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ABSTRACT

Let & denote the family of simple undirected graphs on v vertices having
e edges ((v, e)-graphs) and P(\, G) be the chromatic polynomial of a
graph G. For the given integers v, e, A, let flv, & A) denote the greatest
number of proper colorings in A or less colors that a (v, e)-graph G can
have, i.e., flu,e,\) = max{P(\, G): G € F}. In this paper we determine
flv, e, 2) and describe all graphs G for which P2, G) = flv, e, 2). For
flv, e, 3), a lower bound and an upper bound are found.

1. INTRODUCTION

The definitions in this paper are based on [3]. All graphs we consider are undi-
rected labeled graphs without loops and multiple edges. V(G) and E(G) denote
a set of vertices and edges of G, respectively. The number of elements of a fi-
nite set A is denoted by |A|. We write v = v(G) = |[V(G)| and e = &(G) =
IE(G)|. By ¢(G) we denote the number of connected components of graph G.
For any positive integer A, a proper A-coloring of a labeled graph G is a map-
ping of V(G) into the set {1,2, ..., A} (the set of colors) such that no two adja-
cent vertices of G have the same image. The chromatic number of a graph G,
denoted x(G), is the least A (number of colors) for which there exists a proper
coloring of G. Let P(A\) = P(\, G) denote the number of proper A-colorings of
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G. This function was introduced by Birkhoff (2] and it turned out to be a poly-
nomial function of A.
In this paper we consider the following:

Problem. Let &% = %, , be a family of all graphs having v vertices and e
edges ((v, e)-graphs). Let A = 2 or 3 be the number of colors. Denote by
flv, e, \) the greatest number of proper A-colorings that a (v, e)-graph can have,
i.e., flv,e,\) = max{P(\,H): H € %}. Determine explicitly or find bounds
for flv, e, \). Describe, if possible, all the extremal graphs G, i.e., all G € &
such that flv,e,\) = P(\,G).

In section 2 we present a complete solution of the problem for A = 2. In sec-
tion 3 we show some results for the case when A = 3. The main results are
Theorems 2.1, 2.5, 3.3, and 3.6.

The problem was motivated by the analysis of the running time of the back-
track algorithm for the graph coloring problem (see Wilf [6]; Bender and Wilf [1]).
Another source of related problems is a paper by Wright [8], where an asymp-
totic approximation to the number M, , = the total number of proper A-colorings
of all (v, e)-graphs was found for a fixed A, large v, and all e. This result im-
mediately allows us to obtain an asymptotic approximation to av(v, e, A) =
av(P(\, G)) = the average value of the chromatic polynomial of a graph,
where average is understood to be taken over all (v, ¢)-graphs G. In relation to
our problem, the role of the function av(v, e, \) is the following: for large v a
lower bound for f(v, ¢, A) can be obtained from it easily. We will use this obser-
vation in section 3. Tomescu ([4], [5]) considered problems similar to our prob-
lem but for different families of graphs (all graphs on v vertices whose chromatic
number is equal to k).

Let xy be an edge of G. Then by G — xy we mean the graph obtained from
G by deleting xy. By G/xy we mean a graph obtained from G by identifying the
vertices x and y, i.e., (i) by deleting both x and y and all the edges incident to
them, and (ii) by introducing a new vertex z and connecting z to both all the
neighbors of x different from y and all the neighbors of y different from x in G.

ByK. K, T, and K, . we denote correspondingly the complete graph on v
vertices (any two vertices are joined by an edge), the completely disconnected
graph on v vertices (no edges at all), a tree on v vertices, and a complete bipar-
tite graph on m + n vertices. By G + H we denote the disjoint union of graphs
G and H. The following proposition describes some properties of P(A, G) that
we are going to use later. Proofs can be found in [3, pp. 145-148].

Preposition 1. Let G be a graph with v vertices, e edges, and G|, G,, . . ., G ¢
be all connected components of G. Then

(i} P, G) = P\, Gy - PGy -~ - PX, G -

(ii) Reduction Formula: Let a and b be two adjacent vertices of G. Then

P(\.G) = P(\,G — ab) — P\, G/ab). (1.1
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(iii) P(N, K,) = A", PIMK)=AMA—- D -(A—v+ 1), PN\T)'=
AN = D)L

(iv) For a connected graph G, P(\,G) = A\ — 1" '(A = 2). The equality
sign occurs if and only if G is a tree.

