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Some families of graphs, hypergraphs and digraphs
defined by systems of equations: a survey

Felix Lazebnik1, Shuying Sun2 and Ye Wang3

Dedicated to the memory of Ralph J. Faudree (1939 – 2015)

Abstract. The families of graphs defined by a certain type of system of equations over
commutative rings have been studied and used since 1990s, and the only survey of these
studies appeared in 2001. In this paper we mostly concentrate on the related results ob-
tained in the last fifteen years, including generalizations of these constructions to digraphs
and hypergraphs.

We also o↵er a unified elementary (i.e., Lie algebra free) exposition of the properties
of a family of graphs known as D(k, q). The original results on these graphs appeared in
several papers, with the notations reflecting their origins in Lie algebras. The components
of graphs D(k, q) provide the best known general lower bounds for the number of edges
in graphs of given order and given girth (the length of a shortest cycle).

The paper also contains several open problems and conjectures.

1. Introduction

One goal of this survey is to summarize results concerning certain families of
graphs, hypergraphs and digraphs defined by certain systems of equations, concen-
trating on the results which appeared during the last fifteen years. Another goal
is to provide a comprehensive treatment of, probably, the best known family of
such graphs, denoted by D(k, q), including most of related (and revised) proofs.
The original results on these graphs were scattered among many papers, with the
notations not necessarily consistent and reflecting the origins of these graphs in
Lie algebras. It is our hope that this new exposition will make it easier for those
who wish to understand the methods, continue research in the area or find new
applications.

For a summary of related results which appeared before 2001, see Lazebnik and
Woldar [72]. One important feature of that article was an attempt of setting simpler
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notation and presenting results in greater generality. The current presentation is
based on that paper. Let us begin with a quote from [72] (with updated reference
labels):

In the last several years some algebraic constructions of graphs
have appeared in the literature. Many of these constructions were
motivated by problems from extremal graph theory, and, as a con-
sequence, the graphs obtained were primarily of interest in the con-
text of a particular extremal problem. In the case of the graphs
appearing in [104], [59]–[66], [35], the authors recently discovered
that they exhibit many interesting properties beyond those which
motivated their construction. Moreover, these properties tend to
remain present even when the constructions are made far more
general. This latter observation forms the motivation for our pa-
per.

The research conducted since the appearance of [72] was done in two directions:
attempting to apply specializations of general constructions to new problems, and
trying to strengthen some old results.

Before proceeding, we establish some notation; more will be introduced later.
The missing graph-theoretic definitions can be found in Bollobás [8]. Most graphs
we consider in this paper are undirected, and without loops or multiple edges.
Sometimes loops will be allowed, in which case we will state it. Given a graph �,
we denote the vertex set of � by V (�) and the edge set by E(�). Elements of E(�)
will be written as xy, where x, y 2 V (�) are the corresponding adjacent vertices.
For a vertex v of �, let N(v) = N�(v) denote its neighborhood in �.

Though most of the graphs we plan to discuss are defined over finite fields,
many of their properties hold over commutative rings, and this is how we proceed.
Let R be an arbitrary commutative ring, di↵erent from the zero ring, and with
multiplicative identity. We write Rn to denote the Cartesian product of n copies
of R, and we refer to its elements as vectors. For q = pe, with p � 2 and prime, let
Fq denote the field of q elements.

The paper is organized as follows. In Section 2 we go over the main construc-
tions for graphs, and their general properties are discussed in Section 3. In Section
4 we discuss various applications of the specialization of constructions from Section
2, including recent results on similarly constructed digraphs. Section 5 deals with
constructions for hypergraphs. In Section 6 we present a comprehensive treatment
of graphs D(k, q), including revised proofs of the main old results, and survey new
results. In Section 7 we mention some applications of graphs D(k, q), and we con-
clude by a brief discussion on the related work in coding theory and cryptography
in Section 8.

2. Main constructions

2.1. Bipartite version. Let fi : R2i�2 ! R, 2  i  n, be arbitrary functions
on R of two, four, · · · , 2n � 2 variables. We define the bipartite graph B�n =
B�(R; f2, · · · , fn), n � 2, as follows. The set of vertices V (B�n) is the disjoint
union of two copies of Rn, one denoted by Pn and the other by Ln. Elements of
Pn will be called points and those of Ln lines. In order to distinguish points from
lines we introduce the use of parentheses and brackets: if a 2 Rn, then (a) 2 Pn

and [a] 2 Ln. We define edges of B�n by declaring point (p) = (p1, p2, · · · , pn) and



Graphs defined by systems of equations 107

line [l] = [l1, l2, · · · , ln] adjacent if and only if the following n� 1 relations on their
coordinates hold:

(2.1)

p2 + l2 = f2(p1, l1)

p3 + l3 = f3(p1, l1, p2, l2)

· · · · · ·
pn + ln = fn(p1, l1, p2, l2, · · · , pn�1, ln�1) .

For a function fi : R2i�2 ! R, we define fi : R2i�2 ! R by the rule

fi(x1, y1, · · · , xi�1, yi�1) = fi(y1, x1, · · · , yi�1, xi�1) .

We call fi symmetric if the functions fi and fi coincide. The following is trivial to
prove.

Proposition 1. Graphs B�(R; f2, · · · , fn) and B�(R; f2, · · · , fn) are isomorphic,
an explicit isomorphism being given by ' : (a) $ [a].

We now define our second fundamental family of graphs for which we require
that all functions be symmetric.

2.2. Ordinary version. Let fi : R2i�2 ! R be symmetric for all 2  i  n. We
define �n = �(R; f2, · · · , fn) to be the graph with vertex set V (�n) = Rn, where
distinct vertices (vectors) a = ha1, a2, · · · , ani and b = hb1, b2, · · · , bni are adjacent
if and only if the following n� 1 relations on their coordinates hold:

(2.2)

a2 + b2 = f2(a1, b1)

a3 + b3 = f3(a1, b1, a2, b2)

· · · · · ·
an + bn = fn(a1, b1, a2, b2, · · · , an�1, bn�1) .

For the graphs �n our requirement that all functions fi be symmetric is necessary
to ensure that adjacency be symmetric. Without this condition one obtains not
graphs, but digraphs. It is sometimes beneficial to allow loops in �n, i.e., considering
ai = bi for all i and satisfying (2.2).

2.3. Special induced subgraphs. Let B�n be the bipartite graph defined in
Section 2.1, and let A and B be arbitrary subsets of R.We set

Pn,A = {(p) = (p1, p2, · · · , pn) 2 Pn | p1 2 A}
Ln,B = {[l] = [l1, l2, · · · , ln] 2 Ln | l1 2 B}

and define B�n[A,B] to be the subgraph of B�n induced on the set of vertices
Pn,A [ Ln,B . Since we restrict the range of only the first coordinates of vertices
of B�n, graph B�n[A,B] can alternately be described as the bipartite graph with
bipartition Pn,A[Ln,B and adjacency relations as given in (2.1). This is a valuable
observation as it enables one to “grow” the graph B�n[A,B] directly, without ever
having to construct B�n. In the case where A = B, we shall abbreviate B�n[A,A]
by B�n[A].

Similarly, for arbitrary A ✓ R we define �n[A] to be the subgraph of �n induced
on the set Vn,A of all vertices having respective first coordinate from A. Again,
explicit construction of �n is not essential in constructing �n[A]; the latter graph is
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obtained by applying the adjacency relations in (2.2) directly to Vn,A. (Note that
when A = R one has B�n[R] = B�n and �n[R] = �n.)

3. General properties of graphs B�n and �n

The goal of this section is to state the properties of B�n = B�(R; f2, · · · , fn)
and �n = �(R; f2, · · · , fn), which are independent of the choice of n, R, and the
functions f2, · · · , fn. Specializing these parameters, one can obtain some additional
properties of the graphs. All proofs can be found in [72] or references therein, and
we omit them, with the exception of Theorem 1 below. Though trivial, it is of
utmost importance for understanding the graphs.

3.1. Degrees and neighbor-complete colorings. One of the most important
properties of graphs B�n and �n defined in the previous section is the following.
In the case of �n we do allow loops, and assume that a loop on a vertex adds 1 to
the degree of the vertex.

Theorem 1. For every vertex v of B�n or of �n, and every ↵ 2 R, there exists a
unique neighbor of v whose first coordinate is ↵.

If |R| = r, all graphs B�n or �n are r-regular. If 2 is a unit in R, then �n

contains exactly r loops.

Proof. Fix a vertex v 2 V (B�n), which we may assume is a point v = (a) 2 Pn

(if v 2 Ln, the argument is similar). Then for any ↵ 2 R, there is a unique line
[b] 2 Ln which is adjacent to (a) and for which b1 = ↵. Indeed, with respect to
the unknowns bi the system (2.1) is triangular, and each bi is uniquely determined
from the values of a1, · · · , ai, b1, · · · bi�1, 2  i  n.

This implies that if |R| = r, then both B�n and �n are r-regular. A vertex
a 2 V (�n) has a loop on it if and only if it is of the form ha1, a2, · · · , ani, where

ai =
1

2
fi(a1, a1, · · · , ai�1, ai�1) , 2  i  n .

Hence, there are exactly r loops. Erasing them we obtain a simple graph with r
vertices of degree r � 1 and rn � r vertices of degree r.

⇤
Based on this theorem, it is clear that each of the graphs B�n and �n allows

a vertex coloring by all elements of R such that the neighbors of every vertex are
colored in all possible colors: just color every vertex by its first coordinate. These
colorings are never proper, as the color of a vertex is the same as the color of ex-
actly one of its neighbors. Such colorings were introduced by Ustimenko in [95]
under the name of “parallelotopic” and further explored by Woldar [106] under the
name of “rainbow”, and in [72] under the name of “neighbor-complete colorings”,
which we adopt here. In [95] some group theoretic constructions of graphs possess-
ing neighbor-complete colorings are given; in [106] purely combinatorial aspects of
such colorings are considered. Non-trivial examples of graphs possessing neighbor-
complete colorings are not easy to construct. Remarkably, graphs B�n and �n

always admit them.
Similar statements, with obvious modifications, hold for graphs B�n[A,B] and

�n[A], and we leave such verification to the reader.
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3.2. Covers and lifts. The notion of a covering for graphs is analogous to the one
in topology. We call � a cover of graph � (and we write � ! �) if there exists a
surjective mapping ✓ : V (�) ! V (�), v 7! v, which satisfies the two conditions:

(i) ✓ preserves adjacencies, i.e., uv 2 E(�) whenever u v 2 E(�);

(ii) For any vertex v 2 V (�), the restriction of ✓ to N(v) is a bijection between
N(v) and N(v).

Note that our condition (ii) ensures that ✓ is degree-preserving; in particular,
any cover of an r-regular graph is again r-regular. If � is a cover of �, we also say
that � is a lift of �.

For k < n, denote by ⌘ = ⌘(n, k) the mapping Rn ! Rk which projects v 2 Rn

onto its k initial coordinates, VIZ.

v = hv1, v2, · · · , vk, · · · vni 7! v = hv1, v2, · · · , vki .
Clearly, ⌘ provides a mapping V (�n) ! V (�k), and its restriction to Vn,A =

A⇥Rn�1 gives mappings V (�n[A]) ! V (�k[A]). In the bipartite case, we further
impose that ⌘ preserves vertex type, i.e. that

(p) = (p1, p2, · · · , pk, · · · pn) 7! (p) = (p1, p2, · · · , pk)
[l] = [l1, l2, · · · , lk, · · · ln] 7! [l] = [l1, l2, · · · , lk] .

Here, ⌘ induces, in obvious fashion, the mappings V (B�n[A]) ! V (B�k[A]).
In what follows, the functions fi (2  i  n) for the graphs B�n[A] are assumed

to be arbitrary, while those for �n[A], continue, out of necessity, to be assumed
symmetric. The proof of the following theorem is easy and can be found in [72].

Theorem 2. For every A ✓ R, and every k, n, 2  k < n, B�n[A] ! B�k[A].
�n[A] ! �k[A] if and only if no edge of �n[A] projects to a loop of �k[A].

Remark 1. If a graph � contains cycles, its girth, denoted by girth(�), is the
length of its shortest cycle. One important consequence of Theorem 2, particularly
amenable to girth related Turán type problems in extremal graph theory, is that
the girth of a graph is not greater than the girth of its cover. In particular, the
girth of B�n or �n is a non-decreasing function of n. More precisely,

girth(B�(R; f2, · · · , fk))  girth(B�(R; f2, · · · , fk · · · , fn)) ,
and similarly for graphs B�n[A] or �n[A].

