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Abstract

A turbulence-resolving numerical model for fine sediment transport in the bottom
boundary layer is developed. A simplified Eulerian two-phase flow formulation for the
fine sediment transport is adopted. By applying the equilibrium Eulerian approximation,
the particle phase velocity is expressed as a vectorial sum of fluid velocity, sediment
settling velocity and Stokes number dependent inertia terms. The Boussinesq approx-
imation is applied to simplify the governing equation for the fluid phase. This model
utilizes a high accuracy hybrid compact finite difference scheme in the wall-normal di-
rection, and uses the pseudo-spectral scheme in the streamwise and spanwise directions.
The model allows a prescribed sediment availability as well as an erosional/depositional
bottom boundary condition for sediment concentration. As an example, several numer-
ical simulations are presented to study how the bottom resuspension/deposition mecha-
nisms, specifically the critical shear stress of erosion and the settling velocity, can deter-
mine the sediment availability and the resulting transport modes. Meanwhile, the model
also has the capability to include the particle inertia effect and hindered settling effect
for the particle velocity. This report is written as the documentation of this open-source
numerical model FineSed3D and it includes the mathematical formulations, numerical
methodology, brief model results, installation procedures and model input/output.
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1 Introduction

In many estuaries and continental shelves, the delivery and dispersal of fine sediment
play a critical role in determining coastal geomorphology (Friedrichs and Wright, 2004),
carbon cycle (Goldsmith et al., 2008) and ecosystem processes. In addition to currents,
waves are known to play a critical role in delivering these fine sediments (e.g., Wiberg
et al., 1994), especially in the cross-shelf direction via sediment flux gradients (Harris
and Wiberg, 1997, 2002) and sediment-driven gravity flows (Traykovski et al., 2000;
Ogston et al., 2000; Hale et al., 2014).

On this subject, several previous turbulence-resolving numerical studies also sug-
gested that sediment-induced density stratification plays an important role (e.g., Ozdemir
etal., 2010, 2011; Yu et al., 2014; Cheng et al., 2015a). Simulation results revealed that
at a given Stokes Reynolds number, the prescribed sediment load and settling velocity
determine the degree of sediment-induced density stratification and lead to four distinct
flow regimes (Ozdemir et al., 2010, 2011): Regime I is of very dilute flow (sediment
concentration is much smaller than ~ 1 g/L), sediments are well-mixed and the carrier
fluid turbulence remains intact within the boundary layer. Regime II occurs when the
near-bed sediment concentration is in the range of O(l ~ 10) g/L, and lutocline, i.e.,
a sharp negative concentration gradient, is formed. Above the lutocline, the flow be-
comes quasi-laminar but it remains turbulent beneath. Regime III takes place when the
near bed sediment concentration approaches several tens of g/L, carrier fluid turbulence
is significantly attenuated, and flow becomes nearly laminar. However, due to shear
instability sediment burst events occur during flow reversal. Regime IV is observed at
sediment concentration of 0(100) g/L or greater, in which a completely laminarized
flow throughout the wave cycle is observed. The existence of these regimes and the
transition from one regime to the other have critical implications to our capability in
assessing the state of the muddy seabed and to further understand various applications
related to the fine sediment transport.

Flux convergence (e.g., Wright and Friedrichs, 2006) and bottom resuspension de-
termine the source of fine sediments in the water column (e.g., Wheatcroft and Borgeld,
2000; Fan et al., 2004; Bever et al., 2011). Hence, characterizing the resuspension
of fine sediment in the wave bottom boundary layer (WBBL) is an important segment
of sediment source to sink. There are many studies about the fine sediment resuspen-
sion and deposition for tidal bottom boundary layers (e.g., Winterwerp, 2006; Byun and
Wang, 2005) and WBBL (e.g., Hsu et al., 2009). However, these numerical studies are
based on Reynolds-averaged models. Due to underlying assumptions adopted in the
turbulence closure (for example, the assumption of fully turbulent flow) and the tran-
sitional nature of the WBBL (e.g., Ozdemir et al., 2014), Reynolds-averaged models
may not be sufficiently accurate to investigate the effect of turbulence modulation due
to sediment, especially when it is related to the onset of laminarization.

In most of the models for fine sediment transport, the particle velocity can be calcu-
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lated by the equilibrium Eulerian approximation (Balachandar and Eaton, 2010), that
is, a vectorial sum of the local fluid velocity, the settling velocity and additional particle
inertia terms associated with the Stokes number. This approximation is only appropriate
for particles of Stokes number much smaller than unity. From the theoretical perspec-
tive (Balachandar and Eaton, 2010), the particle inertia effect is another mechanism
to deviate the particle velocity from the fluid velocity, especially in turbulent flow with
high acceleration (Cantero et al., 2008). However, these additional terms are also ig-
nored in the aforementioned turbulence-resolving studies (e.g., Ozdemir et al., 2010; Yu
et al., 2013; Cheng et al., 2015a). There is a need to quantify the effect of neglecting
the particle inertia on fine sediment transport for typical wave conditions encountered
in the continental shelves.

Meanwhile, the settling velocities are often assumed to be constant for simplicity
in the studies of Ozdemir et al. (2010) and Yu et al. (2014). However, due to interac-
tions among descending particles, upward flow motions are generated and hence the
collective settling velocity of particles is reduced from the single particle settling veloc-
ity. This is the well-known hindered settling effect (e.g., Winterwerp and Van Kesteren,
2004; Fredsoe and Deigaard, 1992). For non-cohesive sediments, hindered settling is
a relatively well-constrained process (Richardson and Zaki, 1954; Jimenez and Mad-
sen, 2003). For example, the reference concentration, often introduced in the hindered
settling parameterization, is generally agreed to be the random-close-packing concen-
tration of sediment (around 0.6 in term of volumetric concentration). For fine sediments
that often become cohesive in the coastal waters, the hindered settling plays a critical
role in the slow deposition and consolidation processes. However, the parameterization
of hindered settling for cohesive sediment is poorly constrained due to uncertainties in
flocculation. When flocs are considered, the ‘gelling concentration’ is typically intro-
duced to replace the reference concentration in the hindered settling parameterization
(Dankers and Winterwerp, 2007), and it is defined as the concentration at which floc ag-
gregates form concentrated aggregate networks (Winterwerp and Van Kesteren, 2004).
However, the gelling concentration has a wide range of values due to variabilities in floc
structures. For more organic and porous flocs with low fractal dimensions, the gelling
concentration can be as low as ~100 g/L.

