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Abstract

Lazebnik, F., Some corollaries of a theorem of Whitney on the chromatic polynomial, Discrete
Mathematics 87 (1991) 53-64.

Let & denote the family of simple undirected graphs on v vertices having e edges, P(G; 1) be
the chromatic polynomial of a graph G. For the given integers v, e, A, let f(v, e, )=
max{P(G;A): G € F}. In this paper we determine some lower and upper bounds for f(v, e, 1)
provided that A is sufficiently large. In some cases f(v, e, A) is found and all graphs G for which
P(G;A)=f(v, e, A) are described. Connections between these problems and some other
questions from the extremal graph theory are analysed using Whitney’s characterization of the
coefficients of P(G; A) in terms of the number of ‘broken circuits’ in G.

1. Introduction

The definitions in this paper are based on the books [3,7]. All graphs we
consider are undirected labelled graphs without loops and multiple edges. V(G)
and E(G) denote the set of vertices and the set of edges of G respectively. The
number of elements of a finite set A is denoted by |A|. We write v =v(G) =
[V(G)| and e =e(G)=|E(G)|. By ¢(G) we denote the number of connected
components of graph G. For any positive integer A, a proper A-coloring of a
labelled graph G is a mapping of V(G) into the set {1,2,...,A} (the set of
colors) such that no two adjacent vertices of G have the same image. Let
P(A) = P(G; A) denote the number of proper A-colorings of G. This function was
introduced by Birkhoff [2] and it turned out to be a polynomial function of A. The
following problem was formulated by H.S. Wilf.

* This paper is based on a part of a Ph.D. Thesis written by the author under the supervision of
Prof. H.S. Wilf at the University of Pennsylvania.
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Problem. Let % be the family of all graphs having v vertices and e edges
((v, e)-graphs). Let A be the number of colors. Denote by f(v, e, A) the greatest
number of proper A-colorings that a (v, e)-graph can have, i.e. f(v, e, A)=
max{P(H;A): H e #}. Determine explicitly or find bounds for f(v,e, A}.
Describe, if possible, all the extremal graphs G, i.e. all G e % such that
f(v, e, 1) =P(G; A).

In this paper we present some results on the problem in the case when
A= Ao(e), where Ay(e) is a constant depending on e only. In Section 3 we
concentrate on the case 0<e <v?/4. Some of the methods developed there are
used later in Section 4, which deals with the case when e > v2/4. The main results
are Theorems 3.1, 3.2, 3.6, 4.2, 4.3, 4.4.

Several other instances of the problem were considered by the author in [8-10].
In [8] the cases A =2 and A =3 are investigated in more detail. In [9] some new
nontrivial upper bounds for the function f(v, e, A) were found in the general case,
i.e. in the case when the only restrictions on the integers v, e, A are
O=<e=<wv(v—-1)/2, A=2. For large values of A those bounds are worse than the
ones we obtain in this article. The problem was motivated by the analysis of the
running time of the backtrack algorithm for the graph coloring problem (see Wilf
[20]; Bender and Wilf [1]). Another source of related problems is a paper of
Wright [21], where an asymptotic approximation to the number M, , = the total
number of proper A-colorings of all (v, e)-graphs, was found for a fixed 4, large v
and all e. This result allows us to obtain an asymptotic approximation to
av(v, e, A) =av(P(G; A)) = the average value of the chromatic polynomial of a
graph, where average is understood to be taken over all (v, e)-graphs G. In
relation to our problem, the role of the function av(v, e, A) is the following: for
large v a lower bound for f(v, e, ) can be obtained from it easily. Tomescu
[15-16] considered problems similar to ours but for different families of graphs
(all graphs on v vertices whose chromatic number is equal to k).

We will need several more definitions and preliminary results. Let {x;y} be an
edge of G. Then by G — {x;y} we mean the graph obtained from G by deleting
{x;y}. By K,, K,, T, and K,, , we denote correspondingly the complete graph on
v vertices (any two vertices are joined by an edge), the completely disconnected
graph on v vertices (no edges at all), a tree on v vertices, and the complete
bipartite graph whose vertex classes contain m and n vertices. By G + H we
denote the disjoint union of graphs G and H. The following proposition describes
some properties of P(G; A) which we are going to use later. Proofs can be found
in [7, p. 147].

