Winter Maintenance Snow and Ice Control – Module 3 –

DEICING, ANTI-ICING, PRE-WETTING, LIQUIDS, AND POST SEASON ACTIVITIES

Delaware T²/LTAP

PRESENTED BY:

DELAWARE T²/LTAP CENTER

Delaware T²/LTAP Center

- T² Centers or LTAPs located in all 50 states
- Funded by FHWA and state DOTs
- Mission promote training, tech transfer, research implementation at local level
- Delaware T² hosted by University of Delaware, part of Delaware Center for Transportation
- Delaware T² funded by FHWA and DelDOT

The Preliminaries

Today's Instructor:

- Matheu J. Carter, P.E.
 - Engineering Circuit Rider
 - Back when he actually worked...
 - × Heavy construction
 - × Design engineer
 - × Public works director

Zoom Meeting is our platform today

- Potential to be interactive, so join in
- We will be recording today's session

Extra Credit Name the Band

The T² Center Winter Maintenance Program

What we cover:

- Module 1
 - Introduction to snow and ice control
 - Planning/program development
- Module 2
- Pre-season activities
- Plowing
- Post storm activities
- Module 3
- Deicing
- Anti-icing
- Pre-wetting
- Liquids
- Post season activities

Today's stuff

Acknowledgements

Primary references:

- AASHTO Guide for Snow and Ice Control
 - APWA, New England Chapter
 - "Plow Power" and "White Gold"
 - (former) Salt Institute
 - National Local Technical Assistance Program (LTAP)
 - Iowa Department of Transportation NCHRP
 - Report 526 Snow and Ice Control: Guidelines for Materials and Methods
 - Report 577 Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts

Deicing, Anti-icing, Pre-wetting, and Liquids

6

ABRASIVES AND FREEZE POINT DEPRESSANTS CALIBRATE SPREADERS AND OTHER EQUIPMENT WEATHER INFORMATION SPECIAL AREAS RECORDKEEPING DEALING WITH THE PUBLIC

Table 2-1. Snow and ice control materials.

Material Type	Snow and Ice Control Material	Primary Components
	Sodium Chloride (NaCl)	Na, Cl
Chloride Salts	Calcium Chloride (CaCl ₂)	Ca, Cl
	Magnesium Chloride (MgCl ₂)	Mg, Cl
	Calcium Magnesium Acetate (CMA)	Ca, Mg, C ₂ H ₃ O ₂
Organic Products	Potassium Acetate (KA)	$K, C_2H_3O_2$
-	Agricultural By-Products	Complex sugars
	Manufactured Organic Materials	Varies with product (i.e. glycol, methanol)
Nitrogen Products	Urea	Urea, Ammonia
Abrasive	Abrasives	Varies with th Table 2-2.

Table 2-3. Organic products, general properties.

Material	Chemical Formula	Forms used	Optimum Eutectic Temperature °C (°F) @ % Concentration ¹	Common Source(s)	Approximate Annual usage Tonnes (Tons) North America	Median Cost (USD) per Ton (survey of Internet contracts) ²
Calcium Magnesium Acctate	CaMgAc	Mostly liquid with some solid	-27.5 (-17.5) @ 32.5%	Reaction of Highly Concentrated Acetic Acid with Dolomite Limestone	Not Available	\$1280
Potassium Acetate	KAc	Liquid only	-60 (-76) @ 49%	Reaction of Highly Concentrated Acetic Acid with caustic potash (KOH). This reaction produces potassium acetate and water.	Not Available	Not Available
Agricultural By-Products	NA	Liquid only	Usually blended with chloride-based products	Refined from Agricultural base materials	Not Available	Blends
Other Organic Materials	Glycols Methanol	Liquid only	Varies with product	Varies	Not Available	302 20

with th Table 2-2. Chloride salts, general properties.

NCHRP REPORT 577

Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts

TRANSPORTATION RESEARCH BOARD, 2007

nat	Material	Chemical Formula	Forms Used	Optimum Eutectic Temperature °C (°F) @ % Concentration ¹	Common Sources	Approximate Annual usage Tonnes (Tons) North America	Median C (USD) p Ton (sur of Inter contract
	Sodium Chloride	NaCl	Primarily solid, but increasing use of liquid	-21 (-5.8) @ 23.3%	Mined from natural deposits, solarization of natural brines	21,080,000 (22,291,000)	\$ 36
			or inquia			(Salt Institute)	
	Calcium Chloride	CaCl ₂	Mostly liquid brine, some solid flake	-51 (-60) @ 29.8%	Natural well brines, by-product of the Solvay process	Not Available	\$120
	Magnesium Chloride	MgCl ₂	Mostly liquid brine, some solid flake	-33 (-28) @ 21.6%	Solarization of natural brines, natural well brines, by-product of metallurgical process	Not Available	\$ 95
	Blended Chlorides	Varies with product	Solid and liquid	Varies with product	Natural well brines, solarization of natural brines, mined from natural deposits	Not Available	\$142

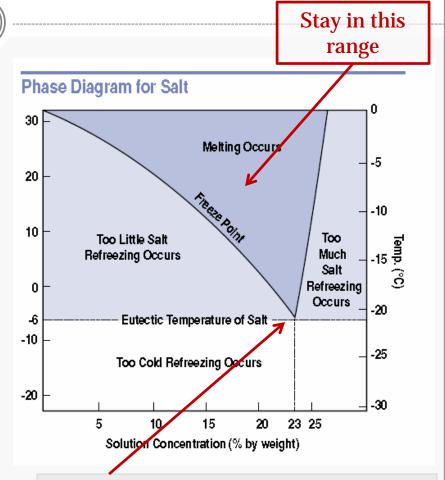
Sand

Freeze point depressants (FPDs)

- Rock salt (NaCl)
- Calcium magnesium acetate (CMA)
- Magnesium chloride (MgCl)
- Calcium chloride (CaCl)
- Potassium acetate (KA)
- Modified salts
 - Magic Salt
 - ClearLane[®]
 - Ice Ban[®]
 - Safe-Walk
 - Sugar beet molasses (desugared)
- Brines
- Sand/salt mixtures

Storage

- Solid materials
 - × e.g., rock salt
- Liquid materials
 - × e.g., salt brines
 - Commonly includes CaCl, MgCl
 - × Most organic products
- Sand or abrasives

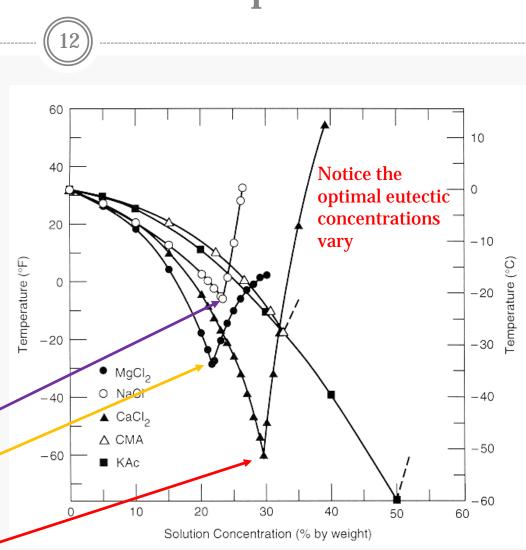


10

Freeze point depressants

- What's that all about? Let's talk about that
- Chlorides/salts are similar to glycol in your radiator
 - Glycol lowers the freezing point of the water
- <u>So do salts</u> and it's helpful to think of it that way
- But, absent a leak, the ratio of glycol to water in your radiator stays pretty constant
- The ratio of chlorides to water start to change from the moment we load salt on the truck
- We're going to talk about this a lot $\,$ just remember 23%

- Freeze point depressing qualities of brine are important to its use as an antiicing/deicing agent
- Minimum freeze point of salt brine is -6°F at a concentration of 23.3%.
- Line represents the freeze point of the solution at a given temperature. Dark colored portion in the center of the chart shows the melting range of brine solutions.
- Area to left shows a solution with <u>too little</u> <u>salt</u>; road surface will refreeze unless <u>more</u> <u>salt</u> brine or deicing salt is applied.
- Area to right shows too much salt (more importantly, too little water), and once again the surface will freeze without introduction of more moisture. Additional precipitation and heavy traffic can dilute brine solution allowing the road to refreeze.


