Molecular Dynamics Simulations and Neutron Scattering: Polymer Melt and Solution Dynamics

Grant D. Smith
Department of Materials Science and Engineering
University of Utah

Polymer Dynamics and Relaxation

Richard H. Boyd and Grant D. Smith

Cambridge University Press (2007)

Bill Gate's Opinion

MD simulation = dissimulation

the act of deceiving <u>deception</u>, <u>dissembling</u>, <u>deceit</u> <u>misrepresentation</u>, <u>falsification</u> - a willful perversion of facts

fakery - the act of faking (or the product of faking)

<u>indirection</u> - deceitful action that is not straightforward

Outline

- ➤ Molecular Dynamics Simulations
- ➤ Force Fields and Force Field Parametrization
- ➤ MD Simulations and Neutrons: The Connection
- ➤ Local Melt Dynamics: Polyethylene
- ➤ <u>Local Solution Dynamics: PEO/water Solutions</u>
- ➤ Chain Dynamics: Poly(butadiene)
- ➤ Glass and Sub-glass Processes: Poly(butadiene)

$$V(\vec{r}) = V^{NB}(\vec{r}) + \sum_{bonds} V^{BOND}(r_{ij}) + \sum_{bends} V^{BEND}(\theta_{ijk}) + \sum_{dihedrals} V^{TORS}(\varphi_{ijkl})$$

$$V^{DIS-REP}(r_{ij}) = \frac{A_{ij}}{r_{ij}^{12}} - \frac{C_{ij}}{r_{ij}^{6}} = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

$$V^{NB}(\vec{r}) = V^{POL}(\vec{r}) + \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} \exp(-B_{ij}r_{ij}) - \frac{C_{ij}}{r_{ij}^{6}} + \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ij}}$$

Force fields: Where do they come from?

"Generic" (e.g., Dreiding):

Roughly describe a wide range of materials, not parameterized or validated

"Trained" (e.g., AMBER, COMPASS, CHARMM, OPLS)

Parameterized to reproduce the properties of a broad set of molecules such as small organics, peptides or amino acids

<u>"Specialized" (e.g., Atomistic Polarizable Potential for</u> Liquids, Electrolytes and Polymers (APPLE&P))

Carefully parameterized and validated potentials designed to reproduce properties of a small class of specific molecules

Force Field Parametrization:

Validation: Dynamic Structure Factor for PEO Melt

QENS and MD

Incoherent Dynamic Structure Factor, Coherent Dynamic Structure Factor, NSE and MD

MD-Neutron Connection: Dynamic Structure Factors

Simulation yields intermediate dynamic structure factors (time domain) directly

Coherent scattering

$$s_{coh}(q,t) = \frac{1}{N} < \sum_{j,k}^{N} \exp{i\vec{q}} \bullet (r_k(t) - \vec{r}_j(0)) > < \sum_{j,k}^{N} \sin{q} \mid r_k(t) - \vec{r}_j(0) \mid / q \mid r_k(t) - \vec{r}_j(0) \mid >$$

Incoherent scattering

$$s_{inc}(q,t) = \frac{1}{N} < \sum_{k}^{N} \exp{i\vec{q}} \bullet (\vec{r}_{k}(t) - \vec{r}_{k}(0)) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) \, | \, / \, q \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) \, | \, / \, q \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) \, | \, / \, q \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) \, | \, / \, q \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) \, | \, / \, q \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) \, | \, / \, q \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) \, | \, / \, q \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) \, | \, / \, q \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{k}(0) > = < \sum_{k}^{N} \sin{q} \, | \, \vec{r}_{k}(t) - \vec{r}_{$$

- ➤ Simulation time scales from femtoseconds to microseconds
- Experimental time scales from picoseconds to nanoseconds
- A Fourier-Laplace to frequency domain (or an inverse transform of QENS data) is required for comparison
- Direct comparisons can be made with NSE data

MD simulations provide data over a wider range of time MD simulations are in good agreement with QENS

Low molecular weight PEO exhibits a minimum in local dynamics with concentration

This is due to slowing conformational dynamics and increasing translational/rotational dynamics with dilution

Water quasi-confinement

 $4.5 \, 10^{-3}$

1/T

 $5.5 \cdot 10^{-3}$

MD Simulations and Dynamic Neutron Scattering in Polymers

- --Natural partners (overlapping time and length scales)
- --DNS experiments are important for validation of simulations
- --Simulations can direct experiment

1000/T

- --Simulations can help provide mechanistic insight into experimental results
- --Simulations can help provide sanity checks for conclusions based on limited (but expanding!) DNS capabilities