In summary, a turbulence-resolving model with the capability to study sediment
transport dynamics on an erodible bed is needed. The effects of particle inertia and
hindered settling need to be evaluated for a comprehensive understanding of the fine
sediment transport in natural environments. The objective of this report is to present
such model. The model formulations are discussed in Section 2. In section 3, numerical
methodologies are discussed. In section 4, results of numerical experiments are pre-
sented to illustrate the effect of sediment erodibility and settling velocity on controlling
the resulting transport characteristics. The sensitivities of the particle inertial effect and
hindered settling effect for typical energetic wave conditions in the inner-shelves are



also evaluated. Conclusions and future works are presented in Section 5. Finally, the
model installation and input/output are documented in the Appendix.



2 Model Formulations

2.1 Governing Equations

Although the present numerical model can be used to study fine sediment in the steady
flow boundary layer (see more details in Yu et al. (2013)), for conciseness, we will only
discuss the capability of studying fine sediment transport in the oscillatory boundary
layer. We consider a typical wave condition with a free-stream velocity magnitude of
Up and a wave period of 7', and the fine sediment is of grain size d with a specific
gravity s = ps/ps, where py is the sediment density, and p; is the carrier fluid den-
sity. A simplified Eulerian two-phase flow formulation for the fine sediment transport
is adopted (Ferry and Balachandar, 2001). For fine sediment transport, the equilibrium
Eulerian approximation (Ferry et al., 2003; Balachandar and Eaton, 2010) can be ap-
plied (Ozdemir et al., 2010; Yu et al., 2014; Cheng et al., 2015a,b). Thus, the particle
velocity @ can be simplified to be an algebraical sum of the fluid velocity ;, the settling

velocity Wy and an expansion in terms of the particle response time #,,:

) _1.Da,
@ =i, — Wagbss — 1,(1 — —) = 4 HO.T., (1)

where ¢ = 1,2, 3 represents streamwise (z), spanwise (y) and vertical (z) directions,
respectively. The settling velocity Wy is calculated according to the Stokes’ law:

~ _(s—l)gci2
T YR

2)

where v is the kinematic viscosity of fluid phase, and g = 9.81 m/s? is the gravitational
acceleration. t, is the particle response time, which is defined as:

- sd?

b= 1o 3)
The equilibrium Eulerian approximation is justified for fine particulate flows where
the particle response time is sufficiently smaller than the characteristic fluid time scale
(Ferry et al., 2003). In this paper, except for physical constants such as py, ps, v, g and
the sediment diffusivity x, variables without overhead ‘~’ are non-dimensional vari-
ables.

For the suspended sediment transport in typical continental shelves, the volumetric
concentration of sediment is usually not significant (< 0.05) (Traykovski et al., 2007).
Therefore, the density variation is sufficiently small such that the Boussinesq approxi-
mation can be adopted to simplify the governing equations. By substituting Eq. (1) into
the Eulerian two-phase equations for the fluid phase (Cantero et al., 2008), and apply-
ing the Boussinesq approximation, the resulting continuity and momentum equations
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for the fluid flow read as:

ou;
— =0 4

—~+U,—~:—— ~—U(:)Sin (:}t(S“—l/ — —

ot s pr 0T, 0 (&1)0n 01,07 ;
where the fluid dynamic pressure is represented by p, and ¢ is the volumetric concen-
tration of sediment, which is dimensionless. The second term on the right-hand-side of
equation (5) is the streamwise pressure gradient that drives the prescribed wave motion,
where @ is the wave angular frequency, @ = 27 /7. The last term on the right-hand-side
of equation (5) represents the coupling between the sediment phase and the carrier fluid
via the sediment-induced density stratification.

The governing equation of sediment concentration is written as:

06 owe 9%
of 0 om0,

— (s = 1)godis,  (5)

(6)

where the particle velocity u; is calculated by the equilibrium Eulerian approximation
(Eq. (1)).

To generalize the simulation results, flow variables are nondimensionalized and a set
of dimensionless equations are solved in the numerical model. The free-stream velocity
amplitude Uy is chosen as the characteristic velocity scale, and the Stokes boundary
layer thickness A is selected to be the characteristic length scale of the flow:

A== (7)

Consequently, the flow characteristic time scale is calculated as ¢; = A / [70, and the
non-dimensional flow variables can be defined as:

; t i s W, p
xi_T’t:T,Ui:T,uf:Tz, s0 — ~O,p: p~ . (8)
A Zfl U() Uo Uo prg

Normalized by the above characteristic flow scales, the non-dimensional particle
velocity u; becomes:

;=u; — Wyodiz — St(1 — -
u,; U Wog S( S)Dt

+ O(St). )

where the particle Stokes number St = #,,/1; is introduced to quantify the particle inertia
relative to the flow inertia.
The resulting non-dimensional continuity and momentum equations for fluid flow
are written as: 5
u.
L =0, (10)

8@- N
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where Rea = UpA /v is the Stokes Reynolds number, which is used to quantify the
wave intensity. In the previous studies of Ozdemir et al. (2010, 2011), the total amount
of sediment in the domain is prescribed and maintained as constant in each simulation
(a no-flux boundary condition for sediment at both the bottom and top boundaries are
enforced) and hence the last term in equation (11) is represented by a bulk Richard-
son number (Ozdemir et al., 2010, 2011). Recently, an erosional/depositional bottom
boundary is implemented in the model and the total amount of sediment in the domain
is part of the solution of the model (Cheng et al., 2015a). Therefore, the particle Froude

number Fr = Uy/4/ (s — 1)gA is introduced instead.
The non-dimensional transport equation for sediment concentration is written as:

0¢ n oujp 1 D¢
ot Ox;  ReaScOx;0x;

(12)

where Sc is the Schmidt number, S¢ = v/k. The right-hand-side of equation (12)
accounts for the sub-grid scale particle motion.

2.2 Boundary Conditions

wall {top)

ol

periodic ?ﬂ-ﬁ

. L f= = = =

Z [ y L’ ¢ wall (bottom) L.
L.

X X

Fig. 1: Illustration of computation domain and coordinate system.

The bottom boundary layer is idealized to be statistically homogeneous in stream-
wise (x) and spanwise (y) directions (see Fig. 1). Periodic boundary conditions are used
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along streamwise and spanwise boundaries for fluid phase velocities and the sediment
concentration. Two walls are located at the top and bottom boundaries and no-slip and
no-penetration wall boundary conditions are implemented for the fluid velocity. For the
sediment concentration, the no-flux boundary condition is applied at the top boundary:

5 1 0¢ B
w'e - ReaSc 0z lo=r. 0,

where z = L, is located at the top of the domain, and w? is the vertical component of
the sediment velocity.