CASE A = 2

In this section we will find f{v, e, 2) and describe all extremal graphs. It is well
known that a graph is 2-colorable if and only if it has no odd cycles or if and
only if each of its connected components is a bipartite graph. Let

B = {G: G € %,, and each connected component of G is a bipartite graph} .

Then fv, e,2) = max{P(2,G): G € R} and our goal is finding f{v, ¢, 2) and
all G € 9B such that P(2,G) = flv, e, 2).

Theorem 2.1

2Y, ife =0,
flv,e,2) = {2V iF0 < e < [vP/4],
0, if e > [v2/4].

Proof. Fore =0, G = K, and the result is obvious.

For e > |v’/4], the result follows immediately from Turdn’s Theorem (see
[3, p. 17]), since G contains a triangle.
To prove the rest of the theorem we observe that if G € @R, then

P(2,G) = 29,

which follows from Proposition 1(i) and the fact that each connected compo-
nent of G can be colored in exactly 2 different ways. Let

c = c(v,e) = max{c(G)|G € B}.
Then
ﬂvv e, 2) = 2Cy

and the problem is reduced to determining c. We do this by means of the fol-
lowing three lemmas:

Lemma 2.2. The least number of vertices a bipartite graph G with e edges
may have is [2Ve ], and for any e = 1 these exists a bipartite graph G with e
edges and 2Ve 7 vertices.
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Proof. Let a bipartite graph G, G € K, ,,, have m + n vertices and e edges.
Since m + n.is an integer and

rﬁ+n22Vm-n22\/E,

the least possible value for m + n is f2\/;].

To prove the second part of the lemmas, i.e., the existence of the graph G
with e edges and Ve vertices, we deonte L\/ZJ = p and consider the fol-
lowing three cases:

Case 1. If e = p?, then we can only have G = B, p- lleme mn o= = p;
m+n=2p=(2\/g-|.

Case 2. Ifp* < e =p’+ p, then
p<2Ve=2Vpr+p<2p+1.

So2Ve] = 2p + 1 and G can be taken as K, , C G C K, Here n =

pt+ 1, m=p.

+1.p

Case3. Ifp*+p<e<(p+ 1) then
p+1<2Vpit+tp+1<2Ve<2p +2.

So 2Ve] = 2p + 2 and G can be taken as K,,, , C G C K,,, ,,,. Here
m=n=p+1. 1}

We call each connected component of G different from X, a nontrivial com-
ponent of G.

Lemma 2.3. Let G € % and two nontrivial components of G have together
at least 4 edges. Then there exists G’ € 9B, such that ¢(G") > ¢(G).

Proof. Let G, and G, be two nontrivial components of G and (G, + G,) =
e, = 4. Then v(G, + G,) = vy = ¢, + 2. For any integer n = 4, n = 2V .
Since n is an integer, then n = [2Vr ]. Therefore

vo — 2Vey 12 e + 2 — [2Ve, 1 = (e, — [2Ve, ) + 2= 2.

Consider a bipartite graph A with r2\/e—0] vertices and e, edges. It exists by
Lemma 2.2, Take H' = H + K,_;vz;. Then H' has v, vertices, e, edges, and
c(H') = 3. Replacing G, + G, in G by H' we get graph G', G' € B, which
has more connected components that G. 1

Let B’ C 9B be defined as

B’ = {G € B|G has only one nontrivial component.}
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Lemma 2.4. For any G € AR, there exists G’ € R’ such that
c(G") = ¢(G).
Proof. 1f G € %', then G' = G (this is always the case for v = 2 or 3).

Let G have at least two nontrivial components. If the total number of their
edges is greater or equal to 4, then the statement of the lemma follows from
Lemma 2.3. Therefore we assume that the total number of edges in any two
nontrivial components of G is less than 4. Then the set of nontrivial compo-
nents of G can be one of the following:

(i) {K, , and e — 2 copies of K, |}
(ii) {e copies of K| |}

In both cases one obtains G’ by replacing all nontrivial components of G by
K, . Note that ¢(G") = ¢(G). 1

Now we are able to finish the proof of Theorem 2.1. As it follows from
Lemma 2.4, ¢ = max{c(G): G € B} = max{c(G'): G' € B} and we can re-
strict our search of ¢ from & to R'.

Let G' € B’ and let H be the only nontrivial component of G'.

