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Some Algebraic Constructions of Dense
Graphs of Large Girth and of Large Size

FELIX LAZEBNIK AND VASILIY A. USTIMENKO

ABSTRACT. For any prime power ¢ > 3, we consider two infinite series of
bipartite g-regular edge—transitive graphs of orders 2¢% and 2¢° which are
induced subgraphs of regular generalized 4-gon and 6-gon, respectively.
We compare these two series with two families of graphs, Hz(p) and Hs(p),
p is a prime, constructed recently by Wenger ([26]), which are new exam-
ples of extremal graphs without 6— and 10—cycles respectively. We prove
that the first series contains the family H3(p) for ¢ = p > 3. Then we show
that no member of the second family Hs(p) is a subgraph of a generalized
6-gon. Then, for infinitely many values of ¢, we construct a new infinite se-
ries of bipartite g-regular edge-transitive graphs of order 2¢° and girth 10.
Finally, for any prime power q > 3, we construct a new infinite series of bi-
partite g-regular edge-transitive graphs of order 2¢° and girth g > 14. Qur
constructions were motivated by some results on embeddings of Chevalley
group geometries in the corresponding Lie algebras and a construction of a
blow-up for an incident system and a graph.

Introduction

The missing definitions of graph-theoretical concepts which appear in this
paper can be found in [6]. All graphs we consider are simple, i.e. undirected
without loops and multiple edges. Let V(G) and E(G) denote the set of vertices
and the set of edges of G, respectively. |V (G)| is called the order of G, and |E(G)|
is called the size of G. A path in G is called simple if all its vertices are distinct.
When it is convenient, we shall identify G with the corresponding antireflexive
symmetric binary relation on V(G), i.e. E(G) C V(G) x V(G). The length of
a path is the number of its edges. The group of all automorphisms of graph G
will be denoted by Aut(G). The girth of a graph G, denoted by g = ¢g(G), is the
length of the shortest cycle in G.
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Examples of graphs with large girth which satisfy certain additional condi-
tions are known to be hard to construct, and they turn out to be useful in various
problems in extremal graph theory, in studies of graphs with high degree of sym-
metry, and in designs of communication networks. There are many references
on each of these topics. Here we mention just a few main books and survey pa-
pers which also contain extensive bibliographies. On the extremal graph theory:
[6,7,14,29]; on graphs with high degree of symmetry: [9,15,17,27,30,31,32,39]; on
communication networks: [2,12].

Let F be a family of graphs. By exz(v,F) we denote the greatest number
of edges in a graph on v vertices which contains no subgraph isomorphic to
a graph from F. Let C,, denote the cycle of length m > 3. According to a
well known unpublished result of Erdés (The Even Circuit Theorem), see [29],
ez (v, Cax) = O(v'+1/%) (for a generalization of this result see [7,14]). This upper
bound is known to be sharp for C4, Cg and C1p. The corresponding construction
for Cy4 can be found in [10,13,29]. The constructions for Cs and Cig (see [1,29])
are incidence graphs for generalized n-gons, n = 4, 6 (geometries of the Chevalley
groups Ba(q) and G2(q)). Recently new important examples of graphs with no
6— or 10-cycles were found by Wenger in [40], where they are denoted by Hs(p)
and Hs(p) respectively, p is a prime number. These graphs are members of a
family {H;(p), ¢ > 1}, of regular bipartite graphs whose vertex sets are disjoint
unions of two i-dimensional vector spaces over the prime field IF',, and whose
edges are defined by certain systems of equations.

The content of this paper is outlined below.

(1) In Section 1 we present a construction of a blow—up of a graph which is used
in subsequent sections.
(ii) In Section 2 we consider a connection between Wenger graphs and generalized
n-gons. Let I be the incidence relation and {p,(} be a flag of the regular gen-
eralized n-gon, n = 4,6, over IFy, ¢ = p™. We consider graphs S,(g) obtained
by restricting I on the set P, U L,, where P, (L,) is the set of points (lines)
opposite to p (1) in the n-gon. Coordinatizations of the generalized n—gons (see
[33], [34]) allow to identify each P, and L, with a vector space ]F’Z—l, and the
incidence of vectors from P, and L, can be expressed in terms of systems of
equations on their coordinates. If n = 4, this system coincides with the one for
H3(p). Therefore S4(g) is a simple generalization of Hs(p). On the other hand,
if n=6and g = p > 2, graphs Ss(p) and Hs(p) are not isomorphic: graph Hs(p)
contains an 8—cycle, hence it cannot be isomorphic to a subgraph of a generalized
6-gon.
(i) In Section 3, we construct an infinite series of regular bipartite edge-
transitive graphs of girth 10. Having girth 10, they cannot be isomorphic to
subgraphs of the generalized 6-gons, but they have asymptotically as many edges
as regular generalized 6—gons.
‘ It is known that ez(v, {C3,C4,... ,Cn}) > cm'u“ﬁ for some positive con-
stant ¢,, , m > 3. This result follows from a theorem proved implicitly by Erdés
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(see [29]) and the proof is nonconstructive. As it was mentioned in [29], it is
unlikely that this lower bound is sharp. For any prime power ¢ > 3, we con-
struct a g-regular bipartite graph G(g) of order v = 2¢°, size e = ¢'° and girth
> 14, which supports this claim. For these graphs e ~ 2%1)1*'%, which is better
than the best previously known lower bound c13v1+%. (See also Section 4 and
[37,41]). Graph G(q) is also edge-transitive.
(iv) Finally, in Section 4, we generalize the construction for G(g), and build a
new infinite series of regular bipartite graphs with edge—transitive automorphism
group and large girth. More precisely, for any positive odd integer k¥ > 3 and
any prime power g, we build a g-regular bipartite graph D(k,g) on 2¢* vertices
with girth ¢ > k£ + 5. This series is an example of a “series of graphs with large
girth”, and to our knowledge, for k¥ > 19, it is “the second best” known explicit
example of such a series. More details are given in Section 4.