3.3. Embedded spectra. The spectrum spec(�) of a graph � is defined to be the
multiset of eigenvalues of its adjacency matrix. One important property of covers
discussed in Section3.2 is that the spectrum of any graph embeds (as a multiset,
i.e., taking into account also the multiplicities of the eigenvalues) in the spectrum
of its cover. This result can be proven in many ways, for example as a consequence
of either Theorem 0.12 or Theorem 4.7, both of Cvetković [21]. As an immediate
consequence of this fact and Theorem 2, we obtain

Theorem 3. Assume R is finite and let A ✓ R. Then for each k, n, 2  k < n,

spec(B�k[A]) ✓ spec(B�n[A]) .

For graphs �n[A], one has spec(�k[A]) ✓ spec(�n[A]) provided no edge of �n[A]
projects to a loop of �k[A].



110 Felix Lazebnik, Shuying Sun and Ye Wang

3.4. Edge-decomposition of Kn and Km,m. Let � and �0 be graphs. An edge-
decomposition of � by �0 is a collection C of subgraphs of �, each isomorphic to �0,
such that {E(⇤) | ⇤ 2 C} is a partition of E(�).

We also say in this case that �0 decomposes �. It is customary to refer to
the subgraphs ⇤ in C as copies of �0, in which case one may envision an edge-
decomposition of � by �0 as a decomposition of � into edge-disjoint copies of �0.

As usual, letKn denote the complete graph on n vertices, andKm,n the complete
bipartite graph with partitions of sizes m and n. The questions of decomposition
of Kn or Km,n into copies of a graph �0 are classical in graph theory and have been
of interest for many years. In many studied cases �0 is a matching, or a cycle, or
a complete graph, or a complete bipartite graph, i.e., a graph with a rather simple
structure. In contrast, the structure of B�n or �n, is usually far from simple. In
this light the following theorem from [72] is a bit surprising.

Theorem 4. Let |R| = r. Then B�n decomposes Krn,rn .
If 2 is a unit in R, then �n (with no loops) decomposes Krn .

This result was motivated by a question of Thomason [91], who asked whether
graph D(n, q) (which will be defined later in this paper) edge-decomposes Kqn,qn .

3.5. Automorphisms. What are the automorphism groups of graphs B�n?
Though we cannot name any particular non-trivial automorphism of these graphs
for arbitrary functions f2, · · · , fn, the automorphism group can be quite rich for
some special choices of functions f2, · · · , fn.

In the case when every function fi depends on p1 and l1 only, graphs B�n always
contain special automorphisms. Let G denote the additive group of R, and Gn�1

denote the direct product of n � 1 copies of G. It is easy to see that for any
v = hv2, · · · , vni 2 Rn�1, the map gv : V (B�n) ! V (B�n) given by

(p) = (p1, p2, · · · , pn) 7! (p1, p2 + v2, · · · , pn + vn)

[l] = [l1, l2, · · · , ln] 7! [l1, l2 � v2, · · · , ln � vn]

is an automorphism of B�n, and that the following theorem holds.

Theorem 5. If each function fi, i = 2, · · · , n, in the definition of B�n depends on
p1 and l1 only, the automorphism group Aut(B�n) contains a subgroup isomorphic
to Gn�1.

We would like to end this section with a problem.

Problem 1. Generalize the constructions of this section to the case where R is an
abelian group, and investigate the properties of the obtained graphs.

4. Applications

In this section we survey some applications of graphs B�n and �n, and of sim-
ilarly constructed hypergraphs and digraphs. In most instances, the graphs con-
sidered are specializations of B�n and �n, with R taken to be the finite field Fq

and the functions fi chosen in such a way as to ensure the resulting graphs having
other properties. We also mention some open problems and conjectures.



Graphs defined by systems of equations 111

4.1. Wenger graphs. Specializing R to Fq, in B�n, and taking fk = pk�1
1 l1,

2  k  m + 1, one obtains graphs Wm(q), which are called Wenger graphs.
Graphs isomorphic to Wm(q) were introduced in [104] by Wenger in the context
of extremal graph theory. Their generalization was rediscovered by Lazebnik and
Ustimenko in [59], and Wenger graphs have received a considerable attention since
then. The presentation of Wm(q) as above is due to Lazebnik and Viglione [68].
For the related results, see Viglione [101, 102], [68], Futorny and Ustimenko [38],
Shao, He and Shan [85], Li, Lu and Wang [73]. For a minisurvey of Wenger graphs
(up to 2013), see Cioăba, Lazebnik and Li [15]. In the same paper, the spectra of
Wenger graphs was determined, extending the cases of m = 2, 3 from [73], and the
result implies that the graphs are expanders for every fixed m and large q. The
results of [85] concerning cycle lengths in Wm(q) were extended by Wang, Lazebnik
and Thomason in [103]. Alexander, Lazebnik and Thomason, see [2], showed that
for fixed m and large q, Wenger graphs are hamiltonian. The automorphism group
of Wenger graphs was determined by Cara, Rottey and Van de Voorde in [14].

Conjecture 1 ([103]). For every m � 2, and every prime power q, q � 3, Wm(q)
contains cycles of length 2k, where 4  k  qm+1 and k 6= 5.

In [13], Cao, Lu, Wan, L.-P. Wang and Q. Wang, considered the generalized
Wenger graphs B�m(Fq; f2, · · · , fm+1), with fk = gk(p1)l1, 2  k  m + 1, where
gk 2 Fq[X] and the map Fq ! Fm+1

q , u 7! (1, g2(u), · · · , gm+1(u)) is injective.

An important particular case of these graphs is obtained when gk(X) = Xpk�2

,
2  k  m+1. The authors call these graphs the linearized Wenger graphs Lm(q),
and they determine their girth, diameter and the spectrum. For q = pe, the results
imply that the graphs Le(q) are expanders. It follows from [2] that for a fixed e
and large p, graphs Le(pe) are hamiltonian.

Problem 2. Determine the lengths of cycles in the linearized Wenger graph Lm(q).

4.2. Generalized polygons. A generalized k-gon of order (q, q), for k � 3 and
q � 2, denoted ⇧k

q , is a (q + 1)-regular bipartite graph of girth 2k and diameter

k. It is easy to argue that in such a graph each partition contains nk
q = qk�1 +

qk�2 + · · ·+ q + 1 vertices (for information on generalized polygons, see, e.g., Van
Maldeghem [99], Thas [88] or Brouwer, Cohen and Neumaier [10]). It follows from
a theorem by Feit and Higman [32] that if ⇧k

q exists, then k 2 {3, 4, 6}. For each of

these k, ⇧k
q are known to exist only for arbitrary prime power q. In the case k = 3,

the graph is better known as the point-line incidence graph of a projective plane
of order q; for k = 4 - as the generalized quadrangle of order q, and for k = 6, as
the generalized hexagon of order q. Fixing an edge in graph ⇧k

q , one can consider a

subgraph in ⇧k
q induced by all vertices at the distance at least k� 1 from the edge.

It is easy to argue that the obtained graph is q-regular, has girth 2k (for q � 4) and
diameter 2(k � 1) (for q � 4). We refer to this graph as a bia�ne part of ⇧k

q (also
known as an a�ne part). Hence, a bia�ne part is a q-regular induced subgraph of
⇧k

q having qk�1 vertices in each partition, and deleting all edges of a bia�ne part

results in a spanning tree of ⇧k
q with each inner vertex of degree q + 1.

If ⇧k
q is edge transitive, then all its bia�ne parts are isomorphic and we can

speak about the bia�ne part, and denote it by ⇤k
q . Some classical generalized

polygons are known to be edge-transitive. It turns out that their bia�ne parts can
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be represented as graphs B�n:

(4.1) ⇤3
q as B�2(Fq; p1l1)

(4.2) ⇤4
q as B�3(Fq; p1l1, p1l2) ⇠= B�3(Fq; p1l1, p1l

2
1)

(4.3) ⇤6
q as B�5(Fq; p1l1, p2l1, p3l1, p2l3 � p3l2) .

We wish to mention that many other representations of these graphs are possible,
and some are more convenient than others when we study particular properties of
the graphs. The description of ⇤6

q above is due to Williford [105].

Presentations of ⇤k
q in terms of systems of equations appeared in the literature

in di↵erent ways. Firstly as an attempt to coordinatize incidence geometries ⇧k
q ,

see Payne [78], [99] and references therein.
Another approach, independent of the previous, is based on the work of Usti-

menko [92, 93, 94], where incidence structures in group geometries, used historicaly
first to present generalized polygons, were described as relations in the correspond-
ing a�ne Lie algebras. Some details and examples of related computations can be
found in [59], in Ustimenko and Woldar [98], in Woldar [107], and in more recent
work by Terlep and Williford [89].

The descriptions of bia�ne parts ⇤k
q of the classical k-gons ⇧k

q via graphs B�k�1

above, suggested to generalize the latter to the values of k for which no generalized
k-gons exist. The property of growing girth of graphs B�n that we mentioned in
Remark 1 of Section 3.2 turned out to be fundamental for constructing families of
dense graphs without cycles of certain lengths, and in particular, of large girth. We
describe these application in Section 5.4.

Graphs B�n can also be used in the attempts of constructing new generalized
k-gons (k 2 {3, 4, 6}) via the following logic: first construct a B�k�1 graph of girth
2k and diameter 2(k � 1), and then try to “attach a tree” to it. In other words,
construct a ⇤k�1 like graph not isomorphic to one coming from ⇧k

q , and then extend
it to a generalized k-gon. For k = 3, the extension will always work. Of course, this
approach has an inherited drawback, as graphs B�k�1 always have a restriction on
their automorphism group (see Section 3.5).

Lazebnik and Thomason used this approach in [58] to construct planes of order
9 and, possibly new planes of order 16. The planes they constructed all possessed a
special group of automorphisms isomorphic to the additive group of the field, but
they were not always translation planes. Of the four planes of order 9, three admit
the additive group of the field F9 as a group of translations, and the construction
yielded all three. The known planes of order 16 comprise four self- dual planes
and eighteen other planes (nine dual pairs); of these, the method gave three of
the four self-dual planes and six of the nine dual pairs, including the sporadic (not
translation) plane of Mathon. An attempt to construct new generalized quadrangles
is discussed in the next section.

4.3. Monomial graphs and generalized quadrangles. When all functions fi
are monomials of two variables, we call the graph B�n(Fq; f2, · · · , fn), a monomial
graph. These graphs were first studied in Viglione [101] and in Dmytrenko [22].
Let B(q;m,n) = B�2(Fq;XmY n). For m,n fixed and q su�ciently large, the
isomorphism problem for graphs B(q;m,n) was solved in [101], and for all m,n, q,
in Dmytrenko, Lazebnik and Viglione [23].
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Theorem 6 ([23]). Let m,n,m0, n0 be positive integers and let q, q0 be prime powers.
The graphs B(q;m,n) and B(q0;m0, n0) are isomorphic if and only if q = q0 and
{gcd(m, q � 1), gcd(n, q � 1)} = {gcd(m0, q � 1), gcd(n0, q � 1)} as multisets.

It is easy to argue, see [23], that every 4-cycle-free graph of the form B(q;m,n),
is isomorphic to B(q; 1, 1) (= B�(Fq;XY )), and so is isomorphic to the bia�ne
part of the point-line incidence graph of PG(2, q).

An analogous statement in dimension three is less clear. For each odd prime
power q only two non-isomorphic generalized quadrangles of order q, viewed as
finite geometries, are known. They are usually denoted by W (q) and Q(4, q), and
it is known that one is the dual of the other, see Benson [4]. This means that
viewed as bipartite graphs they are isomorphic. For odd prime powers q, the graph
B�3(Fq;XY,XY 2), which has girth 8, is the bia�ne part of W (q). Just as a 4-
cycle-free graph B�2(Fq; f2) gives rise to a projective plane, a three-dimensional
4- and 6-cycle-free graph B�(Fq; f2, f3) may give rise to a generalized quadrangle.
This suggests to study the existence of such graphs, and it is reasonable to begin
to search for them in the ‘vicinity’ of graph B�3(Fq;XY,XY 2), by which we mean
among the monomial graphs. Another motivation to study monomial graphs in
this context is the following. For q even, contrary to the two-dimensional case, the
monomial graphs can lead to a variety of non-isomorphic generalized quadrangles,
see Payne [79], [99], Glynn [40, 41], Cherowitzo [17]. It is conjectured in [40] that
known examples of such quadrangles represent all possible ones. The conjecture
was checked by computer for all e  28 in [41], and for all e  40, by Chandler [16]
(remember that q = 2e in this case).