If

v(H) > 2[Ve(H)] = [2Ve],

then by Lemma 2.2, H can be replaced by H', which has the same number
of edges but less vertices. The obtained graph will have more connected com-
ponents than G. Therefore, v(H) = fZVel, G=H + Ky ppvinc=v—
[2Vel + 1 and the proof of Theroem 2.1 is complete. 1

Now we are going to describe all extremal graphs G € R, i.e., such that
¢ = ¢(G) = max{c(F)|F € B}.

If G has more than one nontrivial component, then it follows from the proof of
Lemma 2.4 that either

(i) G=eK,, +K,_,, or B
(i) G=K,, + (e~ 2K, | + K, 54,

In case (i), | = e = 3. Otherwise the union of four independent edges of G
could be replaced by K, , + K,, which would result the increase of ¢(G) by one.

In case (ii), e = 2 or 3. Otherwise the part of G, K, , + 2K, , could be re-
placed by K, , + K;, which would result the increase of ¢(G) by one.

Let G have only one nontrivial component, i.e., G € B’, and let H be the
nontrivial component of G. Then e(H) = e = 1, and by Lemma 2.2, v(H) =

Vel Letp = [Vel.
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If p> = e, then H = K, , (proved in Lemma 2.2).
Ifp’<e=sp’+p then 2Vel = 2p + 1 (proved in Lemma 2.2). Since
H is a bipartite graph, it is a subgraph of some X, ,, suchthatm + n = 2p + 1,
mn = e, n = m. Then for some nonnegative integer a, n = p + 1 + aq,
m = p — a, and
=(pt+tl+ap—a=e or
f—a—(pP+p—e =0, or
0=a=|V25+p +p—e+ .5]. 2.1

Therefore H can always be obtained from some K,.,,, ,-, by deleting
(p+ 1+ a(p— a) — e edges, where a is a nonnegative integer given by
(2.1). We denote any graph H described above by H(p + 1,p,a).

For example, for ¢ = 38 we have p = 6, v(H) = 13; possible values for a
are 0, 1, 2. Therefore H can be obtained by deleting 4 edges from K, 4, or
2 edges from Ks s, 0r0 edges from K .

Ifp? + p<e<(p+ 1) then Vel = 2p + 2 (proved in Lemma 2. l)
Since H is a bipartite graph, it is a subgraph of K, ,, such that m + n =
2p + 2, mn = e, n = m. Then for some nonnegative integer a, m = p +
l+a,n=p+1—a,and

mn=(p+ 1)} —a>=e or

0=a=|Vlp+ 1) —-e]. (2.2)

Therefore H can always be obtained from some K, ., ,+ -, by deleting
(p + 1)* — a® — e edges, where a is a nonnegative integer given by (2.2). We
denote any graph H described above by H(p + 1,p + 1,a).

Collecting all the results of this section we get a complete description of the
extremal graphs:

Theorem 2.5. Let G = G(v,¢) be an extremal (v, e)-graph, i.e., flv,e,2) =
P(2,G), 0 = e = [v*/4] and p = [ Ve |. Then G(v,0) = K,;G(v, 1) =
K, +K, ;G2 =2K ,+K,,orK,, +K,_5; Gw,3) =3K,, + K,
or K, + K, + Eu—i

F0r4<e—p G(v e) = K, +K|, 2

For4 < p* < e = p? +p,G(v e)=H(p + 1,p,a) + K,_ 213

Ford=p’+p<e<(p+ 1P Gu,e)=H(p+ l,p+1, a)+Kv

CASE A =3

A Lower Bound for f(v, e, 3)

A lower bound for flv,e,3),0 e = v’/4, will be obtained as a lower bound
for the total number of 3-colorings of a particular (v, e)-graph defined below.
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Suppose V(K,,,) = A U B, |A| = n, |B| = m. Define K,, , o = K,,.,- By
K, ., (1 =p = m), we mean a graph obtained from X,, , by adding one more
vertex to A and joining it with p vertices of B. (See Figure 1.)

Graph K, , , has m"+ n + 1 vertices and mn + p edges. We will call K, ,, ,
a semicomplete bipartite graph. Notice that K, ,, ,, = K .+1.0 = Ky n+1. Clearly
the complete bipartite graph is also semicomplete. The definition is motivated
by the fact that we suspect the extremal graphs to be semicomplete bipartite if
e = v'/4.

Now we compute the number of proper colorings of the graph K, , , if 3 (or
fewer) colors are used.

Lemma 3.1
3-(2"+ 2" = 2), ifp =0, (8.1)
P(3’K’"v"vp) = ntl m m—p+] >
342N 2"PT - 4), fl=ps=sm. (3.2)
Proof.