Our constructions were motivated by some results on embeddings of Chevalley
group geometries in the corresponding Lie algebras [34,35], and a construction
of a blow—up for an incidence system and a graph [33,36].

1. A blow—up of the graph

For a positive integer n > 1, let.[n] = {1,2,...,n} and 2" denote the set
of all subsets of [n]. Let £ be an n—dimensional vector space over some field K
with a fixed basis {e; | ¢ € [n]}. For an arbitrary subset A of [n], let £4 denote
the subspace of £ spanned by {e; | ¢ € A}. By z|a we denote the canonical
projection of a vector z € £ on L£4. Let G be a graph, and let n : V(@) — 2
be a mapping of the set of vertices of G into 2{*!. Finally, let * denote a skew—
symmetric bilinear product on £. Consider a new graph G with the vertex set
V defined as N

V ={(a,z)|a € V(G),z € Lpa)}-

We define two distinct vertices (a,z) and (b,y) of G to be adjacent if and only if
{0'7 b} € E(G) or xhb o yha|n(a)ﬂn(b) =T* yln(a)hn(b) )

where, for a € V(G), hy : e; — Ag(i)es, ¢ € [n], is a nonsingular diagonal
operator of £ (defined by its action on the vectors from the basis). We call
graph G a blow-up of G.

In [33,34], Ustimenko showed that the incidence relation of the geometry v(G)
of a Chevalley group G is a blow—up of the geometry v(W) of its Weyl group W.
In this case the vector space (L, *) is the Lie algebra L+ = 3 4+ Lo, Where
&1 is the set of positive roots for W and L, is a root subalgebra of £. The
basis vectors ey, @ € &, are elements of the Chevalley basis. In particular, each
regular generalized n—gon , n = 3,4, 6, corresponding to a Chevalley group of
rank 2 of normal type is a blow—up of the incidence graph of the ordinary n-gon
(geometry of the dihedral group Ds,), which is the cycle Ca,. This illustrates
that by “blowing up” (over IF,;) a small bipartite graph one can obtain a graph
of high girth and of large size.
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All graphs in this paper are blow-ups of K ; over finite fields, where K; ; is a
graph with two vertices joined by an edge. The bilinear product on £ is defined
on the basis elements as e; * e; = A - ex, where k depends on ¢ and j. For every
point p and line I, |n(p)| = |n(1)] = n — 1. Let us assume that n(p) = [n] \ {2}
and n(l) = [n] \ {1}. Then the set of vertices of the bipartite graph I'E’l,l can be
thought a disjoint union of sets P (set of points) and L (set of lines) of the form
P = {(.’171,.’123,... ,.’L'«n,) | T; € Fq}, L= {[yg,y‘g,... ,yn)] | Yi € Fq}

All graphs in this paper have a group theoretical interpretation as follows. For
every i € [n] and z € IF,, there exists an automorphism ¢;(z) of the graph which
acts on the coordinates of vectors of PUL by the rule: z; — Pij(x, B 0 =< B D
Y — Lf(y,yg,yg,... ,Yn), Where P,fj and Lf are polynomials over IF,. The
automorphisms t;(z) satisfy the following properties:

(a) ti(z)-ti(y) = t;(x +y), and so they are the “generalized exponents”, and the
group U; = (ti(z) | € IFy) is isomorphic to the additive group of IF,.

(b) Group U generated by all t;(z) is nilpotent and of order ¢"*! ( “generalized
unipotent subgroup”)

(¢) Graph 1?1,1 is isomorphic to the incidence graph of the following incident
structure: sets P and L are the sets of cosets of U with respect to subgroups

U, and U, respectively, with two cosets (one from P, another from L) being

incident if and only if their intersection is nonempty.

2. Extremal regular-induced subgraphs of generalized 4—and 6—gons

The incidence structure (P,L,I) is a triple where P and L are two disjoint
sets (set of points and set of lines, respectively), and I is a symmetric binary
relation on PUL (incidence relation). As is usually done, we impose the following
restrictions on I : two points (lines) are incident if and only if they coincide.
Let B = B((P,L,I)) be a bipartite graph such that V(B) = PUL and E(B) =
{{p,1} | pIl, p € P, | € L}. We notice that, according to our definition, B is a
simple bipartite graph. We call B the incidence graph for the incidence structure
(P,L,I).

Let P and L be the sets of vertices and sides of an ordinary n-gon, and I be
the natural relation of incidence of a vertex and a side. It is easy.to see that the
incidence graph of this incidence structure is the cycle Cy,. Tits [31] introduced
the following definition of a generalized n—gon as an incidence structure satisfying
the following properties:

(i) for any two distinct elements a and b from PU L there exists a positive integer
s, s < n, and a sequence Zg,Z1,...,Ts of distinct elements of P U L where
xo=a,xs =>b,and z;lz;4q fori=0,... ,s—1.

(i) if s < n, then the sequence defined in (i) is unique.

Of course, the ordinary (“geometrical”) n—gon is a generalized n—-gon, and
the girth of the incidence graph of a generalized n—gon is 2n. It is known ([15]),
that apart from the ordinary polygons, finite generalized n—gons exist only for
n=3,4,6,8,12.
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Some other examples of generalized n—gons for n = 3, 4, 6 are closely connected
to Chevalley groups Aa(q), B2(q), G2(q) of rank 2 over the finite field IF, (see
[11]).

Let G be a Chevalley group of rank 2 over the field IF'y, ¢ = p™, p is prime,
m > 1. Then a Borel subgroup of G is the normalizer in G of a Sylow p—subgroup
of G. There are exactly two maximal subgroups P; and P, of G which contain
a fixed Borel subgroup B (see [11]). Let us consider the incidence structure
(P,L,I), where P is (G : P;) — the totality of all left cosets of G by Py, L is
(G : Py), and elements a and b of PUL are incident if and only if the intersection
of a and b as cosets of G is nonempty. It can be shown, e.g. see [32], that this
incidence structure is a generalized n—gon. The corresponding bipartite incidence
graph, which we denote by B,(q), is (¢ + 1)-regular.

