1720 | -0.0388
vs. CMV
Geogauge (MPa) 86.07 | 08171 | -1.535| -00897 111.92 | 09181 | -3.691 | -0.1239
vs. CMV
LWD 300 E (MPa) 48.83 | 04533 | -2203| -0.0564 37.57 | 05692 | -1.240 | -0.0585
vs. CMV
LWD 200 E (MPa) 28.90 1467 | -0.0304| -0.1349 2890 | 1.467 | -0.0304 | -0.1345
vs. CMV
DCPl (mm/blow) 44468 | 02467 | 4619| 01224 -1.111 | 1153 | 5360 | -0.2248
vs. CMV
DCPL (mm/blow) 1746 | 07918 | 6203| -0.155§ 1.804 | 0.3683 | 4515 | -0.1261

vs. CMV

NDG ya (kN/T) 18.58 -0.0937 -0.1022 0.0142 20.68 -0.1413 -0.2920 0.0178

vs. CMV

\C/:s'\./l\l\leP (le) 8.0495 | 04975 | 2.345| -0.1984 4.063 | 0.9417 | 2.769 | -0.2455
Sﬁﬁgﬁgﬁ}sﬂfa‘) 15213 | 6321 | -7.274| 05350 14503 | -3.847 | -7.150 | 0.3570
LWD 300E (MPa) 4681 | 08585 | -2.225| -0.0777] 4829 | -0.3902 | -2.032 | 0.0073

vs. MDP (kJ/s)

LWD 200 E (MPa)

vs. MDP (kJ/s) 48.48 -0.3783 -0.8547 -0.0509 48.48 -0.3783 -0.8547 -0.0508

DCPIy (mm/blow)

vs. MDP (kJ/s) 8.8363 -0.0084 1.717 0.0932) 6.848 1.692 1.461 -0.0226

DCPI, (mm/blow)

vs. MDP (kJ/s) 5.4274 -1.006 2.150 0.1518] -2.171 1.675 2.282 -0.0417

NDG yq (KN/m®)

vs. MDP (kJ/s) 17.43 -0.0428 0.1904 -0.0063 16.80 0.1573 0.2076 -0.0208
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Table B.10 cont.
. Finals
Dep. Variable Finals Excluding Lift 5
Vs. Base Layer
Ind. Variable
Co C; C; Cs Co C; C; Cs Co Ci C, Cs

\’)’;DEW’S) 9.676 | -0.1003| 04381 -0.008| -8.547 | 0.3857 | 2278 | -0.0656 | 6.035 | -0.0581 009717  -0.0244
\?Se‘ga%g‘i (MP2) | 7505 | 1003 | 00645| -0.225] 11352 | 1.754 | -3.004 | -0.2248 | 132.35| -1.538| 5501  0.1098
\';;N[CJGSOE (MPa) | 4861 | 0.6026| -2.135| -0.077] 33.03 | 0.9098 | -0.5805 | -0.1053 | 23.73 | o0.0196| -0.0988 -0.0826
\';;N[C’GSOE (MP2) | 4572 | 2165 | 1463| -0.213] 1572 | 2165 | 1463 | -0.2131| 5749 | -081| -2857 o0.088p
DCPM (mmiblow) | 2020 | 1867 | 7.704| -0.3204 77.26 | 5709 | 1400 | 07476 | 12170| -6513| 648  0.519F
DOPL (mm/blow) | 3779 | 2153 | 8751 -0.326] 4373 | 3254 | 9546 | 04519 | 9949 | 5352| 4694 04183
\’:‘SD(émkN/mg) 1870 | -0.1220| -0.1003 00179 22.73 | -0.2695 | -05253 | 0.0326 | 17.72 | o0.0889| 00074  -0.0043
cmv 8171 | 04032| 2288| -0.181{ -1578 | 1463 | 3441 | -0.3072 | 4860 | -226| -1.749  0.0834
vs. MDP (kJ/s)
GeogaugE (MPa) | 17551 | 9003 | -9.581| 07893 162.25 | -6.692 | -8.430 | 0.5816 | 116.19| -0.7504 5521  0.1517
vs. MDP (kJ/s)
LWD 300E (MPa) | 4977 | 1775 | .1749| -0.141] 5087 | -02002 | -2760 | 00531 | 7241 | -2.975| 473  0.289)
vs. MDP (kJ/s)
LWD 200E(MPa) | 7,35 | 3839 | -3709| 0.338] 7432 | -3.830 | -3.799 | 0.3380 | 4405 | -0.0747 -1139 -0.0193
vs. MDP (kJ/s)
DCPly (mm/blow) |
ARG 4021 | 3476 | -1700| 04671 47.46 | -3.863 | -2.642 | 05313 | -12262| 1363| 1297 -1.08
DCPI, (mm/blow) | 45 53 | 5037 | -1.819| 05774 1643 | -0.7856 | 05966 | 0.1756 | -106.92| 11.66| 1159  -0.9246
vs. MDP (kJ/s)
NDG 7, (kNfr) 2024 | -0.3693| -0.145] 00329 1811 | -0.0329 | 0.0564 | 0.0005 | 2086 | -0.1714 -0.172h  0.0098
vs. MDP (kJ/s)
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Table B.11 Regression Coefficients from the Multivaate Regression Analyses
that were Performed on Average Data (Without Interation Term)

