Ch. 8 Residual Income Valuation:

Rich Jakotowicz CFA, CFP® richj@udel.edu

RESIDUAL INCOME

RESIDUAL INCOME

EXAMPLE: RESIDUAL INCOME

BV of Equity	\$2,000,000
--------------	-------------

Cost of Equity 12%

Equity charge \$240,000

Net income \$250,000

Less equity charge \$240,000

Residual income \$10,000

USES OF RESIDUAL INCOME

Valuation

Measuring Internal Corporate Performance

Determining Executive Compensation

Measuring Goodwill Impairment

FORECASTING RESIDUAL INCOME

$$RI_{t} = E_{t} - r_{e}B_{t-1}$$

In the context of Residual Income, the terms "Cost of equity" and "Required return on equity" have the same meaning.

EXAMPLE: FORECASTING RESIDUAL INCOME

	0	1	2
Earnings		\$2.50	\$3.00
Dividends		\$1.00	\$1.10
Book value	\$20.00		
Cost of equity	10%		

EXAMPLE: FORECASTING RESIDUAL INCOME IN ONE YEAR

Charge for Equity Capital =

- Cost of equity x Beginning book value per share
- $10\% \times \$20.00 = \2.00

Residual Income in Year 1 =

- EPS Charge for equity capital
- -\$2.50 \$2.00 = \$0.50

_	0	1	2
Earnings		\$2.50	\$3.00
Dividends		\$1.00	\$1.10
Book value	\$20		
Cost of equity	10%		

EXAMPLE: FORECASTING RESIDUAL INCOME IN TWO YEARS

End-of-Year Book Value for Year 1 =

- Beginning-of-year book value + Earnings Dividends
- \$20.00 + \$2.50 \$1.00 = \$21.50
- Beginning book value for Year 2

Charge for Equity Capital in Year 2 =

- Cost of equity × Beginning book value per share
- $10\% \times \$21.50 = \2.15

Residual Income in Year 2 =

• \$3.00 - \$2.15 = \$0.85

0	1	2
	\$2.50	\$3.00
	\$1.00	\$1.10
\$20		
10%		
	\$20	\$2.50 \$1.00 \$20

VALUING COMMON STOCK USING RESIDUAL INCOME

$$V_{0} = B_{0} + \sum_{t=1}^{\infty} \frac{RI_{t}}{(1+r)^{t}}$$

$$V_{0} = B_{0} + \sum_{t=1}^{\infty} \frac{E_{t} - rB_{t-1}}{(1+r)^{t}}$$

EXAMPLE: VALUATION USING RESIDUAL INCOME

From the Previous Example:

- Beginning book value at time 0 = \$20.00
- Residual income in Year 1 = \$0.50
- Residual income in Year 2 = \$0.85
- Cost of equity = 10%

Additionally, Assume:

- Residual income in Year 3 = \$1.00
- The firm ceases operations in three years

$$V_0 = \$20 + \frac{\$0.50}{1.10^1} + \frac{\$0.85}{1.10^2} + \frac{\$1.00}{1.10^3}$$

$$V_0 = $20 + $1.91$$

$$V_0 = $21.91$$

CONTINUING RESIDUAL INCOME

= Long-Term Residual Income

Potential Scenarios:

- RI is constant forever
- RI is zero at the terminal period
- RI gradually declines to zero, where ROE = r
- RI gradually declines to a constant level, where ROE > r

CONTINUING RESIDUAL INCOME AND PERSISTENCE FACTORS

High Persistence

- Low dividend payout
- Historically high industry ROEs

Low Persistence

- Extreme ROE
- Extreme levels of special items
- Extreme accounting accruals

VALUING CONTINUING RESIDUAL INCOME

$$V_0 = B_0 + \sum_{t=1}^{T-1} \frac{E_t - r_E B_{t-1}}{(1 + r_E)^t} + \frac{E_t - r_E B_{T-1}}{(1 + r_E - \omega)(1 + r_E)^{T-1}}$$

Persistence Factor (ω)

- $0 \le \omega \le 1$
- $\omega = 1 \rightarrow$ Residual income will not fade
- $\omega = 0 \rightarrow$ Residual income will not persist after the initial forecast to rise
- $\omega = 0.62 \rightarrow$ It has been observed, on average, empirically

EXAMPLE: MULTISTAGE MODEL

CASE 1: $\omega = 0$

From the First Valuation Example:

- Beginning book value at Time 0 = \$20.00
- Residual income in Year 1 = \$0.50
- Residual income in Year 2 = \$0.85
- Residual income in Year 3 = \$1.00
- Cost of equity = 10%
- Value was \$21.91

Now Assume:

The firm continues operations after three years

$$V_0 = B_0 + \sum_{t=1}^{T-1} \frac{E_t - r_E B_{t-1}}{(1 + r_E)^t} + \frac{E_T - r_E B_{T-1}}{(1 + r_E - \omega)(1 + r_E)^{T-1}}$$

$$V_0 = \$20 + \frac{\$0.50}{1.10^1} + \frac{\$0.85}{1.10^2} + \frac{\$1.00}{(1+0.10-0)(1.10^2)}$$

$$V_0 = \$20 + \frac{\$0.50}{1.10^1} + \frac{\$0.85}{1.10^2} + \frac{\$1.00}{(1.10)(1.10^2)}$$

$$V_0 = $21.91$$

EXAMPLE: MULTISTAGE MODEL

CASE 2: $\omega = 1.0$

From the First Valuation Example:

- Beginning book value at Time 0 = \$20.00
- Residual income in Year 1 = \$0.50
- Residual income in Year 2 = \$0.85
- Residual income in Year 3 = \$1.00
- Cost of equity = 10%
- Value was \$21.91

Now Assume:

The firm continues operations after three years

$$V_{0} = B_{0} + \sum_{t=1}^{T-1} \frac{E_{t} - r_{E} B_{t-1}}{(1 + r_{E})^{t}} + \frac{E_{T} - r_{E} B_{T-1}}{(1 + r_{E} - \omega)(1 + r_{E})^{T-1}}$$

$$V_{0} = \$20 + \frac{\$0.50}{1.10^{1}} + \frac{\$0.85}{1.10^{2}} + \frac{\$1.00}{(1 + 0.10 - 1.0)(1.10^{2})}$$

$$V_{0} = \$20 + \frac{\$0.50}{1.10^{1}} + \frac{\$0.85}{1.10^{2}} + \frac{\$1.00}{(1 + 0.10 - 1.0)(1.10^{2})}$$

$$V_0 = \$20 + \frac{\$0.50}{1.10^1} + \frac{\$0.85}{1.10^2} + \frac{\$1.00}{(0.10)(1.10^2)}$$

$$V_0 = $29.42$$

EXAMPLE: MULTISTAGE MODEL

CASE 3: $\omega = 0.60$

From the First Valuation Example:

- Beginning book value at Time 0 = \$20.00
- Residual income in Year 1 = \$0.50
- Residual income in Year 2 = \$0.85
- Residual income in Year 3 = \$1.00
- Cost of equity = 10%
- Value was \$21.91

Now Assume:

The firm continues operations after three years

$$V_{0} = B_{0} + \sum_{t=1}^{T-1} \frac{E_{t} - r_{E} B_{t-1}}{(1 + r_{E})^{t}} + \frac{E_{T} - r_{E} B_{T-1}}{(1 + r_{E} - \omega)(1 + r_{E})^{T-1}}$$

$$V_{0} = \$20 + \frac{\$0.50}{1.10^{1}} + \frac{\$0.85}{1.10^{2}} + \frac{\$1.00}{(1 + 0.10 - 0.60)(1.10^{2})}$$

$$V_{0} = \$20 + \frac{\$0.50}{1.10^{1}} + \frac{\$0.85}{1.10^{2}} + \frac{\$1.00}{(0.50)(1.10^{2})}$$

$$V_{0} = \$22.81$$

RESIDUAL INCOME MODEL STRENGTHS AND WEAKNESSES

Strengths

- Puts less weight on the terminal value
- Uses available accounting data
- Is useful for non-dividend-paying firms
- Is useful for firms without free cash flows
- Is useful when cash flows are unpredictable
- Is based on economic value

Weaknesses

- Relies on accounting data
- May require adjustments to accounting data
- Relies on clean surplus relationship

RESIDUAL INCOME MODEL APPROPRIATENESS

Most Appropriate

- At firms where BV is accurate (financial firms)
- At non-dividend-paying firms
- At firms without free cash flows
- When terminal values are highly uncertain

Least Appropriate

- When BV is not an accurate reflection of current value
- When the clean surplus relationship does not hold