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Abstract
Ebert, G., J. Hemmeter, F. Lazebnik and A. Woldar, On the number of irregular assignments
on a graph, Discrete Mathematics 93 (1991) 131-142.

Let G be a simple graph which has no connected components isomorphic to K, or K,, and let
Z* be the set of positive integers. A function w:E(G)—>Z" is called an assignment on G, and
for an edge e of G, w(e) is called the weight of e. We say that w is of strength s if
s =max{w(e): e € E(G)}. The weight of a vertex in G is defined to be the sum of the weights
of its incident edges. We call an assignment w irregular if distinct vertices have distinct weights.
Let Irr(G, A) be the number of irregular assignments on G with strength at most A. We prove
that '
IIrr(G, A) — A7 + ¢,A77 | =0(A?7%), A—o

where ¢ = |E(G)| and ¢, is a constant depending only on G. An explicit expression for ¢, is
given. Analysis of this expression enables us to determine which graph with ¢ edges has the
Jeast number of irregular assignments of strength at most A, for A sufficiently large.

1. Introduction

Let G be a simple graph with |[E(G)| = ¢ and |V(G)| = v, and assume G has no
connected components isomorphic to K, or K, (K, is the complete graph on n
vertices). A function w: E(G)— Z™ is called an assignment on G, and for an edge
e of G, w(e) is called the weight of e. We say that w is of strength s(w) if
s(w) =max{w(e): e € E(G)}. The weight of a vertex x € V(G) is defined to be the
sum of the weights of its incident edges, and is denoted wt(x). We call an
assignment o irregular if distinct vertices have distinct weights. The irregularity
strength s(G) of G is defined as s(G) = min{s(w): @ is an irregular assignment on
G}.
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One motivation for studying s(G) stems from problems related to highly
irregular graphs and multigraphs (see [1-3]). Suppose an assignment  on a
graph G is given. Then we can consider a multigraph G™ obtained in the
following way: each edge e of G of weight w(e) is replaced by w(e) parallel
edges. For any x € V(G) = V(G™), the degree of x in G* is equal to wt(x). If w is
an irregular assignment on G, then all vertices of G* have distinct degrees (which
never happens in a simple graph!). Therefore, s(G) is the least of the maximum
edge multiplicities of multigraphs which have G as an underlying graph and in
which the degrees of all vertices are distinct.

The problem of studying s(G) was proposed by Chartrand et al. in [4]. It
proved to be rather hard, even for very simple graphs ([4-5, 8, 1012, 17]). The
recent study of irregular assignments established several connections between the
concept of irregularity and hypergraph theory, integer matrix designs, finite
projective geometry, etc. ([13-14, 19]). An excellent survey on the subject was
written by Lehel [18].

In this paper we continue the study of irregular assignments, but we shift our
attention from s(G) to the number of irregular assignments on G with strength at -
most A. Let us denote this number by Irr(G, A). Our initial hope was that
Irr(G, A) would relate to s(G) in a way similar to which the chromatic polynomial
of a graph relates to the chromatic number of the graph. To some extent, we
found this to be the case. For example, we noticed the following.

(1) s(G) is the least positive value of A such that Irr(G, 1) > 0.

(ii) For some graphs G, Irr(G, A) is a polynomial function of A of degree g:

if K,, denotes a star with n edges, then Irr(K,,, A)=A(A—1)(A-2)

c-(A=n+1);

if C, denotes a cycle of length n, then Irr(Cs, 1) = A(A — 1)(A — 2);

if P, denotes a path with n edges, then Irr(P;, A) = A(A — 1)%

if G is the graph with V(G)={1,2,3,4} and E(G)=

{{1, 2}, {2, 3}, {3, 1}, {1, 4}}, then Irr(G, A) = A* — 34> — 2A.

In contrast, Irr(Cy, A) is not a polynomial of A. Indeed, it would otherwise have
degree at most four by Theorem A below. However, this is inconsistent with its
values for A=2, 3, 4, 5, 6.