(i) Let p = 0 and m = 1. Then P(3,K, ,, = P(3,K,,) = 3 - 2" and the
statement is proved.

(i) Let p = 0 and m = 2. If we join vertices B,,_, and B,, by edge ¢, then
by the reduction formula (1.1)

P(3,K,,) = P(3,K,,, +t) + P(3,K,, ./t).

We have P(3,K,, , + ) =(3-2)-1"-2"%*=3-2""" since a choice of
2 different colors for B,,_, and B,, determines the color for each of A, 1 =
i = n, uniquely and each of B;, 1 = j = m — 2, can be colored independently
in any of 2 colors different from one chosen for 4, A,, .. ., A,. Graph K,, /1 is
isomorphic to the graph X, ,. Thus, we obtain a recurrence

P(a)Km,n) = 3 ' 2,"_1 + P(3)Km41.n) .

By solving it we get
|

P3,K,)= > (3-29+P3,K,,)=3-(2"=2)+3-2"

i=m—1

=3 @ +2"-2),

which proves the lemma for p = 0.
(iii) Let p = 1. Then

P(3,K,.,.1) =2 P3,K,.,). (3.3)
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(iv) Finally, we assume 2 < p < m. In this case

P(3,Ky.,) = PG.K,,, + 1) + PG,K,, /1)

= 3 ° 2'"—] + P(3»Km—l,n.p—l) .

np

Applying (3.1) and (3.3) we solve this recurrence and obtain

m=p+1

> 3-2) + PB. Ky prin)

i=m-1
3 . (2m _ 2m—p+l) + 2 . 3 . (zn + 2m—p+l ! 2)
=3 (2" + 2m 4 2mrt — g,

P(3,K

m.n,p)

which proves Lemma 3.1 for | = p=m. 1

Notice that for p = m we have P(3,K,, , ») = P(3,K,, ,.,) as it should be.

Lemma 3.2. (modified and restricted version of Lemma 3.1). Let e =
mn + p, where 1 = p < m =< n (in case p = m we require n = m + 1). Take
n=1[e/ml—landp=e—m -n=e—m- ([e/m| — 1). Then

PB,K, ) =3 (2" + 2"+ 2" — 4y, (3.4)

P

Proof. 1f[e/m] = e/m, then n + 1 = ¢/m and p = m. Therefore

P(3)Km ) = P(3aKm,n,m) = P(3aKm,n-H,0) . P(3’Km.n+l)

s p.

and (3.4) gives the same result as (3.1). If [e/m] > e/m, then (3.4) gives the
same result as (3.2). The lemma is proved.

Suppose m, n, p satisfy the conditions of Lemma 3.2. Then the graph X,, , ,
has n + m + 1 vertices. If v > n + m + 1, then

P(3’K’" + Eu-(n-f—m-ﬂ)) = P(31 Km.n,p) ¢ 3u—(n+m+l)

_ 2n+l + 2m + 2m—p+l _ 4

371 +m

WL p

G 2 (3.5)

Denoting the coefficient at 3" in (3.5) by a,, = a,, we find that

P(3’Km,n,p + En—(n+m+])) =ap 311. (36)
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A Lower Bound for f(v, e, 3)

Our goal in this section is to get a lower bound for f(v, e, 3) for ¢ = v’/4. We
consider the following subset % of %:
Graph G € ¥ belongs to Y% if and only if

(l) G 33 Km,n + E_v_—(m+n)’ m-n=e;
(1) G=K,,, T Ko—ppinsy L Ep=m, mn+p=e.

If e < v*/4, then $% is not an empty set. For any family I of graphs, let
f(T) = max{P(3, G)|G € T}.
Since ¥9B C %, then

fEB) = f(F),

and any lower bound for f($B) is also a lower bound for f(%). Using new nota-
tions and (3.6) we get

f(SB) = [lsrrg% {am}} v,
Therefore in order to find a lower bound for f(¥%) we can find one for

ale) = ay, = Jnax {a.}
(it is easy to show that g(e) is defined uniquely by this equality). Let m, n satisfy
the conditions of Lemma 3.2. We define '