The study of monomial graphs of girth eight for odd q began in Dmytrenko [22],
and continued in Dmytrenko, Lazebnik and Williford [24], and in Kronenthal [52].
All results in these papers suggested that that for q odd, every monomial graph
B�3(Fq; f2, f3) of girth at least eight is isomorphic to graph B�3(Fq;XY,XY 2) (as
it was conjectured in [24]). Finally, Hou, Lappano and Lazebnik in [44] showed
that this is the case.

Theorem 7 ([44]). Let q be an odd prime power. Then every monomial graph
B�3(Fq; f2, f3) of girth at least eight is isomorphic to graph B�3(Fq;XY,XY 2).

We wish to note that investigation of cycles in monomial graphs lead to several
interesting questions about bijective functions on Fq, also known as permutation
polynomials (every function on Fq can be represented as a polynomial). Some of
them are still unresolved.

Conjecture 2 ([24]). Let q = pe be an odd prime power. For an integer k, 1 
k  q � 1, let Ak = Xk[(X + 1)k �Xk] and Bk = [(X + 1)2k � 1]Xq�1�k � 2Xq�1

be polynomials in Fq[X]. Then each of them is a permutation polynomial of Fq if
and only if k is a power of p.

It was shown in [22] and [24] that the validity of this conjecture for either Ak

or Bk, would imply Theorem 7. Though the conjecture is still open for each of the
polynomials, new results on these polynomials obtained in [44] were su�cient to
prove Theorem 7.

Hence, no new generalized 4-gon can be constructed this way. What if not
both polynomials f2, f3 are monomials? In [53], Kronenthal and Lazebnik showed
that over every algebraically closed field F of characteristic zero, every graph
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B�3(F;XY, f3) of girth at least eight, where f3 is any polynomial in F[X,Y ], is
isomorphic to graph B�3(F;XY,XY 2). Their methods imply that the same result
holds over infinitely many finite fields. In particular, the following theorem holds.

Theorem 8 ([53]). Let q be a power of a prime p, p � 5, and let M = M(p) be
the least common multiple of integers 2, 3, · · · , p � 2. Suppose f3 2 Fq[X,Y ] has
degree at most p� 2 with respect to each of X and Y . Then over every finite field
extension F of FqM , every graph B�3(F;XY, f3) of girth at least eight is isomorphic
to graph B�3(F;XY,XY 2).

Recently, Kronenthal, Lazebnik and Williford [54] extended these “uniqueness”
results to the family of graphs B�3(F;XmY n, f3) (with XY replaced by an arbi-
trary monomial XmY n).

Problem 3. (i) Let q be an odd prime power, and let f2, f3 2 Fq[X,Y ]. Is it
true that every graph B�3(Fq; f2, f3) with girth at least eight is isomorphic to graph
B�3(Fq;XY,XY 2)?

(ii) Let q be an odd prime power, and let f2 2 Fq[X,Y ] and f3 2 Fq[W,X, Y, Z].
Is it true that every graph B�2(Fq; f2, f3) with girth at least eight is isomorphic to
graph B�2(Fq;XY,XY 2)?

It is clear that a negative answer to each of two parts of Problem 3 may lead
to a new generalized quadrangle. It will lead to one, if such graph exists and it is
possible to “attach” to it a (q + 1)-regular tree on 2(q2 + q + 1) vertices. Though
we still cannot conjecture the uniqueness result for odd q, we believe that it holds
over algebraically closed fields.

Conjecture 3 ([53]). Let F be an algebraically closed field of characteristic zero,
and let f2, f3 2 F[X,Y ]. Then every graph B�3(F; f2, f3) with girth at least eight
is isomorphic to graph B�3(F;XY,XY 2).

4.4. Dense (m,n)-bipartite graphs of girth 8. Let f(n,m) denote the greatest
number of edges in a bipartite graph whose bipartition sets have cardinalities n,m
(n � m) and whose girth is at least 8. In [27] Erdős conjectured that f(n,m) =
O(n) for m = O(n2/3). For a motivation of this question see de Caen and Székely
[12]. Using some results from combinatorial number theory and set systems, this
conjecture was refuted in [12],by showing the existence of an infinite family of
(m,n)-bipartite graphs with m ⇠ n2/3, girth at least 8, and having n1+1/57+o(1)

edges. As the authors pointed out, this disproved Erdős’ conjecture, but fell well
short of their upper bound O(n1+1/9).

Using certain induced subgraphs of algebraically defined graphs, Lazebnik, Usti-
menko andWoldar [61] constructed explicitly an infinite family of (n2/3, n)-bipartite
graphs of girth 8 with n1+1/15 edges. Here is the construction.

Let q be an odd prime power, and set P = Fq ⇥ Fq2 ⇥ Fq, L = Fq2 ⇥ Fq2 ⇥ Fq.
We define the bipartite graph �(q) with bipartition P [ L in which (p) is adjacent
to [l] provided

l2 + p2 = p1l1

l3 + p3 = �(p2l1 + p2l1)

(here, x denotes the image of x under the involutory automorphism of Fq2 with
fixed field Fq).
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In the context of the current survey, �(q) is closely related to the induced sub-
graph B�3[Fq,Fq2 ] of B�3 = B�3(Fq2 ; p1l1,�(p2l1 + p2l1)) (see Section 2.3). In-
deed, the only di↵erence is that the third coordinates of vertices of �(q) are required
to come from Fq.

Assuming now that q1/3 is an integer, we may further choose A ⇢ Fq with
|A| = q1/3. Set PA = A ⇥ Fq2 ⇥ Fq, and denote by �0(q) the subgraph of �(q)
induced on the set PA [ L. Then the family {�0(q)} gives the desired (n2/3, n)-
bipartite graphs of girth 8 and n1+1/15 edges, where n = q2. (See [61] for details.)

Problem 4. Improve the magnitude (exponent of n) in either the lower or the
upper bound in the inequality

c1n
1+1/15  f(n2/3, n)  c2n

1+1/9

where c1, c2 are positive constants.

4.5. Digraphs. Consider a digraph with loops Dn = �n(Fq; f2, · · · , fn), defined
as in Subsection 2.2 by system (2.2). The study of these digraphs was initiated
in Kodess [49]. Some general properties of these digraphs are similar to the ones
of graphs �n. A digraph is called strongly connected if there exists a directed
path between any of its two vertices, and every digraph is a union of its strongly
connected (or just strong) components.

Suppose each function fi is a function of only two variables, and there is an arc
from a vertex ha1, · · · , ani to a vertex hb1, · · · , bni if

ai + bi = fi(a1, b1) for all i, 2  i  n .

The strong connectivity of these digraphs was studied by Kodess and Lazebnik [50].
Utilizing some ideas from [101], they obtained necessary and su�cient conditions
for strong connectivity of Dn and completely described its strong components. The
results are expressed in terms of the properties of the span over Fp of the image of
an explicitly constructed vector function from F2

q to Fn�1
q , whose definition depends

on the functions fi. The details are a bit lengthy, and can be found in [50].
Finding the diameter of strong digraphs Dn seems to be a very hard prob-

lem, even for n = 2. Specializing f2 to a monomial of two variables, i.e., f2 =
XmY n, makes it a bit easier, though exact results are still hard to obtain. In [51],
Kodess, Lazebnik, Smith and Sporre studied the diameter of digraphs D(q;m,n) =
D2(Fq;XmY n). They obtained precise values and good bounds on the diameter
of these graphs for many instances of the parameters. For some of the results the
connection to Waring numbers over finite fields was utilized. The necessary and
su�cient conditions for strong connectivity of D(q;m,n) in terms of the arithmetic
properties of q,m, n appeared in [50].

Another interesting question about monomial digraphs is the isomorphism prob-
lem: when is D(q;m1, n1) isomorphic to D(q;m2, n2)? A similar question for bi-
partite monomial graphs B(q;m,n) was answered in Theorem 6. For those graphs
(B(q;m,n)) just the count of 4-cycles resolves the isomorphism question for fixed
m,n and large q ([101]), and the count of complete bipartite subgraphs gives the
answer for all q,m, n ([24]). In contrast, for digraphs D(q;m,n), counting cycles
of length from one (loops) to seven is not su�cient: there exist digraphs for which
these counts coincide, and which are not isomorphic (see [49]). In this regard, we
would like to state the following problem and a conjecture. For any digraphs E and
H, let |E(H)| denote the number of subdigraphs of E isomorophic to H.
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Problem 5. Are there digraphs D1, · · · , Dk such that any two monomial digraphs
D = D(q;m,n) and D0 = D(q0;m0, n0) are isomorphic if and only if |D(Di)| =
|D0(Di)| for each i = 1, · · · , k?

Though the su�ciency of the condition in the following conjecture is easy to
check, its necessity is still to be established.

Conjecture 4 ([49]). Let q be a prime power. The digraphs D(q;m1, n1) and
D(q;m2, n2) are isomorphic if and only if there exists k, coprime with q � 1, such
that

m2 ⌘ km1 mod (q � 1)

n2 ⌘ kn1 mod (q � 1) .

5. Constructions for hypergraphs

In this paper, a hypergraph H is a family of distinct subsets of a finite set. The
members of H are called edges, and the elements of V (H) =

S
E2H E are called

vertices. If all edges in H have size r, then H is called an r-uniform hypergraph
or, simply, r-graph. For example, a 2-graph is a graph in the usual sense. A vertex
v and an edge E are called incident if v 2 E. The degree of a vertex v of H is
the number of edges of H incident with v. An r-graph H is r-partite if its vertex
set V (H) can be colored in r colors in such a way that no edge of H contains two
vertices of the same color. In such a coloring, the color classes of V (H) – the sets of
all vertices of the same color – are called parts of H. We refer the reader to Berge
[5, 6] for additional background on hypergraphs.

5.1. Multicolor Ramsey numbers. Let k � 2. The multicolor Ramsey number
rk(C4) is defined to be the smallest integer n = n(k) with the property that any
k-coloring of the edges of the complete graph Kn must result in a monochromatic
subgraph isomorphic to C4. Using a 4-cycle free graph �2 = �2(Fq;XY ) with q
being an odd prime power, Lazebnik and Woldar [71] showed that rq(C4) � q2 +2.
This compared well with an upper bound by Chung and Graham [20], which implied
that rq(C4)  q2+ q+1. For details, and more on the multicolor Ramsey numbers,
see [20], [71], and a survey by S.P. Radziszowski [81].

5.2. Edge-decomposition of complete k-partite r-graphs and
complete r-graphs. In [56], Lazebnik and Mubayi generalized Theorem 4 to edge-
decompositions of complete uniform r-partite hypergraphs and complete uniform
hypergraphs, respectively. The following comment is from [56].

Looking back, it is fair to say that most of these generalizations
turned out to be rather straightforward and natural. Nevertheless
it took us much longer to see this than we originally expected: some
“clear” paths led eventually to nowhere, and several technical steps
presented considerable challenge even after the “right” definitions
had been found.

As before, let Fq be the field of q elements. For integers d, i, r � 2, let fi :

F(i�1)r
q ! Fq be a function. For xi = (xi

1, · · · , xi
d) 2 Fd

q , let (x1, · · · , xi) stand for
(x1

1, · · · , x1
d, x

2
1, · · · , x2

d, · · · , xi
1, · · · , xi

d).
Suppose d, k, r are integers and 2  r  k, d � 2. First we define a k-partite

r-graph T = T (q, d, k, r, f2, f3, · · · , fd). Let the vertex set V (T ) be a disjoint
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union of sets, or color classes, V 1, · · · , V k, where each V j is a copy of Fd
q . By

aj = (aj1, a
j
2, · · · , ajd) we denote an arbitrary vertex from V j . The edge set E(T ) is

defined as follows: for every r-subset {i1, · · · , ir} of {1, · · · , k} (the set of colors),
we consider the family of all r-sets of vertices {ai1 , · · · , air}, where each aj 2 V j ,
and such that the following system of r � 1 equalities hold:

(5.1)

rX

j=1

a
i
j

2 = f2(a
i1
1 , · · · , air1 )

rX

j=1

a
i
j

3 = f3(a
i1
1 , · · · , air1 , ai12 , · · · , air2 )

· · · · · · · · · · · · · · ·
rX

j=1

a
i
j

d = fd(a
i1
1 , · · · , air1 , ai12 , · · · , air2 , · · · , ai1d�1, · · · , aird�1) .

The system (5.1) can also be used to define another class of r-graphs, K =
K(q, d, r, f2, f3, · · · , fd), but in order to do this, we have to restrict the definition
to only those functions fi which satisfy the following symmetry property: for every
permutation ⇡ of {1, 2, · · · , i� 1},

fi(x
⇡(1), · · · , x⇡(i�1)) = fi(x

1, · · · , xi�1) .

