
HPC Symposium Fall 2022

John Huffman, Director, IT Research CyberInfrastructure (IT-RCI)

Jeff Frey, Michael Kyle, Anita Schwartz & Olena Smith

GIS Day 2022

• Date: Wed., Nov. 16, 2022
• Time: 9AM - 1:30PM (welcome to join for any part of the event)
• Location: Roselle Center for the Arts (Gore Recital Hall & Lobby)

See https://sites.udel.edu/gisday/ for more information
and registration

https://sites.udel.edu/gisday/

Agenda

• Caviness Expansion: Generation 3 update
• Data Center Issues and CI updates
• Farber EOL Plan and Policies Announcement
• CAREERS Recruiting for Projects
• ACCESS Successor to XSEDE
• DARWIN Allocation Accounting (sproject)
• Open discussion

● 272 compute nodes
○ +94 nodes

● 10,376 cores
○ + 4,672 cores

● 102 TiB RAM
○ + 43 TiB of RAM

● 18 GPU nodes
○ +7 GPU nodes

● Petabyte of Storage

4

Existing Caviness HPC system 2022 Caviness HPC Expansion

+

Caviness Expansion: Generation 3 Update
High Performance Computing Updates

Future of Chapel Computing Center

5

What’s generating the heat?

New research servers consume 2.5x
power & generate significantly more heat.

Intake temp for servers:

63-68°

Exhaust temp for research servers:

120°+
Exhaust temp for standard servers:

85-90°

6

Placeholder of graphic/image showing
temp of air going in and out of server

Darwin cluster
Intake & Exhaust Temperatures

Heat Map of Data Center During CRAC Failure

add image(s) here

7

If one CRAC fails, Data Center room temperature increases by 10 degrees in 10 minutes.

● Current cooling and mitigation strategies
are no longer effective in managing heat
output from high density research compute
servers.

● UDIT initiated a facilities project to upgrade
Chapel Computing Center’s cooling capacity
to keep pace with the expansion of research
compute systems.

Data Center Issues
Chapel Computing Center Overheating

9

● UDIT is establishing a new
100 Gbps connection to
Ashburn, VA, through
NYSERNet

● A new Co-Location site is
being established in
Wilmington, DE

● UDIT is working to bring
multi-petabyte storage to
support research and
scholarly activities

Cyberinfrastructure
Network and Storage

Farber EOL Plan and Policies Announcement

January 2023: All compute nodes will be shut down and the job scheduler taken offline. No
updates to OS or other software maintained by IT, no new accounts created and limited support

July 2023: Hardware will be removed from the Datacenter

IT has no plans to mass-migrate any of the data present in /home/work or in home
directories to longer-term storage systems.

https://docs.google.com/document/d/1A1ke9SZnQMiqAKmRfRI0-LtRBwcH9_Gs6rCAcH1IntA/

https://docs.google.com/document/d/1A1ke9SZnQMiqAKmRfRI0-LtRBwcH9_Gs6rCAcH1IntA/

CAREERS Recruiting for Projects

Cyberteam to Advance Research and Education in Eastern Regional Schools

1 year left on grant with funding and 1 year no extension

Supporting Research at Smaller Institutions with
Student Research Computing Facilitators (RCFs)

Cyberteam Projects
Students provide project updates at
our monthly meetings
• launch presentation introducing the

project
• monthly updates
• wrap presentation of completed project

Project completes at a clearly defined
end point
• Code is hosted in organizational GitHub
• Opportunity and funding to present

research at national meetings or
conferences

Cyberteam Projects

• Projects are typically 3 or 6 months in length with
well-defined milestones

• Student facilitators receive stipends unless other
compensation has been arranged (such as course
credit)
– $3000-$6000 depending on grad vs undergrad and

the length of the project

ACCESS Successor to XSEDE

• Account
– Your ACCESS ID is the same as your XSEDE Portal account. Please do not create a new

ACCESS ID.
– You do not need to change your password or your Duo registration for ACCESS.
– Select the “ACCESS CI (XSEDE)” identity provider to log on using your XSEDE account.
– Avoid creating duplicate accounts.

• Allocations
– Explore ACCESS, Discover ACCESS, Accelerate ACCESS, Maximize ACCESS
– UD Startup, UD Education, UD Research

ACCESS is an advanced
computing and data
resource supported by the
National Science
Foundation and made
possible through these
lead institutions and their
partners – Carnegie
Mellon University;
University of Colorado
Boulder; University of
Illinois at
Urbana-Champaign; and
State University of New
York at Buffalo.

https://www.nsf.gov/
https://www.nsf.gov/
https://www.cmu.edu/
https://www.cmu.edu/
https://www.colorado.edu/
https://www.colorado.edu/
https://illinois.edu/index.html
https://illinois.edu/index.html
https://illinois.edu/index.html
https://www.buffalo.edu/
https://www.buffalo.edu/

DARWIN Allocation Accounting (sproject)

Presentation about the implementation of allocation accounting on DARWIN and tools
available to users to check their allocation status.