Theorem 1.1. Let G be a graph with v wvertices and e edges, and let
Gy, Gy, ..., Gygy be all connected components of G. Let A be an integer =2.
Then:

(1) P(G;4)=P(Gy;4) - P(Gy; 4) - - - P(Gey; A)-
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(i) P(K,;A) =AY, P(K,;A)=A(A—1)---(A—v+1), P(T,; A)=A(A—1)""L

(ili) For a connected graph G, P(G;A) <A(A—1)*".
The equality sign occurs if and only if G is a tree.

(iv) The coefficients in every chromatic polynomial alternate in sign, the leading
coefficient is 1, and the degree is equal to |V (G)|. Therefore P(G; A) can be written
as

P(G; M) =A"—a A" T+ apdv 2 — - - -+ (1) Fa,_ A%, a;=0.

We will use a characterization of the coefficients of P(G; A) in terms of so called
‘broken circuits’ of graph G. It is due to Whitney [18]. First number all the edges
of the graph G from 1 to e in some manner. Next, from each cycle C of G delete
the edge of the highest index, obtaining, thereby, the broken cycle C'. Then we
have the following theorem.

Theorem 1.2 (Whitney’s ‘Broken circuits’ theorem). Let
P(G; A) = Av_ allv_l + azlu_z o e ('—1)v*lav_1l.

The coefficient a; is equal to the number of j-subsets of edges of the graph G which
contain no broken cycles, for each j=1,2,...,v—1.

2. A connection between our problem and the number of triangles in a graph

Let G € %. Then by Theorem 1.2
P(G;A)=A"—a A" "+ aA" 2 —a A" P+ - -+ (= 1) e, A (2.1)

where a; = the number of j-subsets of edges of G which contain no broken cycles,
foreachj=1,2,...,v—1. We want to describe graphs from & which chromatic
polynomials take the greatest values provided that A is large. More precisely, we
are looking for a G € %, such that there exists a constant Ay such that for any
A> Ao and each H € %,

P(G; A) = P(H; 3.

The first two leading coefficients in (2.1) are fixed: ap =1, a, = e (Theorem 1.1(iv)
and Theorem 1.2). Therefore the first natural step in our search for a graph G
extremal for large A is finding all G € & for which the positive coefficient a, is the
greatest. Let us denote the set of all such graphs by &, % <= &. Then among all
the graphs from % we choose ones for which as is the least. Suppose they form a
subset %, % < % < %. Continuing this way one comes to the extremal graphs (%
is finite!).

As an immediate corollary from Theorem 1.2 (e.g. [12]) we get that
a,=(5) — c¢3, where c¢;=c;3(G)=the number of triangles in G. This relation
shows that a, is the greatest if and only if c; is the least. Thus the question
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“Which G € #?” is equivalent to
“Which graphs from % have the least number of triangles?” (2.2)

This is a well-known unsolved problem from extremal graph theory. It is
discussed in a book by Bollobds [3, Ch. VI.1] where also some lower and upper
bounds for the number of triangles in a graph are given. In the following two
sections we continue the investigation considering cases depending on whether %
contains a graph without triangles (Section 3) or not (Section 4).

3. Case: 0<e=<v?/4

If e<v?/4, then & contains graphs without triangles (for example bipartite
graphs). Let % = {G: G € #, G has no triangles}. Chromatic polynomials of the
graphs from % have a, = () and we transfer our attention to a,. It is easy to see
(e.g. [12]) that for every G € %, as = (5) — ¢4, where ¢4 = ¢4(G) = the number of
quadrilaterals in G. This relation shows that a; is the least if and only if ¢, is the
greatest. Thus the question “Which G € %?” is equivalent to

“Which graphs from % have no triangles and the greatest number
of quadrilaterals?”’ (3.1)

We do not have a complete answer to (3.1) for arbitrary v, e, 0<e <v?/4. The
following theorem gives upper and lower bounds for the number of cycles of
length 4 in a triangle-free graph. It will imply the complete answer to the question

(3.1) when e is a perfect square, say e = p*.

Theorem 3.1. Let e<v?/4 and c4(v, e)=max{ci(G):GeF and G has no
triangles.}. Then

e(e —4Ve)

2 <cy4lv, ) < Le‘;l)—z.

