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Abstract. Let G = G(n, n) be a 4–cycle free, bipartite graph on 2n vertices with

partitions of equal cardinality n. Let c6(G) denote the number of cycles of length

6 in G. We prove that for n ≥ 4, c6(G) ≤ 1
3

(
n
2

)
(n − rn), where rn = 1

2 +
√

4n−3
2 ,

with equality if and only if G is the incidence point-line graph of a projective plane.

Section 1: Introduction.

Let G = Gn denote a family of simple graphs of order n. For a simple graph H

and G ∈ G, let (G, H) denote the number of subgraphs of G isomorphic to H. Let

h(n) = h(G,H, n) = max{(G, H)|G ∈ G} and G(H,n) = {G ∈ G|(G, H) = h(n)}.

We will refer to graphs of G(H,n) as extremal. The problem of finding h(G,H, n)

and G(H,n), for fixed G,H, n, has been studied extensively and is considered as

central in extremal graph theory. Though it is hopeless in whole generality, some

of its instances have been solved. Often the results are concerned with bounds on

hn and partial description of the extremal graphs. For example, if Km denotes the
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complete graph of order m, H = K2, and G is the family of all graphs of order

n which contain no Km as a subgraph, 3 ≤ m ≤ n, then the solution is given

by the famous Turán Theorem. For the same H, if G is the family of all (m,n)–

bipartite graphs, we have the, so called, Zarankiewicz problem. These and many

other examples can be found in [2]. For some later results see [4,5,6].

We start with the following definitions and notation. All missing ones can be

found in [2].

Let G = G(m,n) be a bipartite graph on m+n vertices with partition (V1(G), V2(G))

such that V1(G) = {u1, . . . , um}, V2(G) = {v1, . . . , vn}. Denote the number of

edges of a graph G by e = e(G), the neighborhood of a vertex v ∈ V (G) by

N(v) (v 6∈ N(v)), and the degree of vertex v in G by degG(v). Let xi =degG(ui),

i = 1, . . . ,m, and yi =degG(vi), i = 1, . . . , n. A subset, {ui1 , . . . , uik
}, 2 ≤ k ≤ n, of

V1(G) (or {vi1 , . . . , vik
} of V2(G)) is said to be intersecting if N(ui1)∩. . .∩N(uik

) 6= ∅

(or N(vi1) ∩ . . . ∩N(vik
) 6= ∅). For a graph G containing a cycle, the girth of G is

the length of a shortest cycle in G.

Let n = q2 +q+1 and let π be a finite projective plane of order q with point set

P = {p1, . . . , pn} and line set L = {l1, . . . , ln}. A bipartite graph G with partitions

(P,L) is said to be the incidence point-line graph of the projective plane π if for all

i, j ∈ {1, . . . , n}, {pi, lj} is an edge of G if and only if pi ∈ lj .

Let c6(G) denote the number of 6–cycles in G. The main goal of this paper

is to find a nontrivial upper bound for c6(G), where G = G(m,n) is a bipartite

4–cycle free graph. The results are summarized below.
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Theorem 1. Let G be a 4–cycle free bipartite graph on m+n vertices with partition

classes of size m and n. Then for m ≥ n ≥ 4, c6(G) ≤ m
3

(
rm,n

2

)
(n − rm,n), where

rm,n = 1
2m [m + (m2 + 4mn(n− 1))

1
2 ].

In the case when m = n we can actually say much more.

Theorem 2. Let G be a 4–cycle free bipartite graph on 2n vertices with partitions

of size n. Then for n ≥ 4, c6(G) ≤ 1
3

(
n
2

)
(n− rn), where rn = 1

2 + 1
2

√
4n− 3, with

equality if and only if G is the incidence point-line graph of a projective plane.

Using the terminology of finite geometries (see [1]), Theorems 1 and 2 provide

an upper bound for the number of triangles in near–linear spaces with m points and

n lines.

The paper is organized in the following way. In Section 2 we prove Theorem 1.

In Section 3 we present the original proof of Theorem 2 as a corollary of Theorem

1, and sketch another proof, independent of Theorem 1, which is based on a recent

result in [7].