Al
Dependent Variable All Excluding
VvS. . Base Layer
Independent Variablg
Co C1 Cz Co C1 C2
MDP (kJfs) 1913 | -0.6506| 0.1409 872 | -0.4866 | 0.9152
vs. CMV
CGeogaugd (MPa) | g5 55 | (1513| -1.466| 151.63 | -0.9370 | -6.603
vs. CMV

LWD 300E (MPa)

vs. CMV 69.02 | -0.4937 -3.590| 64.96 | -0.4299 | -3.288

LWD 200E (MPa)

vs. CMV 74.30 | -0.4213 -3.700 74.30 | -0.4213 | -3.700

DCPIy (mm/blow)

vs. CMV 14.83 | -0.8291 3.431| 43.96 -1.288 1.264

DCPIlx (mm/blow)

vs. CMV -7.281 | -0.4293 4.747( 19.81 -0.86 2.732

NDG yq (KN/m®)

vs. CMV 15.06 0.0858 0.1880| 16.63 | 0.0610 | 0.0711

CMV

vs. MDP (kJ/s) 28.54 -1.36 0.1132| 18.58 | -1.981 1.738

Geogaugee (MPa)

vs. MDP (kJ/s) 86.23 | -0.6755| -0.817¢ 112.30 | 0.5444 | -4.578

LWD 300E (MPa)

vs. MDP (kJ/s) 59.23 0.1083 -3.486( 53.41 | -0.1641 | -2.646

LWD 200E (MPa)

vs. MDP (kJ/s) 58.29 | -0.6557| -2.080| 58.29 | -0.6557 | -2.080

DCPIy (mm/blow)

vs. MDP (kJ/s) -6.463 | 0.8119 3.414| 12.45 1.697 | 0.6851

DCPIx (mm/blow)

vs. MDP (kJ/s) -16.64 | 0.3688 4.581| 2.216 1.251 1.862

NDG yq (kN/m®)

vs. MDP (kJ/s) 17.75 | -0.1330| 0.1871] 18.18 | -0.1126 | 0.1241
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Table B.11 cont.

. Finals
Dependent Variable Finals Excluding Lift 5
VS : Base Layer
Independent Variablg
Co C1 C Co C. C, Co C, C

MDP (kJ/s) 21.75 | -0.7834| 0.085] 9.054 | -0.5440 | 0.998 | 8.999 | -0.4581 0.8373
vs. CMV
Ceogaugd (MPa) | g1 40 | 0.2733| -1.612 199.69 | -1.957 | -1012 | 48.30 | -0.0937  2.029
vs. CMV
LWD S00E(MPa) | 7309 | 07576 -3.554 71.19 | -0.7218 | -3.417 | 70.89 | -0.4018 -3.919
vs. CMV
LWD 200E (MPa) | 7,61 | 04608 -3.604 74.81 | -0.4608 | -3.694 | 92.35 | -0.5754 -5.196
vs. CMV
\?Sc'zmmmlblo‘”) 16.81 | -0.9450| 3.450| 75.98 | -2.061 | -0.8067 | -103.91] 0.0816  13.33
\?Sc'zﬁﬂ@m/blow) -8.053 | -0.2991| 4.574| 44.73 | -1.294 | 07771 | -104.66| 0.1945  13.07]

3
NDG 7 (kN/T) 14.64 | 0.0926| 0.2209 1591 | 0.0687 | 0.1389 | 20.33 | 0.0330| -0.241
vs. CMV
cMV
vs. MDP (kJ/s) 26.84 | -1.146 | 0.071d 16.64 | -1.838 | 1.835 | 19.70 | -2.181| 1.820
Geogaugd (MPa) | g4 g | 1360 | -1.037| 115.47 | 0.0267 | -4.467 | 73.60 | 04819 -1.046
vs. MDP (kJ/s)
LWD 300E (MPa)
vs. MDP (kJ/S) 50.65 | 0.7184| -3.128 4555 | 0.3843 | -2.302 | 89.12 | 1.077| -7.382
LWD 200E (MPa) | g 55 | .03g38| -1.353 49.35 | -0.3838 | -1.353 | 114.02| 1490| -9.676
vs. MDP (kJ/s)
DCPIy (mm/blow)
vs. MDP (kJ/S) 4589 | 0.6590| 3.370| 14.40 | 1.902 | 0.2960 | -49.09| 0.1179  8.030
DCPI5 (mm/blow) } ) )
vs. MDP (kJ/S) 1161 | 0.0415| 4.316| 6.824 | 1.248 | 1.332 | -46.32 | -0.1199  7.840
NDG y4 (KN/m°) ) ) ) )
vs. MDP (kJ/%) 17.34 | -0.1045| 0.2050 17.82 | -0.0734 | 0.1280 | 20.27 | -0.075 -0.109
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Table B.12 Regression Coefficients from the Multivaate Regression Analyses
that were Performed on Average Data (With Interacton Term)

Al

Dependent Variable All Excluding

VvS. . Base Layer
Independent Variablg

Co Cy C, Cs Co Cy C, Cs

MDP (kJfs) 57.84 | -3.085| -3.687 0244 46.71 | -2.509 | -2.651 | 0.1900
vs. CMV
\(,;Seog&‘\‘/g‘f(wa) 14030 | 14.16| 2057 -1.40f 15458 | -1.094 | -6.880 | 0.0148