Hermes Allocation Data
Manager (HADM)

Implementing Allocation Accounting on DARWIN

Presented by Jeff Frey, IT RCI Systems Administrator

Goals

● Keep track of resource allocations made by DSI and ACCESS (was XSEDE)

○ CREDITS

● Tabulate resource usage by jobs run on DARWIN

○ DEBITS

● Deny jobs that exceed remaining CREDIT on an allocation

● Provide tools for users and ACCESS agents to query allocation status

What is an Allocation?

● A time period

○ Usually 1 year

What is an Allocation?

● A time period

● A category of allocation

○ Dictates upper bounds on the requestable resources

○ XSEDE and DSI: education, startup, research

○ ACCESS: explore, discover, accelerate, maximize (we don't offer this one)

What is an Allocation?

● A time period

● A category of allocation

● Credit applied to one or more consumable computational resources

○ CPU•time : a service unit consists of having sole access to 1 CPU for 1 hour = 1 CPU•hour

○ GPU•time : a service unit consists of having sole access to 1 GPU for 1 hour = 1 GPU•hour

○ GiB•time : a service unit consists of 1 GiB of Lustre storage for the duration of the allocation

■ By default an allocation gets 500 GiB of Lustre storage; anything above that must be requested

: : : CPU vs. MEMORY :

Each type of node in DARWIN contains N CPU cores and

M bytes of memory. The fraction (M/N) is the amount of

memory per CPU core. Consider a job that requests 1

CPU core and memory in excess of (M/N): this job is using

the memory resources of more than 1 CPU. For this

reason, Slurm is configured to use whichever is greater:

the requested CPU count, or the number of CPUs

associated with the requested memory.

What is an Allocation?

● A time period

● A category of allocation

● Credit applied to one or more consumable computational resources

● In any period of time, a workgroup on DARWIN can have:

○ A single category of allocation: cannot have a research allocation and an education allocation concurrently

○ Credits to: CPU, GPU, CPU+GPU, CPU+storage, GPU+storage, CPU+GPU+storage

HADM: The database

● A PostgreSQL database is used to store the details of

allocations

• workgroup
• Slurm account

projects

• resource type
• allocation category
• start date
• end date
• project

allocations

• amount
• comments
• allocation

credits

• status
 - executing/completed
• amount
• comments
• allocation

predebits

• job_uid
• owner_uid
• amount
• comments
• allocation

failures

• owner_uid
• amount
• comments
• allocation

debits

• workgroup
• Slurm account

projects

• resource type
• allocation category
• start date
• end date
• project

allocations

• amount
• comments
• allocation

credits

• status
 - executing/completed
• amount
• comments
• allocation

predebits

• job_uid
• owner_uid
• amount
• comments
• allocation

failures

• owner_uid
• amount
• comments
• allocation

debits

HADM: The database

● A PostgreSQL database is used to store the details of

allocations

○ All debits are per-user — ensures workgroups can query who has

used how much

○ Records in failures only track submission failures due to lack of credit

on an allocation

■ There's no way to log this in the job output, so users get a

generic failure message from Slurm

HADM: The administrative interface

● PostgreSQL client

○ Direct access to database

HADM: The administrative interface

● PostgreSQL client

● Web API

○ Python web application (Flask, GUnicorn) that provides REST access to the database

○ Authentication of requests via MUNGE (same message-signing used by Slurm)

○ Three roles:

■ superuser: Create, Read, Update, and Delete all records of all types, run as alternative uid

■ admin: Read all records of all types, run as alternative uid

■ standard: Read records associated with user's workgroup(s)

HADM: The administrative interface

● PostgreSQL client

● Web API

● hadm-curl

○ Streamlines queries against the Web API

○ Automatically adds the MUNGE authentication HTTP header, run-as header (for superuser or admin)

HADM: Slurm integration

● Ideally, we would like:

○ job submissions to be checked for available allocation credit given projected resource consumption

■ if the job will require 6 SU and the allocation has just 5 SU remaining, deny the job

○ pending jobs' projected resource consumption to influence additional job submissions without technically being

a debit (these are predebit records in the database)

■ if a pending job is going to leave only 5 SU, a submission requesting 6 SU should not be allowed

○ completed jobs to debit their actual resource consumption from the allocation (these are debit records in the

database)

HADM: Slurm integration

● Slurm has limited support for introducing consumable resource limits into its job accounting