Section 2: General case

Let G = G(m,n) be a bipartite, 4–cycle free graph on m + n vertices with

partition (V1(G), V2(G)) such that V1(G) = {u1, . . . , um}, V2(G) = {v1, . . . , vn}.

Let xi =degG(ui) and yi =degG(vi), i = 1, . . . , n. It is clear that
m∑

i=1

(
xi

2

)
≤
(
n
2

)
(see

[2, ch. VI.2] for a more general result).

For positive integers m and n, define rm,n = 1
2m [m + (m2 + 4mn(n − 1))

1
2 ].

Obviously, we may assume that degG(v) ≥ 1 for all v ∈ V (G).
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To obtain a bound on the number of cycles of length six in G we intro-

duce a real–valued function in IRm which will provide an upper estimate of c6(G)

and we show that this function attains its maximum on the hypersphere defined

by
m∑

i=1

(
xi

2

)
=
(
n
2

)
. Then we prove that this maximum occurs at the point r =

(rm,n, · · · , rm,n), where rm,n = 1
2m [m + (m2 + 4mn(n− 1))

1
2 ].

Let I = [1, n] ⊂ IR and Im be the Cartesian Product of m copies of I. Let Sm,n

be the region in IRm defined by

Sm,n =

{
x ∈ Im

∣∣∣∣∣
m∑

i=1

(
xi

2

)
≤
(

n

2

)}
.

Define the function F on Sm,n by F (x) =
m∑

i=1

f(xi) , where f is defined by f(x) =

1
3

(
x
2

)
(n− x).

Lemma 2.1. Let G = G(m,n), m ≥ n ≥ 4, be a 4–cycle free bipartite graph. Then

c6(G) ≤ 1
3

m∑
i=1

(
xi

2

)
(n− xi).

Proof: Since G is 4–cycle free, each cycle of length six in G uniquely determines

a nonintersecting set of three vertices of V2(G) each 2–element subset of which is

intersecting. Conversely, each nonintersecting set of three vertices at least one pair

of which is intersecting determines at most one cycle of length six in G. We estimate

the number of cycles of length six in G by determining in two ways the cardinality

of the set of triples

T = {(ui, vj , C) | ui and vj are antipodal vertices in 6− cycle C} .

First, since each cycle C in G contains exactly three distinct pairs of antipodal

vertices, there exist 3c6(G) such triples, that is, |T | = 3c6(G). Note that since
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ui and vj are antipodal vertices, d(ui, vj) = 3 for each such i ∈ {1, . . . ,m} and

j ∈ {1, . . . , n} and so they are in different partition classes. However, for each

i ∈ {1, . . . ,m} there exist at most n−xi choices for vj at a distance 3 from ui. Also

for each i ∈ {1, . . . ,m} and for each vj ∈ V2(G) \ N(ui) there exist at most
(
xi

2

)
cycles of length 6 with ui and vj antipodal on C. Thus |T | ≤

m∑
i=1

(
xi

2

)
(n − xi) and

so c6(G) ≤ 1
3

m∑
i=1

(
xi

2

)
(n− xi).

Lemma 2.2. For m ≥ n ≥ 3, suppose 0 < b <
(
n
2

)
, and let x ∈ Sm,n such that

m∑
i=1

(
xi

2

)
= b. There exists a vector x∗ = (x∗1, . . . , x

∗
m) ∈ Sm,n such that

m∑
i=1

(
x∗i
2

)
> b

and F (x) < F (x∗).

Proof: It is easy to show that x has at most two coordinates greater than or equal to

2n
3 . Since n ≥ 3, we may assume x1 < 2n

3 (otherwise, relabel). Let s =
(
n
2

)
− b > 0.

