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ABSTRACT

A network G(w) of strength s is a graph G in which each edge is assigned a
positive integer weight, the largest of which is s. The weight of a vertex in G(w)
is the sum of the weights of its incident edges. G(w) is called irregular if distinct
vertices have different weights. The irregularity strength s(G) of G is the minimum
strength among all irregular networks having G as the underlying graph. In this
. paper, the authors determine s(G) for G a wheel, a 2 x n grid, and a k-cube. An
asymptotic result is also obtained for certain product graphs.

1. Introduction

Throughout, G will be a simple graph with no K, component and at most one
isolated vertex. A network G(w) consists of a graph G together with an assignment
w: E(G) — Z*. The strength s(G(w)) of G(w) is defined by $(G(w)) = maz{w(e):
e € E(G)}. For each vertex v of G, we define the weight wt(v) of v in G(w) by

wt(v) = Z w(e),
e incident to v
and we call G(w) trregular if wi(v) = wi(w) implies v = w. The irregularity strength
3(G) of G is now defined to be min{s(G(w)) : G(w) is irregular}.

In (3], Chartrand et al. proposed the problem of studying s(G). They proved
(8p—2q)/3 < s(G) < 2p—3 for G of order p and size ¢ (that is, with p vertices and
q edges). In [13], a stronger lower bound for s(G) was obtained:

j
$(G) =2 MG) =7ﬁaz{(2nk +i-— 1)/] i Sj},
k=i
where ny is the number of vertices of degree k¥ in G. (Indeed, let G(w) be an
irregular network of strength s, and A the set of vertices whose degrees in G are
elements of {i,i +1,...,5}. Then the smallest weight in G(w) of any vertex of A is

i

at least 7, so that the largest is at least |A|+:—1= > ng+i—1. Since the largest
k=i

vertex weight in G(w) is clearly no greater than js, we have s > A(G).) In [13], the

upper bound of 2p — 3 is also improved, to p — 1, for connected graphs on at least
4 vertices.
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There are not a great many graphs for which the irregularity strength is known,
and the problem can be quite difficult even for very simple graphs. In [3], it was
determined that s(K,) = 3, $(K2n2,) = 3 and s(P,) =n/2, (n+1)/2 or (n+2)/2,
depending on the congruence of n modulo 4. (Here K, and Ks, 2, denote the
complete and complete bipartite graphs, respectively, and P, denotes the path of
order n.) In [9] it was shown that s(Ksn41,2n+1) = 4. Work has also been done on
dense graphs, binary trees, and disjoint unions of paths, cycles and complete graphs
(c.f. [4],(8],(15]). Further results can be found in the references.

In this paper, we determine the irregularity strength of the wheel, the 2 x n
grid and the k-dimensional cube. Except for small cases (5 or fewer vertices) and
the case n = 1 (mod 6) for the grid, we obtain s(G) = [A(G)], where [ ] denotes
the ceiling function. In the exceptional cases, we obtain s(G) = [A(G)] + 1.

If G is an r-regular graph on n vertices then A(G) = (n+r —1)/r. It has been
conjectured (See [7] or [16]) that s(G) < n/r + ¢ for all r-regular graphs of order
n, where ¢ is some constant (depending only on r and n). In the final section, we
give some corroborating evidence in support of this conjecture by looking at graphs
which may be obtained by taking the product of an arbitrary regular graph with
the d-dimensional cube Q4.

We close this section with a simple observation concerning A(T) when T is a
tree.

Proposition 1

Let T be a tree. Then

_ if ny > ng;
)\(T) - {(Tll +TL2)/2, if (131 S Ng.