● Use of job submission plugins or prolog scripts to verify sufficient credit vs. projected resource

consumption
○ At submission the job has no assigned job id — no way to supply it to the HADM database for a predebit

○ Prolog scripts in slurmd have time limits and would require all compute nodes have access to HADM

● Batch processing of job completion logs or use of epilog scripts to generate debits
○ Can affect the accuracy of credit verification based on frequency of batch processing

○ Epilog scripts in slurmd have time limits, would require all compute nodes have access to HADM, and would

not have access to actual resource consumption data for the job

HADM: Slurm integration

● We chose to use a Slurm PrEp plugin

○ Plugin interface allowing C functions to be executed during job Prolog or Epilog stages

○ The functions can execute asynchronously (in another thread) so the rest of the scheduler is not blocked

HADM: Slurm integration

● We chose to use a Slurm PrEp plugin

● Prolog function: before a job is handed-off to a slurmd to begin execution…

○ Determine resource type from partition

■ REQUIREMENT: jobs MUST be submitted to a single partition

○ Allocation to be predebited inferred from resource type and account

■ REQUIREMENT: jobs MUST be submitted to a single account

■ account is inferred from submitting Unix group if not specified

○ Job record contains calculated billable TRES value, multiply by time limit for projected resource consumption

■ REQUIREMENT: jobs MUST be submitted with a wall time limit

○ Asynchronously submit a request to the HADM WebAPI with the jobid and parameters summarized above

: : : PLEASE NOTE :

At this point the job's stdout and stderr file(s) are not

available. If the Web API returns a failure to submit — due

to insufficient credit on the allocation — then the

accounting record for the job will show an error of

ESLURM_ACCOUNTING_POLICY for the job. The HADM

database will have logged a record in the failures table

which the user can check using the sproject utility

(discussed next).

HADM: Slurm integration

● We chose to use a Slurm PrEp plugin

● Prolog function: before a job is handed-off to a slurmd to begin execution

● Epilog function: before job completes and is finalized in the accounting database…

○ If the job failed due to a node's being down or never having booted, zero the usage — no charge!

○ Otherwise, calculate actual resource consumption (a real number, not an integer)

■ To avoid erroneous round-up, limit the value to 10 significant digits

■ Ensure a minimum value of 1.0 so long as the job accumulated non-zero run time

○ Asynchronously submit a request to the HADM WebAPI with the jobid and actual resource consumption

HADM: Slurm integration

● We chose to use a Slurm PrEp plugin

● Prolog function: before a job is handed-off to a slurmd to begin execution

● Epilog function: before job completes and is finalized in the accounting database

● Web API query throughput

○ Jobs are constantly being submitted and completing: sometimes concurrently, so throughput is critical

■ The Web API application is parallelized, so > 1 request can be handled at once

■ The Slurm prolog/epilog requests are already asynchronous, so why not parallelize them?

○ Configurable, limited-lifespan worker thread model for Web API requests in Slurm

■ Min/max thread counts, max request/∆t lifespan for thread, load-based addition of more threads

HADM: Standard user interface

● sproject

○ Collects parameters via command-line options provided by the user

○ Generates the Web API requests for those parameters

○ Formats the returned JSON data for human-consumable display

■ table, comma-separated value (CSV), or raw JSON

■ substitutes names for object ids for the sake of clarity (workgroup name instead of project id)

HADM: sproject usage
Show me all allocations on record for my project:

$ sproject allocations --project=it_nss
Project id Alloc id Alloc descr Category RDR Start date End date
---------- -------- ----------- -------- --- ------------------------- -------------------------
 1 1 it_nss::cpu startup cpu 2021-07-12 00:00:00-04:00 2021-07-25 23:59:59-04:00
 1 2 it_nss::gpu startup gpu 2021-07-12 00:00:00-04:00 2021-07-25 23:59:59-04:00
 1 41 it_nss::cpu startup cpu 2021-07-26 00:00:00-04:00 2023-07-31 00:00:00-04:00
 1 42 it_nss::gpu startup gpu 2021-07-26 00:00:00-04:00 2023-07-31 00:00:00-04:00

Limit that to only those allocations that are currently active for job submissions:

$ sproject allocations --project=it_nss --current-only
Project id Alloc id Alloc descr Category RDR Start date End date
---------- -------- ----------- -------- --- ------------------------- -------------------------
 1 41 it_nss::cpu startup cpu 2021-07-26 00:00:00-04:00 2023-07-31 00:00:00-04:00
 1 42 it_nss::gpu startup gpu 2021-07-26 00:00:00-04:00 2023-07-31 00:00:00-04:00

HADM: sproject usage
$ sproject allocations --project=it_nss --current-only --detail
Project id Alloc id Alloc descr Category RDR Credit Run+Cmplt Debit Balance
---------- -------- ----------- -------- --- ------ --------- ----- -------
 1 41 it_nss::cpu startup cpu 33333 0 -855 32479
 1 42 it_nss::gpu startup gpu 33333 0 -4 33329

