
ON THE CONNECTIVITY OF CERTAIN GRAPHS
OF HIGH GIRTH

FELIX LAZEBNIK AND RAYMOND VIGLIONE

Abstract. Let q be a prime power and k ≥ 2 be an integer. In [2] and [3]

it was determined that the number of components of certain graphs D(k, q)

introduced in [1] is at least qt−1 where t = b k+2
4

c. This implied that these

components (most often) provide the best-known asymptotic lower bound for
the greatest number of edges in graphs of their order and girth. In [4], it was

shown that the number of components is (exactly) qt−1 for q odd, but the

method used there failed for q even. In this paper we prove that the number

of components of D(k, q) for even q > 4 is again qt−1 where t = b k+2
4

c. Our
proof is independent of the parity of q as long as q > 4. Furthermore, we show

that for q = 4 and k ≥ 4, the number of components is qt.

1. Introduction and Main Results

In this paper, all graphs are assumed to be simple, i.e. undirected with no loops
or multiple edges. By V (G) we denote the set of vertices of G. The order of G is
the number of its vertices, and the size of G is the number of its edges. The girth
of a graph G containing a cycle is the length of its shortest cycle, and we denote it
by g(G). The number of components of G will be denoted by c(G).

Let q be a prime power, and let Fq denote the finite field of q elements. For an
integer k ≥ 2, let Pk and Lk be two copies of F k

q , the k-dimensional vector space
over Fq. Elements of Pk will be called points, and elements of Lk will be called
lines. It will be convenient to denote points a ∈ Pk by (a), and lines a ∈ Lk by [a].
Let fi : F 2i−2

q → Fq be arbitrary functions for i ≥ 2. The bipartite graph D(k, q) is
defined as follows: the vertex set of D(k, q) is the disjoint union of Pk and Lk, and
a point (p) = (p1, p2, . . . , pk) is adjacent to a line [l] = [l1, l2, . . . , lk] if and only if
the following relations on their coordinates hold:

l2 + p2 = p1l1,

l3 + p3 = p1l2,(1.1)

and for 4 ≤ i ≤ k, li + pi =
{

−pi−2l1, i ≡ 0 or 1 mod 4
p1li−2, i ≡ 2 or 3 mod 4.

This family was introduced by Lazebnik and Ustimenko in [1], where it was
proved that graphs D(k, q) are edge transitive and of girth g(D(k, q)) ≥ k + 5
for odd k. In [3], Lazebnik, Ustimenko and Woldar showed that for odd k ≥ 6,
graphs D(k, q) are disconnected. Let CD(k, q) denote a component of D(k, q)
(due to edge transitivity all components are isomorphic). It was shown in [3] that
c(D(k, q)) ≥ qt−1, where t = bk+2

4 c, and therefore the order of CD(k, q) is at most
2qk−t+1. This implied that graphs CD(k, q) provide the best-known lower bounds
for the maximum number of edges in graphs of their order and girth, with the only
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exceptions being for girth 11 and 12. The result represented a slight improvement of
the previous best known lower bound given by the graphs constructed by Margulis
[7], and independently by Lubotzky, Phillips and Sarnak [6] (often referred to as
Ramanujan graphs).

At that point, determining the exact value of c(D(k, q)) became important, since
if it were greater than qt−1, it would imply that graphs CD(k, q) have even smaller
order (for the same girth and degree), hence greater edge density. In [4], Lazebnik,
Ustimenko and Woldar proved that this is not the case for odd q, i.e., that for odd
q, c(D(k, q)) = qt−1 (the statement and proof of this were actually embedded in
Corollaries 5.1 and 5.2). The method of [4] could not be used for even q; moreover,
for q = 4, at least for small k, the number of components is actually qt (as shown
by computer). This gave the hope that for even q the number of components can
grow faster than for odd q.

