

Felix Lazebnik

DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITY OF DELAWARE

NEWARK. DELAWARE

#### **ABSTRACT**

Let  $\mathscr{F}$  denote the family of simple undirected graphs on v vertices having e edges ((v, e)-graphs) and  $P(G; \lambda)$  be the chromatic polynomial of a graph G. For the given integers v, e, and  $\lambda$ , let  $f(v, e, \lambda)$  denote the greatest number of proper colorings in  $\lambda$  or less colors that a (v, e)-graph G can have, i.e.,  $f(v, e, \lambda) = \max\{P(G; \lambda): G \in \mathscr{F}\}$ . In this paper we determine some new upper bounds for  $f(v, e, \lambda)$ .

## 1. INTRODUCTION

The definitions in this paper are based on [3]. All graphs we consider are undirected labeled graphs without loops and multiple edges. Let V(G) and E(G) denote a set of vertices and edges of G, respectively. The number of elements of a finite set A is denoted by |A|. We write v = v(G) = |V(G)| and e = e(G) = |E(G)|. By c = c(G) we denote the number of connected components of graph G. For any positive integer  $\lambda$ , a proper  $\lambda$ -coloring of a labeled graph G is a mapping of V(G) into the set  $\{1, 2, \ldots, \lambda\}$  (the set of colors) such that no two adjacent vertices of G have the same image. The chromatic number of a graph G, denoted  $\chi(G)$ , is the least  $\lambda$  (number of colors) for which there exists a proper coloring of G. Let  $P(\lambda) = P(G; \lambda)$  denote the number of proper  $\lambda$ -colorings of G. This function was introduced in [2] and turned out to be a polynomial function of  $\lambda$ .

Journal of Graph Theory, Vol. 14, No. 1, 25–29 (1990) © 1990 by John Wiley & Sons, Inc. CCC 0364-9024/90/010025-05\$04.00

<sup>\*</sup>This paper is based on a part of a Ph.D. thesis written by the author under the supervision of Prof. H.S. Wilf at the University of Pennsylvania.

Let  $\mathscr{F}=\mathscr{F}_{v,e}$  be a family of all graphs having v vertices and e edges ((v,e)-graphs). Let  $\lambda$  be the number of colors. Denote by  $f(v,e,\lambda)$  the greatest number of proper  $\lambda$ -colorings that a (v,e)-graph can have, i.e.,  $f(v,e,\lambda)=\max\{P(H;\lambda): H\in\mathscr{F}\}$ . In this paper we find some new nontrivial upper bounds for  $f(v,e,\lambda)$  in the general case, i.e., in the case when the only restrictions on the integers v,e, and  $\lambda$  are  $0 \le e \le v(v-1)/2$ ,  $\lambda \ge 2$ .

The main result is the following:

**Theorem 1.1.** Let v, e, and  $\lambda$  be integers,  $0 \le e \le v(v-1)/2$ ,  $\lambda \ge 2$ . Let  $f(v, e, \lambda)$  be equal to the greatest number of proper  $\lambda$ -colorings of a graph with v vertices and e edges. Then

$$f(v, e, \lambda) \leq A\lambda^{v}$$

where A is the least of the following three quantities:

$$\left(1-\frac{1}{\lambda}\right)^{\lceil 1/2(\sqrt{1+8e-1})\rceil}, \quad \left(1-\frac{e}{\lambda}+\left(\binom{e}{2}\right)/\lambda^2\right), \quad \frac{\lambda-1}{\lambda-1+e}.$$

The question was motivated by the analysis of the running time of the backtrack algorithm for the graph coloring problem (see Wilf [10]; Bender and Wilf [1]). Another source of related problems is a paper of Wright [11], where an asymptotic approximation to the number  $M_{v,e}$  = the total number of proper  $\lambda$ -colorings of all (v,e)-graphs was found for a fixed  $\lambda$ , large v, and all e. Problems similar to ours but for different families of graphs (all graphs on v vertices whose chromatic number is equal to k) were considered by Tomescu [7,8]. Several other instances of the problem were considered by the author in [4], [5].