Even for some small graphs the computation of Irr(G, A) may not be ‘very easy
(e.g., try to compute Irr(P, A)). We do not know any reasonable way of
computing Irr(G, A) for an arbitrary graph G. However, we prove the following
in the next section.

Theorem A. |Irr(G, &) — A7 + ¢, A7 1| = O(A97%), A—», where ¢, is a constant
depending on G only.

In Section 3, we use an explicit expression for c, to establish the following
extremal result.
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Theorem B. For all but finitely many q € Z*, Irr(K, A) <Irr(G, A), A— =, where
{Kl,n + Kl,n: q = 2nx
K= .
K, ,+Ki, g=2n+1

and G is an arbitrary graph with q edges, G # K. (Here K7, denotes the graph
obtained from K, , by replacing a single edge with a path of length 2.)

Also in Section 3, we specialize to the family [, of forests with ¢ edges. Here
we extend our results to include not only the extremal graph K, but forests
K=K, K;, ..., K, where K is extremal in F,\{K}, K,, ..., K;,_;}, with r =2
for g even and r =7 for q odd.

2. Proof of Theorem A: The behavior of Irr(G, A) for large 4

The idea of the proof is to compute Irr(G, A) by using inclusion-exclusion and
then find asymptotics for some terms in the formula as A — . Let us number all
unordered pairs of distinct vertices of G by integers from 1 to (3):

{iv, inh iz J2ds - o iy Jep )

Let €2 be the set of all (both irregular and not irregular) assignments on G of
strength at most A. Obviously, || = A?. For each k, 1 <k <(3), we define A, as

A, ={w: wis an assignment on G, 1<s(w) <A, wt(i,) = wt(ji)}
ForeachIc{1,2,...,(3)}, let
A=A;  Ag=;

iel
and let
v
Sa= > |Ad, Osms( )
j=m

Then by inclusion-exclusion,
) :
Ir(G, A) = D, (=1)"S,. (2.1)
m=0

In order to compute S,,, we use the following well-known facts. We adopt the
convention that whenever a lower index in any binomial coefficient is negative,
then the binomial coefficient is equal to 0.

Proposition 2.1. Let n, k be integers, n =1, k =0. Then the number of (ordered)
solutions of the equation n =x, + x, + - - - + x, with the x;’s being positive integers
is (2)).
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Proposition 2.2. Let n, k be integers, n > 1, k=0. Then

n " nk+l
Z o~ , RN—>,
i=1 k+].

As an immediate corollary to Proposition 2.2 we observe the following.

Proposition 2.3. Let a, b, ¢, A be positive integers and let p(t) be a polynomial
with leading term ayt™. Then

ai+c m+1

;b p(e)~22

m+1

Am-r-l) }L—)oo‘

We now introduce a function that will be used throughout the remainder of this
paper. For x € V(G), let d, = d.(G) denote the degree of x in G. Let f(s, ¢) be a
function defined on {(s, t): 1<s<t;s € Z, t € Z} by the formula

ss-H—l

s+e—DEs-D'e-D

fls, )=

Lemma 2.4.

[6))
Si= 2, |All~c A7l A— oo,
k=1

where
a=ca(G)= 2 fd,d)+ 2 f(d.-1,d,—1)
(x,ﬁ);dE(G) {x, ﬁ)EdE(G)

Proof. First assume that the kth pair of vertices {iy, j.} = {x, y} is not an edge of
G and d, < d,. Since G has no isolated vertices, d, = 1. Then

& /n—1\/n—-1
A - [ ( )( )]A’q_dx_dy.
4 g:, d,—1/\d, -1

Indeed, using Proposition 2.1, we construct the expression in brackets, which
counts the number of ways of assigning labels from 1 to 1 to the edges incident to
x or y in order to get wt(x) = wt(y); the remaining q — d, — d, edges can then be
assigned any labels from 1 to A. Then, using Proposition 2.3 with