In this paper, we show that (unfortunately!) this is not the case. For q = 4, the
number of components is actually 4t, but the rate of growth with respect to k is
the same. Our main results are the following:

Theorem 1. Let q be an even prime power, k ≥ 4 be an integer, and t = bk+2
4 c.

(i) If q > 4, then c(D(k, q)) = qt−1.

(ii) c(D(k, 4)) = 4t.

Combined with all earlier results on the connectivity of D(k, q), it immediately
gives a complete description of c(D(k, q)):

Theorem 2. Let q be a prime power, k ≥ 2 be an integer, and t = bk+2
4 c.

(i) If q 6= 4, then c(D(k, q)) = qt−1.

(ii) c(D(2, 4)) = c(D(3, 4)) = 1, and for k ≥ 4, c(D(k, 4)) = 4t.

Our proof of Theorem 1 is based on the ideas of [2] – [4], where q was assumed
odd, but several important modifications had to be introduced to deal with q even.
After this was done we realized that it was possible to combine the two proofs into
one which is independent of the parity of q for q > 4. The case q = 4 required
additional modifications.

In Section 2 we introduce all notions and facts needed for the proof of Theorem
1 which is presented in Section 3.

For more information about graphs D(k, q), CD(k, q), and their applications,
see [5] and references therein.

2. More definitions and Preliminary Results

The original construction of graphs D(k, q) in [1] employed the notion of an affine
Lie algebra, and the notations which were subsequently used in [2] – [4] reflected
the corresponding root systems. Since these algebraic notions are not important for
this paper, we use simpler notations from Lazebnik and Woldar [5], and Viglione
[9]. We begin with the notion of an “invariant” (see [2], [3]) which is central in our
studies of components of D(k, q).



CONNECTIVITY OF CERTAIN GRAPHS OF HIGH GIRTH 3

2.1. Invariants. Let k ≥ 6 and t = bk+2
4 c. For every point (p) = (p1, ..., pk) and

every line [l] = [l1, ..., lk] in D(k, q), let ar = ar((p)) or ar = ar([l]), 2 ≤ r ≤ t, be
given by:

ar((p)) =


p1p4 + p2

2 − p5 + p6, if r = 2;
p1p4r−4 + p2p4r−6 + p2p4r−7 − p3p4r−8 − p4r−3 + p4r−2+∑r−2

i=2 (p4i−3p4(r−i)−2 − p4i−1p4(r−i)−4), if r ≥ 3;

and

ar([l]) =


−l1l3 + l22 + l5 − l6, if r = 2;
−l1l4r−5 + l2l4r−6 + l2l4r−7 − l3l4r−8 + l4r−3 − l4r−2+∑r−2

i=2 (l4i−3l4(r−i)−2 − l4i−1l4(r−i)−4), if r ≥ 3.

Then the invariant vector (or simply invariant) ~a(u) of a vertex u is

~a = ~a(u) = 〈a2(u), a3(u), ..., at(u)〉.

The relation between invariants and components of D(k, q) is the following.

Proposition 1 ([2], [3]). Let u and v be vertices from the same component of
D(k, q). Then ~a(u) = ~a(v). Moreover, for any t − 1 field elements xi ∈ Fq,
2 ≤ i ≤ t = bk+2

4 c, there exists a vertex v of D(k, q) for which ~a(v) = 〈x2, x3, ..., xt〉.

In [4] the converse of this proposition was established for q odd, which gave the
result c(D(k, q)) = qt−1 for odd q. In this paper we aim to establish its converse
for q > 4 even. Thus the invariant characterizes the components of D(k, q) for all
q > 4. For q = 4, another invariant will need to be defined. Although it will not be
strong enough to yield an analog of Proposition 1, it will help us to find c(D(k, 4))
(see Section 3).

2.2. Automorphisms. In this section we rewrite some automorphisms of D(k, q)
given in [1] – [4] in a more user-friendly way by using our notations. The automor-
phisms we will use in this paper are listed below. In each case the fact that the
mappings are automorphisms of D(k, q) is easily verified. For an automorphism σ,
the image of point (p) and of line [l] is denoted by (p)σ and [l]σ, respectively. For
(p) = (p1..., pi, ...), we write pσ

i to represent the ith coordinate of (p)σ, and similarly
we do for lines.