### 2. PROOF OF THEOREM 1.1.

The inequality

$$f(v,e,\lambda) \le \left(1 - \frac{1}{\lambda}\right)^{\lceil 1/2(\sqrt{1+8e}-1)\rceil} \lambda^{v} \tag{2.1}$$

was proved in [4]. In order to get other upper bounds, we apply some known facts based on the famous Inclusion-Exclusion Principle, or Sieve Method, and the corresponding interpretation of the chromatic polynomial of a graph due to Whitney [9]. Here we give a brief list of the corresponding facts. All proofs can be found in Lovasz [6, III. §2]).

# Proposition 2.1.

(i) (Inclusion-Exclusion Formula). Let  $A_1, \ldots, A_n$  be arbitrary events of a probability space  $(\Omega, P)$ . For each  $I \subseteq \{1, \ldots, n\}$ , let

$$A_I = \prod_{i \in I} A_i; \qquad A_\phi = \Omega;$$

and let

$$\sigma_k = \sum_{|I|=k} P(A_I), \qquad \sigma_0 = 1.$$

Then

$$P(\overline{A}_1 \overline{A}_2 \dots \overline{A}_n) = \sum_{i=0}^n (-1)^i \sigma_i.$$
 (2.2)

(ii) (Bonferroni Inequalities). The partial sums of

$$P(\overline{A}_1 \dots \overline{A}_n) - \sigma_0 + \sigma_1 - \sigma_2 + \dots$$
 (2.3)

are alternating in sign.

(iii) (Seiberg's Sieve, particular case). If the events  $A_i$ ,  $1 \le i \le n$ , are pairwise independent and  $P(A_i) = p$  for all i,  $1 \le i \le n$ , then

$$P(\overline{A}_1 \dots \overline{A}_n) \le \frac{1}{1 + np/(1 - p)} \tag{2.4}$$

Given a labeled graph G with v vertices and e edges and an integer  $\lambda \ge 1$ , we associate with G the sample space  $\Omega$  as follows:

 $\Omega = \{\text{all (proper and improper) colorings of } G \text{ in } \lambda \text{ colors}\}.$ 

Let  $V(G) = \{1, 2, ..., v\}$  and  $E(G) = \{\{i_1, j_1\}, \{i_2, j_2\}, ..., \{i_e, j_e\}\}$ . For each k,  $1 \le k \le e$ , we define the event  $A_k$  as

 $A_k = \{ w \in \Omega \mid \text{vertices } i_k \text{ and } j_k \text{ are colored in the same color} \}.$ 

Obviously,  $|\Omega| = \lambda^{\nu}$  and for each k,  $1 \le k \le e$ ,  $|A_k| = \lambda \cdot \lambda^{\nu-2} = \lambda^{\nu-1}$  (a color for  $i_k$  and  $j_k$  can be chosen in  $\lambda$  different ways and each of the remaining  $\nu - 2$  vertices can be colored in  $\lambda$  colors independently of each other).

We define a probability function P on  $\Omega$  in the usual way, assuming that the probability of each elementary event is equal to  $1/|\Omega|$ . Then

$$P(A_k) = \lambda^{\nu-1}/\lambda^{\nu} = 1/\lambda, \qquad 1 \le k \le e.$$
 (2.5)

A coloring of G is proper if and only if none of the events  $A_k$ ,  $1 \le k \le e$ , happens. Therefore

$$P(G;\lambda) = P(\overline{A}_1 \dots \overline{A}_e) \cdot \lambda^{\nu}$$

and the results of Proposition 2.1 can be used in order to get upper bounds for  $P(G; \lambda)$ . But the following questions should be answered first: what is the probability of the intersection of two events  $A_k$  and  $A_s$  for  $k \neq s$ , and are they pairwise independent?