Then let the vertex set V (K) = Fd
q , and let the edge set E(K) be the family of

all r-subsets {ai1 , · · · , air} of vertices which satisfy system (5.1). We impose the
symmetry condition on the fi to make the definition of an edge independent of the
order in which its vertices are listed.

K can be also viewed as a qd-partite r-graph, each partition having one vertex
only. If d = r, then {i1, · · · , ir} = {1, · · · , d}.
Theorem 9 ([56]). Let q, d, r, k be integers, 2  r  k, d � 2, and q be a prime
power. Then

1. T is a regular r-graph of order kqd and size

✓
k

r

◆
qdr�d+1. The degree of

each vertex is

✓
k � 1

r � 1

◆
qdr�2d+1.

2. For odd q, K is an r-graph of order qd and size
1

qd�1

✓
qd

r

◆
.

For r = 2 and q odd, the number of loops in graph �n could be easily counted.
Removing them leads to a bi-regular graph, with some vertices having degree q
and other having degree q � 1. In general this is not true for r � 3. Nevertheless,
it is true when q = p is an odd prime, and the precise statement follows. In this
case, the condition (r, p) = 1 implies (r � 1, p) = 1, which allows one to prove the
following theorem by induction on r.

Theorem 10 ([56]). Let p, d, r be integers, 2  r < p, d � 2, and p be a

prime. Then K is a bi-regular r-graph of order pd and size (1/pd�1)
�
pd

r

�
. It con-

tains pd � p vertices of degree � and p vertices of degree � + (�1)r+1, where

� = (1/pd�1)
⇣�

pd�1
r�1

�
+ (�1)r

⌘
.
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We now turn to edge-decompositions of hypergraphs. Let H and H0 be hyper-
graphs. An edge-decomposition of H by H0 is a collection P of subhypergraphs of
H, each isomorphic to H0, such that {E(X ) | X 2 P} is a partition of E(H). We
also say in this case that H0 decomposes H, and refer to the hypergraphs from P
as copies of H0.

Let T (r)

kqd
, 2  r  k, d � 1, denote the complete k-partite r-graph with each

partition class containing qd vertices. This is a regular r-graph of order kqd and
size

�
k
r

�
qdr, and the degree of each vertex is

�
k�1
d�1

�
qdr�d.

As before, let K(r)

qd
denote the complete r-graph on qd vertices. The following

theorem holds for arbitrary functions f2, · · · , fr. The proof below is similar to the
one for 2-graphs from [72].

Theorem 11 ([56]). Let q, d, r, k be integers, 2  r  k, d � 2, and q be a prime
power. Then

(1) T = T (q, d, r, k, f2, f3, · · · , fd) decomposes T (r)

kqd
.

(2) K = K(q, d, r, f2, f3, · · · , fd) decomposes K(r)

qd
provided that q is odd and

(r, q) = 1.

As an immediate corollary of this theorem one obtains constructive lower bounds
for the Ramsey numbers.

Corollary 1 ([56]). Let H be any r-uniform hypergraph which is not a subhyper-
graph in K = K(q, d, r, f2, f3, · · · , fd). Let k = qd�1, q be odd and (r, q) = 1.
Then

rk(H) � qd + 1 = kd/(d�1) + 1 .

5.3. Girth five uniform hypergraphs. For k � 2, a cycle in a hypergraph H is
an alternating sequence of vertices and edges of the form v1, E1, v2, E2, · · · , vk, Ek,
v1, such that

(i) v1, v2, · · · , vk are distinct vertices of H,

(ii) E1, E2, · · · , Ek are distinct edges of H,

(iii) vi, vi+1 2 Ei for each i 2 {1, 2, · · · , k � 1}, and vk, v1 2 Ek.

We refer to a cycle with k edges as a k-cycle, and denote the family of all k-
cycles by Ck. For example, a 2-cycle consists of a pair of vertices and a pair of edges
such that the pair of vertices is a subset of each edge. The above definition of a
hypergraph cycle is the “classical” definition (see, for example, Duchet [25]). For
r = 2 and k � 3, it coincides with the definition of a cycle Ck in graphs and, in this
case, Ck is a family consisting of precisely one member. The girth of a hypergraph
H, containing a cycle, is the minimum length of a cycle in H.

In [67], Lazebnik and Verstraëte considered a Turán-type extremal question of
determining the maximum number of edges in an r-graph on n vertices of girth
five. For graphs (r = 2), this is an old problem of Erdős [26]. The best known
lower and upper bounds are (1/2

p
2)n3/2+O(n) and (1/2)(n�1)1/2n, respectively.

For bipartite graphs, on the other hand, this maximum is (1/2
p
2)n3/2 + O(n) as

n ! 1. Many attempts at reducing the gap between the constants 1/2
p
2 and 1/2

in the lower and upper bounds have not succeeded thus far. Turán-type questions
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for hypergraphs are generally harder than for graphs, and the following result was
surprising, as in this case the constants in the lower and the upper bounds for
the maximum turned out to be equal, and the di↵erence between the bounds was
O(n1/2).

Theorem 12 ([67]). Let H be a 3-graph on n vertices and of girth at least five.
Then

|H|  1

6
n

r
n� 3

4
+

1

12
n .

For any odd prime power q � 27, there exist 3-graphs H on n = q2 vertices, of girth
five, with

|H| =
✓
q + 1

3

◆
=

1

6
n3/2 � 1

6
n1/2 .

In the context of this survey, we wish to mention that the original construction
for the lower bound came from considering the following algebraically defined 3-
graph Gq of order n = q(q�1), of girth five (for su�ciently large n) and the number
of edges ⇠ (1/6)n3/2 � (1/4)n + o(n1/2), n ! 1. Let Fq denote the finite field
of odd characteristic, and let Cq denote the set of points on the curve 2x2 = x2

1,
where (x1, x2) 2 Fq ⇥ Fq. Define a hypergraph Gq as follows. The vertex set of Gq

is Fq ⇥ Fq \ Cq. Three distinct vertices a = (a1, a2), b = (b1, b2) and c = (c1, c2)
form an edge {a, b, c} of Gq if and only if the following three equations are satisfied:

a2 + b2 = a1b1

b2 + c2 = b1c1

c2 + a2 = c1a1 .

It is not di�cult to check that Gq has girth at least five for all odd q and girth five
for all su�ciently large q. The number of edges in Gq is precisely

�
q
3

�
, since there

are
�
q
3

�
choices for distinct a1, b1 and c1, which uniquely specify a2, b2 and c2 such

that a, b, c are not on the curve 2y = x2 and {a, b, c} is an edge.
The idea to consider the hypergraph Hq, whose edges are 3-sets of vertices of

triangles in the polarity graph of PG(2, q) with absolute points deleted, is due to
Lovász, see [67] for details. It raised the asymptotic lower bound to ⇠ (1/6)n3/2 �
(1/6)n+ o(n1/2), n ! 1, as stated in Theorem 12.

More on Turán-type problems for graphs and hypergaphs, see Bollobás [7],
Füredi [33], and Füredi and Simonovits [37].

5.4. Dense graphs without cycles of certain length. For more on this subject,
see [7], and the most recent survey [37]. Our goal here is to mention some results, not
mentioned in [37], and related constructions obtained by the algebraically defined
graphs.

Let F be a family of graphs. By ex(⌫,F) we denote the greatest number of
edges in a graph on ⌫ vertices which contains no subgraph isomorphic to a graph
from F . Let Cn denote the cycle of length n, n � 3. The best bounds on
ex(⌫, {C3, C4, · · · , C2k}) for fixed k, 2  k 6= 5, are presented below.

Let ✏ = 0 if k is odd, and ✏ = 1 if k is even. When the girth is odd, the bounds
are

(5.2)
1

21+1/k
⌫1+2/(3k�3+✏)  ex(⌫, {C3, C4, · · · , C2k})  1

2
⌫1+1/k +

1

2
⌫ .
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When the girth is even, they are

(5.3)

1

21+1/k
⌫1+2/(3k�3+✏)  ex(⌫, {C3, C4, · · · , C2k, C2k+1}) 

 1

21+1/k
⌫1+1/k +

1

2
⌫ .

The upper bounds in both (5.2) and (5.3) are immediate corollaries of the result
by Alon, Hoory and Linial [3]. The lower bound holds for an infinite sequence of
values of ⌫. It was established by Lazebnik, Ustimenko and Woldar in [63] using
some graphs B�n, and those will be discussed in detail in Section 6.

For k = 2, 3, 5, there exist more precise results by Neuwirth [77], Hoory [42],
Abajo and Diánez [1].

Theorem 13. For k = 2, 3, 5 and ⌫ = 2(qk + qk�1 + · · · + q + 1), q is a prime
power,

ex(⌫, {C3, C4, · · · , C2k, C2k+1}) = (q + 1)(qk + qk�1 + · · ·+ q + 1) ,

and every extremal graph is a generalized (k + 1)-gon ⇧k+1
q .

Suppose F = {C2k}. Erdős’ even cycles theorem (see [29]) asserts that

ex(⌫, {C2k}) = O(⌫1+1/k) ,

and that the upper bound is probably sharp, but, as far as we know, Erdős has
never published a proof of it. The first proof followed from a stronger result by
Bondy and Simonovits [9], who showed that ex(⌫, {C2k})  100kv1+1/k. The upper
bound was improved by Verstraëte [100] to 8(k � 1)⌫1+1/k, by Pikhurko [80] to
(k � 1)⌫1+1/k + O(⌫) and by Bukh and Jiang [11] to 80

p
k log k ⌫1+1/k + O(⌫).

The only values of k for which ex(⌫, {C2k}) = ⇥(v1+1/k) are k = 2, 3, and 5,
with the strongest results appearing in Füredi [33, 34] (for k = 2), Füredi, Naor
and Verstraëte [36] (for k = 3), and by Lazebnik, Ustimenko and Woldar [66] (for
k = 5).

In [98], the authors provide several best lower bounds for some bipartite graphs
with given bi-degree and girth.

In [89], Terlep andWilliford considered the graphs TW (q) = B�8(Fq; f2, · · · , f8),
where

f2 = p1l1 , f3 = p1l2 , f4 = p1l3 , f5 = p1l4 , f6 = p2l3�2p3l2+p4l1 ,

f7 = p1l6 + p2l4 � 3p4l2 + 2p5l1 , and f8 = 2p2l6 � 3p6l2 + p7l1 .

These graphs provide the best asymptotic lower bound on ex(⌫, {C14}). The
approach to their construction is similar to the one in [60], and it is obtained from
Lie algebras related to generalized Kac-Moody algebras of rank 2.

Theorem 14 ([89]). For infinitely many values of q, ex(⌫, {C14}) � (1/29/8)⌫9/8.

We wish to note that TW (q) graphs also have no cycles of length less than 12.
For q = 5, 7, they do contain 12-cycles, and likely have girth 12 in general. The proof
performs a Gröbner basis computation using the computer algebra system Magma,
which established the absence of 14-cycles over the field of algebraic numbers. The
transition to finite fields was made using the Lefschetz principle.

We wish to end this section with two problems.
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Problem 6. Provide a computer-free proof of the fact that TW (q) graphs contain
no 14-cycles for infinitely many q.

It is a long standing question to determine the magnitude of ex(⌫, {C8}). The
best lower bound is ⌦(⌫6/5) and it comes from the generalized hexagon, which has
girth 12. The best upper bound is O(⌫5/4) and it comes from the general bound
O(⌫1+1/k) on 2k-cycle-free graphs.

Problem 7. Is there a graph B�3(Fq; f2, f3, f4) that contains no 8-cycles for in-
finitely many q?

Positive answer to this question will imply that ex(⌫, {C8}) = ⇥(⌫5/4).

6. Graphs D(k, q) and CD(k, q)

For any k � 2, and any prime power q, the bipartite graph D(k, q) is defined as
B�k(Fq; f2, · · · , fk), where f2 = p1l1, f3 = p1l2, and for 4  i  k,

fi =

(�pi�2l1 for i ⌘ 0 or 1 mod 4

p1li�2 for i ⌘ 2 or 3 mod 4 .

It was shown that these graphs are edge-transitive and, most importantly, the
girth of D(k, q) is at least k + 5 for odd k. It was shown in [63] that for k � 6
and q odd, graphs D(k, q) are disconnected, and the order of each component (any
two being isomorphic) is at least 2qk�b(k+2)/4c+1. Let CD(k, q) denote one of these
components. It is the family of graphs CD(k, q) which provides the best lower
bound mentioned before, being a slight improvement over the previous best lower
bound ⌦(⌫1+2/(3k+3)) given by the family of Ramanujan graphs constructed by
Margulis [75], and independently by Lubotzky, Phillips and Sarnak [74].