In our description of the automorphisms, we indicate the action of the map on
each coordinate separately. If a particular coordinate vi of a vector v is fixed by an
automorphism σ, i.e., vσ

i = vi, then it is not explicitly indicated in the definition.
For example, below we see that the cases i = 1 or i ≡ 3 mod 4 are not listed
after the brace in the definition of the automorphism t0(x). Hence for all these i,
p

t0(x)
i = pi. They can also be referred to as “additive”, since the action amounts to

adding certain quantities to coordinates. We begin with the family t0(x):
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p
t0(x)
i = pi +



p1x, i = 2
−2p2x− p1x

2, i = 4
−(pi−2 + pi−3)x + pi−5x

2, i ≡ 0 mod 4, i ≥ 8
−pi−2x, i ≡ 1 mod 4, i ≥ 5
−pi−3x, i ≡ 2 mod 4, i ≥ 6

l
t0(x)
i = li +


x, i = 1
−l2x, i = 4
−li−3x, i ≡ 0, 2 mod 4, i ≥ 6

Next is t1(x):

p
t1(x)
i = pi +

{
x, i = 1
pi−1x, i ≡ 1, 3 mod 4, i ≥ 3

l
t1(x)
i = li +



l1x, i = 2
2l2x + l1x

2, i = 3
li−1x, i ≡ 1 mod 4, i ≥ 5
li−2x, i ≡ 2 mod 4, i ≥ 6
(li−1 + li−2)x + li−3x

2, i ≡ 3 mod 4, i ≥ 7

Next is t4m−3(x) for m ≥ 2:

p
t4m−3(x)
i = pi +


x, i = 4m− 3
−p1x, i = 4m− 1
p2x, i = 4m + 1
pi−4mx, i ≡ 1, 3 mod 4, i ≥ 4m + 3

l
t4m−3(x)
i = li +


−x, i = 4m− 3
l2x, i = 4m + 1
li−4mx, i ≡ 1, 3 mod 4, i ≥ 4m + 3

Next is t4m−2(x) for m ≥ 2:

p
t4m−2(x)
i = pi +

{
x, i = 4m− 2
−pi−4mx, i ≡ 0, 2 mod 4, i ≥ 4m + 2

l
t4m−2(x)
i = li +


−x, i = 4m− 2
−l1x, i = 4m

−li−4mx, i ≡ 0, 2 mod 4, i ≥ 4m + 2
The last family of automorphisms we will need can be referred to as “multiplica-

tive”. For nonzero field elements a and b, the automorphism m(a, b) multiplies the
coordinates of points and lines by monomials of a and b:

(p) 7→ (ap1, abp2, a
2bp3, ab2p4, ..., a

ibip4i−3, a
ibip4i−2, a

i+1bip4i−1, a
ibi+1p4i, ...),

[l] 7→ [bl1, abl2, a
2bl3, ab2l4, ..., a

ibil4i−3, a
ibil4i−2, a

i+1bil4i−1, a
ibi+1l4i, ...].
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2.3. Projections and lifts. The following notions and statements will be used in
proofs in Section 3.

For k ≥ 3, the projection π : V (D(k, q)) → V (D(k − 1, q)) is defined via

(p1, ..., pk) 7→ (p1, ..., pk−1), [l1, ..., lk] 7→ [l1, ..., lk−1],

and is easily seen to be a graph homomorphism of D(k, q) to D(k − 1, q) (the
adjacent vertices of D(k, q) are mapped to the adjacent vertices of D(k − 1, q)).
The vertex w = vπ ∈ V (D(k − 1, q)) will often be denoted by v′; we say that v
is a lift of w and w is a projection of v. If B is a component of D(k, q), we will
often denote Bπ by B′, and πB will denote the restriction of π to B. We say that
an automorphism τ stabilizes B if Bτ = B; the set of all such automorphisms is
denoted by Stab(B). A component of D(k, q) containing a vertex v will be denoted
by C(v). The point and line corresponding to zero vector ~0 will be denoted by (0)
and [0], respectively. We will always denote the component C((0)) of D(k, q) by
just C. Then C

′
will be the corresponding component in D(k − 1, q).