Eutectic point – the point at which a solution achieves a maximum salt concentration. The solubility of salt in water decreases with decreasing temperature. Below the eutectic point, salt will begin to leave the solution and raise the freezing point. At the eutectic temperature, ice, saltwater, and solid salt exist in equilibrium. For water, the eutectic temperature is -6°F.

Eutectic comparisons

- Sodium chloride (rock salt
- Calcium magnesium acetate
- Magnesium chloride
- Calcium chloride
- Potassium acetate
- Same kind of curve we just looked at

CaCl

- × NaCl
- × MgCl -

Eutectic versus Effective Temperature

13

Where theory meets practice...

Chemical	Eutectic (⁰ F)	Effective (°F)
NaCl (sodium chloride)	-6	+15
CaCl (calcium chloride)	-60	-25
MgCl (magnesium chloride)	-28	+5
KCl (potassium chloride)	+13	+25
Kac (potassium acetate)	-76	-15
CMA (calcium magnesium acetate)	-17	+21

Application strategies

- Materials selection
- Timing
- Rate
- Frequency
- Anti-icing
- Deicing
- Pre-wetting
- Abrasives

15

Table 2-12. Application rates for various snow and ice control strategies.

Strategy/ Method	Materials	Pavement Temperature Ranges ¹	Application Rates ²
Anti-Icing	Liquid Chemicals,	0° C to -12° C	18-110 Kg /Lane /Km
	Solid Chemicals,	(32° F to 10° F)	(65 – 400 Lbs / Lane/ Mile)
	Pre-wet Solid Chemicals		
Deicing	Pre-wet Solid Chemicals,	0° C to -18° C	113 – 400 Kg /Lane /Km
	Dry Solid Chemicals	(32° F to 0° F)	(200-700 Lbs / Lane/ Mile)
Abrasives	Pre-wet Abrasives,	No limits	225 – 2,700 Kg /Lane /Km
	Dry Abrasives		(500-6,000 Lbs / Lane/ Mile)
	Abrasive/Salt Mixes	0° C to -18° C	225 – 2,700 Kg /Lane /Km
		(32° F to 0° F)	(500-6,000 Lbs / Lane/ Mile)

Why so different? 🗸

Stay tuned...you're going to be amazed!

NCHRP Report 577

16

.....

Compare rates

	Na	aCl		aCl ₂	M		K	Ac	C	MA
Temperature (°F)	100%* Solid Ib/LM	23%* Liquid gal/LM	90- 92%* Solid Ib/LM	32%* Liquid gal/LM	50%* Solid Ib/LM	27%* Liquid gal/LM	100%* Solid Ib/LM	50%* Liquid gal/LM	100%* Solid Ib/LM	25%* Liquid gal/LN
31.5	100	45	109	32	90	31	159	30	159	69
31	100	46	111	32	91	32	161	31	161	72
30.5	100	47	111	33	91	32	155	30	155	71
30	100	48	107	33	94	33	158	31	158	74
29	100	49	109	34	91	33	155	31	155	79
28	100	52	109	34	91	33	152	31	152	81
27	100	54	109	35	90	34	153	31	153	86
26	100	56	104	34	96	36	161	33	161	95
25	100	57	102	34	99	35	167	35	167	108
24	100	61	108	38	102	41	167	35	167	114
23	100	62	112	41	102	41	164	35	164	117
22	100	65	110	41	102	42	160	35	160	121
21	100	68	107	40	101	42	155	35	155	125
20	100	70	108	42	98	42	150	34	150	129
15	100	90	103	44	96	44	142	34	142	170
10	100	120	101	49	95	47	138	35	138	265
5	100	165	104	57	96	51	139	37	139	630

NaCl: Sodium chloride. CaCl₂: Calcium chloride. MgCl₂: Magnesium chloride.

KAc: Potassium acetate.

CMA: Calcium magnesium acetate.

* Typical percent concentrations of the solid and liquid forms with the balance being largely water.

General Notes:

 The above application rates are normalized to 100 lb/LM of dry solid NaCI. The application rates corresponding to a dry solid NaCI rate other than 100 lb/LM are determined by multiplying the equivalent chemical application rates for a given temperature by the ratio of the desired dry solid NaCI rate to 100 lb/LM. For example, if a 200 lb/LM of dry solid NaCI application rate were recommended at a temperature of 20°F, then switching to a 90 to 92 percent concentration of solid CaCl₂ would require a slightly higher application rate of 216 lb/LM.

The above application rate data were derived from the freezing point (ice melting) data of the five chemical solutions. As such, the data are more conservative (larger) than field data would suggest for anti-icing operations.

Salt spreading techniques

18

Deicing

- Typically, dry NaCl 100-500 #/lane mile
- Reactive strategy
- Chemical applied <u>on top</u> of already bonded snow, ice, frost
- Solid chemical scattered by traffic can result in significant loss of product without productive effect
- One study (Montana) deicing uses 5X chemical vs. anti-icing

Deicing

Video

Anti-icing

- Proactive strategy
- Materials applied <u>before</u> snow, ice, frost
- Prevents bonding of precipitate with the pavement surface, ideally – at a minimum, can weaken the bonds
- Can be dry or liquid applications
- Dry applications better where little or no traffic action (sidewalks, parking lots)

21

Anti-icing

- Tools for brine making
- Commercial brine makers available
- Can make your own

Table 2-13. Typical chemical application rates for anti-icing activities at -10° C to -0° C (15°F to 32°F).

Reference	Dry chemical spread rate, kg/lane-km (lb/lane-mi)					
Kelerence	Light icing	Light snow	Heavy snow	Freezing rain		
"Manual of Practice for an Effective Anti-Icing Program" FHWA/CRREL (2)	7-36 (25-130)	28 - 55 (100 - 200)	28 - 55 (100 - 200)	21 - 110 (75 - 400)		
"Manual of Practice for Anti-Icing of Local Roads" New Hampshire T2 (8)	18-36 (65-130)	28 - 55 (100 - 200)	28 - 55 (100 - 200)	21 - 110 (75 - 400)		

Hydrometer/Salometer Chart for Salt Brine

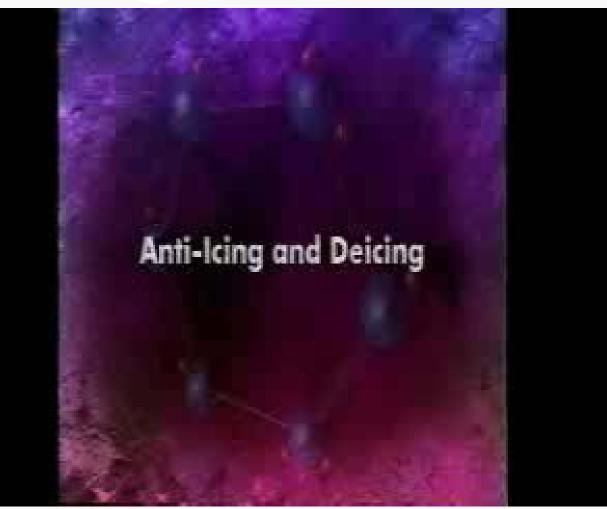
% Salt	Hydrometer Specific Gravity	Salometer Using 0-100%
0	1.000	0 4
2 3 4 5 6 7	1.014	7
3	1.021	11
4	1.028	15
5	1.036	19
2	1.043 1.051	22 26
8	1.059	30
ğ	1.067	33
10	1.074	37
11	1.082	41
12	1.089	44
13	1.097 1.104	48 52
14 15	1.112	56
16	1,119	59
17	1.127	63
18	1.135	67
19	1.143	70
20 21	1.152	74 78
22	1,168	81
23	1,176	85
24	1.184	89
25	1.193	93
26	1.201	96
27	-	100

NCHRP Report 577; Salt Institute Snowfighters Handbook

Winter Planning & Organization – LTAP and Salt Institute

Brine can

- Speed up melting
- Make plowing easier
- Reduce salt use
- When to/not use
- Special case of CaCl