At the bottom boundary, an erodible/depositional boundary condition is implemented
for sediment concentration to allow resuspension/deposition at the bottom:

1o
RepaSc 0z 1z2=0

where F and D are the non-dimensional erosional and depositional fluxes at the bottom,
respectively, and both £ and D are normalized by the free-stream velocity magnitude
Us. When the sediment availability is kept constant in the domain, no-flux boundary
condition, i.e., &/ = D is enforced at the bottom boundary (Ozdemir et al., 2010, 2011;
Yu et al., 2014). Another option is to utilize the empirical bottom erosion and deposition
models for fine sediment and the sediment availability in the domain is determined
by the interplay of the sediment erosional flux and the depositional flux at the bottom
boundary. Since many empirical parameters involved in erosional/depositional formulas
are measured or presented in dimensional forms (e.g., Hill et al., 2000; Sanford and
Maa, 2001), the dimensional forms of the depositional flux and the erosional flux are
discussed here. The depositional flux is specified following the continuous erosion-
deposition formulation (Sanford and Maa, 2001; Winterwerp, 2007):

(13)

Wi — = E-D, (14)

D = —iy¢ (15)

z=0

The erosion rate £ is calculated by the Partheniades-Ariathurai type formulation
(e.g., Sanford and Maa, 2001), and it is presented here in the non-dimensional form:

E:{ me(F=1), Bl =7
0, |Tp| < Te

(16)

where 7, is the dimensional empirical coefficient of erosion rate, |7,| is the magnitude
of the bottom shear stress, and it is calculated as:
du
0z
and the critical shear stress of erosion is represented by 7. For fine sediments, both m,

and 7, depend on the degree of consolidation, and need to be determined from erosion
tests.

(17)

|To| = psv

)
z=0
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3 Numerical Method

A recently developed turbulence-resolving hybrid spectral-compact finite difference
scheme for the fine sediment transport in bottom boundary layer (Yu et al., 2013) is
utilized. In this numerical model, the computation domain (see Fig. 1) is assumed to
be statistically homogeneous in the streamwise and spanwise directions. Fourier ex-
pansions are adopted in both streamwise and spanwise directions, which enforce the
periodic boundary conditions in these directions, and uniform grids in both streamwise
and spanwise directions. More details on the pseudo-spectral scheme of the present
model can be found in Cortese and Balachandar (1995). In the vertical (wall-normal)
direction, Chebyshev collocation points are used, where more grid points are clustered
at both the top and the bottom boundaries, and a sixth-order centered compact finite
difference scheme is implemented. With this extension, more complicated (nonlinear)
boundary conditions, such as erodible/depositional boundary condition for sediments,
can be implemented while maintaining spectral-like accuracy. More details on the com-
pact finite difference scheme of the present model can be found in Yu et al. (2013,
2014). Eq. (10) and (11) are solved with a standard projection method (Chorin, 1968).
For diffusion terms, the Crank-Nicolson scheme is used. Non-linear advection terms are
calculated by the Arakawa method (Arakawa and Lamb, 1981) with the 2/3 de-aliasing
law, and integrated by a third-order low-storage Runge-Kutta scheme. A direct solver
(Yu et al., 2013) is used to solve the pressure Poisson equation. For the equation of
sediment concentration, same numerical methods are used where applicable.

Notice that the effective settling velocity may vary with = and y if hindered settling
or particle inertia is considered. To satisfy the mass conservation at the top boundary,
the no-flux boundary condition (Eq. (13)) should be satisfied. In the present numerical
schemes, Fourier expansions are adopted in both streamwise and spanwise directions. If
we transfer Eq. (13) into Fourier space, convolution terms will arise from the nonlinear
multiplication term (first term on left-hand-side of Eq. (13)), which is difficult to handle.
To resolve this problem, the sediment velocity at the top boundary is decomposed into
x-y plane-averaged component (w*®) and the fluctuation component w*’:

w® = (w*) +w. (18)
Substituting Eq. (18) into Eq. (13) will result in:
1 0¢ ,
N — — = —w’ ) 19
(we ReaSc 0z lz=L, v 2=L, (19)

However, the sediment concentration ¢ on the right-hand-side of the above equation
is part of the solution, to make sure that the top boundary has the same accuracy in terms
of time integration, the right-hand-side term is approximated by using a second-order
accurate scheme:

o) — [1 4 ) Yy _ W) o)
¢ _[1+c(n—1)}¢ 1 c(n—1)¢ 2z:Lz7 20)
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where n denotes the time steps, and ¢ = {dt/6, 5dt/24,dt/8} is the coefficient for the
diffusion term in the third-order low-storage Runge-Kutta method with dt being the
time-step (Yu et al., 2013). In this study, the constant time step is chosen based on the
Courant-Friedrichs-Lewy (CFL) criterion. ¢(™*) is the approximation of ¢ at the bottom
at the n step, and ¢"~ Y and ¢(®~?) are sediment concentration at the previous two time
steps (n — 1) and (n — 2), respectively.
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4 Model Results

With the erosion/deposition boundary condition for sediment concentration, the sedi-
ment availability becomes a part of the solution. Cheng et al. (2015a) has demonstrated
that at a given wave condition, where the free-stream velocity is Uy = 0.56 m/s and
wave period 7' = 10 sec, the transport of fine sediment with a settling velocity of
about Wy, = 0.5 mm/s shows three distinct characteristics, ranging from the well-
mixed transport (mode I), two-layer like transport with the formation of lutocline (mode
IT) and laminarized transport (mode III) as the critical shear stress of erosion reduces.
Moreover, reductions in the settling velocity also yield similar transitions of transport
modes. In general, the settling velocity is a flow variable due to the hindered settling
and the particle inertia. It has been shown that for a typical wave condition in continen-
tal shelves, the particle inertia effect is very minor although it tends to further attenuate
turbulence (Cheng et al., 2015b). On the other hand, for non-cohesive sediment with
a relatively high reference concentrations, the hindered settling effect also plays a rel-
atively minor role in the fine sediment transport in the wave boundary layer, while for
flocs with lower gelling concentrations, the hindered settling effect can sustain a large
amount of suspended sediment load and results in the laminarized transport (mode III).
More scientific details of these studies can be found in Cheng et al. (2015a,b). The
purpose of this report is to select a couple of simulations carried out in Cheng et al.
(2015a,b) as examples in order to illustrate model input/output, model capability and to
demonstrate the sensitivity of model results.

Table 1: List of simulations presented in this study.