The construction of the graphs D(k, q) was motivated by attempts to generalize
the notion of the bia�ne part of a generalized polygon, and it was facilitated by
results of Ustimenko [94] on the embedding of Chevalley group geometries into
their corresponding Lie algebras. For more recent exposition of these ideas, see
[98], [107], and [89].

In fact, D(2, q) and D(3, q) (q odd) are exactly the bia�ne parts of a regular
generalized 3-gon and 4-gon, respectively (see [59] for more details). We wish to
point out that D(5, q) is not the bia�ne part of the generalized hexagon.

As we mentioned before, the generalized k-gons exist only for k = 3, 4, 6 ([32]),
therefore, D(k, q) are not subgraphs of generalized k-gons for k � 4.

In this section, we will discuss the important properties of these graphs in detail.

6.1. Equivalent representation of D(k, q).

Proposition 2. Let k � 2 and a1, . . . , ak�1 2 F⇤
q . Let H(k, q) = B�k(q; f2, . . . , fk)

where f2 = a1p1l1, f3 = a2p1l2, and for 4  i  k,

fi =

(�ai�1pi�2l1 for i ⌘ 0 or 1 mod 4

ai�1p1li�2 for i ⌘ 2 or 3 mod 4 .

Then H(k, q) is isomorphic to D(k, q).



122 Felix Lazebnik, Shuying Sun and Ye Wang

Proof. Let ' : V (D(k, q)) 7! V (H(k, q)) be defined via (p) ! (x), and [l] ! [y]
where

x1 = p1 , y1 = l1

x2 = a1p2 , y2 = a1l2

x2i+1 = a2ia2i�2 · · · a2a1p2i+1 , y2i+1 = a2ia2i�2 · · · a2a1l2i+1

x2i = a2i�1a2i�3 · · · a1p2i , y2i = a2i�1a2i�3 · · · a1l2i .
Clearly, ' is a bijection. Now we prove that ' preserves the adjacency. Indeed,

(p)' ⇠ [l]'

if and only if x2 + y2 = a1x1y1, x3 + y3 = a2x1y2, and
8
>>>>><

>>>>>:

x4t + y4t = �a4t�1x4t�2y1

x4t+1 + y4t+1 = �a4tx4t�1y1

x4t+2 + y4t+2 = a4t+1x1y4t

x4t+3 + y4t+3 = a4t+2x1y4t+1 .

This system of equations is equivalent to a1p2 + a1l2 = a1p1l1, a2a1p3 + a2a1l3 =
a2p1a1l2, and

8
>>>><

>>>>:

a4t�1a4t�3 · · · a1(p4t + l4t) = �a4t�1a4t�3 · · · a1p4t�3l1

a4ta4t�2 · · · a2a1(p4t+1 + l4t+1) = �a4ta4t�2 · · · a2a1p4t�1l1

a4t+1a4t�1 · · · a1(p4t+2 + l4t+2) = a4t+1p1a4t�1 · · · a1l4t
a4t+2a4t · · · a2a1(p4t+3 + l4t+3) = a4t+2p1a4t · · · a2a1l4t+1

which is equivalent to the adjacency

(p) ⇠ [l] .

⇤
Taking

ai =

(�1 for i ⌘ 0 or 3 mod 4

1 for i ⌘ 1 or 2 mod 4

and using Proposition 2, we see that D(k, q) is isomorphic to B�k(q; f2, · · · , fk)
where f2 = p1l1, f2 = p1l2, and for 4  i  k,

fi =

(
pi�2l1 for i ⌘ 0 or 1 mod 4

p1li�2 for i ⌘ 2 or 3 mod 4 .

From now on, we will use these functions to describe D(k, q).

Moreover, in the case of q = 2,

D(2, 2) ⇠= C8 , D(3, 2) ⇠= 2C8 , D(4, 2) ⇠= 4C8 ,

and

D(k, 2) ⇠= 2k�3C16 ,

for k � 5. Therefore we assume that q � 3 for the rest of this Section.
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6.2. Automorphisms of D(k, q). There are many automorphisms of D(k, q), be-
low we will list those ones we will use. It is a straightforward verification that
the mappings we describe are indeed automorphisms, and it is left to the reader.
For more details, see [59], [60], [35] or [64]. The automorphisms listed there might
look di↵erent from the ones we list here since we use the new representation of the
graphs.

6.2.1. Multiplicative automorphisms. For any a, b 2 F⇤
q , consider the map ma,b :

Pk 7! Pk,Lk 7! Lk such that (p)
m

a,b���! (p0), and [l]
m

a,b���! [l0] where p01 = ap1,
l01 = bl1, and for any 2  i  k,

p0i =

(
ab(i�1)/4c+1bbi/4c+1pi for i ⌘ 0, 1 or 2 mod 4

abi/4c+2bbi/4c+1pi for i ⌘ 3 mod 4

l0i =

(
ab(i�1)/4c+1bbi/4c+1li for i ⌘ 0, 1 or 2 mod 4

abi/4c+2bbi/4c+1li for i ⌘ 3 mod 4 .

In Table 1, each entry illustrates how each coordinate is changed under the map
ma,b, i.e., the factor that the corresponding coordinate of a point or a line is mul-
tiplied by. For example, ma,b changes p1 to ap1, l1 to bl1, both p4t+3 and l4t+3 to
their product with at+2bt+1.

Table 1. Multiplicative automorphism.

ma,b ma,b

p1 ⇤a l1 ⇤b
p4t ⇤atbt+1 l4t ⇤atbt+1

p4t+1 ⇤at+1bt+1 l4t+1 ⇤at+1bt+1

p4t+2 ⇤at+1bt+1 l4t+2 ⇤at+1bt+1

p4t+3 ⇤at+2bt+1 l4t+3 ⇤at+2bt+1

Proposition 3. For any a, b 2 F⇤
q , ma,b is an automorphism of D(k, q).

6.2.2. Additive automorphisms. For any x 2 Fq, and any 0  j  k, we define the
map tj,x : Pk ! Pk,Lk ! Lk as follows:

(1) The map t0,x fixes the first coordinate of a line, whereas t1,x fixes the
first coordinate of a point. In Table 2, we illustrate how each coordinate is
changed under the map. If the entry is empty, it means that this coordinate
is fixed by the map. For example, the map t1,x changes the following
coordinates of a line according to the rule: l1 ! l1 + x, l4 ! l4 + l2x,
l2t ! l2t + l2t�3x for t � 3, and the following coordinates of a point
according to the rule: p2 ! p2 + p1x, p4 ! p4 + 2p2x+ p1x2, · · · .

(2) For 2  j  k, tj,x is a map which fixes the first j�1 coordinates of a point
and a line. In Table 3, we illustrate how each coordinate is changed under
the corresponding map.



124 Felix Lazebnik, Shuying Sun and Ye Wang

Table 2. Additive automorphism.

t0,x t1,x t2,x
p1 +x
p2 +p1x +x
p3 +p2x �p1x
p4 +2p2x+ p1x2

p5 +p4x +p3x �p2x
p4t+1 +p4tx +p4t�1x �p4t�3x
p4t+2 +p4t�1x +p4t�2x
p4t+3 +p4t+2x �p4t�1x
p4t +p4t�2x+ p4t�3x+ p4t�5x2 +p4t�4x
l1 +x
l2 +l1x �x
l3 +2l2x+ l1x2

l4 +l2x +l1x
l5 +l4x �l2x

l4t+1 +l4tx �l4t�3x
l4t+2 +l4tx +l4t�1x +l4t�2x
l4t+3 +l4t+2x+ l4t+1x+ l4tx2 �l4t�1x
l4t +l4t�3x +l4t�4x

Table 3. Additive automorphism (continued).

j ⌘ 0 , 1 mod 4
tj,x tj,x

pi
i  j � 1

li
i  j � 1

pj +x lj �x
pj+1+2t lj+1+2t

pj+2 �p1x lj+2

pj+4 �p2x lj+4 �l2x
pj+4+2t �p2t+1x lj+4+2t �l2t+1x

j ⌘ 2 , 3 mod 4
tj,x tj,x

pi
i  j � 1

li
i  j � 1

pj +x lj �x
pj+1+2t lj+1+2t

pj+2 lj+2 +l1x
pj+4 +p2x lj+4 +l2x

pj+4+2t +p2t+2x lj+4+2t +l2t+2x
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Proposition 4. For any x 2 Fq, and any 0  j  k, tj,x is an automorphism of
D(k, q).

6.2.3. Polarity automorphism. Consider the map � : Pk ! Lk,Lk ! Pk such that

(p1, p2, p3, p4, · · · , pk�1, pk)
��!

(
[p1, p2, p4, p3, · · · , pk, pk�1] if k is even

[p1, p2, p4, p3, · · · , pk�1, pk�2, pk] if k is odd

and

[l1, l2, l3, l4, · · · , lk�1, lk]
��!

(
(l1, l2, l4, l3, · · · , lk, lk�1) if k is even

(l1, l2, l4, l3, · · · , lk�1, lk�2, lk) if k is odd .

Proposition 5. If k is even, or q is even, then � is an automorphism of D(k, q).

Theorem 15 ([60]). For any integer k � 2, and any prime power q, the automor-
phism group of D(k, q) is transitive on Pk, is transitive on Lk, and the graph is
edge-transitive. If any one of k and q is even, then D(k, q) is vertex-transitive.

6.3. Girth of D(k, q). Lazebnik and Ustimenko in [60] showed that girth(D(k, q))
� k+5 for odd k. Here we present a proof of this result by using the new notation
for graphs D(k, q) and correct a minor drawback in their original proof.

Theorem 16 ([60]). Let k � 3 be an odd integer, and q be a prime power, then
girth(D(k, q)) � k + 5.

Proof. The idea of the proof is the following:
For any two distinct vertices x, y 2 V (D(k, q)) and any integer 2  m  (k + 3)/2,
we show that there is at most one path in D(k, q) of length m with the endpoints
x and y.
We consider the following two cases.

Case 1: k = 4r � 3 with r � 2.

Lemma 1. If [l1] = [0] ⇠ (p1) = (0) ⇠ [l2] ⇠ (p2) ⇠ · · · ⇠ [lr] ⇠ (pr) ⇠ [lr+1]
is a path of length 2r, where for any 1  i  r + 1,[li] = [li1, · · · , lik], and for any
1  i  r, (pi) = (pi1, · · · , pik), then we have the following:

(1) For any 2  i  r, li4i�5 = li4i�4 = li4i�3 = pi4i�3 = pi4i�5 = pi4i�2 = 0.

(2) For any 3  i  r, li4i�7 = 0 and l22 = 0.

(3) For all 2  i  r, li+1
4i�4 6= 0.

Proof. If [l1] ⇠ (p1) ⇠ [l2] ⇠ (p2) ⇠ · · · ⇠ [lr] ⇠ (pr) ⇠ [lr+1] is a path, then
li1 6= li+1

1 for i = 1, · · · , r, and pi1 6= pi+1
1 for i = 1, · · · , r � 1. In particular, l21 6= 0

and p21 6= 0.
Since (p1) = (0), we have [l2] = [l21, 0, 0, · · · , 0]. Also, it is easy to check that
(p2) = (p21, p

2
2, 0, p

2
4, 0, 0, · · · , 0).

We next show that for 3  i  r,

li4i�7 = li4i�5 = li4i�4 = · · · = li4r�3 = 0 ,

and for 2  i  r

pi4(i�1)�1 = pi4(i�1)+1 = pi4(i�1)+2 = · · · = pi4r�3 = 0 .

To prove this, we begin with the following claim.
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Claim 1. Let 2  i  r�1. If pi4(i�1)�1 = pi4(i�1)+1 = pi4(i�1)+2 = · · · = pi4r�3 = 0,

then li+1
4i�3 = li+1

4i�1 = li+1
4i = · · · = li+1

4r�3 = 0.

Indeed, since [li+1] ⇠ (pi), for any j � i, we have the following,

li+1
4j�3 + pi4j�3 = pi4j�5l

i+1
1 , li+1

4j�1 + pi4j�1 = pi1l
i+1
4j�3

li+1
4j + pi4j = pi4j�2l

i+1
1 , li+1

4j+2 + pi4j+2 = pi1l
i+1
4j .

Since pi4j�5 = pi4j�3 = pi4j�2 = pi4j = 0 for j � i, we have li+1
4j�3 = li+1

4j�1 = li+1
4j =

li+1
4j+2 = 0 for j � i. Therefore, Claim 1 holds.