Let us consider the orbits of the Borel subgroup B on the sets P and L for
our generalized n-gons. The cardinalities of orbits on the set of points and the
set of lines are the same and equal 1,q,q2,...¢" ! (see [11]). Let S(P) and S(L)
be the orbits of largest size ¢"~! on P and L respectively, and S,(q) be the
subgraph of B, (g) induced on the set S(P) U S(L). The importance of graphs
Sn(¢) in extremal graph theory stems from the fact that they are of girth 2n and
of size O(v'+7T1),

Theorem 2.1. For n = 4,6, graph S,(q), satisfies the following properties:
(a) S.(q) is q—regular of order 2™~ and size q"
(b) Sn(q) is a graph of girth 2n.
(¢) Sn(q) is edge—transitive
(d) For ¢ = 28,k > 1, S4(q) is vertex—transitive. For ¢ = 3% k > 1, Se(q) is
vertez—transitive.l

Let G be a Chevalley group of normal type corresponding to the Lie algebra
L=H&®LT® L, where H is the Cartan algebra and £+ (L) is the direct sum
of root subalgebras, corresponding to positive (negative) roots. The incidence
graph I(G) of the geometry v(G) of group G is a blow—up of the incidence graph
I(W) of the geometry of its Weyl group W (see [33,34]). In this case the blow—up

I(W) was constructed by using the Lie algebra £t and a fixed Chevalley basis
for it.

We restrict our attention to Chevalley groups of rank two of normal type. In
this case we obtain a convenient description of graphs S, (q).

For each b € L, a linear transformation ad(b) : z — [b,z] is a nilpotent
operator of L. Let v = ad(tey), where e, is an element of the Chevalley basis
from the root space corresponding to root «, and t € IF'y. Let z4(t) = 1+v/1!+
v2/21 +v3/3! + .... Then z4(t +t') = T,(t)zo(t'), and G is generated by all
z4(t), @ € LT, t € IF,. For a fixed positive root a, let U, be a group generated
by all z4(t), t € IFy.

Proposition 2.2. Forn = 3,4,6, graph S,(q) is isomorphic to the incidence
graph of the group incidence structure ¥ = Y(U, {Un,,Uq, })- M
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2 -1 (2 =2 (& =B .
Let M]_ = (_1 9 ), Mz = (—l 9 ), M3 = (_2 9 ) (ThlS 18

a complete list of the so—called 2 x 2 Cartan matrices.) In what follows A
will represent a matrix from this list. We can consider a lattice H with basis
{a1, a2}, Le. the set {A\1a1 + A2z | A1, A2 € Z}. For an arbitrary 2 x 2 integer
matrix A = (ai;), we consider two linear transformations ri,7o of H, where
(a;)™ = a; — asj04,4,5 € {1,2}. It is easy to check that, if 4 = My, k =
1,2,3, then r? = e,i = 1,2 and (ri7)™ = e for m = 3 (if k = 1),m = 4 (if
k =2),m =6 (if k = 3), and these conditions are generic relations for a group
W =W(A) = (r1,rs), i.e., W(A) is isomorphic to the dihedral group D,,. W(A)
is usually called the Weyl group corresponding to the 2x 2 Cartan matrix A. (For
more on this, see [8].) The set ®(A4) = {af | g € W,i = 1,2} is usually called a
root system. The set ®(A) is a disjoint union of sets ®*(A) and ®~(A), where
Pt (A) = ®(A) N { A1 + Azaz | A; > 0,4.= 1,2} (elements of ®*(A) are called
positive roots) and ®~(A) = ®(A)N{—z | z € ®T(A)} (negative roots). We have
(I)+(M1) = {a]_, Qag, 01 + ag}, ®+(M2) = {al, Q9,1 + a9, 207 + az}, (I)+(M3) =
{1, a2, a1 + a3, 2a1 + a2,3a1 + az, 301 + 2a2}. Let af, 7 = 1,2, be the linear
functional on M such that aj(a;) = 8;;, where §;; is the Kronecker delta. We
can consider the dual lattice H* = {Aia] + A2a3 | A1, A2 € Z}. For a given
t,¢ = 1,2,3, the group W(A) acts on H* by the following rule: for a linear
functional I € H* and g € W, I — 19, where 19(z) = {(z9 ) for all z € H.

Let Hi(4) = {(a})? | g € W(A)} and Ha(A) = {(a3)? | g € W(A)}. We
shall say that two functionals [; € H1(A) and l; € H2(A) are incident and write
l1J12 if and only if for every z from ®(A4), l1(z) - l2(z) > 0.

Proposition 2.3. The incidence structure H(My) = (Hy(My), Ho(Mg), J)
is isomorphic to the ordinary my—gon, mi; = 3, ms = 4, m3 = 6.

PrOOF.

It is easy to check that
Hy(My) = {af, —aj + a3, —ai}
Hy(My) = {o, —a; + a1, —a3}
H,(M;) = {0}, —al + 2a3,a] — 2a3,—a}}
Hy(My) = {03, 0} — a3, —af + a3, a3}
Hi(M3) = {a}, o] — a3,2a] — a3, —2a] + a3, —a] + a3, —ai}
H2(M3) = {a3,3a] — a3, —3a] + 203, 3a] — 2a3, —3a] + a3, —as}

and the bipartite incidence graph for H(My), k = 1,2, 3, is the cycle Cop, . B

M. ore general propositions for n x n Cartan matrices of simple finite dimen-
sional and affine algebras are considered in [34] and [35], respectively.