B 1
T (d,— 1! (d,-1)!

ag and m=(d,—-1)+(d, —1),

we obtain

Akl ~ [f(de, d)ASTTAT 4" = f(d,, d,)A77", Ao
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Next assume that the kth pair of vertices {ix, i} = {x, y} is an edge of G and
1=<d,=<d,. Then similarly to above (first assigning weight @, to {x, y})

Aoon@e iy —1—-w)\(n—-1-ow
s ) e
k w%l n=w,2+dy—l dx -2 dy -2
R )
L\ —2/\a, -2
(de—134

=) 2 p(ﬂ’)lq_-d‘_d’-'—]

n'=d,—1

re)= (3 o) )

Using Proposition 2.3 with

1
=, —2)1(d,-2)!

where

and m=(d,—-2)+(d, —2),

we obtain
lAkI -~ [f(dx - 1; dy — l)xd‘_’—d"‘z]),q_dx_dy*l
=f(d.—1,4d,— 1)/1‘7"1, A—> o,

This completes the proof of the lemma. O

In order to finish the proof of Theorem A we will show that all addends in the
right hand side of (2.1) corresponding to m =2 are O(A972), A— .

Lemma 2.5. Forallm=2, S,,=0(A17%), A—ox,

Proof. Let /<= {1,2,...,(3)} with |I|=m. By definition A, =( );c;A4;- Let us
renumber pairs of vertices in such a way that / = {1, 2, ..., m} and let, for each
i €1, the ith pair be {x;, y;}. Let C={x;, y;:i € I}. Consider a binary relation ¢
on C defined as follows. For any x, y € C, x¢y if and only if one of the following
three conditions is satisfied:

i) x=y,

(ii) {x, y} is an ith pair, i € ],

(iii) among the first m pairs there exists a sequence of pairs with the following
property: The first pair of the sequence contains x, the last pair of the sequence
contains y, and each two consecutive pairs of the sequence have exactly one
element in common.

It is clear that ¢ is an equivalence relation on C. Let C,, C,, ..., C, be the
equivalence classes with respective representatives z;, z,, . .., z,. Although the



136 . G. Ebert et al.

vertex weights can vary from assignment to assignment, it is clear that, for fixed
w € Ay, all vertices of C; have common weight wet(z;). Of course, it is possible that
‘wt(z;) = wt(z,) for a given w € A;, even when j # k.

Let G’ = G[C] be the subgraph of G induced by C and set ¢’ = |E(G’)|. For
each ve C(=V(G")), let d, be the degree of v in G’, and d,, =d, — d,. Denote
the restriction of w to E(G") by w’. For every v € C, by wt’(v) we shall mean the
weight of v with respect to w’. For each j, 1 <j=¢{, and fixed w, let

b(w)=b;= max {wt'(v)+4d}}, ag(w)=a;= {}rgg {wt'(v) + Ad}},

veg,;

and w; be the common weight with respect to w of the vertices of C;. We claim

4

wi=[3.3 2015 (IO e e

s1=1s52=1 sp=1 Yj=1 Lw;=b; ‘ve(;
Indeed, this follows by considering the following three-step process for construct-
ing an arbitrary assignment w € A,.

(1) Order the g’ edges of G’ in some fixed way and assign the weight s; to the
ithedge, 1=s5,<A, 1<i=gq’.

(2) For each v e C, label each of the d; edges which join v to a point of
V(G)\C in such a way that wt(v)=w; for all veC;. (Observe that we may
assume b; < w; <g; for all j.)

(3) Assign the weights from the set {1,2, ..., A} arbitrarily to all edges of G
which are incident to no vertex of C. There are g + ¢’ — X, cc d, such edges.