Iowa Department of Transportation

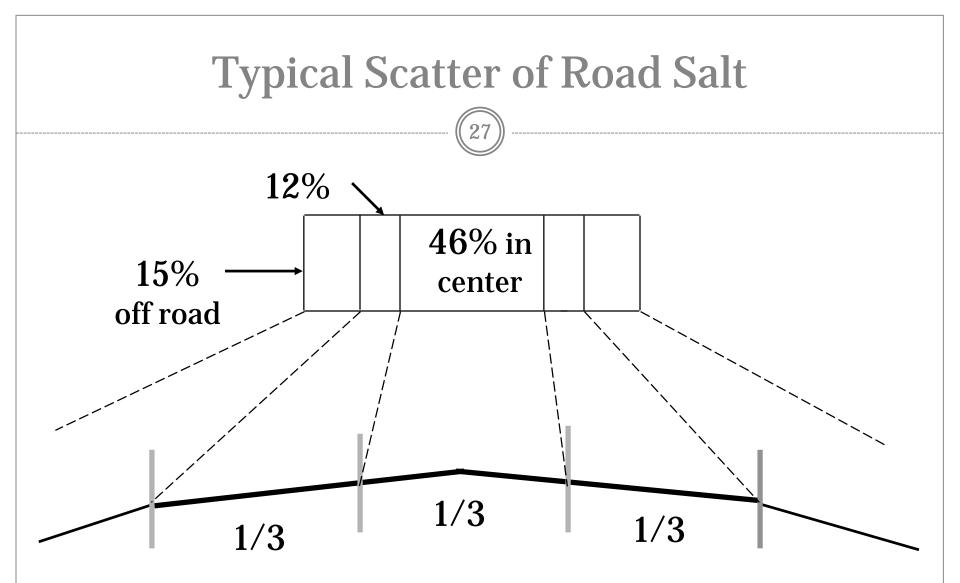
Reactive vs. proactive **Illustrates** Anti-icing Deicing Anti-icing not the best answer at <u>all</u> times

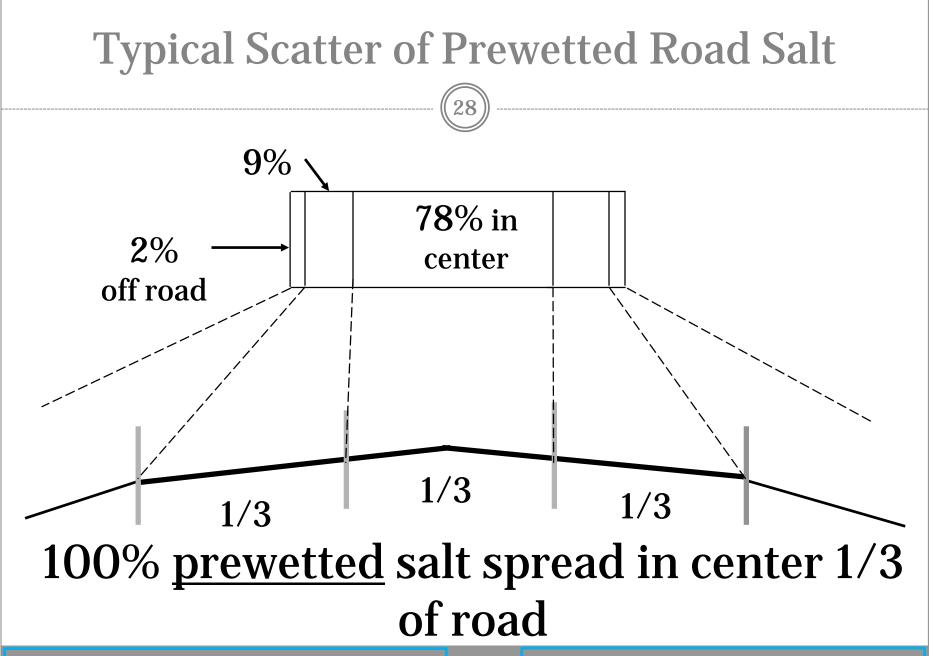
Video

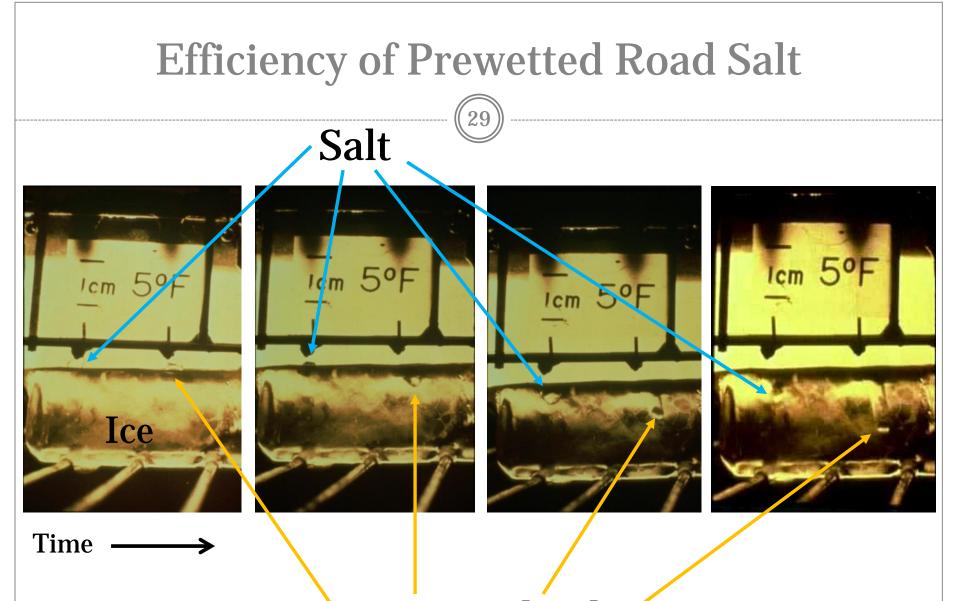
Pre-wetting

- Injecting/spraying liquid chemical to solids
- Enhance effectiveness and reduce material loss
- Applied to chemical (i.e., NaCl), can expedite formation of brine; once brine formed, more likely to stay on roadway
- \circ Danish study 90% retention of salt from brine
- Applied to abrasives, adds weight, cushions impact, may help material stick to roadway
- Montana study prewetting abrasives can reduce application by 50% in cold temperatures

Pre-wetting

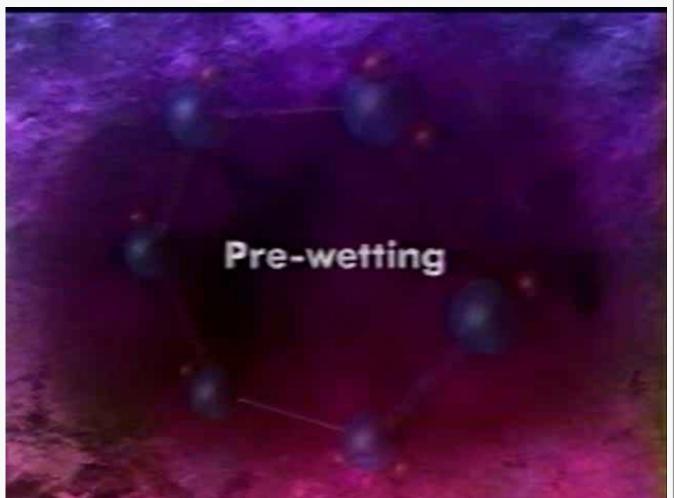






Winter Planning & Organization – LTAP and Salt Institute

100% salt spread in center 1/3 of road



Prewetted Salt

Winter Maintenance Materials – LTAP and Salt Institute

- Watch how little salt bounce/scatter
- Illustrates how little salt relative to surface area of the roadway
- Watch at end how's our 23% holding up?

Video

31

- Advantages of prewetting salt
 - Reduced salt usage
 - Reduced cost of deicing materials
 - Reduced labor costs
 - Increased deicing efficiency and faster melting action
 - Increased safety to motorists

32

Liquid storage

- Inside, outside
- Underground, above
- Secondary containment
- Corrosion resistant materials
 - × Polyethylene
 - × Stainless steel
 - × Glass fiber
- Corrosion inhibitors, agitation, circulation, filtration

Dry abrasives/chemical mixes

- Common, popular strategy
- Typically, 1:1 mixture of abrasive and salt
- Has not been found to be as cost-efficient as chemicals only
- Less effective at reducing accidents

34

Abrasives

- Sanding strategy of choice for many agencies
- Visible, low cost to manage friction
- But placed dry, only short term friction effect
- Roadway speeds >30 mph, little benefit
- Particle size matters
 - × Natural sand 10% retention
 - Manufactured coarse
 sand 50%
- Insurance claims and env impacts with sand

Table 2-15. Abrasive use.