Let ¢ be the vector space of formal linear combinations t;aj + t05, where
t1,ta € IFg, let L = L(A) be the set of all linear combinations of the form

, Y. ta€a, to € IFy, and let ( ® L be the direct sum of ¢ and L.
€T (A)
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We define a bilinear product [, | on ( ¢ L by its values on elements of the
basis in the following way:
[af,a3] =0, i=1,2
[a;‘,eg] = a:‘(,@) T€g, ,3 (S @+(A), 1=1,2
0 ifa+3¢dt(4)
{ (r+1)eqsp ifa+ B e @T(A),

(2.1)

[em eﬁ] =

where 7 is an integer uniquely determined by the condition 3 — ra € ®(A4),
B—(r+1a¢gd(A).

It is known (see [11]) that ((®L, [, ]) is isomorphic to the Borel subalgebra of
the Lie algebra for G (G = Ax(q), B2(q), G2(q)), which is, by definition, the direct
sum of the Cartan subalgebra with the sum of root spaces which correspond to
positive roots.

Let us denote by L, the totality of vectors in L of the form Aa, A € IF,;. For
an integer a we denote by @ the residue of a(mod p). We shall write I = ZX;af,
where | = ¥ \;a; is an element of H*.

Let | € H* and n(l) = {a € ®* | I(a) < 0}. We shall consider an incidence
structure ((A4, ¢) with the set of points and lines (;(4,q) = {(L,y) | | = l(z) €
H;(A), ye > La},i=1,2, and the following incidence relation J:

aen(l)

(Uz),y)J(t(z),2) <= lJtand [l + y,t + 2] = 0

It has been shown in [35,36] that the incidence structure of ((A4, ¢) for ¢ = p®, p >
3, and A € {M;, M2, M3} is isomorphic to the generalized n-gon arising from
the Chevalley group Az(q), B2(q), Ga(q), n = 3,4,6, respectively. If A = Moy,
this statement is also valid for p = 3.

A mapping ¢: (P, L,I) — (P', L', I') is called a morphism from an incidence
system (P, L, I) to an incidence system (P’, L', I') if $(P) C P', ¢(L) C L', and
pIl implies ¢(p)I' p(1).

The following proposition follows immediately from definitions and the above.

Proposition 2.4. A mapping v : ((Mk,q) — H(My), k = 1,2,3, defined
by r((h,z)) = h, is a morphism of the generalized my—gon onto the ordinary
mg—gon, my € {3,4,6}. &

If the characteristic of [F; is greater than 3, we can identify our graph
Si(q), t = 4,6, with the restrictions of the incidence graph for ¢((Mx,q),k = 2, 3,
on 7 (—a3}) Ur~l(—a3). It is easy to see that r~(—a)) = {(—af,z) | z €

> Lg}, 1 =1,2. Therefore Si(q) is the blow—up of K ; with vertices —a}
a€n(—aj)
and —a3j.

vLet n= 4767 Pn = {(l‘l,.’llz,.. . ’xn—l) l T; € .qu}, L, = {[yl;y%- .. 7yn—1] ‘
y; € IF;}. We define an incidence relation I,, (between P, and L) as:
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(a,b, )4z, y, 2] if and only if

{y—b:xa
z —2¢c = —2xb,

and (a, b, ¢,d, f)Is[z,y, z,u,w] if and only if

y—b==za
z—2c=—2zxb
u—3d = —-3zc

2w — 3f = 32b — 3yc — ua-

Theorem 2.5. Let ¢ = p™, p is an odd positive prime. For p > 3, graph
Sa(q), and for p > 5, graph Se(q), are isomorphic to the incidence graphs of the
incidence structure (Py, L4, 1) and (Ps, Lg, Is) respectively. B

In order to prove Theorem 2.5, it is sufficient to represent elements of P and
L by means of their coordinate vectors, and to choose coefficients in (2.1) in a
certain way. Our choice is the following:

[60116042] = _ea1+02, [euqveal +02] = —28201 + o
[6&1 3 e2a1+a2] e 363&1+£¥27 [ea2)63&1+02] = 630;+20¢2

{eal+a2 » 62a1+a2] = 3630{1 +209p-

Let ¢ be the mapping of Sg(g) to Si(q) induced by the canonical projections
of vector spaces Pg and Lg on the first three coordinates. As an immediate
corollary of Theorem 2.5, we get

Proposition 2.6. ¢ is a morphism of the incidence systems. B

1. . Ss(q) is the incidence graph of the following incidence system: P3; =
{(z1,22) |xi € IFg}, Ly = {{y1,y2] |y: € IFy}, and (z1,22)I5]y1,y2] if and only if
y2 — 2 = Y1z, (affine plane).

2. . Under the assumptions of Theorem 2.5, the operator z,(t) from U pre-
serves the set of vertices of S,(q), n = 3,4, 6, and its restriction on this set is an
automorphism of S, (q).

Let H,(q) be a blow—up of K, ; in the case when

(a) (L, * ) is an n-dimensional algebra over IF, with a basis {eq,e2,... €5}
and a multiplciation * satisfying

(2.2) {ei*61=6i+1a ey *x €1 = —€41, 1 =2,...,n—1

(1€ {i,j}) =>eixe; =0

' (b) n(p) ={2,3,...,n} and n{l) = {1,3,... ,n} for every point (p) and every
line [I].




SOME ALGEBRAIC CONSTRUCTIONS OF DENSE GRAPHS 83

Let Py(n) = P and Lp(n) = Ly be the sets of points and lines of Hu(q). It
is easy to see, that point (p) = (p2,ps,... ,Ps) and line ] = [l,1s,... ,1n] are
incident if and only if the following conditions are satisfied

I3—p3s=1I1-pa

la—pg=1,-
(2-3) 4 — D4 1°D3

l'n. —DPn = ll *Pn—1

Theorem 2.7. Graphs H,(q) are edge—transitive, and forn > 3, g(Hn(q)) =
8. Graph Si(q) is isomorphic to H3(q).