We now complete the proof by analyzing the asymptotics of the right-hand side
of (2.2). By repeated application of Proposition 2.3 (noting that g; is of the form
al + ¢) we obtain

IAII — O(/’L"""Z;:‘ {1+ Zveg; (d.’,'—l))+q+q‘-2.,ecdu)
= O(A2q’+t—lcl+q+2.,ec dy—Evec d‘u)
= O(AZq"}"'—lCH‘q_EueCdl’l) — O(lqﬂ—lcl)'

The last equality follows from the fact that 2q' = ¥, . d,.

But [C)|=2forall j, so g +t—|C|<gq +t—2t =g —tand hence |A,| = O(A77?)
if t=2. Now assume ¢t =1. Then, as m =2, we have |C|=3, whence q +¢—
|C)<q —2 as well. This proves |4, =0(A?"%) for all m-element subsets I of
{1,2,...,(3)}. As the number of such subsets is clearly independent of 4, the
proof of Lemma 2.5 is complete. [

Proof of Theorem A. Follows immediately from Lemma 2.4 and Lemma 2.5. O

3. Proof of Theorem B: an extremal result

Recall the function f(s, ¢) defined in Section 2. The following facts will be used
later in this section. Proofs are straightforward and are omitted. In parts (iv) and
(v), Stirling’s formula is used.
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Lemma 3.1. (i) For fixed s, g(t) =f(s, t) is a decreasing function of t.
(ii) For fixed t, h(s) = f(s, t) is an increasing function of s.
(i) k(s) =f(s, s) is an increasing function of s.
(iv) For fixed o, 0< a <1, let s = | at}|. Then

fGs,8) _
£

for some B, 0 < <1.
(v) For fixed s >0,

OB, t—w,

fon o T
Let
. (f(ds d), (x, y} ¢ E(G),
AC dy) - {f(dx -1,d,— 1), {x,y}e€E(G).

Observe that ¢,(G), defined in Lemma 2.4, can now be expressed as

a(G)= 2 f*d, d,).

{x, y}=V(G)

We further define

f*(G)= max {f*(d,d,)}.
{x, y}sV(G)

Let K be the graph which appears in the statement of Theorem B in the

Introduction. For the remainder of this section, let n = |q/2] where q = |E(G))|.

Lemma 3.2. (i) £*(G)<f(n, n)=f*(K).
(i) If f*(G)>f(n—1,n—1), then f*(G) is either f(n,n) or f(n, n+1).
Moreover, f*(G)=f(n, n + 1) can occur only when q is odd.

Proof. (i) This follows immediately from Lemma 3.1 and the definition of K.

(i) Let x, y be vertices of G such that f*(G) =f*(d,, d,).

Case 1: {x, y} ¢ E(G).

Here f*(G)=f*(d,, d,)=f(d,, d,). By Lemma 3.1 (i), f*(G) =f(d,, d,) <
f(d,, d,). fd,<n—1, we have f*(G)<f(n—1, n—1) from Lemma 3.1(iii). So
assume d, =n. If ¢ =2n, then 2n>d, +d,, whence d,=d,=n and f*(G)=
f(n,n). If g=2n+1, then 2n+1=d, +d,, whence d,=n, d,=n or n+1.
Here f*(G) is either f(n,n) or f(n,n+1). This proves Lemma 3.2 when
{x,y} ¢ E(G).

Case 2: {x,y} € E(G).
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Here f*(G)=f(d,—1,d,—1). Arguing as in Case 1, if d,<n, we obtain
f*(G)<f(n—1,n—1). Soassume d, =n+1. If g=2n, then2n=d, +d,— 1=
2n+1, a contradiction. If g =2n+1, then 2n+1=d, +d, — 1, whence d, =
d,=n+1. Thus f*(G) =f(n, n), and the proof is complete. O

Lemma 3.3. Let G be a graph with q edges satisfying f*(G)<f(n—1,n—1).
Then ¢,(G) < (1 + €)e ?c,(K) for any € >0 and sufficiently large q.