The event  $A_k \cdot A_s$  takes place if and only if vertices  $i_k, j_k$  are colored in the same color and vertices  $i_s, j_s$  are colored in the same color. Therefore

$$|A_k \cdot A_s| = \begin{cases} \lambda \cdot \lambda \cdot \lambda^{\nu-4} = \lambda^{\nu-2}, & \text{if } \{i_k; j_k\} \cap \{i_s; j_s\} = \phi \\ \lambda \cdot \lambda^{\nu-3} = \lambda^{\nu-2}, & \text{if } \{i_k; j_k\} \cap \{i_s; j_s\} = 1. \end{cases}$$

Thus

$$|A_k \cdot A_s| = \lambda^{\nu-2}$$
 and  $P(A_k \cdot A_s) = \lambda^{\nu-2}/\lambda^{\nu} = 1/\lambda^2$  (2.6)

for all  $k, s, 1 \le k < s \le v$ . Using (2.5) and (2.6) we get

$$P(A_k \cdot A_s) = P(A_k) \cdot P(A_s),$$

which implies the *independence* of  $A_k$  and  $A_s$  for all  $k, s, 1 \le k < s \le v$ . For our model,

$$P(A_i) = \frac{1}{\lambda}, \qquad \sigma_1 = \sum_{i=1}^e P(A_i) = \frac{e}{\lambda},$$
  
$$\sigma_2 = \sum_{1 \le i \le j \le e} P(A_i \cdot A_j) = \frac{e(e-1)}{2\lambda^2}.$$

Using this and multiplying both sides of (2.3) and (2.4) by  $|\Omega|$ , we obtain two upper bounds for  $P(G; \lambda)$  and  $f(v, e, \lambda)$ : from (2.3):

$$P(G; \lambda) \le f(v, e, \lambda) < \left(1 - \frac{e}{\lambda} + \left(\binom{e}{2} / \lambda^2\right)\right) \lambda^{v}$$
 (2.7)

from (2.5):

$$P(G;\lambda) \le f(v,e,\lambda) < \frac{\lambda-1}{\lambda-1+e}\lambda^{\nu}. \tag{2.8}$$

Combining (2.1), (2.7), and (2.8), we obtain a proof of Theorem 1.1. For some ranges of parameters, the comparison of (2.1), (2.7), and (2.8) is simple, and it gives

for 
$$e = 0, 1, \lambda + 1$$
,

the right sides of (2.7) and (2.8) are equal;

for 
$$e > \max \left\{ \lambda + 1, (\lambda - 1) \left[ \left( \frac{\lambda}{\lambda - 1} \right)^{\nu - 1} - 1 \right] \right\}$$
,

the bound given by (2.8) is better than those given by (2.1) and (2.7);

for 
$$v-1 \le e \le \lambda + 1$$
,

the bound given by (2.1) is better than ones in (2.7) and (2.8).

# References

- [1] E. A. Bender and H. S. Wilf, A theoretical analysis of backtracking in the graph coloring problem. J. Algorithms. 6 (1985) 275-282.
- [2] G. D. Birkhoff, A determinant formula for the number of ways of coloring a map. Ann. Math. 14 (1912) 42-46.
- [3] G. Bollobas, Extremal Graph Theory. Academic Press, London (1978).
- [4] F. Lazebnik, On the greatest number of 2 and 3 colorings of a (v, e)-graph. J. Graph Theory, Vol. 13, No. 2, 203-214 (1989).
- [5] F. Lazebnik, Some corollaries from a theorem of Whitney. Discrete Math. to appear.
- [6] L. Lovasz, Combinatorial Problems and Exercises. North-Holland, Amsterdam, New York, Oxford (1979).
- [7] I. Tomescu, Le nombre maximal de colorations d'un graphe. C. R. Acad. Sci. Paris 272 (1971) 1301-1303
- [8] I. Tomescu, Problemes Extremaux Concernant le nombre des colorations des summets d'un graphe fini, B. Roy (ed.), Combinatorial Programming: Methods and Applications, 327-336, 1975, D. Reidel Publ. Co., Dordrecht-Holland.
- [9] H. Whitney, A logical expansion in mathematics. Bull. Am. Math. Soc. **38** (1932) 572–579
- [10] H. S. Wilf, Backtrack: An O(1) expected time algorithm for the graph coloring problem. Inform. Process. Lett. 18 (1984) 119-122.
- [11] E. M. Wright, Counting coloured graphs III. Can J. Math. 1 (1972) 82-89.