Now we prove part (2) of Lemma 1 by induction on i. In the case of i = 2, it is
trivial since p23 = p25 = p26 = · · · = p24r�3 = 0. Let (2) hold for i � 2, which means
that pi4(i�1)�1 = pi4(i�1)+1 = pi4(i�1)+2 = · · · = pi4r�3 = 0. By Claim 1,

li+1
4i�3 = li+1

4i�1 = li+1
4i = · · · = li+1

4r�3 = 0 .

Since (pi+1) ⇠ [li+1], for any j � i, we have the following,

pi+1
4j�1 + li+1

4j�1 = pi+1
1 li+1

4j�3 , pi+1
4j+1 + li+1

4j+1 = pi+1
4j�1l

i+1
1

pi+1
4j+2 + li+1

4j+2 = pi+1
1 li+1

4j , pi+1
4j+4 + li+1

4j+4 = pi+1
4j+2l

i+1
1 .

Since li+1
4j�3 = li+1

4j�1 = li+1
4j = li+1

4j+2 for j � i, we have pi+1
4j�1 = pi+1

4j+1 = pi+1
4j+2 =

pi+1
4j+4 = 0 for j � i. Therefore, part (2) holds, then by Claim 1, part (1) also holds.

Finally, we show part (3) also holds. In the case of i = 2, we have

l34 + p24 = p22l
3
1 ,

and hence,

l34 = p22l
3
1 � p24 = p22l

3
1 � (p22l

2
1 � l24) = p22(l

3
1 � l21) = (p21l

2
1 � l22)(l

3
1 � l21) =

= p21l
2
1(l

3
1 � l21) 6= 0 .

For 3  i  r, since [li+1] ⇠ (pi), we have

li+1
4i�4 + pi4i�4 = pi4i�6l

i+1
1 ,

and hence,
li+1
4i�4 = pi4i�6l

i+1
1 � pi4i�4 =

= pi4i�6l
i+1
1 + li4i�4 � pi4i�6l

i
1 =

= pi4i�6(l
i+1
1 � li1) =

= (pi1l
i
4i�8 � li4i�6)(l

i+1
1 � li1) =

= (pi1l
i
4i�8 � pi�1

1 li4i�8)(l
i+1
1 � li1) =

= (pi1 � pi�1
1 )(li+1

1 � li1)l
i
4i�8 .

The third equality holds since li4i�4 = 0 for 2  i  r, and the fifth equality holds

since pi�1
4i�6 = 0. As pi1 6= pi�1

1 and li+1
1 6= li1, we have li+1

4i�4 6= 0 for any 2  i  r.
⇤
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Claim 2. Let [l] and [m] be two lines in D(k, q), then for every i, 1  i  r, all
the paths connecting [l] and [m] of length 2i pass through a common point.

Proof. Suppose that there is a path P of length 2i connecting [l] and [m] . Let
P be [l] = [l̃1] ⇠ (p̃1) ⇠ · · · ⇠ [l̃i] ⇠ (p̃i) ⇠ [l̃i+1] = [m]. We want to show that (p̃1)
is uniquely determined by [l] and [m].
Since D(k, q) is transitive on Lk by Theorem 15, there is ↵ 2 Aut(D(k, q)) such that
[l̃1]↵ = [0]. Let the first coordinate of (p̃1)↵ be z, i.e., (p̃1)↵ = (z, 0, · · · , 0). Then
� = t2,�z is an automorphism such that (p̃1)↵� = (0, · · · ). Now let (pj) = (p̃j)↵�

and [lj ] = [l̃j ]↵� for any j � 1. Hence [l1] = [0]� = [0], and (p1) = (0). Suppose
that [l̃i+1]↵ = [a1, a2, · · · , a4r�3], then

[li+1] = [a1, a2, · · · , a4r�3]
� = [a1, a2 � a1z, · · · , a4r�4, a4r�3 � a4r�4z] .

Therefore,

li+1
4i�4 = a4i�4 ,

li+1
4i�3 = a4i�3 + a4i�4z .

As li+1
4i�3+ pi4i�3 = pi4i�5l

i+1
1 , and pi4i�3 = pi4i�5 = 0, by Lemma 1 part (1), we have

li+1
4i�3 = 0. Therefore,

a4i�3 + a4i�4z = 0 .

Since li+1
4i�4 6= 0 by Lemma 1 part (3), we have a4i�4 6= 0, and hence

z =
�a4i�3

a4i�4
.

So z is uniquely determined by [l̃i+1]↵ = [m]↵. Since z is the first coordinate of
(p̃1)↵ with (p̃1)↵ = (z, 0, · · · , 0), and ↵ is determined by [l], then (p̃1) is uniquely
determined by [l] and z, and hence uniquely determined by [l] and [m].

⇤
Since r = (k + 3)/4, we have girth(D(k, q)) � k + 5 by Claim 2. This finishes

the proof of the Theorem 16.

Case 2: k = 4r � 1 with r � 1.
For k = 3, it is easy to show that the girth is 8 (see [59]). Now assume that k � 7.
Since the projection of a path in D(k, q) on the first k � 2 coordinates gives a
path in D(k � 2, q), then girth(D(k, q)) � girth(D(k � 2, q)) � k + 3. We wish to
show that there is no cycle of length k + 3 = 4r + 2 in D(k, q). Consider a path
[l̃1] ⇠ (p̃1) ⇠ [l̃2] ⇠ · · · ⇠ [l̃r+1] ⇠ (p̃r+1) of length 2r + 1 connecting a line [l̃1] = [l]
and a point (p̃r+1) = (p). Let ↵ 2 Aut(D(k, q)) be an automorphism such that
[l̃1]↵ = [0]. Then (p̃1)↵ = (z, 0, · · · , 0). Assume that (p̃r+1)↵ = (b1, b2, · · · , bk), and
� = t2,�z. Let [li] = [l̃i]↵� and (pi) = (p̃i)↵� , for 1  i  r + 1. Then [l1] = [0],
(p1) = (0), and li1 6= li+1

1 , pi1 6= pi+1
1 for 1  i  r.

Lemma 2. For r � 1, lr+1
4r�3 = lr+1

4r�1 = 0, and pr+1
4r�2 6= 0.

Proof. Since lr+1
4r�3+pr4r�3 = lr+1

1 pr4r�5, and pr4r�5 = pr4r�3 = 0 by Lemma 1 part

(1), we have lr+1
4r�3 = 0. Therefore, combined with Lemma 1 part (1), we obtain

li+1
4r�1 � li4r�1 = (pi+1

1 � pi1)l
i+1
4r�3 = 0 for any 1  i  r. As l14r�1 = 0, we have



128 Felix Lazebnik, Shuying Sun and Ye Wang

lr+1
4r�1 = 0. Therefore, we have

pr+1
4r�2 = pr+1

1 lr+1
4r�4 � lr+1

4r�2 =

= pr+1
1 lr+1

4r�4 � (pr1l
r+1
4r�4 � pr4r�2) =

= (pr+1
1 � pr1)l

r+1
4r�4 ,

the last equality holds by Lemma 1 part (1) again. Since lr+1
4r�4 6= 0 by Lemma 1

part (3), and pr+1
1 6= pr1, we have pr+1

4r�2 6= 0.
⇤

Since (pr+1) = (b1, b2, · · · , bk)t2,�z , then (pr+1) = (b1 � z, b2 � z, · · · , b4r�2, b4r�1 �
b4r�2z). As [lr+1] ⇠ (pr+1), we have

lr+1
4r�1 + (b4r�1 � b4r�2z) = pr+1

1 lr+1
4r�3 ,

where lr+1
4r�3 = 0 by Lemma 2. Therefore,

lr+1
4r�1 + b4r�1 � b4r�2z = 0 ,

where lr+1
4r�1 = 0, b4r�2 = pr+1

4r�2 6= 0 by Lemma 2. Therefore, the last equality
considered as an equation with respect to z, has a unique solution. Similarly as
in Case 1, this implies that D(k, q) has no cycles of length 4r + 2 = k + 3. This
finishes the proof of Theorem 16.

⇤
Corollary 2. Let k � 2 be an even integer, and q be a prime power, then

girth(D(k, q)) � k + 4 .

The following conjecture was stated in [35] for all q � 5, and here we extend it
to the case where q = 4.

Conjecture 5. D(k, q) has girth k + 5 for k odd and k + 4 for k even, and all
prime powers q � 4.

For the following values of k, and q, Conjecture 5 was confirmed ([84], [90],[91])
by using computers.

q = 4, 5 , 2  k  14 .

q = 7 , 2  k  8 .

q = 8, 9 , 2  k  7 .

q = 11, 13 , 2  k  6 .

q = 16, 17, 19, 23 , 2  k  4 .

q = 25, 27, 29, 31, 37, 41, 43, 47, 49 , k = 2, 3 .

For q = 3, the girth of D(k, 3) exhibits di↵erent behavior, and we do not un-
derstand it completely. The following table provides the values of the girth for
2  k  26.

Problem 8. Determine the girth of D(k, 3) for all k � 2.

Conjecture 5 was proved only for infinitely many pairs of (k, q).



Graphs defined by systems of equations 129

Table 4. Girth of D(k, 3) for small k.

k 2 3 4 5 6 7 8 9 10 11 12 13 14
girth 6 8 12 12 12 12 12 18 18 18 18 18 18
k 15 16 17 18 19 20 21 22 23 24 25 26

girth 20 20 24 24 24 28 28 28 28 28 34 34

Theorem 17 ([35]). For any k � 3 odd, and q being a member of the arithmetic
progression {1 + n(k + 5)/2}n�1,

girth(D(k, q)) = k + 5 .

Remark 2. The theorem could be extended for even k � 2 and q being a member
of the arithmetic progression {1+n(k+4)/2}n�1, and in this case girth (D(k, q)) =
k + 4. The proof is essentially the same as the proof in [35], and we omit it.

By modifying an idea from [35], Lazebnik and Sun [57] could strengthen this
result.

Theorem 18 ([57]). Let k ⌘ 3 mod 4, and for q � 4 with ((k + 5)/4)|(q � 1),
girth(D(k, q)) = k + 5.

In [18], Cheng, Chen and Tang found another sequence of pairs (k, q) for which
the girth of D(k, q) could be determined precisely.

Theorem 19 ([18]). For any q � 4, and any odd k such that (k + 5)/2 is a power
of the characteristic of Fq,

girth(D(k, q)) = k + 5 .

Recently, the same authors generalized this result.

Theorem 20 ([19]). For any prime p, and any positive integers h,m, s with h|(pm�
1) and hps > 3,

girth(D(2hps � 4, pm)) = girth(D(2hps � 5, pm)) = 2hps .

Suppose the girth of D(k, q) satisfies Conjecture 5. Then the following theorem
allows us to determine the exact value of the girth of D(k0, q) for infinitely many
values of k0, namely, k0 = pmgirth (D(k, q)) � 5 and k0 = pmgirth (D(k, q)) � 4 for
an arbitrary positive integer m if k 6⌘ 3 mod 4; k0 = pmgirth (D(k, q)) � 5 for an
arbitrary positive integer m if k ⌘ 3 mod 4.

Theorem 21 ([57]). Let k � 3 and p be the characteristic of Fq. Let gk =
girth(D(k, q)). Suppose that gk satisfies Conjecture 5. Then

girth (D(pgk � 5, q)) = pgk .

In addition, if k 6⌘ 3 mod 4, then the following also holds:

girth (D(pgk � 4, q)) = pgk .

By Theorems 17, 18, 21, Conjecture 5 is true for (k + 5)/2 being the product of
a factor of q� 1 which is at least 4 and a power of the characteristic of Fq, and for
(k + 5)/4 being the product of a factor of q � 1 which is at least 2 and a power of
the characteristic of Fq.
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6.4. Connectedness of D(k, q). Let c(G) be the number of components of a graph
G. In [63], Lazebnik, Ustimenko and Woldar proved that for k � 6 and q odd,
graphs D(k, q) are disconnected. As graphs D(k, q) are edge-transitive, all compo-
nents are isomorphic. Let CD(k, q) denote one of them. It was shown in [63] that
c(D(k, q)) � qt�1, where t = b(k + 2)/4c, and therefore the order of CD(k, q) is
at most 2qk�t+1. Moreover, in [64], the same authors proved that for all odd q,
c(D(k, q)) = qt�1. Lazebnik and Viglione [69] showed that c(D(k, q)) = qt�1 for
even q > 4, c(D(k, 4)) = qt for k � 4, and c(D(2, 4)) = c(D(3, 4)) = 1.

In order to characterize the components, we begin with the notion of an invariant
vector of the component (see [63]).