It is possible to choose t ∈ (0, s] so that t +
m∑

i=1

(
xi

2

)
≤
(
n
2

)
and a ≤ 2n

3 , where a

is defined by
(
a
2

)
=
(
x1
2

)
+ t. Define the vector x∗ = (x∗1, . . . , x

∗
m) by x∗1 = a and

x∗i = xi for all i = 2, . . . ,m. Clearly, x∗ ∈ Sm,n. Furthermore, f(x) is monotonic

increasing on [1, 2n
3 ]. Since x1 < x∗1 ≤ 2n

3 , we have f(x1) < f(x∗1). Therefore
m∑

i=1

(
xi

2

)
(n− xi) <

m∑
i=1

(
x∗i
2

)
(n− x∗i ) ,

which implies F (x) < F (x∗). This proves the result.

Lemma 2.2 implies that F attains a maximum value on the boundary of Sm,n

where
m∑

i=1

(
xi

2

)
=
(
n
2

)
. Thus, we may restate the problem as one where we wish to

maximize F (x) =
m∑

i=1

f(xi) subject to the constraint

m∑
i=1

(
xi

2

)
=
(

n

2

)
; 1 ≤ xi ≤ n, i = 1, . . . ,m . (2.1)
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Define ∂Sm,n = {x ∈ Sm,n|
m∑

i=1

(
xi

2

)
=
(
n
2

)
}.

Proof of Theorem 1. We are going to show that the maximum value of F in

the region Sm,n is attained at the point r = (rm,n, · · · , rm,n), and this will prove

Theorem 1.

To maximize F one would naturally try a concavity argument. Unfortunately

F does not maintain its concavity over the intervals we required it to. Therefore,

we will maximize 3F (x) =
m∑

i=1

(
xi

2

)
(n − xi) in the region ∂Sm,n by the method of

Lagrange Multipliers. For x ∈ ∂Sm,n let

G(x) = 3F (x)− λ

[(
m∑

i=1

(
xi

2

))
−
(

n

2

)]
.

For i = 1, . . . ,m,

∂G

∂xi
=

1
2
(−3x2

i + 2(n + 1)xi − n− λ(2xi − 1)) = 0 , (2.2)

which implies there are two cases to be considered. For i, j ∈ {1, . . . ,m}, i 6= j, the

equation (2.2) is equivalent to (xi−xj)[−3(xi +xj)+2n+1− 2λ] = 0 . Therefore,

if x = (x1, . . . , xm) maximizes G(x) and is not on the boundary of the hypersurface

∂Sm,n then either:

(i) xi = xj for all 1 ≤ i < j ≤ n, or

(ii) there exist some i, j ∈ {1, . . . ,m} such that xi+xj = 2(n+1)−2λ
3 , 1 ≤ i < j ≤ m.

We will consider (ii) first. Without loss of generality, we may assume there

exist i, j ∈ {1, . . . ,m}, i < j, such that xi < xj and xi + xj = 2(n+1)−2λ
3 . Let

g(x) =
1
2
(−3x2 + 2(n + 1)x− n− λ(2x− 1)) .
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Then g(xk) = ∂G
∂xk

and g′(xk) = ∂2G
∂x2

k

for k = 1, . . . ,m. Solving g(x) = 0 for λ, we

have λ = −3x2+2(n+1)x−n
2x−1 , therefore, λ is strictly decreasing with respect to x on

the interval [1,∞). This implies that λ(xi) < λ(xj) which contradicts the fact that

λ is independent of xi’s. Thus (ii) cannot occur and we must have that xi = xj for

all 1 ≤ i < j ≤ m.

Therefore, let xi = a for all i = 1, . . . ,m. From equation (2.1) we get a =

1
2m [m + (m2 + 4mn(n− 1))

1
2 ] = rm,n.

Note that 3rm,n + λ(rm,n) = (n + 1) + m+3n(n−1)√
m2+4mn(n−1)

. Therefore, g′(rm,n) =

−(3rm,n +λ)+n+1 = − m+3n(n−1)√
m2+4mn(n−1)

< 0, which implies ∂2G
∂x2

i

∣∣∣
xi=rm,n

< 0 for all

i = 1, . . . ,m. Hence, r = (rm,n, . . . , rm,n) maximizes F on ∂Sm,n except possibly

on the boundary of ∂Sm,n and F (r) =
m∑

i=1

f(rm,n) = m
3

(
rm,n

2

)
(n− rm,n).