The equality is attained only for the graph G,,=K,,+K,_,, when e=p?
v=2p.

Proof. (i) Lower bound. Let p be a nonnegative integer such that p><e <p?+ p.
Then c4(K,,) <c4(v, €) and p > Ve — 1. Therefore,

ca(v, €)= cu(K, ) = (g)(‘;) _ (p® 4—p)2

> H[(Ve - 4P - (Ve - P> 229

> .
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)

/
d(x) - 1 : Z d(y) - 1
L.l J

C -

~—
Fig. 1. nbh(x) N nbh(y) =9, since there are no triangles.

Let p>’+p<e<(p+1)° Then cy(K,+,,) <c4(v, €) and p > Ve — 1. Therefore,
+1 Z—1p?
(v, €)= eiKpn) = () (5) =

Jle- 2\/21(\/2 —1)? G —44\/2).

(ii) Upper bound. Let G € # and {x, y} be an edge in G. Let d(a) and nbh(a)
denote the degree of the vertex a and the set of all the neighbours of ¢ in G
(Inbh(a)| = d(a)). It is easy to understand (Fig. 1) that the number of 4-cycles in
G containing {x, y} does not exceed (d(x) — 1)(d(y) — 1).

Suppose G has no isolated vertices. Then,

cs(G)=4% D (# of 4-cycles having {x,y} as an edge)
{x.y}eE(G)

<i 2 (dx)—1)(d(y)-1).

{x.y}€E(G)
Since G has no isolated vertices, the last expression is equal to
b4 3 @w-y 3 @m-nlsi] 3 @w-ne-dw)]
xeV(G) yenbh(x) xeV(G)

because G contains no triangles. Expanding the obtained sum and using the fact
that the quadratic average is not less than the arithmetic average, we obtain

ey 3 aw-e 3 1- 3 @]

xeV(G) xeV(G) xeV(G)

Qob

r(e +1)2e—ev— D, (d(x))z]

xeV(G)
T 2
<3 (e+1)2e—ev-—( b2 d(x)) /v]
L xeV(G) ,

2

[ 4
(e+1)2e——ev———s—:|~<_§[2e2+2e—4e\/e_3]=

o=

e(Ve—1)?
Pt

Clearly, the equality in the last ‘< sign occurs if and only if v?>=4e. So, in the
case of equality, e = p?, for some integer p and v = 2p. Since G has no triangles,
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then Turédn’s theorem implies that G = K, ,. From the other side it is easy to see
that for K, , the upper bound is achieved. In order to finish the proof we consider
the case when G has g =1 isolated vertices. Then G = G, + IZ,,, where v(G;) =
v—gq, e(G))=e(G)=e and G, has no isolated vertices. But c,(G) = c4(G),).
Therefore Theorem 3.1 is proved. O

The result just obtained allows us to determine a graph which possesses the
greatest number of colorings for large A in a particular case, namely e = p? and
v=2p. It will lead us to upper bounds for the values of the chromatic
polynomials in a more general case when e <v?/4 and e is not necessarily a
square.

Theorem 3.2. (i) Let v=2p, e=p>’=5 and G,,=K,,+K,_,,. Then for
A=e*/12,

P(G,,;3)>P(G;1) forall Ge %, G+G,,
(i) Let v=2p, e =p*=5. Then for A= e*>,
P(K,,;4)>P(G;4) forall Ge%, G#K,,

P>

Proof. As it is seen from the proof of Theorem 3.1 for the given values of v and
e, the attempt of maximizing a, and, this being done, minimizing a; leads to the
complete and unique characterization of the graph. Therefore Theorem 3.2 is
proved for sufficiently large A, i.e. for all A= A,, where A, is some constant. To
get an estimate for A, we find an upper bound R for the absolute values of the
roots of the polynomial

H(X) = P(G, p; A) — P(G; A).

Then for all A> R, H(A) >0.
In order to compute R in terms of the coefficients of the polynomial we use the
following lemma due to Fujiwara [6]; for a reference in English see Wilf [19]):

Lemma 3.3. All the roots of the polynomial f(z) = boz" + b,z '+ - -+ b, lie in
the circle

|z| <R =2 max{|b;/bo|": 1 <i<n}.