Proofs of the following three propositions can be found in [4].

Proposition 2 ([4]). Let τ be an automorphism of D(k, q), and B be a component
of D(k, q) with v ∈ V (B). Then τ stabilizes B if and only if vτ ∈ B. In particular,
t0(x), t1(x) and m(a, b) are in Stab(C) for all x, a, b ∈ Fq, a, b 6= 0.

Proposition 3 ([4]). Let B be a component of D(k, q). Then πB is a t-to-1 graph
homomorphism for some t, 1 ≤ t ≤ qk−1. In particular, let k ≡ 0, 3 mod 4, and
suppose πC is a t-to-1 mapping for some t > 1. Then t = q.

Proposition 4 ([4]). The map πC : V (C) → V (C ′) is surjective.

3. Proofs

As we mentioned in Section 1, Theorem 1 (i) with q odd was essentially stated
and proved in [4, Corollary 5.1, 5.2]. The proof in [4] was based on induction on
k, and it was broken into four cases, depending on the value of k mod 4. Two of
those cases can be repeated verbatim in the proof of our theorem for q even, and
we present them for completeness below as Cases 3 and 4. Two other cases, Cases
1 and 2, were heavily dependent on the fact that q was odd and here we present
new proofs of these cases which are independent of the parity of q for q > 4.

Lemma 1. Let q be a prime power, q > 4, and k ≥ 6. If v ∈ V (D(k, q)) satisfies
~a(v) = 0, then v ∈ V (C).

Proof. The proof proceeds by induction on k. It is known (see [8],[4]) that for q > 4,
graphs D(k, q) are connected for k = 2, 3, 4, 5 (in [4, Theorem 4], the case q = 4
was included by mistake).

We begin with the base case k = 6. Let v ∈ V (D(6, q)) with ~a(v) = ~0, and let
v′ = vπ ∈ V (D(5, q)). Since D(5, q) is connected, then v′ ∈ C ′ = D(5, q). Since
πC is surjective by Proposition 4, there is w ∈ V (C) such that wπ = v′ = vπ.
Since the sixth coordinate of any vertex u is uniquely determined by its initial five
coordinates and ~a(u), we have v = w ∈ V (C).

The inductive step is treated in four separate cases. For k ≡ 0, 1, 3 mod 4 (i.e.,
Cases 1, 2, and 3 below), our goal is to show that πC is a q-to-1 map. These are
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exactly the values of k for which the invariants of C and C ′ are the same. To
see that this settles these cases, choose v ∈ V (D(k, q)) such that ~a(v) = ~0. Let
v′ = vπ ∈ V (D(k − 1, q)). Since ~a(v) = ~a(v′) = ~0, v′ ∈ C ′ by the induction
hypothesis. But then since πC is a q-to-1 map, all of the lifts of v′, including v
itself, lie in C, and we are done. So we proceed with the cases.

Case 1: k ≡ 3 mod 4, k ≥ 7. Write k = 4j − 1, j ≥ 2. Let (p′) ∈ V (D(k − 1, q))
with p4j−5 = p4j−3 = p4j−2 = 1, p4j−4 = −1 and zeroes elsewhere, i.e.,

(p′) = (0, ..., 0, 1,−1, 1, 1).

One easily checks that ~a(p′) = ~0, so (p′) ∈ V (C ′) by the induction hypothesis.
Since πC is surjective there is (p) ∈ V (C) with (p)π = (p′), i.e., for some y ∈ Fq,

(p) = (0, ..., 0, 1,−1, 1, 1, y).