Wenger [40] proved that Hs(p) contains no Cjo. His proof can be easily
modified to obtain that H,(gq), ¢ = p™, contains no Cyq. This result, together
with Theorem 2.7, implies

Proposition 2.8. Graph Hs(q) of order 2q° and size ¢° contains no Ciy
and is not isomorphic to Se(q). W

In fact, graph Hs(g) does not contain Cy¢ and, having girth 8, cannot be
embedded into a generalized 6-gon. Other examples of “magnitude extremal”
bipartite graphs of girth at most 2k — 2, but containing no Ca, can be found in
[20].

3. Construction of graphs of order 2¢°, size ¢°, and
girth 10 which is not based on a classical root system.

As we have mentioned, it was shown in [15] that there are no generalized 5-
gons whose vertices have degree > 3. This makes the construction of this section
different from the one in Section 2.

Let P and L be two 5-dimensional vector spaces over the finite field IF,. We
assume that a basis in each of these spaces is chosen. Then the vectors of P
and L can be thought as ordered 5-tuples of elements from JF,. We define an
incidence structure with point set P and line set L. It will be convenient for
us to denote vectors from P as ¢ = (z) = (%1, %2, T3, Z4,%5) and vectors from
L asy = [y] = [y1,¥2,y3,Va,ys]- The parentheses and brackets will allow us
to distinguish vectors of different types (points and lines). We say that point
p={(p1,.-.,ps) is incident with line [ = [I, ... ,l5], and we write it pIl or (p)I[l},
if and only if the following conditions are satisfied:

lp —p2 =lip1

I3 — =1
(3'1) 3~ D3 1P2

lg — ps = p1ly

Is — ps = 2l1ps — p1l3
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This incidence defines a bipartite graph B = B(g) whose vertex partition sets
are P and L, and a point (p) and a line [I] are connected by an edge if and only
if (p)I[l]. The following theorem is the main result of this section.

Theorem 3.1. The bipartite graph B(q) satisfies the following properties:
(a) B(q) is q-regular of order 2¢° and size q°
(b) For infinitely many values of q, g(B(q)) = 10
(¢c) For infinitely many values of q, B(q) 18 not isomorphic to a subgraph of a
generalized 6—gon.

Proor.

(a) Obviously, |V(B)| = |P| +|L| = ¢® + ¢° = 2¢°. It is immediate from (3.1)
that for a fixed (p) € V(B), the components of a line [{] € V(B) incident to
(p) are determined uniquely by the value of [;, which can be any element of the
field. Therefore, the degree of (p) in B is.¢q. In the same way we obtain that the
degree of a line [I] in B is also ¢. Therefore B is g-regular and |E(B)| = ¢5.

Our proof of part (b) will be facilitated by the following two observations.
First we notice that a graph G contains no Ca, k > 2, if there is at most one
simple path of length k between any two of its vertices. We will show that
any pair of vertices of B is connected by at most one simple path of length
k,k = 2,3,4. This will imply that g(B) > 10 since, being a bipartite graph, B
contains no odd cycles.

Another observation is the existence of certain automorphisms of B. Let
z € IFy, and t;(z),i =0,...,5, be the mappings V(B) — V(B) defined as

()™ = (p1 + z, p2, p3, pa + P2z, Ps + 2psx)
(2@ = (1), 1y + Lz, I3, lg + 2oz + 1122, 15 + I32]
(0)"® = (p1,p2 ~ p12,p3 — 2pa + P17, Pa, P5 — P4T)
8@ =1y + x, 1,15 = laz, Iy, s + laz]
(p)*®) = (p1,p2 + ,p3,ps — P1T, P5 — 3pac)
2@ = (13, 1y + 2,13 + Iz, lg, Is — 3la2]

(p)!¢*) = (p1,p2, p3 + T, s, Ps + P17)

[ = (13,1, 13 + 2,14, Is]
()™ = (p1,p2, p3,pa + 2, p5)

8@ =13, 1y, 13,14 + 2,15 + 20, 2]

(P)ts(w) = (p1,P2,P3,P4, D5 + T)

5@ = (11,19, 13, Ly, Is + 7]

Lemma 3.2.
(i) For every z € IFy and every i € {0,1,...,5}, the mapping t;(z) is an auto-
morphism of the graph B and t]'(z) = t;(—z).
(11) For every edge {[l], (p)} of B there exist automorphisms o and 3 of B such
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that [l]a = [070’ 0’ 07 0]’ (p)a = (a’ 0’0$ 0’ 0)7 and [l]ﬂ = [b’ 07 01 07 0]7(1)),6 =
(0,0,0,0,0), for some a,b € IFy. The automorphism group Aut(B) acts tran-
sitvely on the set of points and on the set of lines, and B s edge—transitive.
|

Now we show that any pair of vertices of B is connected by at most one
simple path of length 4. We need not distinguish between the two cases where
both vertices are lines or points as the proofs are absolutely similar. So we
assume that the two vertices are lines (it is also sufficient to consider this case
only, if we want to show the absence of Cg in B). Call the vertices [I'] and [13].
Let [IYI(p")I[12I(p*)I[13] be our path. Due to Lemma 3.2 (ii), without loss of
generality, we may assume [I*] = [0,0,0,0,0] and (p!) = (z,0,0,0,0). We denote
the first components of [I2] and (p?) by y and z correspondingly, and we write
(%] as [a1, a2, a3,a4,as) (to avoid double indices). The conditions of adjacency
of subsequent vertices of the path written in terms of their components (formula
(3.1)) allow us to express all the components in terms of z,y, z, a;: (p*)I[I?] gives
(%] = [y, zy, 0,22y, 0] and [I2)I(p?) gives (p?) = (z,y(z — 2), —¥*(z — 2),zy(z —
z), —2zy%(z — z)). The last adjacency (p?)I[l®], written in terms of components,
gives

as —y(z — 2) = a1z
(3.2) as +y¥(z — 2) = a1y(z — 2)
ay —zy(T — 2) = a2z
as + 2zy%(z — 2) = 2a17y(x — 2) — a3z

We view (3.2) as a system of equations with unknown z,y,z and parameters
a;. The condition of existence of at most one simple path of length 4 between
[1}] and [1%] is equivalent to the requirement that (3.2) has at most one solution
which satisfies the following inequalities:
{ (1] # [, [12] # (%], ('] # 117

(»") # (p%)

Simplifying, we get an equivalent system
{ (1] # [°], %] # [1°]

y#0,x#z
Thus our goal is to prove that the combined system (3.2) and (3.4) has at most
one solution for every [I3] = [a1,a2,a3,a4,as]. The proof is not hard, it is
completely elementary and we omit it.