Road Type	Use of Dry Abrasives
Freeways	Inappropriate
Rural roads, paved	Inappropriate
Rural roads, gravel	Only on low speed sections (perhaps hills and curves)
Rural intersections	Only on low speed approach length of gravel roads
High speed urban roads	Inappropriate
Low speed urban roads	Only in certain locations and when snowpack will persist
Urban intersections	Only when snowpack will persist

35

Application strategies – analyses

- Idaho DOT study
- Tradition methods (deicing, NaCl, abrasives) replaced with liquid anti-icing on US 12
- Sharp reductions in labor, abrasives, and accidents

Table 2-17. Idaho results.

	Average Annual Labor Hours	Average Annual Abrasives Used	Average Annual Accidents
Before 1997	650	1475 cu. M	16.2
1997-2000 Period	248	247 cu. M	2.7
Percent Reduction	62%	83%	83%

36

Application strategies – analyses

- Colorado DOT study
- Tradition methods (deicing, NaCl, abrasives) replaced with liquid anti-icing
- Focus particulate matter reduction

Table 2-18. Colorado DOT materials use from1992 to 2000.

Year	Sand (tons/mile)	Salt (NaCl) (tons/mile)	Liquid Deicer (gallons/mile)
1992	0.25	1.1	<0.5
1993	0.20	0.9	< 0.5
1994	0.17	1.3	< 0.5
1995	0.29	0	<0.5
1996	0.19	0	1
1997	0.23	0	3
1998	0.17	0	5
1999	0.09	0	8
2000	0.04	0	11

NCHRP Report 577

Sand stockpile treatment

- Abrasives or chemicals treated to avoid clumps
- "Frost proofing"
- Clumping makes materials difficult to handle and apply
- Typically, liquid or solid chlorides added at 5% (by weight)
- Solid chemicals tend to attract moisture causing lumps and workability problems
 - * "Frost proof" with small amount of liquid chemical with a lower eutectic temperature

38

Impact on the environment

Table 6-1. Generalized potential environmental impairment related to common snow and ice control chemicals.

Environmental Impact	Road Salt (NaCl)	Calcium Chloride (CaCl ₂)	Magnesium Chloride (MgCl ₂)	Acetates (CMA and KA)	Organic Biomass Products	Abrasives
Water Quality/ Aquatic Life (Section 3.4)	Moderate: Excessive chloride loading, metal contaminants; ferrocyanide additives.	Moderate: Excessive chloride loading; heavy metal contamination.	Moderate: Excessive chloride loading; heavy metal contamination.	High: Organic content leading to oxygen demand.	High: Organic matter leading to oxygen demand; nutrient enrichment by phosphorus and nitrogen; heavy metals.	High: Turbidity; increased sedimentation.
Air Quality (Section 3.8)	Low: Leads to reduced abrasive use.	Low: Leads to reduced abrasive use.	Low: Leads to reduced abrasive use.	Low: Leads to reduced abrasive use.	Low: Leads to reduced abrasive use.	High: Fine particulate degrades air quality.
Soils (Section 3.5)	Moderate/High: Sodium accumulation breaks down soil structure and decreases permeability and soil stability; potential for metals mobilization.	Low/Moderate: Improves soil structure; increases permeability; potential for metals mobilization.	Low/Moderate: Improves soil structure; increases permeability; potential for metals mobilization.	Low/Moderate: Improves soil structure; increases permeability; potential for metals mobilization.	Low: Probably little or no effect; limited information available.	Low: Probably little or no effect.
Vegetation (Section 3.7)	High: Spray causes foliage damage; osmotic stress harms roots; chloride toxicosis.	High: Spray causes foliage damage; osmotic stress harms roots; chloride toxicosis.	High: Spray causes foliage damage; osmotic stress harms roots; chloride toxicosis.	Low: Little or no adverse effect; osmotic stress at high levels.	Low: Probably little or no effect.	Low: Probably little or no effect.
Animals (Section 3.9)	Low: Sodium linked to salt toxicosis and vehicle kills; magnitude unclear.	Low: Probably little or no effect.	Low: Probably little or no effect.	Low: Probably little or no effect.	Low: Probably little or no effect; limited toxicity information available.	Low: Probably little or no effect.

39

Chloride impact on concrete

- Known to adversely affect concrete (roadways, sidewalks, bridge decks)
 - × Physical deterioration of surface scaling
 - Chemical reactions of salt/paste/aggregates paste degrades
 - **×** Diffusion of chloride ions corrosion of reinforcing steel
- Degree some disagreement in the literature
- CMA, urea, KA, glycols
 - **×** Research of their impacts on concrete is limited
 - Primary use is to limit corrosion of aircraft parts, so they're probably kinder to steel reinforcing
 - × Still, they're expensive
- Moral? Use less when you can

40

Impact on concrete

Table 6-3. Generalized potential corrosion impairment related to common snow and ice control chemicals.

Environmental Impact	Road Salt (NaCl)	Calcium Chloride (CaCl ₂)	Magnesium Chloride (MgCl ₂)	Acetates (CMA and KA)	Organic Biomass Products	Abrasives
Atmospheric Corrosion to Metals (General)	High: Will initiate and accelerate corrosion.	High: Will initiate and accelerate corrosion; higher potential for corrosion related to hygroscopic properties	High: Will initiate and accelerate corrosion; higher potential for corrosion related to hygroscopic properties	Low/moderate: Potential to initiate and accelerate corrosion due to elevated conductivity.	Low: Potential to initiate and accelerate corrosion due to elevated conductivity claims of mitigation of corrosion require further evaluation.	Low: Probably little or no effect
Concrete Matrix (Section 4.1)	Low/moderate: Will exacerbate scaling; low risk of paste attack.	Low/moderate: Will exacerbate scaling; low risk of paste attack.	Moderate/high: Will exacerbate scaling; risk of paste deterioration from magnesium reactions.	Moderate/high: Will exacerbate scaling; risk of paste deterioration from magnesium reactions	Low: Probably little or no effect.	Low: Probably little or no effect
Concrete Reinforcing (Section 4.1)	High: Will initiate corrosion of rebar.	High: Will initiate corrosion of rebar.	High: Will initiate corrosion of rebar, evidence suggests MgCl ₂ has highest potential for corrosion of chloride products	Low: Probably little or no effect.	Low: Probably little or no effect; claims of mitigation of corrosion require further evaluation	Low: No Effect

A couple of cautions

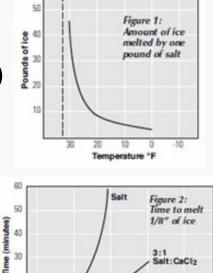
- Calcium Chloride CaCl
- Hygroscopic absorbs moisture from the air
- \circ If left as a residual on the road, moist air can actually <u>create</u> ice

Urea - $(NH_2)_2CO$

- Synthesized from natural gas
- 46% nitrogen it's basically fertilizer
- Less effective than NaCl eutectic point is 12.2°F
 - **×** Do you recall what the eutectic point for rock salt was?
- Excessive use can burn roadside vegetation and cause algal blooms in receiving waters

Temperature

- What do we think of when we say temperature?
 - × Air temperature?
- What about other temperature information?
 - **×** Pavement surface temperature?
 - **×** Subsurface temperature?
- Each of these temperatures (and other information) can affect the formation of ice on the roadways and the plowing/deicing/anti-icing techniques that will be most effective



43

Salt (NaCl)

- Meaning, sodium chloride (rock salt, road salt)
- Our most common "freeze point depressant"
- At 30°F (pave temp), 1# salt melts 40# ice
 At 20°F (pave temp), 1# salt melts 8# ice
- Salt melts ice as low as -6°F (pave temp)
- \circ But below ~15°F (pave temp) effect of salt greatly reduced
- Most managers limit use of salt when temps are 20°F and falling

CaCl₂

• So...

- Not too much moisture and not too little got to keep concentration near optimal – pre-wetting can help
 - × One way or another, you have to establish a brine on the surface
- Not too cold –NaCl just sits there below -6°F (pave temp)

• So...

- Below ~ 15°F (pave temp) or so, have to think about whether salt is doing much good at the moment
- Below ~ 5-10°F (pave temp), hang it up, or go to sand, or apply brine, or go to calcium chloride (CaCl) or magnesium chloride (MgCl)

Regardless...