Proof. We may assume g = 16. Let d = |2¢g/5]. Then G has at most two vertices
with degree at least d + 1. Therefore

a(G)y= 2 f*d.,d)s dEEdf(dx, d)+f(n—1,n-1),

{x, y}eV(G)

by Lemma 3.1 and the hypothesis of the theorem. Clearly |V (G)| <2q, whence
the number of addends in the summation does not exceed (¥). Thus, by Lemma
3.1(iii), we have

(G < (qu)f(d, d)+f(n—1,n-1).

Clearly, ¢,(K) = f(n, n). Therefore

a(G) _ %)@, d)+f(n—1,n- D_ (24>f(d, d)+f(n -1,n-1)
ci(K) f(n, n) 2 /f(n, n) f(n,n)

By Lemma 3.1 (iv) and (v), ¢,(G)/c(K)<(1+ €)e™® for any € >0 and ¢
sufficiently large. The result follows. [

The significance of Lemma 3.3 is that it allows us to reduce the proof of
Theorem B to those graphs G for which f*(G)> f(n — 1, n — 1). By Lemma 3.2
the only possibilities for f*(G) are f(n, n) and f(n, n + 1). These graphs are easy
to describe. They fall into nine families and are depicted in Fig. 1 (¢ = 2n) and
Fig. 2 (¢ =2n+1). In Table 1, we give the corresponding values of f*(G) for
these graphs. For each graph in Table 1, we can calculate ¢,(G) explicitly from
the formula given in Lemma 2.4. The results appear in Table 2.

Ayocten )
Fig. 1. The graphs G with f*(G)>f(n—1,n—1), g=2n.
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n-t

n-t

N+ -t
Hl(Zstsn) I‘(04tsn)
Fig. 2. The graphs G with f*(G)>f(n~1,n—1), g=2n+ 1.

n-t

Lemma 3.4. Let {X,} be one of the nine families appearing in Table 2, and let
ty = t,(X,) and t, = t,(X,) be the smallest and largest allowable values of t for {X,}
respectively. Then, for n sufficiently large,

max {Cl(Xr)} = Cl(th)-

nsr=,

Proof. Let g(t)=c (X)) —f*(X,), ty<tst. It is easy to verify that g(t)=
(7/3)* + (=3n + O(1))t + O(n?). Clearly, the least value of the quadratic g(¢) is
attained at £, =9n/144 O(1). Since t,> (¢, +,)/2 for large n, the statement
follows from simple geometric reasoning. [

Proof of Theorem B. We can now complete the proof. By Theorem A,
Irr(G, A) =AY — ¢, A7 + O(A?7?) for large A. Therefore, minimizing Irr(G, 1) is
tantamount to maximizing c¢,(G) (over all graphs with g edges).

First observe that K = A, for ¢ =2n and K = B, for ¢ =2n + 1. By Lemmas
3.2, 3.3 and 3.4, it suffices to prove (for large n) that ¢,(G) <c¢,(K) where G is
any graph listed in Table 3 with the same number of edges as K, G # K. For
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Table |

f*(G) for graphs of Figs 1 and 2

G gq (6)

A, 2n f(d,, d,)=f(n,n)

B, 2n+1 f@,, d,)=f(n, n)

C, n+1 fld.—1,d,—1)=f(n, n)

D, 2n +1 fd,, d,) =f(n, n)

E, 241 f(d,d)=f(nn)

E, 2n+1 f(d,, d,)=f(n, n)

G, 2n+1 f(d,, d,)=f(n, n)

H  2n+1  f(d, d)=f(nn)

I, 2n+1 f@,, d,)=f(n,n+1)
Table 2

Expressions for ¢,(X,)

X, (X))

A <2n2— 2t>f(1, 1) +1(2n — 20)f (1, 2) + (;)f(Z, 2)+2f(1, n—1)
+(@2n—20f(1, n) + f(n, )

t+1
2

5 (¥ e e 200502+
+@2n—2t+ 1)f(1, n) +f(2, n) + f(n, n)