Now note that (0, ..., 0, 1,−1, 1, 1, y) ∼ [0, ..., 0, 1,−1, 1, 1, y], so that this line is also
in V (C). One easily checks that [0, ..., 0, 1,−1, 1, 1, y]t1(1) = [0, ...0, 1,−1, 0, 0, y+1].
By Proposition 2 this new line is in V (C). Also [0, ..., 0, 1,−1, 0, 0, y + 1]t0(−1)

= [−1, 0, ..., 0, 1,−1, 0, 1, y + 1] ∈ V (C), again by Proposition 2. Furthermore
[−1, 0, ...0, 0, 1,−1, 0, 1, y + 1] ∼ (0, ..., 0, 1,−1, 1, 1, y + 1), so that this last point
is in V (C). Thus (0, ..., 0, 1,−1, 1, 1, y) and (0, ..., 0, 1,−1, 1, 1, y + 1) are in V (C).
All we have just discussed is represented below, where all vertices are in V (C):

(0, ..., 0, 1,−1, 1, 1, y) ∼ [0, ..., 0, 1,−1, 1, 1, y]
t1(1)−−−→ [0, ..., 0, 1,−1, 0, 0, y + 1]

t0(−1)−−−−→

[−1, 0, ..., 0, 1,−1, 0, 1, y + 1] ∼ (0, ..., 0, 1,−1, 1, 1, y + 1).

In other words, (p′) has two lifts to D(k, q). Therefore by Proposition 3, πC is a
q-to-1 map.

Case 2: k ≡ 0 mod 4, k ≥ 8. Write k = 4j, j ≥ 2. Let (p′) ∈ V (D(k− 1, q)) with
p4j−2 = p4j−3 = 1 and zeroes elsewhere, i.e.,

(p′) = (0, ..., 0, 1, 1, 0).

Clearly ~a(p′) = ~0, so (p′) ∈ V (C ′) by the induction hypothesis. Since πC is surjec-
tive there is (p) ∈ V (C) with (p)π = (p′), i.e., for some y ∈ Fq,

(p) = (0, ..., 0, 1, 1, 0, y).

First suppose y 6= 0. Then

(p)m(a,b) = (0, ..., 0, ajbj , ajbj , 0, ajbj+1y).

Clearly one can always choose a, b ∈ Fq \ {0} such that ab = 1 but b 6= 1. Then
with this choice of a and b,

(p)m(a,b) = (0, ..., 0, 1, 1, 0, by) ∈ V (C)

by Proposition 2. But (0, ..., 0, 1, 1, 0, by) 6= (0, ..., 0, 1, 1, 0, y) since y 6= 0 and b 6= 1.
Therefore (p′) has two lifts to D(k, q), and as before we are done.

So suppose y = 0, i.e.,

(p) = (0, ..., 0, 1, 1, 0, 0) ∈ V (C).

Then
(0)t4j−3(1)t4j−2(1) = (0, ..., 0, 1, 0, 0, 0)t4j−2(1) = (p)
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and t4j−3(1)t4j−2(1) ∈ Stab(C) by Proposition 2. Now let (p′) ∈ V (D(k − 1, q))
with p4j−5 = p4j−4 = 1 and zeroes elsewhere, i.e.,

(p′) = (0, ..., 0, 1, 1, 0, 0, 0).

Clearly ~a(p′) = ~0, so (p′) ∈ V (C ′) by the induction hypothesis. Since πC is surjec-
tive there is (p) ∈ V (C) with (p)π = (p′), i.e., for some y ∈ Fq,

(p) = (0, ..., 0, 1, 1, 0, 0, 0, y).

Since t0(1), t4j−3(1)t4j−2(1) ∈ Stab(C), we have

(p)t0(1)t4j−3(1)t4j−2(1) = (0, ..., 0, 1, 1,−1,−1, 0, y + 1)t4j−3(1)t4j−2(1) =

(0, ..., 0, 1, 1, 0, 0, 0, y + 1) ∈ V (C).
So (p′) has two lifts to V (C), and πC is a q-to-1 map by Proposition 3.