 Knowing just the air temperature doesn't help you as much as also knowing the pavement temperature

Temperature and Ice Forming

- Air temperature does not correlate to pavement temperature, generally
 - So, the "current temperature" (at least, by itself) doesn't tell snowfighters what they really want to know
 - Frigid December day, subfreezing air temps pavement and subsurface can be substantially warmer, deicing efforts are light, and use of chemicals can be minimized
 - Mild early March night air temps may be above freezing, the surface and subgrade temps can frustrate deicing efforts
- Pavement and subsurface temperatures can help optimize use of chemicals/abrasives and improve performance

Temperature and Ice Forming

- If the pavement is at 32°F or below and there is precipitation, ice is a given; beyond that it gets trickier
- In the fall, subsurface temps are warmer, which tends to keep pavement temps warmer, even when the air temp is lower
 - In the spring (depending upon what winter has wrought) subsurface temps are generally low, providing little protection for the pavement against ambient temps – may even contribute to lower pavement temps than even the ambient air
 - Sun has strong influence

Temperature and Ice Forming

Black Ice

- \circ Forms when the air temp is below freezing but warmer than the pavement temp (e.g., air at 30°F and pavement at 26°F)
 - **•** When <u>more</u> likely to see black ice? Later in the winter, right?
- Moisture rapidly freezes and creates a thin layer of ice that may be transparent on the roadway
- Rain or snow not necessary just need subfreezing pavement, slightly warmer air temps, and elevated humidity
- Look for times when the dew point and air temp converge
 - × Air can no longer hold the moisture condenses on the pavement
 - May not be noticed by motorists until too late hence, very dangerous condition
 - **×** Tends to be spotty crops up here and there
 - × Watch bridges in particular

48

Table 8. Weather event: light snow storm.

PAVEMENT		INITIAL OPER	ATION		SUBSEQUEN	T OPER	ATIONS	COMMENTS
TEMPERATURE RANGE, AND TREND	pavement surface at time of initial operation	maintenance action	rate,	emical spread kg/lane-km /lane-mi) solid or prewetted solid	maintenance action	rate, l	mical spread kg/lane-km lane-mi) solid or prewetted solid	
Above 0°C (32°F), steady or rising	Dry, wet, slush, or light snow cover	None, see comments			None, see comments			 Monitor pavement temperature closely for drops toward 0°C (32°F) and below Treat icy patches if needed with chemical at 28 kg/lane-km (100 lb/lane-mi); plow if needed
Above 0°C (32°F), 0°C (32°F) or below is imminent;	Dry	Apply liquid or prewetted solid chemical	28 (100)	28 (100)	Plow as needed; reapply liquid or solid chemical when needed	28 (100)	28 (100)	 Applications will need to be more frequent at lower temperatures and higher snowfall rates It is not advisable to apply a liquid chemical at the indicated spread rate when the pavement
ALSO -7 to 0°C (20 to 32°F), remaining in range	Wet, slush, or light snow cover	Apply liquid or solid chemical	28 (100)	28 (100)				temperature drops below -5°C (23°F) 3) Do not apply liquid chemical onto heavy snow accumulation or packed snow
-10 to -7°C (15 to 20°F), remaining in range	Dry, wet, slush, or light snow cover	Apply prewetted solid chemical		55 (200)	Plow as needed; reapply prewetted solid chemical when needed		55 (200)	If sufficient moisture is present, solid chemical without prewetting can be applied
Below -10°C (15°F), steady or falling	Dry or light snow cover	Plow as needed			Plow as needed			 It is not recommended that chemicals be applied in this temperature range Abrasives can be applied to enhance traction

Notes

CHEMICAL APPLICATIONS. (1) Time initial and subsequent chemical applications to prevent deteriorating conditions or development of packed and bonded snow. (2) Apply chemical ahead of traffic rush periods occurring during storm.

PLOWING. If needed, plow before chemical applications so that excess snow, slush, or ice is removed and pavement is wet, slushy, or lightly snow covered when treated.

http://www.fhwa.dot.gov/reports/mopeap/eapcov.htm

49

PAVEMENT		INITIAL OPE				EQUEN	T OPERA			COMMENTS
TEMPERATURE RANGE, AND TREND	pavement surface at time of	maintenance action	ace dry chemical spread rate, kg/lane-km (lb/lane-mi)		maintenance action	dry chemical spread rate, kg/lane-km (lb/lane-mi)				
	initial operation		liquid	solid or prewetted		Б	quid		lid or tted solid	
				solid		light snow	heavier snow	light snow	heavier snow	
Above 0°C (32°F), steady or rising	Dry, wet, slush, or light snow cover	None, see comments			None, see comments					 Monitor pavement temperature closely for drops toward 0°C (32°F) and below Treaticy patches if needed with chemical at 28 kg/lane-km (100 lb/lane-mi); plow if needed
Above 0°C (32°F), 0°C (32°F) or below is imminent;	Dry	Apply liquid or prewetted solid chemical	28 (100)	28 (100)	Plow as needed; reapply liquid or solid	28 (100)	55 (200)	28 (100)	55 (200)	 Applications will need to be more frequent at lower temperatures and higher snowfall rates Do not apply liquid chemical onto
ALSO -4 to 0°C (25 to 32°F), remaining in range	Wet, slush, or light snow cover	Apply liquid or solid chemical	28 (100)	28 (100)	chemical when needed					heavy snow accumulation or packed snow 3) After heavier snow periods and during light snow fall, reduce chemical rate to 28 kg/lane-km (100 lb/lane-mi); continue to plow and apply chemicals as needed
-10 to -4°C (15 to 25°F), remaining in range	Dry, wet, slush, or light snow cover	Apply prewetted solid chemical		55 (200)	Plow as needed; reapply prewetted solid chemical when needed			55 (200)	70 (250)	 If sufficient moisture is present, solid chemical without prewetting can be applied Reduce chemical rate to 55 kg/lane-km (200 lb/lane-mi) after heavier snow periods and during light snow fall; continue to plow and apply chemicals as needed
Below -10°C (15°F), steady or falling	Dry or light snow cover	Plow as needed			Plow as needed					 It is not recommended that chemicals applied in this temperature range Abrasives can be applied to enhance traction

Notes

CHEMICAL APPLICATIONS. (1) Time initial and subsequent chemical applications to prevent deteriorating conditions or development of packed and bondedsnow. (2) Anticipate increases in snowfall intensity. Apply higher rate treatments prior to or at the beginning of heavier snowfall periods to prevent development of packed and bondedsnow. (3) Apply chemical ahead of traffic rush periods occurring during storm.

PLOWING. If needed, plow before chemical applications so that excess snow, slush, or ice is removed and pavement is wet, slushy, or lightly snow covered when treated.

50

Table 12. Weather event: freezing rain storm.

PAVEMENT	INITIAL OP	ERATION	SUBSEQUENT	OPERATIONS	COMMENTS
TEMPERATURE RANGE, AND TREND	maintenance action	chemical spread rate, kg/lane-km (lb/lane-mi)	maintenance action	chemical spread rate, kg/lane-km (lb/lane-mi)	
Above 0°C (32°F), steady or rising	None, see comments		None, see comments		 Monitor pavement temperature closely for drops toward 0°C (32°F) and below Treat icy patches if needed with prewetted solid chemical at 21-28 kg/lane-km (75-100 lb/lane-mi)
Above 0°C (32°F), 0°C (32°F) or below is imminent	Apply prewetted solid chemical	21-28 (75-100)	Reapply prewetted solid chemical as needed	21-28 (75-100)	Monitor pavement temperature and precipitation closely
-7 to 0°C (20 to 32°F), remaining in range	Apply prewetted solid chemical	21-70 (75-250)	Reapply prewetted solid chemical as needed	21-70 (75-250)	 Monitor pavement temperature and precipitation closely Increase spread rate toward <i>higher indicated rate</i> with decrease in pavement temperature or increase in intensity of freezing rainfall Decrease spread rate toward <i>lower indicated rate</i> with increase in pavement temperature or decrease in intensity of freezing rainfall
-10 to -7°C (15 to 20°F), remaining in range	Apply prewetted solid chemical	70-110 (250-400)	Reapply prewetted solid chemical as needed	70-110 (250-400)	 Monitor precipitation closely Increase spread rate toward <i>higher indicated rate</i> with increase in intensity of freezing rainfall Decrease spread rate toward <i>lower indicated rate</i> with decrease in intensity of freezing rainfall
Below -10°C (15°F), steady or falling	Apply abrasives		Apply abrasives as needed		It is not recommended that chemicals be applied in this temperature range

Notes

CHEMICAL APPLICATIONS. (1) Time initial and subsequent chemical applications to prevent glaze ice conditions. (2) Apply chemical ahead of traffic rush periods occurring during storm.

