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ABSTRACT

Let & denote the family of simple undirected graphs on v vertices having
e edges ({v, e)-graphs) and P(G; \) be the chromatic polynomial of a
graph G. For the given integers v, e, and X, let f(v, e, \) denote the great-
est number of proper colorings in A or less colors that a (v, &)-graph G
can have, i.e., flv, e, A) = max{P(G; \): G € F}. In this paper we deter-
mine some new upper bounds for f(v, e, A).

1. INTRODUCTION

The definitions in this paper are based on [3]. All graphs we consider are undi-
rected labeled graphs without loops and multiple edges. Let V(G) and E(G) de-
note a set of vertices and edges of G, respectively. The number of elements of
a finite set A is denoted by |A|. We write v = v(G) = |V(G)| and e = ¢(G) =
|E(G)|. By ¢ = ¢(G) we denote the number of connected components of graph
G. For any positive integer N, a proper A-coloring of a labeled graph G is a
mapping of V(G) into the set {1,2, ..., A} (the set of colors) such that no two
adjacent vertices of G have the same image. The chromatic number of a graph G,
denoted x(G), is the least X (number of colors) for which there exists a proper
coloring of G. Let P(\) = P(G;\) denote the number of proper A-colorings of
G. This function was introduced in [2] and turned out to be a polynomial func-
tion of A.

*This paper is based on a part of a Ph.D. thesis written by the author under the
supervision of Prof. H. S. Wilf at the University of Pennsylvania.
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Let % = &, , be a family of all graphs having v vertices and e edges ((v, e)-
graphs). Let A be the number of colors. Denote by f(v, e, \) the greatest
number of proper A-colorings that a (v, ¢)-graph can have, i.e., f(v,e,A) =
max{P(H;\): H € %}. In this paper we find some new nontrivial upper bounds
for f(v, e, \) in the general case, i.e., in the case when the only restrictions on
the integers v,e, and A are 0 < ¢ < v(v — 1)/2, A = 2.

The main result is the following:

Theorem 1.1. Let v, ¢, and A be integers, 0 < e < v(v — 1)/2, A = 2. Let
f(v, e, \) be equal to the greatest number of proper A-colorings of a graph with
v vertices and e edges. Then '

f(v’ €, A-) = AAV;

where A is the least of the following three quantities:

1 [172(V1+8e—1)] e e
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The question was motivated by the analysis of the running time of the backtrack
algorithm for the graph coloring problem (see Wilf [10]; Bender and Wilf [1]).
Another source of related problems is a paper of Wright [11], where an asymp-
totic approximation to the number M, , = the total number of proper A-colorings
of all (v, e)-graphs was found for a fixed A, large v, and all e¢. Problems similar
to ours but for different families of graphs (all graphs on v vertices whose chro-
matic number is equal to k) were considered by Tomescu [7,8]. Several other
instances of the problem were considered by the author in [4], [5].

2. PROOF OF THEOREM 1.1.

The inequality

1 T2V + 8e—1)]

flu,e,\) = |1 — N A’ (2.1

was proved in [4]. In order to get other upper bounds, we apply some known
facts based on the famous Inclusion—Exclusion Principle, or Sieve Method, and
the corresponding interpretation of the chromatic polynomial of a graph due to
Whitney [9]. Here we give a brief list of the corresponding facts. All proofs
can be found in Lovasz [6, II1. §2]).

Proposition 2.1.

(i) (Inclusion—Exclusion Formula). Let A,, . ..,A, be arbitrary events of a
probability space (2, P). For each I C {1, ... n}, let
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AI:?’HA.'; A, = Q;

i€l

and let
’ O'kZZP(Al)’ o, = 1.
)=k
Then
P(A\4,...A) = 2 (—1)a,. (2.2)

=0

(ii) (Bonferroni Inequalities). The partial sums of

PA,..A) —oy+o,—oy+ ... (2.3)
are alternating in sign.
(iii) (Seiberg’s Sieve, particular case). If the events A;, | = i = n, are pair-

wise independent and P(A;) = p for all i, 1 < i < n, then

— — 1
P(A,...A) =

< — 2.4
L+ /(1 = p) —

Given a labeled graph G with v vertices and e edges and an integer A = 1, we
associate with G the sample space ) as follows:

Q = {all (proper and improper) colorings of G in A colors}.

IJet V(G) = {13 2, B ;v} and E(G) = {{ihjl}r {inj?.}v e v‘{ie ’jz}}' For eaCh k’
1 = k < e, we define the event A, as

A, = {w € Q| vertices i, and j, are colored in the same color} .

Obviously, |} = \" and foreach k, I =k <e, |[A,| =N - N =\""(a
color for i, and j, can be chosen in A different ways and each of the remaining
v — 2 vertices can be colored in A colors independently of each other).

We define a probability function P on () in the usual way, assuming that the
probability of each elementary event is equal to 1/|Q}|. Then

P(A,) = N7\ = 1/A, l<k=e. (2.5)

A coloring of G is proper if and only if none of the events A,, 1 =< k < e, hap-
pens. Therefore

P(G;\) = P(&,...A) -\’




28 JOURNAL OF GRAPH THEORY

and the results of Proposition 2.1 can be used in order to get upper bounds for
P(G;\). But the following questions should be answered first: what is the proba-
bility of the intersection.of two events A, and A, for k # s, and are they pair-
wise independent? '

The event A, - A, takes place if and only if vertices i, j, are colored in the
same color and vertices i, j, are colored in the same color. Therefore

AoANTH =N i (i N i) = ¢
AN = if {i i} N il = 1.

A, - A =
Thus
A, - Al =A% and P4, - A) = \"H/N = 1/N (2.6)
for ali k,s, 1 =k <s = v. Using (2.5) and (2.6) we get
P(A, - A) = P(A)) - P(A),

which implies the independence of A, and A, for all k,5, 1 = k <s = wv.
For our model,

1 : e

P(A,-)=Y, U.=2P(Ai)=x,

o, = E P(A,-'Aj)=£(£——l)

2
I=si<j=e 2}\

i=1

" Using this and multiplying both sides of (2.3) and (2.4) by [€}|, we obtain two
upper bounds for P(G;\) and f(v, e, \):

from (2.3):
e e ,
PGN) = fl,eN) < (1= —+ (] / ¥\ 2.7)
from (2.5):
P(G;\) = f(v,e,\) < Aol (2.8)
T TN -1+ e '

Combining (2.1), (2.7), and (2.8), we obtain a proof of Theorem 1.1. §
For some ranges of parameters, the comparison of (2.1), (2.7), and (2.8) is
simple, and it gives

for e=0,1,N +1,
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the right sides of (2.7) and (2.8) are equal;

v—1

A
for e>maxsA + 1,(A — 1) m -1,

the bound given by (2.8) is better than those given by (2.1) and (2.7);
for v—1=e=A+1,

the bound given by (2.1) is better than ones in (2.7) and (2.8).
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