To show r maximizes F on ∂Sm,n we need only prove that if x is on the

boundary of the hypersurface ∂Sm,n then F (x) ≤ F (r) = m
3

(
rm,n

2

)
(n − rm,n). Let

x = (x1, . . . , xm) be on the boundary of ∂Sm,n. This implies that there exists at

least one i ∈ {1, . . . ,m} such that xi = 1. To show that F (x) ≤ F (r) we use

induction on the number k of coordinates in x = (x1, . . . , xm) greater than one.

For k = 1 we may assume without loss of generality that x1 > 1 and xi = 1 for

i = 2, . . . , n. Then (x1, 1, . . . , 1) ∈ ∂Sm,n implies
(
n
2

)
=

m∑
i=1

(
xi

2

)
=
(
x1
2

)
+

n∑
i=2

(
1
2

)
=(

x1
2

)
or x1 = n. Then F [(n, 1, . . . , 1)] = f(x1) = 1

3

(
n
2

)
(n − n) = 0. Clearly,

F [(n, 1, . . . , 1)] ≤ F (r). Next we assume that F (x) ≤ F (r) holds for all x ∈ ∂Sm,n

which have fewer than k coordinates greater than 1, 1 < k ≤ m. So, suppose there

exists k, 1 < k < m such that x = (x1, . . . , xm) has k coordinates greater than 1. We

may assume without loss of generality that for any such x, xi > 1 for i = 1, . . . , k
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and xi = 1 for i = k + 1, . . . ,m. Since f(1) = 0, F (x) =
m∑

i=1

f(xi) =
k∑

i=1

f(xi).

Also note that
m∑

i=1

(
xi

2

)
=

k∑
i=1

(
xi

2

)
=
(
n
2

)
. Therefore, due to Lemma 2.2 we want to

maximize F (x) =
k∑

i=1

f(xi) subject to the constraint

k∑
i=1

(
xi

2

)
=
(

n

2

)
(.3)

for x = (x1, . . . , xm) on the boundary of ∂Sm,n. This again can be done by using the

Lagrange Multipliers, and the procedure is absolutely similar to the one outlined

above. It leads us to the point ak = (x1, . . . , xm) ∈ ∂Sm,n such that xi = a =

1
2 + 1

2

√
1 + 4n(n−1)

k for i = 1, . . . , k, and xi = 1 for i = k + 1, . . . ,m. Then ak

maximizes F over the region
k∑

i=1

(
xi

2

)
=
(
n
2

)
, xi ≥ 1, i = 1, . . . , k, with the possible

exception of some points on its boundary. But these boundary points have fewer

than k coordinates greater than one. Therefore, by the induction hypothesis, the

values of F (x) at these points are less than F (r). So, it remains only to compare

F (ak) with F (r). We have

F (r)− F (ak) =
n(n− 1)

12

[√
1 + 4

n(n− 1)
k

−
√

1 + 4
n(n− 1)

m

]
> 0

for 1 ≤ k < m, and therefore F (r) > F (ak). Thus r = (rm,n, . . . , rm,n) maximizes

F on ∂Sm,n, and due to Lemma 2.2 r maximizes F on Sm,n. This completes the

proof of Theorem 1.

Section 3: Case of equal partition class sizes

We are now ready to give a bound on the number of cycles of length six in a

4–cycle free, bipartite graph G with partition classes of equal cardinality. We prove

Theorem 2 as a corollary of Theorem 1 where m = n.
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Proof of Theorem 2: Let G have partition classes V1(G) = {u1, . . . , un}, V2(G) =

{v1, . . . , vn} and let r = (rn, . . . , rn) and x = (x1, . . . , xn), where rn = rn,n =

1
2 + 1

2

√
4n− 3 and xi = degG(ui), i = 1, . . . , n. Let F (x) : Sn,n → IR be defined as

above. Theorem 1 implies

c6(G) ≤ F (x) ≤ F (r) =
n

3

(
rn

2

)
(n− rn) . (3.1)

Since
(
rn

2

)
= n−1

2 , we may write statement (3.1) as c6(G) ≤ n
3 = 1

3

(
n
2

)
(n− rn).