LWD 300 E (MPa)

99.64 -2.419| -6.617 0.193 196.22 | -7.416 -15.61 | 0.6565
vs. CMV

LWD 200 E (MPa)

107.71 | -2.199| -6.836 0.161 107.71 | -2.199 -6.836 | 0.1671
vs. CMV

DCPIly (mm/blow)

-76.54 4.916 12.46 -0.57§ 64.75 -2.395 | -0.6871 | 0.1040
vs. CMV

DCPI, (mm/blow)

-109.61 6.005 14.86| -0.644 -91.09 5.046 13.14 | -0.5546
vs. CMV

NDG yq (KN/m®)

10.92 0.346 0.597 -0.024¢ 23.67 | -0.3136 | -0.5895 | 0.0352
vs. CMV

CMV

vs. MDP (kJ/s) -7.949 2.147 4.136| -0.38( -5.482 | 1.704 3.932 | -0.3410

Geogaugee (MPa)

vs. MDP (iJ/s) 154.66 | -7.322| -7.504 0.639 145.86 | -4.284 | -7.348 | 0.4127

LWD 300 E (MPa)

vs. MDP (kJ/s) 23.88 3.542| -0.032 -0.32§ 21.18 4.474 0.0148 | -0.3965

LWD 200 E (MPa)

vs. MDP (kJ/s) 27.43 3.785 0.468| -0.38( 27.43 3.785 0.4676 | -0.3795

DCPIly (mm/blow)

vs. MDP (kJ/s) 25.64 -2.306| 0.278 0.294 15.17 1.307 0.4610 | 0.0334

DCPIlx (mm/blow)

vs. MDP (kJ/s) 14.90 -2.694| 1.501 0.293 4.362 | 0.9422 1.685 0.0264

NDG yq (kN/m®)

vs. MDP (kJ/s) 16.96 -0.056| 0.264| -0.001 16.36 | 0.1498 | 0.2745 | -0.0224
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Table B.12 cont.

. Finals

Dependent Variable Finals Excluding
vs. ) Base Layer
Independent Variableg
G ) G Cs Co C C Cs
MDP (kJ/s) 60.56 | -3.253| -4.009 0.263{ 9.054 | -0.5440 | 0.9981 | 0.0000
vs. CMV
Geogaugd (MPa) | 5430 | 2329 | 3654 -2.454 199.69| -1.957 | -10.12 | 0.0000
vs. CMV
LWD 300E(MPa) | 7859 | _1127| -4167] 00394 7119 | -0.7218 | -3.417 | 0.0000
vs. CMV
LWD 200E(MPa) | 7,41 | 04608 -3.604 0.000] 74.81 | -0.4608 | -3.694 | 0.0000
vs. CMV
DCPh (mmiblow) | 16417 | 1057 | 2253 -1.22d 75.98 | -2.061 | -0.8067 | 0.0000
vs. CMV
DCPl (mm/blow) | 169 45| 9970 | 2160 -1.009 4473 | -1.294 | 0.7771 | 0.0000
vs. CMV
3

NDG 74 (kN/mm) 1077 | 0.3388| 06381 -0.026| 1591 | 0.0687 | 0.1389 | 0.0000
vs. CMV
CMV 5216 | 1.908 | 3.801| -0.35| 16.64 | -1.838 | 1.835 | 0.0000
vs. MDP (kJ/s) : : : : : : : '
Geogaugeé (MPa) : : g :
o 21650 | -13.63| -14.81 1.378| 652.97 | -79.66 | 57.42 | 7.808
LWD 300E (MPa)
Ve b 3734 | 2055 | -1628 -0.15| 187.40| -2065 | -16.28 | 2.061
LWD 200E (MPa)
Ve b (S, 23458 | -27.85| -19.60| 2.691| 23458 | -27.85 | -19.60 | 2.691
DCPIy (mm/blow)
o Mo 9318 | -9.156| -7.648 1.102| 298.30 | -40.19 | -27.67 | 4.124
DCPIx (mm/blow) } ) : :
o o e 7703 | -8858| -5674 0990| 177.12| -24.00 | -15.44 | 2474
NDG y4 (kKN/n) . d i
v 1889 | -0.2605| 00204 0017 985 | 1107 | 09122 | -0.1157
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Table B.12 cont.

Dependent Variable Lift 5

Vs.
Independent Variable

Co C C, Cs

MDP (kJ/s)
vs. CMV 25.83 -1.351 -0.7147 0.0824
Ceogaugd (MPa) | 5051 53| -115.41) -198.43  10.64
vs. CMV
LWD 300 E (MPa) 811.21 39,60 2201 3624
vs. CMV
LWD 200 E (MPa) 63031 | 2960| 5565 2678
vs. CMV
DCPIy (mm/blow) ] _
vs. CMV 930.07 | 43.92 89.54 4.044
DCPIs (mm/blow) ] )
vs. CMV 924.44 |  43.70 88.69 4.013
NDG 74 (kN/m°)
vs. CMV 43.62 -1.203 | -2.390|  0.114(
CMvV
vs. MDP (kJ/s) 0.0812 0.1325 3.622 -0.212)
Geogaugée (MPa) B )
vs. MDP (kJ/s) 20.25 7.512 7.939 0.6653
LWD 300 E (MPa) |
vs. MDP (kJ/s) 9.213 7.063 0.2686 -0.5665
LWD 200 E (MPa)
vs. MDP (kJ/s) 16.11 8.825 -0.3019 -0.6941
DCPIy (mm/blow)
vs. MDP (kJ/s) -194.30 11.00 21.93 -1.029
DCPIx (mm/blow) B )
vs. MDP (kJ/s) 195.32 11.04 22.10 1.054
NDG a (kN/) 22.10 -0.2129| -0.2851 0.013
vs. MDP (kJ/s) : : . .
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Appendix C