Proof. Let ¢ and j be chosen so that A(T) = (n; + ... + n; + i — 1)/j. Clearly
nj #0,s0ny > j >1i—1, whence i = 1. (Otherwise (ny +ny + ... +n;)/j > MT).)
Let n = [V(T)|. Thenn = ny+ng+...+n; and 2(n—1) = n14+2n2+...+tn,, where ¢
is the maximum degree in T. From this we easily obtain ny > ng+2ns+...4+(j—2)n;.
Suppose j > 3. As ny; < A(T), jn1 £ ny + ng + ...nj, whence jng + 2jny + ... +
(G —=2n; <ny+ne+..+n;. Thusny +ny > (G —ng+ (25 — ng + ... +
(7 —2)=1)n; > 2n3+2n4+...4+2n;. It now follows that j(ni +nz) > 3(n1 +n2) >
2(ny +n2+ ... +n;), and we obtain the contradiction (nj +n9)/2 > (ny +np + ... +
n;)/j = MT). Thus j =1 or 2 and the proof is complete. ||

We have some evidence in support of the following
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Conjecture
Let T be a tree. Then s(T') = [A(T)] or [A(T)] +1.

This conjecture is known to be true for paths [3] and some other families of trees
(See [4], e.g.). Proposition 1 also suggests an answer to a question of Chartrand (see
[16]): What is the largest integer n(p) such that whenever a tree T with p pendant
vertices has order n < n(p), then s(T') = p? If the strength s(T") is given by [A(T)],

then Proposition 1 implies

_J4 fp=2
n(p)_{2p+1, if p> 2.

Finally, we should mention that Proposition 1 is true also for forests. In this
case, however, it is known from [15] that A(G) does not always give a very good
bound for $(G).

2. The wheel
Theorem 2
Let G be a wheel on n vertices. Then [A(G)] = [(n + 1)/3] and

_ JIAMG)H, if n > 6;
s(@) = { G +1, ifn=4or5

Proof. For n > 7, irregular assignments are given in Figure 1, in cases depen-
dent on n modulo 3. The reader can readily check the result for n < 6. [ |
3. The 2 x n grid
Theorem 3

Let G be the 2 x n grid, n > 4. Then

[ IXGY, if n 31 (mod 6);
3(G)—{¥,\Eag}+1, ifnslgmodﬁg.

Proof. Note that, for n > 4, [A(G)] = [(2n + 1)/3]. We first show s(G) #
[AMG)] when n = 1 (mod 6). Suppose then that n = 6k + 1 and, by way of
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FIGURE 1. Irregular assignments for the wheel
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contradiction, s(G) = [A(G)] = 4k+1. Then {wt(v): v € V(G)} = {2,3, ...,2n+1},
so that
(@n+1)(2n+2)/2) —1= Y wiv)=2 >  w(e)
. , veV(G) e€E(G)
But ((2n+1)(2n+2)/2)—1 = (12k+3)(6k+2)—1, which is odd. Thus s(G) > [A(G)]
when n =1 (mod 6).

To complete the proof we will construct an irregular assignment of the appro-
priate strength. Let n = 6k + ¢ with ¢ € {0,1,...,5}. We will use induction on k
to prove a slightly stronger result: G has an irregular assignment w of the desired
strength in which (i) a pair of opposite edges (on the sides with n vertices) have
common weight 4k + a;, where a; is given in Table 1, and (ii) {wt(v) : v € V(G)}
is {2,3,..,2n + 1} if n is even, {2,4,5,...,2n + 2} if n is odd. The start of the
induction, for 4 < n <9, is given in Figure 2.

For general n > 10, we will construct an assignment on G starting from an
assignment on the 2 x (n—6) grid G', as follows. First endow G’ with an assignment,
using the inductive assumption. Then split G' along the opposite edges having
common weight 4(k — 1) 4+ a;. Insert a 2 X 6 grid into the gap, creating 4 new edges
from the original 2 opposite edges. Assign these four edges the same weight as the
original two. Leave the weights of all other edges of G' unchanged. Assign weights
to the 2 x 6 grid as in Figure 3, where a; and b; are given in Table 1. It is easy
to check that the resulting assignment is irregular, has the desired strength, and

satisfies (1) and (ii). |
) a; b,’
0 0 O
1 1 1
2 2 0
3 3 1
4 3 2
5 4 3

Table 1. The definitions of a; and b;.

4. The k-cube

The k-cube Qi is defined as follows. The set of vertices V(Qk) is {a =
(a1, a2,..., ) : each a; is 0 or 1}, and vertices a and 3 are said to be adjacent if
they differ in exactly one coordinate. For the remainder of this section, let us fix
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k > 2 and set .
2+ k-1
s=[M@)] = [__+k—-l’ t = |logas].