Case 7.(Pa) Weo Wso(mm/s) St ¢rer [ Transport mode
0 NA NA NA NA NA NA NA
1 0.01 9.0x107* 0.5 NA NA 62x10* 111
2 0.02 9.0x107* 0.5 NA NA 1.76 x 1073 II
3 0.6 9.0x1074 0.5 NA NA 49x107°° I
4 0.02 3.0x107* 0.17 NA NA 3.1x1073 III
5 0.02 18x10~* 1.0 NA NA 69x107* II
2A 0.02 9.0x107* 0.5 003 NA 1.8x1073 II
2B 0.02 9.0x107* 0.5 NA 0.63 1.95x 1073 II

The seven cases associated with the same wave condition as Cheng et al. (2015a,b)
are presented here and they are summarized in Table 1. The Stokes Reynolds number
is calculated to be Rea=1000, which is in the range of intermittently turbulent flow
where fully turbulent condition can only be attained for a portion of the wave cycle
(e.g., Jensen et al., 1989; Ozdemir et al., 2014). The computational domain (see Fig. 1)
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is kept the same as the previous studies of Ozdemir et al. (2010) and Yu et al. (2014),
whichis L, x L, x L, = 60A x 30A x 60A, and it has been shown to be sufficient to
resolve the largest turbulent eddies. Following Yu et al. (2014) and Cheng et al. (2015a),
the model domain is discretized into N, X N, x N, = 128 x 128 x 257 with uniform
grids in both streamwise and spanwise directions, and Chebyshev collocation points
are used in the vertical direction. This discretization has been verified to be sufficient
to resolve turbulent scales. Taking the advantage of the statistical homogeneity in the
streamwise (x) and spanwise (y) directions, ensemble-averaged (turbulence-averaged)
flow quantities can be calculated approximately by averaging over the x-y plane. The
Schmidt number is chosen to be Sc¢ = 0.5 by following the previous studies of Ozdemir
et al. (2010) and Yu et al. (2014). In this report, m. is assumed to be constant and its
dimensional value is specified to be 3.05 x 10~7 m/s for all the cases, and the selected
values of 7. range from 0.01 to 0.6 Pa in order to study the effect of critical shear stress
on a diverse range of transport characteristics, and 7, is kept constant in each simulation.

In all the numerical simulations in Table 1, the initial condition for fluid flow is
chosen to be the fully-developed clear fluid oscillatory flow of Rea = 1000 (Case O in
Table 1) for each numerical simulation. Once the bottom stress exceeds the threshold
value of erosion, sediments are then suspended from the bottom boundary following Eq.
(16). Meanwhile, sediments will deposit to the bottom through Eq. (15). The net flux
through the bottom boundary adjusts the total amount of sediment in the domain and if
the wave forcing condition remains unchanged, a statistical equilibrium can be reached
where the time-averaged net sediment flux over one wave period eventually become

zero, or £ = D, where ¢ ’ represents wave-averaged quantities, i.e., time average over
one wave cycle.

4.1 Transport Modes Under Different Critical Shear Stress of Ero-
sion

In the studies of Cheng et al. (2015a), the inertia terms associated with the particle
Stokes number St in the particle velocity expression (Eq. (9)) are neglected by assuming
that the Stokes number St is sufficiently small, and the particle velocity is calculated as:
Uf = U; — W505i3- (21)

Hence, by specifying Wso = 0.5 mm/s (or Wy, = 9x 10~%), these simulations can be
interpreted as corresponding to fine silt (no flocculation) with a particle size of d = 24
pm and the specific gravity is s = 2.65. According to Cheng et al. (2015a), the critical
shear stress of erosion 7. plays a key role in controlling the sediment availability and
hence the resulting transport characteristics. This is demonstrated here by comparing
Cases 1-3, where all the flow parameters are kept the same, except for the critical shear
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Fig. 2: Time series of the domain-averaged sediment concentration for Case 1 (curve with
circle symbols), Case 2 (dashed curve), Case 3 (curve with plus symbols)

stress of erosion 7, (see Table 1). Fig. 2 shows the temporal variation of the domain-
averaged suspended sediment concentration, which is defined as:

1 (L
b = i /0 (p)dz. (22)

We can see that a lower critical shear stress generally leads to a higher ® in the do-
main except for Case 1. When the domain-averaged sediment concentration increases to
about ® = 1.3 x 1072 in Case 1, a decrease in P is observed after the third cycle. Due to
the rapid resuspension associated with the low critical shear stress, the flow turbulence
in Case 1 is completely attenuated after a couple of wave cycles, and flow eventually
becomes laminar. For Cases 2-3, the corresponding 7. is larger and the amount of resus-
pended sediment from the bottom at the initial stage increases more gradually (see Fig.
2). As we will demonstrate next, the flows are still turbulent and the domain-averaged
sediment concentrations keep increasing until a quasi-equilibrium state (an equilibrium
balance between the erosion flux E and the settling flux D) has been reached. Hereby,
the domain-averaged sediment concentration at the quasi-equilibrium state will be re-
ferred to as sediment availability 5eq (see Table 1).

To further demonstrate sediment-turbulence interaction, the turbulence structures
under different critical shear stresses for Case 1, 2 and 3 are illustrated by the iso-
surfaces of local swirling strength (\;) during flow peak (see Fig. 3 (a),(d),(g)). A is
the imaginary part of the complex eigenvalue of the velocity gradient tensor and its mag-
nitude can be used to quantify the strength of local swirling motion (Zhou et al., 1999).
In Cases 2 and 3 (see Fig. 3 (d) and (g)), some vortex structures are clearly observed
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over a portion of the bed. However, for Case 1 with the lowest critical shear stress of
0.01 Pa, no vortex structure is observed (see Fig. 3(a)). Meanwhile, the corresponding
iso-surfaces of concentration are also shown in Fig. 3 (b) to (i). To better illustrate the
resulting sediment concentration field near the bed (or in the middle of the domain), the
contour level for concentration iso-surface in Fig. 3 (b), (e) and (h) (or (¢), (f) and (i))
is chosen to be the plane-averaged concentration at z = 2.5 (or 2z = 20) in each case.
Since there are no turbulent coherent structures observed in Case 1 (Fig. 3(a)), a flat
near-bed iso-surface of concentration field is obtained in Fig. 3(b). However, irregular
structures of very dilute concentration can still be observed at around z = 20 due to tur-
bulence from the top half domain (see Fig. 3(c)). As the critical shear stress is increased
to 0.02 Pa in Case 2, sparse coherent vortex structures can be observed over a portion
of the near-bed region (see Fig. 3(d)). This region is corresponding to a stripe of more
irregular/chaotic sediment concentration structures shown in Fig. 3(e). In the middle of
the channel at z = 20 (see Fig. 3(f)), the iso-surface of sediment concentration is much
less chaotic, which suggests a much weaker turbulence. As the critical shear stress is
further increased to 0.6 Pa in Case 3, it is evident that the turbulence near the bed is
much stronger with denser near-bed turbulent structures (see Fig. 3(g)). In this case, the
iso-surface of sediment concentration in the middle of the domain (at z = 20, see Fig.
3(1)) is similarly chaotic, suggesting that turbulence is sufficiently large throughout the
domain. Comparing to iso-surface of sediment concentration in Case 2, it is clear that
fluctuations in sediment concentration are much stronger in Case 3 (Fig. 3(i)), implying
that the turbulence in Case 2 is significantly suppressed in the middle of the domain
despite the flow remains turbulent near the bed.