REGRESSION ANALYSIS COEFFICIENTS FOR CCC MEASUREMEN TS
PREDICTED USING ISOTROPIC ORDINARY KRIGING, IDW P = 4, AND
NEAREST NEIGHBOR INTERPOLATION
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Table C.1 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Individual Data Points (Linear Model)

Dependent Variable Kriging IDWP=4 NN
Vs.
Independent Variable

Co C; Co C: Co C
MDP (kJfs) 17.31 | -0.4714| 16.39 | -0.4218 | 16.63| -0.4301
vs. CMV
Geogaugd (MPa) 65.36 | 0.4041| 67.23 | 0.2866 | 66.75| 0.3113
vs. CMV

LWD 300E (MPa)

vs. CMV 2291 | 0.2190| 23.65 | 0.1711 | 23.34| 0.1877

LWD 200E (MPa)

vs. CMV 24.05 | 0.4806| 24.54 | 0.4446 | 24.35| 0.4509

DCPIy (mm/blow)

Vs, CMV 54.91 | -1.228 | 54.25| -1.172 | 53.79| -1.130

DCPIx (mm/blow)

vs. CMV 49.62 -1.102 | 48.81 | -1.039 48.46 -1.005

NDG y4 (KN/n)

vs. CMV 17.84 | 0.0297| 17.85| 0.0289 | 17.90| 0.0254

CMV

vs. MDP (kJ/s) 27.16 -1.125 | 26.37 | -1.041 24.23| -0.7903

GeogaugeéE (MPa)

vs. MDP (kJ/s) 84.10 | -1.254 | 84.02 | -1.270 | 81.80| -1.032

LWD 300E (MPa)

vs. MDP (kJ/s) 33.08 | -0.7517| 33.05 | -0.7625 | 31.56| -0.6044

LWD 200E (MPa)

vs. MDP (kJ/s) 42.46 -1.120 | 42.11 | -1.106 39.62| -0.8409

DCPIy (mm/blow)

vs. MDP (kJ/s) 18.13 1.815 | 19.06 | 1.753 21.97 1.442

DCPIs (mm/blow)

vs. MDP (kJ/s) 16.03 1.699 | 16.81 | 1.651 19.50 1.363

NDG y4 (kKN/m)

vs. MDP (kJ/s) 18.93 | -0.0626| 18.88 | -0.0587 | 18.77| -0.0475
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Table C.2 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Individual Data Points for Moisture Content
(Linear Model)

Dependent Variable Kriging IDWP=4 NN
Vvs.

Independent Variable

Co C1 Co C1 CO Cl
Labo 37.77 | -2.207| 37.05 | -2.117 | 38.01| -2.193
vs. CMV ’ ' ’ ’ ’ ’
NDG o
vs. CMV 3155 | -1.552| 30.59 | -1.433 | 31.18| -1.469
Labw

vs. MDP (kJ/s) -5.402 | 1.535| -4.819 | 1.459 | -5.941| 1578

NDG o

vs. MDP (kJ/s) -4.865 | 1.467| -4.915| 1.455 | -7.708| 1.736
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Table C.3 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Individual Data Points (Polypomial Model)

Dependent Variable Kriging IDWP=4 NN
vs.

Independent Variable

Co C C Co Ci C Co Ci C,
MDP (kJ/s) 2159 | -1.019| 0.0165 2029 | -0.9124 | 0.0145 | 21.99| -1.092| 0.019
vs. CMV
Geogaug®(MP2) | 7538 | -0.8779| 0.0385 7182 | 0.2904 | 0.0170 | 6254| 0.8308 -0.015

LWD 300 E (MPa)

26.56 -0.2484| 0.0140; 25.87 | -0.1080 | 0.0082 22.18 0.3302] -0.004fL
vs. CMV

LWD 200 E (MPa)

31.69 -0.4978| 0.0294| 30.69 | -0.3281 | 0.0228 27.11 0.1100] 0.009
vs. CMV

DCPIly (mm/blow)

65.10 -2.532 0.0392| 62.97 | -2.268 | 0.0324 62.26 -2.175 0.030:
vs. CMV

DCPIlx (mm/blow)

52.66 -1.491 0.0117[ 50.56 | -1.259 | 0.0065 49.91 -1.184 0.005%
vs. CMV

\';‘SDCC;K/T\EI(N/”F) 17.02 0.1335| -0.0031 16.98 | 0.1349 | -0.0031 17.26 0.1026/ -0.002p

CMV

N qd o o N R
vs. MDP (kJ/s) 20.92 0.2582 0.0709 23.46 0.3874 | -0.0339 23.69 0.672( 0.0058