Why does B contain no C4 and no Cg? Due to Lemma 3.2, the existence of
a cycle of length 4 in B would imply the existence of two interior vertex disjoint
simple paths of length 2 between a pair of distinct lines [I'] = [0,0,0,0,0] and
[1?] = [a1, a2, a3, a4,a5). Let (p) = (p1,p2,ps3,pa,ps) and [I']I(p)I[I?]. Rewriting
these adjacencies in terms of components, using (3.1), we get po = p3 = ps =
ps =0 and ap = a1p1. If a; # 0, then p; is determined uniquely and, therefore,

(3.3)

(3.5)
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there exists only one path of length 2 between [I!] and [I%2]. If a; = 0, then
(p)I[I?] implies ap = a3 = a4 = as = 0, and [I*] = [{?]. Hence B contains no Cj.

Due to Lemma 3.2, the existence of a cycle of length 6 in B would imply the
existence of two interior vertex disjoint simple paths of length 3 between a line
('] = [0,0,0,0,0] and a point (s) = (s, 82, 53, 84,55). Let (p) and [I?] be two
intermediate vertices on such a path, i.e., [[1]I(p)I[I2)I(s), (p) # (s),[I*] # [I%].
Rewriting the first two adjacencies in terms of components, we obtain (p) =
(2,0,0,0,0), 1] = [y,zy, 0,22y, 0] for some z,y € IF,. Using [I2]I(s), we obtain
the following system:

zy — 82 = 51y,0 — 83 = sy, T2y — 84 = 512y
(35) 0—35 = 2S4y
(8) # (@), y#0

If so = 0, then s3 = 84 = s5 = 0 and z = s;. This makes (s) = (p), which is not
the case. If so # 0, then s3 # 0,y = —s3/s2 and = = 57 — s3/s3. Therefore (3.5)
has no more than one solution with respect to z and y. Hence B contains no Csg,
and g(B) > 10. To prove that B contains C1yg, it is enough to show that there are
two simple interior vertex—disjoint paths of length 5 between line [{] = [0, 0,0, 0, 0]
and point (p) = (0,1,1,1,1). This can be reduced to determining when the
quadratic equation 3¢ + 2t — 4 = 0 has two distinct solutions which satisfy
certain restrictions. It can be shown that for all sufficiently large values of g,
which are neither divisible by 2 nor 3, and such that 13 is a quadratic residue
in IF4, such two solutions exist; the proof is straightforward and we omit it. We
believe that g(B) = 10 for most other values of ¢ (point (p) has to be chosen
differently), but we leave this investigation out of the paper. This finishes the
proof of part (b) of Theorem 3.1. Part (c) follows immediately from (b) since a
generalized 6-gon has girth 12. B

Now we will construct graphs of order 2¢°, size ¢'°, and girth > 14. The
construction is quite similar to the one we performed above . The same can be
said about the logic of the proofs, though in this case some are shorter and more
elegant. All proofs can be found in [18].

Let P = {(p) = (p1,...po)lpi € IFgq,%4 = 1,...9} be the set of points and
L={{l] =[,...6)Jl; € Fg,i = 1,...,9} be the set of lines. A point (p) =
(p1,.-.,pe) and a line [I] = [Iy,...,lg] are said to be incident (and denoted
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(p)I[1]) if the following conditions are satisfied:

(2 —p2=Ulp1
ls—p3 =pil2
ly — ps = lipo

(3.6) < ls —ps = lips
le —pe = p1la
lr —pr=pils
ls — ps = lipe

\ lg —pg = lip7

This incidence defines a bipartite graph G = G(q) whose vertex partition sets are
P and L. Tt is easy to show that G has 2¢° vertices, ¢'° edges, and is g-regular.

For every « € IFy, we introduce the following mappings t; : V(G) — V(G),i =
0,...,9:

()™ = (p1 + 2, pa, p3 + P2T, P4, P5 + P4T, Pe, P7 + P6T, P8, Po + PsT)
[ = [Iy, 1y + Lz, I3 + 2oz + 1122, 1y, ls + Lax, lg + Lz, I7 + (Is + lg)x + 422,
lg,lg + lgx]
(0)*® = (p1,p2 — P17, p3, Pa — 2pat + P12, Ps — PaT, Pe — P3T, Pr,
ps — (ps + pe)x + p3z®, po — pr)
8@ = [y + z, o, I3, 1y — lax, Is, l — laz, Iz, Ig — s, o]
(P)tz(x) = (p1,p2 + T, p3 — P1T, P4, P5 — P2T, P6 + P2, P7 — P3T, P + P4aT, Py — P5T)
122 = {1y, 1y + x,15, 14 + Lz, Is — laz, ls + Loz, by — laz, lg + lax, lg — ls]
()™ = (p1,p2, p3 + T, P4, P5, Pe, P + P27, Ps, Po + P4c)
2@ = (1), 1y, I3 + 2,14, 15 + 12, lg, 7 + Loz, Ig, lg + 4]
(p)"*®) = (p1,p2,P3,P4 + T, Ps, P6 — P1Z, D7, P8 — P2T, Do)
@ =1y, 1y, 13, ls + 2,15, l6, Iz, Ig — Lz, lo]
(9)*® = (p1, p2,p3, P4, Ps + T, D6, P1 — P1Z, Ps, Py — P2T)
P = [y, 12,13, la, Is + z, lg, 7, Ig, lg — loa]
()**® = (p1, P2, D3, Pa, D5, P6 + T, D7, P8, Pa)
[t = 13,15, 13, ls, Is, I + z, I7, g + Iy, lg]
(9)!"(® = (1, p2,p3, P4, Ps, D6, P7 + I, Pg, Do)
[P = [y, 12,13, 1, s, le, Iz + 2, Is, I + 11 2]
(p)*®) = (p1, p2, P3, P4, P5, P6, P7, P8 + T, Dg)
[0%@ = 11, lp, Is, la, Is, I, L7, Is + , lo]
(P)tg(x) = (p1,D2, D3, P4, D5, P6, D7, P8, P9 + )
[t = (1), 1g, 13, ls, Is, lg, 17, Ig, lg + ]
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Lemma 3.3.
(i) For every x € IF 4 and every i € {1,...9}, the mapping t;(z) is an automor-
phism of the graph G and t] ' (z) = t;(—x).
(11) For every edge {[I],(p)} of G there exist automorphisms o and B of G
such that [I]* = [0,...,0],(®)* = (a,0,...,0), and [[}]? = [b,0,...,0],(p)? =
(0,...,0), for some a,b € IF,. The automorphism group Aut(G) acts transi-
tively on each of the sets P and L, and G is edge—transitive. [ |

The proof of the following theorem is similar to the one of Theorem 3.1.

Theorem 3.4. Let q be a prime power, ¢ > 3. Then graph G(q) is a q—
reqular bipartite graph of order 2¢° and girth > 14. The automorphism group
Aut(G(q)) is transitive on each of the sets of points and lines, and G(q) is edge-
transitive. |

4. A family of graphs with large girth

In this section we construct a new infinite series of regular bipartite graphs
with edge—transitive automorphism group and large girth. More precisely, for
any positive odd integer £ > 3 and any prime power ¢, we build a g-regular
bipartite graph D(k,q) on 2q* vertices with girth g > k + 5. Our construction
generalizes the one of the graph G(g) from Section 3, which turns out to be
isomorphic to D(9,q). Below we give several reasons why we find these graphs
interesting.

As we mentioned in the Introduction, it is known that

8.’17(’0,{03, 047" ° ,Om}) Z cmvl+# )

for some positive constant ¢,,, m > 3, and the proof is nonconstructive. Graphs
D(k, q) demonstrate that for an infinite sequence of values of v, ex(v, {C3, C4, - - -,
Cass1}) 2 d,v”ﬁs—l—?, s > 3, and this is an improvement of the nonconstructive
bound for large v. For large values of s and an infinite sequence of values of
v, a better bound ez(v, {C3,Cy4, -+ ,Cas+1}) > fsvH%??lﬁ is provided by some
Ramanujan graphs (see below), and it appears to be the best asymptotic lower
bound known. Comparing the exponents of v, we obtain that our bound is better
for 3 < s <11 and large v. For all odd prime powers q or ¢ = 2™, m is a positive
even integer, and all odd values of &k, 3 < k < 17, k # 7, graphs D(k, q) are of
the greatest known size among the graphs of given order and girth > £+ 5. The
same is correct if ¢ = 2™, m is odd, k is odd, 3 < k < 17, k # 7,11. Graphs
D(3,q) and D(5, q) have asymptotically as many edges as the incidence ‘point—
line’ graphs of a generalized quadrangle and a generalized hexagon respectively,
- and the greatest known edge density (the ratio e/(})) among the graphs of the
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same order and girth. For prime ¢, a somewhat similar construction leading to
graphs with the same order, edge density and girth as D(3,¢) and D(5, q), was
done by Wenger (see [40] and Section 2.) Graph D(7,q) has girth > 12 but
asymptotically fewer edges, than the incidence graph of a generalized hexagon
whose girth is 12. Graph D(9,q) is isomorphic to G(g) from Section 3. It has
girth at least 14 and shows that ez (v, {C3,Cy4, -+ ,C13}) > d13v'*s. For g = 2™,
where m is an odd positive integer, this lower bound may not be the best due
to a recent result of Ustimenko and Woldar[37,41], where an example of a g—
regular graph of order v = 2¢* and girth at least 16 is given, with ¢ being an
unknown integer satisfying the inequality 8 < t < 9. Their result implies that
ex(v,{C3,C4,---,C15}) > disv1t T for an infinite sequenc e of values of v and
an integer ¢, 8 < ¢t < 9. This lower bound is certainly better than the one of
magnitude v+ provided by the graph D(11,q).

Let {G;}, © > 1, be a family of graphs such that each G; is a k;—regular graph
of order v; and girth g;. Following Biggs [3] we say that {G;} is a family of
graphs with large girth if

gi = vlogy, _1(vi)

for some constant . It is well known (e.g. see [6]) that v = 2 would be the
best possible constant, but no family has been found to achieve this bound. For
many years the only significant results were the theorems of Erdds and Sachs
and its improvements by Sauer, Walther, and others (see [6] pp. 107 for more
details and references), who using nonconstructive methods proved the existence
of infinite families with v = 1. The first explicit examples of families with large
girth were given by Margulis [23] with v &~ 0.44 for some infinite families with
arbitrary large valency, and v = 0.83 for an infinite family of graphs of valency
4. The constructions were Cayley graphs of SLy(Z,) with respect to special sets
of generators. Imrich [16] was able to improve the result for an arbitrary large
valency, v = 0.48, and to produce a family of cubic graphs (valency 3) with
~v = 0.96. In [5] a family of geometrically defined cubic graphs, so called sextet
graphs, was introduced by Biggs and Hoare. They conjectured that these graphs
have large girth. Weiss [38] proved the conjecture by showing that for the sextet
graphs (or their double cover) v > 4/3. Then independently Margulis [24,25,26]
and Lubotsky, Phillips and Sarnak [21,22] (see also [28]) came up with similar
examples of graphs with v > 4/3 and arbitrary large valency (they turned out
to be so—called Ramanujan graphs). In [4], Biggs and Boshier showed that vy is
exactly 4/3 for graphs from [22]. The graphs are Cayley graphs of the group
PSLy(Z4) with respect to a set of p+ 1 generators (p, ¢ are primes congruent to
1 mod 4).