Turbulence-averaged flow statistics, namely the sediment concentration, streamwise
velocity and turbulent intensity during flow peak for Case 1, 2 and 3 are shown in
Fig. 4. Because the flow is statistically homogeneous in the streamwise and spainwise
directions, turbulence-averaged quantities are computed by averaging over the xy-plane.
For a better illustration, only the bottom half channel (z = 0 ~ 30) is shown here.
Several distinct features can be observed from the concentration profiles (Fig. 4(a)).
Firstly, sediment concentration profile of Case 3 is relatively uniform throughout the
lower half of the domain and although not shown here, the profiles of turbulent intensity
and streamwise velocity in Case 3 is almost identical to those of the clear fluid condition
(Case 0), this flow feature is quite similar to a well-mixed condition (regime I) that
was previously reported by Ozdemir et al. (2010). Distinctly, A nearly exponential
sediment concentration profile (see Fig. 4(a)) can be observed in Case 1, in which a
high sediment concentration only accumulates very close to the bed and decays rapidly
away from the bed. This sharp decrease of concentration is clearly associated with the
strongly suppressed turbulent intensity (see Fig. 4 (c)) throughout the lower half of the
channel. Meanwhile, the streamwise velocity profile in Fig. 4(b) is distinct from those
of Case 2 and 3, and a reduction of boundary layer thickness is observed. Flow features
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Fig. 4: Ensemble-averaged profiles of (a) sediment concentration, (b) non-dimensional
streamwise velocity and (c) non-dimensional turbulence intensity during flow peak (wt = 0)
for Case 1 (dashed curve), Case 2 (curve with triangle symbol), Case 3 (solid curve); In (a),
the top x-axis is the concentration scale for Case 3, and the bottom axis is the concentration
scale for Case 1 and Case 2.

presented here are consistent with the regime IV reported by Ozdemir et al. (2010),
where the flow is completely laminarized by a large availability of sediment. For Case
2, arelatively sharp negative gradient of sediment concentration (lutocline) can be seen
around z = 10 ~ 15, while this feature is absent in Case 1 and Case 3. A classic two-
layer feature is characterized by the lutocline, which separates the upper quasi-laminar
layer from the lower turbulent layer. Such feature can be clearly seen in the profiles of
turbulent intensity shown in Fig. 4 (¢). Below z = 10, the turbulent intensity of Case
2 is comparable to that of Case 3 (or the clear fluid condition). However, the turbulent
intensity above z = 15 is less than 50% of that in Case 3. The two-layer-like features of
Case 2 are consistent with the regime Il reported by Ozdemir et al. (2010) for moderate
sediment availabilities.

Based on the results presented so far, it is evident that the present turbulence-resolving
numerical model is able to study different transport characteristics due to different criti-
cal shear stress of erosion. By varying the critical shear stress of erosion, three transport
modes, which are similar to the flow regimes I, II and IV described by Ozdemir et al.
(2010) are observed. It is found that under the Stokes Reynolds number Rex = 1000,
very low critical shear stress (very high erodibility) as low as 0.01 Pa can cause sig-
nificant turbulence suppression by sediment induced stable density stratification that
further leads to laminarized flow (transport mode III). Interestingly, slightly increased
critical shear stress (7. > 0.02 Pa) causes lower sediment availability, much less turbu-
lence attenuation and the formation of lutocline that separates the turbulent layer from
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Fig. 5: Ensemble-averaged profiles of (a) sediment concentration, (b) non-dimensional
streamwise velocity and (c) non-dimensional turbulence intensity during flow peak (wt = 0)
for Case 2 (solid curves), Case 4 (dashed curves) and Case 5 (dash-dotted curves).

the upper quasi-laminar layer (transport mode II). When the critical shear stress is suf-
ficiently large (7. > 0.6 Pa), the sediment availability is very low such that the effect
sediment-induced density stratification on the turbulence is negligible (transport mode

D.

4.2 Transport Modes Under Different Settling Velocities

To be consistent with the study of transport modes under different critical shear stresses
of erosion 7., the particle velocity is calculated in the same manner as Case 1-3, i.e., Eq.
(21) is used. Cheng et al. (2015a) also demonstrated that the settling velocity is critical
in controlling the sediment availabilities and thus the resulting turbulence attenuation. In
this section, the capability of the model to study the effect of different settling velocities
are presented. While the settling velocity is kept constant in each simulation, a range of
settling velocity between 0.17 ~ 1.0 mm/s is considered in Cases 2, 4 and 5 (see Table
1), and this range of settling velocity is typical for fine sediment in the field condition
(e.g., Hill et al., 2000). The critical shear stress of erosion is kept the same, 7, = 0.02
Pa.

Fig. 5 compares profiles of the turbulence-averaged concentration, the streamwise
velocity and the turbulent intensity for cases with a small (Case 4), medium (Case 2) and
large (Case 5) settling velocity (see Table 1). By keeping the critical shear stress con-
stant, it is shown here that different transport modes are realized with different settling
velocities. To better illustrate the differences, sediment concentrations are normalized
by the domain-averaged sediment concentration. As discussed previously, Case 2 with
W, = 0.5 mm/s corresponds to transport mode II. Decreasing the settling velocity to
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Wy = 0.17 mm/s in Case 4 shows a significantly different concentration profile (Fig. 5
(a)). The lutocline is not present in the concentration profile of Case 4 and it is clear
from Fig. 5 (c) that flow turbulence in Case 4 is completely suppressed, which indicates
that the laminarized transport mode III is observed in Case 4.

On the other hand, increasing the settling velocity from W, = 0.5 mm/s to W, = 1.0
mm/s (Case 5) still produces the transport mode II (see Fig. 5). However, there is a slight
increase in the lutocline elevation. In Case 2, the lutocline is located at around z = 13,
while increasing the settling velocity twice (Case 5), the lutocline moves upward to
about z = 16. Moreover, the turbulent intensity above z = 5 in Case 5 is also larger.
By examining the sediment availability (see @, in Table 1), it is clear that Case 5
with a larger settling velocity has a much lower sediment availability. Hence, the higher
lutocline location and stronger turbulence (weaker turbulence attenuation) in Case 5 can
be explained by the lower sediment availability. In contrast, laminarized transport mode
III, Case 4, is caused by the high sediment availability and the significant turbulence
attenuation.

4.3 Effect of Particle Inertia

To include the effect of the particle inertia, the sediment velocity is calculated by retain-
ing the first-order inertia term in Eq. (9):

s 1 DUZ
U; = Uy WSQ(Szg St(l ;)E, (23)
Here we demonstrate the particle inertia effect by comparing with the baseline Case
2 (see Table 1). For Case 2, the particle response time and characteristic time scale
of the flow are £, = 8.5 x 107" s and ; ~ 3.2 x 1073 s, respectively. The resulting
Stokes number is St = fp /fl = 0.03, which is much smaller than unity. Except for the
difference in the particle velocity expressions, other flow and sediment parameters in
Case 2 and Case 2A are kept the same, and thus any difference between these two cases
is due to the extra inertia term in the particle velocity expression.