Geogaugee (MPa)

vs. MDP (kJ/s) 118.19 -8.268 0.3329| 113.74 | -7.456 | 0.2960 | 101.23 -5.020 0.182

LWD 300 E (MPa)

vs. MDP (kJ/s) 35.02 -1.151 0.0190( 34.39 -1.042 | 0.0133 33.41 -0.9834 0.0174

LWD 200E (MPa)

vs. MDP (kJ/s) 44.04 -1.445 0.0154 43.97 -1.492 | 0.0185 41.22 -1.169 0.015

DCPIy (mm/blow)

vs. MDP (kJ/s) 22.24 0.9696 0.0401] 23.09 | 0.9144 | 0.0401 22.15 1.406 0.001

DCPI, (mm/blow)

vs. MDP (kJ/s) 17.05 1.490 0.0100{ 18.22 1.357 0.0141 18.58 1.551 -0.0086

NDG yq (KN/m®)

- K| - - D
vs. MDP (kJ/s) 17.80 0.1620 0.0103 17.83 | 0.1538 | -0.0098 18.21 0.0669 0.005p
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Table C.4 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Individual Data Points for Moisture Content
(Polynomial Model)

Dependent Variable Kriging IDWP=4 NN
vs.
Independent Variable

Co Cy C, Co Ci C, Co Ci C,
Labw

-36.71 13.81| -0.849Q0 -46.93 | 15.94 | -0.9572 | -68.62 20.73 -1.215
vs. CMV
NDG o

-21.80 9.988| -0.6121 -26.31 | 10.87 | -0.6527 | -35.65 12.99 -0.7668
vs. CMV
Labw

vs. MDP (kJ/s) -26.10 | 5.899| -0.2267 -29.38 | 6.637 | -0.2690 | -29.19| 6.479| -0.2546

NDG o

vs. MDP (kJ/s) 10.25 | -1.648| 0.1573| 11.63 | -1.957 | 0.1723 15.90| -3.13(¢ 0.2457
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Table C.5 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Average Data (Linear Model)

Dependent Variable Kriging IDWP=4 NN
Vvs.

Independent Variable

Co C; Co C: Co G
MDP (kJfs) 22.37 | -0.7699| 20.56 | -0.6659 | 24.28| -0.8763
vs. CMV
Geogaugd (MPa) | 6511 | (3886 | 65.80 | 0.3347 | 63.91| 0.4475
vs. CMV

LWD 300E (MPa)

vs. CMV 21.44 | 0.2592| 21.82 | 0.2285 | 20.35| 0.3163

LWD 200E (MPa)

vs. CMV 25.25| 0.3597| 25.43 | 0.3392 | 23.10{ 0.4792

DCPIy (mm/blow)

vs. CMV 60.50 -1.560 | 61.68 | -1.596 67.51 -1.934

DCPIy (mm/blow)

vs. CMV 55.98 -1.446 | 56.79 | -1.461 62.10 -1.769

NDG y4 (KN/n)

vs. CMV 17.58 | 0.0461| 17.55| 0.0474 | 17.46| 0.0523

CMV

vs. MDP (kJ/s) 27.99 | -1.197 | 28.89 | -1.304 | 26.13| -0.9869

Geogaugee (MPa)

vs. MDP (kJ/s) 80.36 | -0.8605( 81.10 | -0.9663 | 80.17| -0.8614

LWD 300E (MPa)

vs. MDP (kJ/s) 34.53 | -0.9273| 35.61 | -1.067 | 34.46| -0.9401]

LWD 200E (MPa)

vs. MDP (kJ/s) 43.02 -1.204 | 4435 | -1.380 42.66 -1.195

DCPIy (mm/blow)

vs. MDP (kJ/s) 18.36 1.764 | 17.37 | 1.931 19.14 1.729

DCPIs (mm/blow)

vs. MDP (kJ/s) 16.04 1.713 | 15.09 | 1.874 16.70 1.688

NDG 74 (kN/m°)

vs. MDP (kJ/s) 18.99 | -0.0668| 19.03 | -0.0733 | 18.97| -0.0661
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Table C.6 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Average Data for Moisture Catent (Linear
Model)

Dependent Variable Kriging IDWP=4 NN
Vvs.

Independent Variable

Co C1 Co C1 CO Cl
Labo 4254 | -2.715| 4181 | -2.602 | 42.20| -2.616
vs. CMV ' : ' ' ' '
NDG o 36.60 | -2.124| 3544 | -1.968 | 34.95| -1.894
vs. CMV
Labw

vs. MDP (kJ/s) -10.02 | 2.077| -8.202 | 1.854 | -9.552| 2.008

NDG o

vs. MDP (kJ/s) -12.25 | 2.254| -11.17 | 2.106 | -13.60| 2.362
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Table C.7 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Average Data (Polynomial Moel)

Dependent Variable Kriging IDWP=4 NN
vs.