)f(z, 2)+ (2t +1)f(1, n-1)

c. (2n2—2t)f(1, 1) +2t(n — f (1, 2) + (;)f(z, 2)+2f(1, n)
+(@2n=20f(1, n+ 1)+ f(n, n)

D, ‘(2" ~22' " 1)f(1. 1)+ (= 1)(2n =2t + Df(1, 2) + (2n — 28)f(1, 3)
+ (t ; l)f(Z, 2)+ (= 1f(2,3)+ (2t = 2)f (1, n— 1) + (2n — 2t + 2)f (1, n)
+2f(2, n-— 1)+f(n, n)

E, {(2" _22‘ - 2) + l}f(l, )+ +2)2n~ 20— 2)f(1,2) + {(’ : 2) - 1}f(2, 2
+ 2+ 2)f (1, n = 1)+ (2n =20 = 2)f (1, n) +2f(2, n) + f(n, n)

F Same as E,

G, (2" _22' - l)f(l, D+ {t2n -2t = 1)+ 1} (1, 2) + 2n — 2t = 1f(1, 3)

+ (;)f(Z, )+ (=D, 3)+ 2 -1D)f,n=1)+@2n-2t=1)f(1, n)
+2f(2,n = 1)+ f(2, n)+ f(n, n)

H, (2" ) 2')f(l, 1)+ (1= 2)2n — 20f(1, 2) + (4n — 40)f (1, 3) + {(’ ;2) + 1}f(2, 2)
+ 2= (2, 3)+ (2t —Af(1, n— 1)+ (2n = 20)f (1, n) + 4 (2, n = 1) + f(n, n)

; ‘<2n —22t + 1>f(1, 1) +t(2n =20+ 1)f(1,2) + (;)f(z, 2)+1f(1, n—1) + (n + 1)f(1, n)

+m=-0f(Q,n+1)+f(n,n+1)
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Table 3
Expressions for ¢,(X,), n—®

X, c(Xy)

A, f(n, n)+2n*=n+0()

B, f(n, n) +2n%+ O(1)

Cy f(n, n)+2n*—n+0()

D, f(n, n) +2n%—8n/3+ 0O(1)
E, f(n, n)+2n*=3n+0(1)

F, f(n, n)+2n*=3n+0(1)
G, f(n, n)+2n*=17n/3 +0(1)
H, f(n, n)+2n%—=25n/3+ 0O(1)
I f(n, n+1)+2n%+n+0()

G # I, this is evident from the table. For G = I, we have
ci(K) = ¢i(G) = ¢1(Bo) — c1(lo) = f(n, n) — f(n, n + 1) + O(n?).
But
f(n, n) —f(n, n+1)~ke*'/n*, n—w,
by Stirling’s formula. Therefore c,(l) <c,(B,) for large n, and Theorem B is

proved. O

We now shift our attention to forests with g edges. For this family of graphs,
we are able to extend our extremal result of the previous section in the following
manner.

Corollary 3.5. Let |, denote the family of forests with q edges.
(1) Let q=2n and € = {A,, A,}. Then, for all but finitely many q,

Irr(Ag, A) <Irr(A,, ) <Irr(G, 4)

for G e F,\¥€ and A sufficiently large.
(i) Let q =2n+1and 0= {B,, Cy, Dy, E,, By, Ly, I,}. Then, for all but finitely
many q,
Irr(By, A) <Irr(Cy, A) <Irr(Dy, A) <Irr(E,, A)
<Irr(B, &) <Irr(fy, A) <Irr(L, A) <Irr(G, A)

for G e F,\O and A sufficiently large.

Proof. First observe that & (resp., 0) consists precisely of all forests among the
nine families {X,} for q even (resp., odd). The theorem now follows from Lemma
3.3, Table 3 and the values for c¢,(A;), ¢,(B,), ¢i(I;), which can be computed
from Table 2. O
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