— Antl n+m - =
b, = 2""/3""" and b(e) = by, max {b,}
(it is easy to show that r(e) is defined uniquely by this equality).
Then for all m, 0 = m < L\/;J,

elm 2e/m
2 =b/2=a =2-b,=12

m m . 3(clm)+m 5

It is easy to see that the function f(x) = 2°°/3“** defined on [1; [ Ve]] takes
its maximum at point

x, = Ve/c, where ¢ = (log 3)/(log 1.5).
Therefore
ale) = kf(xy) = k(.2632)"",

where k is some constant from the interval [1/3, 12], and a lower bound for a(e)
can be obtained if we take k = 1/3. This implies the following:
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Theorem 3.3. Let 0 =< e < v’/4. Then there is a graph G € $B having at
least (.2632)\/; - 3"~ proper colorings in 3 or fewer colors. Therefore

(2632)V% - 3" = P(3, G) = f(IB) = f(F) = f(v,e,3).  (3.7)
In order to improve the constant in the lower bound in (3.7), one can try to de-
termine the index g(e) more precisely. There is convincing numerical evidence
that for ¢ = 26, g(e) = r(e), but we could not prove it. Even if this is true, it
turned out to be surprisingly difficult to find bounds for r(e) better than ones

given below:

Proposition 3.4. If m and n satisfy the conditions of Lemma 3.2, then
Ve/3 + .25 - 5=r(e)=Ve/2 +.25-.5 (3.8)

Proof. First let us find when b,,,, = b,

2[2«(m+ i 2[‘e/m]

3fel(m+l)]+(m +1) = 3(e/lrﬂ+m

& [e/m] — [e/(m + 1)] = (In 3)/In 1.5 = 2.709

The left side of the inequality represents an integer. So

%
w

bye) > b, & [e/m] — [e/(m + 1)] (3.9)
if
e/m—e/(m+ 1) >3, (3.10)

then

le/m] —[e/(m + )] >e/m —elm+ 1) —1>2.

Therefore (3.10) implies (3.9). Solving (3.10) for m = 1, we obtain the left-
hand side of the inequality (3.8).

It is also clear that [e/m] — [e/(m + 1)] < e/m + 1 — e/(m + 1), so the
inequality

e/m—e/im+ 1) <2 (3.11)

implies [e/m] — [e/(m + 1)] = 2 or b,,., < b,,. Solving (3.11) for positive m
we obtain the right-hand side of (3.8). 1
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If ¢ > v?/4, then a lower bound can be obtained from the results of Wright
[8, Theorem 6], which were discussed in Section 1. A proof of the following
theorem can be easily obtained from them and we omit it:

Theorem 3.5. There exists a positive constant & such that
vY/3
e
flv,e,3) > k- cv - 3
v

€

for sufficiently large v and all e > v’/4.

An Upper Bound for f(v, e, 3)

The upper for f(v, e, 3) will be a particular case of an upper bound for f(v, e, \).
Using Proposition 1 (iv) we have that for any connected graph G on v vertices,

P\, G) =X = DL
So

flv,e, M) = AN — D' (3.12)
Let G have ¢ = ¢(G) connected components G, G,,..., G.onv,, v,,..., v,

vertices correspondingly and let ¢ (v, ¢) denote the maximal number of connected
components that a graph with v vertices and e edges may have. Then

P(\,G) = ]i[P()\,G,.) < ﬁ)\(x — !

i=1

= AN\ = DEFTO= N = 1)

and

1 v—c{v,e)
flu,e,\) = |1 — N A

The number ¢ (v, e) can be expressed in terms of v and e in the following way.
It is known, see for example [7, p. 27], that for any simple graph G with v ver-
tices, e edges, and ¢ connected components

v—c=ses{w—colw—-c+ )2
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Solving this for ¢ we obtain that the greatest value of ¢ that satisfies this system
of inequalities is ¢(v,e) = v — [1/2(V1 + 8¢ — 1)]. Therefore we have

flo,e,N) = (1 = 1/0)VAVTFen)y (3.13)
For A = 3, we get

flv,e,3) = (2/3)V/3VIteeligy < (2/3)\/5—1 3v
< (.5636)V71 3",

Combining the obtained upper bound with the lower bound (3.7) and (3.13) we
obtain

Theorem 3.6. For 0 < ¢ < v/4,
(.2632)V - 377 < f(u, e, 3) = (.5636)"° " 3. (3.14)

For sufficiently large v and all e > v*/4, a lower bound is given in Theo-
rem 3.5. The upper bound in (3.14) is correct for all ¢, 0 = e = v(v — 1)/2.

Conjecture. For 0 < ¢ = v?/4, f(v, e, 3) = P(3, G) if and only if G is a
semicomplete bipartite graph.
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