For equality suppose Gq is an incidence point-line graph of a finite projective

plane of order q. Then rn = q + 1 is the degree of each vertex in V (Gq). To count

the number of cycles of length six in Gq note that every 6–cycle in Gq determines a

nonintersecting 3–set of vertices from V2(Gq) such that any pair of vertices from this

set is intersecting. Conversely, by definition of Gq, every distinct pair of vertices in

V2(Gq) form an intersecting pair, thus every nonintersecting 3–set of vertices from

V2(Gq) determines a unique cycle of length six in G. Therefore, for each i = 1, . . . , n,

the number of cycles of length six in Gq that pass through ui ∈ V1(G) is
(
q+1
2

)
· q2.

Summing over all i, the quantity n
(
q+1
2

)
· q2 counts each 6–cycle in Gq exactly three

times. Therefore c6(Gq) = q2

3

(
n
2

)
= 1

3

(
n
2

)
(n− rn).

Next, suppose

c6(G) = F (x) = F (r) =
1
3

(
n

2

)
(n− rn) (3.2)

for G. Theorem 1 implies that x = r. Hence, the degree of every vertex in V1(G) is

rn, and rn is an integer. Therefore, equation (3.2) implies that every nonintersecting

3–set of V2(G) determines a unique 6–cycle. Hence, for all 1 ≤ i < j ≤ n, the set

{vi, vj} ⊆ V2(G) is intersecting. Similarly, c6(G) ≤ 1
3

n∑
i=1

(
yi

2

)
(n−yi) ≤ 1

3

(
n
2

)
(n−rn)

9



implies that for all 1 ≤ i < j ≤ n, the set {ui, uj} ⊆ V1(G) is intersecting. Therefore,

G is rn–regular and diam(G) ≤ 3, which implies there exists exactly n− rn vertices

in V2(G) of distance 3 from ui ∈ V1(G) for each i = 1, . . . , n. Therefore, if q is an

integer such that rn = q + 1, then G is an incidence point-line graph of a finite

projective plane of order q.

Below we sketch another proof of Theorem 2 which is independent of Theorem

1 and which is based on a recent article [7]. The following Theorem A is a particular

case of a more general result proved in [7], but it will suffice for our needs.

Theorem A. Let G be a 2–connected graph on v vertices, with e edges, and girth

6. Then c6(G) ≤ e
6 (e− v + 1), and the equality holds if and only if every two edges

of G are contained in a common 6–cycle.

Alternate Proof of Theorem 2. Let G be 2–connected and let v = 2n. It is

known (see [2, ch. VI.2]) that for a bipartite 4–cycle free graph G, e(G) ≤ nrn, and

e(G) = nrn if and only if G is the point–line incidence graph of a projective plane.

Therefore, by Theorem A,

c6(G) ≤ e

6
(e− v + 1) ≤ nrn

6
(nrn − 2n + 1) =

1
3

(
n

2

)
(n− rn).

The equality in the second inequality holds if and only if e(G) = nrn, and therefore,

G must be the incidence point–line graph of a projective plane. But it is obvious

that such a graph has any pair of edges belonging to a 6–cycle. This proves Theorem

2 for 2–connected graphs.

Suppose G is not 2–connected. Then it is either disconnected or 1-connected,

and the inequality of Theorem 2 can be extended to such graphs. The proof we
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have is straightforward but rather long and we refer the reader to [3]. For such

graphs the equality is never achieved if n ≥ 4.
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[6] E. Győri, J. Pach, & M. Simonovits, On the Maximum Number of Certain

Subgraphs in Kr-Free Graphs, Graphs and Combinatorics 7 (1991), 31-37.

[7] C. P. Teo and K. M. Koh, The Number of Shortest Cycles and the Chromatic

Uniqueness of a Graph, Journal of Graph Theory, Vol. 16, No. 1, 7–15 (1992).

12