Case 3: k ≡ 1 mod 4, k ≥ 9. Write k = 4j − 3, j ≥ 3. Let (p′) ∈ V (D(k − 1, q))
with p4j−5 = 1 and zeroes elsewhere, i.e.,

(p′) = (0, ..., 0, x, 0).

Clearly ~a(p′) = ~0, so (p′) ∈ V (C ′) by the induction hypothesis. Since πC is surjec-
tive there is (p) ∈ V (C) with (p)π = (p′), i.e., for some y ∈ Fq,

(p) = (0, ..., 0, x, 0, y).

The reader may verify that (p) is stabilized by t0(x)t4j−3(−x), so by Proposition
2, t0(x)t4j−3(−x) ∈ Stab(C). Again by Proposition 2, t0(x) ∈ Stab(C), so that
t4j−3(−x) ∈ Stab(C) for any x ∈ Fq. Thus (0, ..., 0,−x) = (0)t4j−3(−x) ∈ V (C) and
(0) has q distinct lifts to C. Thus πC is q-to-1.

Case 4: k ≡ 2 mod 4, k ≥ 10. Choose v ∈ V (D(k, q)) with ~a(v) = ~0 and let
v′ = vπ ∈ V (D(k − 1, q)). Then ~a(v′) = ~0 (since the length of the invariant vector
is now one less than before). Let w be any lift of v′ to C. Then ~a(w) = ~0 = ~a(v)
and wπ = v′ = vπ. This implies that v = w, as in the base case k = 6. Thus
v ∈ V (C).

�

In order to deal with the case q = 4, we will need an analog of Lemma 1. We
begin by defining an invariant vector for D(k, 4). Its definition is very close to
the one given in Section 2.1, the only difference being the presence of an extra
coordinate. For u ∈ V (k, 4) and t = bk+2

4 c, the invariant is given by

~b = ~b(u) = 〈b1(u), b2(u), ..., bt(u)〉,
where bi = ai for all i ≥ 2 (see Section 2.1) and

b1((p)) = p1p2 + p3 + p2
4,

b1([l]) = l1l2 + l23 + l4.

The following statement is a version of Proposition 1 for q = 4. Though it is
weaker than this proposition (see Remark at the end of this section), it is sufficient
for our purposes.

Lemma 2. Let u be in the component of D(k, 4) containing (0). Then ~b(u) = ~0.
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Proof. Suppose (p) ∈ V (C) with ~b((p)) = ~0. Then

(p) = (p1, p2, p3, p4, ...) ∼ [l1, p2 + p1l1, p3 + p1p2 + p2
1l1, p4 + p2l1, ...] = [l].

Proposition 1 gives that bi([l]) = bi((p)) = 0 for all i ≥ 2. By assumption b1((p)) =
p1p2 + p3 + p2

4 = 0. Since we are in characteristic 2 and a4 = a for any a ∈ F4,

b1([l]) = l1(p2 + p1l1) + (p3 + p1p2 + p2
1l1)

2 + (p4 + p2l1) =

p2
1p

2
2 + p2

3 + p4 = (p1p2 + p3 + p2
4)

2 = 0.

Thus ~b([l]) = ~0. Similarly, one shows that if [l] ∈ V (C) with ~b([l]) = ~0 and (p) ∼ [l],
then ~b((p)) = 0. Therefore if a vertex in C has invariant ~0, so do all of its neighbors.
Since C is connected and ~a(0) = ~0, all vertices in C must have invariant ~0. �

We are ready to state and prove the analog of Lemma 1 for q = 4.

Lemma 3. Let k ≥ 4. If v ∈ V (D(k, 4)) satisfies ~b(v) = 0 then v ∈ V (C).

Proof. Our proof imitates the one of Lemma 1, and we just sketch its main steps.
We know (see, e.g., [9]) that D(2, 4) and D(3, 4) are both connected.