Independent Variable

Co C1 Cz Co Cl Cz CD Cl CZ
MDP (kJ/s) 17.51 | -0.0853| -0.0229 11.61 | 0.5520 | -0.0397 | 40.60| -2.952| 0.0639
vs. CMV
Sse‘gsll\‘/gee(wa) 85.75 | -2.516| 0.0971 78.85 | -1.442 | 0.0578 | 34.76| 4.153| -0.114p

LWD 300 E (MPa)

44.70 -3.013 0.1094| 47.13 | -3.218 | 0.1122 61.82 -4.955 0.1624
vs. CMV

LWD 200 E (MPa)

61.67 -4.765 0.1713| 64.83 | -5.026 | 0.1747 76.75 -6.341 0.2101
vs. CMV

DCPIy (mm/blow)

-7.549 8.014 -0.3201 -16.31 9.022 | -0.3458 17.74 4.392 -0.1949
vs. CMV

DCPIlx (mm/blow)

-7.386 7.470 -0.2981 -16.62 8.533 | -0.3255 | -8.292 7.180 -0.275y
vs. CMV

NDG yq (KN/m®)

17.98 -0.0091 0.0018] 18.15 | -0.0355 | 0.0027 16.92 0.1205/ -0.002fL
vs. CMV

CMV

vs. MDP (kJ/s) 14.69 1.555 -0.1330 5.628 3.776 | -0.2620 23.15 -0.35 -0.031

Geogaugeée (MPa)

vs. MDP (iJ/s) 114.14 -7.237 0.2780 113.59 | -7.203 | 0.2785 | 109.90 -6.544 0.248%

LWD 300 E (MPa)

vs. MDP (ikJ/s) 31.18 -0.2946| -0.027q 30.84 | -0.1522 | -0.0409 29.98 -0.0834 -0.037p

LWD 200 E (MPa)

vs. MDP (kJ/s) 39.34 -0.5086| -0.0303 39.09 | -0.3701 | -0.0451 37.65 -0.2391  -0.041B

DCPIly (mm/blow)

vs. MDP (kJ/s) 12.54 2.862 -0.0479 10.06 3.333 | -0.0626 11.65 3.161 -0.062y

DCPI, (mm/blow)

vs. MDP (kJ/s) 5.001 3.796 -0.0908 2.679 4.256 | -0.1064 | 5.560 3.817 -0.0931

NDG yq (KN/m®)

vs. MDP (kJ/s) 17.80 0.1585| -0.009§ 18.00 | 0.1244 | -0.0088 18.03 0.1126 -0.0078
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Table C.8 Regression Coefficients from the Univari@ Regression Analyses
that were Performed on Average Data for Moisture Catent
(Polynomial Model)

Dependent Variable Kriging IDWP=4 NN
Vs.
Independent Variable
Co Ci C, Co Cy C, Co Ci C,

Labw

-80.87 23.35| -1.362| -95.03 | 26.30 | -1.510 | -108.59| 29.23] -1.664
vs. CMV
NDG o

-96.06 26.91| -1.560| -84.42 | 24.26 | -1.409 -68.73 20.80f -1.219
vs. CMV
Labw

vs. MDP (kJ/s) -182.52 | 38.27| -1.880 -172.98 | 36.42 | -1.796 | -202.11| 4241 -2.09

NDG o

vs. MDP (kJ/s) 30.10 -6.531| 0.4480 34.69 | -7.404 | 0.4850 39.12 -8.572  0.5576
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Table C.9 Regression Coefficients from the Multivaate Regression Analyses
that were Performed on Individual Data Points (Without Interaction
Term)

Dependent Variable Kriging IDW P =4 NN
vs.
Independent Variable

Co Cy C, Co C1 C. Co Cy C.
MDP (kJfs) 2902 | -0.2458| 1.100| 1.829 | -0.2107 | 1.146 | -1.712| -0.1881  1.475
vs. CMV
\(,;Seog&‘\‘/g‘f(wa) 131.13 | -0.2634| -5.673| 130.19 | -0.2411 | -5.609 | 127.67| -0.155§  -5.492

LWD 300 E (MPa)

46.64 0.0116 -2.175| 47.07 | -0.0021 | -2.196 45.66 0.0431 -2.130
vs. CMV

LWD 200 E (MPa)

49.76 0.1841 -2.182| 49.74 | 0.1904 | -2.195 48.64 0.2221 -2.142
vs. CMV

DCPIly (mm/blow)

33.75 -0.9913 1.764| 31.34 | -0.9438 | 1.950 30.22 -0.8898 1.995
vs. CMV

DCPI, (mm/blow)

21.37 -0.8348 2.497| 19.35 | -0.7951 | 2.654 18.57 -0.7550 2.683
vs. CMV

NDG yq (KN/m®)

17.92 0.0288| -0.0064 17.99 | 0.0273 | -0.0123 18.10 0.0233  -0.017p
vs. CMV

CMV

vs. MDP (kJ/s) 24.28 -1.498 0.6804( 24.62 | -1.292 | 0.4380 2570 | -0.723§ -0.202L

Geogaugeée (MPa)

vs. MDP (KJ/s) 112.09 | 0.1003 -4.123| 111.81 | 0.0421 | -4.038 112.44| 0.1092 -4.164

LWD 300 E (MPa)

vs. MDP (kJ/s) 47.61 | -0.3092| -1.970| 47.52 | -0.3263 | -1.949 47.92 | -0.1553 -2.154

LWD 200 E (MPa)

vs. MDP (KJ/s) 53.17 | -0.9396| -1.285( 53.01 | -0.9631 | -1.262 52.30 | -0.7055 -1.439