Since DSI and ACCESS allocations are in units of hours, the default display is
in that unit. HADM internally maintains balances in units of minutes:

$ sproject --exact allocations --project=it_nss --current-only --detail
Project id Alloc id Alloc descr Category RDR Credit Run+Cmplt Debit Balance
---------- -------- ----------- -------- --- ------- --------- ------ -------
 1 41 it_nss::cpu startup cpu 2000000 0 -51281 1948719
 1 42 it_nss::gpu startup gpu 2000000 0 -240 1999760

HADM: sproject usage
By default the aggregate debits are displayed; but since debits are tracked per-user
they can be displayed instead:

$ sproject allocations --project=it_nss --current-only --by-user
Project id Alloc id Alloc descr Category RDR User Transaction Amount
---------- -------- ----------- -------- --- ---- ----------- ------
 1 41 it_nss::cpu startup cpu frey debit -854
 41 it_nss::cpu debit -1
 41 it_nss::cpu credit 33333
 1 42 it_nss::gpu startup gpu credit 33333
 42 it_nss::gpu frey debit -4

HADM: sproject usage
$ sproject jobs --project=xg-phy150040
Activity id Alloc id Alloc descr Job id Owner Status Amount Modification date Creation date
----------- -------- ----------------- ------- ---------- --------- ------ ------------------------- -------------------------
 4349218 369 xg-phy150040::gpu 3353939 xsedeu2798 executing -24 2022-11-02 12:26:04-04:00
 4349219 369 xg-phy150040::gpu 3353941 xsedeu2798 executing -24 2022-11-02 12:26:07-04:00
 4349017 369 xg-phy150040::gpu 3353927 xsedeu2798 completed -24 2022-11-02 12:26:03-04:00 2022-11-01 12:45:30-04:00

$ sacct --job=3353939 --format=alloctres,time -pXn
billing=1,cpu=2,gres/gpu:tesla_t4=1,gres/gpu=1,mem=5G,node=1|1-00:00:00|

Job 3353939 has a "billing" value of 1 coming from the 1 GPU requested.
It has a maximum run time of 1 day = 24 hours.
The projected resource consumption is thus 24 GPU•hour and it is currently executing.

$ sacct --job=3353927 --format=alloctres,time -pXn
billing=1,cpu=2,gres/gpu:tesla_t4=1,gres/gpu=1,mem=5G,node=1|1-00:00:00|

Job 3353927 has already finished executing and had the same resources.
Its actual resource consumption was 24 GPU•hour and is waiting to be finalized (from predebit to debit record).

HADM: sproject usage
My job (with id 3165763) failed to execute and Slurm says it was cancelled by root:

$ sacct --job=3165763 --format=jobid,account,state,exitcode -pX
JobID|Account|State|ExitCode|
3165763|biophysics|CANCELLED by 0|0:0|

Maybe it was due to a lack of credit on my allocation; let me check:

$ sproject failures --job=3165763
 Job id Error message
------- --
3165763 Requested allocation has insufficient balance: 290 < 360

HADM: Post-production issues

● Submission race conditions

○ Since prolog requests are parallelized, what happens when multiple jobs submitted against the same

allocation are processed concurrently?

○ Assume 4 requests for 5 SU each and allocation has 10 SU of credit

○ This yields 4 concurrent SELECT queries to determine if sufficient credit exists

■ All four queries show 5 SU ≤ 10 SU, thus they are all okayed

○ SELECT queries are not serialized by default in PostgreSQL: all 4 clients have a shared lock on the table

HADM: Post-production issues

● Submission race conditions

○ Credit validation and initial predebit in SQL stored procedure must be serialized to avoid overdrafts!

○ Initially tried using an SQL exclusive lock on the tables.

■ The release of the lock is not controllable by software — PostgreSQL server handles it as part of

transaction block COMMIT/ROLLBACK.

■ Under high job submission load, there would be cyclic contention for the exclusive lock that

effectively deadlocked the PostgreSQL server.

HADM: Post-production issues

● Submission race conditions

○ Credit validation and initial predebit in SQL stored procedure must be serialized to avoid overdrafts!

○ Initially tried using an SQL exclusive lock on the tables.

○ No more SQL locks, added software-controllable advisory lock around the critical region in the SQL stored

procedure.

■ Success…so far!

■ Same advisory lock around epilog queries, as well: stored procedure must serialize the combination

of INSERT into debits table and DELETE from predebits table

Questions?

● HADM software is available online at https://gitlab.com/udel-itrci/hadm

https://gitlab.com/udel-itrci/hadm

Open Discussion

