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Bill Gate’s Opinion
MD simulation = dissimulation

the act of deceiving deception, dissembling, deceit

misrepresentation, falsification - a willful perversion
of facts

fakery - the act of faking (or the product of faking)

indirection - deceitful action that is not
straightforward

Outline

» Molecular Dynamics Simulations

> Force Fields and Force Field Parametrization

> MD Simulations and Neutrons: The Connection

» Local Melt Dynamics: Polyethylene

» Local Solution Dynamics: PEO/water Solutions
» Chain Dynamics: Poly(butadiene)

» Glass and Sub-glass Processes: Poly(butadiene)
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Intramolecular and Intermolecular Interactions




“Generic” (e.g., Dreiding):

Roughly describe a wide range of materials, not
parameterized or validated

“ Trained” (e.q., AMBER, COMPASS, CHARMM, OPLS)

Parameterized to reproduce the properties of a broad set of
molecules such as small organics, peptides or amino acids

“Specialized” (e.q., Atomistic Polarizable Potential for
Liquids, Electrolytes and Polymers (APPLE&P))

Carefully parameterized and validated potentials designed to
reproduce properties of a small class of specific molecules

Intermolecular Interactions
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Intramolecular Interactions
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Validation: Static Structure Factor
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Validation: Dynamic Structure Factor for PEO Melt
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Incoherent Dynamic Structure Factor, Coherent Dynamic Structure Factor,
QENS and MD NSE and MD

Dynamic Structure Factors

Simulation yields intermediate dynamic structure factors (time
domain) directly

Coherent scattering

Incoherent scattering

X

» Simulation time scales from femtoseconds to microseconds
» Experimental time scales from picoseconds to nanoseconds

» A Fourier-Laplace to frequency domain (or an inverse transform of
QENS data) is required for comparison

» Direct comparisons can be made with NSE data
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MD simulations provide data over a wider range of time
MD simulations are in good agreement with QENS
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Polymer Dynamics
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Water Dynamics
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Water quasi-confinement
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Large Scale Dynamics: Single chain coherent
dynamic structure factor for PBD (353 K)

Why does the Rouse model provide such
a poor description of S(qg,t)?
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Can dynamic neutron scattering tell us
about the bifurcation of the glass and sub-
glass processes?
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MD Simulations and Dynamic Neutron
Scattering in Polymers

--Natural partners (overlapping time and length scales)

--DNS experiments are important for validation of
simulations

--Simulations can direct experiment

--Simulations can help provide mechanistic insight into
experimental results

--Simulations can help provide sanity checks for
conclusions based on limited (but expanding!) DNS
capabilities
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