Note that 2¢ < s < 2tH1,

In Theorem 4.3 we will construct an assignment of strength s. The basic idea
is as follows. Qj can be thought of as consisting of two copies of Qx—_; joined by a
matching. Each Q4—; can in turn be thought of as Q¢ X Qt—:—1. (For graphs G and
H, the product G x H has vertex set V(G) x V(H); vertices (v1,w;) and (v, ws)
are adjacent if v; = vy and w; is adjacent to wy or if wy; = wy and v, is adjacent to
vp.) We can thus identify 2F=t=1 copies of @, in each Qx_;, one for each vertex of
Qk—t—1. We will consider three classes of edges in Qg: (i) edges between the two
Qk—1’s; (i1) edges that lie within one of the copies of Qy; and (iii) all other edges.
We will label the edges of Q4 using three algorithms, based on the three classes of
edges. The following two technical lemmas enable us to properly label the edges in
the t-cubes.

Lemma 4.1

Let d € {t,t +1,¢ +2,...,,st}. Then there exists a network Q;(w) of strength
at most s such that wi(v) = d for every v € V(Q,).

Proof. Let d =gt +r with 1 £ ¢ < s and 0 < r < t. Partition the edge set
E(Q:) so that E; consists of the edges whose incident vertices differ in one of the
coordinates in {1,2,...,7}, provided r > 0, E; =0 if r = 0, and E, = E(Q:) \ E:.
Now define w as follows: Give the weight ¢ + 1 to every edge in E; and the weight
q to every edge in E;. Then for each vertex v, wt(v) =r(¢+1)+(t —r)g=d. B

Lemma 4.2

Let
di=t+(i—1)2" for 1<3 <2k 71

ei =214 st —(s—1)(k—-1)+(E—1)2" for 1<i<2F 711
egk-i-1 = min{st, 2% + st — (s — 1)(k — 1) — 2*}
Then d;,e; € {#,t + 1, + 2, ..., st} for every i.

Proof. The result will clearly follow once we establish the following three
inequalities:

(1) dax-t-1 < sty
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(ii) egr-t-1_y < st;
(iil) e; > t.
In the ensuing argument, all logarithms have base 2.

(i) Here we are to show ¢ + (25471 —1)2! < st, that is, (s — 1)t +2° > 2F~1. We
begin by observing that 25=! > (k—1)? and thus 271 +2k—1 > k2 for k > 5. Hence
(28 42k —1)2 = 22F 4. 2K+1(2k —1)4-(2k —1)% > 22k 2k +1(2f—1) = 2K+1(2F-1 40k —
1) > 2F*+1%2 for k > 5, using the above inequality. In fact, direct substitution shows
this also holds for k = 2,3,4. Rewriting as [(2¥ + 2k — 1)/k]? > 2¥+) and taking
logarithms, we obtain log[(2% +2k—1)/k] > (k+1)/2. Since s+1 > (2% +2k—1)/k
by the definition of s and ¢ > log(s + 1) — 1 by the definition of ¢, we thus have
t>(k—-1)/20r k<2t +1.

Again appealing to the definition of s, we have s — 1 > (2¥ — 1)/k and hence
(2t +1)(s — 1) > 2¥ —1 by using the inequality obtained in the previous paragraph.
Since s < 2%, this implies 25t 4241 —2¢ > 2st+s—2¢ > 2F and thus (s —1)t4-2¢ >
2k~1 a5 we wished to show.