Let P(GypA)=A"—kidl’ "+ kA" 2—--- and P(G;A)=A"—g A" '+
g:A""2—---. Then H(A)=P(G,p;A)—P(G;A)=hA"">—h3A" > - -, where
hi=ki—g, i=2,3,...,u—1 (hy=1-1=0, h;=e—e=0). The leading
coefficient h,=k,—g,=e(e —1)/2 — (e(e = 1)/2 — ¢5(G)) = ¢5(G). If ¢3(G)#0,

then the direct application of Lemma 3.3 gives

R =2max{|hy /by 1 <i<v -3},
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If h, =c5(G) =0, then

Chy= kst gy = —[(5) - c4(Gv,p)] + [(;) - c4(G)] = ¢y(G,,) — cu(G).

By Theorem 3.1, |h;| = 1. Applying Lemma 3.3, we obtain
R=2 maX{|h3+i/h3|l/i: l<sisv-— 4} (3.2)

In order to find an upper bound for R we use the following lemma.

Lemma 34. Let 1<A<(5), e=v=5. Let ¢c;=[(:%)/A]"Y, 1<sisv-2. Let
d,=[(:%)/AY, 1<i<v—3. Then:

(i) {c:} is monotone decreasing and max{c;: 1 si<v —2} =c, = (§)/A.

(ii) {d;} is monotone decreasing and max{d;: 1<i<v—3}=d,=(§)/A.

Proof. It is easy to show (see [10]) that (c,.,/c;)"**V <1, for all i, 1sisv -3,
and (d;,,/d;))“*P<1foralli, 1sisv—-4. 0O

Now we are ready to find an upper bound for R. Due to Theorem 1.2,
|l = 1w — gml =< (), m=1,..., v—1. This makes h,<(5). We consider the
following two cases.

Case 1: Let hy=c3(G)=1.

Setting A = h, in Lemma 3.4 (i) (the condition 1< A < (%) is met), we get

R =2 max{|hy, /by "} <2 max{[( . i i) / hz] m} = 2(§>/h2 <2 (;)

Case 2: Let h, =0.
Then by Theorem 3.1,

1< ks = cu(G,,) = cl(G) < (G, ) < e(Ve — 1)2/4 < (;)

Setting A =|hs| in Lemma 3.4 (ii) (the condition 1<A=<(5) is met), and
dropping the first term we obtain

R =2 max{|hs,./hs "} <2 max{ [(3 i i) / |h3|]w) - 2(:) / |hs| < 2(2).

In both cases R <e*/12 for e = 5. This proves Theorem 3.2(i).
If v=2p, then it is possible to obtain a better upper bound for R. We use a
particular case of a result of Erdss [4]:

Lemma 3.5. Let v(G)=v =2p, e(G)=p*and G # K, ,. Then G contains at least
p — 1 triangles, i.e. c3(G)=p — 1.
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Having h, = p — 1> 0 we get

e
R<2(3)/hy=p*(p? = (P> = 2)/3(p ~ D).
It implies that R < p® for all p > 1. This proves Theorem 3.2(ii). O
Combining all the results we state and prove the main theorem of this section: |
Theorem 3.6. Let 4 <e<v?/4 and P(G;A)=max{P(H;A)|He %)}. Let p=
|Ve|. Then the following bounds for P(G; A) are valid: for v=2p, A=p°,
1 =p20)% - A< P(G; A) <[(1 — p/2M)% + i(p> — p?)A7?] - A7
forv=2p+1, A=p°,
(1=p/D)A=p/20)% - A< P(G; A) <[(A1—p/2)* + 1 (p° — pH)A7?]- 17
forv=2p+2, A=e*/12
(1—(p+1D2A)**2 - A*<P(G; A) <[(1 — p2A)* + 5 (p*> — pHA7?] - A~

Proof. The idea of the proof is the following: Let G, and G, be two graphs on v
vertices having e; and e, edges respectively, where e; <e <e,. Then

P(Gy A) < P(G; ). (3.3)

Indeed, deleting any e, —e edges from G, we obtain a graph H, such that
P(G,; A) < P(H,; A). Hye ¥ and from the definition of G we have P(H,; )<
P(G; A). This implies the inequality (3.3). Despite the fact that in general the
inequality

P(G;A)<P(G; 1) (3.9

is false, it is valid if G, is taken to be a graph on v vertices with e; edges which
possesses the greatest number of colorings among all the graphs with the same
number of vertices and edges. Then the proof of (3.4) is identical to the one for
(3.3).