DCPIy (mm/blow)

vs. MDP (kJ/s) 8.930 1.443 1.270| 8.318 1.304 1.490 9.736 1.015 1.624

DCPIx (mm/blow)

vs. MDP (kJ/s) 1.681 1.214 1.928| 1.262 1.116 2.084 2.625 0.8886 2.165

NDG yq (KN/m®)

vs. MDP (kJ/s) 18.72 | -0.0729 0.0311) 18.76 | -0.0644 | 0.0179 18.68 | -0.051d 0.012
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Table C.10 Regression Coefficients from the Multivaate Regression Analyses
that were Performed on Individual Data Points (With Interaction

Term)
Kriging IDWP=4 NN
Dependent Variable
VS.
Independent Variable)
Co Ci C, Cs Co Ci C, Cs Co Ci C, Cs
MEP ie) 3109 | 01239 1.720| -0.038{ -3.146 | 00951 | 1.662 | -00322 | -11.12| o0.3868| 2.448]  -0.0603
\(/"Se‘ga%gf(’wpa) 11192 | o0o0181| -3601| -0.123( 112.81 | 0.8275 | -3.807 | -0.1124 | 123.56| 00954 -5.064  -0.0243
b:"'g,j?/OE(Mpa) 3757 | 05692 -1.240| -0.058{ 37.35 | 05951 | -1.189 | -0.0628 | 4358 | o0.1701] 1919  -0.013
b:"'g,j?/OE(Mpa) 2890 | 1467 | -0.0304 -0.134{ 2839 | 1503 | 00192 | -01381 | 33.84| 1.126| -06122 -0.0948

DCPly (mm/blow)

vs. CMV -1.111 1.153 5.360 -0.22| 0.8276 | 0.9320 5.114 -0.1973 7.356 0.5073 4.358 -0.1446

DCPI, (mm/blow)

vs. CMV 1.804 0.3683 4.515 -0.126] 2.874 0.2177 4.362 -0.1065 7.666 -0.08864 3.811 -0.0699

NDG y4 (KN/n?)

vs. CMV 20.68 -0.1413| -0.2920 0.0174 20.53 | -0.1290 | -0.2759 | 0.0164 20.01 -0.0934  -0.214 0.012p

CMv

4.063 0.9417 2.769 -0.245f 4.356 1.183 2.538 -0.2499 13.38 0.9042 1.025 -0.1541
vs. MDP (kJ/s)

Geogaugé (MPa)

145.03 -3.847 -7.150 0.3570 144.87 | -3.980 -7.072 0.3633 139.28 -3.292 -6.597 0.303¢%
vs. MDP (kJ/s)

LWD 300E (MPa)

48.29 -0.3902 -2.032 0.0079 48.61 | -0.4597 | -2.050 0.0121 47.80 -0.1399 -2.143 -0.0014
vs. MDP (kJ/s)

LWD 200 E (MPa)

vs. MDP (kJ/s) 48.48 -0.3783 -0.85 -0.050§ 49.26 | -0.5076 -0.92 -0.0412 48.47 -0.2201 -1.092 -0.0433

DCPly (mm/blow)

vs. MDP (kJ/s) 6.848 1.692 1.461 -0.022¢ 7.996 1.343 1.519 -0.0035 6.080 1.479 1.955 -0.0413

DCPI, (mm/blow)

vs. MDP (kJ/s) -2.171 1.675 2.282 -0.0417 -1.252 1.422 2.315 -0.0276 -2.334 1.517 2.615 -0.0561

NDG y4 (kN/n)

16.80 0.1573 0.2076 -0.020{ 16.81 | 0.1722 | 0.1964 | -0.0214 17.34 0.1181 0.1334 -0.01531
vs. MDP (kJ/s)
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Table C.11 Regression Coefficients from the Multivaate Regression Analyses
that were Performed on Average Data (Without Interation Term)

Dependent Variable Kriging IDWP=14 NN
Vs.

Independent Variablg

Co Cl Cz Co C1 C2 CO Cl CZ
MDP (kJfs) 8.717 | -0.4866| 0915 7.528 | -0.4547 | 0.9713| 1050| -0.622d 0.972B
vs. CMV
\(,;Seog&‘\‘/g‘f(wa) 151.63 | -0.9370| -6.603 159.04 | -1.176 | -6.950 | 169.90| -1.503| -7.483

LWD 300 E (MPa)

64.96 -0.4299| -3.288 67.20 | -0.5070 | -3.383 70.33 -0.603 -3.52
vs. CMV

LWD 200 E (MPa)

74.30 -0.4213| -3.700, 75.79 | -0.4769 | -3.754 76.49 -0.5034 -3.769
vs. CMV

DCPIly (mm/blow)

43.96 -1.288 1.264| 42.24 -1.281 1.449 58.91 -1.776 0.606%
vs. CMV

DCPI, (mm/blow)

19.81 -0.8560 2.732| 17.95 -0.83 2.895 29.09 -1.162 2.33]
vs. CMV

NDG yq (KN/m®)

16.63 0.0610| 0.0711] 16.69 | 0.0612 | 0.0634 16.28 0.0738 0.082B
vs. CMV

CMV

vs. MDP (kJ/s) 18.58 -1.981 1.738| 17.72 | -2.064 | 1.883 20.77 -1.259 0.81

Geogaugeée (MPa)

vs. MDP (kJ/s) 112.30 | 0.5444| -4.578 112.29 | 0.5394 | -4.562 | 111.91| 0.4148 -4.40