The effect of the particle inertia is shown by comparing the ensemble-averaged pro-
files (see Fig. 6) of sediment concentration, non-dimensional streamwise velocity and
non-dimensional turbulent intensity for Case 2 (inertia effect neglected) and Case 2A
(5t=0.03).

It is reminded here that Case 2 belongs to transport mode II, in which the lutocline
separates the upper quasi-laminar layer from the lower turbulent layer. In this case, the
lutocline is located approximately at z = 13 ~ 14 (see the solid curve Fig. 6(a)). By
including the first-order inertia term, the resulting sediment concentration profile (see
Fig. 6(a)) is very similar to that of Case 2. Moreover, the relative difference of the

22



30 30 30
(a) (b) (c)
25 25 25
20 20 20
215 15 § 15
10 10 10
5 5 5
0 0 0
0 0005 001 0015 0 1 0 005 0.1
(V2E)
30 30 30
(d) (e) ()
25 25 25
20 20 20
215 15 15
10 10 10
5 5 5
0 0 0
20 20 20 20 -20 0

Err({u))(%)

Err((V2k)) (%)

20

Fig. 6: Comparison of the ensemble-averaged profiles of (a) sediment concentration, (b)
streamwise velocity and (c) turbulence intensity during flow peak (wt = 0) for Case 2
(circle symbol), Case 2A (solid curve); The relative difference (%) of these flow quantities
are shown in (d), (e) and (f), respectively; The dashed lines denotes the level of zero error.

sediment concentration is shown in Fig. 6(d), which is defined as:

Err((¢)) =

(p2a) — (¢2)

(¢2)

x 100%,

(24)

where (¢9) is the plane-averaged sediment concentration in Case 2, and (¢4) is the

plane-averaged sediment concentration in Case 2A. The relative difference of the stream-

wise velocity Err((u)) and the turbulent intensity Err((/2k)) can be calculated in a
similar manner. We can see that the overall relative difference is small (< 10%). A
reduction of sediment concentration can be observed in the range of 13 < z < 21, and
the peak difference appears at around z = 18 (about —10%), which is close to the luto-
cline. On the contrary, sediment concentration below z = 13 is increased by about 7%.
This observation suggests the lowering of lutocline when inertia effect is considered.
Meanwhile, the streamwise velocity (see Fig. 6(b)) of both cases are again very similar,
and the relative difference (see Fig. 6(e)) is generally smaller than 5%, and the peak
value can be observed near the bottom. Furthermore, comparison of turbulence inten-
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sity 1s shown in Fig. 6(c). Although the turbulence intensity profiles from Case 2 and
Case 2A are also very close, it is evident that the predicted turbulence is slightly lower
by including the inertia effect with the peak attenuation occurs at around z = 15 near
the lutocline. More attenuated turbulence is consistent with lowered lutocline (Ozdemir
etal.,2011).
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Fig. 7: (a) Time series of free-stream velocity U(t). Three representative instants (b,c,d)
are shown with open circles. The relative difference (%, solid curve) of effective settling
velocities between Case 2 and Case 2A at these three representative instants are shown in
(b) flow peak (wt = 0), (b) wt = 7/3 and (d) wt = 27/3; The dashed lines denotes the
level of zero error.

Moreover, the relative differences in effective settling velocity at three representative
instants are discussed in Fig. 7. The relative difference in the effective settling velocity
is calculated by the ensemble-average of the additional term associated with the inertia
effect normalized by W:

NG
Err({(Ws)) = St(1 — -)

S s0

x 100% (25)

In Fig. 7(a), the wave phase (wt) is defined such that wt = 0 (wt = 7) corresponds to
the positive (negative) peak of free-stream velocity, and wt = 7/2 and 37 /2 correspond
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to flow reversals. From the comparison of effective settling velocities (Fig. 7(b,c,d)),
we can see that the effective settling velocity is nearly unaffected above z = 20 due to
very low turbulence above the lutocline. Between 1.5 < z < 20, including the particle
inertia reduces the effective settling velocity. However, the reduction is only within
3%. Moreover, an increase of the effective settling velocity can be observed near the
bottom 0 < z < 1.5, and the peak value of the increment is about 5% at flow peak.
However, the effective settling velocity at the bottom is still reduced by about 2%. As
the flow decelerates to wt = 7/3, the increment of effective settling velocity at around
z = 1.5 is decreased to about 1%. After the flow reserves and accelerates to wt = 27/3,
a uniform reduction of effective settling velocity can be observed below the lutocline,
and the reduction is less than 2%. Overall, the inertia effect slightly reduces velocity
fluctuation in the z-direction and hence the Reynolds stress is reduced (not shown here
for conciseness). This can further lead to a reduction of turbulent production and hence
more attenuation of turbulence. However, the Stokes number considered here remains
to be too small (St = 0.03) to trigger the transition to transport mode III.

As discussed in this section, the particle inertia effect can be included by retaining
the first order St term in the particle velocity expansion in our numerical model. Based
on Case 2 with St = 0.03, the inertia effect is demonstrated to be small on concentration
profiles, velocity profiles and turbulent intensity. This negligible effect is consistent with
the small Err((W)) which is generally within 5%.

4.4 Effect of Hindered Settling

To incorporate the effect of hindered settling, the particle velocity is expressed to ac-
count for the hindered settling correction:

u; = u; — Weo f ()3, (26)

where the dimensional Stokes settling velocity ’Wso is calculated by Eq. (2). In our
numerical model, the hindered settling function f(¢) is introduced to correct the settling
velocity, and the model of Richardson and Zaki (1954) is chosen:

f(o)=(1- ff)’", (27)

where ¢, is the reference concentration, i.e., a maximum packing concentration (Richard-
son and Zaki, 1954; Mehta, 1986; Dankers and Winterwerp, 2007). Clearly, the degree
of hindered settling and hence the resulting transport is highly dependent on ¢,.s. For
non-cohesive sediments, ¢, corresponds to the maximum packing limit, which around

¢rer = 0.63, at which the mean distance between the edges of the nearest neighbors is
nearly zero (Berryman, 1983). Here, we present the case with a reference concentration
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associated with non-cohesive particles (see Case 2B in Table 1). The empirical exponent
m is related to the particle Reynolds number (Re, = Wyd/v):

4.6, Re, <0.2
4.4Re, %%, 0.2 < Re, <1
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Fig. 8: Comparison of the ensemble-averaged profiles of (a) sediment concentration, (b)
streamwise velocity and (c) turbulence intensity during flow peak (wt = 0) for Case 2
(circle symbols), Case 2B (solid curve); The relative difference (%) of these flow quantities
are shown in (d), (e) and (f), respectively; The dashed lines denotes the level of zero error.