Spreading Abrasives and Chemicals

51

Control the rate

- <u>Manager</u> should adjust with conditions
- Control the distribution patterns
- For 2-lane, 2-way traffic (including most urban streets), most effective technique (for dry or pre-wetted material) is to spread across the middle 2/3; let the cross slope and traffic distribute

Give it time to work

- As temp drops, more time needed
- Don't just plow it back off five minutes later

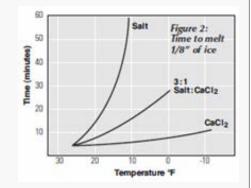


Figure 1:

Temperature *F

eoi jo spunod 30

Amount of ice

melted by one pound of salt

Spreading Abrasives and Chemicals

52

- Multi-lane highways apply nearly full width
- Parking areas spread evenly
- Hills/curves/intersections higher application rate
- Bridges higher application rate
- Banked curves apply on high side
- High winds dry material may not stick

Spreading Abrasives and Chemicals

53

Special areas

- At-grade railroad crossings
- Interchanges
- Super-elevated curves
- Steep grades
- Deep cuts
- Shaded areas
- Drainage
 - × Poor drainage/trapped areas
 - × Closed drainage
 - × Open drainage

54

Back to the weather

- Plows at the ready and nice piles of salt and sand are important
- Well trained and organized crews are essential
- Safety must always be on everyone's mind
- And...
- \circ Weather information is an important tool in your arsenal, too
 - × Weather Channel <u>www.weather.com</u>
 - × NOAA National Weather Service <u>http://www.weather.gov/</u>
 - × NOAA local forecasts <u>http://www.erh.noaa.gov/phi/</u>
 - DelDOT interactive weather -<u>http://www.deldot.gov/traffic/map.ejs</u>

55

Snow

- Ice crystals form gangs way up high and float down innocently
- Sustained snowfall requires constant inflow of moisture

Ice

- Moisture gets on stuff that's cold nobody likes that
- Black ice
- Forms when the air temp is below freezing but warmer than the pavement temp (e.g., air at 30°F and pavement at 26°F)
- Look for when the dew point and air temp converge air can no longer hold the moisture – condenses on the pavement

Sleet

• Cold, deep layer of air at surface cause raindrops as they descend

Freezing rain

• Water droplets fall from above-freezing layer to below-freezing layer

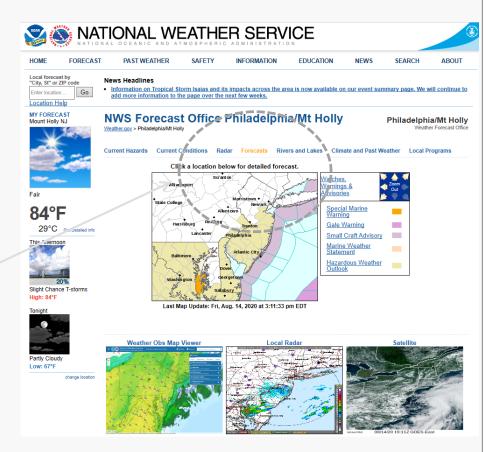
56

Weather information to watch

- Temperatures
 - × Air

- × Pavement
- **×** Subsurface
- Dew point
- Wind
 - × Speed
 - × Direction
- Where do we find it
- Weather Channel/weather.com
- NOAA
- o DelDOT
- On-site weather station
- Finger in the air?

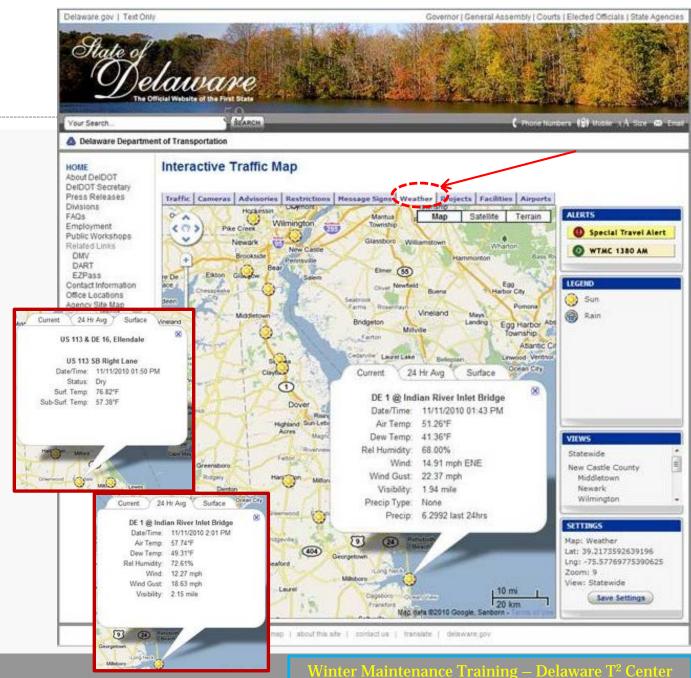
- Recognizing what <u>has</u> happened, what <u>is</u> happening, and what is likely <u>to</u> happen...
- Snow
- Ice
- Black ice
- Sleet
- Freezing rain
- Helps guide us what to do at any given point in the storm
- Start treatment
- Change treatments
- Stop
- Pause



NOAA NWS

58

- Tons of information as storms approach Click on your location of
- Click on your location on most maps and you'll get <u>very</u> localized information
- Local text forecasts written largely laymen terms
- Area forecast discussion


DelDOT Weather

 Live, interactive map
 ~30 locations

- Air temps
- Pave temps
- Sub-surface temps

Humidity
Dew point

• Wind

Vehicle-Based Weather Equipment

60

Systems like these can give you real time, local information

- Air temp
- Surface temp
- Relative humidity
- Dew point

Some Weather Scenarios

From the Salt Institute

Don't be shocked if there's an emphasis on salt use

Nonetheless, these can be good starting guides

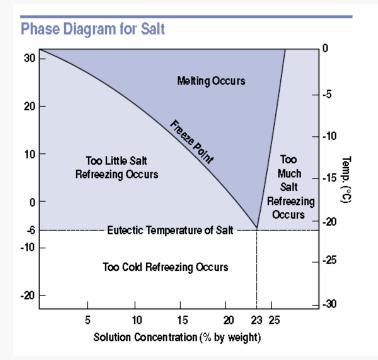
Pounds of Ice N	Nelfed Per Pound of Salf
Temperature	One Pound of Sodium
Degrees F	Chloride (Salt)
30	46.3 lb of ice
25	14.4 lb of ice
20	8.6 lb of ice
15	6.3 lb of ice
10	4.9 lb of ice
5	4.1 lb of ice
0	3.7 lb of ice
-6	3.2 lb of ice
Appli	ication of Salt
Rate of Application	Coverage Per Cu. Yd. of
Per Two-Lane Mile	Salt Per Two-Lane Mile
800 lb 700 lb 600 lb 500 lb 300 lb 200 lb	2 1/2 2 3/4 3 4 5 6 10

Note: Salt meeting ASTM Specification D632 weighs approximately 80 lb per cubic foot.

Stormfighting Guidelines

The following chart is a guideline to combat various types of storms. Local conditions and policies will be the final determining factor.