We use induction on k. The base case is k = 4. Let v ∈ V (D(4, 4)) with~b(v) = ~0,
and let v′ = vπ ∈ V (3, 4). Since D(3, 4) is connected, so v′ ∈ C ′ = D(3, 4). Since
πC is surjective, there is w ∈ V (C) such that wπ = v′ = vπ. Since the fourth
coordinate of any vertex u is uniquely determined by its initial three coordinates
and ~a(u) (note x 7→ x2 is an automorphism of F4), we have v = w ∈ V (C).

We proceed through the cases as in the proof of Lemma 1. Anytime a point (p′)
is defined, we have ~b(p′) = ~0. By the induction hypothesis, this gives (p′) ∈ V (C ′).
We already know that ~a(p′) = ~0, so we need only check that b1(p′) = 0. In all
cases, it is easy to see that it implies either p1 = p2 = p3 = p4 = 0 or p3 = p4 = 1,
yielding b1(p′) = 0 and hence ~b(p′) = ~0. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1: (i) We have already mentioned (see the beginning of the proof
of Lemma 1) that for 2 ≤ k ≤ 5 and q > 4 graphs D(k, q) are connected. Hence the
statement is correct in these cases. We also remind the reader that for all k ≥ 2
and prime powers q, D(k, q) is edge-transitive ([1]), hence all its components are
isomorphic.

Let k ≥ 6. Combining Lemma 1 and Proposition 1 we have that v ∈ V (C) if and
only if ~a(v) = ~0. To determine the number of points in C, we need only determine
how many solutions there are to the equation ~a((p)) = ~0, or equivalently to the
system of equations ar = 0 for every r ≥ 2. To satisfy a2 = 0, we arbitrarily choose
p1, ..., p5 and solve for p6. For each subsequent equation ar = 0, we arbitrarily
choose p4r−3, p4r−4 and p4r−5, and then solve it for p4r−2. Thus we need to choose
5 point coordinates in the first equation, and another 3 in each of the t− 2 others.
At this point there are k−(4t−2) coordinates of (p) left “free”, namely p4t−1, ..., pk;
each may be assigned a value arbitrarily. Thus the number of points in C is

q5+3(t−2)+k−(4t−2) = qk−t+1.

Since the total number of points in D(k, q) is qk, and all its components are iso-
morphic, we have c(D(k, q)) = qk

qk−t+1 = qt−1.
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(ii) The proof of this part follows the one for part (i). The only change is that
Lemmas 2 and 3 must be used instead of Lemma 1. 2

We now proceed by showing that the invariant vector of a vertex characterizes
the component containing the vertex, as was shown for q odd in [4]. The proof is
short, and we include it here for completeness.

Corollary 1. Let k ≥ 6 and q > 4. Then ~a(u) = ~a(v) if and only if C(u) = C(v).

Proof. Let t = bk+2
4 c, and let C(v) be the component of D(k, q) containing the

vertex v. Let X be the set of components of D(k, q) and define the mapping f :
X 7→ F t−1

q via f(C(v)) = ~a(v). From Proposition 1 we know that f is well defined,
i.e., C(u) = C(v) implies ~a(u) = ~a(v). By Theorem 1, |X| = qt−1 (= |F t−1

q |), so
that f is bijective. Thus C(u) = C(v) whenever ~a(u) = ~a(v). �

Remark 1. The analog of Corollary 1 does not hold for q = 4. The reason for this
is the presence of the special first coordinate in the invariant.

Indeed, let ω be a primitive element for F4. Then (p) = (0, 0, ω, 0, ..., 0) ∼
[0, 0, ω, 0, ..., 0] = [l] in D(k, 4), but

~b((p)) = 〈ω, 0, ...., 0〉 6= 〈ω2, 0, ...., 0〉 = ~b([l]).

Acknowledgement. We are grateful to Andrew Woldar for his useful comments
on the original version of this paper.
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