(ii) Here we are to prove st — (s — 1)(k — 1) 4+ 2F — 2¢¥1 < s¢, or equivalently,
(s = )(k —1) + 2t > 2k Ag 21 > 54 1, we have (s — 1)(k — 1) + 2+ >
(s=1)(k~1)+s+1=(s—1)k+2. But (s — 1)k > 2F — 1 by the definition of s.
Thus (s — 1)k +2 > 2%,

(iii) We must prove st — (s — 1)(k — 1) + 2¥=! > ¢, which is equivalent to
(s=1)(k—t—1) < 2¥=1. One can easily verify this inequality directly for 2 < k < 7,
hence we assume k > 8. Since

2k + k-1 k-1 k
i1 =2t e S5

= log(k)

[ AR

for k > 8, we have

" i k(25! 4+ k- 1)
k—log(k) 2 b= or 1= “ vy k-1

and thus certainly

k 2k + k-1
As s > (2% + k — 1) /k, this implies that

k _ k-1 —
109(2 +k 1)21«:(2 +k-1)

log(s) > k(2" +k-1)/(2" + k- 1).
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Finally, log(s) < t + 1 by the definition of t and s — 1 < (2F + k — 1)/k by the

definition of s, hence

(s ] D(k-t-1)< (E{‘—l) (k - log(s))

=okpk—1- ((Qk +k;1)log(8)>

<2Fpk-1-(2F14+k-1)

= 2k—l

as we wanted to show. |

Theorem 4.3

3(Qk) = TA(@x)]-

Proof. We will find an irregular assignment w of strength s = [A(Q)] in which
the vertex weights are k, k +1,...,2% + &k — 1.

Let S = {@ € V(Qf) : @1 = 0} and T = V(Qx)\ S. Let us define an
equivalence relation = on V(Qj) as follows: o = 8 if and only if a; = g; for
2 < j € k —t. Observe that there are 2§t~ equivalence classes, which we will
denote by Ry, ..., Rr_s_1. Now set §; = SN R; and T; = TN R;. Note that each .S;
(and each T;) induces a t-cube.

Now let d; and e; be as in Lemma 4.2. For each i € {1,2,...,2F7*"1} label the
edges of the t-cube induced by S;, using Lemma 4.1 and 4.2, so that the weight
of every vertex in S; is d;. Also label the edges of the ¢-cube induced by T3, for
1 <4 <2571 50 that every vertex has weight e;.

Next give the weight 1 to every edge of the subgraph induced by .S which is not
already labelled, and the weight s to every edge of the subgraph induced by T" which
is not already labelled. At this point every vertex of S; has weight d;+k—t—1, every
vertex of T; has weight e; + s(k —t — 1), and only the edges from S to T remain to
be labelled. Notice that these edges can be partitioned into sets Fy, Fy, ..., For—c—1,
where F; matches vertices of S; to vertices of T;. For each i, |F;] = 2'. Now,
for every ¢ < 2F~*~1 arbitrarily label the edges of F; so that the set of labels is
{1,2,...,2'}. Label the edges of Fys—:-1 (arbitrarily) with the set {1,2,...,2'} if
egr—i-1 = 2F + st — (s — 1)(k — 1) — 2%, If eye—i—1 = st, label the edges of Fyr—e—1
(arbitrarily) with the set {2% — (s — 1)(k — 1) — (2! = 1),...,2% — (s — 1)(k — 1)}
(Note that, in this case, the condition that st < 2% +st — (s — 1)(k — 1) + 2! ensures
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that the smallest label in this set is at least 1. The definition of s guarantees that
the largest label is at most s.). The set of weights of S; is now {d; + k —t -1+
Lwodi+k—t—-1+42" = {k+ (i ~1)2% ..,k +1:2" —1}. The set of weights
of the vertices of T; is {2571 4 k + (i — 1)2¢,...,2F 1 + k 4+ 42¢ — 1}. Al told,
{wt(v):v € V(Qk)} = {k,k +1,...,2% + k — 1}, as advertised. ]

5. A final remark

Let G be an r-regular graph on n vertices. It has recently been shown (see [5]
and [7]) that 3(G) < [n/2] +2 for r even, and s(G) < n/2+ 9 for r odd. Moreover,
it was proved in [5] that if G = C,(k) is the k-fold "explosion” of the t-cycle Cy (by
vertex multiplication), then s(C;) = [n/r]+1 for any t > 3 and k > 2. This provides
some support for the conjecture mentioned in the introduction, that $(G) < n/r+e¢
for all r-regular graphs on n vertices, where ¢ is a constant. In this same vein, we
look in this section at graphs which may be obtained by taking the product of an
arbitrary regular graph with the d-dimensional cube Q4. In particular, we show
that s(G x Qq) < a(ng/ry) for sufficiently large d, where a is a constant depending
only on G. Here ny and ry are the order and regularity, respectively, of G X Q4.