Condition 1 Temperature Near 30 Precipitation Snow, sleet or freezing rain Road Surface Wet	If snow or sleet, apply salt at 500 lb per two-lane mile. If snow or sleet continues and accumulates, plow and salt simultaneously. If freezing rain, apply salt at 200 lb per two-lane mile. If rain continues to freeze, re-apply salt at 200 lb per two-lane mile. Consider anti-Icing procedures.
Condition 2 Temperature Below 30 or falling Precipitation Snow, sleet or freezing rain Road Surface Wet or Sticky	Apply salt at 300-800 lb per two-lane mile, depending on accumulation rate. As snowfall continues and accumulates, plow and repeat salt application. If freezing rain, apply salt at 200-400 lb per two-lane mile. Consider anti-lcing and delcing procedures as warranted.
Condition 3 Temperature Below 20 and failing Precipitation Dry Snow Road Surface Dry	Plow as soon as possible. Do not apply salt. Continue to plow and patrol to check for wet, packed or icy spots; treat them with heavy salt applications.
Condition 4 Temperature Below 20 Precipitation Snow, sleet or freezing rain Road Surface Wet	Apply salt at 600-800 lb per two-lane mile, as required. If snow or sleet continues and accumulates, plow and salt simultaneously. If temperature starts to rise, apply salt at 500-600 lb per two-lane mile, walt for salt to react before plowing. Continue until safe pavement is obtained.
Condition 5 Temperature Below 10 Precipitation Snow or freezing rain Road Surface Accumulation of packed snow or ice	Apply sait at rate of 800 lb per two-lane mile or sait-treated abrasives at rate of 1500 to 2000 lb per two-lane mile. When snow or ice becomes mealy or slushy, plow. Repeat application and plowing as necessary.
Note: The light, 200 lb application called for in Conc condition.	ition 1 and 2 must be repeated often for the duration of the


Salt Institute, Snowfighter's Handbook

Winter Maintenance Training – Delaware T² Center

Worst Case Weather Scenarios

62

- Excessive amounts water/ice
- **Blizzard conditions**
- Intense snowfall, wind, very cold temperatures
- Chemicals can become quickly diluted (remember the phase diagram?)
- Abrasives can be washed away or buried

Worst Case Weather Scenarios

63

- Blizzard with very low, sustained temps going in and coming out of storm...
- Plowing alone may be best option hold off on chemicals and abrasives
- If post storm conditions are still favorable to icing, consider abrasives along with chemicals to buy time for them to work or for warmer conditions
- Blizzard with warmer temps going in and coming out of storm...
- Consider ice control chemical before storm or early on
- Plow mostly without salt or sand
- Deice at end of storm

Worst Case Weather Scenarios

64

Rapidly accumulating freezing rain...

- Apply solid ice control chemicals at high rate on high side wheel path of each lane
- Attempt to achieve at least one wheel path with sufficient friction to stop and steer
- Watch for rapidly changing conditions
- Falling/blowing snow, near zero visibility (white out)
- Get vehicles and equipment well off road, keep emergency lights active, communicate with operations base
- Extra caution in operational yards as well
- Wait it out conditions may only be temporary
- Operating in these conditions is a danger to everyone

Taking Calls

65

• No test of government is more important to a citizen than the manner in which his or her request or complaint is handled

Taking Calls

66

Request / Complaint Handling Procedure:

- Receiving calls
 - **Courtesy**
 - ▼Write it down thoroughly
- **OPrompt investigation & correction**
 - Get the information to the right personnel
 - **Request timeline for reporting back**
- **OFollow-up procedure for tracking**
- **O**Response back to resident before checking off
 - Keep record of call and resolution, including times
 - ×Note satisfaction (or lack thereof) from caller

- What can we tell from them?
- **Driver error?**
- Poor road conditions?

Storm information

- Snow, ice, sleet, freezing rain, black ice?
- What was the storm sequence i.e., freezing rain started at 4 a.m., changed to wet snow at 5:30, changed to rain at noon...
- Day of week, holidays, etc.
- Other weather conditions (temps, sunshine, clouds, dew points, winds)

Manpower and equipment status

- Beginning of storm, throughout
- Reasons for gaps (vacation, waiting on parts, funding)
- Auxiliary personnel or equipment used
- Notable problems/obstructions/interference

Performance

- Miles plowed (and/or material applied) per hour, possibly broken down by route and/or road type
- Times when various roads were made passable
- Abrasives and chemicals used (tonnage, per route)
- Cutting edges consumed
- Percentage of time LOS met
- Crashes (fatal, non-fatal, pedestrians, property damage only)

Feedback

- Number of phone calls from public, elected officials
- Public comment at meetings
- News articles, letters to editors

70

	Date 2002	er and P 1/16	1/16	1/16	1/16	1/16	1/16	1/16	Т
	Time	1100	1200	1300	1400	1500	1600	1700	+
	Forecast (F) or Actual (A)	A	F	F	F	F	F	F	+
	Precipitation Type	OS1	OS ¹	OS1	PS ²	None	None	None	+
	Precipitation Intensity (H, M, or L)	м	L	L	L	-	-	-	T
9	Percent Clouds	100	100	100	100	90	70	50	Τ
Da	Cloud Density (H, M, or L)	н	Н	М	М	L	L	L	
Weather Data	Radiational Effects (0, + or –)	0	0	0	0	+	0	-	
Ň	Air Temperature (°F)	25	25	25	24	23	22	21	Τ
	Air Temperature Trend (0, + or –)	0	0	-	-	-	-		
	Wind Velocity (mph)	6	7	8	8	9	10	12	
	Wind Direction	SE	S	SSW	SSW	W	W	NW	
	Relative Humidity (%)								
	Dewpoint (°F)								
-	Pavement Temperature (°F)	28	28	27	27	26	26	25	
n Data	Pavement Temperature Trend (0, + or –)	0	-	0	-	0	-		
į.	Treatment Cycle Time (hr)	2.0							Τ
ouc	Traffic Speed (mph)	50							
0 E	Traffic Volume (vph)	100							
Pavement Condition Data	Slush, Loose Snow, or Packed Snow in Wheelpath (Yes or No)	No							
-	Ice Pavement Bond (Yes or No)	No							Τ
	Text Fo	recast a	and Oth	er Oper	ational	Data			
Ordin	ary snow.								
	ler snow.								

Storm record

Agency Route					Operator_	 Date	
	Date	1/16/02					
	Time	1100					
	Precipitation and Trend (L, M, or H)						
lential	Cycle Time (0, +1, or +2)	1					
on Pot	Traffic (0 or +1) Traffic (0 or +1)						
Diluti	Traffic (0 or +1)	0					
	Adjusted (do not exceed H)	Н					
Paveme	nt Temperature (°F) and Trend	28					
Ice/Pave	ment Bond (Yes or No)	No					
Recommended Treatment		190 lb/LM of solid sodium chloride					

Figure B-2. Completed Form 2-Example snow and ice control treatment design worksheet.

NCHRP Report 526

71

Storm record

Other checklists can be found in the Snowfighter's Handbook

	Storm No: Sec:			Div:					Date:			
. Time	AM	PM	Day	of Week		2. Lo	2. Location Miles					
Storm Started						From:						
Storm Ended						To:						
Road Cleared												
. Description												
Dry Snow			Temp						Wind			
Wet Snow		Max:		in:		Direction:		Velosi		MPH		
Sleet			Depth of Sno						Visibility	-		
Freezing Rain		Avg (in)	D	rifts (ft)		Good:		Fai	r.	Poor:		
4. Procedures					5. Resu	ilts						
	No of Apps		Time					cellent	Good	Poor		
Salt		From:	To:		Salt							
Plowing Abrasives		From: From:	To: To:		Plowing Abrasives							
		1	10:		Abrasives	,	1			1		
6. Labor, Equip			0.7.11					T		Hataial (Tonio)		
Personn	e	Reg Hrs.	O.T. Hrs.	To	tal	Equi	p. No.	Туре	Hours	Material (TONS)		
										Salt		
					_	<u> </u>				-		
				<u> </u>	_							
					_		_			_		
		+			_		_			_		
			-					-	_	Abrasives		
		_										
					_		-					
		_										
						<u> </u>						
Total												

- Don't miss a chance to remind
- Establish a safety culture from the top down
- For you, your crews, pedestrians, motorists, visitors to operational centers and yards...
- Kids in snow banks, sledding, throwing snow balls
- Even the delinquents

- Day versus night operations
- Rest...eat...drink (water) don't over-do it
- Know when to cease operations temporarily

73

INVENTORY EQUIPMENT AND MATERIALS CLEAN AND REPAIR EQUIPMENT STORE EQUIPMENT REVIEW OF PERFORMANCE AND SAFETY STATISTICS BRIEF ELECTED OFFICIALS AND BEAN COUNTERS PLAN FOR REPLENISHMENT OF MATERIALS ROAD AND SHOULDER REPAIRS ASSESS THE SEASON CALIBRATE PLAN ACCORDINGLY

Spring is coming

You're unhooking plows and spreaders You're thinking about summer maintenance activities (and baseball and crab feasts and so on)

Hold on there – just a few things to do before we turn our backs on another winter season