LWD 300 E (MPa)

vs. MDP (ikJ/s) 53.41 | -0.1641| -2.646| 52.32 | -0.2608 | -2.444 52.08 | -0.2318 -2.444

LWD 200 E (MPa)

vs. MDP (kJ/s) 58.29 | -0.6557| -2.080| 56.92 | -0.7728 | -1.839 57.31 | -0.6059 -2.03%

DCPIly (mm/blow)

vs. MDP (kJ/s) 12.45 1.697 0.6851 12.74 1.708 | 0.6773 14.79 1.553 0.6046

DCPIlx (mm/blow)

vs. MDP (kJ/s) 2.216 1.251 1.862| 2.503 1.266 1.841 4.818 1.210 1.649

NDG yq (kN/m®)

vs. MDP (kJ/s) 18.18 | -0.1126 0.1241] 18.12 | -0.1169 | 0.1323 | 18.01| -0.1044 0.133p
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Table C.12 Regression Coefficients from the Multivaate Regression Analyses
that were Performed on Average Data (With Interacton Term)

Dependent Variable

vs. Kriging IDWP=4 NN
Independent
Variable
Co Ci C Cs Co Ci C Cs Co Ci C Cs

MDP (kJ/s) vs.

cMV 46.71 -2.509 -2.651 0.190q 27.45 -1.520 -0.9054 | 0.1006 -73.47 3.866 8.973 -0.4297

Geogauge E (MPa)

vs. CMV 154.58 -1.094 -6.880 0.014§ 229.86 | -4.965 -13.62 0.3578 177.36 -1.902 -8.194 0.038p

LWD 300 E (MPa)

vs. CMV 196.22 -7.416 -15.61 0.6564 197.32 | -7.468 -15.64 0.6573 184.38 -6.700 -14.4Q 0.583p

LWD 200 E (MPa)

oy 10771 | -2199 | -6.836| 0.167] 10022 | -1.784 | -6.055 | 0.1234 | 88.44 | -1.143| -4900d  0.061P
\?SCFé'h"A"V(mm/b'OW) 64.75 | -2.395 069 | 01040 80.18 | -3.311 | -2.126 | 0.1917 | -78.67| 5579 13.72|  -0.7041
DCPIA (mmiblow) | g1 09 | 5,046 1314 | -0554{ -72.88 | 4.029 | 11.45 | -0.4589 | -192.25| 10.67 2342  -1.13

vs. CMV

ga?/“/d (kN/m3) vs. 23.67 -0.3136 -0.5895 0.035] 24.01 | -0.3301 | -0.6256 [ 0.0369 30.01 -0.6599 -1.229 0.070p

CMV vs. MDP

(kJIs) -5.482 1.704 3.932 -0.341¢ -0.13 0.7330 3.499 -0.2576 31.29 -3.036 -0.103 0.1611L

Geogauge E (MPa)

145.86 -4.284 -7.348 0.4127 146.11 -4.591 -7.262 0.4316 143.79 -4.478 -6.989 0.4151L
vs. MDP (kJ/s)

LWD 300 E (MPa)

21.18 4.474 0.0148 -0.3964 21.44 4.424 0.0216 | -0.3941 24.33 4.026 -0.201 -0.3612
vs. MDP (kJ/s)

LWD 200 E (MPa)

27.43 3.785 0.4676 -0.379§ 29.03 3.458 0.3881 | -0.3559 30.09 3.572 0.1664 -0.3545
vs. MDP (kJ/s)

DCPIM (mm/blow)

15.17 1.307 0.4610 0.0334 10.95 1.979 0.8200 | -0.0228 12.52 1.902 0.79 -0.0296
vs. MDP (kJ/s)

DCPIA (mm/blow)

vs. MDP (kJ/s) 4362 | 09422| 1.685| 00264 093 | 1504 | 1966 | -0.0200 | 1.672 | 1.693|  1.904|  -0.0410

NDG yd (kN/m3)

16.36 0.1498 0.2745 -0.022{ 16.63 0.1103 0.2519 | -0.0191 16.67 0.0999 0.241% -0.0174
vs. MDP (kJ/s)
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Appendix D
COPYRIGHT PERMISSION

Permissions for Table 3.1 and Figures 3.1 through 3

Go gle apps
ilDeledu
dOMe=

Permission to reproduce Figures and Table from your Thesis

Faraz 5. Tehrani <faraz. stehrani@gmail.com> Thu, Jun 27, 2013 at 12:42 PM
To: Daniel Cacciola <dcacc@udel. edu>

Hello Daniel,

You have my permission to use Figures 3.1, 3.2, 3.6, 3.7, 3.9, and 3.10 and Table 3.2 of my Masler's thesis in
your Master's thesis.

Regards,
Faraz

[CGruoted text hidden]
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Faraz S.Tehrani

PhD Candidate in Geotechnical Engineering

School of Civil Engineering

Purdue University

550 Stadium Mall Drive

West Lafayette, IN 47907

E-mail: fiehrani@purdue.edu
faraz.stehrani@gmail .com
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