The family of graphs D(k,q) presented below gives an explicit example of
graphs with an arbitrary large valency and v > 1. Their definition and analysis
are basically elementary. All proofs are omitted, and can be found in [19]. Here
are the graphs.
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Let ¢ be a prime power. We define the infinite semiplane I'(q) as follows. Let
P and L be two infinite-dimensional vector spaces over the finite field F,. The
vectors of P and L can be thought as infinite sequences of elements of F,. P and
L will be the set of points and the set of lines of the incidence structure I'(g). It
will be convenient for us to write the components of points and lines as

— 7 / /
(p) —(PhP1,1,P1,2,Pz,lypz,z,pz,zym,s,P3,2,P3,3,P3,37 Y ZRTY L REST
Pit 1,6 Pitlitls -+ )

— / / /
[l] _[lly ll,la 11,2, 12,1, l2,27 l212; 12,31 13,27 13,3a l3,3> ceey li’z'» li,i+19 li+l,i’ l’i+l,’i+11 e ]

We also assume p_10 = lo,—1 =p1,0 = lo,1 =0, po,o = loo = =1, poo =lpo =1,
Do, = D1, hio = 11, l’1,1 =10, 1)'1,1 = p1,1. We say that a point (p) is incident
with a line [I], and write it as (p)I[l] if and only if the following conditions are
satisfied:

lii—pis =lpi—1;

! / — .
i — pii = piliia

(4.1) lii+1 — Diit1 = D1l
Liv1,i = Pitv1,: = Lipy
for 1=1,2,...

Notice that for ¢ = 1, the first two equations coinside and give I, 1 —p1,1 = l1p1.
Let D(q) be the incidence graph of the incidence structure I'(q) = (P, I, L). For
an integer k > 2, let I'(k, q) = (P(k), I(k), L(k)) be the incidence system, where
P(k) and L(k) are images of P and L under the projection of these spaces on the
first k coordinates, and I(k) is defined by the first k& equations of (4.1). (Actually
we have k — 1 distinct equations, since for ¢ = 1 the first two equation of the
system (4.1) coincide.) Finally, let D(k,q) be the incidence graph for I'(k, ).

Proposition 4.1. Let k > 2. The incidence system T'(k,q) is a semiplane
and D(k,q) is a q-regular bipartite graph on 2q* vertices containing no 4—cycles.
|

Our goal now is to show that the girth g(D(k,q)) > k + 5. This task will be
greatly facilitated if we use some automorphisms of D(k, q).

For every z € Fy, let t1(z),t2(2),£1,1(2), tm,m+1(z) and tpmi1m(z),m > 1,
tm,m(z) and t], .. (x), m > 2, be maps of P — P and L — L defined by means of
Table 1. An entry of the table shows the effect of the action of the corresponding
map (top of the column) on the corresponding component of a line or a point
(left end of the row). If the action of a map on the corresponding component of a
point or a line is not defined by Table 1, it will mean that the component is fixed
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by the map. For example, the map t2(z) changes every component [; ;41,% > 1,
of a line [I] according to the rule: ;41 — l,-,,-+1+(l¢,i+l§yi)x+li,i_1m2, and leaves
every component p;;1;,% > 1, of a point (p) fixed; the map t; 1(z) changes every
component p; ;,% > 1, of a point (p) according to the rule p; ; — p; ;i — Pi—1,i-1%;
the map 5 6(z) does not change components of any line [I] (or any point (p))
which precede component I5 ¢ (or ps¢.)

Proposition 4.2. For every x € Fy, the maps t,(z), t2(z), t1,1(2); tm,m+1(2)
and tyt1,m(z),m > 1; tm m(zx) andt, . (z),m > 2, are automorphisms of D(q),
and their restrictions on P(k) U L(k) are automorphisms of D(k,q). R

Finally, we summarize the properties of graphs D(k,q) in the following two
theorems.

Theorem 4.3. For all integers k > 2 and all prime powers q, graphs D(q)
and D(k,q) are edge—transitive. For ¢ = 2",n > 1, and any even integer k > 2,
graphs D(q) and D(k,q) are vertez—transitive. B

Theorem 4.4, Let k > 3 be a positive odd integer, q be a positive prime
power, and g = g(D(k,q)) be the girth of graph D(k,q). Then g > k+5. &

i>0| () t2(z) i (z)  [Sodi (o) fasa g (O [bemis) | nie)
L R G B i Woey )

liyig1 +(l+il':":'i;l';)f R R P r:::’_';fz’o r_._ff‘:fnl;d

bari | Hige i1z im0 byl
L, -1,z Hliiz G 2 ::lﬁii;[;{ r::,:'frgo
Pi,i +Pi-1,iT +Pii-1%  |"Pi-1,i-1T :':ff;:;l' Rl

Di,i41 +p} ;@ —Pit1,:i% ,:E‘f,;’o b

Di+1,i Hf_;:ffi';)gﬁ +pi,i-12 2 Y :Z:f:,;’;d
P +Pi-1,i% +Pi_1,i-12 :::::ﬁr;f r:f-%}:go

TABLE 1 loo = poo = —1,lo1 = p10 =0; Lio = li; po1 = p1; 1y =

li; Pl = P11 poo =loo =1 p_10=lo,-1 =Po,—1 =1-10=0.
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