Equipment

- <u>Thoroughly</u> clean
 - × Get the salt off
 - × And the other gunk, too
 - × Clean equipment easier to inspect, also
- Repair and maintain
 - × <u>Thorough</u> inspection
 - × Grease
 - × Repair, replace broken chains, wear points, cutting edges
- Inventory
 - **×** Got everything you started with?
- Identify replacements

76

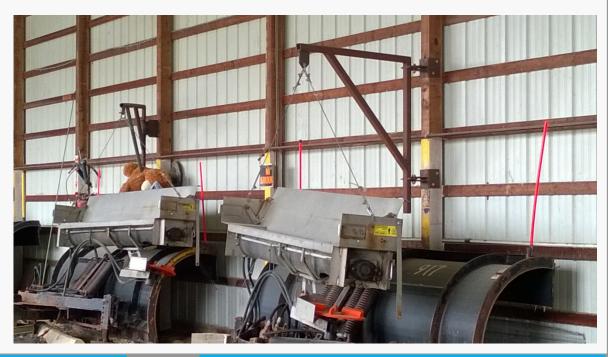
Cleaning/repairing equipment is essential prior to storage

Winter Planning & Organization – LTAP and Salt Institute

Store equipment

- Hang spreaders if you can
- Store plows up out of the dirt
- Keep hydraulic connections free of debris

 Ensure that attachments are marked/numbered for easy association with its master vehicle



78

Good storage locations and facilities are an asset

Winter Planning & Organization – LTAP and Salt Institute

Materials

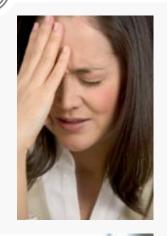
- Inventory
- Dress up piles (and ensure they are covered and protected)
- Identify quantities needed for next season
- Make arrangements with suppliers
 - Short supplies next winter?
 - Early bird gets the worm

80

Review performance standards

- Levels of Service
- Safety goals
- Budget

- Met? Exceeded? Fell short?
- Extenuating circumstances?
- Be brutally honest with yourself and crews



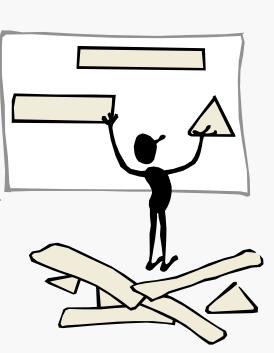
GRADING PERIOD	1	2	3	4
LEVELS OF SERVICE	A			
EMERGENCY RESPONSE	A			
MATERIAL CONTROL	С			
EQUIPMENT DAMAGE	B			
PUBLIC INTERACTION	B			
PERSONNEL SAFETY	A			
AGENCY INTERACTION	A			
PROPERTY DAMAGE	С			
Grade Average	B			-
A = Excellent • B = Good • C = Sat U = Unsatisfactory • I = Insufficien			ds Improv	ement

81

Assess the season

- What went well
- What didn't
- Why
- Obstacles
- Manpower
- Equipment
- Materials
- Outside forces, interlopers
- Contractors, vendors
- Things to improve

Things that went well


• Can we repeat them?

Things that went...poorly

- Can we eliminate them?
- Minimize them?
- Avoid them?

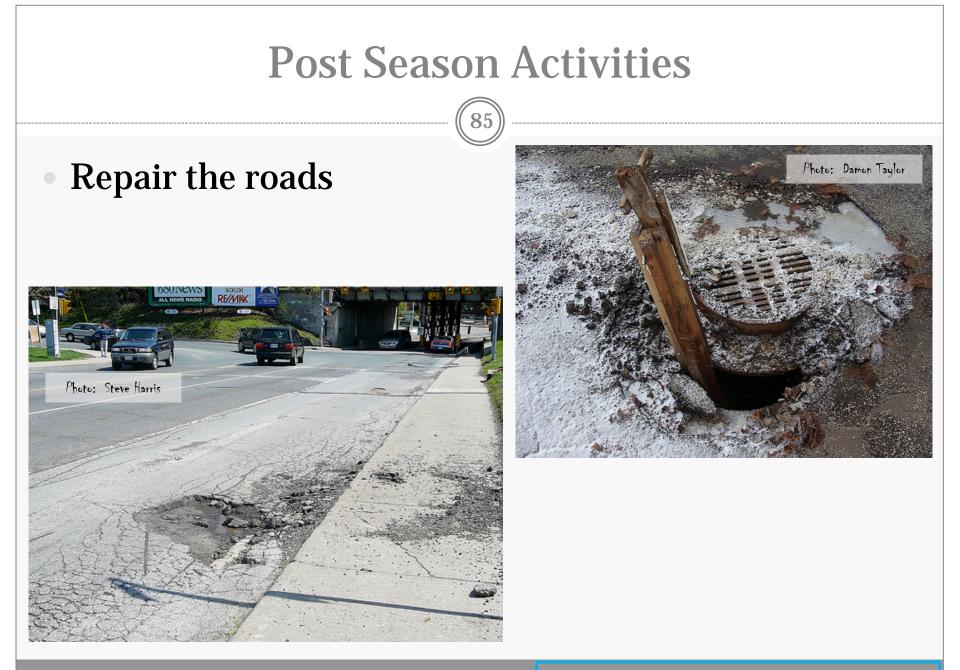
Revise the Snow and Ice Control Plan

- Tweak
- Rearrange
- Calibrate

83

Brief stakeholders

- Elected officials
- Public
- Bean counters
- Written reports Presentations
- Press releases
- Interviews


Admit shortcomings, oversights Show achievements

Repair the roads

- Permanent pothole repair
- Water and ice damage
- Shoulder repairs
- o Guardrail
- Signs and sign posts
- Pavement markings
- Stormwater inlet grates
- Drainage ditches and culverts
- Manhole covers

Inspect roadway safety features

Winter Planning & Organization – LTAP and Salt Institute

Roadside hardware can be easily damaged over winter by plows or vehicular accidents

88

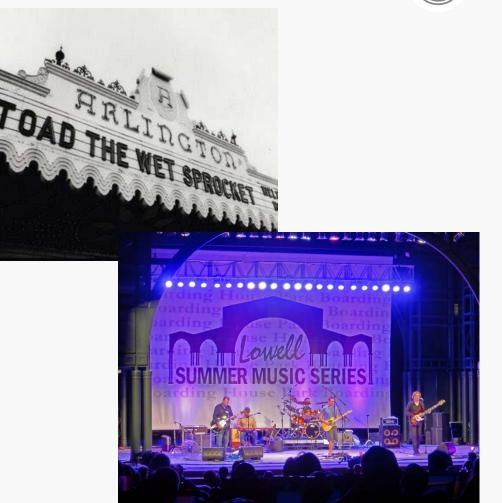
Drainage facilities are essential in preventing water damage to our roads

Winter Planning & Organization – LTAP and Salt Institute

89

Post-winter cleanup is essential to our roads, streets, bridges, drainage systems...essential to our total transportation infrastructure

Winter Planning & Organization – LTAP and Salt Institute


90

- And forget about snow and ice...
 - Until later in the summer
- When it's time to get suited up all over again

Okay, Who Was That Band?

Eric Idle (Monty Python), reflected on the band's name in a 1999 performance:

"I once wrote a sketch about rock musicians, and I was trying to think of a name that would be so silly nobody would ever use it, or dream it could ever be used. So I wrote the words 'Toad the Wet Sprocket.' And a few years later, I was driving along the freeway in LA, and a song came on the radio, and the DJ said, 'that was by Toad the Wet Sprocket,' and I nearly drove off the freeway."

Need More?

Matt Carter Municipal Engineering Circuit Rider Delaware T² Center <u>matheu@udel.edu</u> (302) 831-7236

http://www.ce.udel.edu/dct/T2.html

The Technology Transfer (T²) or Local Technical Assistance Program is a partnership among state universities, state departments of transportation, and the Federal Highway Administration. There are 58 centers throughout the United States with primary missions to promote training, technology transfer, and research project implementation at state and local transportation agencies. This document and/or its attachments may contain analyses or other technical information. These are prepared as an Information Service of the Delaware T² Center and are provided "as is" without warranty of any kind, either expressed or implied. The Delaware T² Center, and its funding agencies (e.g., DelDOT, FHWA, University of Delaware) shall not be responsible for the use of this information. The products and technologies discussed herein (some of which are proprietary) are not endorsed by the author or the Delaware T² Center. Except where noted, all content herein, including photographs and tables, were developed and produced by the Delaware T² Center and may not be reprinted or otherwise used without written permission.