Let G be any r-regular graph on n vertices with strength s, and assume that
an irregular assignment of G with strength s has been made. Let G4 = G x @ for
d > 1, and Gy = G. Clearly Gy is a regular graph with regularity ry = r + d and
order ng = n2% We let s; denote the strength of G4. Thinking of Gy = G4_1 x K2
as consisting of two copies of G4_; joined by a matching M, we label the edges of G4
recursively as follows. Label the first copy of G4—; with an irregular assignment of
strength s4—; with vertex weights among the elements of {§4—1,84—1+1, ..., Ag—1}.
Next label each edge of the second copy of G4 by adding ps—; to the label of the
corresponding edge in the first copy of G4—;, where

Agoy —8g_1+1

Td—1

Pd—1 =

This ensures that the vertex weights in the second copy of G4, are distinct from
one another, as well as from the vertex weights in the first copy of G4—;. Finally,

label each edge of the matching M with 1, thereby obtaining an irregular assignment
of Gd.

Recalling that sq4 = s(G4), we have sq < sq—1+p4—1 and thus s4 < s+po+p1+
...+pd—1. Moreover, the vertex weights for the above irregular assignment of G4 are
from the set {5d,5d+1, vy Ad}, where §g = 641 +1and Ay = Ay—1+pg—17a—1+1.
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Using r4—1 =7+ d — 1, we immediately obtain the recurrence

-Ad—éd-l—l“
Pd=|—(——

‘Td X
_ —(AO —60+1)+p07‘+p1(7‘+1)+...+pd_1(1‘+d—1)
- r+d
_[(Bo—S8+1) +pr+p(r+1)+...+paa(r+d—2) r+d—1
- r+d—1 r+d
pa—1(r+d—1)
- + r+d

[ r+d—1 r+d—1
< | Pa-1 (-rﬁ—) + Pa-1 (_er—).‘

r+d—1
<2f ——m — _ .
< ( r+d )Pd 1+1

Solving the recurrence, we obtain

1
pa < 2¢ (H_Ld)po + T—_'_—d[z““(r +14272(r +2) 4 ... +2°(r +d)].

Using the fact that ’zn: i/2' = (2™*1 —m — 2)/2™, we obtain

i=1

1
< d _1‘__ _ d_
pa <2 (r )po + " [(r+2)2 (r+d+2)]

< (rpo + 1 +2)2¢ _
- r+d

1.

Finally, using
2m+1

for m > 4, we have

34 < 8+ Po+p1 + o+ Pai

rpo + 1+ 2.r+d—1 2

2" ?

i=r

<s—d+

24 1
Se—dtlptr+\ 372 )

provided r > 5. But
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hence

24 rs+r+3)\.4
usmtr+)(remg) < (T )2

whenever d > s. As ng = 2%n and rq = r + d, we have

s (22 (2

rs+r+3 < re+r+4

r+d-3/ " r+d /)
Since the latter condition is equivalent to d > (33 + 2) + 12 and since this clearly
implies d > s, we have inequality (x) holding whenever d > r(3s + 2) 4+ 12 so long

provided

as r > 5. Direct computation shows this is also true for r = 2, 3,4.

Now let a = (rs+r+4)/n be the constant multiple of ng/ry used in the above
upper bound for sy = 3(G4). Notice that this constant depends only on the graph
Go = G and not on d. If r is even, then s < [n/2]+2 from [5] and hence o < r/2+4.
If r is odd then s £ n/2 4+ 9 (from [7]) and we have a < r/2 + 10. In the special
case when G = Cﬁk) (see [5]), then s = [n/r] + 1, where n = tk and r = 2k. Thus
in this case @ < 1+ 5/t + 4/(tk) and therefore for any € > 0, we have @ < 1+ ¢
for t sufficiently large. In any case, since ry — 00 as d — oo, the upper bound on
3(Gg4) given in () is considerably better for large d than the known general bound
of n4/2 plus a constant.
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