The ensemble-averaged flow statistics in Case 2 and Case 2B are compared in Fig. 8
to study the effect of the hindered settling for non-flocculated condition (¢,.; = 0.63).
Case 2 and Case 2B show a similar feature of concentration profiles (Fig. 8(a)). Since
the lutoclines are observed in both Case 2 and Case 2B near z = 14, transport mode II
is also obtained for Case 2B. However, Case 2B shows slightly more sediment below
the lutocline. Although the increase is within 20%, this notable increment of total load
in the domain is clearly associated with the reduced settling velocity. Meanwhile, the
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streamwise velocity profiles (see Fig. 8(b)) show that the overshoot near the bottom in
Case 2B is slightly larger (within 10%) than that of Case 2. Below the lutocline, the
turbulent intensity in Case 2B is consistently lower that that of Case 2 by about 5% to
20% (see Fig. 8(f)). When settling velocity is effectively reduced by hindered settling
effect, more sediments are suspended in the domain (Cheng et al., 2015a), which leads
to an enhanced sediment-induced density stratification and a stronger attenuation of
turbulence is observed.

60 T - T .

50

40

30

20

10

0.9 0.92 0.94 0.96 0.98
WS/WSO

1.02

Fig. 9: Normalized effective settling velocity profile for Case 2 (dashed curve), Case 2B
(solid curve) during flow peak (¢t = 157').

Fig. 9 presents the normalized effective settling velocity, which is defined as the
difference between the sediment velocity and the fluid velocity in the z-direction nor-
malized by the Stokes settling velocity. Since the features are similar during the entire
wave cycle, only the comparison at the flow peak is discussed here. We can see that hin-
dered settling renders a reduction in the effective settling velocity, and the reduction of
effective settling velocity is larger near the bottom, where the sediment concentration is
larger. For Case 2B (¢,.; = 0.63), the reduction is less than 10% near the bottom. This
reduction is consistent with the enhanced sediment availability, as well as the resulting
stronger turbulence attenuation.
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5 Conclusion and Future Work

A 3D turbulence-resolving numerical model for fine sediment transport in the bot-
tom boundary layer has been developed. The numerical model has the capability to
simulate fine sediment transport using two different approach for sediment availabil-
ity, namely, the prescribled sediment availability and the erosional/depositional bottom
boundary. This report further discusses simulation results using erosional/depositional
bottom boundary option. The transport mode of fine sediment due to critical shear stress
of erosion and settling velocities is successfully studied using this model, and model re-
sults reveal the existence of three transport modes, namely, the dilute suspension in
well-mixed condition (transport mode I), the formation of lutocline due to moderately
attenuated turbulence by sediment-induced stable density stratification (transport mode
II), and laminarized flow due to a significant turbulence attenuation (transport mode III)
(see more details in Cheng et al. (2015a)).

Meanwhile, the model provides flexible options for the sediment phase velocity, and
particle inertia and hindered settling for fine sediment can be included. Though it is
revealed that at the Stokes number of St = (.03, which corresponds to the value typical
of fine sediment transport in energetic continental shelves, the particle inertia makes a
very minor difference. More attenuation of turbulence is observed by considering the
particle inertia at St = 0.03. It is interesting to further consider other flow conditions
and sediment properties, where the Stokes number is larger. Furthermore, the hindered
settling effect can be incorporated by using the model of Richardson and Zaki (1954).
Only non-flocculated sediment with ¢,..;=0.63 is presented in this report. Cheng et al.
(2015b) showed that by varying the reference concentration when floc properties are
considered, more significant hindered settling effect (lower reference concentrations)
enhances sediment availability, significantly attenuate flow turbulence and the laminar-
ized transport mode III is obtained. Moreover, interesting phenomenon such as gelling
ignition (Kampf and Myrow, 2014; Cheng et al., 2015b), where an unlimited increase
of sediment in the domain, can be obtained when the reference concentration is low
enough.

Future extension of the present numerical model can be carried out in several direc-
tions. The effect of current in the wave boundary layer should be investigated. More-
over, mixed grain size transport and bedform should be further studied to investigate
their effect on the resulting fine sediment transport mode.
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6 Appendix

6.1 Installation and Compilation

FineSed3D is distributed in a compressed file, FineSed3D.tar. To install the programs,
first, uncompress the package by using the command:

tar —xvf FineSed3D.tar

to extract files from the uncompressed package. The exacted files will be distributed in
three new directories: /Examples, /Src and /User_Manual.

Before compilation, make sure the Intel Math Kernel Library (MKL) and FFTW
packages are successfully installed. For more informations about these libraries, please
go to:

For MKL, go to: https://software.intel.com/en-us/intel-mkl
For FFTW, go to: http://www.fftw.org/

After installing the MKL and FFTW libraries, we can start to compile the numerical
model. First go to /Src and modify Makefile if needed. There are several necessary flags
in Makefile needed to specify below:

-EXEC: the name of executable command to be generated after compilation.
-TGZFILE: the name of the compressed file.

-INC: all the include files, which defines global variables, and mesh information.
-OBIJS: the rule of generating the names of object files.

-MKL_HOME: define the directory of MKL library, it may vary with different opera-
tion systems.

-MKLIBS: define the library links for MKL, this is an important step.
-FLAGS: define code debug flags.
-DEBUGFLAGS: define flags for code debug.

-OPTFLAGS: define optimization option for compilation, use -O2 for optimization
level 2.

-MPFLAGS: define parallelizatino library, use -openmp for openmp library.

-FCMP: define the include files for FFTW library.
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-FCSP: define the include files for FFTW library.