6.4.1. Invariant vector. Let k � 6 and t = b(k + 2)/4c. For every point (p) =
(p1, · · · , pk) and every line [l] = [l1, · · · , lk] in D(k, q), and for any 2  r  t, let
ar : Pk [ Lk ! Fq be given by:

ar((p)) =

8
>>>><

>>>>:

�p1p4 + p22 + p5 � p6 if r = 2

(�1)r�1[p1p4r�4 � p2p4r�6 � p2p4r�7 + p3p4r�8 � p4r�3+

+p4r�2 +
r�2X

i=2

(�p4i�3p4(r�i)�2 + p4i�1p4(r�i)�4)] if r � 3

and

ar([l]) =

8
>>>><

>>>>:

�l1l3 + l22 � l5 + l6 if r = 2

(�1)r�1[l1l4r�5 � l2l4r�6 � l2l4r�7 + l3l4r�8 + l4r�3�

l4r�2 +
r�2X

i=2

(�l4i�3l4(r�i)�2 + l4i�1l4(r�i)�4)] if r � 3 .

For example,

a3((p)) = p1p8 � p2p6 � p2p5 + p3p4 � p9 + p10 ,

and

a3([l]) = l1l7 � l2l6 � l2l5 + l3l4 + l9 � l10 .

The invariant vector ~a(u) of a vertex u is defined as:

~a = ~a(u) = ha2(u), a3(u), · · · , at(u)i .
The following proposition justifies the term.

Theorem 22 ([63]). If (p) ⇠ [l], then ~a((p)) = ~a([l]).

Proof. Since (p) ⇠ [l], then each component of [l] can be written in terms of (p)
and l1 in the following way:

l2 = p1l1 � p2

l3 = p21l1 � p1p2 � p3

li = pi�2l1 � pi for i ⌘ 0, 1 mod 4

li = p1pi�4l1 � p1pi�2 � pi for i ⌘ 2, 3 mod 4 .
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If r = 2,

a2([l]) =

= �l1(p21l1 � p1p2 � p3) + p21l
2
1 + p22 � 2p1l1p2 � p3l1+

+p5 + p1p2l1 � p1p4 � p6 =

= �l21p
2
1 + p1p2l1 + p3l1 + p21l

2
1 + p22 � 2p1p2l1 � p3l1+

+p5 + p1p2l1 � p1p4 � p6 =

= p22 � p1p4 + p5 � p6 =

= a2((p)) .

Now, for r � 3, we have the following:

ar([l]) = (�1)r�1[p1p4r�9l21 � p1p4r�7l1 � p4r�5l1 � (p1l1 � p2)(p1p4r�10l1�
�p1p4r�8 � p4�6)� (p1l1 � p2)(p4r�9l1 � p4r�7) + (p21l1 � p1p2 � p3)

(p4r�10l1 � p4r�8) + p4r�5l1 � p4r�3 � p1p4r�6l1 + p1p4r�4 + p4r�2�

�
r�2X

i=2

(p4i�5l1 � p4i�3)(p1p4(r�i�1)�2l1 � p1p4(r�i�1) � p4(r�i)�2)+

+
r�2X

i=2

(p4(r�i�1)�2l1 � p4(r�i�1))(p1p4i�5l1 � p1p4i�3 � p4i�1) =

= (�1)r�1[p1p4r�4 � p2p4r�6 � p2p4r�7 + p3p4r�8 � p4r�3 + p4r�2+

+
r�2X

i=2

(�p4i�3p4(r�i)�2 + p4i�1p4(r�i)�4)] =

= ar((p)) .

⇤
Corollary 3. All the vertices in the same component of D(k, q) have the same
invariant vector.

A natural question at this point is whether the equality of invariant vectors of
two vertices of D(k, q) implies that the vertices are in the same component. The
answer is a�rmative for k � 6 and q 6= 4, and we will discuss it later in this paper.

Let (0) denote the point corresponding to zero vector. By Corollary 3, and the
fact that ~a((0)) = ~0, we have the following:

Theorem 23. Let u be in the component of D(k, q) containing (0). Then

~a(u) = ~0 .

6.4.2. Lower bound on c(D(k, q)).

Theorem 24 ([63]). For any k � 2, and q be a prime power, let t = b(k + 2)/4c.
Then

c(D(k, q)) � qt�1 .
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Proof. Let x = (x2, · · · , xt) and y = (y2, · · · , yt) be distinct vectors in Ft�1
q .

Consider points (p) = (p1, · · · , pk), and (p0) = (p01, · · · , p0k) be defined by:

pj =

(
x(j�2)/4 if j ⌘ 2 mod 4 ,

0 otherwise .

and

p0j =

(
y(j�2)/4 if j ⌘ 2 mod 4 ,

0 otherwise .

It is easy to see that ~a((p)) = x 6= y = ~a((p0)), and by Corollary 3, (p) and (p0) are
in di↵erent components. Therefore, there are at least qt�1 components.

⇤
6.4.3. Projections and lifts. For k � 3, the projection

⇡ : V (D(k, q)) ! V (D(k � 1, q))

is defined via

(p1, · · · , pk) 7! (p1, · · · , pk�1) , [l1, · · · , lk] 7! [l1, · · · , lk�1] .

As we mentioned in Section 3.2, ⇡ is a graph homomorphism ofD(k, q) toD(k�1, q).
The vertex w = v⇡ 2 V (D(k � 1, q)) will often be denoted by v0; we say that v is
a lift of w and w is a projection of v. If B is a component of D(k, q), we will often
denote B⇡ by B0, and ⇡B will denote the restriction of ⇡ to B. We say that an
automorphism ⌧ stabilizes B if B⌧ = B; the group of all such automorphisms is
denoted by Stab(B). A component of D(k, q) containing a vertex v will be denoted
by C(v). The point and line corresponding to the zero vector ~0 will be denoted by
(0) and [0], respectively. We will always denote the component C((0)) of D(k, q)
by just C. Then C 0 will be the corresponding component in D(k � 1, q).

Theorem 25 ([64]). Let ⌧ be an automorphism of D(k, q), and B be a component
of D(k, q) with v 2 V (B). Then ⌧ stabilizes B if and only if v⌧ 2 B. In particular,
t0,x, t1,x, and ma,b are in Stab(C) for all x, a, b 2 Fq, a, b 6= 0.

Theorem 26 ([64]). Let B be a component of D(k, q). Then ⇡B is a t-to-1 graph
homomorphism for some t, 1  t  q. In particular, let k ⌘ 0, 3 mod 4, and
suppose ⇡C is a t-to-1 mapping for some t > 1. Then t = q.

Theorem 27 ([64]). The map ⇡C : V (C) ! V (C 0) is surjective.

6.4.4. Exact number of components for q 6= 4.

Theorem 28 ([69]). Let q be a prime power, q 6= 4, and k � 6. If v 2 V (D(k, q))
satisfies ~a(v) = ~0, then v 2 V (C).

Proof. The proof proceeds by induction on k. It is known([64]) that for q 6= 4,
graphs D(k, q) are connected for k = 2, 3, 4, 5.
We begin with the base case k = 6. Let v 2 V (D(6, q)) with ~a(v) = ~0, and let
v0 = v⇡ 2 V (D(5, q)). Since D(5, q) is connected, then v0 2 C 0 = D(5, q). Since ⇡C

is surjective by Theorem 27, there is w 2 V (C) such that w⇡ = v0 = v⇡. Since the
sixth coordinate of any vertex u is uniquely determined by its initial five coordinates
and ~a(u), we have v = w 2 V (C).
Suppose that the theorem is true for k0 < k, with k � 7.
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If k ⌘ 2 mod 4, choose v 2 V (D(k, q)) with ~a(v) = ~0, and let v0 = v⇡ 2 V (D(k �
1, q)). Then ~a(v0) = ~0. Let w be any lift of v0 to C. Then ~a(w) = ~0 = ~a(v) and
w⇡ = v00 = v⇡. This implies that v = w, as in the base case k = 6. Thus v 2 V (C).
If k ⌘ 0, 1, 3 mod 4, we want to show that ⇡C is a q-to-1 map. (In the case of
k ⌘ 0, 3 mod 4, it su�ces to show that there is a point (p0) 2 V (C 0) which has
two lifts to D(k, q) in V (C) by Theorem 26.) These are exactly the values of k for
which the invariant vectors of C and C 0 are the same. Choose v 2 V (D(k, q)) such
that ~a(v) = ~0. Let v0 = v⇡ 2 V (D(k � 1, q)). Since ~a(v) = ~a(v0) = ~0, then v0 2 C 0

by the induction hypothesis. But then since ⇡C is a q-to-1 map, all of the lifts of
v0, including v itself, lie in C, and we are done. So we proceed with these cases.

Case 1: k ⌘ 3 mod 4. Let (p0) 2 V (D(k � 1, q)) be

(p0) = (0, · · · , 0, 1,�1, 1, 1) .

It can be checked easily that ~a(p0) = ~0, so (p0) 2 V (C 0) by the inductive hypothesis.
Since ⇡C is surjective, there is (p) 2 V (C) with (p)⇡ = (p0), i.e., for some y 2 Fq,

(p) = (0, · · · , 0, 1,�1, 1, 1, y) .

Note that:

(0, · · · , 0, 1,�1, 1, 1, y) ⇠ [0, · · · , 0,�1, 1,�1,�1,�y]
t0,1��!

[0, · · · , 0,�1, 1, 0, 0,�y � 1]
t1,1��! [1, 0, · · · , 0,�1, 1, 0,�1,�y � 1] ⇠

⇠ (0, · · · , 0, 1,�1, 1, 1, y + 1) .

Since t0,1, t1,1 2 Stab(C) by Theorem 25, all the vertices above are in V (C).
Hence(p0) has two lifts to D(k, q) in C.

Case 2: k ⌘ 0 mod 4. Write k = 4j, j � 2. Let (p0) 2 V (D(k � 1, q)) be

(p0) = (0, · · · , 0, 1, 1, 0) .
Clearly ~a(p0) = ~0, so (p0) 2 V (C 0) by the induction hypothesis. Since ⇡C is surjec-
tive, there is (p) 2 V (C) with (p)⇡ = (p0), i.e., for some y 2 Fq,

(p) = (0, · · · , 0, 1, 1, 0, y) .
First suppose y 6= 0. Then

(p)ma,b = (0, · · · , 0, ajbj , ajbj , 0, ajbj+1y) .

One can always choose a, b 2 F⇤
q such that ab = 1 but b 6= 1. With this choice of a

and b, we have
(p)ma,b = (0, · · · , 0, 1, 1, 0, by) 2 V (C) ,

by Theorem 25. Since y 6= 0, and b 6= 1, (p0) has two lifts to D(k, q) in C.
Now suppose y = 0, then

(0)
t4j�3,1����! (0, · · · , 0, 1, 0, 0, 0) t4j�3,1����! (p) .

Therefore, t4j�3,1t4j�2,1 2 Stab(C) by Theorem 25. Now let (p0) be

(p0) = (0, · · · , 0, 1, 1, 0, 0, 0) .
Clearly ~a(p0) = ~0, so (p0) 2 V (C 0) by the induction hypothesis. Since ⇡C is surjec-
tive, there is (p) 2 V (C) with (p)⇡ = (p0), i.e., for some y 2 Fq,

(p) = (0, · · · , 0, 1, 1, 0, 0, 0, y) .
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Note that:

(p)
t1,�1���! (0, · · · , 0, 1, 1,�1,�1, 0, y + 1)

t4j�3,1t4j�2,1���������! (0, · · · , 0, 1, 1, 0, 0, 0, y + 1) .

Since t1,�1, t4j�3,1t4j�2,1 2 Stab(C) by Theorem 25, all the vertices above are in
V (C). Hence (p0) has two lifts to D(k, q) in C.

Case 3: k ⌘ 1 mod 4. Write k = 4j � 3, j � 3. For any x 2 Fq, let (p0) 2
V (D(k � 1, q)) be

(p0) = (0, · · · , 0, x, 0) .
Clearly ~a(p0) = ~0, so (p0) 2 V (C 0) by the induction hypothesis. Since ⇡C is surjec-
tive, there is (p) 2 V (C) with (p)⇡ = (p0), i.e., for some y 2 Fq,

(p) = (0, · · · , 0, x, 0, y) .
It can be verified that (p) is stabilized by t1,xt4j�3,�x, hence t1,xt4j�3,�x 2 Stab(C)
by Theorem 25. Since t1,x 2 Stab(C), we have t4j�3,�x 2 Stab(C) for any x 2 Fq.
Thus (0, · · · , 0,�x) = (0)t4j�3,�x 2 V (C), and (0) has q distinct lifts to C. Thus
⇡C is q-to-1.

⇤

Theorem 29 ([69]). Let q be a prime power q 6= 4, k � 2 be an integer, and
t = b(k + 2)/4c. Then c(D(k, q)) = qt�1.