Graphs G; and G, will be taken as unions of some complete bipartite graphs
and isolated vertices, i.e. K,, ,,, + IZU_(,,+,,,,. A chromatic polynomial

P(Kn,m + kv—(n-‘-m); A') = P(Kn,m; A‘) : )’u—(n-i—m)

can be found explicitly, since P(K,, ,,; A) is known (e.g. Swenson [14]). But the
expression one obtains this way is rather complicated. Therefore bounds for
P(G;; 4), i=1, 2, will be found and used along with (3.3) and (3.4) in order to
get bounds for P(G; 4). The following lemma will serve our needs.

Lemma 3.7. (i) Let K, , be a complete bipartite graph. Then for any A= 3p*,
p>2. :

(A=p/2)? < P(K,,p3 A) <(A—p/2)* + 1 (p> - pHA*~ (3.5)
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(i) Let G, , =K, , + K,_s,. Then for any A=3p*, p>2,
(1=p/2A)* - A*< P(G, ,; A) <[(1 = p/20)* +  (p*> = p)HA7?] - A*. (3.6)

Proof of Lemma 3.7. (i) The proof is based on Lemma 3.3 and Lemma 3.4, and
is very similar to the one of Theorem 3.2 (Case 1). For details see [10].
(ii) By Theorem 1.1(i),
P(G,p; A)=P(K, ,; A) - P(Ky_3p; A) = P(K, p; A) - AV 2.

2

Using (3.5), we obtain
(A=p/2)* - X"# < P(G, 3 A) <[(A—p/2)* +{(p>—p)A*7?]- A7

But this can be rewritten as (3.6). O

Now we finish the proof of Theorem 3.6. Let p = |Vel. Take G, = K, ,and G,
given by:

K,, ifv=2p;
G,={K,+1, fv=2p+1;

Gypr1 ifv=2p+2

By using (3.3) and (3.4) for these pairs of G; and G,, and (3.5), (3.6) for the
bounds of P(G;; A) and P(G,; 1), we obtain the inequalities of Theorem 3.6 for
all A=max{p>,3p*}=p° (since p>2) when v=2p and for all A=
max{p°’, 3p*, €*/12} =€*/12 when v=2p +2. If v=2p + 1 we use the simple
observation that P(K, ., ,; A) > (A —p)P(K, ,; A) for A>p.

P

4. Case: e >v?%/4

If e >v?/4, then Turdn’s Theorem implies that each graph from % contains
triangles.

One of the lower bounds for the number of cycles of length 3 in a graph of
order v and size e was discovered by Nordhaus and Stewart [13]. We present a
proof of it given in the book of Lovész [11, p. 396], since its analysis will be used
later in this section. Let ¢;(v, e) denote the least number of triangles a graph with
v vertices and e edges may have.

Theorem 4.1. Let G € %. Then
c3(G) = c5(v, €) = (e/3v)(de — v?). 4.1)

Proof. Let {x, y} € E(G). It is clear that the number of triangles of G having the
edge {x;y} as a side is not less than d(x)+ d(y) —v. Therefore for the total
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number of triangles of G we have:

cs(G)=3% > (# of 3-cycles having {x, y} as an edge)

{x,y}€E(G)

=1 3 (@) +d() - v).

{x,y}eE(G)

Since d(x) occurs in this sum exactly d(x) times, the sum can be written as

1[ > d(x)z—ve]aé[l( > d(x))z—ve]

3 Leevio) U Mev(o)
1 /4€*
=3 <7 - e) = (e/3v)(4e — v?).
The last inequality sign is due to the fact that the quadratic average is not less
than the arithmetic average. O

Remarks. The proof above shows that ‘=" occurs if and only if:
(1) all d(x) are equal to d =2e/v, i.e. G is a regular graph;
(2) every edge {x;y} is a side of 2d — v = (4¢ — v?)/v triangles.

Unfortunately Theorem 4.1 does not give an answer to the question (2.2) for
arbitrary v and e, e > v?/4. Nevertheless it allows us to find a graph which has the
least number of triangles for some particular values of v and e, e >v?/4. For a
positive integer g, by T,(v) we denote a unique complete g-partite graph on v
vertices whose vertex classes are as equal as possible. If v = pq, for some integer
p, then each vertex class of T,(v) contains p vertices. We formulate and prove the
following theorem.