Meanwhile, the number of mesh grid points in each direction is defined in global.inc:

INTEGER nx,ny,nz
PARAMETER (nx=128, ny=128, nz=257)

6.2 Model Input

Take the model input for the hindered settling (¢,.; = 0.63) as an example, the follow-
ing is a description of parameters in the file called initial, and variable names are added
in brackets above each variable values, and they are not a part of initial file:

#MAIN

vel

(istart iters ch_fin m fin)

2880000 8000 1 O

(oi_chan out_press limit)

8000 1 O

(ci_timer oi_cfl oi_spec oi_mean oi_gbal oi_1d)
9999999 1 99999999 9999999 24000 9999999

(re gradpbar dt cflmax)

30000.d0 1.0 0.0001 1.0

(tt_yes twc_yes otau_yes)

1 01

#END_MATIN

#THRM

conc

(sc ri(or 1/Fr~2) Tmax RR nbsg yes md_rhs_yes)
0.5 2.7574 0 1.65 0 1

(ttab ttat =-w_settling)

-0.0009 -0.0009

(ttbb ttbt =-1/(rexsc))

-0.002 -0.002

(ttgb ttgt)

0.0 0.0

(w_settling tau_p beta_p rey_p phiave=1l/phi_ref me tauc)
-0.0009 0.0 0.4762 0.0514 1.5873 3.05d-7 2.d-2
#END_THRM

#SP_VISC
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(epssvx epssvy)
0.0 0.0

(msvx msvy)

11
#END_SP_VISC

The detailed definitions are described as follows:
vel: output name for velocity.

istart: the time step to start the simulation, if it is not 0, ch_fin needs to be set to 1 to
read the previous files at the starting time step.

iters: number of time steps to run, in addition to the istart.

ch_fin: if hot start, set ch_fin to 1, and the output files at the time step istart will be
read to initialize the simulation, or if cold start, set ch_fin to O for cold start, and
initial perturbations are added to the prescribed velocity profile, which is defined
in initial compact.F.

m_fin: if cold start (ch_fin=0), to generate the initial perturbation, set to 0 if the mean
velocity is zero, else set to 1 to read mean velocity from ‘means.istart’, where
‘istart’ is specified as the starting time step.

oi_chan: output interval (number of time steps).
out_press: output pressure? set to 1 for yes, or O for no.
limit: set the limit for output? set to 1 for yes, or 0 for no.

oi_timer: output interval for time information, set to large value if the output is not
necessary.

ch_cfl: output interval for CFL number.

oi_spec: output interval for spectral information, set to large value if the output is not
necessary.

oi_mean: output interval for mean values, set to large value if the output is not neces-
sary.

oi_gbal: output interval for TKE balances, such as TKE production, TKE dissipation,
etc, mode details can be found in source code stats.F.

oi_ld: output interval 1D average information, set to large value if the output is not
necessary.
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re: define Reynolds number, Rex, since the vertical domain (0 < z < 60) is scaled to
-1 to 1, the Reynolds number is scaled by 30.

gradpbar: define magnitude of mean pressure gradient, dummy, because it is rede-
fined in rhs.F, since it should be function of time for oscillatory flow, however, a
constant pressure gradient can be specified for steady flow.

dt: time step, dummy, redefined in main.F.
cflmax: allowed maximum CFL number, a value of 0.3 is recommended.

tt_yes: include sediment phase? set to 1 for yes, and sediment phase will be solved, or
set to O for clear fluid, and sediment phase is not solved.

twc_yes: use two-way coupled formulas, set to 1 for yes, and O for no.

otau_yes: include particle inertia? set to 1 for yes, and the material derive of fluid
velocity Du/ Dt will be calculated and first order Stokes number term in the par-
ticle velocity expression (see Eq. (23)) will be calculated, meanwhile, the special
treatment of top boundary condition will be adopted (see Section 3). or set to O to
ignore inertia effect, and particle velocity will be calculated by using Eq. (21).

conc: output name for sediment concentration.

ri or 1/Fr?: define the bulk Richardson number (Rip,;) or the particle Froude number
(F'r). If no-flux boundary condition is used for the sediment concentration at the
bottom boundary, then a fixed sediment availability ® can be specified, and the
bulk Richardson number Rip,. can be specified as Rip, = (s — 1)gA®/UZ.
Notice that by spacifying the bulk Richardson number, the domain averaged sed-
iment concentration is equivalently specified. If the erosion/deposition boundary
condition is used for the sediment concentration at the bottom boundary, then the
inverse of the square of particle Froude number is specified, and it is calculated as
1/Fr? = (s — 1)gA/UZ. Notice that vertical domain is scaled, the bulk Richard-
son number and particle Froude number should be corresponding scaled.

Tmax: set to 1 if the Boussinesq approximation is disabled, and the void fraction of
fluid will be included in the momentum equation for fluid phase, see rhs.F for
more details.

RR: (s-1), where s is the specific gravity of sediment.

nbsq_yes: quit Boussinesq approximation? set to 1 for yes, or set to O for no.
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md_rhs_yes: use right-hand-side of momentum equation to calculate material deriva-
tive of fluid velocity? set to 1 for yes, or set to O for no, and left-hand-side of mo-
mentum equation will be used to calculate the material derivative of fluid velocity.
the material derivative will be used when the particle inertia effect is considered.

ttab, ttbb: coefficients for the sediment bottom boundary condition, ttab = Wy,
tthb = —1/(ReaSc).

ttat, ttbt: coefficients for the sediment top boundary condition, ttat = Wy, ttht =
—1/(ReaSc).

w_settling: Stokes settling velocity, Wy, (see Eq. (2)), it is define in the way that it is
positive if upwards.

tau_p: Stokes number, St, similar as Reynolds number and bulk Richardson number,
it shall be scaled as the domain is scaled in the numerical model.

beta_p: 1/s.

rey_p: particle Reynolds number, which is used in the hindered settling model, see Eq.
(28).

phiave: 1/¢,.; for hindered settling (see Eq. (27)), set it to O to ignore hindered
settling.

me: erosion rate coefficient m,, non-dimensional.

tauc: critical shear stress of erosion, dimensional (Pa).

epssvx: set to greater than O if to use spectral viscosity in x direction.
espsvy: set to greater than O if to use spectral viscosity in y direction.
msvx: should be less than nx/2, used in spectral viscosity.

msvy: should be less than ny/2, used in spectral viscosity.

6.3 Model Output

Note that the executable file, initial file as well as the *.inc file from the folder /src
should be present in the present working directory in order to run. The code can be run
using the following command:

FineSed3D.x < initial
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where FineSed3D.x is the executable file generated by the code compilation. The output
files are:

vel.*: fluid velocity, binary format, the I/O format can be found in io.F.
conc.*: sediment concentration, binary format, see io.F for detailed I/O information.
press.*: fluid dynamic pressure, binary format, see io.F for detailed I/O information.

vel_p.*: difference of sediment velocity from fluid velocity, output if inertia effect
or hindered settling effect is considered, binary format, see i0.F for detailed I/O
information.

DDt.*: material derivative of fluid velocity, output if inertia effect is included (tau_p >
0), binary format, see io.F for detailed I/O information.

ushear.dat: time series of plane averaged bottom shear velocity, (u.) = /|[(Ts)| /pf,
it is output every time step, ASCII format.

logfile: log of screen output to monitor the quantities such as CFL number, domain
averaged concentration, bottom concentration, etc., ASCII format.

these output files are saved under the same directory of the present working directory.
large output files are in binary format to save I/O time, and their format can be found
in 10.F in the folder of /Src. The names of the binary output files are a combination of
variable name and an output time step such as vel.8000, vel.16000.....
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