Proof. We have already mentioned (see the beginning of the proof of Theorem28)
that for 2  k  5, and q 6= 4, D(k, q) is connected. Hence the statement is correct
in these cases. We also remind the reader that for all k � 2 and prime powers q,
D(k, q) is edge-transitive, hence all its components are isomorphic.
Let k � 6. Combining Theorem 23 and Theorem 28, we have that v 2 V (C) if and
only if ~a(v) = ~0. To determine the number of points in C, we need only determine
how many solutions there are to the equation ~a((p)) = ~0, or equivalently to the
system of equations ar = 0 for every r � 2. For 3  r  t, and arbitrary p1, · · · , p5,
p4r�3, p4r�4, p4r�5 and p4t�1, · · · , pk, we can uniquely solve for p4r�2 for 2  r  t.
Therefore, there are q5+3(t�2)+k�(4t�2) = qk�t+1 points in C.
Since the total number of points in D(k, q) is qk, and all its components are iso-
morphic, we have

c(D(k, q)) =
qk

qk�t+1
= qt�1 .

⇤
We will show that the invariant vector of a vertex characterizes the component

containing the vertex.

Corollary 4 ([69]). Let k � 6, and q 6= 4. Then ~a(u) = ~a(v) if and only if
C(u) = C(v).

Proof. Let t = b(k+2)/4c, and let C(v) be the component of D(k, q) containing
the vertex v. Let X be the set of components of D(k, q) and define the mapping
f : X 7! Ft�1

q via f(C(v)) = ~a(v). From Theorem 22, we know that f is well
defined, i.e., C(u) = C(v) implies ~a(u) = ~a(v). By Theorem 29, |X| = qt�1, so that
f is bijective. Thus C(u) = C(v) whenever ~a(u) = ~a(v).

⇤
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6.4.5. Exact number of components for D(k, 4). In order to deal with the case q = 4,
we will need an analog of Theorem 28. We begin by defining an invariant vector for
D(k, 4). Its definition is very close to ~a defined before, the only di↵erence being the
presence of an extra coordinate. For u 2 V (k, 4), and t = b(k+2)/4c, the invariant
is given by

~b = ~b(u) = hb1(u), b2(u), · · · , bt(u)i ,
where bi = ai for all i � 2 and

b1((p)) = p1p2 + p3 + p24 ,

b1([l]) = l1l2 + l23 + l4 .

The following statement is analogous to Theorem 23.

Theorem 30 ([69]). Let u be in the component of D(k, 4) containing (0). Then

~b(u) = ~0 .

Proof. Suppose there is a vertex (p) 2 V (C) with ~b((p)) = ~0 . Then

(p) = (p1, p2, p3, p4, · · · ) ⇠ [l1, p2 + p1l1, p3 + p1p2 + p21l1, p4 + p2l1, · · · ] = [l] .

Theorem 23 gives us that bi([l]) = bi((p)) = 0 for all i � 2. By assumption
b1((p)) = p1p2 + p3 + p24 = 0. Since we are in characteristic 2 field and a4 = a for
any a 2 F4,

b1([l]) = l1(p2 + p1l1) + (p3 + p1p2 + p21l1)
2 + (p4 + p2l1) =

= p21p
2
2 + p23 + p4 = (p1p2 + p3 + p24)

2 = 0 .

Thus ~b([l]) = ~0. Similarly, one shows that if [l] 2 V (C) with ~b([l]) = ~0 and (p) ⇠ [l],

then~b((p)) = ~0. Therefore, if a vertex in C has invariant ~0, so do all of its neighbors.

Since C is connected and ~b(0) = ~0, all vertices in C must have invariant ~0.
⇤

The following Theorem is the analog of Theorem 28 for q = 4, and its proof is
similar to the one of Theorem 28.

Theorem 31 ([69]). Let k � 4. If v 2 V (D(k, 4)) satisfies ~b(v) = ~0 then v 2 V (C).

Similarly to the proof of Theorem 29, one can show that:

Theorem 32 ([69]). c(D(2, 4)) = c(D(3, 4)) = 1, and c(D(k, 4)) = 4t with k � 4
and t = b(k + 2)/4c.
Remark 3. The analog of Corollary 4 does not hold for q = 4. The reason for this
is the special first coordinate of the invariant vector. Indeed, let ! be a primitive
element of F4. Then

(p) = (0, 0,!, 0, · · · , 0) ⇠ [0, 0,!, 0, · · · , 0] = [l] ,

in D(k, 4), but

~b((p)) = h!, 0, · · · , 0i 6= h!2, 0, · · · , 0i = ~b([l]) .
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6.5. Diameter of CD(k, q). Let diam(CD(k, q)) denote the diameter of the graph
CD(k, q). For small values of k and q, we have the following computational results
([84],[90],[91]).

For k = 2, the diameter of CD(2, q) is 4 for 3  q  49.
For k = 3, the diameter of CD(3, q) is 6 for 3  q  47.
For k � 4 and the following pairs (k, q), we have:

k 4 5,6 5, 6 7 8 9,10 11,12
q 3,5-23 5 7-13 5,7,8,9 5,7 5 5

diameter 8 12 10 12 12 14 16

For q = 3 and q = 4, the diameter exhibits di↵erent behavior.

Table 5. Diameter of CD(k, 3) for small k.

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15
diameter 4 6 8 12 12 12 14 17 17 22 22 24 24 26

Table 6. Diameter of CD(k, 4) for small k.

k 2 3 4 5 6 7 8 9 10 11 12
diameter 4 6 6 8 8 10 12 16 16 16 18

Conjecture 6 ([65]). There exists a positive constant C such that for all k � 2,
and all prime powers q,

diam(CD(k, q))  (logq�1 q)k + C .

The following conjecture was stated by Schliep [84].

Conjecture 7 ([84]). The diameter of CD(3, q) is 6 for all prime powers q. The
diameter of CD(k, q) is k+5, if k > 3 is odd, and k+4, if k is even, provided that
q is a large enough prime power.

Some parts of Conjecture 7 were proved in [84], namely for k = 3 and all odd
prime powers q, and for k = 4 and prime power q satisfying the following three
conditions: q is odd, (q�1, 3) = 1, and either 5 is a square in Fq or z4�4z2�z+1 = 0
has a solution in Fq. For the lower bound of the diameter, Schliep in [84] proved that
for all odd k > 5 and all prime powers q, diam(CD(k, q)) � k + 3. Recently, this
bound was improved by Sun [87]: for all prime powers q 6= 4, diam(CD(k, q)) � k+5
for odd k � 5, and diam(CD(k, q)) � k + 4 for even k � 4.

6.6. Spectrum of D(k, q). We would like to end this section with a problem about
the spectra of the graphs D(k, q), which have the same eigenvalues as the graphs
CD(k, q), but with higher multiplicities. In particular, we wish to find the second
largest eigenvalue �2 for these graphs, defined as the largest eigenvalue smaller than
q. Though it is known to have a relation to the diameter of CD(k, q), �2 is also
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related to other properties of these graphs, including the expansion properties (see
Hoory, Linial and Wigderson [43] on such relations). It is known that for some q the
graphs D(k, q) are not Ramanujan, i.e., they have �2 > 2

p
q � 1. This follows from

computations performed first by Reichard [82], and soon after, and independently,
by Thomason [91]. Later these computations were extended and confirmed by other
researchers. At the same time we are not aware of any example of D(k, q) with
�2 > 2

p
q � 1+1. For k = 2, 3, the corresponding �2 was determined in [73]. In [15],

they were determined by another method, as for these values of k, graphs D(k, q)
are isomorphic to the first two members of the family of Wenger graphs. Very
recently, Moorhouse, Sun and Williford [76] showed that for CD(4, q), �2  2

p
q,

and determined the spectrum of CD(4, q) for prime q.

Problem 9. (i) Determine a good upper bound on �2(D(k, q)) for k � 5.
(ii) Determine the spectrum of D(k, q) for k � 4.

7. Applications of graphs D(k, q) and CD(k, q)

7.1. Bipartite graphs of given bi-degree and girth. A bipartite graph � with
bipartition V1 [ V2 is said to be biregular if there exist integers r, s such that
deg(x) = r for all x 2 V1 and deg(y) = s for all y 2 V2. In this case, the pair r, s
is called the bi-degree of �. By an (r, s, t)-graph we shall mean any biregular graph
with bi-degree r, s and girth exactly 2t.

For which r, s, t � 2 do (r, s, t)-graphs exist? Trivially, (r, s, 2)-graphs exist for
all r, s � 2; indeed, these are the complete bipartite graphs. For all r, t � 2, Sachs
[83], and Erdős and Sachs[28], constructed r-regular graphs with girth 2t. From
such graphs, (r, 2, t)-graphs can be trivially obtained by subdividing (i.e. inserting
a new vertex on) each edge of the original graph.

In [35] Füredi, Lazebnik, Seress, Ustimenko and Woldar showed, by explicit
construction, that (r, s, t)-graphs exist for all r, s, t � 2. Their results can be viewed
as biregular versions of the results from [83] and [28]. The paper [35] contains two
constructions: a recursive one and an algebraic one. The recursive construction
establishes existence for all r, s, t � 2, but the algebraic method works only for
r, s � t. However, the graphs obtained by the algebraic method are much denser
and exhibit the following nice property: one can construct an (r, s, t)-graph � such
that for all r � r0 � t � 3 and s � s0 � t � 3, � contains an (r0, s0, t)-graph �0 as
an induced subgraph.

7.2. Cages. Let k � 2 and g � 3 be integers. A (k, g)-graph is a k-regular graph
with girth g. A (k, g)-cage is a (k, g)-graph of minimum order. The problem of
determining the order ⌫(k, g) of a (k, g)-cage is unsolved for most pairs (k, g) and
is extremely hard in the general case. For the state of the art survey on cages, we
refer the reader to Exoo and Jajcay [31].

In [65], Lazebnik, Ustimenko and Woldar established general upper bounds on
⌫(k, g) which are roughly the 3/2 power of the lower bounds (the previous results
had upper bounds equal roughly the squares of lower bounds), and provided explicit
constructions for such (k, g)-graphs. The main ingredients of their construction
were graphs CD(n, q) and certain induced subgraphs of these, manufactured by
the method described in Section2.3.The precise result follows.
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Theorem 33 ([65]). Let k � 2 and g � 5 be integers, and let q denote the smallest
odd prime power for which k  q. Then

⌫(k, g)  2kq(3/4)g�a ,

where a = 4, 11/4, 7/2, 13/4 for g ⌘ 0, 1, 2, 3 (mod 4), respectively.

7.3. Structure of extremal graphs of large girth. Let n � 3, and let � be a
graph of order ⌫ and girth at least n + 1 which has the greatest number of edges
possible subject to these requirements (i.e. an extremal graph). Must � contain an
(n+1)-cycle? In [70] Lazebnik and Wang present several results where this question
is answered a�rmatively, see also [39]. In particular, this is always the case when ⌫

is large compared to n: ⌫ � 2a
2+a+1na, where a = n� 3� b(n� 2)/4c, n � 12. To

obtain this result they used certain generic properties of extremal graphs, as well
as of the graphs CD(n, q).

8. Applications to coding theory and cryptography

Dense graphs without short cycles have been used in coding theory in construc-
tion and analysis of Low-Density Parity-Check (LDPS) codes. See, e.g., Kim, Peled,
Pless and Perepelitsa [46], Kim, Peled, Pless, Perepelitsa and Friedland [47], Kim,
Mellinger and Storme [45], Sin and Xiang [86], Kumar, Pradhan, Thangaraj and
Subramanian [55]. For the last sixteen years, V.A. Ustimenko and his numerous
collaborators and students have been applying algebraically defined graphs and di-
graphs to coding theory and cryptography. We mention just a few recent papers,
and many additional references can be found therein: Klisowski and Ustimenko
[48], Wróblewska and Ustimenko [108] and Ustimenko [96].
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[21] D.M. Cvetković, M. Doob & H. Sachs, Spectra of graphs – theory and application,

Deutscher Verlag der Wissenschaften, Berlin, Academic Press, New York, 1980.
[22] V. Dmytrenko, Classes of polynomial graphs, Ph.D. thesis, University of Delaware, 2004.
[23] V. Dmytrenko, F. Lazebnik & R. Viglione, An Isomorphism criterion for monomial

graphs, J. Graph Theory, 48(2005), 322–328.
[24] V. Dmytrenko, F. Lazebnik & J. Williford, On monomial graphs of girth eight, Finite

Fields Appl., 13(2007), 828–842.
[25] P. Duchet, Hypergraphs, Handbook of Combinatorics, Volume 1, North–Holland, Amster-

dam, 1985.
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