Theorem 4.2. Let p and q be two positive integers, q=3. Let v=pq and
e=1t,(v)=(3)p>. Then T,(v) is the unique graph having the least number of
triangles among all the graphs of order v and size e.

Proof. (i) First we check that c3(T,(v)) = (e/3v)(4e — v?). In order to do this we
notice that T,(v) is regular with d =d(x) =2¢/v =p(g — 1). Let {x; y} be an edge
of T,(v) joining two vertices from the partition classes V, and V,. To form a
triangle with one side {x;y} we choose any vertex z from the remaining q —2
partition classes of T,(v). Since each partition class contains p vertices, we have
p(g —?2) triangles. But p(q —2)=2d —v !. So the statement follows from the
Remarks (1) and (2) to Theorem 4.1.

(ii) Now we are going to prove that if ¢3(G) = c;(T,(v)) for some G € %, then
G =T (v).

Having the least number of triangles, graph G satisfies the conditions (1) and
(2) of the Remark to Theorem 4.1. Therefore G is regular with d = d(x) =2e/v =
p(qg—1) and each edge of G belongs to 2d —v =p(q —2) triangles. Let
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W, ZA
t/ x\ y
Wy W
G
Fig. 2.

{x;y} € E(G) and W = V(G) — nbh(x) N nbh(y). |W|=v — p(q —2)=2p. Since
v—d(x)=v—-d(y)=pq—p(qg—1)=p, the sets W,=V(G)—nbh(x)=Wn
nbh(y) and W, =V(G) —nbh(y) =W Nnbh(x) form a disjoint partition of W,
|W,| = |W,| = p. This also shows that

any vertex adjacent to x is connected to every vertex from W,. 4.2)

We claim that W, is an independent set of vertices, i.e. no edge of G joins two
points from W,. In order to show this we prove that W,=W, for all ¢t e W,.
Indeed, take te W,, t #x. If W, = W, for all t € W,, then W, is an independent set.
Suppose there exists a vertex ¢t € W, such that W, # W, (Fig. 2).

Having the same number of elements and being different, the sets W, and W,
cannot be subsets of one another. So there is z € W, which does not belong to W,.
Then z e nbh(x) and {z;x} is an edge. Since t € W,, the statement (4.2) implies
that z and ¢ are connected. This contradiction proves that W, = W, for all t e W,
and W, is an independent set of points. Let’s summarize the facts:

(a) each vertex x € V(G) is a member of some maximal independent set of
vertices W, having p elements;

(b) for any edge {x;y} of G, W,NW, =¢;

(c) any vertex which is not in W, is adjacent to all vertices from W,.

It is clear that (a), (b), (¢) imply G =T, (v). O

An immediate corollary of Theorem 4.2 is the fact that P(T,(v); A) > P(H; A)
for all He &, H#T,(v), provided that A is sufficiently large. The precise
statement and a lower bound for A will be given in Theorem 4.4.

Let C;=max{c3(G): G € #}. Contrary to cs(v, e), C; can be determined
explicitly for any v and e. It turns out that it depends only on e. It follows from a
more general result of ErdGs and Hanani [5], that C; = Cs(e) = (3) + (3), where
e=(3)+¢, 0<t<s. We formulate a theorem which gives bounds for the values
of P(G; 1), G € %. The proof is similar to the one of Theorem 3.2 (Case 1) and
can be found in [10].

Theorem 4.3. Let G be a graph having v =4 vertices and e edges, e>v?/4,
A=2(8). Then

(A—e/v)’+ kA'T2<P(G;A)s(A—e/v)'+ k,Av 2 (4.3)
where



64 F. Lazebnik
k,=Cse) — (e/2)[(e/v) — 1] + 1, ky=(e/2)[(e/v) — 1] — ca(v, e) + 1.
Applying Theorems 4.2 and 4.3 we get the following theorem.

Theorem 4.4. Let p and q be two positive integers, g =3. Let v=pq, e =t,(v) =
(8)p* and A=2(5). Then T,(v) is the unique graph which possesses the greatest
number of proper A-colorings among all the graphs of order v and size e.
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